Science.gov

Sample records for brane world black

  1. Brane-world black holes

    NASA Astrophysics Data System (ADS)

    Chamblin, A.; Hawking, S. W.; Reall, H. S.

    2000-03-01

    Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five-dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.

  2. Asymptotically Lifshitz brane-world black holes

    SciTech Connect

    Ranjbar, Arash Sepangi, Hamid Reza Shahidi, Shahab

    2012-12-15

    We study the gravity dual of a Lifshitz field theory in the context of a RSII brane-world scenario, taking into account the effects of the extra dimension through the contribution of the electric part of the Weyl tensor. We study the thermodynamical behavior of such asymptotically Lifshitz black holes. It is shown that the entropy imposes the critical exponent z to be bounded from above. This maximum value of z corresponds to a positive infinite entropy as long as the temperature is kept positive. The stability and phase transition for different spatial topologies are also discussed. - Highlights: Black-Right-Pointing-Pointer Studying the gravity dual of a Lifshitz field theory in the context of brane-world scenario. Black-Right-Pointing-Pointer Studying the thermodynamical behavior of asymptotically Lifshitz black holes. Black-Right-Pointing-Pointer Showing that the entropy imposes the critical exponent z to be bounded from above. Black-Right-Pointing-Pointer Discussing the phase transition for different spatial topologies.

  3. Note on regular black holes in a brane world

    NASA Astrophysics Data System (ADS)

    Neves, J. C. S.

    2015-10-01

    In this work, we show that regular black holes in a Randall-Sundrum-type brane world model are generated by the nonlocal bulk influence, expressed by a constant parameter in the brane metric, only in the spherical case. In the axial case (black holes with rotation), this influence forbids them. A nonconstant bulk influence is necessary to generate regular black holes with rotation in this context.

  4. Black strings from minimal geometric deformation in a variable tension brane-world

    NASA Astrophysics Data System (ADS)

    Casadio, R.; Ovalle, J.; da Rocha, Roldão

    2014-02-01

    We study brane-world models with variable brane tension and compute corrections to the horizon of a black string along the extra dimension. The four-dimensional geometry of the black string on the brane is obtained by means of the minimal geometric deformation approach, and the bulk corrections are then encoded in additional terms involving the covariant derivatives of the variable brane tension. Our investigation shows that the variable brane tension strongly affects the shape and evolution of the black string horizon along the extra dimension, at least in a near-brane expansion. In particular, we apply our general analysis to a model motivated by the Eötvös branes, where the variable brane tension is related to the Friedmann-Robertson-Walker brane-world cosmology. We show that for some stages in the evolution of the universe, the black string warped horizon collapses to a point and the black string has correspondingly finite extent along the extra dimension. Furthermore, we show that in the minimal geometric deformation of a black hole on the variable tension brane, the black string has a throat along the extra dimension, whose area tends to zero as time goes to infinity.

  5. Brane-World Gravity

    NASA Astrophysics Data System (ADS)

    Maartens, Roy; Koyama, Kazuya

    2010-09-01

    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+d-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (˜TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity “leaks” into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.

  6. On the localization of four-dimensional brane-world black holes

    NASA Astrophysics Data System (ADS)

    Kanti, P.; Pappas, N.; Zuleta, K.

    2013-12-01

    In the context of brane-world models, we pursue the question of the existence of five-dimensional solutions describing regular black holes localized close to the brane. Employing a perturbed Vaidya-type line-element embedded in a warped fifth dimension, we attempt to localize the extended black-string singularity, and to restore the regularity of the AdS spacetime at a finite distance from the brane by introducing an appropriate bulk energy-momentum tensor. As a source for this bulk matter, we are considering a variety of non-ordinary field-theory models of scalar fields either minimally coupled to gravity, but including non-canonical kinetic terms, mixing terms, derivative interactions and ghosts, or non-minimally coupled to gravity through a general coupling to the Ricci scalar. In all models considered, even in those characterized by a high degree of flexibility, a negative result was reached. Our analysis demonstrates how difficult the analytic construction of a localized brane-world black hole may be in the context of a well-defined field-theory model. Finally, with regard to the question of the existence or not of a static classical black-hole solution on the brane, our analysis suggests that such solutions could in principle exist; however, the associated field configuration itself has to be dynamic.

  7. Detecting extra dimensions with gravity-wave spectroscopy: the black-string brane world.

    PubMed

    Seahra, Sanjeev S; Clarkson, Chris; Maartens, Roy

    2005-04-01

    Using the black string between two branes as a model of a brane-world black hole, we compute the gravity-wave perturbations and identify the features arising from the additional polarizations of the graviton. The standard four-dimensional gravitational wave signal acquires late-time oscillations due to massive modes of the graviton. The Fourier transform of these oscillations shows a series of spikes associated with the masses of the Kaluza-Klein modes, providing in principle a spectroscopic signature of extra dimensions. PMID:15903904

  8. Brane-world stars from minimal geometric deformation, and black holes

    NASA Astrophysics Data System (ADS)

    Casadio, Roberto; Ovalle, Jorge

    2014-02-01

    Using the effective four-dimensional Einstein field equations, we build analytical models of spherically symmetric stars in the brane-world, in which the external space-time contains both an ADM mass and a tidal charge. In order to determine the interior geometry, we apply the principle of minimal geometric deformation, which allows one to map general relativistic solutions to solutions of the effective four-dimensional brane-world equations. We further restrict our analysis to stars with a radius linearly related to the total general relativistic mass, and obtain a general relation between the latter, the brane-world ADM mass and the tidal charge. In these models, the value of the star's radius can then be taken to zero smoothly, thus obtaining brane-world black hole metrics with a tidal charge solely determined by the mass of the source and the brane tension. We find configurations which entail a partial screening of the gravitational mass, and general conclusions regarding the minimum mass for semiclassical black holes are also drawn.

  9. Decay of massive Dirac hair on a brane-world black hole

    SciTech Connect

    Gibbons, Gary W.; Rogatko, Marek; Szyplowska, Agnieszka

    2008-03-15

    We investigate the intermediate and late-time behavior of the massive Dirac spinor field in the background of static spherically symmetric brane-world black hole solutions. The intermediate asymptotic behavior of the massive spinor field exhibits a dependence on the field's parameter mass as well as the multiple number of the wave mode. On the other hand, the late-time behavior power-law decay has a rate which is independent of those factors.

  10. Probing topologically charged black holes on brane worlds in f({R}) bulk

    NASA Astrophysics Data System (ADS)

    Kuerten, André M.; da Rocha, Roldão

    2016-07-01

    The perihelion precession, the deflection of light and the radar echo delay are classical tests of General Relativity here used to probe brane-world topologically charged black holes in a f(R) bulk. Moreover, such tests are used to constrain the parameter that arises from the Shiromizu-Maeda-Sasaki procedure applied to a f(R) bulk. Observational data constrain the possible values of the tidal charge parameter and the effective cosmological constant in this context. We show that the observational/experimental data for both perihelion precession and radar echo delay make the black hole parameters to be more strict than the ones for the DMPR black hole. Moreover, the deflection of light constrains the tidal charge parameter similarly as the DMPR black holes, due to a peculiarity in the equation of motion.

  11. Black diamonds at brane junctions

    NASA Astrophysics Data System (ADS)

    Chamblin, Andrew; Csáki, Csaba; Erlich, Joshua; Hollowood, Timothy J.

    2000-08-01

    We discuss the properties of black holes in brane-world scenarios where our Universe is viewed as a four-dimensional sub-manifold of some higher-dimensional spacetime. We consider in detail such a model where four-dimensional spacetime lies at the junction of several domain walls in a higher dimensional anti-de Sitter spacetime. In this model there may be any number p of infinitely large extra dimensions transverse to the brane-world. We present an exact solution describing a black p-brane which will induce on the brane-world the Schwarzschild solution. This exact solution is unstable to the Gregory-Laflamme instability, whereby long-wavelength perturbations cause the extended horizon to fragment. We therefore argue that at late times a non-rotating uncharged black hole in the brane-world is described by a deformed event horizon in p+4 dimensions which will induce, to good approximation, the Schwarzschild solution in the four-dimensional brane world. When p=2, this deformed horizon resembles a black diamond and more generally for p>2, a polyhedron.

  12. Black diamonds at brane junctions

    SciTech Connect

    Chamblin, Andrew; Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Department of Physics, University of Wales Swansea, Swansea, SA2 8PP,

    2000-08-15

    We discuss the properties of black holes in brane-world scenarios where our Universe is viewed as a four-dimensional sub-manifold of some higher-dimensional spacetime. We consider in detail such a model where four-dimensional spacetime lies at the junction of several domain walls in a higher dimensional anti-de Sitter spacetime. In this model there may be any number p of infinitely large extra dimensions transverse to the brane-world. We present an exact solution describing a black p-brane which will induce on the brane-world the Schwarzschild solution. This exact solution is unstable to the Gregory-Laflamme instability, whereby long-wavelength perturbations cause the extended horizon to fragment. We therefore argue that at late times a non-rotating uncharged black hole in the brane-world is described by a deformed event horizon in p+4 dimensions which will induce, to good approximation, the Schwarzschild solution in the four-dimensional brane world. When p=2, this deformed horizon resembles a black diamond and more generally for p>2, a polyhedron. (c) 2000 The American Physical Society.

  13. Extra dimensions at the CERN LHC via mini-black holes: Effective Kerr-Newman brane-world effects

    SciTech Connect

    Rocha, R. da; Coimbra-Araujo, C. H.

    2006-09-01

    We solve Einstein equations on the brane to derive the exact form of the brane-world-corrected perturbations in Kerr-Newman singularities, using Randall-Sundrum and Arkani-Hamed-Dimopoulos-Dvali (ADD) models. It is a consequence of such models that Kerr-Newman mini-black holes can be produced in LHC. We use this approach to derive a normalized correction for the Schwarzschild Myers-Perry radius of a static (4+n)-dimensional mini-black hole, using more realistic approaches arising from Kerr-Newman mini-black hole analysis. Besides, we prove that there are four Kerr-Newman black hole horizons in the brane-world scenario we use, although only the outer horizon is relevant in the physical measurable processes. Parton cross sections in LHC and Hawking temperature are also investigated as functions of Planck mass (in the LHC range 1-10 TeV), mini-black hole mass, and the number of large extra dimensions in brane-world large extra-dimensional scenarios. In this case a more realistic brane-effect-corrected formalism can achieve more precisely the effective extra-dimensional Planck mass and the number of large extra dimensions--in the Arkani-Hamed-Dimopoulos-Dvali model--or the size of the warped extra dimension--in Randall-Sundrum formalism.

  14. Black branes as piezoelectrics.

    PubMed

    Armas, Jay; Gath, Jakob; Obers, Niels A

    2012-12-14

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six. PMID:23368298

  15. Electromagnetic perturbations in new brane world scenarios

    NASA Astrophysics Data System (ADS)

    Molina, C.; Pavan, A. B.; Medina Torrejón, T. E.

    2016-06-01

    In this work, we consider electromagnetic dynamics in Randall-Sundrum branes. It is derived from a family of four-dimensional spacetimes compatible with Randall-Sundrum brane worlds, focusing on asymptotic flat backgrounds. Maximal extensions of the solutions are constructed, and their causal structures are discussed. These spacetimes include singular, nonsingular, and extreme black holes. Maxwell's electromagnetic field is introduced, and its evolution is studied in an extensive numerical survey. Electromagnetic quasinormal mode spectra are derived and analyzed with time-dependent and high-order WKB methods. Our results indicate that the black holes in the brane are electromagnetically stable.

  16. String inspired brane world cosmology.

    PubMed

    Germani, Cristiano; Sopuerta, Carlos F

    2002-06-10

    We consider brane world scenarios including the leading correction to the Einstein-Hilbert action suggested by superstring theory, the Gauss-Bonnet term. We obtain and study the complete set of equations governing the cosmological dynamics. We find they have the same form as those in Randall-Sundrum scenarios but with time-varying four-dimensional gravitational and cosmological constants. By studying the bulk geometry we show that this variation is produced by bulk curvature terms parametrized by the mass of a black hole. Finally, we show there is a coupling between these curvature terms and matter that can be relevant for early universe cosmology. PMID:12059347

  17. On the localisation of four-dimensional brane-world black holes: II. The general case

    NASA Astrophysics Data System (ADS)

    Kanti, P.; Pappas, N.; Pappas, T.

    2016-01-01

    We perform a comprehensive analysis of a number of scalar field theories in an attempt to find analytically five-dimensional, localised-on-the-brane, black-hole solutions. Extending a previous analysis, we assume a generalised Vaidya ansatz for the five-dimensional metric tensor that allows for a time-dependent, non-trivial profile of the mass function in terms of the bulk coordinate and a deviation from the over-restricting Schwarzschild-type solution on the brane. In order to support such a solution, we study a variety of theories including single or multiple scalar fields, with canonical or non-canonical kinetic terms, minimally or non-minimally coupled to gravity. We demonstrate that for such a metric ansatz and for a carefully chosen energy-momentum tensor which is non-isotropic in five dimensions, solutions that have the form of a Schwarzschild-(anti)de Sitter or Reissner-Nordstrom type of solution do emerge. However, the resulting profile of the mass function along the bulk coordinate, when allowed, is not the correct one for eliminating bulk singularities.

  18. Black holes radiate mainly on the brane.

    PubMed

    Emparan, R; Horowitz, G T; Myers, R C

    2000-07-17

    We examine the evaporation of a small black hole on a brane in a world with large extra dimensions. Since the masses of many Kaluza-Klein modes are much smaller than the Hawking temperature of the black hole, it has been claimed that most of the energy is radiated into these modes. We show that this is incorrect. Most of the energy goes into the modes on the brane. This raises the possibility of observing Hawking radiation in future high energy colliders if there are large extra dimensions. PMID:10991325

  19. Effective hydrodynamics of black D3-branes

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Hubeny, Veronika E.; Rangamani, Mukund

    2013-06-01

    The long-wavelength effective field theory of world-volume fluctuations of black D3-branes is shown to be a hydrodynamical system to leading order in a gradient expansion. We study the system on a fiducial `cutoff' surface: the fluctuating geometry imprints its dynamics on the surface via an induced stress tensor whose conservation encapsulates the hydrodynamical description. For a generic non-extremal D3-brane, as we move our cutoff surface from the asymptotically flat near-boundary region to the near-horizon region, this hydrodynamical system interpolates between a non-conformal relativistic fluid and a non-relativistic incompressible fluid. We also consider the dependence on the deviation from extremality of the D3-branes. In the near-extremal case we recover the description in terms of a conformal relativistic fluid encountered in the AdS/CFT context. We argue that this system allows us therefore to explore the various connections that have hitherto been suggested relating the dynamics of gravitational systems and fluid dynamics. In particular, we go on to show that the blackfold effective field theory approach allows us to capture this hydrodynamical behaviour and moreover subsumes the constructions encountered in the fluid/gravity correspondence and the black hole membrane paradigm, providing thereby a universal language to explore the effective dynamics of black branes.

  20. Energy scales in a stabilized brane world

    SciTech Connect

    Boos, Edward E.; Mikhailov, Yuri S.; Smolyakov, Mikhail N.; Volobuev, Igor P.; /SINP, Moscow

    2004-12-01

    Brane world gravity looks different for observers on positive and negative tension branes. First we consider the well-known RS1 model with two branes embedded into the AdS5 space-time and recall the results on the relations between the energy scales for an observer on the negative tension brane, which is supposed to be ''our'' brane. Then from the point of view of this observer we study energy scales and masses for the radion and graviton excitations in a stabilized brane world model. We argue that there may be several possibilities leading to scales of the order 1-10 TeV or even less for new physics effects on our brane. In particular, an interesting scenario can arise in the case of a ''symmetric'' brane world with a nontrivial warp factor in the bulk, which however takes equal values on both branes.

  1. Escape of Black Holes from the Brane

    SciTech Connect

    Flachi, Antonino; Tanaka, Takahiro

    2005-10-14

    TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the 'black hole plus brane' system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes.

  2. Gravity on codimension 2 brane worlds

    SciTech Connect

    Navarro, Ignacio; Santiago, Jose; /Durham U., IPPP /Fermilab

    2004-11-01

    The authors compute the matching conditions for a general thick codimension 2 brane, a necessary previous step towards the investigation of gravitational phenomena in co-dimension 2 braneworlds. They show that, provided the brane is weakly curved, they are specified by the integral in the extra dimensions of the brane energy-momentum, independently of its detailed internal structure. These general matching conditions can then be used as boundary conditions for the bulk solution. By evaluating Einstein equations at the brane boundary they are able to write an evolution equation for the induced metric on the brane depending only on physical brane parameters and the bulk energy-momentum tensor. They particularize to a cosmological metric and show that a realistic cosmology can be obtained in the simplest case of having just a non-zero cosmological constant in the bulk. They point out several parallelisms between this case and the codimension 1 brane worlds in an AdS space.

  3. Brane worlds in critical gravity

    NASA Astrophysics Data System (ADS)

    Chen, Feng-Wei; Liu, Yu-Xiao; Zhong, Yuan; Wang, Yong-Qiang; Wu, Shao-Feng

    2013-11-01

    Recently, Lü and Pope proposed critical gravities in [Phys. Rev. Lett. 106, 181302 (2011)]. In this paper we construct analytic brane solutions in critical gravity with matter. The Gibbons-Hawking surface term and junction condition are investigated, and the thin and thick brane solutions are obtained. All these branes are embedded in five-dimensional anti-de Sitter spacetimes. Our solutions are stable against scalar perturbations, and the zero modes of scalar perturbations cannot be localized on the branes.

  4. Interaction of a brane with a moving bulk black hole

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri; Snajdr, Martin; Stojković, Dejan

    2003-08-01

    We study the interaction of an n-dimensional topological defect (n-brane) described by the Nambu-Goto action with a higher-dimensional Schwarzschild black hole moving in the bulk spacetime. We derive the general form of the perturbation equations for an n-brane in the weak field approximation and solve them analytically in the most interesting cases. We especially analyze applications to brane world models. We calculate the induced geometry on the brane generated by a moving black hole. From the point of view of a brane observer, this geometry can be obtained by solving (n+1)-dimensional Einstein’s equations with a nonvanishing right-hand side. We calculate the effective stress-energy tensor corresponding to this “shadow matter.” We explicitly show that there exist regions on the brane where a brane observer sees an apparent violation of energy conditions. We also study the deflection of light propagating in the region of influence of this shadow matter.

  5. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    SciTech Connect

    Dai Dechang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Tseng, Jeff; Rizvi, Eram

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/{approx}issever/BlackMax/blackmax.html.

  6. de Sitter and double asymmetric brane worlds

    SciTech Connect

    Guerrero, Rommel; Rodriguez, R. Omar; Torrealba, Rafael

    2005-12-15

    Asymmetric brane worlds with dS expansion and static double kink topology are obtained from a recently proposed method and their properties are analyzed. These domain walls interpolate between two spacetimes with different cosmological constants. In the dynamic case, the vacua correspond to dS and AdS geometry, unlike the static case where they correspond to AdS background. We show that it is possible to confine gravity on such branes. In particular, the double-brane world hosts two different walls, so that the gravity is localized on one of them.

  7. Thermodynamics of Lovelock-Lifshitz black branes

    SciTech Connect

    Dehghani, M. H.; Mann, R. B.

    2010-09-15

    We investigate the thermodynamics of Lovelock-Lifshitz black branes. We begin by introducing the finite action of third order Lovelock gravity in the presence of a massive vector field for a flat boundary, and use it to compute the energy density of these black branes. Using the field equations, we find a conserved quantity along the r coordinate that relates the metric parameters at the horizon and at infinity. Remarkably, though the subleading large-r behavior of Lovelock-Lifshitz black branes differs substantively from their Einsteinian Lifshitz counterparts, we find that the relationship between the energy density, temperature, and entropy density is unchanged from Einsteinian gravity. Using the first law of thermodynamics to obtain the relationship between entropy and temperature, we find that it too is the same as the Einsteinian case, apart from a constant of integration that depends on the Lovelock coefficients.

  8. Viscous asymptotically flat Reissner-Nordström black branes

    NASA Astrophysics Data System (ADS)

    Gath, Jakob; Pedersen, Andreas Vigand

    2014-03-01

    We study electrically charged asymptotically flat black brane solutions whose world-volume fields are slowly varying with the coordinates. Using familiar techniques, we compute the transport coefficients of the fluid dynamic derivative expansion to first order. We show how the shear and bulk viscosities are modified in the presence of electric charge and we compute the charge diffusion constant which is not present for the neutral black p-brane. We compute the first order dispersion relations of the effective fluid. For small values of the charge the speed of sound is found to be imaginary and the brane is thus Gregory-Laflamme unstable as expected. For sufficiently large values of the charge, the sound mode becomes stable, however, in this regime the hydrodynamic mode associated with charge diffusion is found to be unstable. The electrically charged brane is thus found to be (classically) unstable for all values of the charge density in agreement with general thermodynamic arguments. Finally, we show that the shear viscosity to entropy bound is saturated, as expected, while the proposed bounds for the bulk viscosity to entropy can be violated in certain regimes of the charge of the brane.

  9. Vacuum decay on a brane world

    SciTech Connect

    Davis, Stephen C.; Brechet, Sylvain

    2005-05-15

    The bubble nucleation rate for a first order phase transition occurring on a brane world is calculated. Both the Coleman-de Luccia thin wall instanton and the Hawking-Moss instanton are considered. The results are compared with the corresponding nucleation rates for standard four-dimensional gravity.

  10. Perturbations of black p-branes

    SciTech Connect

    Abdalla, Elcio; Fernandez Piedra, Owen Pavel; Oliveira, Jeferson de; Molina, C.

    2010-03-15

    We consider black p-brane solutions of the low-energy string action, computing scalar perturbations. Using standard methods, we derive the wave equations obeyed by the perturbations and treat them analytically and numerically. We have found that tensorial perturbations obtained via a gauge-invariant formalism leads to the same results as scalar perturbations. No instability has been found. Asymptotically, these solutions typically reduce to a AdS{sub (p+2)}xS{sup (8-p)} space which, in the framework of Maldacena's conjecture, can be regarded as a gravitational dual to a conformal field theory defined in a (p+1)-dimensional flat space-time. The results presented open the possibility of a better understanding the AdS/CFT correspondence, as originally formulated in terms of the relation among brane structures and gauge theories.

  11. Transport coefficients of black MQGP -branes

    NASA Astrophysics Data System (ADS)

    Dhuria, Mansi; Misra, Aalok

    2015-01-01

    The Strominger-Yau-Zaslow (SYZ) mirror, in the `delocalised limit' of Becker et al. (Nucl Phys B 702:207, 2004), of -branes, fractional -branes and flavour -branes wrapping a non-compact four-cycle in the presence of a black hole (BH) resulting in a non-Kähler resolved warped deformed conifold (NKRWDC) in Mia et al. (Nucl Phys B 839:187, 2010), was carried out in Dhuria and Misra (JHEP 1311:001, 2013) and resulted in black -branes. There are two parts in our paper. In the first we show that in the `MQGP' limit discussed in Dhuria and Misra (JHEP 1311:001, 2013) a finite (and hence expected to be more relevant to QGP), finite and very large , and very small , we have the following. (i) The uplift, if valid globally (like Dasgupta et al., Nucl Phys B 755:21, 2006) for fractional branes in conifolds), asymptotically goes to -branes wrapping a two-cycle (homologously a (large) integer sum of two-spheres) in . (ii) Assuming the deformation parameter to be larger than the resolution parameter, by estimating the five structure torsion () classes we verify that in the large- limit, implying the NKRWDC reduces to a warped Kähler deformed conifold. (iii) The local of Dhuria and Misra (JHEP 1311:001, 2013) in the large- limit satisfies the same conditions as the maximal -invariant special Lagrangian three-cycle of of Ionel and Min-OO (J Math 52(3), 2008), partly justifying use of SYZ-mirror symmetry in the `delocalised limit' of Becker et al. (Nucl Phys B 702:207, 2004) in Dhuria and Misra (JHEP 1311:001, 2013). In the second part of the paper, by either integrating out the angular coordinates of the non-compact four-cycle which a -brane wraps around, using the Ouyang embedding, in the DBI action of a -brane evaluated at infinite radial boundary, or by dimensionally reducing the 11-dimensional EH action to five () dimensions and at the infinite radial boundary, we then calculate in particular the (part of the 'MQGP') limit, a variety of gauge and metric

  12. Hydro-elastic complementarity in black branes at large D

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Izumi, Keisuke; Luna, Raimon; Suzuki, Ryotaku; Tanabe, Kentaro

    2016-06-01

    We obtain the effective theory for the non-linear dynamics of black branes — both neutral and charged, in asymptotically flat or Anti-deSitter spacetimes — to leading order in the inverse-dimensional expansion. We find that black branes evolve as viscous fluids, but when they settle down they are more naturally viewed as solutions of an elastic soap-bubble theory. The two views are complementary: the same variable is regarded in one case as the energy density of the fluid, in the other as the deformation of the elastic membrane. The large- D theory captures finite-wavelength phenomena beyond the conventional reach of hydrodynamics. For asymptotically flat charged black branes (either Reissner-Nordstrom or p-brane-charged black branes) it yields the non-linear evolution of the Gregory-Laflamme instability at large D and its endpoint at stable non-uniform black branes. For Reissner-Nordstrom AdS black branes we find that sound perturbations do not propagate (have purely imaginary frequency) when their wavelength is below a certain charge-dependent value. We also study the polarization of black branes induced by an external electric field.

  13. Black brane solutions governed by fluxbrane polynomials

    NASA Astrophysics Data System (ADS)

    Ivashchuk, V. D.

    2014-12-01

    A family of composite black brane solutions in the model with scalar fields and fields of forms is presented. The metric of any solution is defined on a manifold which contains a product of several Ricci-flat 'internal' spaces. The solutions are governed by moduli functions Hs (s = 1 , … , m) obeying non-linear differential equations with certain boundary conditions imposed. These master equations are equivalent to Toda-like equations and depend upon the non-degenerate (m × m) matrix A. It was conjectured earlier that the functions Hs should be polynomials if A is a Cartan matrix for some semisimple finite-dimensional Lie algebra (of rank m). It is shown that the solutions to master equations may be found by using so-called fluxbrane polynomials which can be calculated (in principle) for any semisimple finite-dimensional Lie algebra. Examples of dilatonic charged black hole (0-brane) solutions related to Lie algebras A1, A2, C2 and G2 are considered.

  14. I've Got the World on a Brane

    NASA Astrophysics Data System (ADS)

    Omotani, John

    2011-11-01

    This thesis treats several topics in the study of extra-dimensional models of the world, concerning Heterotic M-Theory and the dynamics of branes. We describe a reduction to five dimensions, over a Calabi-Yau manifold, of an improved version of Heterotic M-Theory, which is valid to all orders in the gravitational coupling. This provides a starting point for considering the consequences of the improved theory for the very fruitful phenomenology of the original. We investigate the singularities formed by the collision of gravitating branes in scalar field theory. By considering the asymptotic structure of the spacetime, the properties of the horizons formed and the growth of the curvature we argue that the singularity is not a black brane, as one might have expected, but rather a big crunch. Finally, we construct a restricted class of multi-galileon theories as braneworld models with codimension greater than one, developing in the process some of the formalism needed for the general construction.

  15. Stability of branes trapped by d-dimensional black holes

    SciTech Connect

    Hioki, Kenta; Miyamoto, Umpei; Nozawa, Masato

    2009-10-15

    The system of extended objects interacting with a black hole describes or mimics various gravitational phenomena. In this brief paper, we report the results of stability analysis of codimension-one Dirac-Nambu-Goto branes at rest at the equatorial plane of d-dimensional spherical black holes, including the Schwarzschild and Schwarzschild-(anti-)de Sitter black holes. For the Schwarzschild and Schwarzschild-anti-de Sitter backgrounds the stability of branes is shown analytically by means of a deformation technique. In contrast, for the Schwarzschild-de Sitter background we demonstrate with the help of numerics that the brane is unstable (only) against the s-wave sector of perturbations.

  16. Stability of branes trapped by d-dimensional black holes

    NASA Astrophysics Data System (ADS)

    Hioki, Kenta; Miyamoto, Umpei; Nozawa, Masato

    2009-10-01

    The system of extended objects interacting with a black hole describes or mimics various gravitational phenomena. In this brief paper, we report the results of stability analysis of codimension-one Dirac-Nambu-Goto branes at rest at the equatorial plane of d-dimensional spherical black holes, including the Schwarzschild and Schwarzschild-(anti-)de Sitter black holes. For the Schwarzschild and Schwarzschild-anti-de Sitter backgrounds the stability of branes is shown analytically by means of a deformation technique. In contrast, for the Schwarzschild-de Sitter background we demonstrate with the help of numerics that the brane is unstable (only) against the s-wave sector of perturbations.

  17. Black hole accretion disks in brane gravity via a confining potential

    NASA Astrophysics Data System (ADS)

    Heydari-Fard, Malihe

    2010-12-01

    Accretion disks are among the most luminous and ubiquitous sources in astrophysics and they have drawn a good deal of attention from the observational and theoretical communities. In this paper, we study the process of matter forming thin accretion disks around black hole solutions in the context of the brane-world scenario where our universe is a three-brane embedded in an m-dimensional bulk and localization of matter on the brane is achieved by means of a confining potential. The physical properties of thin accretion disks including the time averaged energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and the results are compared with the DMPR, CFM and BMD brane black holes and the standard general relativistic Schwarzschild solution.

  18. Black branes in a box: hydrodynamics, stability, and criticality

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Martınez, Marina

    2012-07-01

    We study the effective hydrodynamics of neutral black branes enclosed in a finite cylindrical cavity with Dirichlet boundary conditions. We focus on how the Gregory-Laflamme instability changes as we vary the cavity radius R. Fixing the metric at the cavity wall increases the rigidity of the black brane by hindering gradients of the redshift on the wall. In the effective fluid, this is reflected in the growth of the squared speed of sound. As a consequence, when the cavity is smaller than a critical radius the black brane becomes dynamically stable. The correlation with the change in thermodynamic stability is transparent in our approach. We compute the bulk and shear viscosities of the black brane and find that they do not run with R. We find mean-field theory critical exponents near the critical point.

  19. Gauge field localization on brane worlds

    SciTech Connect

    Guerrero, Rommel; Rodriguez, R. Omar; Melfo, Alejandra; Pantoja, Nelson

    2010-04-15

    We consider the effects of spacetime curvature and brane thickness on the localization of gauge fields on a brane via kinetic terms induced by localized fermions. We find that in a warped geometry with an infinitely thin brane, both the infrared and the ultraviolet behavior of the electromagnetic propagator are affected, providing a more stringent bound on the brane's tension than that coming from the requirement of four-dimensional gravity on the brane. On the other hand, for a thick wall in a flat spacetime, where the fermions are localized by means of a Yukawa coupling, we find that four-dimensional electromagnetism is recovered in a region bounded from above by the same critical distance appearing in the thin case, but also from below by a new scale related to the brane's thickness and the electromagnetic couplings. This imposes very stringent bounds on the brane's thickness which seem to invalidate the localization mechanism for this case.

  20. Black stars induced by matter on a brane: Exact solutions

    SciTech Connect

    Andrianov, A. A.; Kurkov, M. A.

    2010-11-15

    New exact asymptotically flat solutions of five-dimensional Einstein equations with horizon are found to describe multidimensional black stars generated by matter on the brane, conceivably on high energy colliders. The five-dimensional space-time is realized as an orbifold against reflection of a special extra-space coordinate and matter on the brane is induced by tailoring of the five-dimensional Schwarzschild-Tangherlini black hole metric.

  1. Clustering of galaxies in brane world models

    NASA Astrophysics Data System (ADS)

    Hameeda, Mir; Faizal, Mir; Ali, Ahmed Farag

    2016-04-01

    In this paper, we analyze the clustering of galaxies using a modified Newtonian potential. This modification of the Newtonian potential occurs due to the existence of extra dimensions in brane world models. We will analyze a system of galaxies interacting with each other through this modified Newtonian potential. The partition function for this system of galaxies will be calculated, and this partition function will be used to calculate the free energy of this system of galaxies. The entropy and the chemical potential for this system will also be calculated. We will derive explicit expression for the clustering parameter for this system. This parameter will determine the behavior of this system, and we will be able to express various thermodynamic quantities using this clustering parameter. Thus, we will be able to explicitly analyze the effect that modifying the Newtonian potential can have on the clustering of galaxies. We also analyse the effect of extra dimensions on the two-point functions between galaxies.

  2. Warped brane worlds in critical gravity

    NASA Astrophysics Data System (ADS)

    Zhong, Yi; Chen, Feng-Wei; Xie, Qun-Ying; Liu, Yu-Xiao

    2014-12-01

    We investigate the brane models in arbitrary dimensional critical gravity presented in Lu and Pope (Phys Rev Lett 106:181302, 2011). For the models of the thin branes with codimension one, the Gibbons-Hawking surface term and the junction conditions are derived, with which the analytical solutions for the flat, AdS, and dS branes are obtained at the critical point of the critical gravity. It is found that all these branes are embedded in an AdS spacetime, but, in general, the effective cosmological constant of the AdS spacetime is not equal to the naked one in the critical gravity, which can be positive, zero, and negative. Another interesting result is that the brane tension can also be positive, zero, or negative, depending on the symmetry of the thin brane and the values of the parameters of the theory, which is very different from the case in general relativity. It is shown that the mass hierarchy problem can be solved in the braneworld model in the higher-derivative critical gravity. We also study the thick brane model and find analytical and numerical solutions of the flat, AdS, and dS branes. It is found that some branes will have inner structure when some parameters of the theory are larger than their critical values, which may result in resonant KK modes for some bulk matter fields. The flat branes with positive energy density and AdS branes with negative energy density are embedded in an -dimensional AdS spacetime, while the dS branes with positive energy density are embedded in an -dimensional Minkowski one.

  3. The Einstein equations on the 3-brane world

    NASA Astrophysics Data System (ADS)

    Shiromizu, Tetsuya; Maeda, Kei-Ichi; Sasaki, Misao

    2000-07-01

    We carefully investigate the gravitational equations of the brane world, in which all the matter forces except gravity are confined on the 3-brane in a 5-dimensional spacetime with Z2 symmetry. We derive the effective gravitational equations on the brane, which reduce to the conventional Einstein equations in the low energy limit. From our general argument we conclude that the first Randall-Sundrum-type theory predicts that the brane with a negative tension is an antigravity world and hence should be excluded from the physical point of view. Their second-type theory where the brane has a positive tension provides the correct signature of gravity. In this latter case, if the bulk spacetime is exactly anti-de Sitter spacetime, generically the matter on the brane is required to be spatially homogeneous because of the Bianchi identities. By allowing deviations from anti-de Sitter spacetime in the bulk, the situation will be relaxed and the Bianchi identities give just the relation between the Weyl tensor and the energy momentum tensor. In the present brane world scenario, the effective Einstein equations cease to be valid during an era when the cosmological constant on the brane is not well defined, such as in the case of the matter dominated by the potential energy of the scalar field.

  4. On the extra force in brane world scenario

    NASA Astrophysics Data System (ADS)

    Bejancu, Aurel; Farran, Hani Reda

    2014-09-01

    In the study of the dynamics in a 5D bulk from brane world scenario, an extra force with abnormal properties was detected (cf. [D. Youm, Extra force in brane worlds, Phys. Rev. D62 (2000) 084002; D. Youm, Null geodesics in brane world universe, Mod. Phys. Lett. A16 (2001) 2371; L. F. Zhang and Y. Z. Zhang, Null geodesics in brane world scenarios, Commun. Theor. Phys. (Beijing)41 (2004) 48]). In this paper, by using the Riemannian horizontal connection introduced in [A. Bejancu, A new point of view on general Kaluza-Klein theories, Progr. Theor. Phys.128 (2012) 541], we give a new definition for the extra force in a 5D bulk, and show that it does not contradict the 4D physics. In particular, we show that this force appears very rarely along geodesics in a warped 5D bulk.

  5. Holographic cosmic quintessence on the dilatonic brane world

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Lin, Feng-Li

    2002-02-01

    Recently quintessence has been proposed to explain the observation data of supernovae indicating a time-varying cosmological constant and accelerating universe. Inspired by this and its mysterious origin, we look for the possibility that quintessence is the holographic dark matter dominating in the late time in the brane world scenarios. We consider both the cases of a static and moving brane in a dilaton gravity background. For the static brane we use the Hamilton-Jacobi method motivated by holographic renormalization group to study the intrinsic FRW cosmology on the brane and find the constraint on the bulk potential for quintessence. This constraint requires a negative slowly varying bulk potential which implies an anti-de Sitter-like bulk geometry and could be possibly realized from higher dimensional supergravities or string theory. We find a similar constraint for the moving brane cases and that the quintessence on it has the effect of a mildly time-varying Newton constant.

  6. Exact black holes and gravitational shockwaves on codimension-2 branes

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja; Kiley, Derrick

    2006-03-01

    We derive exact gravitational fields of a black hole and a relativistic particle stuck on a codimension-2 brane in D dimensions when gravity is ruled by the bulk D-dimensional Einstein-Hilbert action. The black hole is locally the higher-dimensional Schwarzschild solution, which is threaded by a tensional brane yielding a deficit angle and includes the first explicit example of a `small' black hole on a tensional 3-brane. The shockwaves allow us to study the large distance limits of gravity on codimension-2 branes. In an infinite locally flat bulk, they extinguish as 1/rD-4, i.e. as 1/r2 on a 3-brane in 6D, manifestly displaying the full dimensionality of spacetime. We check that when we compactify the bulk, this special case correctly reduces to the 4D Aichelburg-Sexl solution at large distances. Our examples show that gravity does not really obstruct having general matter stress-energy on codimension-2 branes, although its mathematical description may be more involved.

  7. Black brane viscosity and the Gregory-Laflamme instability

    NASA Astrophysics Data System (ADS)

    Camps, Joan; Emparan, Roberto; Haddad, Nidal

    2010-05-01

    We study long wavelength perturbations of neutral black p-branes in asymptotically flat space and show that, as anticipated in the blackfold approach, solutions of the relativistic hydrodynamic equations for an effective p + 1-dimensional fluid yield solutions to the vacuum Einstein equations in a derivative expansion. Going beyond the perfect fluid approximation, we compute the effective shear and bulk viscosities of the black brane. The values we obtain saturate generic bounds. Sound waves in the effective fluid are unstable, and have been previously related to the Gregory-Laflamme instability of black p-branes. By including the damping effect of the viscosity in the unstable sound waves, we obtain a remarkably good and simple approximation to the dispersion relation of the Gregory-Laflamme modes, whose accuracy increases with the number of transverse dimensions. We propose an exact limiting form as the number of dimensions tends to infinity.

  8. Brane world generated dynamically from string type IIB matrices

    PubMed

    Nishimura; Vernizzi

    2000-11-27

    We have recently proposed a dynamical mechanism that may realize a flat four-dimensional space-time as a brane in type IIB superstring theory. A crucial role is played by the phase of the chiral fermion integral associated with the IKKT (Ishibashi-Kawai-Kitazawa-Tsuchiya) matrix theory, which is conjectured to be a nonperturbative definition of type IIB superstring theory. We demonstrate our mechanism by studying a simplified model, in which we find that a lower-dimensional brane indeed appears dynamically. We also comment on some implications of our mechanism on model building of the brane world. PMID:11082622

  9. Rotating black branes in Brans-Dicke-Born-Infeld theory

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.

    2008-08-01

    In this paper, we present a new class of charged rotating black brane solutions in the higher dimensional Brans-Dicke-Born-Infeld theory and investigate their properties. Solving the field equations directly is a nontrivial task because they include the second derivatives of the scalar field. We remove this difficulty through a conformal transformation. Also, we find that the suitable Lagrangian of Einstein-Born-Infeld-dilaton gravity is not the same as presented by Dehghani et al. [J. Cosmol. Astropart. Phys. 0702, 020 (2007)]. We show that the given solutions can present black brane, with inner and outer event horizons, an extreme black brane, or a naked singularity provided the parameters of the solutions are chosen suitably. These black brane solutions are neither asymptotically flat nor (anti-)de Sitter. Then we calculate finite Euclidean action, the conserved, and thermodynamic quantities through the use of counterterm method. Finally, we argue that these quantities satisfy the first law of thermodynamics, and the entropy does not follow the area law.

  10. Simple brane-world inflationary models — An update

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Okada, Satomi

    2016-05-01

    In the light of the Planck 2015 results, we update simple inflationary models based on the quadratic, quartic, Higgs and Coleman-Weinberg potentials in the context of the Randall-Sundrum brane-world cosmology. Brane-world cosmological effect alters the inflationary predictions of the spectral index (ns) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the tensor-to-scalar ratio is enhanced in the presence of the 5th dimension. In order to maintain the consistency with the Planck 2015 results for the inflationary predictions in the standard cosmology, we find a lower bound on the five-dimensional Planck mass (M5). On the other hand, the inflationary predictions laying outside of the Planck allowed region can be pushed into the allowed region by the brane-world cosmological effect with a suitable choice of M5.

  11. Fermion excitations of a tense brane black hole

    SciTech Connect

    Cho, H. T.; Cornell, A. S.; Doukas, Jason; Naylor, Wade

    2008-02-15

    By finding the spinor eigenvalues for a single deficit angle (d-2)-sphere, we derive the radial potential for fermions on a d-dimensional black hole background that is embedded on a codimension-two brane with conical singularity, where the deficit angle is related to the brane tension. From this we obtain the quasinormal mode spectrum for bulk fermions on such a background. As a by-product of our method, this also gives a rigorous proof for integer spin fields on the deficit 2-sphere.

  12. The FGK formalism for black p-branes in d dimensions

    NASA Astrophysics Data System (ADS)

    de Antonio Martín, Antonio; Ortín, Tomás; Shahbazi, C. S.

    2012-05-01

    We present a generalization to an arbitrary number of spacetime ( d) and world-volume ( p + 1) dimensions of the formalism proposed by Ferrara, Gibbons and Kallosh to study black holes ( p = 0) in d = 4 dimensions. We include the special cases in which there can be dyonic and self- or anti-self-dual black branes. Most of the results valid for 4-dimensional black holes (relations between temperature, entropy and non-extremality parameter, and between entropy and black-hole potential on the horizon) are straightforwardly generalized. We apply the formalism to the case of black strings in N = 2 , d = 5 supergravity coupled to vector multiplets, in which the black-string potential can be expressed in terms of the dual central charge and work out an explicit example with one vector multiplet, determining supersymmetric and non-supersymmetric attractors and constructing the nonextremal black-string solutions that interpolate between them.

  13. Brane world in non-Riemannian geometry

    SciTech Connect

    Maier, R.; Falciano, F. T.

    2011-03-15

    We carefully investigate the modified Einstein's field equation in a 4-dimensional (3-brane) arbitrary manifold embedded in a 5-dimensional non-Riemannian bulk spacetime with a noncompact extra dimension. In this context the Israel-Darmois matching conditions are extended assuming that the torsion in the bulk is continuous. The discontinuity in the torsion first derivatives are related to the matter distribution through the field equation. In addition, we develop a model that describes a flat FLRW model embedded in a 5-dimensional de Sitter or anti-de Sitter, where a 5-dimensional cosmological constant emerges from the torsion.

  14. Gravitational field equations on and off a 3-brane world

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Gümrükçüoglu, A. E.

    2004-11-01

    The effective gravitational field equations on and off a 3-brane world possessing a &Z_{2}; mirror symmetry and embedded in a five-dimensional bulk spacetime with cosmological constant were derived by Shiromizu, Maeda and Sasaki (SMS) in the framework of the Gauss Codazzi projective approach with the subsequent specialization to the Gaussian normal coordinates in the neighbourhood of the brane. However, the Gaussian normal coordinates imply a very special slicing of spacetime and clearly, the consistent analysis of the brane dynamics would benefit from complete freedom in the slicing of spacetime, pushing the layer surfaces in the fifth dimension at any rates of evolution and in arbitrary positions. We rederive the SMS effective gravitational field equations on a 3-brane and generalize the off-brane equations to the case where there is an arbitrary energy momentum tensor in the bulk. We use a more general setting to allow for acceleration of the normals to the brane surface through the lapse function and the shift vector in the spirit of Arnowitt, Deser and Misner. We show that the gravitational influence of the bulk spacetime on the brane may be described by a traceless second-rank tensor &W_{ij};, constructed from the 'electric' part of the bulk Riemann tensor. We also present the evolution equations for the tensor &W_{ij};, as well as for the corresponding 'magnetic' part of the bulk curvature. These equations involve terms determined by both the nonvanishing acceleration of normals in the nongeodesic slicing of spacetime and the presence of other fields in the bulk.

  15. Nonlinear electrodynamics and thermodynamic geometry of rotating dilaton black branes

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Naeimipour, F.; Zebarjad, S. M.

    2016-07-01

    We construct a new class of rotating dilaton solutions in the presence of logarithmic nonlinear electrodynamics. These solutions represent black branes with flat horizon and contain k=[(n-1)/2] rotation parameters in n-dimensional spacetime where [ x] is the integer part of x. We study the causal structure of the spacetime and calculate thermodynamic and conserved quantities and show that these quantities satisfy the first law of thermodynamics on the black brane horizon, { dM}={ TdS}+{{{sum _{i=1}k}}}Ω id{J}i+{ Ud}{Q}. Then, we study geometrical approach towards thermodynamics by choosing an appropriate geometrical metric. We show that the singularity of the Ricci scalar coincides exactly with the phase transition points. We observe that our system encounters two types of phase transitions depending on the metric parameters. For the first one the heat capacity is zero and for the second one the heat capacity diverges. In the first kind of phase transition, the brane has a transition from an unstable non-physical to a stable physical state. In the second type of phase transition the brane moves from a stable to an unstable state. Finally, we comment on the dynamical stability of the obtained solutions under perturbations in four dimensions.

  16. Classical and quantum aspects of brane-world cosmology

    SciTech Connect

    Cordero, Ruben; Rojas, Efrain

    2011-10-14

    We give a brief overview of several models in brane-world cosmology. In particular, we focus on the asymmetric DGP and Regge-Teiltelboim models. We present the associated equations of motion governing the dynamics of the brane and their corresponding Friedmann-like equations. In order to develop the quantum Regge-Teiltelboim type cosmology we construct its Ostrogradski Hamiltonian formalism which naturally leads to the corresponding Wheeler-DeWitt equation. In addition, we comment on possible generalizations for these models including second order derivative geometrical terms.

  17. Gauss-Bonnet Brane World Gravity with a Scalar Field

    SciTech Connect

    Davis, Stephen C.

    2004-11-17

    The effective four-dimensional, linearised gravity of a brane world model with one extra dimension and a single brane is analysed. The model includes higher order curvature terms (such as the Gauss-Bonnet term) and a conformally coupled scalar field. Large and small distance gravitational laws are derived. In contrast to the corresponding Einstein gravity models, it is possible to obtain solutions with localised gravity which are compatible with observations. Solutions with non-standard large distance Newtonian potentials are also described.

  18. Thermodynamics of Gauss-Bonnet-dilaton Lifshitz black branes

    NASA Astrophysics Data System (ADS)

    Zangeneh, M. Kord; Dehghani, M. H.; Sheykhi, A.

    2015-09-01

    We explore an effective supergravity action in the presence of a massless gauge field which contains a Gauss-Bonnet term as well as a dilaton field. We construct a new class of black brane solutions of this theory with a Lifshitz asymptotic by fixing the parameters of the model such that the asymptotic Lifshitz behavior can be supported. Then we construct the well-defined finite action through the use of the counterterm method. We also obtain two independent constants along the radial coordinate by combining the equations of motion. Calculations of these two constants at infinity through the use of the large-r behavior of the metric functions show that our solution respects the no-hair theorem. Furthermore, we combine these two constants in order to get a constant C which is proportional to the energy of the black brane. We calculate this constant at the horizon in terms of the temperature and entropy and at large-r in terms of the geometrical mass. By calculating the value of the energy density through the use of the counterterm method, we obtain the relation between the energy density, the temperature, and the entropy. This relation is the generalization of the well-known Smarr formula for AdS black holes. Finally, we study the thermal stability of our black brane solution and show that it is stable under thermal perturbations.

  19. The fate of Newton's law in brane-world scenarios

    NASA Astrophysics Data System (ADS)

    Benichou, Raphael; Estes, John

    2012-06-01

    We consider brane-world scenarios embedded into string theory. We find that the D-brane backreaction induces a large increase in the open string's proper length. Consequently the stringy nature of elementary particles can be detected at distances much larger than the fundamental string scale. As an example, we compute the gravitational potential between two open strings ending on backreacting D3-branes in four-dimensional compactifications of type II string theory. We find that the Newtonian potential receives a correction that goes like 1 / r but that is not proportional to the inertial masses of the open strings, implying a violation of the equivalence principle in the effective gravitational theory. This stringy correction is screened by thermal effects when the distance between the strings is greater than the inverse temperature. This suggests new experimental tests for many phenomenological models in type II string theory.

  20. Black holes and wormholes in AdS branes

    SciTech Connect

    Molina, C.; Neves, J. C. S.

    2010-08-15

    In this work we have derived a class of geometries which describe black holes and wormholes in Randall-Sundrum-type brane models, focusing mainly on asymptotically anti-de Sitter backgrounds. We show that by continuously deforming the usual four-dimensional vacuum background, a specific family of solutions is obtained. Maximal extensions of the solutions are presented, and their causal structures are discussed.

  1. Topics in brane world and quantum field theory

    NASA Astrophysics Data System (ADS)

    Corradini, Olindo

    In the first part of the thesis we study various issues in the Brane World scenario with particular emphasis on gravity and the cosmological constant problem. First, we study localization of gravity on smooth domain-wall solutions of gravity coupled to a scalar field. In this context we discuss how the aforementioned localization is affected by including higher curvature terms in the theory, pointing out among other things that, general combinations of such terms lead to delocalization of gravity with the only exception of the Gauss-Bonnet combination (and its higher dimensional counterparts). We then find a solitonic 3-brane solution in 6D bulk in the Einstein-Hilbert-Gauss-Bonnet theory of gravity. Near to the brane the metric is that for a product of the 4D flat Minkowski space with a 2D wedge whose deficit angle is proportional to the brane tension. Consistency tests imposed on such backgrounds appear to require the localized matter on the brane to be conformal. We then move onto infinite volume extra dimension Brane World scenarios where we study gravity in a codimension-2 model, generalizing the work of Dvali, Gabadadze and Porrati to tensionful branes. We point out that, in the presence of the bulk Gauss-Bonnet combination, the Einstein-Hilbert term is induced on the brane already at the classical level. Consistency tests are presented here as well. To conclude we discuss, using String Theory, an interesting class of large-N gauge theories which have vanishing energy density even though these theories are non-covariant and non-supersymmetric. In the second part of the thesis we study a formulation of Quantum Mechanical Path Integrals in curved space. Such Path Integrals present superficial divergences which need to be regulated. We perform a three-loop calculation in mode regularization as a nontrivial check of the non-covariant counterterms required by such scheme. We discover that dimensional regularization can be successfully adopted to evaluate the

  2. A classical instability for black strings and p-branes

    SciTech Connect

    Gregory, R. . Enrico Fermi Inst.); Laflamme, R. )

    1993-01-01

    We investigate the evolution of small perturbations around black of strings and branes which are low energy solutions of string theory. For simplicity we focus attention on the zero charge case and show that there are unstable modes for a range of time frequency and wavelength in the extra 10 - D dimensions. These perturbations can be stabilized if the extra dimensions are compactified to a scale smaller than the minimum wavelength for which instability occurs and thus will not affect large astrophysical black holes in four dimensions. We comment on the implications of this result for the Cosmic Censorship Hypothesis

  3. A classical instability for black strings and p-branes

    SciTech Connect

    Gregory, R.; Laflamme, R.

    1993-06-01

    We investigate the evolution of small perturbations around black of strings and branes which are low energy solutions of string theory. For simplicity we focus attention on the zero charge case and show that there are unstable modes for a range of time frequency and wavelength in the extra 10 - D dimensions. These perturbations can be stabilized if the extra dimensions are compactified to a scale smaller than the minimum wavelength for which instability occurs and thus will not affect large astrophysical black holes in four dimensions. We comment on the implications of this result for the Cosmic Censorship Hypothesis

  4. Semisimple group unification in the supersymmetric brane world

    NASA Astrophysics Data System (ADS)

    Imamura, Y.; Watari, T.; Yanagida, T.

    2001-09-01

    The conventional supersymmetric grand unified theories suffer from two serious problems: the large mass splitting between doublet and triplet Higgs multiplets, and the too long lifetime of the proton. A unification model based on a semisimple group SU(5)GUT×U(3)H has been proposed to solve both of the problems simultaneously. Although the proposed model is perfectly consistent with observations, there are various mysteries. In this paper we show that such mysterious features in the original model are naturally explained by embedding the model into the brane world in a higher-dimensional space-time. In particular, the relatively small gauge coupling constant of the SU(5)GUT at the unification energy scale is a consequence of a relatively large volume of extra dimensions. Here, we put the SU(5)GUT gauge multiplet in a six-dimensional bulk and assume all fields in the U(3)H sector to reside on a three-dimensional brane located in the bulk. On the other hand, all chiral multiplets of quarks, leptons, and Higgs bosons are assumed to reside on a 3-brane at a T2/Z4 orbifold fixed point. The quasi-N=2 supersymmetry in the hypercolor U(3)H sector is understood as a low-energy remnant of the N=4 supersymmetry in a six-dimensional space-time. We further extend the six-dimensional model to a ten-dimensional theory. Possible frameworks of string theories are also investigated to accommodate the present brane-world model. We find that the type-IIB string theory with a D3-D7 brane structure is an interesting candidate.

  5. Black hole in the expanding universe from intersecting branes

    SciTech Connect

    Maeda, Kei-ichi; Nozawa, Masato

    2010-02-15

    We study physical properties and global structures of a time-dependent, spherically symmetric solution obtained via the dimensional reduction of intersecting M-branes. We find that the spacetime describes a maximally charged black hole which asymptotically tends to the Friedmann-Lemaitre-Robertson-Walker universe filled by a stiff matter. The metric solves the field equations of the Einstein-Maxwell-dilaton system, in which four Abelian gauge fields couple to the dilation with different coupling constants. The spacetime satisfies the dominant energy condition and is characterized by two parameters, Q and {tau}, related to the Maxwell charge and the relative ratio of black-hole horizon radii, respectively. In spite of the nontrivial time dependence of the metric, it turns out that the black-hole event horizon is a Killing horizon. This unexpected symmetry may be ascribed to the fact that the 11-dimensional brane configurations are supersymmetric in the static limit. Finally, combining with laws of the trapping horizon, we discuss the thermodynamic properties of the black hole. It is shown that the horizon possesses a nonvanishing temperature, contrary to the extremal Reissner-Nordstroem solution.

  6. Tunneling between de Sitter and anti-de Sitter black holes in a noncommutative D{sub 3}-brane formalism

    SciTech Connect

    Kar, Supriya

    2006-12-15

    We obtain de Sitter (dS) and anti-de Sitter (AdS) generalized Reissner-Nordstrom-like black hole geometries in a curved D{sub 3}-brane framework, underlying a noncommutative gauge theory on the brane world. The noncommutative scaling limit is explored to investigate a possible tunneling of an AdS vacuum in string theory to dS vacuum in its low energy gravity theory. The Hagedorn transition is invoked into its self-dual gauge theory to decouple the gauge nonlinearity from the dS geometry, which in turn is shown to describe a pure dS vacuum.

  7. World-volume effective action of exotic five-brane in M-theory

    NASA Astrophysics Data System (ADS)

    Kimura, Tetsuji; Sasaki, Shin; Yata, Masaya

    2016-02-01

    We study the world-volume effective action of an exotic five-brane, known as the M-theory 53-brane (M53-brane) in eleven dimensions. The supermultiplet of the world-volume theory is the {N}=(2, 0) tensor multiplet in six dimensions. The world-volume action contains three Killing vectors {widehat{k}}_{widehat{I}}^M ( Ȋ = 1 , 2 , 3) associated with the U(1)3 isometry. We find the effective T-duality rule for the eleven-dimensional backgrounds that transforms the M5-brane effective action to that of the M53-brane. We also show that our action provides the source term for the M53-brane geometry in eleven-dimensional supergravity.

  8. Modification of the phase structure of black D6 branes in a canonical ensemble and its origin

    NASA Astrophysics Data System (ADS)

    Lu, J. X.; Ouyang, Jun; Roy, Shibaji

    2014-09-01

    It is well known that charged black Dp branes of type II string theory share a universal phase structure of van der Waals-Maxwell liquid-gas type except D5 and D6 branes. Interestingly, the phase structure of D5 and D6 branes can be changed to the universal form with the inclusion of particular delocalized charged lower-dimensional branes. For D5 branes, one needs to introduce delocalized D1 branes, and for D6 branes, one needs to introduce delocalized D0 branes to obtain the universal structure. In a previous paper [J. High Energy Phys. 04 (2013) 100], Lu with Wei study the phase structure of black D6 branes with the introduction of delocalized D0 branes in a special case when their charges are equal and the dilaton charge vanishes. In this paper, we look at the phase structure of the black D6/D0 system with the generic values of the parameters, which makes the analysis more involved but the structure more rich. We also provide reasons why the respective modifications of the phase structures to the universal form for the black D5 and D6 branes occur when specific delocalized lower-dimensional branes are introduced.

  9. Irradiated asymmetric Friedmann branes

    NASA Astrophysics Data System (ADS)

    Gergely, László Á.; Keresztes, Zoltán

    2006-01-01

    We consider a Friedmann brane moving in a bulk impregnated with radiation. The set-up is strongly asymmetric, with only one black hole in the bulk. The radiation emitted by this left bulk black hole can be reflected, absorbed or transmitted through the brane. Radiation pressure accelerates the brane, behaving as dark energy. Absorption however generates a competing effect: the brane becomes heavier and gravitational attraction increases. We analyse the model numerically, assuming a total absorption on the brane for k = 1. We conclude that due to the two competing effects, in this asymmetric scenario the Hawking radiation from the bulk black hole is not able to change the recollapsing fate of this brane-world universe. We show that for light branes and early times the radiation pressure is the dominant effect. In contrast, for heavy branes the self-gravity of the absorbed radiation is a much stronger effect. We find the critical value of the initial energy density for which these two effects roughly cancel each other.

  10. D-brane propagation in two-dimensional black hole geometries

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu; Rey, Soo-Jong; Sugawara, Yuji

    2005-09-01

    We study propagation of D0-brane in two-dimensional lorentzian black hole backgrounds by the method of boundary conformal field theory of SL(2,Bbb R)/U(1) supercoset at level k. Typically, such backgrounds arise as near-horizon geometries of k coincident non-extremal NS5-branes, where 1/k measures curvature of the backgrounds in string unit and hence size of string worldsheet effects. At classical level, string worldsheet effects are suppressed and D0-brane propagation in the lorentzian black hole geometry is simply given by the Wick rotation of D1-brane contour in the euclidean black hole geometry. Taking account of string worldsheet effects, boundary state of the lorentzian D0-brane is formally constructible via Wick rotation from that of the euclidean D1-brane. However, the construction is subject to ambiguities in boundary conditions. We propose exact boundary states describing the D0-brane, and clarify physical interpretations of various boundary states constructed from different boundary conditions. As it falls into the black hole, the D0-brane radiates off to the horizon and to the infinity. From the boundary states constructed, we compute physical observables of such radiative process. We find that part of the radiation to infinity is in effective thermal distribution at the Hawking temperature. We also find that part of the radiation to horizon is in the Hagedorn distribution, dominated by massive, highly non-relativistic closed string states, much like the tachyon matter. Remarkably, such distribution emerges only after string worldsheet effects are taken exactly into account. From these results, we observe that nature of the radiation distribution changes dramatically across the conifold geometry k = 1 (k = 3 for the bosonic case), exposing the `string - black hole transition' therein.

  11. Effective theory of brane world with small tension

    NASA Astrophysics Data System (ADS)

    Hisano, Junji; Okada, Nobuchika

    2000-05-01

    The five dimensional theory compactified on S1 with two ``branes'' (two domain walls) embedded in it is constructed, based on the field-theoretic mechanism to generate the ``brane.'' Some light states localized in the ``brane'' appear in the theory. One is the Nambu-Goldstone boson, which corresponds to the breaking of the translational invariance in the transverse direction of the ``brane.'' In addition, if the tension of the ``brane'' is smaller than the fundamental scale of the original theory, it is found that there may exist not only massless states but also some massive states lighter than the fundamental scale in the ``brane.'' We analyze the four dimensional effective theory by integrating out the freedom of the fifth dimension. We show that some effective couplings can be explicitly calculated. As one of our results, some effective couplings of the state localized in the ``brane'' to the higher Kaluza-Klein modes in the bulk are found to be suppressed by the width of the ``brane.'' The resultant suppression factor can be quantitatively different from the one analyzed by Bando et al. using the Nambu-Goto action, while they are qualitatively the same.

  12. Thick-brane solutions and topology change transition on black hole backgrounds

    SciTech Connect

    Czinner, Viktor G.

    2010-07-15

    We consider static, axisymmetric, thick-brane solutions on higher-dimensional, spherically symmetric black hole backgrounds. It was found recently [V. G. Czinner and A. Flachi, Phys. Rev. D 80, 104017 (2009).], that in cases in which the thick brane has more than two spacelike dimensions, perturbative approaches break down around the corresponding thin solutions for Minkowski-type topologies. This behavior is a consequence of the fact that thin solutions are not smooth at the axis, and for a general discussion of possible phase transitions in the system, one needs to use a nonperturbative approach. In the present paper, we provide an exact, numerical solution of the problem both for black hole- and Minkowski-type topologies with an arbitrary number of brane and bulk dimensions. We also illustrate a topology change transition in the system for a five-dimensional brane embedded in a six-dimensional bulk.

  13. Power Law Inflation and the Cosmic No Hair Theorem in Brane World

    SciTech Connect

    Paul, B. C.; Beesham, A.

    2006-11-03

    We study the cosmic no hair theorem for anisotropic Bianchi models that admit power law inflation with a scalar field in the framework of Brane world. The power law inflationary solution obtained here is driven by the curvature term in the modified field equation in Brane. It is found that all Bianchi models except Bianchi type IX, transit to an inflationary regime with vanishing anisotropy. We note that in the Brane world anisotropic universe isotropizes much faster than that in the general theory of relativity.

  14. Rotating black holes in a Randall-Sundrum brane with a cosmological constant

    NASA Astrophysics Data System (ADS)

    Neves, J. C. S.; Molina, C.

    2012-12-01

    In this work we have constructed axially symmetric vacuum solutions of the gravitational field equations in a Randall-Sundrum brane. A non-null effective cosmological constant is considered, and asymptotically de Sitter and anti-de Sitter spacetimes are obtained. The solutions describe rotating black holes in a four-dimensional brane. Optical features of the solutions are treated, emphasizing the rotation of the polarization vector along null congruences.

  15. Simple inflationary models in Gauss–Bonnet brane-world cosmology

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Okada, Satomi

    2016-06-01

    In light of the recent Planck 2015 results for the measurement of the cosmic microwave background (CMB) anisotropy, we study simple inflationary models in the context of the Gauss–Bonnet (GB) brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index (n s) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the predicted r values in the inflationary models favored by the Planck 2015 results are suppressed due to the GB brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall–Sundrum brane-world cosmology, where the r values are enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the GB brane-world cosmology can be tested by more precise measurements of n s and future observations of the CMB B-mode polarization.

  16. CASIMIR Effect in a Supersymmetry-Breaking Brane-World as Dark Energy

    SciTech Connect

    Chen, P

    2004-09-29

    A new model for the origin of dark energy is proposed based on the Casimir effect in a supersymmetry-breaking brane-world. Supersymmetry is assumed to be preserved in the bulk while broken on a 3-brane. Due to the boundary conditions imposed on the compactified extra dimensions, there is an effective Casimir energy induced on the brane. The net Casimir energy contributed from the graviton and the gravitino modes as a result of supersymmetry-breaking on the brane is identified as the observed dark energy, which in our construction is a cosmological constant. We show that the smallness of the cosmological constant, which results from the huge contrast in the extra-dimensional volumes between that associated with the 3-brane and that of the bulk, is attainable under very relaxed condition.

  17. Fermions in five-dimensional brane world models

    NASA Astrophysics Data System (ADS)

    Smolyakov, Mikhail N.

    2016-06-01

    In the present paper the fermion fields, living in the background of five-dimensional warped brane world models with compact extra dimension, are thoroughly examined. The Kaluza-Klein decomposition and isolation of the physical degrees of freedom is performed for those five-dimensional fermion field Lagrangians, which admit such a decomposition to be performed in a mathematically consistent way and provide a physically reasonable four-dimensional effective theory. It is also shown that for the majority of five-dimensional fermion field Lagrangians there are no (at least rather obvious) ways to perform the Kaluza-Klein decomposition consistently. Moreover, in these cases one may expect the appearance of various pathologies in the four-dimensional effective theory. Among the cases, for which the Kaluza-Klein decomposition can be performed in a mathematically consistent way, the case, which reproduces the Standard Model by the zero Kaluza-Klein modes most closely regardless of the size of the extra dimension, is examined in detail in the background of the Randall-Sundrum model.

  18. Brane-world stars with a solid crust and vacuum exterior

    NASA Astrophysics Data System (ADS)

    Ovalle, Jorge; Gergely, László Á.; Casadio, Roberto

    2015-02-01

    The minimal geometric deformation approach is employed to show the existence of brane-world stellar distributions with a vacuum Schwarzschild exterior, thus without energy leaking from the exterior of the brane-world star into the extra dimension. The interior satisfies all the elementary criteria of physical acceptability for a stellar solution, namely, it is regular at the origin, the pressure and density are positive and decrease monotonically with increasing radius, and all energy conditions are fulfilled. A very thin solid crust with negative radial pressure separates the interior from the exterior, having a thickness Δ inversely proportional to both the brane tension σ and the radius R of the star, i.e. {{Δ }-1}˜ Rσ . This brane-world star with Schwarzschild exterior would appear only thermally radiating to a distant observer and be fully compatible with the stringent constraints imposed on stellar parameters by observations of gravitational lensing, orbital evolutions or properties of accretion disks.

  19. Noncommutative D{sub 3}-brane, black holes, and attractor mechanism

    SciTech Connect

    Kar, Supriya; Majumdar, Sumit

    2006-09-15

    We revisit the 4D generalized black hole geometries, obtained by us 14, with a renewed interest, to unfold some aspects of effective gravity in a noncommutative D{sub 3}-brane formalism. In particular, we argue for the existence of extra dimensions in the gravity decoupling limit in the theory. We show that the theory is rather described by an ordinary geometry and is governed by an effective string theory in 5D. The extremal black hole geometry AdS{sub 5} obtained in effective string theory is shown to be in precise agreement with the gravity dual proposed for D{sub 3}-brane in a constant magnetic field. Kaluza-Klein compactification is performed to obtain the corresponding charged black hole geometries in 4D. Interestingly, they are shown to be governed by the extremal black hole geometries known in string theory. The attractor mechanism is exploited in effective string theory underlying a noncommutative D{sub 3}-brane and the macroscopic entropy of a charged black hole is computed. We show that the generalized black hole geometries in a noncommutative D{sub 3}-brane theory are precisely identical to the extremal black holes known in 4D effective string theory.

  20. Scalar perturbations of nonlinear charged Lifshitz black branes with hyperscaling violation

    NASA Astrophysics Data System (ADS)

    González, P. A.; Vásquez, Yerko

    2016-07-01

    We study scalar perturbations of nonlinear charged Lifshitz black branes with hyperscaling violating factor, and we find numerically the quasinormal modes for scalar fields. Then, we study the stability of these black branes under massive and massless scalar field perturbations. Also, we consider different values of the dynamical exponent, the nonlinear exponent and the hyperscaling violating exponent and we show that the quasinormal frequencies have a negative imaginary part. Thus, the black brane is stable under massive and massless scalar field perturbations. Also, we show that there is a limit on the dynamical exponent above which the system is always overdamped for a given dimension, and the hyperscaling violating exponent shifts this limit. On the other hand, the relaxation time of the dual thermal states increases when the hyperscaling violating exponent increases and when the nonlinear exponent increases, if the system is overdamped.

  1. On the universality of thermodynamics and η/s ratio for the charged Lovelock black branes

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Frassino, Antonia M.; Tuveri, Matteo

    2016-05-01

    We investigate general features of charged Lovelock black branes by giving a detailed description of geometrical, thermodynamic and holographic properties of charged Gauss-Bonnet (GB) black branes in five dimensions. We show that when expressed in terms of effective physical parameters, the thermodynamic behaviour of charged GB black branes is completely indistinguishable from that of charged Einstein black branes. Moreover, the extremal, near-horizon limit of the two classes of branes is exactly the same as they allow for the same AdS2 × R 3, near-horizon, exact solution. This implies that, although in the UV the associated dual QFTs are different, they flow in the IR to the same fixed point. The calculation of the shear viscosity to entropy ratio η/s confirms these results. Despite the GB dual plasma has in general a non-universal temperature-dependent η/s, it flows monotonically to the universal value 1 /4 π in the IR. For negative (positive) GB coupling constant, η/s is an increasing (decreasing) function of the temperature and the flow respects (violates) the KSS bound.

  2. Surface terms of quasitopological gravity and thermodynamics of charged rotating black branes

    SciTech Connect

    Dehghani, M. H.; Vahidinia, M. H.

    2011-10-15

    We introduce the surface term for quasitopological gravity in order to make the variational principle of the action well defined. We also introduce the charged black branes of quasitopological gravity and calculate the finite action through the use of the counterterm method. Then we compute the thermodynamic quantities of the black brane solution by use of Gibbs free energy and investigate the first law of thermodynamics by introducing a Smarr-type formula. Finally, we generalize our solutions to the case of rotating charged solutions.

  3. Aspects of Infalling D-Branes in Two-Dimensional Black Hole

    NASA Astrophysics Data System (ADS)

    Sugawara, Yuji

    This is a brief review of Refs. 1 and 2. We study the dynamics of D0-brane falling into the Lorentzian two-dimensional black hole (2D BH), typically arising in the near-horizon limit of non-extremal NS5-brane background, by the methods of conformal field theory. We propose the exact boundary state describing the infalling D0-brane by carefully carrying out the Wick rotation from the known D1-brane solution. We evaluate the closed string radiation from the infalling brane. A thermal-like behavior at the Hawking temperature is observed in the outgoing radiation. On the other hand, it is remarkable to find the incoming radiation absorbed by the black hole effectively showing the Hagedorn-like behavior with precise α‧-correction. We confirm this feature by exactly analyzing the imaginary part of cylinder amplitudes, as well as the saddle point approximation. The radiation rate curiously depends on the level k of SL(2)/U(1) supercoset, suggesting the "black hole/string phase transition" at k = 1 (k = 3 for the bosonic coset) discussed recently.

  4. D-brane Falling into 2d Black-hole and Closed String Radiation

    NASA Astrophysics Data System (ADS)

    Sugawara, Yuji

    2005-12-01

    We study the dynamics of D0-brane falling into the Lorentzian 2-dimensional black hole (2D BH), typically arising in the near-horizon limit of non-extremal NS5-brane background, by the methods of boundary state. The `falling D0-brane' is expected to be obtained by the Wick rotation from the known D1-brane solution on the Euclidean 2D BH. Despite its easiness in the classical solution, the Wick rotation in the boundary conformal theory is rather non-trivial due to ambiguities of boundary conditions. We propose the exact boundary state describing it, clarifying the role of boundary condition. We also evaluate the closed string radiation from the infalling brane. An expected thermal-like behavior at the Hawking temperature is observed in the outgoing radiation. On the other hand, it is remarkably found that the incoming radiation absorbed by the black hole effectively shows the Hagedorn-like behavior with precise α'-correction. This fact implies that the radiation products are dominated by very massive, highly non-relativistic closed string states like the tachyon matter. The radiation rate curiously depends on the level k of SL(2)/U(1) supercoset, suggesting the `black hole/string phase transition' at k = 1 (k = 3 for the bosonic coset) discussed recently.

  5. Gravity and antigravity in a brane world with metastable gravitons

    NASA Astrophysics Data System (ADS)

    Gregory, R.; Rubakov, V. A.; Sibiryakov, S. M.

    2000-09-01

    In the framework of a five-dimensional three-brane model with quasi-localized gravitons we evaluate metric perturbations induced on the positive tension brane by matter residing thereon. We find that at intermediate distances, the effective four-dimensional theory coincides, up to small corrections, with General Relativity. This is in accord with Csaki, Erlich and Hollowood and in contrast to Dvali, Gabadadze and Porrati. We show, however, that at ultra-large distances this effective four-dimensional theory becomes dramatically different: conventional tensor gravity changes into scalar anti-gravity.

  6. Graviton production in brane worlds by the dynamical Casimir effect

    SciTech Connect

    Durrer, Ruth; Ruser, Marcus; Vonlanthen, Marc; Wittwer, Peter

    2009-05-01

    If our Universe is a 3+1 brane in a warped 4+1 dimensional bulk so that its expansion can be understood as the motion of the brane in the bulk, the time dependence of the boundary conditions for arbitrary bulk fields can lead to particle creation via the dynamical Casimir effect. In this talk I report results for the simplest such scenario, when the only particle in the bulk is the graviton and the bulk is the 5 dimensional anti-de Sitter spacetime.

  7. Cosmic microwave background radiation anisotropies in brane worlds.

    PubMed

    Koyama, Kazuya

    2003-11-28

    We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress. PMID:14683226

  8. Effect of brane thickness on microscopic tidal-charged black holes

    SciTech Connect

    Casadio, Roberto; Harms, Benjamin; Micu, Octavian

    2010-08-15

    We study the phenomenological implications stemming from the dependence of the tidal charge on the brane thickness L for the evaporation and decay of microscopic black holes. In general, the larger L, the longer are the black hole lifetimes and the greater their maximum mass for those cases in which the black hole can grow. In particular, we again find that tidal-charged black holes might live long enough to escape the detectors and even the gravitational field of the Earth, thus resulting in large amounts of missing energy. However, under no circumstances could TeV-scale black holes grow enough to enter the regime of Bondi accretion.

  9. Black brane solutions related to non-singular Kac-Moody algebras

    NASA Astrophysics Data System (ADS)

    Ivashchuk, V. D.; Melnikov, V. N.

    2011-01-01

    A multidimensional gravitational model containing scalar fields and antisymmetric forms is considered. The manifold is chosen in the form M = M_0 x M_1 x ... x M_n, where M_i are Einstein spaces (i > 0). The sigma-model approach and exact solutions with intersecting composite branes (e.g., solutions with harmonic functions and black brane ones) with intersection rules related to non-singular Kac-Moody (KM) algebras (e.g. hyperbolic ones) are considered. Some examples of black brane solutions are presented, e.g., those corresponding to hyperbolic KM algebras: H_2(q,q) (q > 2), HA_2^(1) = A_2^{++} and to the Lorentzian KM algebra P_{10}.

  10. Brane-antibrane systems and the thermal life of neutral black holes

    NASA Astrophysics Data System (ADS)

    Saremi, Omid; Peet, Amanda W.

    2004-07-01

    A brane-antibrane model for the entropy of neutral black branes is developed, following on from the work of Danielsson, Guijosa, and Kruczenski [J. High Energy Phys. 09, 011 (2001); Rev. Mex. Fis. 49S2, 61 (2003)]. The model involves equal numbers of Dp-branes and anti-Dp-branes, and arbitrary angular momenta, and covers the cases p=0,1,2,3,4. The thermodynamic entropy is reproduced by the strongly coupled field theory, up to a power of 2. The strong-coupling physics of the p=0 case is further developed numerically, using techniques of Kabat and co-workers [Nucl. Phys. B571, 419 (2000); Phys. Rev. Lett. 86, 1426 (2001)], in the context of a toy model containing the tachyon and the bosonic degrees of freedom of the D0-brane and anti-D0-brane quantum mechanics. Preliminary numerical results show that strong-coupling finite-temperature stabilization of the tachyon is possible, in this context.

  11. Three-family supersymmetric standardlike models from intersecting brane worlds.

    PubMed

    Cvetic, M; Shiu, G; Uranga, A M

    2001-11-12

    We construct the first three family N = 1 supersymmetric string model with standard model gauge group SU(3)(C) x SU(2)(L) x U(1)(Y) from an orientifold of type IIA theory on T(6)/(Z(2) x Z(2)) and D6-branes intersecting at angles. In addition to the minimal supersymmetric standard model particles, the model contains right-handed neutrinos, a chiral (but anomaly-free) set of exotic multiplets, and extra vectorlike multiplets. We discuss some phenomenological features of this model. PMID:11690462

  12. Variable-speed-of-light cosmology from the brane world scenario

    NASA Astrophysics Data System (ADS)

    Youm, Donam

    2001-10-01

    We argue that the four-dimensional universe on the TeV brane of the Randall-Sundrum scenario takes the bimetric structure of Clayton and Moffat, with gravitons traveling faster than photons instead, while the radion varies with time. We show that such a brane world bimetric model can thereby solve the flatness and cosmological constant problems, provided the speed of a graviton decreases to the present day value rapidly enough. The resolution of other cosmological problems such as the horizon problem and the monopole problem requires supplementation by inflation, which may be achieved by the radion field provided the radion potential satisfies the slow-roll approximation.

  13. Domination of black hole accretion in brane cosmology.

    PubMed

    Majumdar, A S

    2003-01-24

    We consider the evolution of primordial black holes formed during the high energy phase of the braneworld scenario. We show that the effect of accretion from the surrounding radiation bath is dominant compared to evaporation for such black holes. This feature lasts till the onset of matter (or black hole) domination of the total energy density which could occur either in the high energy phase or later. We find that the black hole evaporation times could be significantly large even for black holes with small initial mass to survive until several cosmologically interesting eras. PMID:12570481

  14. Entropy of the Randall-Sundrum brane world with the generalized uncertainty principle

    SciTech Connect

    Kim, Wontae; Park, Young-Jai; Kim, Yong-Wan

    2006-11-15

    By introducing the generalized uncertainty principle, we calculate the entropy of the bulk scalar field on the Randall-Sundrum brane background without any cutoff. We obtain the entropy of the massive scalar field proportional to the horizon area. Here, we observe that the mass contribution to the entropy exists in contrast to all previous results of the usual black hole cases with the generalized uncertainty principle.

  15. Thermodynamics of charged rotating black branes in Brans-Dicke theory with quadratic scalar field potential

    SciTech Connect

    Dehghani, M. H.; Pakravan, J.; Hendi, S. H.

    2006-11-15

    We construct a class of charged rotating solutions in (n+1)-dimensional Maxwell-Brans-Dicke theory with flat horizon in the presence of a quadratic potential and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can present black brane, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute the finite Euclidean action through the use of counterterm method, and obtain the conserved and thermodynamic quantities by using the relation between the action and free energy in grand-canonical ensemble. We find that these quantities satisfy the first law of thermodynamics, and the entropy does not follow the area law.

  16. Thermodynamics of rotating black branes in (n+1)-dimensional Einstein-Born-Infeld gravity

    SciTech Connect

    Dehghani, M. H.; Sedehi, H. R. Rastegar

    2006-12-15

    We construct a new class of charged rotating solutions of (n+1)-dimensional Einstein-Born-Infeld gravity with cylindrical or toroidal horizons in the presence of cosmological constant and investigate their properties. These solutions are asymptotically (anti)-de Sitter and reduce to the solutions of Einstein-Maxwell gravity as the Born-Infeld parameters goes to infinity. We find that these solutions can represent black branes, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute temperature, mass, angular momentum, entropy, charge and electric potential of the black brane solutions. We obtain a Smarr-type formula and show that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass of the system with infinite boundary with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable in the whole phase space. Also, we find that there exists an unstable phase when the finite size effect is taken into account.

  17. Thermodynamics of charged rotating dilaton black branes with power-law Maxwell field

    NASA Astrophysics Data System (ADS)

    Zangeneh, M. Kord; Sheykhi, A.; Dehghani, M. H.

    2015-10-01

    In this paper, we construct a new class of charged rotating dilaton black brane solutions, with a complete set of rotation parameters, which is coupled to a nonlinear Maxwell field. The Lagrangian of the matter field has the form of the power-law Maxwell field. We study the causal structure of the spacetime and its physical properties in ample details. We also compute thermodynamic and conserved quantities of the spacetime, such as the temperature, entropy, mass, charge, and angular momentum. We find a Smarr-formula for the mass and verify the validity of the first law of thermodynamics on the black brane horizon. Finally, we investigate the thermal stability of solutions in both the canonical and the grand-canonical ensembles and disclose the effects of dilaton field and nonlinearity of the Maxwell field on the thermal stability of the solutions. We find that, for α ≤ 1, charged rotating black brane solutions are thermally stable independent of the values of the other parameters. For α >1, the solutions can encounter an unstable phase depending on the metric parameters.

  18. Global structure of black hole and brane solutions in a multidimensional model with anisotropic fluid

    NASA Astrophysics Data System (ADS)

    Bolokhov, S. V.; Ivashchuk, V. D.

    We analyse the global causal structure of a family of multidimensional spherically-symmetric solutions with a horizon which appear in the model with 1-component anisotropic fluid. This family can be considered as a generalized analogs of the well-known black hole solutions (including the Reissner--Nordström one) and some black brane solutions. The structure of regular horizons and singular boundaries is studied, and the corresponding Carter--Penrose diagrams are constructed for various values of the parameters of the model.

  19. World-volume effective theory for higher-dimensional black holes.

    PubMed

    Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A

    2009-05-15

    We argue that the main feature behind novel properties of higher-dimensional black holes, compared to four-dimensional ones, is that their horizons can have two characteristic lengths of very different size. We develop a long-distance world-volume effective theory that captures the black hole dynamics at scales much larger than the short scale. In this limit the black hole is regarded as a blackfold: a black brane (possibly boosted locally) whose world volume spans a curved submanifold of the spacetime. This approach reveals black objects with novel horizon geometries and topologies more complex than the black ring, but more generally it provides a new organizing framework for the dynamics of higher-dimensional black holes. PMID:19518938

  20. Classical tests of general relativity: Brane-world Sun from minimal geometric deformation

    NASA Astrophysics Data System (ADS)

    Casadio, R.; Ovalle, J.; da Rocha, Roldão

    2015-05-01

    We consider a solution of the effective four-dimensional brane-world equations, obtained from the general relativistic Schwarzschild metric via the principle of minimal geometric deformation, and investigate the corresponding signatures stemming from the possible existence of a warped extra-dimension. In particular, we derive bounds on an extra-dimensional parameter, closely related with the fundamental gravitational length, from the experimental results of the classical tests of general relativity in the Solar system.

  1. Gravitational contributions to the running Yang-Mills coupling in large extra-dimensional brane worlds

    NASA Astrophysics Data System (ADS)

    Ebert, Dietmar; Plefka, Jan; Rodigast, Andreas

    2009-02-01

    We study the question of a modification of the running gauge coupling of Yang-Mills theories due to quantum gravitational effects in a compact large extra dimensional brane world scenario with a low energy quantum gravity scale. The ADD scenario is applied for a D = d+δ dimensional space-time in which gravitons freely propagate, whereas the non-abelian gauge fields are confined to a d-dimensional brane. The extra dimensions are taken to be toroidal and the transverse fluctuation modes (branons) of the brane are taken into account. On this basis we have calculated the one-loop corrections due to virtual Kaluza-Klein graviton and branon modes for the gluon two- and three-point functions in an effective field theory treatment. Applying momentum cut-off regularization we find that for a d = 4 brane the leading gravitational divergencies cancel irrespective of the number of extra dimensions δ, generalizing previous results in the absence of extra-dimensions. Hence, again the Yang-Mills β-function receives no gravitational corrections at one-loop. This is no longer true in a `universal' extra dimensional scenario with a d > 4 dimensional brane. Moreover, the subleading power-law gravitational divergencies induce higher-dimensional counterterms, which we establish in our scheme. Interestingly, for d = 4 these gravitationally induced counterterms are of the form recently considered in non-abelian Lee-Wick extensions of the standard model—now with a possible mass scale in the TeV range due to the presence of large extra dimensions.

  2. Cross sections for production of closed superstrings at high energy colliders in brane world models

    SciTech Connect

    Chialva, Diego; Iengo, Roberto; Russo, Jorge G.

    2005-05-15

    In brane world string models with large extra dimensions, there are processes where fermion and antifermion (or two gluons) can annihilate producing a light particle (e.g. gluon) carrying transverse momentum and a Kaluza-Klein graviton or an excited closed string that propagates in the extra dimensions. In high energy colliders, this process gives a missing-momentum signature. We compute the total cross section for this process within the context of type II superstring theory in the presence of a D-brane. This includes all missing-energy sources for this string-theory model up to s=8M{sub s}{sup 2}, and it can be used to put new limits on the string scale M{sub s}.

  3. Brane - Anti-Brane Democracy

    SciTech Connect

    Rajaraman, Arvind

    2003-06-02

    We suggest a duality invariant formula for the entropy and temperature of nonextreme black holes in supersymmetric string theory. The entropy is given in terms of the duality invariant parameter of the deviation from extremality and 56 SU(8) covariant central charges. It interpolates between the entropies of Schwarzschild solution and extremal solutions with various amount of unbroken supersymmetries and therefore serves for classification of black holes in supersymmetric string theories. We introduce the second auxiliary 56 via E(7) symmetric constraint. The symmetric and antisymmetric combinations of these two multiplets are related via moduli to the corresponding two fundamental representations of E(7): brane and anti-brane ''numbers.'' Using the CPT as well as C symmetry of the entropy formula and duality one can explain the mysterious simplicity of the non-extreme black hole area formula in terms of branes and anti-branes.

  4. Vacuum energy and cosmological supersymmetry breaking in brane worlds [rapid communication

    NASA Astrophysics Data System (ADS)

    Gravanis, Elias; Mavromatos, Nick E.

    2002-11-01

    In the context of a toy model we discuss the phenomenon of colliding five-branes, with two of the extra space dimensions compactified on tori. In one of the branes (hidden world) the torus is magnetized. Assuming opposite-tension branes, we argue that the collision results eventually in a (time-dependent) cosmological vacuum energy, whose value today is tiny, lying comfortably within the standard bounds by setting the breaking of the four-dimensional supersymmetry at a TeV scale. The small value of the vacuum energy as compared with the supersymmetry-breaking scale is attributed to transient phenomena with relaxation times of order of the age of the Universe. An interesting feature of the approach is the absence of a cosmic horizon, thereby allowing for a proper definition of an S-matrix. As a result of the string non-criticality induced at the collision, our model does not provide an alternative to inflation, given that arguments can be given supporting the occurrence of an inflationary phase early after the collision. The physics before the collision is not relevant to our arguments on the cosmological constant hierarchy, which are valid for asymptotically long times after it.

  5. Small brane black holes in the Randall-Sundrum type I scenario

    NASA Astrophysics Data System (ADS)

    Karasik, D.; Sahabandu, C.; Suranyi, P.; Wijewardhana, L. C.

    2004-03-01

    An approximation method to study the properties of a small black hole located on the TeV brane in the Randall-Sundrum type I scenario is presented. The method enables us to find the form of the metric close to the matter distribution when its asymptotic form is given. The short range solution is found as an expansion in the ratio between the Schwarzschild radius of the black hole and the curvature length of the bulk. Long range properties are introduced using the linearized gravity solution as an asymptotic boundary condition. The solution is found up to first order. It is valid in the region close to the horizon but is not valid on the horizon. The regularity of the horizon is still under study.

  6. On thermodynamics of charged AdS black holes in extended phases space via M2-branes background

    NASA Astrophysics Data System (ADS)

    Chabab, M.; El Moumni, H.; Masmar, K.

    2016-06-01

    Motivated by a recent work on asymptotically AdS_4 black holes in M-theory, we investigate both thermodynamics and the thermodynamical geometry of Reissner-Nordstrom-AdS black holes from M2-branes. More precisely, we study AdS black holes in AdS4× S7, with the number of M2-branes interpreted as a thermodynamical variable. In this context, we calculate various thermodynamical quantities including the chemical potential, and examine their phase transitions along with the corresponding stability behaviors. In addition, we also evaluate the thermodynamical curvatures of the Weinhold, Ruppeiner, and Quevedo metrics for M2-branes geometry to study the stability of such a black object. We show that the singularities of these scalar curvature's metrics reproduce similar stability results to those obtained by the phase transition diagram via the heat capacities in different ensembles either when the number of the M2 branes or the charge is held fixed. Also, we note that all results derived in Belhaj et al. (Eur Phys J C 76(2):73, 2016) are recovered in the limit of the vanishing charge.

  7. How a Randall-Sundrum Brane-World Effective Potential Influences Inflation Physics

    SciTech Connect

    Beckwith, A. W.

    2007-01-30

    In string theory, even when there are ten to the thousand power vacuum states, does inflation produce overwhelmingly one preferred type of vacuum state? We respond affirmatively to questions whether existence of graviton production is confirmable using present detector methodology. We use an explicit Randall-Sundrum brane-world effective potential as congruent with an inflationary quadratic potential start. This occurs after Bogomolnyi inequality eliminates need for ad hoc assumption of axion wall mass high temperature related disappearing. Graviton production has explicit links with a five-dimensional brane-world negative cosmological constant and a four-dimensional positive valued cosmological constant, whose temperature dependence permits an early universe graviton production activity burst. We show how di quarks, wave functions, and various forms tie into the Wheeler-De Witt equation. This permits investigating a discretized quantum bounce and a possible link to the initial phases of present universe's evolution with a prior universe's collapse to the bounce point--the initial starting point to inflationary expansion. This opens a possibility of realistically investigating gravitons as part of a space propulsion system and dealing with problems from a beam of gravity waves, which would create a g-force because the geodestic structure is near field. It can be applied to existing and to new space propulsion concepts.

  8. De Sitter brane-world, localization of gravity, and the cosmological constant

    NASA Astrophysics Data System (ADS)

    Neupane, Ishwaree P.

    2011-04-01

    Cosmological models with a de Sitter 3-brane embedded in a 5-dimensional de Sitter spacetime (dS5) give rise to a finite 4D Planck mass similar to that in Randall-Sundrum (RS) brane-world models in anti-de Sitter 5-dimensional spacetime(AdS5). Yet, there arise a few important differences as compared to the results with a flat 3-brane or 4D Minkowski spacetime. For example, the mass reduction formula (MRF) MPl2=M(5)3ℓAdS as well as the relationship MPl2=MPl(4+n)n+2Ln (with L being the average size or the radius of the n extra dimensions) expected in models of product-space (or Kaluza-Klein) compactifications get modified in cosmological backgrounds. In an expanding universe, a physically relevant MRF encodes information upon the 4-dimensional Hubble expansion parameter, in addition to the length and mass parameters L, MPl, and MPl(4+n). If a bulk cosmological constant is present in the solution, then the reduction formula is further modified. With these new insights, we show that the localization of a massless 4D graviton as well as the mass hierarchy between MPl and MPl(4+n) can be explained in cosmological brane-world models. A notable advantage of having a 5D de Sitter bulk is that in this case the zero-mass wave function is normalizable, which is not necessarily the case if the bulk spacetime is anti-de Sitter. In spacetime dimensions D≥7, however, the bulk cosmological constant Λb can take either sign (Λb<0, =0, or >0). The D=6 case is rather inconclusive, in which case Λb may be introduced together with 2-form gauge field (or flux). We obtain some interesting classical gravity solutions that compactify higher-dimensional spacetime to produce a Robertson-Walker universe with de Sitter-type expansion plus one extra noncompact direction. We also show that such models can admit both an effective 4-dimensional Newton constant that remains finite and a normalizable zero-mode graviton wave function.

  9. Supergravity brane cosmologies

    NASA Astrophysics Data System (ADS)

    Lidsey, James E.

    2000-10-01

    Solitonic brane cosmologies are found where the world-volume is curved due to the evolution of the dilaton field on the brane. In many cases, these may be related to the solitonic Dp- and M5-branes of string and M theory. An eleven-dimensional interpretation of the D8-brane cosmology of the massive type IIA theory is discussed in terms of compactification on a torus bundle. Brane worlds are also found in Horava-Witten theory compactified on a Calabi-Yau three-fold. The possibility of dilaton-driven inflation on the brane is discussed.

  10. Small black holes on branes: Is the horizon regular or singular?

    NASA Astrophysics Data System (ADS)

    Karasik, D.; Sahabandu, C.; Suranyi, P.; Wijewardhana, L. C.

    2004-09-01

    We investigate the following question: Consider a small mass, with ɛ (the ratio of the Schwarzschild radius and the bulk curvature length) much smaller than 1, that is confined to the TeV brane in the Randall-Sundrum I scenario. Does it form a black hole with a regular horizon, or a naked singularity? The metric is expanded in ɛ and the asymptotic form of the metric is given by the weak field approximation (linear in the mass). In first order of ɛ we show that the iteration of the weak field solution, which includes only integer powers of the mass, leads to a solution that has a singular horizon. We find a solution with a regular horizon but its asymptotic expansion in the mass also contains half integer powers.

  11. Brane-world and loop cosmology from a gravity-matter coupling perspective

    NASA Astrophysics Data System (ADS)

    Olmo, Gonzalo J.; Rubiera-Garcia, D.

    2015-01-01

    We show that the effective brane-world and the loop quantum cosmology background expansion histories can be reproduced from a modified gravity perspective in terms of an f (R) gravity action plus a g (R) term non-minimally coupled with the matter Lagrangian. The reconstruction algorithm that we provide depends on a free function of the matter density that must be specified in each case and allows to obtain analytical solutions always. In the simplest cases, the function f (R) is quadratic in the Ricci scalar, R, whereas g (R) is linear. Our approach is compared with recent results in the literature. We show that working in the Palatini formalism there is no need to impose any constraint that keeps the equations second-order, which is a key requirement for the successful implementation of the reconstruction algorithm.

  12. Higher-dimensional bulk wormholes and their manifestations in brane worlds

    SciTech Connect

    Rodrigo, Enrico

    2006-11-15

    There is nothing to prevent a higher-dimensional anti-de Sitter bulk spacetime from containing various other branes in addition to hosting our universe, presumed to be a positive-tension 3-brane. In particular, it could contain closed, microscopic branes that form the boundary surfaces of void bubbles and thus violate the null energy condition in the bulk. The possible existence of such micro branes can be investigated by considering the properties of the ground state of a pseudo-Wheeler-DeWitt equation describing brane quantum dynamics in minisuperspace. If they exist, a concentration of these micro branes could act as a fluid of exotic matter able to support macroscopic wormholes connecting otherwise-distant regions of the bulk. Were the brane constituting our universe to expand into a region of the bulk containing such higher-dimensional macroscopic wormholes, they would likely manifest themselves in our brane as wormholes of normal dimensionality, whose spontaneous appearance and general dynamics would seem inexplicably peculiar. This encounter could also result in the formation of baby universes of a particular type.

  13. Second Variation of Induced Curvature Term in Brane-World Action

    NASA Astrophysics Data System (ADS)

    Iofa, Mikhail Z.

    In a 5D spacetime with a 3-brane embedded we calculate the second variation of the scalar 4D curvature term on the brane under variations of the 5D metric. It is shown that the second variation of the 4D scalar curvature term in adapted coordinates is expressed only through variations of the components of the 5D metric with 4D indices.

  14. Vacuum polarization on the brane

    NASA Astrophysics Data System (ADS)

    Breen, Cormac; Hewitt, Matthew; Winstanley, Elizabeth; Ottewill, Adrian C.

    2015-10-01

    We compute the renormalized expectation value of the square of a massless, conformally coupled, quantum scalar field on the brane of a higher-dimensional black hole. Working in the AADD brane-world scenario, the extra dimensions are flat and we assume that the compactification radius is large compared with the size of the black hole. The four-dimensional on-brane metric corresponds to a slice through a higher-dimensional Schwarzschild-Tangherlini black hole geometry and depends on the number of bulk space-time dimensions. The quantum scalar field is in a thermal state at the Hawking temperature. An exact, closed-form expression is derived for the renormalized expectation value of the square of the quantum scalar field on the event horizon of the black hole. Outside the event horizon, this renormalized expectation value is computed numerically. The answer depends on the number of bulk space-time dimensions, with a magnitude which increases rapidly as the number of bulk space-time dimensions increases.

  15. Denouement of a Wormhole-Brane Encounter

    NASA Astrophysics Data System (ADS)

    Rodrigo, Enrico

    Higher-dimensional black holes have long been considered within the context of brane worlds. Recently, it was shown that the brane-world ethos also permits the consideration of higher-dimensional wormholes. When such a wormhole, pre-existing in the bulk, impinges upon our universe, taken to be a positive-tension three-brane, it can induce the creation in our universe of a wormhole of ordinary dimensionality. The throat of this wormhole might fully constrict, pinch off, and thus birth a baby universe. Alternatively, the induced wormhole might persist. I show that persistence is more likely and note that the persistent wormhole manifests itself as a particle-like object whose interaction with cosmic matter is purely gravitational. I consider the viability of this object as a dark matter candidate.

  16. Some problems with reproducing the Standard Model fields and interactions in five-dimensional warped brane world models

    NASA Astrophysics Data System (ADS)

    Smolyakov, Mikhail N.; Volobuev, Igor P.

    2016-01-01

    In this paper we examine, from the purely theoretical point of view and in a model-independent way, the case, when matter, gauge and Higgs fields are allowed to propagate in the bulk of five-dimensional brane world models with compact extra dimension, and the Standard Model fields and their interactions are supposed to be reproduced by the corresponding zero Kaluza-Klein modes. An unexpected result is that in order to avoid possible pathological behavior in the fermion sector, it is necessary to impose constraints on the fermion field Lagrangian. In the case when the fermion zero modes are supposed to be localized at one of the branes, these constraints imply an additional relation between the vacuum profile of the Higgs field and the form of the background metric. Moreover, this relation between the vacuum profile of the Higgs field and the form of the background metric results in the exact reproduction of the gauge boson and fermion sectors of the Standard Model by the corresponding zero mode four-dimensional effective theory in all the physically relevant cases, allowed by the absence of pathologies. Meanwhile, deviations from these conditions can lead either back to pathological behavior in the fermion sector or to a variance between the resulting zero mode four-dimensional effective theory and the Standard Model, which, depending on the model at hand, may, in principle, result in constraints putting the theory out of the reach of the present day experiments.

  17. Gauged baryon and lepton number in MSSM{sub 4} brane worlds

    SciTech Connect

    Lebed, Richard F.; Mayes, Van E.

    2011-10-01

    A recent D-brane model designed to accommodate a phenomenologically acceptable fourth generation of chiral fermions was noted to produce an unexpected additional unbroken nonanomalous U(1) gauge group at the string scale. We show that the corresponding charges acting on minimal supersymmetric standard model fields count baryon and lepton numbers. If broken spontaneously at lower scales, these U(1){sub B} and U(1){sub L} symmetries provide potential avenues for preserving baryogenesis while nonetheless explaining the suppression of proton decay (without the need for R parity), as well as the smallness of right-handed neutrino Majorana masses compared to the string scale.

  18. T-branes as branes within branes

    NASA Astrophysics Data System (ADS)

    Collinucci, Andrés; Savelli, Raffaele

    2015-09-01

    Bound states of 7-branes known as `T-branes' have properties that defy usual geometric intuition. For instance, the gauge group of n coincident branes may not be U( n). More surprisingly, matter may show up at unexpected loci, such as points.

  19. From the currency rate quotations onto strings and brane world scenarios

    NASA Astrophysics Data System (ADS)

    Horváth, D.; Pincak, R.

    2012-11-01

    In the paper, we study the projections of the real exchange rate dynamics onto the string-like topology. Our approach is inspired by the contemporary movements in the string theory. The string map of data is defined here by the boundary conditions, characteristic length, real valued and the method of redistribution of information. As a practical matter, this map represents the detrending and data standardization procedure. We introduced maps onto 1-end-point and 2-end-point open strings that satisfy the Dirichlet and Neumann boundary conditions. The questions of the choice of extra-dimensions, symmetries, duality and ways to the partial compactification are discussed. Subsequently, we pass to higher dimensional and more complex objects. The 2D-Brane was suggested which incorporated bid-ask spreads. Polarization by the spread was considered which admitted analyzing arbitrage opportunities on the market where transaction costs are taken into account. The model of the rotating string which naturally yields calculation of angular momentum is suitable for tracking of several currency pairs. The systematic way which allows one suggest more structured maps suitable for a simultaneous study of several currency pairs was analyzed by means of the Gâteaux generalized differential calculus. The effect of the string and brane maps on test data was studied by comparing their mean statistical characteristics. The study revealed notable differences between topologies. We review the dependence on the characteristic string length, mean fluctuations and properties of the intra-string statistics. The study explores the coupling of the string amplitude and volatility. The possible utilizations of the string theory approach in financial markets are slight.

  20. Radio and the Black Soldier during World War II.

    ERIC Educational Resources Information Center

    Meckiffe, Donald; Murray, Matthew

    1998-01-01

    Contributes to scholarship on the representation of race in the electronic media. Traces particular social, political, and institutional pressure influencing the production of the figure of the black soldier in U.S. radio during World War II. Shows how it served to varying degrees the immediate interests of the black press, the federal government,…

  1. A Deconstruction Lattice Description of the D1/D5 Brane World-Volume Gauge Theory

    DOE PAGESBeta

    Giedt, Joel

    2011-01-01

    I genermore » alize the deconstruction lattice formulation of Endres and Kaplan to two-dimensional super-QCD with eight supercharges, denoted by (4,4), and bifundamental matter. I specialize to a particularly interesting (4,4) gauge theory, with gauge group U ( N c ) × U ( N f ) , and U ( N f ) being weakly gauged. It describes the infrared limit of the D1/D5 brane system, which has been studied extensively as an example of the AdS 3 /CFT 2 correspondence. The construction here preserves two supercharges exactly and has a lattice structure quite similar to that which has previously appeared in the deconstruction approach, that is, site, link, and diagonal fields with both the Bose and Fermi statistics. I remark on possible applications of the lattice theory that would test the AdS 3 /CFT 2 correspondence, particularly one that would exploit the recent worldsheet instanton analysis of Chen and Tong.« less

  2. Thermodynamics of rotating charged black branes in third order lovelock gravity and the counterterm method

    SciTech Connect

    Dehghani, M.H.; Mann, R.B.

    2006-05-15

    We generalize the quasilocal definition of the stress-energy tensor of Einstein gravity to the case of third order Lovelock gravity, by introducing the surface terms that make the action well-defined. We also introduce the boundary counterterm that removes the divergences of the action and the conserved quantities of the solutions of third order Lovelock gravity with zero curvature boundary at constant t and r. Then, we compute the charged rotating solutions of this theory in n+1 dimensions with a complete set of allowed rotation parameters. These charged rotating solutions present black hole solutions with two inner and outer event horizons, extreme black holes or naked singularities provided the parameters of the solutions are suitably chosen. We compute temperature, entropy, charge, electric potential, mass and angular momenta of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We find a Smarr-type formula and perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable. This is commensurate with the fact that there is no Hawking-Page phase transition for black objects with zero curvature horizon.

  3. Branes in Gravity's Rainbow

    NASA Astrophysics Data System (ADS)

    Ashour, Amani; Faizal, Mir; Ali, Ahmed Farag; Hammad, Fayçal

    2016-05-01

    In this work, we investigate the thermodynamics of black p-branes (BB) in the context of Gravity's Rainbow. We investigate this using rainbow functions that have been motivated from loop quantum gravity and κ -Minkowski non-commutative spacetime. Then for the sake of comparison, we examine a couple of other rainbow functions that have also appeared in the literature. We show that, for consistency, Gravity's Rainbow imposes a constraint on the minimum mass of the BB, a constraint that we interpret here as implying the existence of a black p-brane remnant. This interpretation is supported by the computation of the black p-brane's heat capacity that shows that the latter vanishes when the Schwarzschild radius takes on a value that is bigger than its extremal limit. We found that the same conclusion is reached for the third version of rainbow functions treated here but not with the second one for which only standard black p-brane thermodynamics is recovered.

  4. Brane-antibrane democracy

    SciTech Connect

    Kallosh, R.; Rajaraman, A.

    1996-11-01

    We suggest a duality-invariant formula for the entropy and temperature of nonextreme black holes in supersymmetric string theory. The entropy is given in terms of the duality-invariant parameter of the deviation from extremality and 56 SU(8) covariant central charges. It interpolates between the entropies of Schwarzschild solution and extremal solutions with various amount of unbroken supersymmetries, and therefore, serves for classification of black holes in supersymmetric string theories. We introduce the second auxiliary 56 via an E(7) symmetric constraint. The symmetric and antisymmetric combinations of these two multiplets are related via moduli to the corresponding two fundamental representations of E(7): brane and antibrane {open_quote}{open_quote}numbers.{close_quote}{close_quote} Using the {ital CPT} as well as {ital C} symmetry of the entropy formula and duality one can explain the mysterious simplicity of the nonextreme black hole area formula in terms of branes and antibranes. {copyright} {ital 1996 The American Physical Society.}

  5. Exotic branes and nongeometric backgrounds.

    PubMed

    de Boer, Jan; Shigemori, Masaki

    2010-06-25

    When string or M theory is compactified to lower dimensions, the U-duality symmetry predicts so-called exotic branes whose higher-dimensional origin cannot be explained by the standard string or M-theory branes. We argue that exotic branes can be understood in higher dimensions as nongeometric backgrounds or U folds, and that they are important for the physics of systems which originally contain no exotic charges, since the supertube effect generically produces such exotic charges. We discuss the implications of exotic backgrounds for black hole microstate (non-)geometries. PMID:20867363

  6. 'Insightful D-branes'

    SciTech Connect

    Horowitz, Gary; Lawrence, Albion; Silverstein, Eva; /SLAC /Stanford U., Phys. Dept. /Santa Barbara, KITP

    2010-08-26

    We study a simple model of a black hole in AdS and obtain a holographic description of the region inside the horizon. A key role is played by the dynamics of the scalar fields in the dual gauge theory. This leads to a proposal for a dual description of D-branes falling through the horizon of any AdS black hole. The proposal uses a field-dependent time reparameterization in the field theory. We relate this reparametrization to various gauge invariances of the theory. Finally, we speculate on information loss and the black hole singularity in this context.

  7. Wrapped branes as qubits.

    PubMed

    Borsten, L; Dahanayake, D; Duff, M J; Ebrahim, H; Rubens, W

    2008-06-27

    Recent work has established a correspondence between the tripartite entanglement measure of three qubits and the macroscopic entropy of the four-dimensional 8-charge STU black hole of supergravity. Here we consider the configurations of intersecting D3-branes, whose wrapping around the six compact dimensions T6 provides the microscopic string-theoretic interpretation of the charges, and associate the three-qubit basis vectors |ABC>, (A, B, C=0 or 1) with the corresponding 8 wrapping cycles. In particular, we relate a well-known fact of quantum information theory, that the most general real three-qubit state can be parameterized by four real numbers and an angle, to a well-known fact of string theory, that the most general STU black hole can be described by four D3-branes intersecting at an angle. PMID:18643650

  8. Q-branes

    NASA Astrophysics Data System (ADS)

    Abel, Steven; Kehagias, Alex

    2015-11-01

    Non-topological solitons (Q-balls) are discussed in some stringy settings. Our main result is that the dielectric D-brane system of Myers admits non-abelian Q-ball solutions on their world-volume, in which N D p-branes relax to the standard dielectric form outside the Q-ball, but assume a more diffuse configuration at its centre. We also consider how Q-balls behave in the bulk of extra-dimensional theories, or on wrapped branes. We demonstrate that they carry Kaluza-Klein charge and possess a corresponding Kaluza-Klein tower of states just as normal particles, and we discuss surface energy effects by finding exact Q-ball solutions in models with a specific logarithmic potential.

  9. D-Brane Primer

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.

    2001-10-01

    Following is a collection of lecture notes on D-branes, which may be used by the reader as preparation for applications to modern research applications such as: the AdS/CFT and other gauge theory/geometry correspondences, Matrix Theory and stringy non-commutative geometry, etc. In attempting to be reasonably self-contained, the notes start from classical point-particles and develop the subject logically (but selectively) through classical strings, quantisation, D-branes, supergravity, superstrings, string duality, including many detailed applications. Selected focus topics feature D-branes as probes of both spacetime and gauge geometry, highlighting the role of world-volume curvature and gauge couplings, with some non-Abelian cases. Other advanced topics which are discussed are the (presently) novel tools of research such as fractional branes, the enhançon mechanism, D(ielectric)-branes and the emergence of the fuzzy/non-commutative sphere. (This is an expanded writeup of lectures given at ICTP, TASI, and BUSSTEPP.).

  10. Brane new world

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Hertog, T.; Reall, H. S.

    2000-08-01

    We study a Randall-Sundrum cosmological scenario consisting of a domain wall in anti-de Sitter space with a strongly coupled large N conformal field theory living on the wall. The AdS-CFT correspondence allows a fully quantum mechanical treatment of this CFT, in contrast with the usual treatment of matter fields in inflationary cosmology. The conformal anomaly of the CFT provides an effective tension which leads to a de Sitter geometry for the domain wall. This is the analogue of Starobinsky's four dimensional model of anomaly driven inflation. Studying this model in a Euclidean setting gives a natural choice of boundary conditions at the horizon. We calculate the graviton correlator using the Hartle-Hawking ``no boundary'' proposal and analytically continue to Lorentzian signature. We find that the CFT strongly suppresses metric perturbations on all but the largest angular scales. This is true independently of how the de Sitter geometry arises, i.e., it is also true for four dimensional Einstein gravity. Since generic matter would be expected to behave like a CFT on small scales, our results suggest that tensor perturbations on small scales are far smaller than predicted by all previous calculations, which have neglected the effects of matter on tensor perturbations.

  11. Heterotic brane world

    SciTech Connect

    Foerste, Stefan; Nilles, Hans Peter; Vaudrevange, Patrick; Wingerter, Akin

    2004-11-15

    Orbifold compactification of heterotic E{sub 8}xE{sub 8}{sup '} string theory is a source for promising grand unified model building. It can accommodate the successful aspects of grand unification while avoiding problems like doublet-triplet splitting in the Higgs sector. Many of the phenomenological properties of the four-dimensional effective theory find an explanation through the geometry of compact space and the location of matter and Higgs fields. These geometrical properties can be used as a guideline for realistic model building.

  12. Gravity localization on hybrid branes

    NASA Astrophysics Data System (ADS)

    Veras, D. F. S.; Cruz, W. T.; Maluf, R. V.; Almeida, C. A. S.

    2016-03-01

    This work deals with gravity localization on codimension-1 brane worlds engendered by compacton-like kinks, the so-called hybrid branes. In such scenarios, the thin brane behavior is manifested when the extra dimension is outside the compact domain, where the energy density is non-trivial, instead of asymptotically as in the usual thick brane models. The zero mode is trapped in the brane, as required. The massive modes, although not localized in the brane, have important phenomenological implications such as corrections to the Newton's law. We study such corrections in the usual thick domain wall and in the hybrid brane scenarios. By means of suitable numerical methods, we attain the mass spectrum for the graviton and the corresponding wavefunctions. The spectra possess the usual linearly increasing behavior from the Kaluza-Klein theories. Further, we show that the 4D gravitational force is slightly increased at short distances. The first eigenstate contributes highly for the correction to the Newton's law. The subsequent normalized solutions have diminishing contributions. Moreover, we find out that the phenomenology of the hybrid brane is not different from the usual thick domain wall. The use of numerical techniques for solving the equations of the massive modes is useful for matching possible phenomenological measurements in the gravitational law as a probe to warped extra dimensions.

  13. Classical tests of General Relativity in thick branes

    NASA Astrophysics Data System (ADS)

    Dahia, F.; de Albuquerque Silva, Alex

    2015-02-01

    Classical tests of General Relativity in braneworld scenarios have been investigated recently with the purpose of posing observational constraints on the parameters of some models of infinitely thin brane. Here we consider the motion of test particles in a thick brane scenario that corresponds to a regularized version of the Garriga-Tanaka solution, which describes a black hole solution in RSII model, in the weak field regime. By adapting a mechanism previously formulated in order to describe the confinement of massive tests particles in a domain wall (which simulates classically the trapping of the Dirac field in a domain wall), we study the influence of the brane thickness on the four-dimensional (4D) path of massless particles. Although the geometry is not warped and, therefore, the bound motion in the transverse direction is not decoupled from the movement in the 4D-world, we can find an explicit solution for the light deflection and the time delay, if the motion in the fifth direction is a high frequency oscillation. We verify that, owing to the transverse motion, the light deflection and the time delay depend on the energy of the light rays. This feature may lead to the phenomenon of gravitational rainbow. We also consider the problem from a semi-classical perspective, investigating the effects of the brane thickness on the motion of the zero-mode in the 4D-world.

  14. Radionic nonuniform black strings

    NASA Astrophysics Data System (ADS)

    Tamaki, Takashi; Kanno, Sugumi; Soda, Jiro

    2004-01-01

    Nonuniform black strings in the two-brane system are investigated using the effective action approach. It is shown that the radion acts as a nontrivial hair of the black strings. From the brane point of view, the black string appears as the deformed dilatonic black hole which becomes a dilatonic black hole in the single brane limit and reduces to the Reissner-Nordström black hole in the close limit of two-branes. The stability of solutions is demonstrated using catastrophe theory. From the bulk point of view, the black strings are proved to be nonuniform. Nevertheless, the zeroth law of black hole thermodynamics still holds.

  15. Open M5-Branes

    SciTech Connect

    Bergshoeff, Eric A.; Gibbons, Gary W.; Townsend, Paul K.

    2006-12-08

    We show how, in heterotic M theory, an M5-brane in the 11-dimensional bulk may end on an 'M9-brane' boundary, the M5-brane boundary being a Yang-monopole 4-brane. This possibility suggests various novel 5-brane configurations of heterotic M theory, in particular, a static M5-brane suspended between the two M9-brane boundaries, for which we find the asymptotic heterotic supergravity solution.

  16. Shortcuts in cosmological branes

    NASA Astrophysics Data System (ADS)

    Abdalla, Elcio; Casali, Adenauer G.; Cuadros-Melgar, Bertha

    2004-02-01

    We consider a dynamical membrane world in a space-time with scalar bulk matter described by domain walls, as well as a dynamical membrane world in empty Anti de Sitter space-time. Using the solutions to Einstein equations and boundary conditions we investigate the possibility of having shortcuts for gravitons leaving the membrane and returning subsequently. In comparison with photons following a geodesic inside the brane we verify that shortcuts exist. For some Universes they are small, but sometimes are quite effective. In the case of matter branes, we argue that at times just before nucleosynthesis the effect is sufficiently large to provide corrections to the inflationary scenario, especially as concerning the horizon problem. This work has been supported by Fundca~o de Amparo à Pesquisa do Estado de Sa~o Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

  17. Black carbon in grassland ecosystems of the world

    NASA Astrophysics Data System (ADS)

    Rodionov, Andrej; Amelung, Wulf; Peinemann, Norman; Haumaier, Ludwig; Zhang, Xudong; Kleber, Markus; Glaser, Bruno; Urusevskaya, Inga; Zech, Wolfgang

    2010-09-01

    Black carbon (BC) is the product of incomplete burning processes and a significant component of the passive soil organic carbon (SOC) pool. The role of BC in the global carbon cycle is still unclear. This study aimed to quantify and characterize BC in major grassland ecosystems of the world. Twenty-eight representative soil profiles (mainly Mollisols) were sampled in the Russian Steppe, the U.S. Great Plains, the Argentinian Pampa, the Manchurian Plains in China, and the Chernozem region in central Germany. Black carbon contents were estimated using benzene polycarboxylic acids (BPCA) as a molecular marker, and indications about the origin of the BC were derived from bulk and compound-specific δ13C analyses and radiocarbon dating of bulk soil organic matter (SOM). Our findings suggest that between 5% and 30% of SOC stocks consist of BC. Maximum BC contributions to SOC frequently were found at deeper parts of the A horizon with 14C ages younger than 7000 years BP; that is, incorporation of C as charred particles accompanied ecosystem development since the mid-Holocene. Most of this BC formed from local vegetation, as indicated by a 13C isotope signature similar to that of bulk SOM. At some sites, also nonlocal sources contributed to soil BC, e.g., fossil fuel BC inputs at the German sites. Black carbon stocks were highest in Chernozems and lowest in Kastanozems. The Russian Steppe and Chinese Manchurian sites stored about 3-4 times more BC (around 3 kg m-2) than did the other sites because of thicker A horizons that were rich in BC. On a global scale, we estimate that steppe ecosystems contain between 4 and 17 Pg BC.

  18. From the Back of the Foxhole: Black Correspondents in World War II. Journalism Monographs, No. 27.

    ERIC Educational Resources Information Center

    Stevens, John D.

    Black newspapers, like the "Chicago Defender,""The Pittsburgh Courier," and the "Baltimore Afro-American," opened the eyes of Americans to the injustices suffered at home as well as in the armed services. The black press attacked the Navy for its Jim Crowism because when World War II began, the only black sailors were messmen. It attacked the Red…

  19. Massive gravity on a brane

    SciTech Connect

    Chacko, Z.; Graesser, M.L.; Grojean, C.; Pilo, L.

    2003-12-11

    At present no theory of a massive graviton is known that is consistent with experiments at both long and short distances. The problem is that consistency with long distance experiments requires the graviton mass to be very small. Such a small graviton mass however implies an ultraviolet cutoff for the theory at length scales far larger than the millimeter scale at which gravity has already been measured. In this paper we attempt to construct a model which avoids this problem. We consider a brane world setup in warped AdS spacetime and we investigate the consequences of writing a mass term for the graviton on a the infrared brane where the local cutoff is of order a large (galactic) distance scale. The advantage of this setup is that the low cutoff for physics on the infrared brane does not significantly affect the predictivity of the theory for observers localized on the ultraviolet brane. For such observers the predictions of this theory agree with general relativity at distances smaller than the infrared scale but go over to those of a theory of massive gravity at longer distances. A careful analysis of the graviton two-point function, however, reveals the presence of a ghost in the low energy spectrum. A mode decomposition of the higher dimensional theory reveals that the ghost corresponds to the radion field. We also investigate the theory with a brane localized mass for the graviton on the ultraviolet brane, and show that the physics of this case is similar to that of a conventional four dimensional theory with a massive graviton, but with one important difference: when the infrared brane decouples and the would-be massive graviton gets heavier than the regular Kaluza-Klein modes, it becomes unstable and it has a finite width to decay off the brane into the continuum of Kaluza-Klein states.

  20. Education and Black Struggle: Notes from the Colonized World.

    ERIC Educational Resources Information Center

    Institute of the Black World, Atlanta, GA.

    The contents of this document are organized in six parts, as follows. Part I "IBW and the Vocation of the Black Scholar," includes "The Vocation of the Black Scholar and the Struggles of the Black Community," Vincent Harding. Part II "Colonial Ideology and Colonized Resistance," includes: "African Independence and the Myth of African Inferiority,"…

  1. Non-susy D3 brane and an interpolating solution between AdS5 black hole, AdS5 soliton and a `soft-wall' gravity solution

    NASA Astrophysics Data System (ADS)

    Roy, Shibaji

    2015-10-01

    It is known from the work in [1] of Lu et al. that the non-supersymmetric charged D3-brane (with anisotropies in time as well as one of the spatial directions of D3-brane) of type IIB string theory is characterized by five independent parameters. By fixing one of the parameters and zooming into a particular region of space-time we construct a four parameter family of solution in AdS5, which interpolates between AdS5 black hole and AdS5 soliton (when one of the spatial directions in the Poincare coordinates is compact) by continuously changing the parameters (there is no need to take a double Wick rotation as is usual to go from one solution to the other) from one set of values to another. We consider two cases. In the first case the dilaton is constant for this transition and there are only three independent parameters, whereas in the second case the dilaton varies and there are four independent parameters. In the latter case, the solution interpolates between AdS5 black hole, AdS5 soliton as well as the so-called `soft-wall' gravity solution of AdS/QCD model. We also compare our solution to the previously obtained Constable-Myers solution which is helpful in generalizing the solution for other D p (for p ≠ 3) branes.

  2. Oscillating p-branes

    SciTech Connect

    Clark, T. E.; Love, S. T.; Xiong, C.; Nitta, Muneto; Veldhuis, T. ter

    2007-11-15

    Coset methods are used to construct the action describing the dynamics associated with the spontaneous breaking of the Poincare symmetries of D dimensional space-time due to the embedding of a p-brane with codimension N=D-p-1. The resulting world volume action is an ISO(1,p+N) invariant generalization of the Nambu-Goto action in d=p+1 dimensional space-time. Analogous results are obtained for an anti-de Sitter (AdS) p-brane with codimension N embedded in D dimensional AdS space, yielding an SO(2,p+N) invariant version of the Nambu-Goto action in d=p+1 dimensional space-time. Attention is focused on a supersymmetric extension of the D=6 Minkowski space case with an embedded p=3 brane; a particular realization of which is provided by a non-BPS vortex. Here both the Nambu-Goto-Akulov-Volkov action and its dual tensor form are presented.

  3. E3-brane instantons and baryonic operators for D3-branes on toric singularities

    NASA Astrophysics Data System (ADS)

    Forcella, Davide; García-Etxebarria, Iñaki; Uranga, Angel

    2009-03-01

    We consider the couplings induced on the world-volume field theory of D3-branes at local toric Calabi-Yau singularities by euclidean D3-brane (E3-brane) instantons wrapped on (non-compact) holomorphic 4-cycles. These instantons produce insertions of BPS baryonic or mesonic operators of the four-dimensional Script N = 1 quiver gauge theory. We argue that these systems underlie, via the near-horizon limit, the familiar AdS/CFT map between BPS operators and D3-branes wrapped on supersymmetric 3-cycles on the 5d horizon. The relation implies that there must exist E3-brane instantons with appropriate fermion mode spectrum and couplings, such that their non-perturbative effects on the D3-branes induce operators forming a generating set for all BPS operators of the quiver CFT. We provide a constructive argument for this correspondence, thus supporting the picture.

  4. The third world health status of black American males.

    PubMed Central

    Gadson, Sandra L.

    2006-01-01

    In contrast to their white counterparts, black men in the United States live sicker and die younger. This longstanding phenomenon is sharply reflected in the poor international health status of black males. The NMA president discusses major health issues facing black males and posits a multidimensional strategy for addressing racial disparities in men's health, with a national focus on health promotion and disease prevention, improving healthcare quality and access, and eliminating structural inequities. PMID:16623060

  5. World without Work. Causes and Consequences of Black Male Joblessness.

    ERIC Educational Resources Information Center

    Center for the Study of Social Policy, Washington, DC.

    This document examines the causes and consequences of Black male joblessness. First, key insights and recommendations of a 1993 policy roundtable on labor force participation and family formation are summarized. Discussed next are the following issues related to the economic and social alienation of Black men: joblessness and absence from the…

  6. Brane Inflation: From Superstring to Cosmic Strings

    SciTech Connect

    Tye, S.-H. Henry

    2004-12-10

    Brane inflation, where branes move towards each other in the brane world, has been shown to be quite natural in superstring theory. Inflation ends when branes collide and heat the universe, initiating the hot big bang. Cosmic strings (but not domain walls or monopoles) are copiously produced during the brane collision. Using the COBE data on the temperature anisotropy in the cosmic microwave background, the cosmic string tension {mu} is estimated to be around 10 -6 > G{mu} > 10-11, while the present observational bound is 7 x 10 -7 > G{mu}. This implies that the anisotropy that seeds structure formation comes mostly from inflation, but with a small component (< 10%) from cosmic string effects. This cosmic string effect should be testable in the near future via gravitational lensing, the cosmic microwave background radiation, and/or gravitational wave detectors like LIGO II/VIRGO.

  7. The Effect of World War I on Black Occupational and Residential Segregation: The Case of Pittsburgh.

    ERIC Educational Resources Information Center

    Darden, Joe T.

    1988-01-01

    Study of census figures for Pittsburgh between 1900 and 1920 reveals that World War I had only a small measurable effect on reducing occupational segregation of Black men and White men and residential segregation by race. The war had no effect on reducing occupational segregation of Black women and White women. (BJV)

  8. D-branes in Massive IIA and Solitons in Chern-Simons Theory

    SciTech Connect

    Brodie, John H

    2001-07-25

    We investigate D2-branes and D4-branes parallel to D8-branes. The low energy world volume theory on the branes is non-supersymmetric Chern-Simons theory. We identify the fundamental strings as the anyons of the 2+1 Chern-Simons theory and the D0-branes as solitons. The Chern-Simons theory with a boundary is modeled using NS 5-branes with ending D6-branes. The brane set-up provides for a graphical description of anomaly inflow. We also model the 4+1 Chern-Simons theory using branes and conjecture that D4-branes with a boundary describes a supersymmetric version of Kaplan's theory of chiral fermions.

  9. Localised anti-branes in flux backgrounds

    NASA Astrophysics Data System (ADS)

    Hartnett, Gavin S.

    2015-06-01

    Solutions corresponding to finite temperature (anti)-D3 and M2 branes localised in flux backgrounds are constructed in a linear approximation. The flux backgrounds considered are toy models for the IR of the Klebanov-Strassler solution and its M-theory analogue, the Cvetič-Gibbons-Lü-Pope solution. Smooth solutions exist for either sign charge, in stark contrast with the previously considered case of smeared black branes. That the singularities of the anti-branes in the zero temperature extremal limit can be shielded behind a finite temperature horizon indicates that the singularities are physical and resolvable by string theory. As the charge of the branes grows large and negative, the flux at the horizon increases without bound and diverges in the extremal limit, which suggests a resolution via brane polarisation à la Polchinski-Strassler. It therefore appears that the anti-brane singularities do not indicate a problem with the SUSY-breaking metastable states corresponding to expanded anti-brane configurations in these backgrounds, nor with the use of these states in constructing the de Sitter landscape.

  10. D-branes, moduli, and supersymmetry

    SciTech Connect

    Balasubramanian, V.; Leigh, R.G.

    1997-05-01

    We study toroidal compactifications of type II string theory with D-branes and nontrivial antisymmetric tensor moduli and show that turning on these fields modifies the supersymmetry projections imposed by D-branes. These modifications are seen to be necessary for the consistency of T duality. We also show the existence of unusual BPS configurations of branes at angles that are supersymmetric because of conspiracies between moduli fields. Analysis of the problem from the point of view of the effective field theory of massless modes shows that the presence of a two-form background must modify the realization of supersymmetry on the brane. In particular, the appropriate supersymmetry variation of the physical gaugino vanishes in any constant field strength background. These considerations are relevant for the E{sub 7(7)}-symmetric counting of states of four-dimensional black holes in type II string theory compactified on T{sup 6}. {copyright} {ital 1997} {ital The American Physical Society}

  11. Hair-brane ideas on the horizon

    NASA Astrophysics Data System (ADS)

    Martinec, Emil J.; Niehoff, Ben E.

    2015-11-01

    We continue an examination of the microstate geometries program begun in arXiv:1409.6017, focussing on the role of branes that wrap the cycles which degenerate when a throat in the geometry deepens and a horizon forms. An associated quiver quantum mechanical model of minimally wrapped branes exhibits a non-negligible fraction of the gravitational entropy, which scales correctly as a function of the charges. The results suggest a picture of AdS3/CFT2 duality wherein the long string that accounts for BTZ black hole entropy in the CFT description, can also be seen to inhabit the horizon of BPS black holes on the gravity side.

  12. Revolving D-branes and spontaneous gauge-symmetry breaking

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Kitazawa, Noriaki

    2015-12-01

    We propose a new mechanism of spontaneous gauge-symmetry breaking in the world-volume theory of revolving D-branes around a fixed point of orbifolds. In this paper, we consider a simple model of the T^6/Z_3 orbifold on which we put D3-branes, D7-branes, and their anti-branes. The configuration breaks supersymmetry, but the Ramond-Ramond tadpole cancellation conditions are satisfied. A set of three D3-branes at an orbifold fixed point can separate from the point, but, when they move perpendicular to the anti-D7-branes put on the fixed point, they are pulled back due to an attractive interaction between the D3- and anti-D7-branes. In order to stabilize the separation of the D3-branes at nonzero distance, we consider revolution of the D3-branes around the fixed point. Then the gauge symmetry on the D3-branes is spontaneously broken, and the rank of the gauge group is reduced. The distance can be set at will by appropriately choosing the angular momentum of the revolving D3-branes, which should be determined by the initial condition of the cosmological evolution of the D-brane configurations. The distance corresponds to the vacuum expectation values of brane moduli fields in the world-volume theory and, if it is written as M/M_s^2 in terms of the string scale M_s, the scale of gauge-symmetry breaking is given by M. Angular momentum conservation of revolving D3-branes assures the stability of the scale M against M_s.

  13. Who Said that the World Was Black and White?

    ERIC Educational Resources Information Center

    de la Mothe, Gordon V.

    1998-01-01

    Explores the history of "white purity" as a racist concept and addresses the perception that people of mixed heritage (or "mulattos") are classified as black. The history of mulattos, from the 1400s through modern times, and the changing definitions of race are discussed. (MAK)

  14. Relationships between black tea consumption and key health indicators in the world: an ecological study

    PubMed Central

    Beresniak, Ariel; Duru, Gerard; Berger, Genevieve; Bremond-Gignac, Dominique

    2012-01-01

    Objectives The aim of this study was to investigate potential statistical relationships between black tea consumption and key health indicators in the world. The research question is: Does tea consumption is correlated with one or more epidemiological indicators? Design Ecological study using a systematic data-mining approach in which the unit of the analysis is a population of one country. Setting Six variables, black tea consumption data and prevalence data of respiratory diseases, infectious diseases, cancer, cardiovascular diseases and diabetes, have been studied at a global level. Participants Data from 50 participating countries in the World Health Survey were investigated. Primary and secondary outcomes measures Level of statistical relationships between variables. Results Principal component analysis established a very high contribution of the black tea consumption parameter on the third axis (81%). The correlation circle confirmed that the ‘black tea’ vector was negatively correlated with the diabetes vector and was not correlated with any of the other four health indicators. A linear correlation model then confirmed a significant statistical correlation between high black tea consumption and low diabetes prevalence. Conclusions This innovative study establishes a linear statistical correlation between high black tea consumption and low diabetes prevalence in the world. These results are consistent with biological and physiological studies conducted on the effect of black tea on diabetes and confirm the results of a previous ecological study in Europe. Further epidemiological research and randomised studies are necessary to investigate the causality. PMID:23138107

  15. Inflation from wrapped branes

    NASA Astrophysics Data System (ADS)

    Becker, Melanie; Leblond, Louis; Shandera, Sarah

    2007-12-01

    We show that the use of higher dimensional wrapped branes can significantly extend the inflaton field range compared to brane inflation models which use D3-branes. We construct a simple inflationary model in terms of 5-branes wrapping a 2-cycle and traveling towards the tip of the Klebanov-Strassler throat. Inflation ends when the branes reach the tip of the cone and self-annihilate. Assuming a quadratic potential for the brane it is possible to match the cosmic microwave background data in the Dirac-Born-Infeld regime, but we argue that the backreaction of the brane is important and cannot be neglected. This scenario predicts a strong non-Gaussian signal and possibly detectable gravitational waves.

  16. Flat 3-brane with Tension in Cascading Gravity

    SciTech Connect

    Rham, Claudia de; Khoury, Justin; Tolley, Andrew

    2009-10-16

    In the cascading gravity brane-world scenario, our 3-brane lies within a succession of lower-codimension branes, each with their own induced gravity term, embedded into each other in a higher-dimensional space-time. In the (6+1)-dimensional version of this scenario, we show that a 3-brane with tension remains flat, at least for sufficiently small tension that the weak-field approximation is valid. The bulk solution is singular nowhere and remains in the perturbative regime everywhere.

  17. Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek K.; Pandey, P. K.; Singh, Sunita; Kar, Supriya

    2014-06-01

    We obtain quantum geometries on a vacuum created pair of a (DDbar)3-brane, at a Big Bang singularity, by a local two form on a D4-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DDbar)-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D4-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.

  18. No Swiss-cheese universe on the brane

    SciTech Connect

    Gergely, Laszlo A.

    2005-04-15

    We study the possibility of brane-world generalization of the Einstein-Straus Swiss-cheese cosmological model. We find that the modifications induced by the brane-world scenario are excessively restrictive. At a first glance only the motion of the boundary is modified and the fluid in the exterior region is allowed to have pressure. The general relativistic Einstein-Straus model emerges in the low density limit. However by imposing that the central mass in the Schwarzschild voids is constant, a combination of the junction conditions and modified cosmological evolution leads to the conclusion that the brane is flat. Thus no generic Swiss-cheese universe can exist on the brane. The conclusion is not altered by the introduction of a cosmological constant in the FLRW regions. This shows that although allowed in the low density limit, the Einstein-Straus universe cannot emerge from cosmological evolution in the brane-world scenario.

  19. International Organizations, the "Education-Economic Growth" Black Box, and the Development of World Education Culture

    ERIC Educational Resources Information Center

    Resnik, Julia

    2006-01-01

    This article has four sections. First, the author presents a theoretical discussion of the different explanations regarding the explosion of education after World War II. She explains how the actor-network theory--a theory of knowledge and of agency--enables people to understand the formation of the education-economic growth black box. The…

  20. J. Edgar Hoover and the Black Press in World War II.

    ERIC Educational Resources Information Center

    Washburn, Patrick S.

    Holding enormous if controversial power as Director of the Federal Bureau of Investigation (FBI), J. Edgar Hoover was sometimes controlled unexpectedly at the highest reaches of government, as illustrated by his failed attempt to obtain an Espionage Act indictment against the black press during World War II. Following anarchist bombings in 1919,…

  1. Branes constrictions with White Dwarfs

    NASA Astrophysics Data System (ADS)

    García-Aspeitia, Miguel A.

    2015-11-01

    We consider here a robust study of stellar dynamics for white dwarf stars with polytropic matter in the weak-field approximation using the Lane-Emden equation from the brane-world scenario. We also derive an analytical solution to the nonlocal energy density and show the behavior and sensitivity of these stars to the presence of extra dimensions. Similarly, we analyze stability and compactness, in order to show whether it is possible to agree with the conventional wisdom of white dwarfs dynamics. Our results predict an average value of the brane tension of < λ rangle ≳ 84.818MeV^4, with a standard deviation σ ˜eq 82.021MeV^4, which comes from a sample of dwarf stars, being weaker than other astrophysical observations but remaining higher than cosmological results provided by nucleosynthesis among others.

  2. D-Branes in Curved Space

    SciTech Connect

    McGreevy, John Austen; /Stanford U., Phys. Dept.

    2005-07-06

    This thesis is a study of D-branes in string compactifications. In this context, D-branes are relevant as an important component of the nonperturbative spectrum, as an incisive probe of these backgrounds, and as a natural stringy tool for localizing gauge interactions. In the first part of the thesis, we discuss half-BPS D-branes in compactifications of type II string theory on Calabi-Yau threefolds. The results we describe for these objects are pertinent both in their role as stringy brane-worlds, and in their role as solitonic objects. In particular, we determine couplings of these branes to the moduli determining the closed-string geometry, both perturbatively and non-perturbatively in the worldsheet expansion. We provide a local model for transitions in moduli space where the BPS spectrum jumps, and discuss the extension of mirror symmetry between Calabi-Yau manifolds to the case when D-branes are present. The next section is an interlude which provides some applications of D-branes to other curved backgrounds of string theory. In particular, we discuss a surprising phenomenon in which fundamental strings moving through background Ramond-Ramond fields dissolve into large spherical D3-branes. This mechanism is used to explain a previously-mysterious fact discovered via the AdS-CFT correspondence. Next, we make a connection between type IIA string vacua of the type discussed in the first section and M-theory compactifications on manifolds of G{sub 2} holonomy. Finally we discuss constructions of string vacua which do not have large radius limits. In the final part of the thesis, we develop techniques for studying the worldsheets of open strings ending on the curved D-branes studied in the first section. More precisely, we formulate a large class of massive two-dimensional gauge theories coupled to boundary matter, which flow in the infrared to the relevant boundary conformal field theories. Along with many other applications, these techniques are used to describe

  3. The Phantom brane revisited

    NASA Astrophysics Data System (ADS)

    Sahni, Varun

    2016-07-01

    The Phantom brane is based on the normal branch of the DGP braneworld. It possesses a phantom-like equation of state at late times, but no big-rip future singularity. In this braneworld, the cosmological constant is dynamically screened at late times. Consequently it provides a good fit to SDSS DR11 measurements of H(z) at high redshifts. We obtain a closed system of equations for scalar perturbations on the brane. Perturbations of radiation, matter and the Weyl fluid are self-consistently evolved until the present epoch. We find that the late time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials φ, Ψ evolve differently on the brane than in ΛCDM, for which φ = Ψ. On the Brane, by contrast, the ratio φ/Ψ exceeds unity during the late matter dominated epoch (z ≤ 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large scale structure. The phantom brane also displays a pole in its equation of state, which provides a key test of this dark energy model.

  4. Coset construction of a D-brane gauge field

    NASA Astrophysics Data System (ADS)

    McArthur, I. N.

    2016-04-01

    D-branes have a world-volume U (1) gauge field A whose field strength F = dA gives rise to a Born-Infeld term in the D-brane action. Supersymmetry and kappa symmetry transformations of A are traditionally inferred by the requirement that the Born-Infeld term is consistent with both supersymmetry and kappa symmetry of the D-brane action. In this paper, we show that integrability of the assigned supersymmetry transformations leads to an extension of the standard supersymmetry algebra that includes a fermionic central charge. We construct a superspace one-form on an enlarged superspace related by a coset construction to this centrally extended algebra whose supersymmetry and kappa symmetry transformations are derived, rather than inferred. It is shown that under pullback, these transformations are of the form expected for the D-brane U (1) gauge field. We relate these results to manifestly supersymmetric approaches to construction of D-brane actions.

  5. Vacuum destabilization from Kaluza Klein modes in an inflating brane

    NASA Astrophysics Data System (ADS)

    Pujolàs, Oriol; Sasaki, Misao

    2005-09-01

    We discuss the effects from the Kaluza Klein modes in the brane world scenario when an interaction between bulk and brane fields is included. We focus on the bulk inflaton model, where a bulk field Ψ drives inflation in an almost AdS5 bulk bounded by an inflating brane. We couple Ψ to a brane scalar field phiv representing matter on the brane. The bulk field Ψ is assumed to have a light mode, whose mass depends on the expectation value of phiv. The KK modes form a continuum with masses m>3H/2, where H is the Hubble constant. To estimate their effects, we integrate them out and obtain the 1-loop effective potential Veff(phiv). With no tuning of the parameters of the model, the vacuum becomes (meta)stable—Veff(phiv) develops a true vacuum at \\varphi \

  6. Starobinsky-like inflation in dilaton-brane cosmology

    NASA Astrophysics Data System (ADS)

    Ellis, John; Mavromatos, Nick E.; Nanopoulos, Dimitri V.

    2014-05-01

    We discuss how Starobinsky-like inflation may emerge from dilaton dynamics in brane cosmology scenarios based on string theory, in which our universe is represented as a three-brane. The effective potential may acquire a constant term from a density of effectively point-like non-pertubative defects on the brane. Higher-genus corrections generate corrections to the effective potential that are exponentially damped at large field values, as in the Starobinsky model, but at a faster rate, leading to a smaller prediction for the tensor-to-scalar perturbation ratio r. This may be compensated partially by logarithmic deformations on the world-sheet due to recoil of the defects due to scattering by string matter on the brane, which tend to enhance the tensor-to-scalar ratio. Quantum fluctuations of the ensemble of D-brane defects during the inflationary period may also enhance the tensor-to-scalar ratio.

  7. Naked shell singularities on the brane

    SciTech Connect

    Seahra, Sanjeev S.

    2005-04-15

    By utilizing nonstandard slicings of 5-dimensional Schwarzschild and Schwarzschild-AdS manifolds based on isotropic coordinates, we generate static and spherically-symmetric braneworld spacetimes containing shell-like naked null singularities. For planar slicings, we find that the brane-matter sourcing the solution is a perfect fluid with an exotic equation of state and a pressure singularity where the brane crosses the bulk horizon. From a relativistic point of view, such a singularity is required to maintain matter infinitesimally above the surface of a black hole. From the point of view of the AdS/CFT conjecture, the singular horizon can be seen as one possible quantum correction to a classical black hole geometry. Various generalizations of planar slicings are also considered for a Ricci-flat bulk, and we find that singular horizons and exotic matter distributions are common features.

  8. Comments on D-brane dynamics near NS5-branes

    NASA Astrophysics Data System (ADS)

    Sahakyan, David A.

    2004-10-01

    We study the properties of a D-brane in the presence of k NS5 branes. The Dirac-Born-Infeld action describing the dynamics of this D-brane is very similar to that of a non-BPS D-brane in ten dimensions. As the D-brane approaches the fivebranes, its equation of state approaches that of a pressureless fluid. In non-BPS D-brane case this is considered as an evidence for the decay of the D-brane into ``tachyon matter''. We show that in our case similar behavior is the consequence of the motion of the D-brane. In particular in the rest frame of the moving D-brane the equation of state is that of a usual D-brane, for which the pressure is equal to the energy density. We also compute the total cross-section for the decay of the D-brane into closed string modes and show that the emitted energy has a power like divergence for D0, D1 and D2 branes, while converges for higher dimensional D-branes. We also speculate on the possibility that the infalling D-brane describes a decaying defect in six dimensional Little String Theory.

  9. Branes as BIons

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.

    1999-05-01

    A BIon may be defined as a finite energy solution of a nonlinear field theory with distributional sources. In contrast, a soliton is usually defined to have no sources. I show how harmonic coordinates map the exteriors of the topologically and causally non-trivial spacetimes of extreme p-branes to BIonic solutions of the Einstein equations in a topologically trivial spacetime in which the combined gravitational and matter energy-momentum is located on distributional sources. As a consequence the tension of BPS p-branes is classically unrenormalized. The result holds equally for spacetimes with singularities and for those, like the M-5-brane, which are everywhere singularity free.

  10. The Kasner brane

    NASA Astrophysics Data System (ADS)

    Roberts, Mark D.

    2015-10-01

    Solutions are found to field equations constructed from the Pauli, Bach and Gauss-Bonnet quadratic tensors to the Kasner and Kasner brane spacetimes in up to five dimensions. A double Kasner space is shown to have a vacuum solution. Brane solutions in which the bulk components of the Einstein tensor vanish are also looked at and for four-branes a solution similar to radiation Robertson-Walker spacetime is found. Matter trapping of a test scalar field and a test perfect fluid are investigated using energy conditions.

  11. Quantum effects in topological and Schwarzschild de Sitter brane: Aspects of torsion on $(D\\!{\\bar D})_4$-brane

    NASA Astrophysics Data System (ADS)

    Kapoor, Richa; Kar, Supriya; Singh, Deobrat

    2015-12-01

    We investigate an effective torsion curvature in a second-order formalism underlying a two-form world-volume dynamics in a D5-brane. In particular, we consider the two form in presence of a background (open string) metric in a U(1) gauge theory. Interestingly the formalism may be viewed via a noncoincident pair of (D{\\bar D})5-brane with a global Nereu-Schwarz (NS) two form on an anti-brane and a local two form on a brane. The energy-momentum tensor is computed in the six-dimensional (6D) conformal field theory (CFT). It is shown to source a metric fluctuation on a vacuum created pair of (D{\\bar D})4-brane at a cosmological horizon by the two-form quanta in the gauge theory. The emergent gravity scenario is shown to describe a low-energy (perturbative) string vacuum in 6D with a nonperturbative (NP) quantum correction by a lower (p < 5) dimensional Dp-brane or an anti-brane in the formalism. A closed string exchange between a pair of (D{\\bar D})4-brane, underlying a closed/open string duality, is argued to describe the Einstein vacuum in a low-energy limit. We obtain topological de Sitter (TdS) and Schwarzschild brane universe in six dimensions. The brane/anti-brane geometries are analyzed to explore some of their characteristic and thermal behaviors in presence of the quantum effects. They reveal an underlying nine-dimensional type IIA and IIB superstring theories on S1.

  12. Documenting the Diaspora: Historian Couple Investigate Central Africa's Place in World History, Rooting Black Studies in an International Context

    ERIC Educational Resources Information Center

    Roach, Ronald

    2004-01-01

    At a time when Black studies programs at American colleges and universities are placing increasing emphasis on the impact of Black migrations and movements throughout the world, scholars such as Drs. John Thornton and Linda Heywood, husband and wife historians, are gaining prominence in the discipline due to the shilling focus. Scholars like this…

  13. Bouncing and Colliding Branes

    SciTech Connect

    Lehners, Jean-Luc

    2007-11-20

    In a braneworld description of our universe, we must allow for the possibility of having dynamical branes around the time of the big bang. Some properties of such domain walls in motion are discussed here, for example the ability of negative-tension domain walls to bounce off spacetime singularities and the consequences for cosmological perturbations. In this context, we will also review a colliding branes solution of heterotic M-theory that has been proposed as a model for early universe cosmology.

  14. Moduli stabilization, large-volume dS minimum without D3¯-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi Yau's

    NASA Astrophysics Data System (ADS)

    Misra, Aalok; Shukla, Pramod

    2008-08-01

    We consider two sets of issues in this paper. The first has to do with moduli stabilization, existence of "area codes" [A. Giryavets, New attractors and area codes, JHEP 0603 (2006) 020, hep-th/0511215] and the possibility of getting a non-supersymmetric dS minimum without the addition of D3¯-branes as in KKLT for type II flux compactifications. The second has to do with the "inverse problem" [K. Saraikin, C. Vafa, Non-supersymmetric black holes and topological strings, hep-th/0703214] and "fake superpotentials" [A. Ceresole, G. Dall'Agata, Flow equations for non-BPS extremal black holes, JHEP 0703 (2007) 110, hep-th/0702088] for extremal (non-)supersymmetric black holes in type II compactifications. We use (orientifold of) a "Swiss cheese" Calabi-Yau [J.P. Conlon, F. Quevedo, K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 0508 (2005) 007, hep-th/0505076] expressed as a degree-18 hypersurface in WCP[1,1,1,6,9] in the "large-volume-scenario" limit [V. Balasubramanian, P. Berglund, J.P. Conlon, F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 0503 (2005) 007, hep-th/0502058]. The main result of our paper is that we show that by including non-perturbative α and instanton corrections in the Kähler potential and superpotential [T.W. Grimm, Non-perturbative corrections and modularity in N=1 type IIB compactifications, arXiv: 0705.3253 [hep-th

  15. Constraints on the effective fluid theory of stationary branes

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Harmark, Troels

    2014-10-01

    We develop further the effective fluid theory of stationary branes. This formalism applies to stationary blackfolds as well as to other equilibrium brane systems at finite temperature. The effective theory is described by a Lagrangian containing the information about the elastic dynamics of the brane embedding as well as the hydrodynamics of the effective fluid living on the brane. The Lagrangian is corrected order-by-order in a derivative expansion, where we take into account the dipole moment of the brane which encompasses finite-thickness corrections, including transverse spin. We describe how to extract the thermodynamics from the Lagrangian and we obtain constraints on the higher-derivative terms with one and two derivatives. These constraints follow by comparing the brane thermodynamics with the conserved currents associated with background Killing vector fields. In particular, we fix uniquely the one- and two-derivative terms describing the coupling of the transverse spin to the background space-time. Finally, we apply our formalism to two blackfold examples, the black tori and charged black rings and compare the latter to a numerically generated solution.

  16. Gauge groups from brane-anti-brane systems at angles

    NASA Astrophysics Data System (ADS)

    Vancea, I. V.

    2001-04-01

    We discuss a system formed by two pairs of brane-anti-brane that form an arbitrary angle in a plane. We identify the gauge groups from this system which presumably could be used to construct gauge theories...

  17. Non-perturbative effects on a fractional D3-brane

    NASA Astrophysics Data System (ADS)

    Ferretti, Gabriele; Petersson, Christoffer

    2009-03-01

    In this note we study the Script N = 1 abelian gauge theory on the world volume of a single fractional D3-brane. In the limit where gravitational interactions are not completely decoupled we find that a superpotential and a fermionic bilinear condensate are generated by a D-brane instanton effect. A related situation arises for an isolated cycle invariant under an orientifold projection, even in the absence of any gauge theory brane. Moreover, in presence of supersymmetry breaking background fluxes, such instanton configurations induce new couplings in the 4-dimensional effective action, including non-perturbative contributions to the cosmological constant and non-supersymmetric mass terms.

  18. Spherically symmetric thick branes cosmological evolution

    NASA Astrophysics Data System (ADS)

    Bernardini, A. E.; Cavalcanti, R. T.; da Rocha, Roldão

    2015-01-01

    Spherically symmetric time-dependent solutions for the 5D system of a scalar field canonically coupled to gravity are obtained and identified as an extension of recent results obtained by Ahmed et al. (JHEP 1404:061. arXiv:1312.3576 [hep-th], 2014). The corresponding cosmology of models with regularized branes generated by such a 5D scalar field scenario is also investigated. It has been shown that the anisotropic evolution of the warp factor and consequently the Hubble like parameter are both driven by the radial coordinate on the brane, which leads to an emergent thick brane-world scenario with spherically symmetric time dependent warp factor. Meanwhile, the separability of variables depending on fifth dimension, , which is exhibited by the equations of motion, allows one to recover the extra dimensional profiles obtained in Ahmed et al. (2014), namely the extra dimensional part of the scale (warp) factor and the scalar field dependence on . Therefore, our results are mainly concerned with the time dependence of a spherically symmetric warp factor. Besides evincing possibilities for obtaining asymmetric stable brane-world scenarios, the extra dimensional profiles here obtained can also be reduced to those ones investigated in Ahmed et al. (2014).

  19. Perturbative dynamics of D-branes and strings

    NASA Astrophysics Data System (ADS)

    Hashimoto, Akikazu

    1997-09-01

    We investigate the physics of D-branes in the framework of perturbation theory. We begin by analyzing the prototype process of closed strings scattering off of a flat D-brane in ten dimensional type II theory. Such a process amounts to probing D-branes using strings which can be used to show that characteristic length scale of the D-branes as seen by stringes is of order /sqrt[/alpha/sp/prime]. Taking advantage of the formal relation at the level of string world sheet, we compute other physical processes corresponding to interactions of the internal degrees of freedom and the absorption/Hawking emission of closed strings by D- branes. These methods are extended to configurations containing intersecting D-branes where open strings with ND boundary conditions appear in the spectrum. We also discuss global issues which arise upon compactification of spacetime. Since D-branes are extended objects, compactification gives rise to new states corresponding to multiply wrapped configurations. When a D-brane winds multiply around a circle, perturbative states carrying fractional momentum appear in the spectrum. We explain the origin of such a fractional quantization from both the low-energy effective space time and the string world sheet points of view. We also describe the correspondence between string and field theory descriptions of branes winding diagonally or intersecting on a torus. In some cases, we show that the full Born-Infeld action is required to make exact correspondence with string theory, even in the field theory limit.

  20. Brane webs and random processes

    NASA Astrophysics Data System (ADS)

    Iqbal, Amer; Qureshi, Babar A.; Shabbir, Khurram; Shehper, Muhammad A.

    2015-11-01

    We study (p, q) 5-brane webs dual to certain N M5-brane configurations and show that the partition function of these brane webs gives rise to cylindric Schur process with period N. This generalizes the previously studied case of period 1. We also show that open string amplitudes corresponding to these brane webs are captured by the generating function of cylindric plane partitions with profile determined by the boundary conditions imposed on the open string amplitudes.

  1. Asymmetric Wormholes via Electrically Charged Lightlike Branes

    SciTech Connect

    Guendelman, E.; Kaganovich, A.; Nissimov, E.; Pacheva, S.

    2010-06-17

    We consider a self-consistent Einstein-Maxwell-Kalb-Ramond system in the bulk D = 4 space-time interacting with a variable-tension electrically charged lightlike brane. The latter serves both as a material and charge source for gravity and electromagnetism, as well as it dynamically generates a bulk space varying cosmological constant. We find an asymmetric wormhole solution describing two 'universes' with different spherically symmetric black-hole-type geometries connected through a 'throat' occupied by the lightlike brane. The electrically neutral 'left universe' comprises the exterior region of Schwarzschild-de-Sitter (or pure Schwarzschild) space-time above the inner(Schwarzschild-type) horizon, whereas the electrically charged 'right universe' consists of the exterior Reissner-Nordstroem (or Reissner-Nordstroem-de-Sitter) black hole region beyond the outer Reissner-Nordstroem horizon. All physical parameters of the wormhole are uniquely determined by two free parameters - the electric charge and Kalb-Ramond coupling of the lightlike brane.

  2. Is it Really a Man's World? Black Men in Science, Technology, Engineering, and Mathematics at Historically Black Colleges and Universities

    ERIC Educational Resources Information Center

    Lundy-Wagner, Valerie C.

    2013-01-01

    Efforts to improve the Black science, technology, engineering and mathematics (STEM) pipeline have focused on historically Black colleges and universities (HBCUs); however, this work generally fails to acknowledge men. This article characterized Black male receipts of bachelor's degrees from HBCUs in STEM fields between 1981 and 2009 using a…

  3. Relativistic elasticity of stationary fluid branes

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Obers, Niels A.

    2013-02-01

    Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.

  4. Transport properties of spacetime-filling branes

    NASA Astrophysics Data System (ADS)

    Tarrío, Javier

    2014-04-01

    A model consisting of (d+1)-dimensional gravity coupled to spacetime filling charged branes is used to study the effects of backreaction. The charged black holes arising from this simple model reflect the non-linearity of the gauge field and are thermodynamically stable. By analysing fluctuations of the system we corroborate that at low values of the temperature (or large chemical potential) backreaction effects from the branes are dominant. We also provide a generalisation of the Iqbal and Liu strategy to calculate the DC conductivity, in which a mass term for the gauge field fluctuation is included. This mass term gives the value of the residue of the pole at zero frequency in the imaginary part of the AC conductivity, as well as the running of the DC conductivity with the bulk radius.

  5. Counting supersymmetric branes

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, Axel

    2011-10-01

    Maximal supergravity solutions are revisited and classified, with particular emphasis on objects of co-dimension at most two. This class of solutions includes branes whose tension scales with xxxx. We present a group theory derivation of the counting of these objects based on the corresponding tensor hierarchies derived from E 11 and discrete T- and U-duality transformations. This provides a rationale for the wrapping rules that were recently discussed for σ ≤ 3 in the literature and extends them. Explicit supergravity solutions that give rise to co-dimension two branes are constructed and analysed.

  6. Exotic brane junctions from F-theory

    NASA Astrophysics Data System (ADS)

    Kimura, Tetsuji

    2016-05-01

    Applying string dualities to F-theory, we obtain various [ p, q]-branes whose constituents are standard branes of codimension two and exotic branes. We construct junctions of the exotic five-branes and their Hanany-Witten transitions associated with those in F-theory. In this procedure, we understand the monodromy of the single 5 2 2 -brane. We also find the objects which are sensitive to the branch cut of the 5 2 2 -brane. Considering the web of branes in the presence of multiple exotic five-branes analogous to the web of five-branes with multiple seven-branes, we obtain novel brane constructions for SU(2) gauge theories with n flavors and their superconformal limit with enhanced E n+1 symmetry in five, four, and three dimensions. Hence, adapting the techniques of the seven-branes to the exotic branes, we will be able to construct F-theories in diverse dimensions.

  7. Effect of bulk Lorentz violation on anisotropic brane cosmologies

    SciTech Connect

    Heydari-Fard, Malihe

    2012-04-01

    The effect of Lorentz invariance violation in cosmology has attracted a considerable amount of attention. By using a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane, we extend the notation of Lorentz violation in four dimensions Jacobson to a five-dimensional brane-world. We obtain the general solution of the field equations in an exact parametric form for Bianchi type I space-time, with perfect fluid as a matter source. We show that the brane universe evolves from an isotropic/anisotropic state to an isotropic de Sitter inflationary phase at late time. The early time behavior of anisotropic brane universe is largely dependent on the Lorentz violating parameters β{sub i},i = 1,2,3 and the equation of state of the matter, while its late time behavior is independent of these parameters.

  8. Inflating baby-Skyrme branes in six dimensions

    SciTech Connect

    Brihaye, Yves; Delsate, Terence; Kodama, Yuta; Sawado, Nobuyuki

    2010-11-15

    We consider a six-dimensional brane world model, where the brane is described by a localized solution to the baby-Skyrme model extending in the extra dimensions. The branes have a cosmological constant modeled by inflating four-dimensional slices, and we further consider a bulk cosmological constant. We construct solutions numerically and present evidence that the solutions cease to exist for large values of the brane cosmological constant in some particular case. Then we study the stability of the model by considering perturbation of the gravitational part (resp. baby Skyrmion) with fixed matter fields (resp. gravitational background). Our results indicate that the perturbation equations do not admit localized solutions for certain type of perturbation. The stability analysis can be alternatively seen as leading to a particle spectrum; we give mass estimations for the baby-Skyrme perturbation and for the graviton.

  9. Black ring deconstruction

    SciTech Connect

    Gimon, Eric; Gimon, Eric G.; Levi, Thomas S.

    2007-06-22

    We present a sample microstate for a black ring in four and five dimensional language. The microstate consists of a black string microstate with an additional D6-brane. We show that with an appropriate choice of parameters the piece involving the black string microstate falls down a long AdS throat, whose M-theory lift is AdS_3 x S2. We wrap a spinning dipole M2-brane on the S2 in the probe approximation. In IIA, this corresponds to a dielectric D2-brane carrying only D0-charge. We conjecture this is the firstapproximation to a cloud of D0-branes blowing up due to their non-abelian degrees of freedom and the Myers effect.

  10. Couplings between Chern-Simons gravities and 2p-branes

    SciTech Connect

    Miskovic, Olivera; Zanelli, Jorge

    2009-08-15

    The interaction between Chern-Simons (CS) theories and localized external sources (2p-branes) is analyzed. This interaction generalizes the minimal coupling between a point charge (0-brane) and a gauge connection. The external currents that define the 2p branes are covariantly constant (D-2p-1)-forms coupled to (2p-1) CS forms. The general expression for the sources--charged with respect to the corresponding gauge algebra--is presented, focusing on two special cases: 0-branes and (D-3)-branes. In any dimension, 0-branes are constructed as topological defects produced by a surface deficit of (D-2)-sphere in anti-de Sitter space, and they are not constant curvature spaces for D>3. They correspond to dimensionally continued black holes with negative mass. On the other hand, in the case of CS (super) gravities, the (D-3)-branes are naked conical singularities (topological defects) obtained by identification of points with a Killing vector. In 2+1 dimensions, extremal spinning branes of this type are Bogomol'nyi-Prasad-Sommerfield states. Stable (D-3)-branes are shown to exist also in higher dimensions, as well. Classical field equations are also discussed, and in the presence of sources there is a large number of inequivalent and disconnected sectors in solution space.

  11. A new approach to the classical and quantum dynamics of branes

    NASA Astrophysics Data System (ADS)

    Pavšič, Matej

    2016-07-01

    It is shown that the Dirac-Nambu-Goto brane can be described as a point particle in an infinite-dimensional brane space with a particular metric. This suggests a generalization to brane spaces with arbitrary metric, including the “flat” metric. Then quantization of such a system is straightforward: it is just like quantization of a bunch of noninteracting particles. This leads us to a system of a continuous set of scalar fields. For a particular choice of the metric in the space of fields we find that the classical Dirac-Nambu-Goto brane theory arises as an effective theory of such an underlying quantum field theory. Quantization of branes is important for the brane world scenarios, and thus for “quantum gravity.”

  12. We Dream a World: The 2025 Vision for Black Men and Boys

    ERIC Educational Resources Information Center

    Tsoi-A-Fatt, Rhonda

    2010-01-01

    Black men are vital and important members of American society, especially in their communities. Black families suffer a great loss when Black men are unable to thrive. Throughout modern American history, Black men have struggled to gain their footing and fulfill their destinies as strong, caring and productive members of society and their…

  13. Mirage effects on the brane

    SciTech Connect

    Apostolopoulos, P.S.; Brouzakis, N.; Saridakis, E.N.; Tetradis, N.

    2005-08-15

    We discuss features of the brane cosmological evolution that arise through the presence of matter in the bulk. As these deviations from the conventional evolution are not associated with some observable matter component on the brane, we characterize them as mirage effects. We review an example of expansion that can be attributed to mirage nonrelativistic matter (mirage cold dark matter) on the brane. The real source of the evolution is an anisotropic bulk fluid with negative pressure along the extra dimension. We also study the general problem of exchange of real nonrelativistic matter between the brane and the bulk, and discuss the related mirage effects. Finally, we derive the brane cosmological evolution within a bulk that contains a global monopole (hedgehog) configuration. This background induces a mirage curvature term in the effective Friedmann equation, which can cause a brane universe with positive spatial curvature to expand forever.

  14. Greybody factors for Myers–Perry black holes

    SciTech Connect

    Boonserm, Petarpa; Chatrabhuti, Auttakit Ngampitipan, Tritos; Visser, Matt

    2014-11-15

    The Myers–Perry black holes are higher-dimensional generalizations of the usual (3+1)-dimensional rotating Kerr black hole. They are of considerable interest in Kaluza–Klein models, specifically within the context of brane-world versions thereof. In the present article, we shall consider the greybody factors associated with scalar field excitations of the Myers–Perry spacetimes, and develop some rigorous bounds on these greybody factors. These bounds are of relevance for characterizing both the higher-dimensional Hawking radiation, and the super-radiance, that is expected for these spacetimes.

  15. Matrix flavor brane and dual Wilson line

    NASA Astrophysics Data System (ADS)

    Karch, Andreas; Sun, Sichun

    2014-03-01

    We study a novel non-Abelian matrix configuration of probe D-branes in AdS5. This configuration gives rise to a new D-brane phenomenon related to the known "Myers effect" in the context of holography. It is dual to a deformation of the field theory by a Wilson line threaded fermion bilinear. We study the two-point function of these short Wilson lines from both the non-Abelian Dirac-Born-Infeld action and a classical string world sheet calculation and identify the region where they agree. We also study a related configuration where the non-Abelian nature of the embedding functions is enhanced by a background flux as in the Myers effect.

  16. Dancing between Two Worlds: A Portrait of the Life of a Black Male Teacher in South Central LA

    ERIC Educational Resources Information Center

    Lynn, Marvin

    2006-01-01

    This article offers a portrait of a young black male teacher in an urban school in South Central Los Angeles. In the portrait, the words of the subject are intertwined with the thoughts and reactions of the researcher as a way in which to capture his life history narrative and offer his reading of the world. The article discusses the participant's…

  17. Space-time dimensionality from brane collisions

    NASA Astrophysics Data System (ADS)

    Nelson, William; Sakellariadou, Mairi

    2009-04-01

    Collisions and subsequent decays of higher dimensional branes leave behind three-dimensional branes and anti-branes, one of which could play the rôle of our universe. This process also leads to the production of one-dimensional branes and anti-branes, however their number is expected to be suppressed. Brane collisions may also lead to the formation of bound states of branes. Their existence does not alter this result, it just allows for the existence of one-dimensional branes captured within the three-dimensional ones.

  18. Brane annihilations during inflation

    SciTech Connect

    Battefeld, Diana; Battefeld, Thorsten; Firouzjahi, Hassan; Khosravi, Nima E-mail: tbattefe@princeton.edu E-mail: nima@ipm.ir

    2010-07-01

    We investigate brane inflation driven by two stacks of mobile branes in a throat. The stack closest to the bottom of the throat annihilates first with antibranes, resulting in particle production and a change of the equation of state parameter w. We calculate analytically some observable signatures of the collision; related decays are common in multi-field inflation, providing the motivation for this case study. The discontinuity in w enters the matching conditions relating perturbations in the remaining degree of freedom before and after the collision, affecting the power-spectrum of curvature perturbations. We find an oscillatory modulation of the power-spectrum for scales within the horizon at the time of the collision, and a slightly redder spectrum on super-horizon scales. We comment on implications for staggered inflation.

  19. Fractional M2-branes

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Bergman, Oren; Jafferis, Daniel Louis

    2008-11-01

    We consider two generalizations of the Script N = 6 superconformal Chern-Simons-matter theories with gauge group U(N) × U(N). The first generalization is to Script N = 6 superconformal U(M) × U(N) theories, and the second to Script N = 5 superconformal O(2M) × USp(2N) and O(2M+1) × USp(2N) theories. These theories are conjectured to describe M2-branes probing C4/Zk in the unitary case, and C4/{\\widehat{D}}k in the orthogonal/symplectic case, together with a discrete flux, which can be interpreted as |M-N| fractional M2-branes localized at the orbifold singularity. The classical theories with these gauge groups have been constructed before; in this paper we focus on some quantum aspects of these theories, and on a detailed description of their M theory and type IIA string theory duals.

  20. On D-brane anti D-brane effective actions and their corrections to all orders in alpha-prime

    NASA Astrophysics Data System (ADS)

    Hatefi, Ehsan

    2013-09-01

    Based on a four point function, the S-matrix elements at disk level of the scattering amplitude of one closed string Ramond-Ramond field (C) and two tachyons and one scalar field, we find out new couplings in brane anti brane effective actions for p = n, p+2 = n cases. Using the infinite corrections of the vertex of one RR, one gauge and one scalar field and applying the correct expansion, it is investigated in detail how we produce the infinite gauge poles of the amplitude for p = n case. By discovering new higher derivative corrections of two tachyon-two scalar couplings in brane anti brane systems to all orders in α', we also obtain the infinite scalar poles in (t'+s'+u)-channel in field theory. Working with the complete form of the amplitude with the closed form of the expansion and comparing all the infinite contact terms of this amplitude, we derive several new Wess-Zumino couplings with all their infinite higher derivative corrections in the world volume of brane anti brane systems. In particular, in producing all the infinite scalar poles of < VCVphiVTVT > , one has to consider the fact that scalar's vertex operator in (-1)-picture must carry the internal σ3 Chan-Paton matrix. The symmetric trace effective action has a non-zero coupling between Dphi(1)i and Dphi(2)i while this coupling does not exist in ordinary trace effective action.

  1. Intersecting nonextreme p-branes and linear dilaton background

    SciTech Connect

    Chen, C.-M.; Gal'tsov, Dmitri V.; Ohta, Nobuyoshi

    2005-08-15

    We construct the general static solution to the supergravity action containing gravity, the dilaton and a set of antisymmetric forms describing the intersecting branes delocalized in the relative transverse dimensions. The solution is obtained by reducing the system to a set of separate Liouville equations (the intersection rules implying the separability); it contains the maximal number of free parameters corresponding to the rank of the differential equations. Imposing the requirement of the absence of naked singularities, we show that the general configurations are restricted to two and only two classes: the usual asymptotically flat intersecting branes, and the intersecting branes some of which are asymptotically flat and some approach the linear dilaton background at infinity. In both cases the configurations are black. These are supposed to be relevant for the description of the thermal phase of the QFT's in the corresponding Domain-Wall/QFT duality.

  2. Discrete torsion, de Sitter tunneling vacua and AdS brane: U(1) gauge theory on D 4-brane and an effective curvature

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek K.; Pandey, K. Priyabrat; Singh, Sunita; Kar, Supriya

    2013-05-01

    The U(1) gauge dynamics on a D 4-brane is revisited, with a two form, to construct an effective curvature theory in a second order formalism. We exploit the local degrees in a two form, and modify its dynamics in a gauge invariant way, to incorporate a non-perturbative metric fluctuation in an effective D 4-brane. Interestingly, the near horizon D 4-brane is shown to describe an asymptotic Anti de Sitter (AdS) in a semi-classical regime. Using Weyl scaling(s), we obtain the emergent rotating geometries leading to primordial de Sitter (dS) and AdS vacua in a quantum regime. Under a discrete transformation, we re-arrange the mixed dS patches to describe a Schwazschild-like dS (SdS) and a topological-like dS (TdS) black holes. We analyze SdS vacuum for Hawking radiations to arrive at Nariai geometry, where a discrete torsion forms a condensate. We perform thermal analysis to identify Nariai vacuum with a TdS. Investigation reveals an AdS patch within a thermal dS brane, which may provide a clue to unfold dS/CFT. In addition, the role of dark energy, sourced by a discrete torsion, in the dS vacua is investigated using Painleve geometries. It is argued that a D-instanton pair is created by a discrete torsion, with a Big Bang/Crunch, at the past horizon in a pure dS. Nucleation, of brane/anti-brane pair(s), is qualitatively analyzed to construct an effective space-time on a D 4-brane and its anti brane. Analysis re-assures the significant role played by a non-zero mode, of NS-NS two form, to generalize the notion of branes within a brane.

  3. The Black Child, the World of Sports, and the Public Library: A Personal Observation.

    ERIC Educational Resources Information Center

    Williams, Benjamin R.

    This paper argues that the mass media causes black youths to indulge in the myth that success in school athletics is the key to fame and financial security, and that the public library offers blacks many resources which can be used to supplement their education. It is also held that libraries have historically been inhospitable to blacks and that…

  4. Hydrodynamics of R-charged D1-branes

    NASA Astrophysics Data System (ADS)

    David, Justin R.; Mahato, Manavendra; Thakur, Somyadip; Wadia, Spenta R.

    2011-01-01

    We study the hydrodynamic properties of strongly coupled SU( N) Yang-Mills theory of the D1-brane at finite temperature and at a non-zero density of R-charge in the framework of gauge/gravity duality. The gravity dual description involves a charged black hole solution of an Einstein-Maxwell-dilaton system in 3 dimensions which is obtained by a consistent truncation of the spinning D1-brane in 10 dimensions. We evaluate thermal and electrical conductivity as well as the bulk viscosity as a function of the chemical potential conjugate to the R-charges of the D1-brane. We show that the ratio of bulk viscosity to entropy density is independent of the chemical potential and is equal to 1/ π4. The thermal conductivity and bulk viscosity obey a relationship similar to the Wiedemann-Franz law. We show that at the boundary of thermodynamic stability, the charge diffusion mode becomes unstable and the transport coefficients exhibit critical behaviour. Our method for evaluating the transport coefficients relies on expressing the second order differential equations in terms of a first order equation which dictates the radial evolution of the transport coefficient. The radial evolution equations can be solved exactly for the transport coefficients of our interest. We observe that transport coefficients of the D1-brane theory are related to that of the M2-brane by an overall proportionality constant which sets the dimensions.

  5. Quasinormal modes and a new instability of Einstein-Gauss-Bonnet black holes in the de Sitter world

    NASA Astrophysics Data System (ADS)

    Cuyubamba, M. A.; Konoplya, R. A.; Zhidenko, A.

    2016-05-01

    Analysis of time-domain profiles for gravitational perturbations shows that Gauss-Bonnet black holes in a de Sitter world possess a new kind of dynamical instability which does not take place for asymptotically flat Einstein-Gauss-Bonnet black holes. The new instability is in the gravitational perturbations of the scalar type and is due to the nonvanishing cosmological constant. Analysis of the quasinormal spectrum in the stability sector shows that although the scalar type of gravitational perturbations alone does not obey Hod's conjectural bound, connecting the damping rate and the Hawking temperature, the vector and tensor types (and thereby the gravitational spectrum as a whole) do obey it.

  6. Soliton models for thick branes

    NASA Astrophysics Data System (ADS)

    Peyravi, Marzieh; Riazi, Nematollah; Lobo, Francisco S. N.

    2016-05-01

    In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ 4 and φ 6 scalar fields, which have broken Z2 symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w^2 term in the expansion of the potential for the resulting Schrödinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ ^4 brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ ^6 branes.

  7. Brane inflation and defect formation.

    PubMed

    Davis, Anne-Christine; Brax, Philippe; van de Bruck, Carsten

    2008-08-28

    Brane inflation and the production of topological defects at the end of the inflationary phase are discussed. After a description of the inflationary set-up, we discuss the properties of the cosmic strings produced at the end of inflation. Specific examples of brane inflation are described, such as D-D , D3/D7 and modular inflations. PMID:18534933

  8. Composite diholes and intersecting brane-antibrane configurations in string/M-theory

    NASA Astrophysics Data System (ADS)

    Chattaraputi, Auttakit; Emparan, Roberto; Taormina, Anne

    2000-05-01

    We construct new configurations of oppositely charged, static black hole pairs (diholes) in four dimensions which are solutions of low energy string/M-theory. The black holes are extremal and have four different charges. We also consider diholes in other theories with an arbitrary number of abelian gauge fields and scalars, where the black holes can be regarded as composite objects. We uplift the four-charge solutions to higher dimensions in order to describe intersecting brane-antibrane systems in string and M-theory. The properties of the strings and membranes stretched in between these branes and antibranes are studied. Several other generic features of these solutions are discussed.

  9. AdS5 solutions from M5-branes on Riemann surface and D6-branes sources

    NASA Astrophysics Data System (ADS)

    Bah, Ibrahima

    2015-09-01

    We describe the gravity duals of four-dimensional N=1 superconformal field theories obtained by wrapping M5-branes on a punctured Riemann surface. The internal geometry, normal to the AdS 5 factor, generically preserves two U(1)s, with generators ( J +, J -), that are fibered over the Riemann surface. The metric is governed by a single potential that satisfies a version of the Monge-Ampère equation. The spectrum of N=1 punctures is given by the set of supersymmetric sources of the potential that are localized on the Riemann surface and lead to regular metrics near a puncture. We use this system to study a class of punctures where the geometry near the sources corresponds to M-theory description of D6-branes. These carry a natural ( p, q) label associated to the circle dual to the killing vector pJ + + qJ - which shrinks near the source. In the generic case the world volume of the D6-branes is AdS 5 × S 2 and they locally preserve N=2 supersymmetry. When p = - q, the shrinking circle is dual to a flavor U(1). The metric in this case is non-degenerate only when there are co-dimension one sources obtained by smearing M5-branes that wrap the AdS 5 factor and the circle dual the superconformal R-symmetry. The D6-branes are extended along the AdS 5 and on cups that end on the co-dimension one branes. In the special case when the shrinking circle is dual to the R-symmetry, the D6-branes are extended along the AdS 5 and wrap an auxiliary Riemann surface with an arbitrary genus. When the Riemann surface is compact with constant curvature, the system is governed by a Monge-Ampère equation.

  10. Instability of higher-dimensional charged black holes in the de sitter world.

    PubMed

    Konoplya, R A; Zhidenko, A

    2009-10-16

    We have shown that higher-dimensional Reissner-Nordström-de Sitter black holes are gravitationally unstable for large values of the electric charge and cosmological constant in D>or=7 space-time dimensions. We have found the shape of the slightly perturbed black hole at the threshold point of instability. PMID:19905685

  11. Quantum Kerr(Newman) degenerate stringy vacua in 4D on a non-BPS brane

    NASA Astrophysics Data System (ADS)

    Singh, Sunita; Pandey, K. Priyabrat; Singh, Abhishek K.; Kar, Supriya

    2014-11-01

    We investigate some of the quantum gravity effects on a vacuum created pair of (D{\\bar D})3-brane by a nonlinear U(1) gauge theory on a D4-brane. In particular, we obtain a four-dimensional quantum Kerr-(Newman) black hole in an effective torsion curvature formalism sourced by a two form dynamics in the worldvolume of a D4-brane on S1. Interestingly, the event horizon is found to be independent of a nonlinear electric charge and the 4D quantum black hole is shown to describe degenerate vacua in string theory. We show that the quantum Kerr brane universe possesses its origin in a de Sitter vacuum. In a nearly S2-symmetric limit, the Kerr geometries may seen to describe a Schwarzschild and Reissner-Nordstrom quantum black holes. It is argued that a quantum Reissner-Nordstrom tunnels to a large class of degenerate Schwarzschild vacua. In a low energy limit, the nonlinear electric charge becomes significant at the expense of the degeneracies. In the limit, the quantum geometries may identify with the semiclassical black holes established in Einstein gravity. Analysis reveals that a quantum geometry on a vacuum created D3-brane universe may be described by a low energy perturbative string vacuum in presence of a nonperturbative quantum correction.

  12. On anisotropic black branes with Lifshitz scaling

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Dibakar

    2016-08-01

    In this paper, based on the method of scalar perturbations, we construct the anisotropic charged Lifshitz background perturbatively up to leading order in the anisotropy. We perform our analysis both in the extremal as well as in the non-extremal limit. Finally, we probe the so called superfluid phase of the boundary theory and explore the effects of anisotropy on the superconducting condensate.

  13. Quark-hadron phase transition in DGP brane gravity with bulk scalar field

    NASA Astrophysics Data System (ADS)

    Golanbari, T.; Mohammadi, A.; Ossoulian, Z.; Saaidi, K.

    2015-06-01

    A DGP brane-world framework is picked out to study quark-hadron phase transition problem. The model also includes a bulk scalar field in agreement with string theory prediction. The work is performed using two formalisms as: smooth crossover approach and first order approach, and the results are plotted for both branches of DGP model. General behavior of temperature is the same in these two approaches and it decrease with increasing time and expanding Universe. Phase transition occurs at about micro-second after the big bang. The results show that transition time depends on brane tension value in which larger brane tension comes to earlier transition time.

  14. On D-brane anti D-brane effective actions and their corrections to all orders in alpha-prime

    SciTech Connect

    Hatefi, Ehsan

    2013-09-01

    Based on a four point function, the S-matrix elements at disk level of the scattering amplitude of one closed string Ramond-Ramond field (C) and two tachyons and one scalar field, we find out new couplings in brane anti brane effective actions for p = n, p+2 = n cases. Using the infinite corrections of the vertex of one RR, one gauge and one scalar field and applying the correct expansion, it is investigated in detail how we produce the infinite gauge poles of the amplitude for p = n case. By discovering new higher derivative corrections of two tachyon-two scalar couplings in brane anti brane systems to all orders in α', we also obtain the infinite scalar poles in (t'+s'+u)-channel in field theory. Working with the complete form of the amplitude with the closed form of the expansion and comparing all the infinite contact terms of this amplitude, we derive several new Wess-Zumino couplings with all their infinite higher derivative corrections in the world volume of brane anti brane systems. In particular, in producing all the infinite scalar poles of < V{sub C}V{sub φ}V{sub T}V{sub T} > , one has to consider the fact that scalar's vertex operator in (-1)-picture must carry the internal σ{sub 3} Chan-Paton matrix. The symmetric trace effective action has a non-zero coupling between Dφ{sup (1)i} and Dφ{sup (2)}{sub i} while this coupling does not exist in ordinary trace effective action.

  15. Indians at Hampton Institute, 1877-1923. Blacks in the New World [Series].

    ERIC Educational Resources Information Center

    Lindsey, Donal F.

    The Hampton Institute near Williamsburg, Virginia, was founded during Reconstruction as a normal school for the industrial education of Blacks. In 1877, the school began a program to educate American Indians. Although only 1,388 Indian students attended the Institute during its history, it significantly influenced Indian policy and Indian…

  16. Black in a Blonde World: Race and Girls' Interpretations of the Feminine Ideal in Teen Magazines.

    ERIC Educational Resources Information Center

    Duke, Lisa

    2000-01-01

    Finds that Black adolescent girls were largely uninterested in teen magazines' beauty images because they conflict with African-American standards of attractiveness; that makeup and haircare products were seen as specifically intended for White girls, who consequently invest more authority in the magazines' counsel and images; and that White girls…

  17. Minimum length, extra dimensions, modified gravity and black hole remnants

    NASA Astrophysics Data System (ADS)

    Maziashvili, Michael

    2013-03-01

    We construct a Hilbert space representation of minimum-length deformed uncertainty relation in presence of extra dimensions. Following this construction, we study corrections to the gravitational potential (back reaction on gravity) with the use of correspondingly modified propagator in presence of two (spatial) extra dimensions. Interestingly enough, for r→0 the gravitational force approaches zero and the horizon for modified Schwarzschild-Tangherlini space-time disappears when the mass approaches quantum-gravity energy scale. This result points out to the existence of zero-temperature black hole remnants in ADD brane-world model.

  18. Extra Dimensions and ``Branes''

    NASA Astrophysics Data System (ADS)

    Sundrum, Raman

    2011-04-01

    We do not yet know the nature of fundamental physics above the weak scale, but we are about to probe it this decade. It may come in the form of a few new weakly-coupled particles, captured by ordinary Feynman diagrams in standard spacetime, or alternatively in the form of large ``towers'' of new elementary or composite states, requiring a different set of concepts and analytic tools. Extra spatial dimensions provide the simplest, but very rich, class of such possibilities. I will explain how extra-dimensions can provide an elegant and intuitive geometrization of subtle physics, in particular flowing from the powerful AdS/CFT correspondence. This geometrization allows one to ``view'' central issues ranging from electroweak, grand unified, strongly-coupled, flavor, supersymmetry, or collider physics, in terms of the overlap of extra-dimensional wavefunctions, the curvature (``warping'') of the higher dimensional spacetime, and ``branes'' (3-dimensional defects). I will illustrate the kind of physics and experimental signals that flow from the most plausible extra-dimensional scenarios.

  19. Minimal D = 7 supergravity and the supersymmetry of Arnold-Beltrami flux branes

    NASA Astrophysics Data System (ADS)

    Fré, P.; Grassi, P. A.; Ravera, L.; Trigiante, M.

    2016-06-01

    In this paper we study some properties of the newly found Arnold-Beltrami flux-brane solutions to the minimal D = 7 supergravity. To this end we first single out the appropriate Free Differential Algebra containing both a gauge 3-form B [3] and a gauge 2-form B [2]: then we present the complete rheonomic parametrization of all the generalized curvatures. This allows us to identify two-brane configurations with Arnold-Beltrami fluxes in the transverse space with exact solutions of supergravity and to analyze the Killing spinor equation in their background. We find that there is no preserved supersymmetry if there are no additional translational Killing vectors. Guided by this principle we explicitly construct Arnold-Beltrami flux two-branes that preserve 0, 1/8 and 1/4 of the original supersymmetry. Two-branes without fluxes are instead BPS states and preserve 1/2 supersymmetry. For each two-brane solution we carefully study its discrete symmetry that is always given by some appropriate crystallographic group Γ. Such symmetry groups Γ are transmitted to the D = 3 gauge theories on the brane world-volume that would occur in the gauge/gravity correspondence. Furthermore we illustrate the intriguing relation between gauge fluxes in two-brane solutions and hyperinstantons in D = 4 topological sigma-models.

  20. Fermion localization on thick branes

    SciTech Connect

    Melfo, Alejandra; Pantoja, Nelson; Tempo, Jose David

    2006-02-15

    We consider chiral fermion confinement in scalar thick branes, which are known to localize gravity, coupled through a Yukawa term. The conditions for the confinement and their behavior in the thin-wall limit are found for various different BPS branes, including double walls and branes interpolating between different AdS{sub 5} spacetimes. We show that only one massless chiral mode is localized in all these walls, whenever the wall thickness is keep finite. We also show that, independently of wall's thickness, chiral fermionic modes cannot be localized in dS{sub 4} walls embedded in a M{sub 5} spacetime. Finally, massive fermions in double wall spacetimes are also investigated. We find that, besides the massless chiral mode localization, these double walls support quasilocalized massive modes of both chiralities.

  1. Degenerate and critical Bloch branes

    SciTech Connect

    Souza Dutra, A. de; Amaro de Faria, A. C. Jr.; Hott, M.

    2008-08-15

    In the last few years a number of works reported the appearance of thick branes with internal structure, induced by the parameter which controls the interaction between two scalar fields coupled to gravity in (4,1) dimensions in warped space-time with one extra dimension. Here we show that one can implement the control over the brane thickness without needing to change the potential parameter. On the contrary, this is going to be done by means of the variation of a parameter associated with the domain wall degeneracy. We also report the existence of novel and qualitatively different solutions for a critical value of the degeneracy parameter, which could be called critical Bloch branes.

  2. Coupled inflation and brane gases

    SciTech Connect

    Biswas, Tirthabir; Brandenberger, Robert; Easson, Damien A.; Mazumdar, Anupam

    2005-04-15

    We study an effective four-dimensional theory with an action with two scalar fields minimally coupled to gravity, and with a matter action which couples to the two scalar fields via an overall field-dependent coefficient in the action. Such a theory could arise from a dimensional reduction of supergravity coupled to a gas of branes winding the compactified dimensions. We show the existence of solutions corresponding to power-law inflation. The graceful exit from inflation can be obtained by postulating the decay of the branes, as would occur if the branes are unstable in the vacuum and stabilized at high densities by plasma effects. This construction provides an avenue for connecting string gas cosmology and the late-time universe.

  3. D7-brane chaotic inflation

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Kraus, Sebastian C.; Witkowski, Lukas T.

    2014-10-01

    We analyze string-theoretic large-field inflation in the regime of spontaneously-broken supergravity with conventional moduli stabilization by fluxes and non-perturbative effects. The main ingredient is a shift-symmetric Kähler potential, supplemented by flux-induced shift symmetry breaking in the superpotential. The central technical observation is that all these features are present for D7-brane position moduli in Type IIB orientifolds, potentially allowing for a realization of the axion monodromy proposal in a string theory compactification. Furthermore, our model is explicit enough to address issues of control and moduli stabilization quantitatively. On the one hand, in the large complex structure regime the D7-brane position moduli inherit a shift symmetry from their mirror-dual Type IIA Wilson lines. On the other hand, the Type IIB flux superpotential generically breaks this shift symmetry and allows, by appealing to the large flux discretuum, to tune the relevant coefficients to be small. The shift-symmetric direction in D7-brane moduli space can then play the role of the inflaton: While the D7-brane circles a certain trajectory on the Calabi-Yau many times, the corresponding F-term energy density grows only very slowly, thanks to the above-mentioned tuning of the flux. To be successful our model requires that the dilaton, all complex structure moduli and all D7-brane moduli except the inflaton are fixed at leading order by fluxes. Then the large-field inflationary trajectory can be realized in a regime where Kähler, complex structure and other brane moduli are stabilized in a conventional manner, as we demonstrate using the example of the Large Volume Scenario.

  4. Vertex Operator Formulation of Scattering around Black-Hole

    NASA Astrophysics Data System (ADS)

    Park, I. Y.

    We propose a full-fledged open string framework that seems suited to study the black hole information paradox. We set up a configuration to compute the scattering amplitude of a IIB open string around a D5-brane. The D5-brane is situated at the origin of a transverse D3-brane. A string perturbation theory is employed where the geometry of the D5-brane is treated as a potential. We reason that the setup is capable of reconciling the unitary evolution of states and information loss that is measured by an observer on the D3 brane. With the configurations of these kinds, the information loss is an apparent phenomenon: it is just a manifestation of the fact that the D3-observer does not have access to the "hair" of the D5 black brane.

  5. Entropy of 4D extremal black holes

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.; Khuri, Ramzi R.; Myers, Robert C.

    1996-02-01

    We derive the Bekenstein-Hawking entropy formula for four-dimensional Reissner-Nordström extremal black holes in type II string theory. The derivation is performed in two separate (T-dual) weak coupling pictures. One uses a type IIB bound state problem of D5- and D1-branes, while the other uses a bound state problem of D0- and D4-branes with macroscopic fundamental type IIA strings. In both cases, the D-brane systems are also bound to a Kaluza-Klein monopole, which then yields the four-dimensional black hole at strong coupling.

  6. D-branes in Cosmological Backgrounds

    SciTech Connect

    Hikida, Yasuaki

    2005-12-02

    We investigate D-branes in cosmological models. In particular, we examine Misner space, which can be constructed as a Lorentzian orbifold. This space includes big crunch/big bang singularity and closed time-like curves. We compute annulas amplitudes for open strings on D0-brane and D1-brane and find imaginary part of the amplitudes. The imaginary parts are interpreted as the rate of open string pair creation on D0-brane and as the emission rate of closed strings from D1-brane. We also compute 2{yields}2 scattering amplitude of open strings and examine its divergence structure.

  7. Modeling multiple M2-branes

    SciTech Connect

    Bagger, Jonathan; Lambert, Neil

    2007-02-15

    We investigate the worldvolume theory that describes N coincident M2-branes ending on an M5-brane. We argue that the fields that describe the transverse spacetime coordinates take values in a nonassociative algebra. We postulate a set of supersymmetry transformations and find that they close into a novel gauge symmetry. We propose a three-dimensional N=2 supersymmetric action to describe the truncation of the full theory to the scalar and spinor fields, and show how a Basu-Harvey fuzzy funnel arises as the Bogomol'nyi-Prasad-Sommerfield solution to this theory.

  8. Radionic Non-Uniform Black Strings

    NASA Astrophysics Data System (ADS)

    Tamaki, T.; Kanno, S.; Soda, J.

    Non-uniform black strings in the two-brane system are investigated using the effective action approach. It is shown that the radion acts as a non-trivial hair of black strings. The stability of solutions is demonstrated using the catastrophe theory. The black strings are shown to be non-uniform.

  9. Space-filling branes of gravitational ancestry

    NASA Astrophysics Data System (ADS)

    Bunster, Claudio; Pérez, Alfredo

    2015-12-01

    We introduce a new kind of space-filling brane, which we term "G-brane" because its action is a descendant of the gravitational action. The G-brane may be thought of as the remanent of the gravitational field when the propagating gravitons are removed. The G-brane is different from the Dirac or Nambu space-filling branes. Its properties in any spacetime dimension D are exhibited. When the spacetime dimension D is greater than or equal to three, the G-brane does not possess propagating degrees of freedom, just as the Dirac or Nambu branes. For D =3 the G-brane yields a reformulation of gravitation theory in which the Hamiltonian constraints can be solved explicitly, while keeping the spacetime structure manifest. For D =2 the G-brane provides a realization of the conformal algebra, i.e. a conformal field theory, in terms of two scalar fields and their conjugates, which possesses a classical central charge. In the G-brane reformulation of (2 +1 ) gravity, the boundary degrees of freedom of the gravitational field in asymptotically anti-de Sitter space appear as "matter" coupled to the (1 +1 ) G-brane on the boundary.

  10. Black psyllium

    MedlinePlus

    Black psyllium is a weed that grows aggressively throughout the world. The plant was spread with the ... to make medicine. Be careful not to confuse black psyllium with other forms of psyllium including blond ...

  11. Models for asymmetric hybrid brane

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Marques, M. A.; Menezes, R.

    2015-10-01

    We deal with relativistic models described by a single real scalar field, searching for topological structures that behave asymmetrically, connecting minima with a distinct profile. We use such features to build a new braneworld scenario, in which the source scalar field contributes to generate asymmetric hybrid brane.

  12. The shape of nonabelian D-branes

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji

    2004-04-01

    We evaluate bulk distribution of energies, pressures and various D-brane/F-string charges generated by nontrivial matrix configurations in nonabelian D-brane effective field theories, using supergravity source density formulas derived originally in Matrix theory. Off-diagonal elements of worldvolume nonabelian fields, especially transverse scalar fields, induce various interesting bulk structures exhibiting the shape of branes. First, we study the energy distribution of string-brane networks generated in the bulk by the Yang-Mills monopoles and the 1/4 BPS dyons, and confirm force balance of them. An application to the Yang-Mills description of recombination of intersecting D-branes gives results indicating presence of the tachyon matter. Second, we analyse the shape of fuzzy D-branes given by nonabelian scalar fields which are mutually noncommutative. We employ fuzzy S2, fuzzy S4 and fuzzy cylinder/supertube as matrix configurations of N D0-branes representing higher dimensional noncommutative D-branes. We find that in the continuum (large-N) limit the D-brane charge distributions become in the expected shape of a sphere or a cylinder with an infinitesimal thickness. However, the distributions found for finite N are difficult to interpret, which leaves a puzzle for a possible dual description in terms of higher dimensional D-branes. A resolution is provided with use of an ordering ambiguity in the charge density formulas.

  13. Penrose limits of branes and marginal intersecting branes

    NASA Astrophysics Data System (ADS)

    Ryang, Shijong

    2003-02-01

    We construct the Penrose limit backgrounds in closed forms along the generic null geodesics for the near-horizon geometries of D1, D3, D5, NS1 and NS5 branes. The Penrose limit metrics of D1, D5 and NS1 have non-trivial dependence of the light-cone time coordinate, while those of D3 and NS5 have no its dependence. We study the Penrose limits on the marginal 1/4 supersymmetric configurations of standard intersecting branes, such as the NS-NS intersection of NS1 and NS5, the RR intersections of Dp and Dq over some spatial dimensions and the mix intersections of NS5 and Dp over (p-1)-dimensional spaces. They are classified into three types that correspond to the Penrose limits of D1, D3 and D5 backgrounds.

  14. Consistency and derangements in brane tilings

    NASA Astrophysics Data System (ADS)

    Hanany, Amihay; Jejjala, Vishnu; Ramgoolam, Sanjaye; Seong, Rak-Kyeong

    2016-09-01

    Brane tilings describe Lagrangians (vector multiplets, chiral multiplets, and the superpotential) of four-dimensional { N }=1 supersymmetric gauge theories. These theories, written in terms of a bipartite graph on a torus, correspond to worldvolume theories on N D3-branes probing a toric Calabi–Yau threefold singularity. A pair of permutations compactly encapsulates the data necessary to specify a brane tiling. We show that geometric consistency for brane tilings, which ensures that the corresponding quantum field theories are well behaved, imposes constraints on the pair of permutations, restricting certain products constructed from the pair to have no one-cycles. Permutations without one-cycles are known as derangements. We illustrate this formulation of consistency with known brane tilings. Counting formulas for consistent brane tilings with an arbitrary number of chiral bifundamental fields are written down in terms of delta functions over symmetric groups.

  15. Meta-Stable Brane Configurations by Quartic Superpotential for Bifundamentals

    NASA Astrophysics Data System (ADS)

    Ahn, Changhyun

    The type IIA nonsupersymmetric meta-stable brane configuration consisting of three NS5-branes, D4-branes and anti-D4-branes where the electric gauge theory superpotential has a quartic term for the bifundamentals besides a mass term is constructed. By adding the orientifold 4-plane and 6-plane to this brane configuration, we also describe the intersecting brane configurations of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of corresponding gauge theories.

  16. AdS Branes from Partial Breaking of Superconformal Symmetries

    SciTech Connect

    Ivanov, E.A.

    2005-10-01

    It is shown how the static-gauge world-volume superfield actions of diverse superbranes on the AdS{sub d+1} superbackgrounds can be systematically derived from nonlinear realizations of the appropriate AdS supersymmetries. The latter are treated as superconformal symmetries of flat Minkowski superspaces of the bosonic dimension d. Examples include the N = 1 AdS{sub 4} supermembrane, which is associated with the 1/2 partial breaking of the OSp(1|4) supersymmetry down to the N = 1, d = 3 Poincare supersymmetry, and the T-duality related L3-brane on AdS{sub 5} and scalar 3-brane on AdS{sub 5} x S{sup 1}, which are associated with two different patterns of 1/2 breaking of the SU(2, 2|1) supersymmetry. Another (closely related) topic is the AdS/CFT equivalence transformation. It maps the world-volume actions of the codimension-one AdS{sub d+1} (super)branes onto the actions of the appropriate Minkowski (super)conformal field theories in the dimension d.

  17. Cosmology from quantum potential in brane-anti-brane system

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza

    2015-09-01

    Recently, some authors removed the big-bang singularity and predicted an infinite age of our universe. In this paper, we show that the same result can be obtained in string theory and M-theory; however, the shape of universe changes in different epochs. In our mechanism, first, N fundamental string decay to N D0-anti-D0-brane. Then, D0-branes join each other, grow and form a six-dimensional brane-antibrane system. This system is unstable, broken and at present the form of four-dimensional universes, one anti-universe in addition to one wormhole are produced. Thus, there isn't any big-bang in cosmology and the universe is a fundamental string at the beginning. Also, the total age of universe contains two parts, one is related to initial age and the other corresponds to the present age of universe (ttot =tinitial +tpresent). On the other hand, the initial age of universe includes two parts, the age of fundamental string and the time of transition (tinitial =ttransition +tf-string). We observe that only in the case of (tf-string → ∞), the scale factor of universe is zero and as a result, the total age of universe is infinity.

  18. Brane to brane gravity mediation of supersymmetry breaking

    NASA Astrophysics Data System (ADS)

    Rattazzi, Riccardo; Scrucca, Claudio A.; Strumia, Alessandro

    2003-12-01

    We extend the results of Mirabelli and Peskin to supergravity. We study the compactification on S 1/ Z2 of Zucker's off-shell formulation of 5D supergravity and its coupling to matter at the fixed points. We clarify some issues related to the off-shell description of supersymmetry breaking á la Scherk-Schwarz (here employed only as a tool), discussing how to deal with singular gravitino wave functions. We then consider 'visible' and 'hidden' chiral superfields localized at the two different fixed points and communicating only through 5D supergravity. We compute the one-loop corrections that mix the two sectors and the radion superfield. Locality in 5D ensures the calculability of these effects, which transmit supersymmetry breaking from the hidden to the visible sector. In the minimal set-up visible-sector scalars get a universal squared mass m02<0. In general (e.g., in the presence of a sizeable gravitational kinetic term localized on the hidden brane) the radion-mediated contribution to m02 can be positive and dominant. Although we did not build a complete satisfactory model, brane-to-brane effects can cure the tachyonic sleptons predicted by anomaly mediation by adding a positive m02, which is universal up to subleading flavour-breaking corrections.

  19. Localizing gravity on exotic thick 3-branes

    SciTech Connect

    Castillo-Felisola, Oscar; Melfo, Alejandra; Pantoja, Nelson; Ramirez, Alba

    2004-11-15

    We consider localization of gravity on thick branes with a nontrivial structure. Double walls that generalize the thick Randall-Sundrum solution, and asymmetric walls that arise from a Z{sub 2} symmetric scalar potential, are considered. We present a new asymmetric solution: a thick brane interpolating between two AdS{sub 5} spacetimes with different cosmological constants, which can be derived from a 'fake supergravity' superpotential, and show that it is possible to confine gravity on such branes.

  20. Spinflation and Cycling Branes in Warped Throats

    SciTech Connect

    Easson, Damien A.

    2007-11-20

    The implications of brane motion in angular directions of Calabi-Yau flux compactifications is discussed from the point of view of an observer living on the worldvolume of such a brane and from the point of view of an observer living elsewhere in the three non-compact dimensions. The brane observer experiences cosmological bounces and cyclic behavior induced by centrifugal angular momentum barriers. Observers living elsewhere in the compactification experience marginally prolonged periods of inflation due to large angular momentum.

  1. Perturbations of nested branes with induced gravity

    SciTech Connect

    Sbisà, Fulvio; Koyama, Kazuya E-mail: kazuya.koyama@port.ac.uk

    2014-06-01

    We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set of differential equations in the thin limit, from which the details of the internal structure of the 4D brane disappear. We conclude that the thin limit of the ''ribbon'' 4D brane inside the (already thin) 5D brane is well defined (at least when considering first order perturbations around pure tension configurations), and that the gravitational field on the 4D brane remains finite in the thin limit. We comment on the crucial role of the induced gravity term on the 5D brane.

  2. New class of effective field theories from embedded branes.

    PubMed

    Goon, Garrett L; Hinterbichler, Kurt; Trodden, Mark

    2011-06-10

    We present a new general class of four-dimensional effective field theories with interesting global symmetry groups. These theories arise from purely gravitational actions for (3+1)-dimensional branes embedded in higher dimensional spaces with induced gravity terms. The simplest example is the well known Galileon theory, with its associated Galilean symmetry, arising as the limit of a DGP brane world. However, we demonstrate that this is a special case of a much wider range of theories, with varying structures, but with the same attractive features such as second order equations. In some circumstances, these new effective field theories allow potentials for the scalar fields on curved space, with small masses protected by nonlinear symmetries. Such models may prove relevant to the cosmology of both the early and late universe. PMID:21770494

  3. Fermion localization on a split brane

    SciTech Connect

    Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.

    2011-05-15

    In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.

  4. D-brane action at order α'2

    NASA Astrophysics Data System (ADS)

    Jalali, Ali; Garousi, Mohammad R.

    2015-11-01

    We use the compatibility of D-brane action with linear T-duality, S-duality, and with S-matrix elements as guiding principles to find all world volume couplings of one massless closed string and two open strings at order α'2 in type-II superstring theories. In particular, we find that the squares of second fundamental form appear only in world volume curvatures and confirm the observation that the dilaton appears in the string frame action via the transformation R^ μ ν→R^ μ ν+∇μ∇νΦ .

  5. Duality cascade in brane inflation

    SciTech Connect

    Bean, Rachel; Chen Xingang; Hailu, Girma; Henry Tye, S-H; Xu Jiajun E-mail: xgchen@mit.edu E-mail: tye@lepp.cornell.edu

    2008-03-15

    We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cosmic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario, where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude compared to that in previously studied large field models. In the IR DBI scenario, where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.

  6. D-branes, categories and

    SciTech Connect

    Douglas, Michael R.

    2001-07-01

    We show that boundary conditions in topological open string theory on Calabi--Yau (CY) manifolds are objects in the derived category of coherent sheaves, as foreseen in the homological mirror symmetry proposal of Kontsevich. Together with conformal field theory considerations, this leads to a precise criterion determining the supersymmetry preserving branes at any point in CY moduli space, completing the proposal of II-stability.

  7. Teleparallel loop quantum cosmology in a system of intersecting branes

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Pradhan, Anirudh; Beesham, Aroonkumar; de Haro, Jaume

    2016-09-01

    Recently, some authors have removed the big bang singularity in teleparallel Loop Quantum Cosmology (LQC) and have shown that the universe may undergo a number of oscillations. We investigate the origin of this type of teleparallel theory in a system of intersecting branes in M-theory in which the angle between them changes with time. This system is constructed by two intersecting anti-D8-branes, one compacted D4-brane and a D3-brane. These branes are built by joining M0-branes which develop in decaying fundamental strings. The compacted D4-brane is located between two intersecting anti-D8 branes and glues to one of them. Our universe is located on the D3 brane which wraps around the D4 brane from one end and sticks to one of the anti-D8 branes from the other one. In this system, there are three types of fields, corresponding to compacted D4 branes, intersecting branes and D3-branes. These fields interact with each other and make the angle between branes oscillate. By decreasing this angle, the intersecting anti-D8 branes approach each other, the D4 brane rolls, the D3 brane wraps around the D4 brane, and the universe contracts. By separating the intersecting branes and increasing the angle, the D4 brane rolls in the opposite direction, the D3 brane separates from it and the expansion branch begins. Also, the interaction between branes in this system gives us the exact form of the relevant Lagrangian for teleparallel LQC.

  8. Dark D-brane cosmology

    SciTech Connect

    Koivisto, Tomi; Wills, Danielle; Zavala, Ivonne E-mail: d.e.wills@durham.ac.uk

    2014-06-01

    Disformally coupled cosmologies arise from Dirac-Born-Infeld actions in Type II string theories, when matter resides on a moving hidden sector D-brane. Since such matter interacts only very weakly with the standard model particles, this scenario can provide a natural origin for the dark sector of the universe with a clear geometrical interpretation: dark energy is identified with the scalar field associated to the D-brane's position as it moves in the internal space, acting as quintessence, while dark matter is identified with the matter living on the D-brane, which can be modelled by a perfect fluid. The coupling functions are determined by the (warped) extra-dimensional geometry, and are thus constrained by the theory. The resulting cosmologies are studied using both dynamical system analysis and numerics. From the dynamical system point of view, one free parameter controls the cosmological dynamics, given by the ratio of the warp factor and the potential energy scales. The disformal coupling allows for new scaling solutions that can describe accelerating cosmologies alleviating the coincidence problem of dark energy. In addition, this scenario may ameliorate the fine-tuning problem of dark energy, whose small value may be attained dynamically, without requiring the mass of the dark energy field to be unnaturally low.

  9. Stable p-branes in Chern-Simons AdS supergravities

    SciTech Connect

    Edelstein, Jose D.; Garbarz, Alan; Miskovic, Olivera; Zanelli, Jorge

    2010-08-15

    We construct static codimension-two branes in any odd dimension D, with a negative cosmological constant, and show that they are exact solutions of Chern-Simons (super)gravity theory for (super)AdS{sub D} coupled to external sources. The stability of these solutions is analyzed by counting the number of preserved supersymmetries. It is shown that static massive (D-3)-branes are unstable unless some suitable gauge fields are added and the brane is extremal. In particular, in three dimensions, a 0-brane is recognized as the negative mass counterpart of the Banados-Teitelboim-Zanelli black hole. For these 0-branes, we write explicitly magnetically charged Bogomol'nyi-Prasad-Sommerfield states with various numbers of preserved supersymmetries within the OSp(p|2)xOSp(q|2) supergroups. In five dimensions, we prove that stable 2-branes with magnetic charge always exist for the generic supergroup SU(2,4|N), where N{ne}4. For the special case N=4, in which Chern-Simons supergravity requires the addition of a nontrivial gauge field configuration in order to preserve the maximal number of degrees of freedom, we show for two different static 2-branes that they are Bogomol'nyi-Prasad-Sommerfield states (one of which is the ground state), and from the corresponding algebra of charges we show that the energy is bounded from below. In higher dimensions, our results admit a straightforward generalization, although there are presumably more solutions corresponding to different intersections of the elementary objects.

  10. Get immersed and black in fire ash world. Field Wildgeographers experience.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerdà, Artemi; Misiune, Ieva; Jordan, Antonio

    2015-04-01

    Ash is the footprint left by the fire. This residue is very important to landscape recover and is an important source of soil protection after the fire. Get immersed in fire ash world is the same thing of get dirty and do not be recognizable in a fire affected area. To measure ash in the field we have to be careful where to step, how to do the experimental design, collect samples and find with accuracy the places measured before. A good methodology is needed in design field experiments, collect ash samples and monitoring ash evolution (Cerdà and Doerr, 2008; Bodi et al., 2014; Pereira and Ubeda, 2010; Pereira et al. 2011; 2012, 2013, 2014, 2015). The objective of this work is to share with the Avatar world the methodologies used when wildgeographers get immersed in fire ash world, including: 1) Identify the best study area 2) Experimental design 3) Sample collection 4) Get dirty and have fun in the field 5) Laboratory, Statistical and spatial analysis Acknoledgements The author are thankful for the support of the projects POSTFIRE (Soil quality, erosion control and plant cover recovery under different post-fire management scenarios, CGL2013-47862-C2-1-R) funded by the Spanish Ministry of Economy and Competitiveness; GL2008-02879/BTE, LEDDRA 243857, RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission; and for the COST action ES1306 (Connecteur: Connecting European Connectivity Research), FUEGORED (Spanish Network of Forest Fire Effects on Soils, http://grupo.us.es/fuegored/) and to Comissionat per a Universitats i Recerca del DIUE de la Generalitat de Catalunya. References Bodi, M., Martin, D.A., Santin, C., Balfour, V., Doerr, S.H., Pereira, P., Cerda, A., Mataix-Solera, J. (2014) Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103-127. Cerdà, A. y Doerr, S.H. 2008. The effect of ash and needle cover on surface

  11. World

    NASA Astrophysics Data System (ADS)

    Kilinc, M.; Beringer, J.; Hutley, L.; Kurioka, K.; Wood, S.; D'Argent, N.; Martin, D.; McHugh, I.; Tapper, N.; McGuire, D.

    2009-04-01

    Natural forests store vast amounts of carbon in the terrestrial biosphere, and play an important role in the global carbon cycle. Given the significance of natural forests, there is a lack of carbon accounting of primary forests that are undisturbed by human activities. One reason for this lack of interest stems from ecological orthodoxy that suggests that primary forests should be close to dynamic equilibrium, in that Net Ecosystem Production (NEP) approaches zero. However, recent results from the northern hemisphere and tropics, using eddy covariance flux towers, indicate that primary forests are a greater sink than first thought. The role of evergreen primary forests in Australian carbon balance studies remain uncertain and hence may function differently to their deciduous counterparts in the Northern Hemisphere. In order to address the lack of baseline carbon accounts, an undisturbed, 300 year old Mountain Ash (Eucalyptus regnans) ecosystem, located in the Central Highlands of Victoria (Australia) was selected as a permanent study site to investigate carbon and water budgets over diurnal, seasonal and annual cycles. Mountain Ash trees are the world's tallest angiosperms (flowering plants), and one of the largest carbon reservoirs in the biosphere, with an estimated 1900 tC ha-1. A 110 m tall micrometeorological tower that includes eddy covariance instrumentation was installed in August 2005. An independent biometric approach quantifying the annual net gain or loss of carbon was also made within close proximity to the flux tower. Analysis of NEP in 2006 suggests that the ecosystem acted as a carbon sink of 2.5 tC ha-1 yr-1. Woody and soil biomass increment for the same year was estimated to be 2.8 tC ha-1yr-1, in which nearly half of the biomass production was partitioned into the aboveground woody tissue. These results indicate that temperate primary forests act as carbon sinks, and are able to maintain their carbon sink status due to their uneven stand

  12. First law and a variational principle for static asymptotically Randall-Sundrum black holes

    NASA Astrophysics Data System (ADS)

    Fraser, Scott; Eardley, Douglas M.

    2015-07-01

    We give a new, intrinsic, mass definition for spacetimes asymptotic to the Randall-Sundrum braneworld models, RS1 and RS2. For this mass, we prove a first law for static black holes, including variations of the bulk cosmological constant, brane tensions, and RS1 interbrane distance. Our first law defines a thermodynamic volume and a gravitational tension that are braneworld analogs of the corresponding quantities in asymptotically AdS black hole spacetimes and asymptotically flat compactifications, respectively. We also prove the following related variational principle for asymptotically RS black holes: instantaneously static initial data that extremizes the mass yields a static black hole, for variations at fixed apparent horizon area, AdS curvature length, cosmological constant, brane tensions, and RS brane warp factors. This variational principle is valid with either two branes (RS1) or one brane (RS2), and is applicable to variational trial solutions.

  13. Chasing brane inflation in string theory

    NASA Astrophysics Data System (ADS)

    Krause, Axel; Pajer, Enrico

    2008-07-01

    We investigate the embedding of brane-antibrane inflation into a concrete type IIB string theory compactification with all moduli fixed. Specifically, we are considering a D3-brane, whose position represents the inflaton phi, in a warped conifold throat in the presence of supersymmetrically embedded D7-branes and an anti-D3-brane localized at the tip of the warped conifold cone. After presenting the moduli stabilization analysis for a general D7-brane embedding, we concentrate on two explicit models, the Ouyang and the Kuperstein embeddings. We analyze whether the forces induced by moduli stabilization and acting on the D3-brane might be canceled by fine-tuning so as to leave us with the original Coulomb attraction of the anti-D3-brane as the driving force for inflation. For a large class of D7-brane embeddings we obtain a negative result. Cancelations are possible only for very small intervals of phi around an inflection point and not globally. For the most part of its motion the inflaton then feels a steep, non-slow-roll potential. We study the inflationary dynamics induced by this potential.

  14. Analytic solutions for Dp branes in SFT

    NASA Astrophysics Data System (ADS)

    Bonora, L.; Giaccari, S.; Tolla, D. D.

    2011-12-01

    This is the follow-up of a previous paper [JHEP 08 (2011) 158] of ours, where we calculated the energy of a proposed analytic lump solution in SFT representing a D24-brane. Here we propose a similar analytic solution for a D p-brane, for any p, and compute its energy.

  15. Three charge supertubes and black hole hair

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Kraus, Per

    2004-08-01

    We construct finite size, supersymmetric, tubular D-brane configurations with three charges, two angular momenta and several brane dipole moments. In type IIA string theory these are tubular configurations with D0, D4 and F1 charge, as well as D2, D6 and NS5 dipole moments. These multicharge generalizations of supertubes might have interesting consequences for the physics of the D1-D5-P black hole. We study the relation of the tubes to the spinning Breckenridge-Myers-Peet-Vafa black hole, and find that they have properties consistent with describing some of the hair of this black hole.

  16. Bouncing Brane Cosmologies from Warped String Compactifications

    SciTech Connect

    Kachru, Shamit

    2002-08-08

    We study the cosmology induced on a brane probing a warped throat region in a Calabi-Yau compactification of type IIB string theory. For the case of a BPS D3-brane probing the Klebanov-Strassler warped deformed conifold, the cosmology described by a suitable brane observer is a bouncing, spatially flat Friedmann-Robertson-Walker universe with time-varying Newton's constant, which passes smoothly from a contracting to an expanding phase. In the Klebanov-Tseytlin approximation to the Klebanov-Strassler solution the cosmology would end with a big crunch singularity. In this sense, the warped deformed conifold provides a string theory resolution of a spacelike singularity in the brane cosmology. The four-dimensional effective action appropriate for a brane observer is a simple scalar-tensor theory of gravity. In this description of the physics, a bounce is possible because the relevant energy-momentum tensor can classically violate the null energy condition.

  17. Wavefunctions on magnetized branes in the conifold

    NASA Astrophysics Data System (ADS)

    Abe, Hiroyuki; Oikawa, Akane; Otsuka, Hajime

    2016-07-01

    We study wavefunctions on D7-branes with magnetic fluxes in the conifold. Since some supersymmetric embeddings of D-branes on the AdS 5 × T 1,1 geometry are known, we consider one of the embeddings, especially the spacetime filling D7-branes in which (a part of) the standard model is expected to be realized. The explicit form of induced metric on the D7-branes allows us to solve the Laplace and Dirac equations to evaluate matter wavefunctions in extra dimensions analytically. We find that the zeromode wavefunctions can be localized depending on the configuration of magnetic fluxes on D7-branes, and show some phenomenological aspects.

  18. Brane modeling in warped extra-dimension

    NASA Astrophysics Data System (ADS)

    Ahmed, Aqeel; Grzadkowski, Bohdan

    2013-01-01

    Five-dimensional scenarios with infinitesimally thin branes replaced by appropriate configurations of a scalar field were considered. A possibility of periodic extra dimension was discussed in the presence on non-minimal scalar-gravity coupling and a generalized Gibbons-Kallosh-Linde sum rule was found. In order to avoid constraints imposed by periodicity, a non-compact spacial extra dimension was introduced. A five dimensional model with warped geometry and two thin branes mimicked by a scalar profile was constructed and discussed. In the thin brane limit the model corresponds to a set-up with two positive-tension branes. The presence of two branes allows to address the issue of the hierarchy problem which could be solved by the standard warping of the four dimensional metric provided the Higgs field is properly localized. Stability of the background solution was discussed and verified in the presence of the most general perturbations of the metric and the scalar field.

  19. Note on Four Dp-Branes at Angles

    NASA Astrophysics Data System (ADS)

    Vancea, Ion-Vasile

    2001-04-01

    In this note we analyse the dynamical potential of a system of four Dp-branes at arbitrary angles. The equilibrium configurations for various values of the relative angles and distances among branes are discussed. The known configurations of parallel branes and brane-antibranes are obtained at extrema of the dynamical potential.

  20. Exploring Black Hole Dynamics

    NASA Astrophysics Data System (ADS)

    Chung, Hyeyoun

    2015-10-01

    This thesis explores the evolution of different types of black holes, and the ways in which black hole dynamics can be used to answer questions about other physical systems. We first investigate the differences in observable gravitational effects between a four-dimensional Randall-Sundrum (RS) braneworld universe compared to a universe without the extra dimension, by considering a black hole solution to the braneworld model that is localized on the brane. When the brane has a negative cosmological constant, then for a certain range of parameters for the black hole, the intersection of the black hole with the brane approximates a Banados-Teitelboim-Zanelli (BTZ) black hole on the brane with corrections that fall off exponentially outside the horizon. We compute the quasinormal modes of the braneworld black hole, and compare them to the known quasinormal modes of the three-dimensional BTZ black hole. We find that there are two distinct regions for the braneworld black hole solutions that are reflected in the dependence of the quasinormal modes on the black hole mass. The imaginary parts of the quasinormal modes display phenomenological similarities to the quasinormal modes of the three-dimensional BTZ black hole, indicating that nonlinear gravitational effects may not be enough to distinguish between a lower-dimensional theory and a theory derived from a higher-dimensional braneworld. Secondly, we consider the evolution of non-extremal black holes in N=4, d=2 supergravity, and investigate how such black holes might evolve over time if perturbed away from extremality. We study this problem in the probe limit by finding tunneling amplitudes for a Dirac field in a single-centered background, which gives the decay rates for the emission of charged probe black holes from the central black hole. We find that there is no minimum to the potential for the probe particles at a finite distance from the central black hole, so any probes that are emitted escape to infinity. If

  1. Remarks on non-BPS D-branes

    NASA Astrophysics Data System (ADS)

    Schwarz, John H.

    2000-03-01

    Following Sen's discovery of various stable non-BPS D-branes, K-theory has been shown to be the appropriate mathematical framework for classifying conserved D-brane charges. The classification accounts for known D-branes and predicts some new ones including a D8-brane in type I superstring theory. After briefly reviewing these developments, we discuss certain issues pertaining to the D8-brane, which is unstable.

  2. Emergence of longitudinal 7-branes and fuzzy S{sup 4} in compactification scenarios of M(atrix) theory

    SciTech Connect

    Abe, Yasuhiro

    2010-02-15

    In M(atrix) theory, there exist membranes and longitudinal 5-branes (L5-branes) as extended objects. Transverse components of these brane solutions are known to be described by fuzzy CP{sup k} (k=1, 2), where k=1 and k=2 correspond to spherical membranes and L5-branes of CP{sup 2}xS{sup 1} world-volume geometry, respectively. In addition to these solutions, we here show the existence of L7-branes of CP{sup 3}xS{sup 1} geometry, introducing extra potentials to the M(atrix) theory Lagrangian. As in the cases of k=1, 2, the L7-branes (corresponding to k=3) also break the supersymmetries of M(atrix) theory. The extra potentials are introduced such that the energy of a static L7-brane solution becomes finite in the large N limit where N represents the matrix dimension of fuzzy CP{sup 3}. As a consequence, fluctuations from the L7-branes are suppressed, which effectively describes compactification of M(atrix) theory down to 7 dimensions. We show that one of the extra potentials can be considered as a matrix-valued 7-form. The presence of the 7-form in turn supports a possibility of Freund-Rubin type compactification. This suggests that our modification of M(atrix) theory can also lead to a physically interesting matrix model in four dimensions. In hope of such a possibility, we further consider compactification of M(atrix) theory down to fuzzy S{sup 4} which can be defined in terms of fuzzy CP{sup 3}. Along the way, we also find a new L5-brane solution to M(atrix) theory which has purely spherical geometry in the transverse directions.

  3. Holographic interpretation of acoustic black holes

    NASA Astrophysics Data System (ADS)

    Ge, Xian-Hui; Sun, Jia-Rui; Tian, Yu; Wu, Xiao-Ning; Zhang, Yun-Long

    2015-10-01

    With the attempt to find the holographic description of the usual acoustic black holes in fluid, we construct an acoustic black hole formed in the d -dimensional fluid located at the timelike cutoff surface of a neutral black brane in asymptotically AdSd +1 spacetime; the bulk gravitational dual of the acoustic black hole is presented at the first order of the hydrodynamic fluctuation. Moreover, the Hawking-like temperature of the acoustic black hole horizon is showed to be connected to the Hawking temperature of the real anti-de Sitter (AdS) black brane in the bulk, and the duality between the phonon scattering in the acoustic black hole and the sound channel quasinormal mode propagating in the bulk perturbed AdS black brane is extracted. We thus point out that the acoustic black hole appearing in fluid, which was originally proposed as an analogous model to simulate Hawking radiation of the real black hole, is not merely an analogy, it can indeed be used to describe specific properties of the real AdS black holes, in the spirit of the fluid/gravity duality.

  4. Pure geometric thick f( R)-branes: stability and localization of gravity

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; Liu, Yu-Xiao

    2016-06-01

    We study two exactly solvable five-dimensional thick brane world models in pure metric f( R) gravity. Working in the Einstein frame, we show that these solutions are stable against small linear perturbations, including the tensor, vector, and scalar modes. For both models, the corresponding gravitational zero mode is localized on the brane, which leads to the four-dimensional Newton law; while the massive modes are non-localized and only contribute a small correction to the Newton law at a large distance.

  5. De Sitter thin brane model

    NASA Astrophysics Data System (ADS)

    Nishi, Masato

    2016-07-01

    We discuss the large mass hierarchy problem in a braneworld model which represents our acceleratively expanding universe. The Randall-Sundrum (RS) model with one extra warped dimension added to a flat four-dimensional space-time cannot describe our expanding universe. Here, we study instead the de Sitter thin brane model. This is described by the same action as that for the RS model, but the four-dimensional space-time on the branes is dS_4. We study the model for both the cases of positive five-dimensional cosmological constant Λ_5 and a negative one. In the positive Λ_5 case, the four-dimensional large hierarchy necessitates a five-dimensional large hierarchy, and we cannot get a natural explanation. On the other hand, in the negative Λ_5 case, the large hierarchy is naturally realized in the five-dimensional theory in the same manner as in the RS model. Moreover, another large hierarchy between the Hubble parameter and the Planck scale is realized by the O(10^2) hierarchy of the five-dimensional quantities. Finally, we find that the lightest mass of the massive Kaluza-Klein modes and the intervals of the mass spectrum are of order 10^2 GeV, which are the same as in the RS case and do not depend on the value of the Hubble parameter.

  6. SFT on separated D-branes and D-brane translation

    NASA Astrophysics Data System (ADS)

    Karczmarek, Joanna L.; Longton, Matheson

    2012-08-01

    We discuss novel properties of the string field and the Open String Field Theory action arising in a system with multiple D-branes, then use the level truncation scheme to study marginal deformations and tachyon condensation in a system with two parallel but separated branes. We find solutions corresponding to D-brane decay combined with a finite change in the distance between the two D-branes. Using D-brane separation as a yardstick, we are able to continuously control the spacetime displacement of the D-branes and find that our solutions exist only for a finite range of this displacement. Thus, at least in level truncation, Open String Field Theory seems unable to describe the entire CFT moduli space.

  7. Perturbative methods of solution for black holes and black strings in braneworld models

    NASA Astrophysics Data System (ADS)

    Sahabandu, Chetiya

    In this thesis we use perturbative methods to solve the gravitational field equations to construct solutions that describe black branes in Randall-Sundrum (RS) and Arkani-Hamed - Dimopoulos - Dvali (ADD) braneworld models. In the ADD model we consider a black hole localized on the visible brane with a hori-zon radius smaller than the compactified dimension and calculate the corrections due to the compactification. Performing a similar calculation in the RS model we show that the existence of a black hole implies an asymptotic spacetime that depends on half-integer powers of the mass. We also construct solutions that describe black branes in Einstein-Gauss-Bonnet (EGB) gravity. In all cases we calculate important thermodynamical properties and investigate the stability of the solutions.

  8. Black Holes

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Koekemoer, Anton M.

    2011-02-01

    Participants; Preface Mario Livio and Anton Koekemoer; 1. Black holes, entropy, and information G. T. Horowitz; 2. Gravitational waves from black-hole mergers J. G. Baker, W. D. Boggs, J. M. Centrella, B. J. Kelley, S. T. McWilliams and J. R. van Meter; 3. Out-of-this-world physics: black holes at future colliders G. Landsberg; 4. Black holes in globular clusters S. L. W. McMillan; 5. Evolution of massive black holes M. Volonteri; 6. Supermassive black holes in deep multiwavelength surveys C. M. Urry and E. Treister; 7. Black-hole masses from reverberation mapping B. M. Peterson and M. C. Bentz; 8. Black-hole masses from gas dynamics F. D. Macchetto; 9. Evolution of supermassive black holes A. Müller and G. Hasinger; 10. Black-hole masses of distant quasars M. Vestergaard; 11. The accretion history of supermassive black holes K. Brand and the NDWFS Boötes Survey Teams; 12. Strong field gravity and spin of black holes from broad iron lines A. C. Fabian; 13. Birth of massive black-hole binaries M. Colpi, M. Dotti, L. Mayer and S. Kazantzidis; 14. Dynamics around supermassive black holes A. Gualandris and D. Merritt; 15. Black-hole formation and growth: simulations in general relativity S. L. Shapiro; 16. Estimating the spins of stellar-mass black holes J. E. McClintock, R. Narayan and R. Shafee; 17. Stellar relaxation processes near the Galactic massive black hole T. Alexander; 18. Tidal disruptions of stars by supermassive black holes S. Gezari; 19. Where to look for radiatively inefficient accretion flows in low-luminosity AGN M. Chiaberge; 20. Making black holes visible: accretion, radiation, and jets J. H. Krolik.

  9. Branes at angles from worldvolume actions

    NASA Astrophysics Data System (ADS)

    Abbaspur, Reza

    2016-05-01

    We investigate possible stable configurations of two arbitrary branes at general angles using the dynamics of DBI + WZ action. The analysis naturally reveals two types of solutions which we identify as the "marginal" and "non-marginal" configurations. We characterize possible configurations of a pair of identical or non-identical branes in either of these two classes by specifying their proper intersection rules and allowed intersection angles. We also perform a partial analysis of configurations with multiple angles of a system of asymptotically flat curved branes.

  10. Observations on fluxes near anti-branes

    NASA Astrophysics Data System (ADS)

    Cohen-Maldonado, Diego; Diaz, Juan; Van Riet, Thomas; Vercnocke, Bert

    2016-01-01

    We revisit necessary conditions for gluing local (anti-)D3 throats into flux throats with opposite charge. These consistency conditions typically reveal singularities in the 3-form fluxes whose meaning is being debated. In this note we prove, under well-motivated assumptions, that unphysical singularities can potentially be avoided when the anti-branes polarise into spherical NS5 branes, with a specific radius. If a consistent solution can then indeed be found, our analysis seems to suggests a rather large correction to the radius of the polarization sphere compared to the probe result. We furthermore comment on the gluing conditions at finite temperature and point out that one specific assumption of a recent no-go theorem can be broken if anti-branes are indeed to polarise into spherical NS5 branes at zero temperature.

  11. Cosmology in p-brane systems

    SciTech Connect

    Minamitsuji, Masato; Uzawa, Kunihito

    2011-04-15

    We present time-dependent solutions in the higher-dimensional gravity which are related to supergravity in the particular cases. Here, we consider p-branes with a cosmological constant and the intersections of two and more branes. The dynamical description of p-branes can be naturally obtained as the extension of static solutions. In the presence of a cosmological constant, we find accelerating solutions if the dilaton is not dynamical. In the case of intersecting branes, the field equations normally indicate that time-dependent solutions in supergravity can be found if only one harmonic function in the metric depends on time. However, if the special relation between dilaton couplings to antisymmetric tensor field strengths is satisfied, one can find a new class of solutions where all harmonic functions depend on time. We then apply our new solutions to study cosmology, with and without performing compactifications.

  12. De Sitter from T-branes

    NASA Astrophysics Data System (ADS)

    Cicoli, Michele; Quevedo, Fernando; Valandro, Roberto

    2016-03-01

    Hidden sector D7-branes with non-zero gauge flux are a generic feature of type IIB compactifications. A non-vanishing Fayet-Iliopoulos term induced by non-zero gauge flux leads to a T-brane configuration. Expanding the D7-brane action around this T-brane background in the presence of three-form supersymmetry breaking fluxes, we obtain a positive definite contribution to the moduli scalar potential which can be used as an uplifting source for de Sitter vacua. In this way we provide a higher-dimensional understanding of known 4D mechanisms of de Sitter uplifting based on hidden sector F-terms which are non-zero because of D-term stabilisation.

  13. Aspects of D-branes: From branes in motion to meson spectroscopy

    NASA Astrophysics Data System (ADS)

    Winters, David J.

    We discuss various aspects of D-branes, ranging from their basic properties as extended objects within string theory to their application, via the AdS/CFT correspondence, to the physics of gauge theories. Our initial emphasis is on the description of time-dependent, yet supersymmetric, brane configurations and to this end we first provide a review of established results on D-branes. We then investigate various supersymmetric brane intersections. Motivated by the recent results on supertubes, we investigate general constraints under which parallel brane-antibrane configurations are supersymmetric. Dual descriptions of these configurations involve systems of intersecting branes in relative motion. In particular, we find new supersymmetric configurations which are not related to a static brane intersection by a boost. In these new configurations, the intersection point moves at the speed of light. We then briefly review the AdS/CFT correspondence between string and gauge theories. Our emphasis here is on the recent development of D-brane configurations that can be used to add fundamental flavour to the gauge theories. We compute the meson spectrum of an N = 2 super Yang-Mills theory with fundamental matter from its dual string theory on AdS5 x S 5 with a D7-brane probe. For scalar and vector mesons with arbitrary R-charge the spectrum is computed in closed form by solving the equations for D7-brane fluctuations; for matter with non-zero mass mq it is discrete and exhibits a mass gap of order mq/ gsN . The spectrum of mesons with large spin J is obtained from semiclassical, rotating open strings attached to the D7-brane. It displays Regge-like behaviour for J ≪gsN , whereas for J ≫gsN it corresponds to that of two non-relativistic quarks bound by a Coulomb potential.

  14. F(R) bouncing cosmology with future singularity in brane-anti-brane system

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Pradhan, Anirudh; Shoorvazi, Somayyeh

    2016-02-01

    Recently Odintsov and Oikonomou (Phys. Rev. D 92:024016, 2015b) proposed the origin of a Type IV singular bounce in a modified gravity and found an explicit form of F(R) which can generate this type of bouncing cosmological evolution. In this paper, we construct their model in string theory and show that interaction between branes is the main cause of F(R) bouncing cosmology. In our technique, N fundamental strings decay first to N M0-anti-M0-brane then, M0-branes link to each other, originate and form an M3-anti-M3 system. Our universe is located on one of these M3-branes and interact with the universe on another M3-brane via some scalars. The branes in this system wrap around each other and form a compacted system. This process causes to a contraction of universes and produces a contraction branch in a F(R) bouncing model of cosmology. Also, the relevant actions of compacted M3-branes include higher order of derivatives which lead to communication relations in generalized uncertainty principle. On the other hand, branes and anti-branes absorb each other, the radius of compactification is reduced, some of scalars gain negative square masses and become tachyons. This system is unstable, broken and branes rebound to non-compact state during an expansion branch. With opening of branes, some other scalars achieve to tachyon phase and consequently, this epoch stops. This process may be repeated in different branches. In this theory, the Type IV singularity occurs at t = ts, which is the time of producing tachyons between two branches. It is observed that the derived model is in good agreement with recent Planck data (Ade et al. in arXiv:1502.02114 [astro-ph.CO], 2015 and in Astron. Astrophys. 571:A22, 2014) and obtain the bouncing point.

  15. Holographic thermalization from nonrelativistic branes

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Dibakar

    2016-05-01

    In this paper, based on the fundamental principles of gauge/gravity duality and considering a global quench, we probe the physics of thermalization for certain special classes of strongly coupled nonrelativistic quantum field theories that are dual to an asymptotically Schrödinger D p brane space time. In our analysis, we note that during the prelocal stages of the thermal equilibrium the entanglement entropy has a faster growth in time compared to its relativistic cousin. However, it shows a linear growth during the postlocal stages of thermal equilibrium where the so-called tsunami velocity associated with the linear growth of the entanglement entropy saturates to that of its value corresponding to the relativistic scenario. Finally, we explore the saturation region and it turns out that one must constraint certain parameters of the theory in a specific way in order to have discontinuous transitions at the point of saturation.

  16. Fermi surface behavior in the ABJM M2-brane theory

    NASA Astrophysics Data System (ADS)

    DeWolfe, Oliver; Henriksson, Oscar; Rosen, Christopher

    2015-06-01

    We calculate fermionic Green's functions for states of the three-dimensional Aharony-Bergman-Jafferis-Maldacena M2-brane theory at large N using the gauge-gravity correspondence. We embed extremal black brane solutions in four-dimensional maximally supersymmetric gauged supergravity, obtain the linearized Dirac equations for each spin-1 /2 mode that cannot mix with a gravitino, and solve these equations with infalling boundary conditions to calculate retarded Green's functions. For generic values of the chemical potentials, we find Fermi surfaces with universally non-Fermi liquid behavior, matching the situation for four-dimensional N =4 super-Yang-Mills. Fermi surface singularities appear and disappear discontinuously at the point where all chemical potentials are equal, reminiscent of a quantum critical point. One limit of parameter space has zero entropy at zero temperature, and fermionic fluctuations are perfectly stable inside an energy region around the Fermi surface. An ambiguity in the quantization of the fermions is resolved by supersymmetry.

  17. Introductory Lectures on D-Branes

    NASA Astrophysics Data System (ADS)

    Vancea, Ion Vasile

    2002-11-01

    This is a pedagogical introduction to D-branes, addressed to graduate students in field theory and particle physics and to other beginners in string theory. I am not going to review the most recent results since there are already many good papers on web devoted to that. Instead, I will present some old techniques in some detail in order to show how some basic properties of strings and branes as the massless spectrum of string, the effective action of D-branes and their tension can be computed using QFT techniques. Also, I will present shortly the boundary state description of D-branes. The details are exposed for bosonic branes since I do not assume any previous knowledge of supersymmetry which is not a requirement for this school. However, for completeness and to provide basic notions for other lectures, I will discuss the some properties of supersymmetric branes. The present lectures were delivered at Jorge André Swieca School on Particle and Fields, 2001, Campos do Jordão, Brazil.

  18. Brane induced gravity: Ghosts and naturalness

    NASA Astrophysics Data System (ADS)

    Eglseer, Ludwig; Niedermann, Florian; Schneider, Robert

    2015-10-01

    Linear stability of brane induced gravity in two codimensions on a static pure tension background is investigated. The brane is regularized as a ring of finite circumference in extra space. By explicitly calculating the vacuum persistence amplitude of the corresponding quantum theory, we show that the parameter space is divided into two regions—one corresponding to a stable Minkowski vacuum on the brane and one being plagued by ghost instabilities. This analytical result affirms a recent nonlinear, but mainly numerical analysis. The main result is that the ghost is absent for a sufficiently large brane tension, in perfect agreement with a value expected from a natural effective field theory point of view. Unfortunately, the linearly stable parameter regime is either ruled out phenomenologically or becomes unstable for nontrivial cosmologies. We argue that supercritical brane backgrounds constitute the remaining window of opportunity. In the special case of a tensionless brane, we find that the ghost exists for all phenomenologically relevant values of the induced gravity scale. Regarding this case, there are contradicting results in the literature, and we are able to fully resolve this controversy by explicitly uncovering the errors made in the "no-ghost" analysis. Finally, a Hamiltonian analysis generalizes the ghost result to more than two codimensions.

  19. High-energy effective theory for orbifold branes

    SciTech Connect

    Shiromizu, Tetsuya; Fujii, Shunsuke; Yoshino, Hirotaka; Rham, Claudia de

    2006-04-15

    We derive an effective theory on the orbifold branes of the Randall-Sundrum 1 (RS1) braneworld scenario in the presence of a bulk brane. We concentrate on the regime where the three branes are close and consider a scenario where the bulk brane collides with one of the orbifold branes. This theory allows us to understand the corrections to a low-energy approach due to the presence of higher velocity terms, coming from the Kaluza-Klein modes. We consider the evolution of gravitational waves on a cosmological background and find that, within the large velocity limit, the boundary branes recover a purely four-dimensional behavior.

  20. Conservation laws for colliding branes with induced gravity

    NASA Astrophysics Data System (ADS)

    Pellen, Mathieu

    2015-05-01

    We derive conservation laws for collisions of self-gravitating n-branes (or n-dimensional shells) in an ( n+2) dimensional spacetime including induced gravity on the brane. Previous work has shown how geometrical identities in general relativity enforce conservation of energy-momentum at collisions. The inclusion of induced gravity terms introduces a gravitational self-energy on the brane which permits energy-momentum conservation of matter fields on the brane to be broken, so long as the total energy-momentum, including induced gravity terms, is conserved. We give simple examples with two branes (one ingoing and one outgoing) and three branes.

  1. Fluid/gravity correspondence: A nonconformal realization in compactified D4 branes

    NASA Astrophysics Data System (ADS)

    Wu, Chao; Chen, Yidian; Huang, Mei

    2016-03-01

    We develop the framework of boundary derivative expansion (BDE) formalism of fluid/gravity correspondence in a compactified D4-brane system, which is a nonconformal background used in top-down holographic QCD models. Such models contain the D4-D6 model and the Sakai-Sugimoto (SS) model, with the background of the compactified black D4 branes under the near-horizon limit. By using the dimensional reduction technique, we derive a 5D Einstein gravity minimally coupled with three scalar fields from the 10D D4-brane background. Following the BDE formalism of fluid/gravity correspondence in the conformal background, we directly derive all the first order transport coefficients for nonconformal gluonic matter. The results of the ratio of the bulk to shear viscosity and the sound speed agree with those obtained from the Green-Kubo method. This agreement guarantees the validity of the BDE formalism of fluid/gravity duality in the nonconformal D-brane background, which can be used to calculate the second order transport coefficients in nonconformal background.

  2. Anti-de Sitter D-branes in curved backgrounds

    NASA Astrophysics Data System (ADS)

    Huang, Wung-Hong

    2005-07-01

    We investigate the properties of the AdS D1-branes which are the bound states of a curved D1-brane with n fundamental strings (F1) in the AdS3 spacetime, and the AdS D2-branes which are the axially symmetric bound states of a curved D2-brane with m D0-branes and n fundamental strings in the AdS3 × S3 spacetime. We see that, while the AdS D1-branes asymptotically approach to the event horizon of the AdS3 spacetime the AdS D2-branes will end on it. As the near horizon geometry of the F1/NS5 becomes the spacetime of AdS3 × S3 × T4 with NS-NS three form turned on, we furthermore investigate the corresponding AdS D-branes in the NS5-branes and macroscopic F-strings backgrounds, as an attempt to understand the origin of the AdS D-branes. From the found DBI solutions we see that in the F-strings background, both of the AdS D1-branes and AdS D2-branes will asymptotically approach to the position with a finite distance away from the F-strings. However, the AdS D2-branes therein could also end on the F-strings once it carries sufficient D0-branes charges. We also see that there does not exist any stable AdS D-branes in the NS5-branes backgrounds. We present physical arguments to explain these results, which could help us in understanding the intriguing mechanics of the formation of the AdS D-branes.

  3. Black string corrections in variable tension braneworld scenarios

    NASA Astrophysics Data System (ADS)

    Da Rocha, Roldão; Hoff da Silva, J. M.

    2012-02-01

    Braneworld models with variable tension are investigated, and the corrections on the black string horizon along the extra dimension are provided. Such corrections are encrypted in additional terms involving the covariant derivatives of the variable tension on the brane, providing profound consequences concerning the black string horizon variation along the extra dimension, near the brane. The black string horizon behavior is shown to be drastically modified by the terms corrected by the brane variable tension. In particular, a model motivated by the phenomenological interesting case regarding Eötvös branes is investigated. It forthwith provides further physical features regarding variable tension braneworld scenarios, heretofore concealed in all previous analysis in the literature. All precedent analysis considered uniquely the expansion of the metric up to the second order along the extra dimension, which is able to evince solely the brane variable tension absolute value. Notwithstanding, the expansion terms aftermath, further accomplished in this paper from the third order on, elicits the successive covariant derivatives of the brane variable tension, and their respective coupling with the extrinsic curvature, the Weyl tensor, and the Riemann and Ricci tensors, as well as the scalar curvature. Such additional terms are shown to provide sudden modifications in the black string horizon in a variable tension braneworld scenario.

  4. The gravity of dark vortices: effective field theory for branes and strings carrying localized flux

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Diener, R.; Williams, M.

    2015-11-01

    A Nielsen-Olesen vortex usually sits in an environment that expels the flux that is confined to the vortex, so flux is not present both inside and outside. We construct vortices for which this is not true, where the flux carried by the vortex also permeates the `bulk' far from the vortex. The idea is to mix the vortex's internal gauge flux with an external flux using off-diagonal kinetic mixing. Such `dark' vortices could play a phenomenological role in models with both cosmic strings and a dark gauge sector. When coupled to gravity they also provide explicit ultra-violet completions for codimension-two brane-localized flux, which arises in extra-dimensional models when the same flux that stabilizes extra-dimensional size is also localized on space-filling branes situated around the extra dimensions. We derive simple formulae for observables such as defect angle, tension, localized flux and on-vortex curvature when coupled to gravity, and show how all of these are insensitive to much of the microscopic details of the solutions, and are instead largely dictated by low-energy quantities. We derive the required effective description in terms of a world-sheet brane action, and derive the matching conditions for its couplings. We consider the case where the dimensions transverse to the bulk compactify, and determine how the on- and off-vortex curvatures and other bulk features depend on the vortex properties. We find that the brane-localized flux does not gravitate, but just renormalizes the tension in a magnetic-field independent way. The existence of an explicit UV completion puts the effective description of these models on a more precise footing, verifying that brane-localized flux can be consistent with sensible UV physics and resolving some apparent paradoxes that can arise with a naive (but commonly used) delta-function treatment of the brane's localization within the bulk.

  5. Black Holes in Higher Dimensions

    NASA Astrophysics Data System (ADS)

    Horowitz, Gary T.

    2012-04-01

    List of contributors; Preface; Part I. Introduction: 1. Black holes in four dimensions Gary Horowitz; Part II. Five Dimensional Kaluza-Klein Theory: 2. The Gregory-Laflamme instability Ruth Gregory; 3. Final state of Gregory-Laflamme instability Luis Lehner and Frans Pretorius; 4. General black holes in Kaluza-Klein theory Gary Horowitz and Toby Wiseman; Part III. Higher Dimensional Solutions: 5. Myers-Perry black holes Rob Myers; 6. Black rings Roberto Emparan and Harvey Reall; Part IV. General Properties: 7. Constraints on the topology of higher dimensional black holes Greg Galloway; 8. Blackfolds Roberto Emparan; 9. Algebraically special solutions in higher dimensions Harvey Reall; 10. Numerical construction of static and stationary black holes Toby Wiseman; Part V. Advanced Topics: 11. Black holes and branes in supergravity Don Marolf; 12. The gauge/gravity duality Juan Maldacena; 13. The fluid/gravity correspondence Veronika Hubeny, Mukund Rangamani and Shiraz Minwalla; 14. Horizons, holography and condensed matter Sean Hartnoll; Index.

  6. 'Black universe' epoch in string cosmology

    SciTech Connect

    Buchel, Alex; Kofman, Lev

    2008-10-15

    String theory compactification involves manifolds with multiple warp factors. For cosmological applications, we often introduce a short, high-energy inflationary throat, and a long, low-energy standard model (SM) throat. It is assumed that at the end of inflation, the excited Kaluza-Klein modes from the inflationary throat tunnel to the SM throat and reheat standard model degrees of freedom, which are attached to probe brane(s). However, the huge hierarchy of energy scales can result in a highly dynamic transition of the throat geometry. We point out that in such a cosmological scenario the standard model throat (together with SM brane) will be cloaked by a Schwarzschild horizon, produced by the Kaluza-Klein modes tunneling from the short throat. The black brane formation is dual to the first order chiral phase transition of the cascading gauge theory. We calculate the critical energy density corresponding the formation of the black hole (BH) horizon in the long throat. We discuss the duality between 'black universe' cosmology and an expanding universe driven by the hot gauge theory radiation. We address the new problem of the hierarchical multiple-throat scenarios: SM brane disappearance after the decay of the BH horizon.

  7. Aspects of black-fly control and entomology in the New World in relation to the Simulium problem in Nigeria*

    PubMed Central

    Crosskey, R. W.

    1959-01-01

    A general account is given of insecticidal control of black-flies in North and Central America, and the problems are contrasted with those arising in the control of Simulium damnosum Theo. in Nigeria. Some recent biological observations on Canadian black-flies are described, and it is emphasized that these have materially contributed to successful control. It is pointed out that S. damnosum control is being practised in the absence of much fundamental biological knowledge of this pest. Entomological aspects of onchocerciasis in Mexico and Guatemala are discussed, and compared with S. damnosum and its relationship to onchocerciasis in Nigeria. PMID:13813021

  8. On RR couplings and bulk singularity structures of non-BPS branes

    NASA Astrophysics Data System (ADS)

    Hatefi, Ehsan

    2016-09-01

    We compute the five point world sheet scattering amplitude of a symmetric closed string Ramond-Ramond, a transverse scalar field, a world volume gauge field and a real tachyon in both world volume and transverse directions of brane in type IIA and IIB superstring theory. We provide the complete analysis of S-matrix and show that both u‧ = u +1/4 and t channel bulk singularity structures can also be examined by this S-matrix. Various remarks about new restricted Bianchi identities on world volume for the other pictures have also been made.

  9. Cutoffs, stretched horizons, and black hole radiators

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja

    2012-11-01

    We argue that if the UV cutoff of an effective field theory with many low energy degrees of freedom is of the order, or below, the scale of the stretched horizon in a black hole background, which in turn is significantly lower than the Planck scale, the black hole radiance rate may not be enhanced by the emission of all the light IR modes. Instead, there may be additional suppressions hidden in the UV completion of the field theory, which really control which light modes can be emitted by the black hole. It could turn out that many degrees of freedom cannot be efficiently emitted by the black hole, and so the radiance rate may be much smaller than its estimate based on the counting of the light IR degrees of freedom. If we apply this argument to the Randall-Sundrum II (RS2) brane world, it implies that the emission rates of the low energy conformal field theory modes will be dramatically suppressed: its UV completion is given by the bulk gravity on AdS5×S5, and the only bulk modes which could be emitted by a black hole are the 4-dimensional (4D) s waves of bulk modes with small 5-dimensional momentum, or equivalently, small 4D masses. Further, their emission is suppressed by bulk warping, which lowers the radiation rate much below the IR estimate, yielding a radiation flux ˜(TBHL)2LHawking˜(TBH/MPl)2NLHawking, where LHawking is the Hawking radiation rate of a single light species. This follows directly from low conformal field theory cutoff μ˜L-1≪MPl, a large number of modes N≫1 and the fact that 4D gravity in RS2 is induced, MPl2≃Nμ2.

  10. On the structure of quadrilateral brane tilings

    NASA Astrophysics Data System (ADS)

    de Medeiros, Paul

    2012-01-01

    Brane tilings provide the most general framework in string and M-theory for matching toric Calabi-Yau singularities probed by branes with superconformal fixed points of quiver gauge theories. The brane tiling data consists of a bipartite tiling of the torus which encodes both the classical superpotential and gauge-matter couplings for the quiver gauge theory. We consider the class of tilings which contain only tiles bounded by exactly four edges and present a method for generating any tiling within this class by iterating combinations of certain graph-theoretic moves. In the context of D3-branes in IIB string theory, we consider the effect of these generating moves within the corresponding class of supersymmetric quiver gauge theories in four dimensions. Of particular interest are their effect on the superpotential, the vacuum moduli space and the conditions necessary for the theory to reach a superconformal fixed point in the infrared. We discuss the general structure of physically admissible quadrilateral brane tilings and Seiberg duality in terms of certain composite moves within this class.

  11. Mirage cosmology with an unstable probe D3-brane

    SciTech Connect

    Jeong, Dong Hyeok; Kim, Jin Young

    2005-10-15

    We consider the mirage cosmology by an unstable probe brane whose action is represented by Dirac-Born-Infeld action with tachyon. We study how the presence of tachyon affects the evolution of the brane inflation. At the early stage of the brane inflation, the tachyon kinetic term can play an important role in curing the superluminal expansion in mirage cosmology.

  12. Decoupling of gravity on non-susy Dp branes

    NASA Astrophysics Data System (ADS)

    Nayek, Kuntal; Roy, Shibaji

    2016-03-01

    We study the graviton scattering in the background of non-susy D p branes of type II string theories consisting of a metric, a dilaton and a (p + 1) form gauge field. We show numerically that in these backgrounds graviton experiences a scattering potential which takes the form of an infinite barrier in the low energy (near brane) limit for p ≤ 5 and therefore is never able to reach the branes. This shows, contrary to what is known in the literature, that gravity indeed decouples from the non-susy D p branes for p ≤ 5. For non-susy D6 brane, gravity couples as there is no such barrier for the potential. To give further credence to our claim we solve the scattering equation in some situation analytically and calculate the graviton absorption cross-sections on the non-susy branes and show that they vanish for p ≤ 4 in the low energy limit. This shows, as in the case of BPS branes, that gravity does decouple for non-susy D p branes for p ≤ 4 but it does not decouple for D6 brane as the potential here is always attractive. We argue for the non-susy D5 brane that depending on one of the parameters of the solution gravity either always decouples (unlike the BPS D5 brane) or it decouples when the energy of the graviton is below certain critical value, otherwise it couples, very similar to BPS D5 brane.

  13. Pan-Africanism, the Mystique of World Black Unity: An Afro-American Scholar's Sojourn in Africa.

    ERIC Educational Resources Information Center

    Staples, Robert

    1977-01-01

    The author explores the ideology of Pan-Africanism in terms of the social and economic position of Blacks in the United States. He briefly describes his visit to Africa (Senegal and Nigeria) and the effects that this experience has had in forming his political viewpoint. (MC)

  14. I'm Chocolate, You're Vanilla: Raising Healthy Black and Biracial Children in a Race-Conscious World.

    ERIC Educational Resources Information Center

    Wright, Marguerite A.

    This guide teaches parents and educators of black and biracial children how to reduce racism's impact on a child's development to promote emotional health at preschool, elementary, and secondary levels. The chapters are: (1) "Chocolate and Vanilla: How Preschoolers See Color and Race"; (2) "How Preschoolers Begin To Learn Racial Attitudes"; (3)…

  15. Thermal life of black holes

    NASA Astrophysics Data System (ADS)

    Saremi, Omid

    Various aspects of gravitational physics from a string theory perspective are examined in this thesis. In string theory, a statistical description of the thermodynamics of neutral black holes is still lacking. Such a microphysical picture would involve field theories in limits difficult to analyze. In the second chapter, a brane-antibrane model for neutral black D p-branes, based on an earlier proposal for conformal branes only, is developed. The black hole entropy is reproduced by the strongly coupled field theory, up to a power of two. Using a toy model containing a tachyon arid bosonic degrees of freedom of the quantum mechanics of D0-branes and anti-D0-branes, our results show that strong-coupling finite-temperature stabilization of the tachyon is indeed possible. The third chapter concerns itself with the classical dynamics of a probe ("test") Dp-brane moving in a gravitational background sourced by a stack of Dp-branes. The physics is qualitatively similar to that of the effective action for open-string tachyon condensation, with a power-law runaway potential. We show that small inhomogeneous ripples of the probe brane grow with time, leading to folding of the brane as it moves. We notice and comment on the application of brane folding to the theory of cosmological fluctuations in string theory inflation. In the fourth chapter, we elaborate on the correspondence between the quantum Hall system with filling factor unity and the N = 4 SYM theory in the half-BPS sector. We present an extension of the rioncommutative Chern-Simons Matrix theory which contains independent degrees of freedom (fields) for particles arid quasiholes. The BPS configurations of our model are in one-to-one correspondence with the half-BPS states in the N = 4 SYM. Within our model, we clarify the symmetry between giant and dual-giant configurations, among others. The fifth chapter is devoted to a check of the "viscosity bound conjecture" by Kovtun, Son and Starinets. The KSS conjecture is

  16. Moduli stabilization and inflation using wrapped branes

    SciTech Connect

    Easson, Damien A.; Trodden, Mark

    2005-07-15

    We demonstrate that a gas of wrapped branes in the early Universe can help resolve the cosmological Dine-Seiberg/Brustein-Steinhardt overshoot problem in the context of moduli stabilization with steep potentials in string theory. Starting from this mechanism, we propose a cosmological model with a natural setting in the context of an early phase dominated by brane and string gases. The Universe inflates at early times due to the presence of a wrapped two brane (domain wall) gas and all moduli are stabilized. A natural graceful exit from the inflationary regime is achieved. However, the basic model suffers from a generalized domain wall/reheating problem and cannot generate a scale invariant spectrum of fluctuations without additional physics. Several suggestions are presented to address these issues.

  17. Global embeddings for branes at toric singularities

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Vijay; Berglund, Per; Braun, Volker; García-Etxebarria, Iñaki

    2012-10-01

    We describe how local toric singularities, including the Toric Lego construction, can be embedded in compact Calabi-Yau manifolds. We study in detail the addition of D-branes, including non-compact flavor branes as typically used in semi-realistic model building. The global geometry provides constraints on allowable local models. As an illustration of our discussion we focus on D3 and D7-branes on (the partially resolved) ( dP 0)3 singularity, its embedding in a specific Calabi-Yau manifold as a hypersurface in a toric variety, the related type IIB orientifold compactification, as well as the corresponding F-theory uplift. Our techniques generalize naturally to complete intersections, and to a large class of F-theory backgrounds with singularities.

  18. Non-Abelian magnetic black strings versus black holes

    NASA Astrophysics Data System (ADS)

    Mazharimousavi, S. Habib; Halilsoy, M.

    2016-05-01

    We present d+1 -dimensional pure magnetic Yang-Mills (YM) black strings (or 1-branes) induced by the d -dimensional Einstein-Yang-Mills-Dilaton black holes. The Born-Infeld version of the YM field makes our starting point which goes to the standard YM field through a limiting procedure. The lifting from black holes to black strings (with less number of fields) is done by adding an extra, compact coordinate. This amounts to the change of horizon topology from S^{d-2} to a product structure. Our black string in 5 dimensions is a rather special one, with uniform Hawking temperature and non-asymptotically flat structure. As the YM charge becomes large the string gets thinner to tend into a breaking point and transform into a 4-dimensional black hole.

  19. Hybrid metric-Palatini brane system

    NASA Astrophysics Data System (ADS)

    Fu, Qi-Ming; Zhao, Li; Gu, Bao-Min; Yang, Ke; Liu, Yu-Xiao

    2016-07-01

    It is known that the metric and Palatini formalisms of gravity theories have their own interesting features but also suffer from some different drawbacks. Recently, a novel gravity theory called hybrid metric-Palatini gravity was put forward to cure or improve their individual deficiencies. The action of this gravity theory is a hybrid combination of the usual Einstein-Hilbert action and a f (R ) term constructed by the Palatini formalism. Interestingly, it seems that the existence of a light and long-range scalar field in this gravity may modify the cosmological and galactic dynamics without conflicting with the laboratory and Solar System tests. In this paper, we focus on the tensor and scalar perturbations of the thick branes in this novel gravity theory. We consider two models as examples, namely, the thick branes constructed by a background scalar field and by pure gravity. The thick branes in both models have no inner structure. However, affected by the hybrid combination of the metric and Palatini formalisms, the graviton zero mode in the first model has inner structure when the parameter in this model is larger than its critical value, which is different from the cases of general relativity and Palatini f (R ) gravity. We find that the effective four-dimensional gravity can be reproduced on the brane for both models and the scalar zero mode in the model without a background scalar field cannot be localized on the brane, which avoids a fifth force. Moreover, the stability of both brane systems against the linear perturbations can also be ensured.

  20. Solving the hierarchy problem in two-brane cosmological models

    SciTech Connect

    Kanti, Panagiota; Olive, Keith A.; Pospelov, Maxim

    2000-12-15

    We analyze cosmological solutions in the class of two-brane models with arbitrary tensions which contain matter with general equations of state. We show that the mass hierarchy between the two branes is determined by the ratio of the lapse functions evaluated on the branes. This ratio can be sufficiently small without fine-tuning the brane separation, once the transverse dimension is stabilized. For suitably large interbrane separations, both brane tensions are positive. We also find that the cosmological evolution obeys the standard four-dimensional Friedmann equation up to small corrections.

  1. Intersecting brane models and F-theory in six dimensions

    NASA Astrophysics Data System (ADS)

    Nagaoka, Satoshi

    2012-11-01

    We analyze six-dimensional supergravity theories coming from intersecting brane models on the toroidal orbifold T4/Z2. We use recently developed tools for mapping general 6D supergravity theories to F-theory to identify F-theory constructions dual to the intersecting brane models. The F-theory picture illuminates several aspects of these models. In particular, we have some new insight into the matter spectrum on intersecting branes, and analyze gauge group enhancement as branes approach orbifold points. These novel features of intersecting brane models are also relevant in four dimensions, and are confirmed in 6D using more standard Chan-Paton methods.

  2. Brane decay and an initial spacelike singularity.

    PubMed

    Kawai, Shinsuke; Keski-Vakkuri, Esko; Leigh, Robert G; Nowling, Sean

    2006-01-27

    We present a novel string theory scenario where matter in a spacetime originates from a decaying brane at the origin of time. The decay could be considered as a big-bang-like event at X0=0. The closed string interpretation is a time-dependent spacetime with a semi-infinite time direction, with the initial energy of the brane converted into energy flux from the origin. The open string interpretation can be viewed as a string theoretic nonsingular initial condition. PMID:16486680

  3. Radion effective potential in brane gas cosmology

    SciTech Connect

    Kim, Jin Young

    2008-09-15

    We consider a cosmological solution which can explain anisotropic evolution of spatial dimensions and the stabilization of extra dimensions in brane gas formalism. We evaluate the effective potentials, induced by brane gas, bulk flux and supergravity particles, which govern the sizes of the observed three and the extra dimensions. It is possible that the wrapped internal volume can oscillate between two turning points or sit at the minimum of the potential while the unwrapped three-dimensional volume can expand monotonically. Including the supergravity particles makes the effective potential steeper as the internal volume shrinks.

  4. The effective action of D6-branes in mathcal{N} = 1 type IIA orientifolds

    NASA Astrophysics Data System (ADS)

    Kerstan, Max; Weigand, Timo

    2011-06-01

    We use a Kaluza-Klein reduction to compute the low-energy effective action for the massless modes of a spacetime-filling D6-brane wrapped on a special Lagrangian 3-cycle of a type IIA Calabi-Yau orientifold. The modifications to the characteristic data of the mathcal{N} = 1 bulk orientifold theory in the presence of a D6-brane are analysed by studying the underlying Type IIA supergravity coupled to the brane world volume in the democratic formulation and performing a detailed dualisation procedure. The mathcal{N} = 1 chiralcoordinates are found to be in agreement with expectations from mirror symmetry. We work out the Kähler potential for the chiral superfields as well as the gauge kinetic functions for the bulk and the brane gauge multiplets including the kinetic mixing between the two. The scalar potential resulting from the dualisation procedure can be formally interpreted in terms of a superpotential. Finally, the gauging of the Peccei-Quinn shift symmetries of the complex structure multiplets reproduces the D-term potential enforcing the calibration condition for special Lagrangian 3-cycles.

  5. The many faces of brane-flux annihilation

    NASA Astrophysics Data System (ADS)

    Gautason, Fridrik Freyr; Truijen, Brecht; Van Riet, Thomas

    2015-10-01

    Fluxes can decay via the nucleation of Brown-Teitelboim bubbles, but when the decaying fluxes induce D-brane charges this process must be accompanied with an annihilation of D-branes. This occurs via dynamics inside the bubble wall as was well described for overline{D3} branes annihilating against 3-form fluxes. In this paper we extend this to the other overline{Dp} branes with p smaller than seven. Generically there are two decay channels: one for the RR flux and one for the NSNS flux. The RR channel is accompanied by brane annihilation that can be understood from the overline{Dp} branes polarising into D( p + 2) branes, whereas the NSNS channel corresponds to overline{Dp} branes polarising into NS5 branes or KK5 branes. We illustrate this with the decay of antibranes probing local toroidal throat geometries obtained from T-duality of the D6 solution in massive type IIA. We show that overline{Dp} branes are metastable against annihilation in these backgrounds, at least at the probe level.

  6. Stability of D brane-anti D brane systems in confining gauge theories

    NASA Astrophysics Data System (ADS)

    Ghoroku, Kazuo; Nakamura, Akihiro; Toyoda, Fumihiko

    2011-01-01

    We study the stability of a special form of D brane embedding which is regarded as a bound state of D n and anti-D n brane embedded in a 10D supergravity background which is dual to a confining gauge theory. For D5 branes with U(1) flux, their bound-state configuration can be regarded as the baryonium vertex. For D branes of n=6 and 8 without the U(1) flux, their bound states have been used to introduce flavor quarks in the dual supersymmetric Yang-Mills theory. In any case, it would be important to ensure that they are free from tachyon instability. For all these cases, we could show their stability with respect to this point.

  7. Brane solutions sourced by a scalar with vanishing potential and classification of scalar branes

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Franzin, Edgardo; Serra, Matteo

    2016-01-01

    We derive exact brane solutions of minimally coupled Einstein-Maxwell-scalar gravity in d + 2 dimensions with a vanishing scalar potential and we show that these solutions are conformal to the Lifshitz spacetime whose dual QFT is characterized by hyperscaling violation. These solutions, together with the AdS brane and the domain wall sourced by an exponential potential, give the complete list of scalar branes sourced by a generic potential having simple (scale-covariant) scaling symmetries not involving Galilean boosts. This allows us to give a classification of both simple and interpolating brane solution of minimally coupled Einstein-Maxwell-scalar gravity having no Schrödinger isometries, which may be very useful for holographic applications.

  8. Brane brick models and 2 d (0 , 2) triality

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong

    2016-05-01

    We provide a brane realization of 2 d (0 , 2) Gadde-Gukov-Putrov triality in terms of brane brick models. These are Type IIA brane configurations that are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. Triality translates into a local transformation of brane brick models, whose simplest representative is a cube move. We present explicit examples and construct their triality networks. We also argue that the classical mesonic moduli space of brane brick model theories, which corresponds to the probed Calabi-Yau 4-fold, is invariant under triality. Finally, we discuss triality in terms of phase boundaries, which play a central role in connecting Calabi-Yau 4-folds to brane brick models.

  9. T-branes through 3d mirror symmetry

    NASA Astrophysics Data System (ADS)

    Collinucci, Andrés; Giacomelli, Simone; Savelli, Raffaele; Valandro, Roberto

    2016-07-01

    T-branes are exotic bound states of D-branes, characterized by mutually non-commuting vacuum expectation values for the worldvolume scalars. The M/F-theory geometry lifting D6/D7-brane configurations is blind to the T-brane data. In this paper, we make this data manifest, by probing the geometry with an M2-brane. We find that the effect of a T-brane is to deform the membrane worldvolume superpotential with monopole operators, which partially break the three-dimensional flavor symmetry, and reduce super-symmetry from {N} = 4 to {N} = 2. Our main tool is 3d mirror symmetry. Through this language, a very concrete framework is developed for understanding T-branes in M-theory. This leads us to uncover a new class of {N} = 2 quiver gauge theories, whose Higgs branches mimic those of membranes at ADE singularities, but whose Coulomb branches differ from their {N} = 4 counterparts.

  10. BOOK REVIEW: Black Holes, Cosmology and Extra Dimensions Black Holes, Cosmology and Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.

    2013-10-01

    The book Black holes, Cosmology and Extra Dimensions written by Kirill A Bronnikov and Sergey G Rubin has been published recently by World Scientific Publishing Company. The authors are well known experts in gravity and cosmology. The book is a monograph, a considerable part of which is based on the original work of the authors. Their original point of view on some of the problems makes the book quite interesting, covering a variety of important topics of the modern theory of gravity, astrophysics and cosmology. It consists of 11 chapters which are organized in three parts. The book starts with an introduction, where the authors briefly discuss the main ideas of General Relativity, giving some historical remarks on its development and application to cosmology, and mentioning some more recent subjects such as brane worlds, f(R)-theories and gravity in higher dimensions. Part I of the book is called 'Gravity'. Chapters two and three are devoted to the Einstein equations and their spherical symmetric black hole solutions. This material is quite standard and can be found in practically any book on General Relativity. A brief summary of the Kerr metric and black hole thermodynamics are given in chapter four. The main part of this chapter is devoted to spherically symmetric black holes in non-Einstein gravity (with scalar and phantom fields), black holes with regular interior, and black holes in brane worlds. Chapters five and six are mainly dedicated to wormholes and the problem of their stability. Part II (Cosmology) starts with discussion of the Friedmann-Robertson-Walker and de Sitter solutions of the Einstein equations and their properties. It follows by describing a `big picture' of the modern cosmology (inflation, post-inflationary reheating, the radiation-dominated and matter-dominated states, and modern stage of the (secondary) inflation). The authors explain how the inflation models allow one to solve many of the long-standing problems of cosmology, such as

  11. Holographic cosmology from a system of M2-M5 branes

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag

    2016-05-01

    In this paper, we analyze the holographic cosmology using a M2-M5 brane configuration. In this configuration, a M2-brane will be placed in between a M5-brane and an anti-M5-brane. The M2-brane will act as a channel for energy to flow from an anti-M5-brane to a M5-brane, and this will increase the degrees of freedom on the M5-brane causing inflation. The inflation will end when the M5-brane and anti-M5-brane get separated. However, at a later stage the distance between the M5-brane and the anti-M5-bran can reduce and this will cause the formation of tachyonic states. These tachyonic states will again open a bridge between the M5-branes and the anti-M5-branes, which will cause further acceleration of the universe.

  12. Randall-Sundrum II cosmology, AdS/CFT, and the bulk black hole

    NASA Astrophysics Data System (ADS)

    Hebecker, A.; March-Russell, J.

    2001-08-01

    We analyse the cosmology of a brane world model where a single brane carrying the standard model fields forms the boundary of a 5-dimensional AdS bulk (the Randall-Sundrum II scenario). We focus on the thermal radiation of bulk gravitons, the formation of the bulk black hole, and the holographic AdS/CFT definition of the RSII theory. Our detailed calculation of bulk radiation reduces previous estimates to a phenomenologically acceptable, although potentially visible level. In late cosmology, in which the Friedmann equation depends linearly on the energy density /ρ, only about 1% of energy density is lost to the black hole or, equivalently, to the `dark radiation' (Ωd,N~=0.01 at nucleosynthesis). The preceding, unconventional ρ2 period can produce up to 10% dark radiation (Ωd,N<~0.1). The AdS/CFT correspondence provides an equivalent description of late RSII cosmology. We show how the AdS/CFT formulation can reproduce the ρ2 correction to the standard treatment at low matter density. However, the 4-dimensional effective theory of CFT /+ gravity breaks down due to higher curvature terms for energy densities where ρ2 behaviour in the Friedmann equation is usually predicted. We emphasize that, in going beyond this energy density, the microscopic formulation of the theory becomes essential. For example, the pure AdS5 and string-motivated AdS5×S5 definitions differ in their cosmological implications.

  13. Seeing the world in black and white: the effects of perceptually induced mind-sets on judgment.

    PubMed

    Sleeth-Keppler, David

    2007-09-01

    Three experiments examined the notion that rudimentary perceptual experiences can serve as powerful guides to judgments under uncertainty. The results show that exposure to certain perceptual contrast patterns can influence the direction of bias without conscious awareness. In Experiment 1a, perception of alternating black and white squares, which served as orientation markers in a lexical decision task, resulted in a reduction of the well-known anchoring bias. Similar results were obtained when alternating high- and low-pitch tones were the orientation markers (Experiment 1b). Results of a final experiment provide evidence that perceptual contrast experiences can affect judgment-relevant representations across modalities. PMID:17760770

  14. Wronskians, dualities and FZZT-Cardy branes

    NASA Astrophysics Data System (ADS)

    Chan, Chuan-Tsung; Irie, Hirotaka; Niedner, Benjamin; Yeh, Chi-Hsien

    2016-09-01

    The resolvent operator plays a central role in matrix models. For instance, with utilizing the loop equation, all of the perturbative amplitudes including correlators, the free-energy and those of instanton corrections can be obtained from the spectral curve of the resolvent operator. However, at the level of non-perturbative completion, the resolvent operator is generally not sufficient to recover all the information from the loop equations. Therefore it is necessary to find a sufficient set of operators which provide the missing non-perturbative information. In this paper, we study generalized Wronskians of the Baker-Akhiezer systems as a manifestation of these new degrees of freedom. In particular, we derive their isomonodromy systems and then extend several spectral dualities to these systems. In addition, we discuss how these Wronskian operators are naturally aligned on the Kac table. Since they are consistent with the Seiberg-Shih relation, we propose that these new degrees of freedom can be identified as FZZT-Cardy branes in Liouville theory. This means that FZZT-Cardy branes are the bound states of elemental FZZT branes (i.e. the twisted fermions) rather than the bound states of principal FZZT-brane (i.e. the resolvent operator).

  15. Effective actions of nongeometric five-branes

    NASA Astrophysics Data System (ADS)

    Chatzistavrakidis, Athanasios; Gautason, Fridrik Freyr; Moutsopoulos, George; Zagermann, Marco

    2014-03-01

    An interesting consequence of string dualities is that they reveal situations where the geometry of a string background appears to be globally ill defined, a phenomenon usually referred to as nongeometry. On the other hand, string theory contains extended objects with nontrivial monodromy around them, often dubbed defect or exotic branes in codimension-2. We determine and examine the worldvolume actions and the couplings of certain such branes. In particular, based on specific chains of T- and S-dualities, we derive the Dirac-Born-Infeld and Wess-Zumino actions, which describe the dynamics of type IIB five-branes as well as their couplings to the appropriate gauge potentials associated to mixed symmetry tensors. Based on these actions we discuss how these branes act as sources of nongeometric fluxes. In one case this flux is what is usually termed Q flux, associated to a T-fold compactification, while in the S-dual case a type of nongeometry related to the Ramond-Ramond sector is encountered.

  16. From soft walls to infrared branes

    SciTech Connect

    Gersdorff, Gero von

    2010-10-15

    Five-dimensional warped spaces with soft walls are generalizations of the standard Randall-Sundrum compactifications, where instead of an infrared brane one has a curvature singularity (with vanishing warp factor) at finite proper distance in the bulk. We project the physics near the singularity onto a hypersurface located a small distance away from it in the bulk. This results in a completely equivalent description of the soft wall in terms of an effective infrared brane, hiding any singular point. We perform explicitly this calculation for two classes of soft wall backgrounds used in the literature. The procedure has several advantages. It separates in a clean way the physics of the soft wall from the physics of the five-dimensional bulk, facilitating a more direct comparison with standard two-brane warped compactifications. Moreover, consistent soft walls show a sort of universal behavior near the singularity which is reflected in the effective brane Lagrangian. Thirdly, for many purposes, a good approximation is obtained by assuming the bulk background away from the singularity to be the usual Randall-Sundrum metric, thus making the soft wall backgrounds better analytically tractable. We check the validity of this procedure by calculating the spectrum of bulk fields and comparing it to the exact result, finding very good agreement.

  17. Collective excitations of massive flavor branes

    NASA Astrophysics Data System (ADS)

    Itsios, Georgios; Jokela, Niko; Ramallo, Alfonso V.

    2016-08-01

    We study the intersections of two sets of D-branes of different dimensionalities. This configuration is dual to a supersymmetric gauge theory with flavor hypermultiplets in the fundamental representation of the gauge group which live on the defect of the unflavored theory determined by the directions common to the two types of branes. One set of branes is dual to the color degrees of freedom, while the other set adds flavor to the system. We work in the quenched approximation, i.e., where the flavor branes are considered as probes, and focus specifically on the case in which the quarks are massive. We study the thermodynamics and the speeds of first and zero sound at zero temperature and non-vanishing chemical potential. We show that the system undergoes a quantum phase transition when the chemical potential approaches its minimal value and we obtain the corresponding non-relativistic critical exponents that characterize its critical behavior. In the case of (2 + 1)-dimensional intersections, we further study alternative quantization and the zero sound of the resulting anyonic fluid. We finally extend these results to non-zero temperature and magnetic field and compute the diffusion constant in the hydrodynamic regime. The numerical results we find match the predictions by the Einstein relation.

  18. Schwarzschild solution in brane induced gravity

    SciTech Connect

    Gabadadze, Gregory; Iglesias, Alberto

    2005-10-15

    The metric of a Schwarzschild solution in brane induced gravity in five dimensions is studied. We find a nonperturbative solution for which an exact expression on the brane is obtained. We also find a linearized solution in the bulk and argue that a nonsingular exact solution in the entire space should exist. The exact solution on the brane is highly nontrivial as it interpolates between different distance scales. This part of the metric is enough to deduce an important property--the Arnowitt-Deser-Misner canonical formalism (ADM) mass of the solution is suppressed compared to the bare mass of a static source. This screening of the mass is due to nonlinear interactions which give rise to a nonzero curvature outside the source. The curvature extends away from the source to a certain macroscopic distance that coincides with the would-be strong interaction scale. The very same curvature shields the source from strong coupling effects. The four-dimensional law of gravity, including the correct tensorial structure, is recovered at observable distances. We find that the solution has no van Dam-Veltman-Zakharov discontinuity and show that the gravitational field on the brane is always weak, in spite of the fact that the solution is nonperturbative.

  19. Cosmological perturbations on the phantom brane

    NASA Astrophysics Data System (ADS)

    Bag, Satadru; Viznyuk, Alexander; Shtanov, Yuri; Sahni, Varun

    2016-07-01

    We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, weff < ‑1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the `Weyl fluid' or `dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which results in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch (z lesssim 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.

  20. First law of p-brane thermodynamics

    SciTech Connect

    Rogatko, Marek

    2009-08-15

    We study the physical process version and the equilibrium state version of the first law of thermodynamics for a charged p-brane. The general setting for our investigations is (n+p+1)-dimensional Einstein dilaton gravity with (p+2) strength form fields.

  1. Higher-order brane gravity models

    SciTech Connect

    Dabrowski, Mariusz P.; Balcerzak, Adam

    2010-06-23

    We discuss a very general theory of gravity, of which Lagrangian is an arbitrary function of the curvature invariants, on the brane. In general, the formulation of the junction conditions (except for Euler characteristics such as Gauss-Bonnet term) leads to the powers of the delta function and requires regularization. We suggest the way to avoid such a problem by imposing the metric and its first derivative to be regular at the brane, the second derivative to have a kink, the third derivative of the metric to have a step function discontinuity, and no sooner as the fourth derivative of the metric to give the delta function contribution to the field equations. Alternatively, we discuss the reduction of the fourth-order gravity to the second order theory by introducing extra scalar and tensor fields: the scalaron and the tensoron. In order to obtain junction conditions we apply two methods: the application of the Gauss-Codazzi formalism and the application of the generalized Gibbons-Hawking boundary terms which are appended to the appropriate actions. In the most general case we derive junction conditions without assuming the continuity of the scalaron and the tensoron on the brane. The derived junction conditions can serve studying the cosmological implications of the higher-order brane gravity models.

  2. Dynamical brane with angles: Collision of the universes

    NASA Astrophysics Data System (ADS)

    Maeda, Kei-ichi; Uzawa, Kunihito

    2012-04-01

    We present the time-dependent solutions corresponding to the dynamical D-brane with angles in ten-dimensional type II supergravity theories. Our solutions with angles are different from the known dynamical intersecting brane solutions in supergravity theories. Because of our ansatz for fields, all warp factors in the solutions can depend on time. Applying these solutions, we construct cosmological models from those solutions by smearing some dimensions and compactifying the internal space. We find the Friedmann-Lemaître-Robertson-Walker cosmological solutions with power-law expansion. We also discuss the dynamics of branes based on these solutions. When the spacetime is contracting in ten dimensions, each brane approaches the others as the time evolves. However, for a Dp-brane (p≤7) without smearing branes, a singularity appears before branes collide. In contrast, the D6-D8-brane system or the smeared D(p-2)-Dp-brane system with one uncompactified extra dimension can provide an example of colliding branes (and collision of the universes), if they have the same charges.

  3. Large Lepton Mixing in A String Brane World

    NASA Astrophysics Data System (ADS)

    Yanagida, T.

    2004-12-01

    It is very interesting if the observed disparity between mixing angles for neutrinos and for quarks has a geometrical origin in an extra dimensional space. We construct such an example in the type IIB string theory, where wave functions of left-handed leptons spread in an effective two dimensional extra space while wave finctions of left-handed quarks are localized at separate fixed points. This leads to the anarchy hypothesis for the left-handed leptons which explains naturally the large mixing angles for neutrinos. We emphasize, however, that this is only a projection of the six dimensional extra space onto a specific two dimensions. We have, in fact, another projected two dimensional extra space where the wave functions of left-handed quarks spread there and those of left-handed leptons are localized at fixed points.

  4. Black Hole Formation in Randall-Sundrum II Braneworlds

    NASA Astrophysics Data System (ADS)

    Wang, Daoyan; Choptuik, Matthew W.

    2016-07-01

    We present the first numerical study of the full dynamics of a braneworld scenario, working within the framework of the single brane model of Randall and Sundrum. In particular, we study the process of gravitational collapse driven by a massless scalar field which is confined to the brane. Imposing spherical symmetry on the brane, we show that the evolutions of sufficiently strong initial configurations of the scalar field result in black holes that have finite extension into the bulk. Furthermore, we find preliminary evidence that the black holes generated form a unique sequence, irrespective of the details of the initial data. The black hole solutions we obtain from dynamical evolutions are consistent with those previously computed from a static vacuum ansatz.

  5. Black Hole Formation in Randall-Sundrum II Braneworlds.

    PubMed

    Wang, Daoyan; Choptuik, Matthew W

    2016-07-01

    We present the first numerical study of the full dynamics of a braneworld scenario, working within the framework of the single brane model of Randall and Sundrum. In particular, we study the process of gravitational collapse driven by a massless scalar field which is confined to the brane. Imposing spherical symmetry on the brane, we show that the evolutions of sufficiently strong initial configurations of the scalar field result in black holes that have finite extension into the bulk. Furthermore, we find preliminary evidence that the black holes generated form a unique sequence, irrespective of the details of the initial data. The black hole solutions we obtain from dynamical evolutions are consistent with those previously computed from a static vacuum ansatz. PMID:27419557

  6. The BlackBerry Project: The Hidden World of Adolescents’ Text Messaging and Relations With Internalizing Symptoms

    PubMed Central

    Underwood, Marion K.; Ehrenreich, Samuel E.; More, David; Solis, Jerome S.; Brinkley, Dawn Y.

    2013-01-01

    In this naturalistic study of adolescents’ text messaging, participants (N = 172, 81 girls, age 14) were given BlackBerry devices configured to save their text messages to a secure archive for coding. Two, 2-day transcripts collected four months apart within the same academic year were microcoded for content. Results showed that most text message utterances were positive or neutral, and that adolescents sent text messages primarily to peers and to romantic partners. Only a few sex differences emerged. Frequency of text messages containing negative talk positively predicted overall internalizing symptoms and anxious depression. Text messaging about sex was positively associated with overall internalizing and somatic complaints for girls, but not for boys. PMID:25750494

  7. Black rings in Taub-NUT and D0-D6 interactions

    NASA Astrophysics Data System (ADS)

    Camps, Joan; Emparan, Roberto; Figueras, Pau; Giusto, Stefano; Saxena, Ashish

    2009-02-01

    We analyze the dynamics of neutral black rings in Taub-NUT spaces and their relation to systems of D0 and D6 branes in the supergravity approximation. We employ several recent techniques, both perturbative and exact, to construct solutions in which thermal excitations of the D0-branes can be turned on or off, and the D6-brane can have B-fluxes turned on or off in its worldvolume. By explicit calculation of the interaction energy between the D0 and D6 branes, we can study equilibrium configurations and their stability. We find that although D0 and D6 branes (in the absence of B fields, and at zero temperature) repeal each other at non-zero separation, as they get together they go over continuosly to an unstable bound state of an extremal singular Kaluza-Klein black hole. We also find that, for B-fields larger than a critical value, or sufficiently large thermal excitation, the D0 and D6 branes form stable bound states. The bound states with thermally excited D0 branes are black rings in Taub-NUT, and we provide an analysis of their phase diagram.

  8. Entanglement temperature for black branes with hyperscaling violation

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Bao; Li, Gu-Qiang; Mo, Jie-Xiong

    2016-04-01

    Entanglement temperature is an interesting quantity which relates the increased amount of entanglement entropy to that of energy for a weakly excited state in the first-law of entanglement entropy, it is proportional to the inverse of the size of entanglement subsystem and only depends on the shape of the entanglement region. We find the explicit formula of entanglement temperature for the general hyperscaling violation backgrounds with a strip-subsystem. We then investigate the entanglement temperature for a round ball-subsystem, we check that the entanglement temperature has a universal form when the hyperscaling violation exponent is near zero.

  9. Linear Sigma Model Toolshed for D-brane Physics

    SciTech Connect

    Hellerman, Simeon

    2001-08-23

    Building on earlier work, we construct linear sigma models for strings on curved spaces in the presence of branes. Our models include an extremely general class of brane-worldvolume gauge field configurations. We explain in an accessible manner the mathematical ideas which suggest appropriate worldsheet interactions for generating a given open string background. This construction provides an explanation for the appearance of the derived category in D-brane physic complementary to that of recent work of Douglas.

  10. The dual formulation of M5-brane action

    NASA Astrophysics Data System (ADS)

    Ko, Sheng-Lan; Vanichchapongjaroen, Pichet

    2016-06-01

    We construct a dual formulation, with respect to the conventional PST formalism, of the M5-brane action propagating in a generic 11d supergravity background. Constraint analysis is performed to further justify that our theory has the correct number of degrees of freedom. Comparison of this action with the existing M5-brane actions is carried out. We also show that a conventional D4-brane action is obtained upon double dimensional reduction.

  11. Geometric aspects of D-branes and T-duality

    NASA Astrophysics Data System (ADS)

    Becker, Katrin; Bergman, Aaron

    2009-11-01

    We explore the differential geometry of T-duality and D-branes. Because D-branes and RR-fields are properly described via K-theory, we discuss the (differential) K-theoretic generalization of T-duality and its application to the coupling of D-branes to RR-fields. This leads to a puzzle involving the transformation of the A-roof genera in the coupling.

  12. A 5D holographic dark energy in DGP-BRANE cosmology

    NASA Astrophysics Data System (ADS)

    Farajollahi, H.; Ravanpak, A.

    2014-02-01

    This paper is aimed to investigate 5D holographic dark energy (HDE) in DGP-Brane cosmology by employing a combination of Sne Ia, BAO and CMB observational data and constraining cosmological parameters. The FRW dynamics for the normal branch ( ɛ=+1) solution of induced gravity brane-world model is taken with the assumption that matter in 5D bulk is HDE such that its holographic nature is reproduced effectively in 4D universe. In the HDE model, we used Hubble horizon as IR cutoff instead of future event horizon. This way, while the model predicts current universe acceleration, it also removes the problem of circular reasoning and causality observed in using future event horizon as IR cutoff.

  13. Black hole thermodynamics from calculations in strongly coupled gauge theory.

    PubMed

    Kabat, D; Lifschytz, G; Lowe, D A

    2001-02-19

    We develop an approximation scheme for the quantum mechanics of N D0-branes at finite temperature in the 't Hooft large- N limit. The entropy of the quantum mechanics calculated using this approximation agrees well with the Bekenstein-Hawking entropy of a ten-dimensional nonextremal black hole with 0-brane charge. This result is in accordance with the duality conjectured by Itzhaki, Maldacena, Sonnenschein, and Yankielowicz [Phys. Rev. D 58, 046004 (1998)]. Our approximation scheme provides a model for the density matrix which describes a black hole in the strongly coupled quantum mechanics. PMID:11290159

  14. Trace anomaly inflation in brane-induced gravity

    SciTech Connect

    Corradini, Olindo; Iglesias, Alberto E-mail: iglesias@physics.ucdavis.edu

    2008-05-15

    In this paper we find that Starobinsky's inflationary solution is also valid in the Dvali-Gabadadze-Porrati (DGP) model where a 3-brane is embedded in five-dimensional Minkowski bulk. We show that such a solution is typically not supported by the self-accelerated branch of the model, giving therefore a natural selection of the conventional branch of solutions. In the absence of brane-induced Einstein-Hilbert term the SA branch is always selected out. We then study the linearized modes around all such de Sitter brane solutions finding perturbative stability for a range of parameters of the brane QFT.

  15. Quintessence and phantom dark energy from ghost D-branes

    SciTech Connect

    Saridakis, Emmanuel N.; Ward, John

    2009-10-15

    We present a novel dark-energy candidate, based upon the existence and dynamics of ghost D-branes in a warped compactification of type IIB string theory. Gp-branes cancel the combined BPS sectors of the Dp-branes, while they preserve the same supersymmetries. We show that this scenario can naturally lead to either quintessence or phantomlike behaviors, depending on the form of the involved potentials and brane tension. As a specific example we investigate the static, dark-energy dominated solution subclass.

  16. Geometric phase and gravitational precession of D-branes

    NASA Astrophysics Data System (ADS)

    Pedder, Chris; Sonner, Julian; Tong, David

    2007-12-01

    We study Berry’s phase in the D0-D4-brane system. When a D0-brane moves in the background of D4-branes, the first excited states undergo a holonomy described by a non-Abelian Berry connection. At weak coupling this is an SU(2) connection over R5, known as the Yang monopole. At strong coupling, the holonomy is recast as the classical gravitational precession of a spinning particle. The Berry connection is the spin connection of the near-horizon limit of the D4-branes, which is a continuous deformation of the Yang and anti-Yang monopole.

  17. Large field inflation from D-branes

    NASA Astrophysics Data System (ADS)

    Escobar, Dagoberto; Landete, Aitor; Marchesano, Fernando; Regalado, Diego

    2016-04-01

    We propose new large field inflation scenarios built on the framework of F-term axion monodromy. Our setup is based on string compactifications where D-branes create potentials for closed string axions via F-terms. Because the source of the axion potential is different from the standard sources of moduli stabilization, it is possible to lower the inflaton mass as compared to other massive scalars. We discuss a particular class of models based on type IIA flux compactifications with D6-branes. In the small field regime they describe supergravity models of quadratic chaotic inflation with a stabilizer field. In the large field regime the inflaton potential displays a flattening effect due to Planck suppressed corrections, allowing us to easily fit the cosmological parameters of the model within current experimental bounds.

  18. Brane model with two asymptotic regions

    SciTech Connect

    Lubo, Musongela

    2005-02-15

    Some brane models rely on a generalization of the Melvin magnetic universe including a complex scalar field among the sources. We argue that the geometric interpretation of Kip. S. Thorne of this geometry restricts the kind of potential a complex scalar field can display to keep the same asymptotic behavior. While a finite energy is not obtained for a Mexican hat potential in this interpretation, this is the case for a potential displaying a broken phase and an unbroken one. We use for technical simplicity and illustrative purposes an ad hoc potential which however shares some features with those obtained in some supergravity models. We construct a sixth dimensional cylindrically symmetric solution which has two asymptotic regions: the Melvin-like metric on one side and a flat space displaying a conical singularity on the other. The causal structure of the configuration is discussed. Unfortunately, gravity is not localized on the brane.

  19. Brane model with two asymptotic regions

    NASA Astrophysics Data System (ADS)

    Lubo, Musongela

    2005-02-01

    Some brane models rely on a generalization of the Melvin magnetic universe including a complex scalar field among the sources. We argue that the geometric interpretation of Kip. S. Thorne of this geometry restricts the kind of potential a complex scalar field can display to keep the same asymptotic behavior. While a finite energy is not obtained for a Mexican hat potential in this interpretation, this is the case for a potential displaying a broken phase and an unbroken one. We use for technical simplicity and illustrative purposes an ad hoc potential which however shares some features with those obtained in some supergravity models. We construct a sixth dimensional cylindrically symmetric solution which has two asymptotic regions: the Melvin-like metric on one side and a flat space displaying a conical singularity on the other. The causal structure of the configuration is discussed. Unfortunately, gravity is not localized on the brane.

  20. The cosmology of asymmetric brane modified gravity

    SciTech Connect

    O'Callaghan, Eimear; Gregory, Ruth; Pourtsidou, Alkistis E-mail: ppxap1@nottingham.ac.uk

    2009-09-01

    We consider the asymmetric branes model of modified gravity, which can produce late time acceleration of the universe and compare the cosmology of this model to the standard ΛCDM model and to the DGP braneworld model. We show how the asymmetric cosmology at relevant physical scales can be regarded as a one-parameter extension of the DGP model, and investigate the effect of this additional parameter on the expansion history of the universe.

  1. The landscape of intersecting brane models

    NASA Astrophysics Data System (ADS)

    Douglas, Michael R.; Taylor, Washington

    2007-01-01

    We develop tools for analyzing the space of intersecting brane models. We apply these tools to a particular T6/Bbb Z22 orientifold which has been used for model building. We prove that there are a finite number of intersecting brane models on this orientifold which satisfy the Diophantine equations coming from supersymmetry. We give estimates for numbers of models with specific gauge groups, which we confirm numerically. We analyze the distributions and correlations of intersection numbers which characterize the numbers of generations of chiral fermions, and show that intersection numbers are roughly independent, with a characteristic distribution which is peaked around 0 and in which integers with fewer divisors are mildly suppressed. As an application, the number of models containing a gauge group SU(3) × SU(2) × U(1) or SU(4) × SU(2) × SU(2) and 3 generations of appropriate types of chiral matter is estimated to be order Script O(10), in accord with previous explicit constructions. As another application of the methods developed in the paper, we construct a new pair of 3-generation SU(4) × SU(2) × SU(2) Pati-Salam models using intersecting branes. We conclude with a description of how this analysis can be generalized to a broader class of Calabi-Yau orientifolds, and a discussion of how the numbers of IBM's are related to numbers of stabilized vacua.

  2. Cosmological perturbations across an S-brane

    SciTech Connect

    Brandenberger, Robert H.; Kounnas, Costas; Partouche, Hervé; Patil, Subodh P.; Toumbas, Nicolaos E-mail: kounnas@lpt.ens.fr E-mail: subodh.patil@cern.ch

    2014-03-01

    Space-filling S-branes can mediate a transition between a contracting and an expanding universe in the Einstein frame. Following up on previous work that uncovered such bouncing solutions in the context of weakly coupled thermal configurations of a certain class of type II superstrings, we set up here the formalism in which we can study the evolution of metric fluctuations across such an S-brane. Our work shows that the specific nature of the S-brane, which is sourced by non-trivial massless thermal string states and appears when the universe reaches a maximal critical temperature, allows for a scale invariant spectrum of curvature fluctuations to manifest at late times via a stringy realization of the matter bounce scenario. The finite energy density at the transition from contraction to expansion provides calculational control over the propagation of the curvature perturbations through the bounce, furnishing a working proof of concept that such a stringy universe can result in viable late time cosmology.

  3. Holographic Systematics of D-brane Inflation

    SciTech Connect

    Baumann, Daniel; Dymarsky, Anatoly; Kachru, Shamit; Klebanov, Igor R.; McAllister, Liam; /Cornell U., Phys. Dept.

    2008-11-05

    We provide a systematic treatment of possible corrections to the inflaton potential for D-brane inflation in the warped deformed conifold. We consider the D3-brane potential in the presence of the most general possible corrections to the throat geometry sourced by coupling to the bulk of a compact Calabi-Yau space. This corresponds to the potential on the Coulomb branch of the dual gauge theory, in the presence of arbitrary perturbations of the Lagrangian. The leading contributions arise from perturbations by the most relevant operators that do not destroy the throat geometry. We find a generic contribution from a non-chiral operator of dimension {Delta} = 2 associated with a global symmetry current, resulting in a negative contribution to the inflaton mass-squared. If the Calabi-Yau preserves certain discrete symmetries, this is the dominant correction to the inflaton potential, and fine-tuning of the inflaton mass is possible. In the absence of such discrete symmetries, the dominant contribution comes from a chiral operator with {Delta} = 3/2, corresponding to a {phi}{sup 3/2} term in the inflaton potential. The resulting inflationary models are phenomenologically identical to the inflection point scenarios arising from specific D7-brane embeddings, but occur under far more general circumstances. Our strategy extends immediately to other warped geometries, given sufficient knowledge of the Kaluza-Klein spectrum.

  4. African Psychology and Black Personality Testing.

    ERIC Educational Resources Information Center

    Baldwin, Joseph A.

    1987-01-01

    The following instruments for measuring Black personality use the world view and cultural orientations of Africa have been developed and are described: (1) the Black Personality Questionnaire; (2) the Black Preference Inventory; (3) the Black Opinion Scale; (4) the Themes of Black Awareness Test; (5) the Themes Concerning Blacks Test; and (6) the…

  5. Wightman function and vacuum fluctuations in higher dimensional brane models

    SciTech Connect

    Saharian, Aram A.

    2006-02-15

    The Wightman function and the vacuum expectation value of the field square are evaluated for a massive scalar field with a general curvature coupling parameter subject to Robin boundary conditions on two codimension-one parallel branes located on a (D+1)-dimensional background spacetime AdS{sub D{sub 1}}{sub +1}x{sigma} with a warped internal space {sigma}. The general case of different Robin coefficients on separate branes is considered. The application of the generalized Abel-Plana formula for the series over zeros of combinations of cylinder functions allows us to manifestly extract the part due to the bulk without boundaries. Unlike the purely anti-de Sitter (AdS) bulk, the vacuum expectation value of the field square induced by a single brane, in addition to the distance from the brane, depends also on the position of the brane in the bulk. The brane induced part in this expectation value vanishes when the brane position tends to the AdS horizon or the AdS boundary. The asymptotic behavior of the vacuum densities near the branes and at large distances is investigated. The contribution of Kaluza-Klein modes along {sigma} is discussed in various limiting cases. In the limit when the curvature radius for the AdS spacetime tends to infinity, we derive the results for two parallel Robin plates on the background spacetime R{sup (D{sub 1},1)}x{sigma}. For strong gravitational fields corresponding to large values of the AdS energy scale, both the single brane and interference parts of the expectation values integrated over the internal space are exponentially suppressed. As an example the case {sigma}=S{sup 1} is considered, corresponding to the AdS{sub D+1} bulk with one compactified dimension. An application to the higher dimensional generalization of the Randall-Sundrum brane model with arbitrary mass terms on the branes is discussed.

  6. Watershed Restoration on Black Drake Ranch: Humility vs. hubris in applying incomplete scientific information to real world applications

    NASA Astrophysics Data System (ADS)

    Bulkley, G. B.; Mattenberger, S.

    2009-12-01

    Black Drake Ranch comprises ~1000 acres of Klamath Basin high desert in S. Central OR, containing 2.5m reaches each of the North Fork Sprague River (NFSR) and its major tributary, Five Mile Creek, a meandering meadow spring creek anchoring 26m of upstream habitat for several species of concern, including native redband trout. Decades of unenlightened management had resulted in substantial watershed degradation: channelization and diking by the U.S. Army Corps of Engineers (hubris), massive stream bank head cuts and erosion by cattle hooves, complete blockade of fish passage by two irrigation diversion dams, loss of eggs and fry in irrigation runoff, upland juniper overgrowth from fire suppression, and extensive infestation of noxious weeds. After in depth analysis by the Working Landscapes Alliance, Klamath Watershed Partnership, Oregon Dept. of Fish and Wildlife, and adjacent landowners, the landowner, a retired cellular biologist, collaborated with an United States Fish & Wildlife Service hydrologist to formulate a comprehensive Long Term Strategic Plan (LTSP) to restore a functioning ecosystem compatible with an economically viable cattle/hay ranching operation. The LTSP is based upon current best practices (CPBs) recommended by experts in relevant, but relatively young scientific fields, with the recognition that these CPBs are constantly evolving as new information becomes available, particularly relevant to this particular site. Consequently, the LTSP remains flexible, and is repeatedly revised as new information is culled from the literature, but mostly from on-site experience and errors. This LTSP entails: 1. Rotational cattle grazing and riparian fencing to allow the re-establishment of bank-stabilizing native plant populations; 2. At diversion dams, installation of fish screens and 3. re-establishment of fish passage using paleochannels revealed by aerial contour mapping; 4. Selective stream bank head cut repair to retain and thereby reduce irrigation

  7. Black hole particle emission in higher-dimensional spacetimes.

    PubMed

    Cardoso, Vitor; Cavaglià, Marco; Gualtieri, Leonardo

    2006-02-24

    In models with extra dimensions, a black hole evaporates both in the bulk and on the visible brane, where standard model fields live. The exact emissivities of each particle species are needed to determine how the black hole decay proceeds. We compute and discuss the absorption cross sections, the relative emissivities, and the total power output of all known fields in the evaporation phase. Graviton emissivity is highly enhanced as the spacetime dimensionality increases. Therefore, a black hole loses a significant fraction of its mass in the bulk. This result has important consequences for the phenomenology of black holes in models with extra dimensions and black hole detection in particle colliders. PMID:16606074

  8. Deformations of anti-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Detournay, Stephane

    2006-11-01

    This PhD thesis mainly deals with deformations of locally anti-de Sitter black holes, focusing in particular on BTZ black holes. We first study the generic rotating and (extended) non-rotating BTZ black holes within a pseudo-Riemannian symmetric spaces framework, emphasize on the role played by solvable subgroups of SL(2,R) in the black hole structure and derive their global geometry in a group-theoretical way. We analyse how these observations are transposed in the case of higher-dimensional locally AdS black holes. We then show that there exists, in SL(2,R), a family of twisted conjugacy classes which give rise to winding symmetric WZW D1-branes in a BTZ black hole background. The term "deformation" is then considered in two distinct ways. On the one hand, we deform the algebra of functions on the branes in the sense of (strict) deformation quantization, giving rise to a "noncommutative black hole". In the same context, we investigate the question of invariant deformations of the hyperbolic plane and present explicit formulae. On the other hand, we explore the moduli space of the (orbifolded) SL(2,R) WZW model by studying its marginal deformations, yielding namely a new class of exact black string solutions in string theory. These deformations also allow us to relate the D1-branes in BTZ black holes to D0-branes in the 2D black hole. A fair proportion of this thesis consists of (hopefully) pedagogical short introductions to various subjects: deformation quantization, string theory, WZW models, symmetric spaces, symplectic and Poisson geometry.

  9. Black hole attractors and gauge theories

    NASA Astrophysics Data System (ADS)

    Huang, Lisa Li Fang

    2007-12-01

    This thesis is devoted to the study of supersymmetric black holes that arise from string compactifications. We begin by studying the R 2 corrections to the entropy of two solutions of five dimensional supergravity, the supersymmetric black ring and the spinning black hole. Using Wald's formula we compute the R2 corrections to the entropy of the black ring and BMPV black hole. We study N D4-branes wrapping a 4 cycle and M DO-branes on the quintic. For N D4-branes, we resolve the naive mismatch between the moduli space of the Higgs branch of the gauge theory and the moduli of a degree N hypersurface which the D4-brane wraps. The degree N surface must admit a holomorphic divisor and is a determinantal variety. Adding a single DO brane to probe the deformed geometry, we recover the determinant equation from F and D flatness condition which was previously discovered from a classical geometry approach. We next generalize the qunitic story for Calabi-Yau manifolds arising from complete intersections in toric varieties. We recover the moduli space of N D4-branes in terms of the moduli space of a U( N) x U(N) gauge theory with bi-fundamentals com ing from a D6 - D6 system. We also recast the tachyon condensation of the D6 - D6 system in the language of open string gauged linear sigma model. We obtain the determinant equation from F-term constraints arising from a boundary coupling. We set out to understand the Ooguri-Strominger-Vafa conjecture directly in the D4-DO black hole attractor geometry. We show that the lift to the euclidean IIA attractor geometry gives a complexified M-theory geometry whose asymptotic boundary is a torus. Employing AdS3/CFT 2 duality, we argue that the string partition function computes the elliptic genus of the Maldacena-Strominger-Witten conformal field theory. We evaluate the IIA partition function using the Green-Schwarz formalism and show that it gives ZtopZ top, coming from instantons and anti-instantons respectively. Finally, we determine

  10. Brane bounce-type configurations in a string-like scenario

    NASA Astrophysics Data System (ADS)

    Sousa, L. J. S.; Silva, C. A. S.; Almeida, C. A. S.

    2012-12-01

    Brane world six-dimensional scenario with string-like metric has been proposed to alleviate the problem of field localization. However, these models have been suffering from some drawbacks related with energy conditions as well as from difficulties to find analytical solutions. In this work, we propose a model where a brane is made of a scalar field with bounce-type configurations and embedded in a bulk with a string-like metric. This model produces a sound AdS scenario where none of the important physical quantities is infinite. Among these quantities are the components of the energy-momentum tensor, which have its positivity ensured by a suitable choice of the bounce configurations. Another advantage of this model is that the warp factor can be obtained analytically from the equations of motion for the scalar field, obtaining as a result a thick brane configuration, in a six-dimensional context. Moreover, the study of the scalar field localization in this scenario is done.

  11. Bulk axions, brane back-reaction and fluxes

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; van Nierop, L.

    2011-02-01

    Extra-dimensional models can involve bulk pseudo-Goldstone bosons (pGBs) whose shift symmetry is explicitly broken only by physics localized on branes. Reliable calculation of their low-energy potential is often difficult because it requires an understanding of the dynamics that stabilizes the geometry of the extra dimensions. Rugby ball solutions provide simple examples of extra-dimensional configurations for which two compact extra dimensions are stabilized in the presence of only positive-tension brane sources. The effects of brane back-reaction can be computed explicitly for these systems, allowing the calculation of the shape of the low-energy pGB potential, V 4 D ( φ), as a function of the perturbing brane properties, as well as the response of both the extra dimensional and on-brane geometries to this stabilization. If the φ-dependence is a small part of the total brane tension a very general analysis is possible, permitting an exploration of how the system responds to frustration when the two branes disagree on what the proper scalar vacuum should be. We show how the low-energy potential is given by the sum of brane tensions (in agreement with common lore) when only the brane tensions couple to φ. We also show how a direct brane coupling to the flux stabilizing the extra dimensions corrects this result in a way that does not simply amount to the contribution of the flux to the brane tensions. The mass of the low-energy pseudo-Goldstone mode is of order m a ˜ ( μ/ F)2 m KK (where μ is the energy scale associated with the brane symmetry breaking and F < M p is the extra-dimensional axion decay constant). In principle this can be larger or smaller than the Kaluza-Klein scale, m KK, but when it is larger axion properties cannot be computed purely within a 4D approximation (as they usually are). We briefly describe several potential applications, including a brane realization of `natural inflation,' and a dynamical mechanism for suppressing the couplings

  12. The Price of "Black Dominance."

    ERIC Educational Resources Information Center

    Hoberman, John

    2000-01-01

    Discusses the harmful effects of stereotyping black males as athletes, noting that over-identification with athletes and the world of physical performance limits black children's development by discouraging academic achievement. Examines the negative influence of mass media focus on black athletes, rappers, and stylized ghetto blackness. Discusses…

  13. D-brane Instantons in Type II String Theory

    SciTech Connect

    Blumenhagen, Ralph; Cvetic, Mirjam; Kachru, Shamit; Weigand, Timo; /SLAC

    2009-06-19

    We review recent progress in determining the effects of D-brane instantons in N=1 supersymmetric compactifications of Type II string theory to four dimensions. We describe the abstract D-brane instanton calculus for holomorphic couplings such as the superpotential, the gauge kinetic function and higher fermionic F-terms. This includes a discussion of multi-instanton effects and the implications of background fluxes for the instanton sector. Our presentation also highlights, but is not restricted to the computation of D-brane instanton effects in quiver gauge theories on D-branes at singularities. We then summarize the concrete consequences of stringy D-brane instantons for the construction of semi-realistic models of particle physics or SUSY-breaking in compact and non-compact geometries.

  14. Toward the stabilization of extra dimensions by brane dynamics

    NASA Astrophysics Data System (ADS)

    Kitazawa, Noriaki

    2015-04-01

    All the models of elementary particles and their interactions derived from String Theory involve a compact six-dimensional internal space. Its volume and shape should be fixed or stabilized, since otherwise massless scalar fields (moduli) reflecting their deformations appear in our four-dimensional space-time, with sizable effects on known particles and fields. We propose a strategy toward stabilizing the compact space without fluxes of three-form fields from closed strings. Our main motivation and goal is to proceed insofar as possible within conventional string worldsheet theory. As we shall see, D-branes with magnetic flux ("magnetized D-branes") and the forces between them can be used to this end. We investigate here some necessary ingredients: open string one-loop vacuum amplitudes between magnetized D-branes, magnetized D-branes fixed at orbifold singularities, and potential energies among such D-branes in the compact space that result from tree-level closed string exchanges.

  15. Moving branes in the presence of background tachyon fields

    SciTech Connect

    Rezaei, Z. Kamani, D.

    2011-12-15

    We compute the boundary state associated with a moving Dp-brane in the presence of the open string tachyon field as a background field. The effect of the tachyon condensation on the boundary state is discussed. It leads to a boundary state associated with a lower-dimensional moving D-brane or a stationary instantonic D-brane. The former originates from condensation along the spatial directions and the latter comes from the temporal direction of the D-brane worldvolume. Using the boundary state, we also study the interaction amplitude between two arbitrary Dp{sub 1}- and Dp{sub 2}-branes. The long-range behavior of the amplitude is investigated, demonstrating an obvious deviation from the conventional form, due to the presence of the background tachyon field.

  16. On Algebraic Singularities, Finite Graphs and D-Brane Gauge Theories: A String Theoretic Perspective

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui

    2002-09-01

    In this writing we shall address certain beautiful inter-relations between the construction of 4-dimensional supersymmetric gauge theories and resolution of algebraic singularities, from the perspective of String Theory. We review in some detail the requisite background in both the mathematics, such as orbifolds, symplectic quotients and quiver representations, as well as the physics, such as gauged linear sigma models, geometrical engineering, Hanany-Witten setups and D-brane probes. We investigate aspects of world-volume gauge dynamics using D-brane resolutions of various Calabi-Yau singularities, notably Gorenstein quotients and toric singularities. Attention will be paid to the general methodology of constructing gauge theories for these singular backgrounds, with and without the presence of the NS-NS B-field, as well as the T-duals to brane setups and branes wrapping cycles in the mirror geometry. Applications of such diverse and elegant mathematics as crepant resolution of algebraic singularities, representation of finite groups and finite graphs, modular invariants of affine Lie algebras, etc. will naturally arise. Various viewpoints and generalisations of McKay's Correspondence will also be considered. The present work is a transcription of excerpts from the first three volumes of the author's PhD thesis which was written under the direction of Prof. A. Hanany - to whom he is much indebted - at the Centre for Theoretical Physics of MIT, and which, at the suggestion of friends, he posts to the ArXiv pro hac vice; it is his sincerest wish that the ensuing pages might be of some small use to the beginning student.

  17. Brane brick models, toric Calabi-Yau 4-folds and 2d (0,2) quivers

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong

    2016-02-01

    We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2 d (generically) {N}=(0,2) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau associated to a given gauge theory and vice versa.

  18. Emergence of spontaneously broken supersymmetry on an anti-D3-brane in KKLT dS vacua

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata; Wrase, Timm

    2014-12-01

    The KKLT construction of de Sitter vacua includes an uplifting term coming from an anti-D3-brane. Here we show how this term can arise via spontaneous breaking of supersymmetry, based on the emergence of a nilpotent chiral supermultiplet on the world-volume of the anti-D3-brane. We establish and use the fact that both the DBI as well as the WZ term, with account of orientifolding, acquire a form of the Volkov-Akulov action. For an O3 orientifold involution of ℝ9,1 we demonstrate the cancellation between the fermionic parts of the DBI and WZ term for the D3-brane action. For the anti-D3-brane we show that the DBI action and the WZ action combine and lead to the emergence of the goldstino multiplet which is responsible for spontaneous breaking of supersymmetry. This provides a string theoretic explanation for the supersymmetric uplifting term in the KKLT effective supergravity model supplemented by a nilpotent chiral multiplet.

  19. Ostrogradski Hamiltonian approach for geodetic brane gravity

    SciTech Connect

    Cordero, Ruben; Molgado, Alberto

    2010-12-07

    We present an alternative Hamiltonian description of a branelike universe immersed in a flat background spacetime. This model is named geodetic brane gravity. We set up the Regge-Teitelboim model to describe our Universe where such field theory is originally thought as a second order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. This approach comprize the manage of both first- and second-class constraints and the counting of degrees of freedom follows accordingly.

  20. Chaos in classical D0-brane mechanics

    NASA Astrophysics Data System (ADS)

    Gur-Ari, Guy; Hanada, Masanori; Shenker, Stephen H.

    2016-02-01

    We study chaos in the classical limit of the matrix quantum mechanical system describing D0-brane dynamics. We determine a precise value of the largest Lyapunov exponent, and, with less precision, calculate the entire spectrum of Lyapunov exponents. We verify that these approach a smooth limit as N → ∞. We show that a classical analog of scrambling occurs with fast scrambling scaling, t ∗ ˜ log S. These results confirm the k-locality property of matrix mechanics discussed by Sekino and Susskind.

  1. Brane webs and O5-planes

    NASA Astrophysics Data System (ADS)

    Zafrir, Gabi

    2016-03-01

    We explore the properties of five-dimensional supersymmetric gauge theories living on 5-brane webs in orientifold 5-plane backgrounds. This allows constructing quiver gauge theories with alternating USp(2 N) and SO(N) gauge groups with fundamental matter, and thus leads to the existence of new 5 d fixed point theories. The web description can be further used to study non-perturbative phenomena such as enhancement of symmetry and duality. We further suggest that one can use these systems to engineer 5 d SO group with spinor matter. We present evidence for this claim.

  2. Localizing global hedgehogs on the brane

    NASA Astrophysics Data System (ADS)

    Cho, Inyong

    2004-10-01

    We investigate the localization of 4D topological global defects on the brane embedded in 5D. The defects are induced by 5D scalar fields with a symmetry-breaking potential. Taking an Ansatz which separates the scalar field into the 4D and the extra-D part, we find that the static-hedgehog configuration is accomplished and the defects are formed only in the AdS4/AdS5 background. In the extra dimension, the localization amplitude for the 4D defects is high where the warp factor is high.

  3. Localizing global hedgehogs on the brane

    SciTech Connect

    Cho, Inyong

    2004-10-15

    We investigate the localization of 4D topological global defects on the brane embedded in 5D. The defects are induced by 5D scalar fields with a symmetry-breaking potential. Taking an Ansatz which separates the scalar field into the 4D and the extra-D part, we find that the static-hedgehog configuration is accomplished and the defects are formed only in the AdS{sub 4}/AdS{sub 5} background. In the extra dimension, the localization amplitude for the 4D defects is high where the warp factor is high.

  4. Standard model on a D-brane.

    PubMed

    Berenstein, David; Jejjala, Vishnu; Leigh, Robert G

    2002-02-18

    We present a consistent string theory model which produces a simple extension of the standard model, consisting of a D3-brane at a simple orbifold singularity. We envision this as a local singularity within a warped compactification. The phenomenology of the model has some novel features. We note that, for the model to be viable, the scale of stringy physics must be in the multi-TeV range. There are natural hierarchies in the fermion spectrum and there are several possible experimental signatures of the model. PMID:11863881

  5. Evolution and End Point of the Black String Instability: Large D Solution.

    PubMed

    Emparan, Roberto; Suzuki, Ryotaku; Tanabe, Kentaro

    2015-08-28

    We derive a simple set of nonlinear, (1+1)-dimensional partial differential equations that describe the dynamical evolution of black strings and branes to leading order in the expansion in the inverse of the number of dimensions D. These equations are easily solved numerically. Their solution shows that thin enough black strings are unstable to developing inhomogeneities along their length, and at late times they asymptote to stable nonuniform black strings. This proves an earlier conjecture about the end point of the instability of black strings in a large enough number of dimensions. If the initial black string is very thin, the final configuration is highly nonuniform and resembles a periodic array of localized black holes joined by short necks. We also present the equations that describe the nonlinear dynamics of anti-de Sitter black branes at large D. PMID:26371636

  6. Thermodynamics of static black objects in D dimensional Einstein-Gauss-Bonnet gravity with D-4 compact dimensions

    NASA Astrophysics Data System (ADS)

    Sahabandu, C.; Suranyi, P.; Vaz, C.; Wijewardhana, L. C.

    2006-02-01

    We investigate the thermodynamics of static black objects such as black holes, black strings and their generalizations to D dimensions (“black branes”) in a gravitational theory containing the four-dimensional Gauss-Bonnet term in the action, with D-4 dimensions compactified torus. The entropies of black holes and black branes are compared to obtain information on the stability of these objects and to find their phase diagrams. We demonstrate the existence of a critical mass, which depends on the scale of the compactified dimensions, below which the black hole entropy dominates over the entropy of the black membrane.

  7. Intersecting D3-branes and holography

    NASA Astrophysics Data System (ADS)

    Constable, Neil R.; Erdmenger, Johanna; Guralnik, Zachary; Kirsch, Ingo

    2003-11-01

    We study a defect conformal field theory describing D3-branes intersecting over two space-time dimensions. This theory admits an exact Lagrangian description which includes both two- and four-dimensional degrees of freedom, has (4,4) supersymmetry and is invariant under global conformal transformations. Both two- and four-dimensional contributions to the action are conveniently obtained in a two-dimensional (2,2) superspace. In a suitable limit, the theory has a dual description in terms of a probe D3-brane wrapping an AdS3×S1 slice of AdS5×S5. We consider the AdS/CFT dictionary for this setup. In particular we find classical probe fluctuations corresponding to the holomorphic curve wy=cα'. These fluctuations are dual to defect fields containing massless two-dimensional scalars which parametrize the classical Higgs branch, but do not correspond to states in the Hilbert space of the CFT. We also identify probe fluctuations which are dual to BPS superconformal primary operators and to their descendants. A nonrenormalization theorem is conjectured for the correlators of these operators, and verified to order g2.

  8. Z p charged branes in flux compactifications

    NASA Astrophysics Data System (ADS)

    Berasaluce-González, M.; Cámara, P. G.; Marchesano, F.; Uranga, A. M.

    2013-04-01

    We consider 4d string compactifications in the presence of fluxes, and classify particles, strings and domain walls arising from wrapped branes which have charges conserved modulo an integer p, and whose annihilation is catalized by fluxes, through the Freed-Witten anomaly or its dual versions. The Z p -valued strings and particles are associated to Z p discrete gauge symmetries, which we show are realized as discrete subgroups of 4d U(1) symmetries broken by their Chern-Simons couplings to the background fluxes. We also describe examples where the discrete gauge symmetry group is actually non-Abelian. The Z p -valued domain walls separate vacua which have different flux quanta, yet are actually equivalent by an integer shift of axion fields (or further string duality symmetries). We argue that certain examples are related by T-duality to the realization of discrete gauge symmetries and Z p charges from torsion (co)homology. At a formal level, the groups classifying these discrete charges should correspond to a generalization of K-theory in the presence of general fluxes (and including fundamental strings and NS5-branes).

  9. Chapter 8. Black Holes in Braneworld Models

    NASA Astrophysics Data System (ADS)

    Tanahashi, N.; Tanaka, T.

    In this review, we summarize current understandings of blackhole solutions in various braneworld models, including the Arkani-Hamed-Dimopoulos-Dvali model, the Randall-Sundrum (RS) models, Karch-Randall (KR) model and the Dvali-Gabadadze-Porrati model. After illustrating basic properties of each braneworld model, we introduce the bulk/brane correspondence in the RS and KR braneworld models, adding supporting evidence for it. We then summarize the studies on braneworld black hole solutions, which consist of constructing exact or approximate solutions and investigating the phase diagram of solutions. In the study of phase diagram, we will also expound the implications of the bulk/brane correspondence to the braneworld black holes.

  10. Hidden Symmetries of Higher-Dimensional Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Kubiznak, David

    2008-09-01

    In this thesis we study higher-dimensional rotating black holes. Such black holes are widely discussed in string theory and brane-world models at present. We demonstrate that even the most general known Kerr-NUT-(A)dS spacetime, describing the general rotating higher-dimensional asymptotically (anti) de Sitter black hole with NUT parameters, is in many aspects similar to its four-dimensional counterpart. Namely, we show that it admits a fundamental hidden symmetry associated with the principal conformal Killing-Yano tensor. Such a tensor generates towers of hidden and explicit symmetries. The tower of Killing tensors is responsible for the existence of irreducible, quadratic in momenta, conserved integrals of geodesic motion. These integrals, together with the integrals corresponding to the tower of explicit symmetries, make geodesic equations in the Kerr-NUT-(A)dS spacetime completely integrable. We further demonstrate that in this spacetime the Hamilton-Jacobi, Klein-Gordon, and stationary string equations allow complete separation of variables and the problem of finding parallel-propagated frames reduces to the set of the first order ordinary differential equations. Moreover, we show that the Kerr-NUT-(A)dS spacetime is the most general Einstein space which possesses all these properties. We also explicitly derive the most general (off-shell) canonical metric admitting the principal conformal Killing-Yano tensor and demonstrate that such a metric is necessarily of the special algebraic type D of the higher-dimensional algebraic classification. The results presented in this thesis describe the new and complete picture of the relationship of hidden symmetries and rotating black holes in higher dimensions.

  11. A compact codimension-two braneworld with precisely one brane

    SciTech Connect

    Akerblom, Nikolas; Cornelissen, Gunther

    2010-06-15

    Building on earlier work on football-shaped extra dimensions, we construct a compact codimension-two braneworld with precisely one brane. The two extra dimensions topologically represent a 2-torus which is stabilized by a bulk cosmological constant and magnetic flux. The torus has positive constant curvature almost everywhere, except for a single conical singularity at the location of the brane. In contradistinction to the football-shaped case, there is no fine-tuning required for the brane tension. We also present some plausibility arguments why the model should not suffer from serious stability issues.

  12. Violation of cosmic censorship in dynamical p -brane systems

    NASA Astrophysics Data System (ADS)

    Maeda, Kengo; Uzawa, Kunihito

    2016-02-01

    We study the cosmic censorship of dynamical p -brane systems in a D -dimensional background. This is the generalization of the analysis in the Einstein-Maxwell-dilaton theory, which was discussed by Horne and Horowitz [Phys. Rev. D 48, R5457 (1993)]. We show that a timelike curvature singularity generically appears from an asymptotic region in the time evolution of the p -brane solution. Since we can set regular and smooth initial data in a dynamical M5-brane system in 11-dimensional supergravity, this implies a violation of cosmic censorship.

  13. Gauge theories from D7-branes over vanishing 4-cycles

    SciTech Connect

    Franco, Sebastian; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2010-12-16

    We study quiver gauge theories on D7-branes wrapped over vanishing holomorphic 4-cycles. We investigate how to incorporate O7-planes and/or flavor D7-branes, which are necessary to cancel anomalies. These theories are chiral, preserve four supercharges and exhibit very rich infrared dynamics. Geometric transitions and duality in the presence of O-planes are analyzed. We study the Higgs branch of these quiver theories, showing the emergence of fuzzy internal dimensions. This branch is related to noncommutative instantons on the divisor wrapped by the seven-branes. Our results have a natural application to the recently introduced F(uzz) limit of F-theory.

  14. d-Brane Instantons in Type II Orientifolds

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Cvetič, Mirjam; Kachru, Shamit; Weigand, Timo

    2009-11-01

    We review recent progress in determining the effects of d-brane instantons in [Formula: see text] supersymmetric compactifications of Type II string theory to four dimensions. We describe the abstract d-brane instanton calculus for holomorphic couplings such as the superpotential, the gauge kinetic function, and higher fermionic F-terms, and we briefly discuss the implications of background fluxes for the instanton sector. We then summarize the concrete consequences of stringy d-brane instantons for the construction of semirealistic models of particle physics or supersymmetry breaking in compact and noncompact geometries.

  15. Topological insulators and superconductors from D-brane

    NASA Astrophysics Data System (ADS)

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-09-01

    Realization of topological insulators (TIs) and superconductors (TSCs), such as the quantum spin Hall effect and the Z2 topological insulator, in terms of D-branes in string theory is proposed. We establish a one-to-one correspondence between the K-theory classification of TIs/TSCs and D-brane charges. The string theory realization of TIs and TSCs comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature. This sheds light on TIs and TSCs beyond non-interacting systems, and the underlying topological field theory description thereof.

  16. On gauge choice of spherically symmetric 3-branes

    NASA Astrophysics Data System (ADS)

    Wang, Anzhong

    2005-12-01

    The gauge choice for a spherically symmetric 3-brane embedded in a D-dimensional bulk with arbitrary matter fields on and off the brane is studied. It is shown that Israel's junction conditions across the brane severely restrict the dependence of the matter fields on the spacetime coordinates. As examples, a scalar field or a Yang Mills potential can be only either time dependent or radial-coordinate dependent for the chosen gauge, while for a perfect fluid it must be co-moving.

  17. Gravity coupling from micro-black holes

    NASA Astrophysics Data System (ADS)

    Scardigli, Fabio

    2000-06-01

    Recently much work has been done in lowering the Planck threshold of quantum gravitational effects (submillimeter dimension(s), Horava-Witten fifth dimension, strings or branes low energy effects, etc.). Working in the framework of 4-dim gravity, with semi-classical considerations based on Hawking evaporation of planckian micro-black holes, I shall show here as quantum gravity effects could occur also near GUT energies.

  18. Tie-Dyed Realities in a Monochromatic World: Deconstructing the Effects of Racial Microaggressions on Black-White Multiracial University Students

    ERIC Educational Resources Information Center

    Touchstone, Claire Anne

    2013-01-01

    Traditional policies dictate that Black-White multiracial people conform to monoracial minority status arising from Hypodescent (the "One-Drop Rule") and White privilege. Despite some social recognition of Black-White persons as multiracial, racial microaggressions persist in daily life. Subtle racist acts (Sue, Capodilupo, Torino,…

  19. Charged rotating dilaton black strings

    SciTech Connect

    Dehghani, M.H.; Farhangkhah, N.

    2005-02-15

    In this paper we, first, present a class of charged rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with zero and Liouville-type potentials. We find that these solutions can present a black hole/string with two regular horizons, an extreme black hole or a naked singularity provided the parameters of the solutions are chosen suitable. We also compute the conserved and thermodynamic quantities, and show that they satisfy the first law of thermodynamics. Second, we obtain the (n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. We find that these solutions can present black branes, naked singularities or spacetimes with cosmological horizon if one chooses the parameters of the solutions correctly. Again, we find that the thermodynamic quantities of these solutions satisfy the first law of thermodynamics.

  20. Nonspherically symmetric black string perturbations in the large dimension limit

    NASA Astrophysics Data System (ADS)

    Sadhu, Amruta; Suneeta, Vardarajan

    2016-06-01

    We consider nonspherically symmetric perturbations of the uncharged black string/flat black brane in the large dimension (D) limit of general relativity. We express the perturbations in a simplified form using variables introduced by Ishibashi and Kodama. We apply the large D limit to the equations and show that this leads to decoupling of the equations in the near-horizon and asymptotic regions. It also enables use of matched asymptotic expansions to obtain approximate analytical solutions and to analyze stability of the black string/brane. For a large class of nonspherically symmetric perturbations, we prove that there are no instabilities in the large D limit. For the rest, we provide additional matching arguments that indicate that the black string/brane is stable. In the static limit, we show that for all nonspherically symmetric perturbations, there is no instability. This is proof that the Gross-Perry-Yaffe mode for semiclassical black hole perturbations is the unique unstable mode even in the large D limit. This work is also a direct analytical indication that the only instability of the black string is the Gregory-Laflamme instability.

  1. Non-BPS D-brane solutions in six dimensional orbifolds

    NASA Astrophysics Data System (ADS)

    Lozano, Y.

    2000-08-01

    Starting with the non-BPS D0-brane solution of IIB/(-1)FLI4 constructed recently by Eyras and Panda we construct via T-duality the non-BPS D2-brane and D1-brane solutions of IIB/(-1)FLI4 and IIA/(-1)FLI4 predicted by Sen. The D2-brane couples magnetically to the vector field of the NS5B-brane living in the twisted sector of the Type IIB orbifold, whereas the D1-brane couples (electrically and magnetically) to the self-dual 2-form potential of the NS5A-brane that is present in the twisted sector of the Type IIA orbifold construction. Finally we discuss the eleven dimensional interpretation of these branes as originating from a non-BPS M1-brane solution of M-theory orientifolded by ΩρI5.

  2. Bosonic Dp-branes at finite temperature in TFD approach

    NASA Astrophysics Data System (ADS)

    Abdalla, M. C. B.; Gadelha, A. L.; Vancea, I. V.

    2004-02-01

    A general formulation of Thermo Field Dynamics using transformation generators that form the SU(1, 1) group, is presented and applied to the closed bosonic string and for bosonic Dp-brane with an external field.

  3. Intersecting branes and Nambu-Jona-Lasinio model

    SciTech Connect

    Dhar, Avinash; Nag, Partha

    2009-06-15

    We discuss chiral symmetry breaking in the intersecting brane model of Sakai and Sugimoto at weak coupling for a generic value of separation L between the flavor D8 and anti-D8-branes. For any finite value of the radius R of the circle around which the color D4-branes wrap, a nonlocal Nambu-Jona-Lasinio-type short-range interaction couples the flavor branes and antibranes. We argue that chiral symmetry is broken in this model only above a certain critical value of the four-dimensional 't Hooft coupling and confirm this through numerical calculations of solutions to the gap equation. We also numerically investigate chiral symmetry breaking in the limit R{yields}{infinity} keeping L fixed, but find that simple ways of implementing this limit do not lead to a consistent picture of chiral symmetry breaking in the noncompact version of the nonlocal Nambu-Jona-Lasinio model.

  4. Thick branes from self-gravitating scalar fields

    SciTech Connect

    Novikov, Oleg O.; Andrianov, Vladimir A.; Andrianov, Alexander A.

    2014-07-23

    The formation of a domain wall ('thick brane') induced by scalar matter dynamics and triggered by a thin brane defect is considered in noncompact five-dimensional space-time with warped AdS type geometry. The scalar matter is composed of two fields with softly broken O(2) symmetry and minimal coupling to gravity. The nonperturbative effects in the invariant mass spectrum of light localized scalar states are investigated for different values of the tension of the thin brane defect. Especially interesting is the case of the thin brane with negative tension when the singular barriers form a potential well with two infinitely tall walls and the discrete spectrum of localized states arises completely isolated from the bulk.

  5. D-branes on spaces stratified fibered over hyperbolic orbifolds

    NASA Astrophysics Data System (ADS)

    Bytsenko, A. A.; Chaichian, M.; Guimarães, M. E. X.

    2014-09-01

    We apply the methods of homology and K-theory for branes wrapping spaces stratified fibered over hyperbolic orbifolds. In addition, we discuss the algebraic K-theory of any discrete co-compact Lie group in terms of appropriate homology and Atiyah-Hirzebruch type spectral sequence with its nontrivial lift to K-homology. We emphasize the fact that the physical D-branes properties are completely transparent within the mathematical framework of K-theory. We derive criteria for D-brane stability in the case of strongly virtually negatively curved groups. We show that branes wrapping spaces stratified fibered over hyperbolic orbifolds carry charge structure and change the additive structural properties in K-homology.

  6. Rotating black holes at future colliders. III. Determination of black hole evolution

    SciTech Connect

    Ida, Daisuke; Oda, Kin-ya; Park, Seong Chan

    2006-06-15

    TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher-dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane-localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes.

  7. Black hole meiosis

    NASA Astrophysics Data System (ADS)

    van Herck, Walter; Wyder, Thomas

    2010-04-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.

  8. Holography for anisotropic branes with hyperscaling violation

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Dibakar

    2016-01-01

    In this paper, based on the principles of Gauge/gavity duality, we explore the field theory description of certain special class of strongly coupled hyperscaling violating QFTs in the presence of scalar deformations near the effective dynamical scale ( r F ) of the theory. In the language of the AdS/CFT duality, the scalar deformations of the above type could be thought of as being sourced due to some massless scalar excitation in the bulk which explicitly break the SO(2) rotational invariance along the spatial directions of the brane. As a consequence of these deformations, it turns out that when we probe such QFTs in terms of its non-local observable like, the entanglement entropy as well as the Wilson operator they indeed receive finite contributions near the effective dynamical scale ( r F ) of the theory.

  9. Emergent super-Virasoro on magnetic branes

    NASA Astrophysics Data System (ADS)

    D'Hoker, Eric; Pourhamzeh, Bijan

    2016-06-01

    The low energy limit of the stress tensor, gauge current, and supercurrent twopoint correlators are calculated in the background of the supersymmetric magnetic brane solution to gauged five-dimensional supergravity constructed by Almuhairi and Polchinski. The resulting correlators provide evidence for the emergence of an mathcal{N}=2 super-Virasoro algebra of right-movers, in addition to a bosonic Virasoro algebra and a U(1) ⊕U(1)-current algebra of left-movers (or the parity transform of left- and right-movers depending on the sign of the magnetic field), in the holographically dual strongly interacting two-dimensional effective field theory of the lowest Landau level.

  10. Entanglement thermodynamics for nonconformal D-branes

    NASA Astrophysics Data System (ADS)

    Pang, Da-Wei

    2013-12-01

    We study thermodynamics of entanglement entropy for weakly excited states in certain nonconformal field theories, whose gravity duals are given by nonconformal Dp-branes. We observe that the entanglement entropy of a sufficiently small system in nonconformal backgrounds still obeys a first-law-like relation, just as the anti-de Sitter counterparts investigated in [J. Bhattacharya, M. Nozaki, T. Takayanagi, and T. Ugajin, Phys. Rev. Lett. 110, 091602 (2013)]. The effective temperature is proportional to the inverse of the size of the subsystem. The proportionality is a dimensionless constant which is only determined by the shape of the entangling region and independent of any coupling. This universality is confirmed by working with the 10-dimensional string frame metric as well as the lower-dimensional effective metric. When the entangling region is a strip and translational invariance is broken by metric fluctuations, we derive a first-law-like relation where additional components of the stress energy tensor are involved.

  11. Note about unstable D-branes with dynamical tension

    NASA Astrophysics Data System (ADS)

    KlusoÅ, J.

    2016-08-01

    We propose an action for an unstable Dp-brane with dynamical tension. We show that the equations of motion are equivalent to the equations of motion derived from Dirac-Born-Infeld and Wess-Zumino actions for a non-Bogomol'nyi-Prasad-Sommerfield Dp-brane. We also find the Hamiltonian formulation of this action and analyze the properties of the solutions corresponding to the tachyon vacuum and zero-tension solution.

  12. The bosonic mother of fermionic D-branes

    NASA Astrophysics Data System (ADS)

    Chattaraputi, Auttakit; Englert, François; Houart, Laurent; Taormina, Anne

    2002-09-01

    We extend the search for fermionic subspaces of the bosonic string compactified on E8 × SO(16) lattices to include all fermionic D-branes. This extension constraints the truncation procedure previously proposed and relates the fermionic strings, supersymmetric or not, to the global structure of the SO(16) group. The specific properties of all the fermionic D-branes are found to be encoded in its universal covering, whose maximal toroid defines the configuration space torus of their mother bosonic theory.

  13. Localization of 4D gravity on pure geometrical thick branes

    SciTech Connect

    Barbosa-Cendejas, Nandinii; Herrera-Aguilar, Alfredo

    2006-04-15

    We consider the generation of thick brane configurations in a pure geometric Weyl integrable 5D spacetime which constitutes a non-Riemannian generalization of Kaluza-Klein (KK) theory. In this framework, we show how 4D gravity can be localized on a scalar thick brane which does not necessarily respect reflection symmetry, generalizing in this way several previous models based on the Randall-Sundrum (RS) system and avoiding both, the restriction to orbifold geometries and the introduction of the branes in the action by hand. We first obtain a thick brane solution that preserves 4D Poincare invariance and breaks Z{sub 2}-symmetry along the extra dimension which, indeed, can be either compact or extended, and supplements brane solutions previously found by other authors. In the noncompact case, this field configuration represents a thick brane with positive energy density centered at y=c{sub 2}, whereas pairs of thick branes arise in the compact case. Remarkably, the Weylian scalar curvature is nonsingular along the fifth dimension in the noncompact case, in contraposition to the RS thin brane system. We also recast the wave equations of the transverse traceless modes of the linear fluctuations of the classical background into a Schroedinger's equation form with a volcano potential of finite bottom in both the compact and the extended cases. We solve Schroedinger equation for the massless zero mode m{sup 2}=0 and obtain a single bound wave function which represents a stable 4D graviton. We also get a continuum gapless spectrum of KK states with m{sup 2}>0 that are suppressed at y=c{sub 2} and turn asymptotically into plane waves.

  14. Solutions on a brane in a bulk spacetime with Kalb-Ramond field

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumanta; SenGupta, Soumitra

    2016-04-01

    Effective gravitational field equations on a brane have been derived, when the bulk spacetime is endowed with the second rank antisymmetric Kalb-Ramond field. Since both the graviton and the Kalb-Ramond field are closed string excitations, they can propagate in the bulk. After deriving the effective gravitational field equations on the brane, we solve them for a static spherically symmetric solution. It turns out that the solution so obtained represents a black hole or naked singularity depending on the parameter space of the model. The stability of this model is also discussed. Cosmological solutions to the gravitational field equations have been obtained, where the Kalb-Ramond field is found to behave as normal pressure free matter. For certain specific choices of the parameters in the cosmological solution, the solution exhibits a transition in the behaviour of the scale factor and hence a transition in the expansion history of the universe. The possibility of accelerated expansion of the universe in this scenario is also discussed.

  15. On Factorization Constraints for Branes in the H3+ Model

    NASA Astrophysics Data System (ADS)

    Adorf, Hendrik; Flohr, Michael

    We comment on the brane solutions for the boundary H3+ model that have been proposed so far and point out that they should be distinguished according to the patterns regular/irregular and discrete/continuous. In the literature, mostly irregular branes have been studied, while results on the regular ones are rare. For all types of branes, there are questions about how a second factorization constraint in the form of a b-2/2-shift equation can be derived. Here, we assume analyticity of the boundary two-point function, which means that the Cardy-Lewellen constraints remain unweakened. This enables us to derive unambiguously the desired b-2/2-shift equations. They serve as important additional consistency conditions. For some regular branes, we also derive 1/2-shift equations that were not known previously. Case by case, we discuss possible solutions to the enlarged system of constraints. We find that the well-known irregular continuous AdS2 branes are consistent with our new factorization constraint. Furthermore, we establish the existence of a new type of brane: the shift equations in a certain regular discrete case possess a nontrivial solution that we write down explicitly. All other types are found to be inconsistent when using our second constraint. We discuss these results in view of the Hosomichi-Ribault proposal and some of our earlier results on the derivation of b-2/2-shift equations.

  16. The Black Woman's Burden

    ERIC Educational Resources Information Center

    Hayes, Dianne

    2012-01-01

    Not even the first lady of the most powerful nation in the world is immune to stereotypes that have plagued Black women since first setting foot on American soil. Stereotypes of being the "angry Black woman" and curiosity about differences in appearance still persist from the academy to 1600 Pennsylvania Ave. As African-American women rise in…

  17. Black Elite: The New Market for Highly Educated Black Americans.

    ERIC Educational Resources Information Center

    Freeman, Richard B.

    This examination of the collapse in traditional discriminatory patterns in the market for highly qualified black Americans documents the World War II gain of college trained and related high level black workers, investigates the response of black college students and qualified personnel to the new market setting, and explores the factors that…

  18. Do all BPS black hole microstates carry zero angular momentum?

    NASA Astrophysics Data System (ADS)

    Chowdhury, Abhishek; Garavuso, Richard S.; Mondal, Swapnamay; Sen, Ashoke

    2016-04-01

    From the analysis of the near horizon geometry and supersymmetry algebra it has been argued that all the microstates of single centered BPS black holes with four unbroken supersymmetries carry zero angular momentum in the region of the moduli space where the black hole description is valid. A stronger form of the conjecture would be that the result holds for any sufficiently generic point in the moduli space. In this paper we set out to test this conjecture for a class of black hole microstates in type II string theory on T 6, represented by four stacks of D-branes wrapped on various cycles of T 6. For this system the above conjecture translates to the statement that the moduli space of classical vacua must be a collection of points. Explicit analysis of systems carrying a low number of D-branes supports this conjecture.

  19. Casadio-Fabbri-Mazzacurati black strings and braneworld-induced quasars luminosity corrections

    NASA Astrophysics Data System (ADS)

    da Rocha, Roldão; Piloyan, A.; Kuerten, A. M.; Coimbra-Araújo, C. H.

    2013-02-01

    This paper aims to evince the corrections on the black string warped horizon in the braneworld paradigm, and their drastic physical consequences, as well as to provide subsequent applications in astrophysics. Our analysis concerning black holes on the brane departs from the Schwarzschild case, where the black string is unstable to large-scale perturbation. The cognizable measurability of the black string horizon corrections due to braneworld effects is investigated, as well as their applications in the variation of quasars luminosity. We delve into the case wherein two solutions of Einstein’s equations proposed by Casadio, Fabbri and Mazzacurati, regarding black hole metrics presented a post-Newtonian parameter measured on the brane. In this scenario, it is possible to analyze purely the braneworld corrected variation in quasars luminosity, by an appropriate choice of the post-Newtonian parameter that precludes Hawking radiation on the brane: the variation in quasars luminosity is uniquely provided by pure braneworld effects, as the Hawking radiation on the brane is suppressed.

  20. Semiclassical bosonic D-brane boundary states in curved spacetime

    NASA Astrophysics Data System (ADS)

    Vancea, Ion Vasile

    2010-02-01

    In this paper we discuss the existence of quantum D-brane states in the strong gravitational field and in the presence of a constant Kalb-Ramond field. A semiclassical string quantization method in which the spacetime metric g AB and the constant antisymmetric Kalb-Ramond field b AB are treated exactly is employed. In this framework, the semiclassical D-branes are defined at the first order perturbation around the trajectory of the center-of-mass of a string. The set of equations the semiclassical D-branes must satisfy in a general strong gravitational field are given. These equations are solved in the AdS background where it is shown that a D-brane coherent state exists if the operators that project the string fields onto the corresponding Neumann and Dirichlet directions satisfy a set of algebraic constraints. A second set of equations that should be satisfied by the projectors in order that the semiclassical state be compatible with the global structure of the D-brane are derived in the particle limit of a string in the torsionless AdS background.

  1. Brane induced gravity, its ghost and the cosmological constant problem

    SciTech Connect

    Hassan, S.F.; Strauss, Mikael von; Hofmann, Stefan E-mail: stefan.hofmann@physik.lmu.de

    2011-01-01

    ''Brane Induced Gravity'' is regarded as a promising framework for addressing the cosmological constant problem, but it also suffers from a ghost instability for parameter values that make it phenomenologically viable. We carry out a detailed analysis of codimension > 2 models employing gauge invariant variables in a flat background approximation. It is argued that using instead a curved background sourced by the brane would not resolve the ghost issue, unless a very specific condition is satisfied (if satisfiable at all). As for other properties of the model, from an explicit analysis of the 4-dimensional graviton propagator we extract a mass, a decay width and a momentum dependent modification of the gravitational coupling for the spin 2 mode. In the flat space approximation, the mass of the problematic spin 0 ghost is instrumental in filtering out a brane cosmological constant. The mass replaces a background curvature that would have had the same function. The optical theorem is used to demonstrate the suppression of graviton leakage into the uncompactified bulk. Then, we derive the 4-dimensional effective action for gravity and show that general covariance is spontaneously broken by the bulk-brane setup. This provides a natural realization of the gravitational Higgs mechanism. We also show that the addition of extrinsic curvature dependent terms has no bearing on linearized brane gravity.

  2. Gravitational backreaction of anti-D branes in the warped compactification

    NASA Astrophysics Data System (ADS)

    Koyama, Kayoko; Koyama, Kazuya

    2005-09-01

    We derive a low-energy effective theory for gravity with anti-D branes, which are essential to get de Sitter solutions in the type IIB string-warped compactification, by taking account of gravitational backreactions of anti-D branes. In order to see the effects of the self-gravity of anti-D branes, a simplified model is studied where a five-dimensional anti-de Sitter (AdS) spacetime is realized by the bulk cosmological constant and the 5-form flux, and anti-D branes are coupled to the 5-form field by Chern Simon terms. The AdS spacetime is truncated by introducing UV and IR cut-off branes like the Randall Sundrum model. We derive an effective theory for gravity on the UV brane and reproduce the familiar result that the tensions of the anti-D branes give potentials suppressed by the fourth power of the warp factor at the location of the anti-D branes. However, in this simplified model, the potential energy never inflates the UV brane, although the anti-D branes are inflating. The UV brane is dominated by dark radiation coming from the projection of the five-dimensional Weyl tensor, unless the moduli fields for the anti-D branes are stabilized. We comment on the possibility of avoiding this problem in a realistic string theory compactification.

  3. Instability and new phases of higher-dimensional rotating black holes

    SciTech Connect

    Dias, Oscar J. C.; Monteiro, Ricardo; Santos, Jorge E.; Figueras, Pau; Emparan, Roberto

    2009-12-01

    It has been conjectured that higher-dimensional rotating black holes become unstable at a sufficiently large value of the rotation, and that new black holes with pinched horizons appear at the threshold of the instability. We search numerically and find the stationary axisymmetric perturbations of Myers-Perry black holes with a single spin that mark the onset of the instability and the appearance of the new black hole phases. We also find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes.

  4. Six-dimensional origin of gravity-mediated brane to brane supersymmetry breaking

    NASA Astrophysics Data System (ADS)

    Diamandis, G. A.; Georgalas, B. C.; Kouroumalou, P.; Lahanas, A. B.

    2014-04-01

    Four-dimensional supergravities may be the right framework to describe particle physics at low energies. Its connection to the underlying string theory can be implemented through higher dimensional supergravities which bear special characteristics. Their reduction to four dimensions breaks supersymmetry whose magnitude depends both on the compactifying manifold and the mechanism that generates the breaking. In particular compactifications, notably on a S1/Z2 orbifold, the breaking of supersymmetry occurring on a hidden brane, residing at one end of S1/Z2, is communicated to the visible brane which lies at the other end, via gravitational interactions propagating in the bulk. This scenario has been exemplified in the framework of the N=2, D=5 supergravity. In this paper, motivated by the recent developments in the field, related to the six-dimensional description of the supergravity theory, we study the N=2, D=5 supergravity theory as originating from a D=6 supergravity which, in addition to the gravity, includes a number of tensor multiplets. This reduces to N=1, D=4 supergravity in a two step manner, first by a Kaluza-Klein reduction followed by a S1/Z2 orbifold compactification. The resulting theory has striking similarities with the one that follows from the single stand alone N=2, D=5 supergravity, with no reference to the underlying higher dimensional D=6 supergravity, and a structure that makes the supersymmetry breaking mechanisms studied in the past easily incorporated in higher dimensional schemes.

  5. "I Am Teaching Some of the Boys:" Chaplain Robert Boston Dokes and Army Testing of Black Soldiers in World War II

    ERIC Educational Resources Information Center

    White, George, Jr.

    2012-01-01

    African Americans have served in the United States Armed Forces in nearly every conflict in the nation's history. However, the State--through official government policy, ad hoc decisions of military commanders, or statements by prominent civilians--was rarely comfortable with Black military service. Throughout most of American history, the various…

  6. Born-Infeld extension of Lovelock brane gravity in the system of M0-branes and its application for the emergence of Pauli exclusion principle in BIonic superconductors

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza

    2016-07-01

    Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born-Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge between

  7. Black Hole Spacetimes with Killing-Yano Symmetries

    NASA Astrophysics Data System (ADS)

    Kubizňák, David

    2010-03-01

    We present a brief overview of black hole spacetimes admitting Killing-Yano tensors. In vacuum these include Kerr-NUT-(A)dS metrics and certain black brane solutions. In the presence of matter fields, (conformal) Killing-Yano symmetries are known to exist for the Plebanski-Demianski solution and (trivially) for any spacetime with spherical symmetry. Special attention is devoted to generalized Killing-Yano tensors of black holes in minimal gauged supergravity Several aspects directly related to the existence of Killing-Yano tensors--such as the Kerr-Schild form, algebraic type of spacetimes, and separability of field equations--are also briefly discussed.

  8. A Common Destiny: Blacks and American Society.

    ERIC Educational Resources Information Center

    Jaynes, Gerald David, Ed.; Williams, Robin M., Jr., Ed.

    This report describes and analyzes the status of blacks in American society since the eve of World War II. It concludes that the current state of black-white relations is the result of the negative attitudes that whites hold towards blacks and the disadvantaged conditions under which many blacks live. The following summary findings are reported:…

  9. Kink modes and effective four dimensional fermion and Higgs brane models

    SciTech Connect

    George, Damien P.; Volkas, Raymond R.

    2007-05-15

    In the construction of a classical smoothed out brane world model in five dimensions, one uses a dynamically generated domain wall (a kink) to localize an effective four dimensional theory. At the level of the Euler-Lagrange equations the kink sets up a potential well, a mechanism which has been employed extensively to obtain localized, four dimensional, massless chiral fermions. We present the generalization of this kink trapping mechanism for both scalar and fermionic fields, and retain all degrees of freedom that were present in the higher dimensional theory. We show that a kink background induces a symmetric modified Poeschl-Teller potential well, and give explicit analytic forms for all the bound modes and a restricted set of the continuum modes. We demonstrate that it is possible to confine an effective four dimensional scalar field with a quartic potential of arbitrary shape. This can be used to place the standard model electroweak Higgs field on the brane, and also generate nested kink solutions. We also consider the limits of the parameters in the theory which give thin kinks and localized and delocalized scalar and fermionic fields.

  10. On D-brane -anti D-brane effective actions and their all order bulk singularity structures

    NASA Astrophysics Data System (ADS)

    Hatefi, Ehsan

    2016-04-01

    All four point functions of brane anti brane system including their correct all order α' corrections have been addressed. All five point functions of one closed string Ramond-Ramond (RR), two real tachyons and either one gauge field or the scalar field in both symmetric and asymmetric pictures have also been explored. The entire analysis of is carried out. Not only does it fix the vertex operator of RR in asymmetric picture and in higher point functions of string theory amplitudes but also it confirms the fact that there is no issue of picture dependence of the mixed closed RR, gauge fields, tachyons and fermion fields in all symmetric or anti symmetric ones. We compute S-matrix in the presence of a transverse scalar field, two real tachyons and that reveals two different kinds of bulk singularity structures, involving an infinite number of u-channel gauge field and (u+s'+t')-channel scalar bulk poles. In order to produce all those bulk singularity structures, we define various couplings at the level of the effective field theory that involve the mixing term of Chern-Simons coupling (with C-potential field) and a covariant derivative of the scalar field that comes from the pull-back of brane. Eventually we explore their all order α' corrections in the presence of brane anti brane system where various remarks will be also pointed out.

  11. Non-Abelian Effects on D-Branes

    SciTech Connect

    Russo, Jorge G.

    2008-07-28

    We review different non-Abelian configurations of D-branes. We then extend the Myers dielectric effect to configurations with angular momentum. The resulting time-dependent N D0-brane bound states can be interpreted as describing rotating fuzzy ellipsoids. A similar solution exists also in the presence of a RR magnetic field, that we study in detail. We show that, for any finite N, above a certain critical angular momentum it is energetically more favorable for the bound state system to dissociate into an Abelian configuration of N D0-branes moving independently. We further study D-string configurations representing fuzzy funnels deformed by the magnetic field and by the rotational motion.

  12. Microscopic entropy of nondilatonic branes: A 2D approach

    SciTech Connect

    Cadoni, Mariano; Serra, Nicola

    2004-12-15

    We investigate nondilatonic p-branes in the near-extremal, near-horizon regime. A two-dimensional gravity model, obtained from dimensional reduction, gives an effective description of the brane. We show that the AdS{sub p+2}/CFT{sub p+1} correspondence at finite temperature admits an effective description in terms of a AdS{sub 2}/CFT{sub 1} duality endowed with a scalar field, which breaks the conformal symmetry and generates a nonvanishing central charge. The entropy of the CFT{sub 1} is computed using Cardy formula. Fixing in a natural way a free, dimensionless, parameter introduced in the model by a renormalization procedure, we find exact agreement between the CFT{sub 1} entropy and the Bekenstein-Hawking entropy of the brane.

  13. D 3 -Brane Model Building and the Supertrace Rule

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Graña, Mariana; Kuperstein, Stanislav; Ntokos, Praxitelis; Petrini, Michela

    2016-04-01

    A common way to obtain standard-model-like Lagrangians in string theory is to place D 3 -branes inside flux compactifications. The bosonic and fermionic masses and couplings of the resulting gauge theory are determined by the ten-dimensional metric and the fluxes, respectively, and the breaking of supersymmetry is soft. However, not any soft-supersymmetry-breaking Lagrangian can be obtained this way since the string theory equations of motion impose certain relations between the soft couplings. We show that for D 3 -branes in background fluxes, these relations imply that the sums of the squares of the boson and of the fermion masses are equal and that, furthermore, one- and two-loop quantum corrections do not spoil this equality. This makes the use of D 3 -branes for constructing computationally controllable models for physics beyond the standard model problematic.

  14. Dynamic SU(2) structure from seven-branes

    SciTech Connect

    Heidenreich, Ben; McAllister, Liam; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2010-12-16

    We obtain a family of supersymmetric solutions of type IIB supergravity with dynamic SU(2) structure, which describe the local geometry near a stack of four D7-branes and one O7-plane wrapping a rigid four-cycle. The deformation to a generalized complex geometry is interpreted as a consequence of nonperturbative effects in the seven-brane gauge theory. We formulate the problem for seven-branes wrapping the base of an appropriate del Pezzo cone, and in the near-stack limit in which the four-cycle is flat, we obtain an exact solution in closed form. Our solutions serve to characterize the local geometry of nonperturbatively-stabilized flux compactifications.

  15. D3-Brane Model Building and the Supertrace Rule.

    PubMed

    Bena, Iosif; Graña, Mariana; Kuperstein, Stanislav; Ntokos, Praxitelis; Petrini, Michela

    2016-04-01

    A common way to obtain standard-model-like Lagrangians in string theory is to place D3-branes inside flux compactifications. The bosonic and fermionic masses and couplings of the resulting gauge theory are determined by the ten-dimensional metric and the fluxes, respectively, and the breaking of supersymmetry is soft. However, not any soft-supersymmetry-breaking Lagrangian can be obtained this way since the string theory equations of motion impose certain relations between the soft couplings. We show that for D3-branes in background fluxes, these relations imply that the sums of the squares of the boson and of the fermion masses are equal and that, furthermore, one- and two-loop quantum corrections do not spoil this equality. This makes the use of D3-branes for constructing computationally controllable models for physics beyond the standard model problematic. PMID:27104696

  16. Brane compactifications and 4-dimensional geometry in the IKKT model

    NASA Astrophysics Data System (ADS)

    Polychronakos, Alexios P.; Steinacker, Harold; Zahn, Jochen

    2013-10-01

    We study in detail certain brane solutions with compact extra dimensions M4×K in the IKKT matrix model, with K being a two-dimensional rotating torus embedded in R6. We focus on the compactification moduli and the fluctuations of K⊂R6 and their physical significance. Mediated by the Poisson tensor, they contribute to the effective 4-dimensional metric on the brane, and thereby become gravitational degrees of freedom. We show that the zero modes corresponding to the global symmetries of the model lead to Ricci-flat 4-dimensional metric perturbations, wherever the energy-momentum tensor vanishes. Their coupling to the energy-momentum tensor depends on the extrinsic curvature of the brane.

  17. Heterotic NS5-branes from closed string tachyon condensation

    NASA Astrophysics Data System (ADS)

    Garcia-Etxebarria, Iñaki; Montero, Miguel; Uranga, Angel

    2014-12-01

    We show how to construct the familiar heterotic NS5 brane as a topological soliton in a supercritical version of heterotic string theory. Closed string tachyon condensation removes the extra dimensions, leaving the NS5 in ten dimensions, in a process highly reminiscent of the K-theoretical description of type II D-branes, but linking nontrivial gauge bundles and geometry. This establishes a new kind of equivalence between gravitational and gauge configurations, reminiscent of the gauge/geometry correspondence. We also use the K-theory description to build other heterotic branes as solitons of closed string tachyons. The construction requires a modification of the anomalous Bianchi identity for H3 in supercritical heterotic string theory. We give various proofs for the existence of this modification.

  18. Decompactifications and massless D-branes in hybrid models

    NASA Astrophysics Data System (ADS)

    Aspinwall, Paul S.; Ronen Plesser, M.

    2010-07-01

    A method of determining the mass spectrum of BPS D-branes in any phase limit of a gauged linear sigma model is introduced. A ring associated to monodromy is defined and one considers K-theory to be a module over this ring. A simple but interesting class of hybrid models with Landau-Ginzburg fibres over {mathbb{P}^n} are analyzed using special Kähler geometry and D-brane probes. In some cases the hybrid limit is an infinite distance in moduli space and corresponds to a decompactification. In other cases the hybrid limit isat a finite distance and acquires massless D-branes. An example studied appears to correspond to a novel theory of supergravity with an SU(2) gauge symmetry where the gauge and gravitational couplings are necessarily tied to each other.

  19. Unification and D3-branes in F-theory

    SciTech Connect

    Heckman, Jonathan J.

    2012-07-27

    A central ingredient in many string based Grand Unified Theories (GUTs) is p-branes filling our spacetime and wrapping some number of internal directions. In this talk we discuss the potential role of D3-branes sitting at a point of the internal geometry in an F-theory GUT. These D3-branes can naturally realize additional superconformal sectors which can couple to the states of the Standard Model. We explain how detailed features of these sectors and their impact on the visible sector can be extracted. Additionally, we explain how in scenarios where the scale of conformal symmetry breaking is close to the weak scale, this extra sector can modify the physics of the Higgs.

  20. The field theory of intersecting D3-branes

    NASA Astrophysics Data System (ADS)

    Mintun, Eric; Polchinski, Joseph; Sun, Sichun

    2015-08-01

    We examine the defect gauge theory on two perpendicular D3-branes with a 1+1 dimensional intersection, consisting of U(1) fields on the D3-branes and charged hypermultiplets on the intersection. We argue that this gauge theory must have a magnetically charged soliton corresponding to the D-string stretched between the branes. We show that the hypermultiplets actually source magnetic as well as electric fields. The magnetic charges are confined if the hypermultiplet action is canonical, but considerations of periodicity of the hypermultiplet space in string theory imply a nontrivial Gibbons-Hawking metric, and we show that there is then the expected magnetic kink solution. The hypermultiplet metric has a singularity, which we argue must be resolved by embedding in the full string theory. Another interesting feature is that the classical field equations have logarithmic divergences at the intersection, which lead to a classical renormalization group flow in the action.

  1. D4 brane probes in gauge/gravity duality

    SciTech Connect

    Zhou Yang

    2009-03-15

    We propose a Dirac-Born-Infeld vertex brane+N{sub c} fundamental strings configuration for a probe baryon in the finite-temperature thermal gauge field via AdS/CFT correspondence. In particular, we investigate properties of this configuration in QCD{sub 4} and warped AdS{sub 6}xS{sup 4}. We find that, in the D4-D8 system, a holographic probe baryon can be described as N{sub c} fundamental strings connecting through a vertex D4 brane wrapped on S{sup 4}. In QCD{sub 4} background, a closed vertex can exist in a confined phase but cannot exist in a deconfined phase. In the low temperature region, the screening effect still exists in the confined phase like a meson, and the vertex D4 brane dominates the baryon mass. The lower energy state corresponds to the vertex brane closer to the radial cutoff position (r=r{sub c}), and the higher energy state corresponds to the vertex brane a little farther away from the cutoff position. The high energy limit of this configuration is just like the unclosed vertex brane configuration in a higher temperature deconfined phase. In warped AdS{sub 6}xS{sup 4} background, a closed vertex can exist in a deconfined phase and the vertex contains a spike, while fundamental strings are relatively short. The screening length should be defined through the distance between the top position of the vertex spike and the boundary.

  2. Graviton Kaluza-Klein modes in nonflat branes with stabilized modulus

    NASA Astrophysics Data System (ADS)

    Paul, Tanmoy; SenGupta, Soumitra

    2016-04-01

    We consider a generalized two brane Randall-Sundrum model where the branes are endowed with nonzero cosmological constant. In this scenario, we re-examine the modulus stabilization mechanism and the nature of Kaluza-Klein (KK) graviton modes. Our result reveals that while the KK mode graviton masses may change significantly with the brane cosmological constant, the Goldberger-Wise stabilization mechanism, which assumes a negligible backreaction on the background metric, continues to hold even when the branes have a large cosmological constant. The possibility of having a global minimum for the modulus is also discussed. Our results also include an analysis for the radion mass in this nonflat brane scenario.

  3. TFD Approach to Bosonic Strings and Dp-Branes

    NASA Astrophysics Data System (ADS)

    Abdalla, M. C. B.; Gadelha, A. L.; Vancea, I. V.

    In this work we explain the construction of the thermal vacuum for the bosonic string, as well that of the thermal boundary state interpreted as a Dp-brane at finite temperature. In both case we calculate the respective entropy using the entropy operator of the Thermo Field Dynamics theory. We show that the contribution of the thermal string entropy is explicitly present in the Dp-brane entropy. Furthermore, we show that the Thermo Field approach is suitable to introduce temperature in boundary states.

  4. Calibrations, torsion classes, and wrapped M-branes

    SciTech Connect

    Fayyazuddin, Ansar; Husain, Tasneem Zehra

    2006-05-15

    The present work has two goals. The first is to complete the classification of geometries in terms of torsion classes of M-branes wrapping cycles of a Calabi-Yau manifold. The second goal is to give insight into the physical meaning of the torsion class constraints. We accomplish both tasks by defining new energy minimizing calibrations in M-brane backgrounds. When fluxes are turned on, it is these calibrations that are relevant, rather than those which had previously been defined in the context of purely geometric backgrounds.

  5. Comments on SUSY Inflation Models on the Brane

    NASA Astrophysics Data System (ADS)

    Lee, Lu-Yun; Cheung, Kingman; Lin, Chia-Min

    In this paper we consider a class of inflation models on the brane where the dominant part of the inflaton scalar potential does not depend on the inflaton field value during inflation. In particular, we consider supernatural inflation, its hilltop version, A-term inflation, and supersymmetric (SUSY) D- and F-term hybrid inflation on the brane. We show that the parameter space can be broadened, the inflation scale generally can be lowered, and still possible to have the spectral index ns = 0.96.

  6. Entropy of near-extremal black holes in AdS5

    SciTech Connect

    Simon, Joan; Balasubramanian, Vijay; de Boer, Jan; Jejjala, Vishnu; Simon, Joan

    2007-07-24

    We construct the microstates of near-extremal black holes in AdS_5 x S5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS_3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS_2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities.

  7. Mass gap for gravity localized on Weyl thick branes

    SciTech Connect

    Barbosa-Cendejas, N.; Santos, M. A. Reyes; Herrera-Aguilar, A.; Schubert, C.

    2008-06-15

    We consider thick brane configurations in a pure geometric Weyl integrable 5D space-time, a non-Riemannian generalization of Kaluza-Klein (KK) theory involving a geometric scalar field. Thus, the 5D theory describes gravity coupled to a self-interacting scalar field which gives rise to the structure of the thick branes. We continue the study of the properties of a previously found family of solutions which is smooth at the position of the brane but involves naked singularities in the fifth dimension. Analyzing their graviton spectrum, we find that a particularly interesting situation arises for a special case in which the 4D graviton is separated from the KK gravitons by a mass gap. The corresponding effective Schroedinger equation has a modified Poeschl-Teller potential and can be solved exactly. Apart from the massless 4D graviton, it contains one massive KK bound state, and the continuum spectrum of delocalized KK modes. We also discuss the mass hierarchy problem, and explicitly compute the corrections to Newton's law in the thin brane limit.

  8. Abelian and non-abelian D-brane effective actions

    NASA Astrophysics Data System (ADS)

    Koerber, P.

    2004-09-01

    In this Ph.D. thesis, accepted at the Vrije Universiteit Brussel, we review and elaborate on a method to find the D-brane effective action, based on BPS equations. Firstly, both for the Yang-Mills action and the Born-Infeld action it is shown that these configurations are indeed BPS, i.e. solutions to these equations saturate a Bogomolny bound and leave some supersymmetry unbroken. Next, we use the BPS equations as a tool to construct the D-brane effective action and require that (a deformation of) these equations should still imply the equations of motion in more general cases. In the abelian case we managed to calculate all order in four-derivative corrections to the effective action and the BPS equations while in the non-abelian case we obtained the effective action up to order 4. Furthermore, we discuss a check based on the spectrum of strings stretching between intersecting branes. Finally, this Ph.D. thesis also discusses the construction of a boundary superspace which would be the first step to use the method of Weyl invariance in N = 2 superspace in order to again construct the D-brane effective action. A more detailed summary of each section can be found in the introduction.

  9. Marginal fluctuations as instantons on M2/D2-branes

    NASA Astrophysics Data System (ADS)

    Naghdi, M.

    2014-03-01

    We introduce some (anti-) M/D-branes through turning on the corresponding field strengths of the 11- and 10-dimensional supergravity theories over spaces, where we use and for the internal spaces. Indeed, when we add M2/D2-branes on the same directions with the near horizon branes of the Aharony-Bergman-Jafferis-Maldacena model, all symmetries and supersymmetries are preserved trivially. In this case, we obtain a localized object just in the horizon. This normalizable bulk massless scalar mode is a singlet of and , and it agrees with a marginal boundary operator of the conformal dimension of . However, after performing a special conformal transformation, we see that the solution is localized in the Euclideanized space and is attributable to the included anti-M2/D2-branes, which are also necessary to ensure that there is no back-reaction. The resultant theory now breaks all supersymmetries to , while the other symmetries are so preserved. The dual boundary operator is then set up from the skew-whiffing of the representations and for the supercharges and scalars, respectively, while the fermions remain fixed in of the original theory. Besides, we also address another alternate bulk to boundary matching procedure through turning on one of the gauge fields of the full gauge group along the same lines with a similar situation to the one faced in the AdS/CFT correspondence. The latter approach covers the difficulty already faced with in the bulk-boundary matching procedure for as well.

  10. 750 GeV diphotons from a D3-brane

    NASA Astrophysics Data System (ADS)

    Heckman, Jonathan J.

    2016-05-01

    Motivated by the recently reported diphoton excess at 750 GeV observed by both CMS and ATLAS, we study string-based particle physics models which can accommodate this signal. Quite remarkably, although Grand Unified Theories in F-theory tend to impose tight restrictions on candidate extra sectors, the case of a probe D3-brane near an E-type Yukawa point naturally leads to a class of strongly coupled models capable of accommodating the observed signature. In these models, the visible sector is realized by intersecting 7-branes, and the 750 GeV resonance is a scalar modulus associated with motion of the D3-brane in the direction transverse to the Standard Model 7-branes. Integrating out heavy 3-7 string messenger states leads to dimension five operators for gluon fusion production and diphoton decays. Due to the unified structure of interactions, these models also predict that there should be additional decay channels to ZZ and Zγ. We also comment on models with distorted unification, where both the production mechanism and decay channels can differ.

  11. A note on entropic force and brane cosmology

    NASA Astrophysics Data System (ADS)

    Ling, Yi; Wu, Jian-Pin

    2010-08-01

    Recently Verlinde proposed that gravity is an entropic force caused by information changes when a material body moves away from the holographic screen. In this note we apply this argument to brane cosmology, and show that the cosmological equation can be derived from this holographic scenario.

  12. Cosmology for a Domain-Wall Brane Universe

    NASA Astrophysics Data System (ADS)

    Volkas, Raymond R.

    I discuss how standard FRW cosmology can arise for a domain-wall brane universe. While standard cosmological evolution is recovered in the thin-wall limit, at finite thickness we find that different particle species experience different cosmological expansion rates. This work was performed in collaboration with Damien P. George and Mark Trodden.

  13. Joseph Walker, a Black Playwright, Exhorts Counselors and Black People to Deal With Themselves

    ERIC Educational Resources Information Center

    Walker, Joseph

    1976-01-01

    This is an interview with Joseph Walker, black playwright. He attempts to reflect back to the black community their experience in a white controlled world. In this interview, he discusses his views of the black experience, the pressures on man-woman relationships, and the role of black psychiatry. (NG)

  14. Stringy origin of 4d black hole microstates

    NASA Astrophysics Data System (ADS)

    Bianchi, M.; Morales, J. F.; Pieri, L.

    2016-06-01

    We derive a precise dictionary between micro-state geometries and open string condensates for a large class of excitations of four dimensional BPS black holes realised in terms of D3-branes intersecting on a six-torus. The complete multipole expansion of the supergravity solutions at weak coupling is extracted from string amplitudes involving one massless closed string and multiple open strings insertions on disks with mixed boundary conditions.

  15. BOOK REVIEW: Black Holes, Cosmology and Extra Dimensions Black Holes, Cosmology and Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.

    2013-10-01

    The book Black holes, Cosmology and Extra Dimensions written by Kirill A Bronnikov and Sergey G Rubin has been published recently by World Scientific Publishing Company. The authors are well known experts in gravity and cosmology. The book is a monograph, a considerable part of which is based on the original work of the authors. Their original point of view on some of the problems makes the book quite interesting, covering a variety of important topics of the modern theory of gravity, astrophysics and cosmology. It consists of 11 chapters which are organized in three parts. The book starts with an introduction, where the authors briefly discuss the main ideas of General Relativity, giving some historical remarks on its development and application to cosmology, and mentioning some more recent subjects such as brane worlds, f(R)-theories and gravity in higher dimensions. Part I of the book is called 'Gravity'. Chapters two and three are devoted to the Einstein equations and their spherical symmetric black hole solutions. This material is quite standard and can be found in practically any book on General Relativity. A brief summary of the Kerr metric and black hole thermodynamics are given in chapter four. The main part of this chapter is devoted to spherically symmetric black holes in non-Einstein gravity (with scalar and phantom fields), black holes with regular interior, and black holes in brane worlds. Chapters five and six are mainly dedicated to wormholes and the problem of their stability. Part II (Cosmology) starts with discussion of the Friedmann-Robertson-Walker and de Sitter solutions of the Einstein equations and their properties. It follows by describing a `big picture' of the modern cosmology (inflation, post-inflationary reheating, the radiation-dominated and matter-dominated states, and modern stage of the (secondary) inflation). The authors explain how the inflation models allow one to solve many of the long-standing problems of cosmology, such as

  16. Evolution of near-extremal black holes

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Taylor-Robinson, M. M.

    1997-06-01

    Near-extreme black holes can lose their charge and decay by the emission of massive Bogomol'ni-Prasad-Sommerfield charged particles. We calculate the greybody factors for low-energy charged and neutral scalar emission from four- and five-dimensional near extremal Reissner-Nordström black holes. We use the corresponding emission rates to obtain ratios of the rates of loss of excess energy by charged and neutral emission, which are moduli independent, depending only on the integral charges and the horizon potentials. We consider scattering experiments, finding that evolution towards a state in which the integral charges are equal is favored, but neutral emission will dominate the decay back to extremality except when one charge is much greater than the others. The implications of our results for the agreement between black hole and D-brane emission rates and for the information loss puzzle are then discussed.

  17. Black holes in pure Lovelock gravities

    SciTech Connect

    Cai Ronggen; Ohta, Nobuyoshi

    2006-09-15

    Lovelock gravity is a fascinating extension of general relativity, whose action consists of dimensionally extended Euler densities. Compared to other higher order derivative gravity theories, Lovelock gravity is attractive since it has a lot of remarkable features such as the fact that there are no more than second order derivatives with respect to the metric in its equations of motion, and that the theory is free of ghosts. Recently, in the study of black strings and black branes in Lovelock gravity, a special class of Lovelock gravity is considered, which is named pure Lovelock gravity, where only one Euler density term exists. In this paper we study black hole solutions in the special class of Lovelock gravity and associated thermodynamic properties. Some interesting features are found, which are quite different from the corresponding ones in general relativity.

  18. Black holes and large order quantum geometry

    SciTech Connect

    Huang Minxin; Klemm, Albrecht; Marino, Marcos; Tavanfar, Alireza

    2009-03-15

    We study five-dimensional black holes obtained by compactifying M theory on Calabi-Yau threefolds. Recent progress in solving topological string theory on compact, one-parameter models allows us to test numerically various conjectures about these black holes. We give convincing evidence that a microscopic description based on Gopakumar-Vafa invariants accounts correctly for their macroscopic entropy, and we check that highly nontrivial cancellations--which seem necessary to resolve the so-called entropy enigma in the Ooguri-Strominger-Vafa conjecture--do in fact occur. We also study analytically small 5d black holes obtained by wrapping M2 branes in the fiber of K3 fibrations. By using heterotic/type II duality we obtain exact formulae for the microscopic degeneracies in various geometries, and we compute their asymptotic expansion for large charges.

  19. Emergence and oscillation of cosmic space by joining M1-branes

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Rahaman, Farook; Capozziello, Salvatore; Ali, Ahmed Farag; Pradhan, Anirudh

    2016-05-01

    Recently, it has been proposed by Padmanabhan that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region leads to the expansion of the universe. Now, a natural question arises; how could this model explain the oscillation of the universe between contraction and expansion branches? We try to address this issue in the framework of a BIonic system. In this model, M0-branes join to each other and give rise to a pair of M1-anti- M1-branes. The fields which live on these branes play the roles of massive gravitons that cause the emergence of a wormhole between them and formation of a BIon system. This wormhole dissolves into M1-branes and causes a divergence between the number of degrees of freedom on the boundary surface of M1 and the bulk leading to an expansion of M1-branes. When M1-branes become close to each other, the square energy of their system becomes negative and some tachyonic states emerge. To remove these states, M1-branes become compact, the sign of compacted gravity changes, causing anti-gravity to arise: in this case, branes get away from each other. By articulating M1-BIons, an M3-brane and an anti- M3-brane are created and connected by three wormholes forming an M3-BIon. This new system behaves like the initial system and by closing branes to each other, they become compact and, by getting away from each other, they open. Our universe is located on one of these M3-branes and, by compactifying the M3-brane, it contracts and, by opening it, it expands.

  20. Hadamard function and the vacuum currents in braneworlds with compact dimensions: Two-brane geometry

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Saharian, A. A.; Vardanyan, V.

    2016-04-01

    We evaluate the Hadamard function and the vacuum expectation value of the current density for a charged scalar field in the region between two codimension-one branes on the background of locally anti-de Sitter (AdS) spacetime with an arbitrary number of toroidally compactified spatial dimensions. Along compact dimensions periodicity conditions are considered with general values of the phases and on the branes Robin boundary conditions are imposed for the field operator. In addition, we assume the presence of a constant gauge field. The latter gives rise to an Aharonov-Bohm-type effect on the vacuum currents. There exists a range in the space of the Robin coefficients for separate branes where the vacuum state becomes unstable. Compared to the case of the standard AdS bulk, in models with compact dimensions the stability condition imposed on the parameters is less restrictive. The current density has nonzero components along compact dimensions only. These components are decomposed into the brane-free and brane-induced contributions. Different representations are provided for the latter that are well suited for the investigation of the near-brane, near-AdS boundary and near-AdS horizon asymptotics. An important feature, that distinguishes the current density from the expectation values of the field squared and energy-momentum tensor, is its finiteness on the branes. In particular, for Dirichlet boundary conditions the current density vanishes on the branes. We show that, depending on the constants in the boundary conditions, the presence of the branes may either increase or decrease the current density compared with that for the brane-free geometry. Applications are given to the Randall-Sundrum 2-brane model with extra compact dimensions. In particular, we estimate the effects of the hidden brane on the current density on the visible brane.

  1. Black, White, and Rainbow [of Desire]: The Colour of Race-Talk of Pre-Service World Language Educators in Boalian Theatre Workshops

    ERIC Educational Resources Information Center

    Wooten, Jennifer; Cahnmann-Taylor, Melisa

    2014-01-01

    This article examines how Boalian Theatre of the Oppressed exercises helped instructors and pre-service teachers navigate the consequences of ventriloquized, racialized discourses in a pre-service world language teacher education classroom. Applying a critical and performative approach, we analyse the mostly White student-actors' varying…

  2. A solution of the coincidence problem based on the recent galactic core black hole mass density increase

    NASA Astrophysics Data System (ADS)

    Kofinas, Georgios; Zarikas, Vasilios

    2013-04-01

    A mechanism capable to provide a natural solution to two major cosmological problems, i.e. the cosmic acceleration and the coincidence problem, is proposed. A specific brane-bulk energy exchange mechanism produces a total dark pressure, arising when adding all normal to the brane negative pressures in the interior of galactic core black holes. This astrophysically produced negative dark pressure explains cosmic acceleration and why the dark energy today is of the same order to the matter density for a wide range of the involved parameters. An exciting result of the analysis is that the recent rise of the galactic core black hole mass density causes the recent passage from cosmic deceleration to acceleration. Finally, it is worth mentioning that this work corrects a wide spread fallacy among brane cosmologists, i.e. that escaping gravitons result in positive dark pressure.

  3. Interaction of moving branes with background massless and tachyon fields in superstring theory

    SciTech Connect

    Rezaei, Z. Kamani, D.

    2012-02-15

    Using the boundary state formalism, we study a moving Dp-brane in a partially compact space-time in the presence of background fields: the Kalb-Ramond field B{sub {mu}{nu}}, a U(1) gauge field A{sub {alpha}}, and the tachyon field. The boundary state enables us to obtain the interaction amplitude of two branes with the above back-ground fields. The branes are parallel or perpendicular to each other. Because of the presence of background fields, compactification of some space-time directions, motion of the branes, and the arbitrariness of the dimensions of the branes, the system is rather general. Due to the tachyon fields and velocities of the branes, the behavior of the interaction amplitude reveals obvious differences from the conventional behavior.

  4. D-brane solutions in a light-like linear dilaton background

    NASA Astrophysics Data System (ADS)

    Nayak, Rashmi R.; Panigrahi, Kamal L.

    2006-07-01

    The light-like linear dilaton background presents a simple time dependent solution of type II supergravity equations of motion that preserves 1/2 supersymmetry in ten dimensions. We construct supergravity D-brane solutions in a linear dilaton background starting from the known intersecting brane solutions in string theory. By applying a Penrose limit on the intersecting (NS1-NS5-NS5‧)-brane solution, we find out a D5-brane in a linear dilaton background. We solve the Killing spinor equations for the brane solutions explicitly, and show that they preserve 1/4 supersymmetry. We also find a M5-brane solution in eleven-dimensional supergravity.

  5. The web of D-branes at singularities in compact Calabi-Yau manifolds

    NASA Astrophysics Data System (ADS)

    Cicoli, Michele; Krippendorf, Sven; Mayrhofer, Christoph; Quevedo, Fernando; Valandro, Roberto

    2013-05-01

    We present novel continuous supersymmetric transitions which take place among different chiral configurations of D3/D7 branes at singularities in the context of type IIB Calabi-Yau compactifications. We find that distinct local models which admit a consistent global embedding can actually be connected to each other along flat directions by means of transitions of bulk-to-flavour branes. This has interesting interpretations in terms of brane recombination/splitting and brane/anti-brane creation/annihilation. These transitions give rise to a large web of quiver gauge theories parametrised by splitting/recombination modes of bulk branes which are not present in the non-compact case. We illustrate our results in concrete global embeddings of chiral models at a dP0 singularity.

  6. Noncommutative Tachyon Kinks as D(p-1)-branes from Unstable Dp-brane

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Kim, Yoonbai; Kwon, O.-Kab

    2005-01-01

    We study noncommutative (NC) field theory of a real NC tachyon and NC U(1) gauge field, describing the dynamics of an unstable Dp-brane. For every given set of diagonal component of open string metric G 0 , NC parameter θ0 , and interpolating electric field hat E, we find all possible static NC kinks as exact solutions, in spite of complicated NC terms, which are classified by an array of NC kink-antikink and topological NC kinks. By computing their tensions and charges, those configurations are identified as an array of D0bar D0 and single stable D0 from the unstable D1, respectively. When the interpolating electric field has critical value as G 0 2 = hat E2 , the obtained topological kink becomes a BPS object with nonzero thickness and is identified as BPS D0 in the fluid of fundamental strings. Particularly in the scaling limit of infinite θ0 and vanishing G 0 and hat E, while keeping G 0θ0 = hat Eθ0 = 1, finiteness of the tension of NC kink corresponds to tensionless kink in ordinary effective field theory. An extension to stable D(p-1) from unstable Dp is straightforward for pure electric cases with parallel NC parameter and interpolating two-form field.

  7. Covariant Action for the Super-Five-Brane of {ital M} Theory

    SciTech Connect

    Bandos, I.; Nurmagambetov, A.; Sorokin, D.; Lechner, K.; Pasti, P.; Tonin, M.

    1997-06-01

    We propose a complete, d=6 covariant and kappa-symmetric, action for the M theory five-brane propagating in D=11 supergravity background. This opens a direct way of relating a wide class of super-p -brane solutions of string theory with the five-brane of M theory, which should be useful for studying corresponding dualities and nonperturbative aspects of these theories. {copyright} {ital 1997} {ital The American Physical Society}

  8. Branes and instantons at angles and the F-theory lift of O(1) instantons

    SciTech Connect

    Cvetic, M.; Garcia-Etxebarria, I.; Richter, R.

    2010-02-10

    We discuss the physics of D-branes and D-brane instantons intersecting at angles, focusing on the (non)generation of a superpotential in the worldvolume theory of the branes. This is a short review of the results in arXiv:0905.1694, where we further emphasize both the macroscopic and microscopic structure of the manifestly supersymmetric instanton action. We also comment on the lift of O(1) instantons to F-theory.

  9. Thermal magnetized D-branes on {R}^{1,p}\\times { {T}}^{d-p-1} in the generalized thermo-field dynamics approach

    NASA Astrophysics Data System (ADS)

    Nardi, R.; Santos, M. A.; Vancea, I. V.

    2011-06-01

    We construct the D-brane states at finite temperature in thermal equilibrium in the {R}^{1,p}\\times { {T}}^{d-p-1} spacetime in the presence of cold (unthermalized) Kalb-Ramond (KR) and U(1) gauge potential background. To this end, we first generalize the thermo-field dynamics to wrapped closed strings. This generalization is consistent with the spatial translation invariance on the string world-sheet. Next, we determine the thermal string vacuum and define the entropy operator. From these data we calculate the entropy of the closed string and the free energy. Finally, we define the thermal D-brane states in {R}^{1,p}\\times { {T} }^{d-p-1} in the presence of a cold constant KR field and U(1) gauge potential as the boundary states of the thermal closed string and compute their entropy.

  10. Our World Their World

    ERIC Educational Resources Information Center

    Brisco, Nicole

    2011-01-01

    Build, create, make, blog, develop, organize, structure, perform. These are just a few verbs that illustrate the visual world. These words create images that allow students to respond to their environment. Visual culture studies recognize the predominance of visual forms of media, communication, and information in the postmodern world. This…

  11. Microstates of a neutral black hole in M theory.

    PubMed

    Emparan, Roberto; Horowitz, Gary T

    2006-10-01

    We consider vacuum solutions in M theory of the form of a five-dimensional Kaluza-Klein black hole cross T6. In a certain limit, these include the five-dimensional neutral rotating black hole (cross T6). From a type-IIA standpoint, these solutions carry D0 and D6 charges. We show that there is a simple D-brane description which precisely reproduces the Hawking-Bekenstein entropy in the extremal limit, even though supersymmetry is completely broken. PMID:17155239

  12. Localization and mass spectra of various matter fields on scalar-tensor brane

    SciTech Connect

    Xie, Qun-Ying; Zhao, Zhen-Hua; Zhong, Yi; Yang, Jie; Zhou, Xiang-Nan

    2015-03-10

    Recently, a new scalar-tensor braneworld model was presented in [http://dx.doi.org/10.1103/PhysRevD.86.127502]. It not only solves the gauge hierarchy problem but also reproduces a correct Friedmann-like equation on the brane. In this new model, there are two different brane solutions, for which the mass spectra of gravity on the brane are the same. In this paper, we investigate localization and mass spectra of various bulk matter fields (i.e., scalar, vector, Kalb-Ramond, and fermion fields) on the brane. It is shown that the zero modes of all the matter fields can be localized on the positive tension brane under some conditions, and the mass spectra of each kind of bulk matter field for the two brane solutions are different except for some special cases, which implies that the two brane solutions are not physically equivalent. When the coupling constants between the dilaton and bulk matter fields take special values, the mass spectra for both solutions are the same, and the scalar and vector zero modes are localized on the negative tension brane, while the KR zero mode is still localized on the positive tension brane.

  13. Landau-Ginzburg to Calabi-Yau dictionary for D-branes

    SciTech Connect

    Aspinwall, Paul S.

    2007-08-15

    Based on the work by Orlov (e-print arXiv:math.AG/0503632), we give a precise recipe for mapping between B-type D-branes in a Landau-Ginzburg orbifold model (or Gepner model) and the corresponding large radius Calabi-Yau manifold. The D-branes in Landau-Ginzburg theories correspond to matrix factorizations and the D-branes on the Calabi-Yau manifolds are objects in the derived category. We give several examples including branes on quotient singularities associated with weighted projective spaces. We are able to confirm several conjectures and statements in the literature.

  14. Black Consciousness

    ERIC Educational Resources Information Center

    Hraba, Joseph; Siegman, Jack

    1974-01-01

    Black militancy is treated as an instance of class consciousness with criteria and scales developed to measure black consciousness and "self-placement" into black consciousness. These dimensions are then investigated with respect to the social and symbolic participation in the ideology of the black movement on the part of a sample of black…

  15. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  16. D branes in background fluxes and Nielsen-Olesen instabilities

    NASA Astrophysics Data System (ADS)

    Russo, Jorge G.

    2016-06-01

    In quantum field theory, charged particles with spin ≥ 1 may become tachyonic in the present of magnetic fluxes above some critical field, signaling an instability of the vacuum. The phenomenon is generic, in particular, similar instabilities are known to exist in open and closed string theory, where a spinning string state can become tachyonic above a critical field. In compactifications involving RR fluxes F p+2, the quantum states which could become tachyonic by the same Nielsen-Olesen mechanism are D p branes. By constructing an appropriate background with RR magnetic flux that takes into account back-reaction, we identify the possible tachyonic D p brane states and compute the formula for the energy spectrum in a sector. More generally, we argue that in any background RR magnetic flux, there are high spin D p quantum states which become very light at critical fields.

  17. Reheating the D-brane universe via instant preheating

    SciTech Connect

    Panda, Sudhakar; Sami, M.; Thongkool, I.

    2010-05-15

    We investigate a possibility of reheating in a scenario of D-brane inflation in a warped deformed conifold background which includes perturbative corrections to throat geometry sourced by a chiral operator of dimension 3/2 in the conformal field theory. The effective D-brane potential, in this case, belongs to the class of nonoscillatory models of inflation for which the conventional reheating mechanism does not work. We find that gravitational particle production is inefficient and leads to reheating temperature of the order of 10{sup 8} GeV. We show that instant preheating is quite suitable to the present scenario and can easily reheat the universe to a temperature which is higher by about 3 orders of magnitude than its counterpart associated with gravitational particle production. The reheating temperature is shown to be insensitive to a particular choice of inflationary parameters suitable to observations.

  18. Prisons of light : black holes

    NASA Astrophysics Data System (ADS)

    Ferguson, Kitty

    What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  19. Some phenomenology of intersecting D-brane models

    SciTech Connect

    Kane, Gordon L.; Kumar, Piyush; Wang, Ting T.; Lykken, Joseph D.

    2005-06-01

    We present some phenomenology of a new class of intersecting D-brane models. Soft supersymmetry (SUSY) breaking terms for these models are calculated in the u-moduli dominant SUSY breaking approach (in type IIA). In this case, the dependence of the soft terms on the Yukawas and Wilson lines drops out. These soft terms have a different pattern compared to the usual heterotic string models. Phenomenological implications for dark matter are discussed.

  20. Yukawa sector in minimal D-brane models

    NASA Astrophysics Data System (ADS)

    Ennadifi, Salah Eddine

    2015-07-01

    We investigate the Yukawa couplings sector in the minimal gauge theory U(3) × U(2) × U(1) with the Standard Model chiral and Higgs spectrum based on three stacks of intersecting D-branes. In this model, stringy corrections are required to induce the missing Yukawa couplings and generate hierarchical pattern. Under the known data, we assign the realistic Yukawa texture and then bound their strengths.

  1. Open parabosonic string theory between two parallel Dp-branes

    SciTech Connect

    Hamam, D.; Belaloui, N.

    2012-06-27

    We investigate an open parabosonic string theory between two parallel Dp-branes. The spectrum is constructed and the partition function is derived. A common chord between the development of this latter and the degeneracy of the states for each mass level is obtained. The theory is consistent and with no tachyon. The Virasoro algebra is derived and compared to the one of the ordinary case.

  2. p-brane dynamics in N+1-dimensional FRW universes

    SciTech Connect

    Avelino, P. P.; Sousa, L.; Menezes, R.

    2009-02-15

    We study the evolution of maximally symmetric p-branes with a S{sub p-i} x R{sup i} topology in flat expanding or collapsing homogeneous and isotropic universes with N+1 dimensions (with N{>=}3, pbrane solutions and the corresponding (average) equation of state of the p-brane gas. We also investigate the p-brane dynamics for H{ne}constant in models where the evolution of the universe is driven by a perfect fluid with constant equation of state parameter w=P{sub p}/{rho}{sub p} and show that a critical radius r{sub c} can still be defined for -1{<=}w

  3. Spinning branes in Riemann-Cartan spacetime

    SciTech Connect

    Vasilic, Milovan; Vojinovic, Marko

    2008-11-15

    We use the conservation law of the stress-energy and spin tensors to study the motion of massive branelike objects in Riemann-Cartan geometry. The world-sheet equations and boundary conditions are obtained in a manifestly covariant form. In the particle case, the resultant worldline equations turn out to exhibit a novel spin-curvature coupling. In particular, the spin of a zero-size particle does not couple to the background curvature. In the string case, the world-sheet dynamics is studied for some special choices of spin and torsion. As a result, the known coupling to the Kalb-Ramond antisymmetric external field is obtained. Geometrically, the Kalb-Ramond field has been recognized as a part of the torsion itself, rather than the torsion potential.

  4. Brane parity orders in the insulating state of Hubbard ladders

    NASA Astrophysics Data System (ADS)

    Degli Esposti Boschi, Cristian; Montorsi, Arianna; Roncaglia, Marco

    2016-08-01

    The Mott insulating state of the Hubbard model at half filling could be depicted as a spin liquid of singly occupied sites with holon-doublon quantum fluctuations localized in pairs. In one dimension the behavior is captured by a finite value of the charge parity string correlator, which fails to remain finite when generalized to higher dimensions. We recover a definition of parity brane correlator which may remain nonvanishing in the presence of interchain coupling, by assigning an appropriate fractional phase to the parity breaking fluctuations. In the case of Hubbard ladders at half filling, we find that the charge parity brane is nonzero at any repulsive value of interaction. The spin-parity brane instead becomes nonvanishing in the even-leg case, in correspondence to the onset of the spin gapped D-Mott phase, which is absent in the odd-leg case. The behavior of the parity correlators is also analyzed by means of a numerical DMRG analysis of the one- and two-leg ladder.

  5. Quantum billiards with branes on product of Einstein spaces

    NASA Astrophysics Data System (ADS)

    Ivashchuk, V. D.

    2016-05-01

    We consider a gravitational model in dimension D with several forms, l scalar fields and a Λ -term. We study cosmological-type block-diagonal metrics defined on a product of an 1-dimensional interval and n oriented Einstein spaces. As an electromagnetic composite brane ansatz is adopted and certain restrictions on the branes are imposed the conformally covariant Wheeler-DeWitt (WDW) equation for the model is studied. Under certain restrictions, asymptotic solutions to the WDW equation are found in the limit of the formation of the billiard walls. These solutions reduce the problem to the so-called quantum billiard in (n + l -1)-dimensional hyperbolic space. Several examples of quantum billiards in the model with electric and magnetic branes, e.g. corresponding to hyperbolic Kac-Moody algebras, are considered. In the case n=2 we find a set of basis asymptotic solutions to the WDW equation and derive asymptotic solutions for the metric in the classical case.

  6. Prospects of inflation in delicate D-brane cosmology

    NASA Astrophysics Data System (ADS)

    Panda, Sudhakar; Sami, M.; Tsujikawa, Shinji

    2007-11-01

    We study D-brane inflation in a warped conifold background that includes brane-position dependent corrections for the nonperturbative superpotential. Instead of stabilizing the volume modulus χ at instantaneous minima of the potential and studying the inflation dynamics with an effective single field (radial distance between a brane and an antibrane) ϕ, we investigate the multifield inflation scenario involving these two fields. The two-field dynamics with the potential V(ϕ,χ) in this model is significantly different from the effective single-field description in terms of the field ϕ when the field χ is integrated out. The latter picture underestimates the total number of e-foldings even by 1 order of magnitude. We show that a correct single-field description is provided by a field ψ obtained from a rotation in the two-field space along the background trajectory. This model can give a large number of e-foldings required to solve flatness and horizon problems at the expense of fine-tunings of model parameters. We also estimate the spectra of density perturbations and show that the slow-roll parameter ηψψ=Mpl2V,ψψ/V in terms of the rotated field ψ determines the spectral index of scalar metric perturbations. We find that it is generally difficult to satisfy, simultaneously, both constraints of the spectral index and the cosmic background explorer normalization, while the tensor to scalar ratio is sufficiently small to match with observations.

  7. Therapeutic Dimensions of the Black Aesthetic

    ERIC Educational Resources Information Center

    Toldson, Ivory L.; Pasteur, Alfred B.

    1976-01-01

    The authors of this article see the black aesthetic largely in terms of the affective component. Emotional oneness which is foreign to the white world view is the means by which the black man can achieve optimal mental health and development. The therapeutic implications of the black aesthetic are outlined. (NG)

  8. Images: An Anthology of Black Literature.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    This volume contains literature by or about black people, covering a broad range of topics and capturing the black experience in America, Africa, and the world at large. Contents include: "Through the Mists of Time," which consists of works about Africa and the Caribbean, from which most black Americans came; "Heroes of the Past"; "Stars to Light…

  9. Hawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-07-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.

  10. Lepton flavour violation in RS models with a brane- or nearly brane-localized Higgs

    NASA Astrophysics Data System (ADS)

    Beneke, M.; Moch, P.; Rohrwild, J.

    2016-05-01

    We perform a comprehensive study of charged lepton flavour violation in Randall-Sundrum (RS) models in a fully 5D quantum-field-theoretical framework. We consider the RS model with minimal field content and a "custodially protected" extension as well as three implementations of the IR-brane localized Higgs field, including the non-decoupling effect of the KK excitations of a narrow bulk Higgs. Our calculation provides the first complete result for the flavour-violating electromagnetic dipole operator in Randall-Sundrum models. It contains three contributions with different dependence on the magnitude of the anarchic 5D Yukawa matrix, which can all be important in certain parameter regions. We study the typical range for the branching fractions of μ → eγ, μ → 3 e, μN → eN as well as τ → μγ, τ → 3 μ and the electron electric dipole moment by a numerical scan in both the minimal and the custodial RS model. The combination of μ → eγ and μN → eN currently provides the most stringent constraint on the parameter space of the model. A typical lower limit on the KK scale T is around 2 TeV in the minimal model (up to 4 TeV in the bulk Higgs case with large Yukawa couplings), and around 4 TeV in the custodially protected model, which corresponds to a mass of about 10 TeV for the first KK excitations, far beyond the lower limit from the non-observation of direct production at the LHC.

  11. Ultraspinning instability of rotating black holes

    SciTech Connect

    Dias, Oscar J. C.; Figueras, Pau; Monteiro, Ricardo; Santos, Jorge E.

    2010-11-15

    Rapidly rotating Myers-Perry black holes in d{>=}6 dimensions were conjectured to be unstable by Emparan and Myers. In a previous publication, we found numerically the onset of the axisymmetric ultraspinning instability in the singly spinning Myers-Perry black hole in d=7, 8, 9. This threshold also signals a bifurcation to new branches of axisymmetric solutions with pinched horizons that are conjectured to connect to the black ring, black Saturn and other families in the phase diagram of stationary solutions. We firmly establish that this instability is also present in d=6 and in d=10, 11. The boundary conditions of the perturbations are discussed in detail for the first time, and we prove that they preserve the angular velocity and temperature of the original Myers-Perry black hole. This property is fundamental to establishing a thermodynamic necessary condition for the existence of this instability in general rotating backgrounds. We also prove a previous claim that the ultraspinning modes cannot be pure gauge modes. Finally we find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes that appear exactly at the critical rotation predicted by the aforementioned thermodynamic criterium. The latter is a refinement of the Gubser-Mitra conjecture.

  12. New interpretation of matter-antimatter asymmetry based on branes and possible observational consequences

    SciTech Connect

    Cai Ronggen; Li Tong; Li Xueqian; Wang Xun

    2007-11-15

    Motivated by the alpha-magnetic-spectrometer (AMS) project, we assume that after the big bang or inflation epoch, antimatter was repelled onto one brane which is separated from our brane where all the observational matter resides. It is suggested that CP may be spontaneously broken, the two branes would correspond to ground states for matter and antimatter, respectively. Generally a complex scalar field which is responsible for the spontaneous CP violation, exists in the space between the branes. The matter and antimatter on the two branes attract each other via gravitational force, meanwhile the scalar field causes a Casimir effect to result in a repulsive force against the gravitation. We find that the Casimir force is much stronger than the gravitational force, as long as the separation of the two branes is small. Thus at early epoch after the big bang, the two branes were closer and then have been separated by the Casimir repulsive force from each other. The trend will continue until the separation is sufficiently large and then the gravitational force observed in our four-space would obviously deviate from the Newton's universal gravitational law. We suppose that there is a potential barrier at the brane boundary, which is similar to the surface tension for a water membrane. The barrier prevents the matter (antimatter) particles from entering the space between two branes and jump from one brane to another. However, by the quantum tunneling, a sizable antimatter flux may come to our brane and be observed by the AMS. In this work by considering two possible models, i.e. the naive flat space-time and Randall-Sundrum models, and using the observational data on the visible matter in our universe as inputs, we derive the antimatter flux which comes to our detector in the nonrelativistic approximation and make a rough numerical estimate of possible numbers of antihelium at AMS.

  13. Remarks on the mixed Ramond-Ramond, open string scattering amplitudes of BPS, non-BPS and brane-anti-brane

    NASA Astrophysics Data System (ADS)

    Hatefi, Ehsan

    2015-11-01

    From the world-sheet point of view we compute three, four and five point BPS and non-BPS scattering amplitudes of type IIA and IIB superstring theory. All these mixed S-matrix elements including a Ramond-Ramond closed string (RR) in the bulk and a scalar/gauge or tachyons with all different pictures (including an RR in asymmetric and symmetric pictures) have been carried out. We have also shown that in asymmetric pictures various equations must be kept fixed. More importantly, by direct calculations on the upper half plane, it is realised that some of the equations (which must be true) for BPS branes cannot be necessarily applied to non-BPS amplitudes. We also derive the S-matrix elements of < V_C^{-2} V_{φ }0V _A0 V_T0 rangle and clarify the fact that in the presence of the scalar field and an RR, the terms carrying momentum of an RR in the transverse directions play an important role in the entire form of the S-matrix and their presence is needed in order to have gauge invariance for the entire S-matrix elements of type IIA (IIB) superstring theory.

  14. Aspects of emergent geometry, strings, and branes in gauge / gravity duality

    NASA Astrophysics Data System (ADS)

    Dzienkowski, Eric Michael

    We explore the emergence of locality and geometry in string theories from the perspective of gauge theories using gauge / gravity duality. First, we explicitly construct open strings stretched between giant gravitons in N=4 SYM. We find that these strings satisfy a relativistic dispersion relation up to three-loop order and conjecture that this should hold to all loop orders. We find the explicit dual solution to the string sigma model and find exact agreement with the geometric nature of the SYM operator and dispersion relation. Using these open strings as probes, we explore the local field theory on the worldvolume of the giant gravitons. Second, we use classical configurations in holographic matrix models to understand the emergence of geometry from matrix coordinates. We construct an effective Hamiltonian for a probe brane that observes the geometry in a background matrix configuration from which we can construct membranes embedded in three dimensional space. Adding angular momentum to these configurations we are able to observe continuous topology changes. We also study the classical evolution of holographic matrix models to generate a microcanonical ensemble of configurations and study their thermal and chaotic behavior. We argue that these thermal configurations are dual to black holes.

  15. Statistical entropy of charged two-dimensional black holes

    NASA Astrophysics Data System (ADS)

    Teo, Edward

    1998-06-01

    The statistical entropy of a five-dimensional black hole in Type II string theory was recently derived by showing that it is U-dual to the three-dimensional Bañados-Teitelboim-Zanelli black hole, and using Carlip's method to count the microstates of the latter. This is valid even for the non-extremal case, unlike the derivation which relies on D-brane techniques. In this letter, I shall exploit the U-duality that exists between the five-dimensional black hole and the two-dimensional charged black hole of McGuigan, Nappi and Yost, to microscopically compute the entropy of the latter. It is shown that this result agrees with previous calculations using thermodynamic arguments.

  16. Low-energy effective theory for a Randall-Sundrum scenario with a moving bulk brane

    SciTech Connect

    Cotta-Ramusino, Ludovica; Wands, David

    2007-05-15

    We derive the low-energy effective theory of gravity for a generalized Randall-Sundrum scenario, allowing for a third self-gravitating brane to live in the 5D bulk spacetime. At zero order the 5D spacetime is composed of two slices of anti-de Sitter spacetime, each with a different curvature scale, and the 5D Weyl tensor vanishes. Two boundary branes are at the fixed points of the orbifold whereas the third brane is free to move in the bulk. At first order, the third brane breaks the otherwise continuous evolution of the projection of the Weyl tensor normal to the branes. We derive a junction condition for the projected Weyl tensor across the bulk brane, and combining this constraint with the junction condition for the extrinsic curvature tensor, allows us to derive the first-order field equations on the middle brane. The effective theory is a generalized Brans-Dicke theory with two scalar fields. This is conformally equivalent to Einstein gravity and two scalar fields, minimally coupled to the geometry, but nonminimally coupled to matter on the three branes.

  17. Stringy stability of charged dilaton black holes with flat event horizon

    SciTech Connect

    Ong, Yen Chin; Chen, Pisin

    2015-01-15

    Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Critical to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilation arises naturally in the context of string theory, we study the effect of coupling dilation to Maxwell field on the stability of flat charged AdS black holes.

  18. Black tea

    MedlinePlus

    ... that the caffeine in black tea might slow blood clotting, though this hasn’t been shown in people. ... Talk with your health provider.Medications that slow blood clotting (Anticoagulant / Antiplatelet drugs)Black tea contains caffeine. Caffeine ...

  19. Black Ageism

    ERIC Educational Resources Information Center

    Golden, Herbert M.

    1976-01-01

    Notes that attempts to apply research findings based on undifferentiated comparisons between black and white elderly toward the solution of problems faced by black elderly are doomed to ineffectiveness. (Author/AM)

  20. Black tea

    MedlinePlus

    Black tea is a product made from the Camellia sinesis plant. The aged leaves and stems are ... of the same plant, has some different properties. Black tea is used for improving mental alertness as ...

  1. Black Art.

    ERIC Educational Resources Information Center

    Baraka, Amiri

    1987-01-01

    Discusses black art as not only an expression of black life but as revolutionary art. It must be collective, functional, and committing. It must also be anti-racist, anti-capitalist, and anti-imperialist. (LHW)

  2. Black Cohosh

    MedlinePlus

    ... gov Key References Black cohosh. Natural Medicines Comprehensive Database Web site. Accessed at www.naturaldatabase.com on April ... Black cohosh ( Cimicifuga racemosa [L.] Nutt. ). Natural Standard Database Web site. Accessed at www.naturalstandard.com on April ...

  3. On the Algebraic K Theory of the Massive D8 and M9-Branes

    NASA Astrophysics Data System (ADS)

    Vancea, Ion V.

    In this paper we review some basic relations of algebraic K theory and we formulate them in the language of D-branes. Then we study the relation between the D8-branes wrapped on an orientable compact manifold W in a massive Type IIA supergravity background and the M9-branes wrapped on a compact manifold Z in a massive d=11 supergravity background from the K-theoretic point of view. By interpreting the D8-brane charges as elements of K0(C(W)) and the (inequivalent classes of) spaces of gauge fields on the M9-branes as the elements of K0(C(Z)x{¯ {k}*}G) where G is a one-dimensional compact group, a connection between charges and gauge fields is argued to exists. This connection could be realized as a composition map between the corresponding algebraic K theory groups.

  4. Extremal black attractors in 8D maximal supergravity

    SciTech Connect

    Drissi, L. B; Hassani, F. Z; Jehjouh, H.; Saidi, E. H

    2010-05-15

    Motivated by the new higher D-supergravity solutions on intersecting attractors obtained by Ferrara et al. in [Phys. Rev. D 79, 065031 (2009)], we focus in this paper on 8D maximal supergravity with moduli space (SL(3,R)/SO(3))x(SL(2,R)/SO(2)) and study explicitly the attractor mechanism for various configurations of extremal black p-branes (antibranes) with the typical near horizon geometries AdS{sub p+2}xS{sup m}xT{sup 6-p-m} and p=0, 1, 2, 3, 4; 2{<=}m{<=}6. Interpretations in terms of wrapped M2 and M5 branes of the 11D M-theory on 3-torus are also given.

  5. Black Appalachians.

    ERIC Educational Resources Information Center

    Waage, Fred, Ed.; Cabbell, Ed, Ed.

    1986-01-01

    This issue of "Now and Then" focuses on black Appalachians, their culture, and their history. It contains local histories, articles, and poems and short stories by Appalachian blacks. Articles include: "A Mountain Artist's Landscape," a profile of artist Rita Bradley by Pat Arnow; "A Part and Apart," a profile of black historian Ed Cabbell by Pat…

  6. Black Psychology.

    ERIC Educational Resources Information Center

    Jones, Reginald L., Ed.

    The contents of the present volume, designed to bring together in a single place writings by the new black psychologists and other black social and behavioral scientists, are organized in seven parts, as follows: Part I, "Black Psychology: Perspectives," includes articles by Cedric Clark, Wade W. Nobles, Doris P. Mosby, Joseph White, and William…

  7. Black Students.

    ERIC Educational Resources Information Center

    Edwards, Harry

    The black student revolt did not start with the highly publicized activities of the black students at San Francisco State College. The roots of the revolt lie deeply imbedded within the history and structure of the overall black liberation struggle in America. The beginnings of this revolt can be found in the students of Southern Negro colleges in…

  8. Talking Black.

    ERIC Educational Resources Information Center

    Abrahams, Roger D.

    This book contains essays which focus on the systems of communication that operate within and between various social segments of Afro-American communities in the United States. The essays are presented under the following headings: (1) "Getting Into It: Black Talk, Black Life and the Academic," (2) "'Talking My Talk': Black Talk Varieties and…

  9. Prospects of inflation in delicate D-brane cosmology

    SciTech Connect

    Panda, Sudhakar; Sami, M.; Tsujikawa, Shinji

    2007-11-15

    We study D-brane inflation in a warped conifold background that includes brane-position dependent corrections for the nonperturbative superpotential. Instead of stabilizing the volume modulus {chi} at instantaneous minima of the potential and studying the inflation dynamics with an effective single field (radial distance between a brane and an antibrane) {phi}, we investigate the multifield inflation scenario involving these two fields. The two-field dynamics with the potential V({phi},{chi}) in this model is significantly different from the effective single-field description in terms of the field {phi} when the field {chi} is integrated out. The latter picture underestimates the total number of e-foldings even by 1 order of magnitude. We show that a correct single-field description is provided by a field {psi} obtained from a rotation in the two-field space along the background trajectory. This model can give a large number of e-foldings required to solve flatness and horizon problems at the expense of fine-tunings of model parameters. We also estimate the spectra of density perturbations and show that the slow-roll parameter {eta}{sub {psi}}{sub {psi}}=M{sub pl}{sup 2}V{sub ,{psi}}{sub {psi}}/V in terms of the rotated field {psi} determines the spectral index of scalar metric perturbations. We find that it is generally difficult to satisfy, simultaneously, both constraints of the spectral index and the cosmic background explorer normalization, while the tensor to scalar ratio is sufficiently small to match with observations.

  10. Configurational entropy in f (R,T ) brane models

    NASA Astrophysics Data System (ADS)

    Correa, R. A. C.; Moraes, P. H. R. S.

    2016-02-01

    In this work we investigate generalized theories of gravity in the so-called configurational entropy (CE) context. We show, by means of this information-theoretical measure, that a stricter bound on the parameter of f( R, T) brane models arises from the CE. We find that these bounds are characterized by a valley region in the CE profile, where the entropy is minimal. We argue that the CE measure can play a new role and might be an important additional approach to selecting parameters in modified theories of gravitation.

  11. Towards realistic standard model from D-brane configurations

    SciTech Connect

    Leontaris, G. K.; Tracas, N. D.; Korakianitis, O.; Vlachos, N. D.

    2007-12-01

    Effective low energy models arising in the context of D-brane configurations with standard model (SM) gauge symmetry extended by several gauged Abelian factors are discussed. The models are classified according to their hypercharge embeddings consistent with the SM spectrum hypercharge assignment. Particular cases are analyzed according to their perspectives and viability as low energy effective field theory candidates. The resulting string scale is determined by means of a two-loop renormalization group calculation. Their implications in Yukawa couplings, neutrinos and flavor changing processes are also presented.

  12. Generalized gravitational entropy of probe branes: flavor entanglement holographically

    NASA Astrophysics Data System (ADS)

    Karch, Andreas; Uhlemann, Christoph F.

    2014-05-01

    The notion of generalized gravitational entropy introduced by Lewkowycz and Maldacena allows, via the AdS/CFT correspondence, to calculate CFT entanglement entropies. We adapt the method to the case where flavor branes are present and treated in the probe approximation. This allows to calculate the leading flavor correction to the CFT entanglement entropy from the on-shell action of the probe, while dealing with the backreaction is avoided entirely and from the outset. As an application we give concise derivations for the contribution of massless and massive flavor degrees of freedom to the entanglement entropy in = 4 SYM theory.

  13. Information content in F (R ) brane models with nonconstant curvature

    NASA Astrophysics Data System (ADS)

    Correa, R. A. C.; Moraes, P. H. R. S.; Dutra, A. de Souza; da Rocha, Roldão

    2015-12-01

    In this work we investigate the entropic information measure in the context of braneworlds with nonconstant curvature. The braneworld entropic information is studied for gravity modified by the square of the Ricci scalar, besides the usual Einstein-Hilbert term. We showed that the minimum value of the brane configurational entropy provides a stricter bound on the parameter that is responsible for the F (R ) model differing from the Einstein-Hilbert standard one. Our results are moreover consistent to a negative bulk cosmological constant.

  14. Black Holes

    NASA Astrophysics Data System (ADS)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  15. Bulk Casimir densities and vacuum interaction forces in higher dimensional brane models

    SciTech Connect

    Saharian, Aram A.

    2006-03-15

    Vacuum expectation value of the energy-momentum tensor and the vacuum interaction forces are evaluated for a massive scalar field with general curvature coupling parameter satisfying Robin boundary conditions on two codimension one parallel branes embedded in (D+1)-dimensional background spacetime AdS{sub D{sub 1}}{sub +1}x{sigma} with a warped internal space {sigma}. The vacuum energy-momentum tensor is presented as a sum of boundary-free, single brane-induced, and interference parts. The latter is finite everywhere including the points on the branes and is exponentially small for large interbrane distances. Unlike to the purely anti-de Sitter (AdS) bulk, the part induced by a single brane, in addition to the distance from the brane, depends also on the position of the brane in the bulk. The asymptotic behavior of this part is investigated for the points near the brane and for the position of the brane close to the AdS horizon and AdS boundary. The contribution of Kaluza-Klein modes along {sigma} is discussed in various limiting cases. The vacuum forces acting on the branes are presented as a sum of the self-action and interaction terms. The first one contains well-known surface divergences and needs a further renormalization. The interaction forces between the branes are finite for all nonzero interbrane distances and are investigated as functions of the brane positions and the length scale of the internal space. We show that there is a region in the space of parameters in which these forces are repulsive for small distances and attractive for large distances. As an example, the case {sigma}=S{sup D{sub 2}} is considered. An application to the higher dimensional generalization of the Randall-Sundrum brane model with arbitrary mass terms on the branes is discussed. Taking the limit with infinite curvature radius for the AdS bulk, from the general formulas we derive the results for two parallel Robin plates on background of R{sup (D{sub 1},1)}x{sigma} spacetime.

  16. Black Sea in Bloom

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image shows bright, turquoise-colored swirls across the surface of the Black Sea, signifying the presence of a large phytoplankton bloom. Scientists have observed similar blooms recurring annually, roughly this same time of year. The Sea of Azov, which is the smaller body of water located just north of the Black Sea in this image, also shows a high level of biological activity currently ongoing. The brownish pixels in the Azov are probably sediments carried in from high waters upstream. This scene was acquired by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, on May 4, 2002. According to the Black Sea Environment Programme's Marine Hydrophysical Institute, the Black Sea is 'one of the marine areas of the world most damaged by human activities.' The coastal zone around these Eastern European inland water bodies is densely populated-supporting a permanent population of roughly 16 million people and another 4 million tourists each year. Six countries border with the Black Sea, including Ukraine to the north, Russia and Georgia to the east, Turkey to the south, and Bulgaria and Romania to the west. Because it is isolated from the world's oceans, and because there is an extensive drainage network of rivers that empty into it, the Black Sea has a unique and delicate water balance which is very important for supporting its marine ecosystem. Of particular concern to scientists is the salinity, water level, and nutrient levels of the Black Sea's waters, all of which are, unfortunately, being impacted by human activities. Within the last three decades the combination of increased nutrient loads from human sources together with pollution and over-harvesting of fisheries has resulted in a sharp decline in water quality. Scientists from each of the Black Sea's bordering nations are currently working together to study the issues and formulate a joint, international strategy for saving this unique marine ecosystem

  17. Black Sea Becomes Turquoise

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image shows bright, turquoise-colored swirls across the surface of the Black Sea, signifying the presence of a large phytoplankton bloom. Scientists have observed similar blooms recurring annually, roughly this same time of year. The Sea of Azov, which is the smaller body of water located just north of the Black Sea in this image, also shows a high level of color variance. The brownish pixels in the Azov are probably due to sediments carried in from high waters and snowmelt from upstream. This scene was acquired by the Moderate Resolution Imaging Spectroradiometer, flying aboard NASA's Terra satellite, on May 14, 2002. According to the Black Sea Environment Programme's Marine Hydrophysical Institute, the Black Sea is ?one of the marine areas of the world most damaged by human activities.? The coastal zone around these Eastern European inland water bodies is densely populated'supporting a permanent population of roughly 16 million people and another 4 million tourists each year. Six countries border with the Black Sea, including Ukraine to the north, Russia and Georgia to the east, Turkey to the south, and Bulgaria and Romania to the west. Because it is isolated from the world's oceans, and because there is an extensive drainage network of rivers that empty into it, the Black Sea has a unique and delicate water balance which is very important for supporting its marine ecosystem. Of particular concern to scientists is the salinity, water level, and nutrient levels of the Black Sea's waters, all of which are, unfortunately, being impacted by human activities. Within the last three decades the combination of increased nutrient loads from human sources together with pollution and over-harvesting of fisheries has resulted in a sharp decline in water quality. Scientists from each of the Black Sea's bordering nations are currently working together to study the issues and formulate a joint, international strategy for saving this unique marine ecosystem

  18. Quasinormal modes of black holes in anti-de Sitter space: A numerical study of the eikonal limit

    SciTech Connect

    Morgan, Jaqueline; Zanchin, Vilson T.; Cardoso, Vitor; Miranda, Alex S.; Molina, C.

    2009-07-15

    Using series solutions and time-domain evolutions, we probe the eikonal limit of the gravitational and scalar-field quasinormal modes of large black holes and black branes in anti-de Sitter backgrounds. These results are particularly relevant for the AdS/CFT correspondence, since the eikonal regime is characterized by the existence of long-lived modes which (presumably) dominate the decay time scale of the perturbations. We confirm all the main qualitative features of these slowly damped modes as predicted by Festuccia and Liu [G. Festuccia and H. Liu, arXiv:0811.1033.] for the scalar-field (tensor-type gravitational) fluctuations. However, quantitatively we find dimensional-dependent correction factors. We also investigate the dependence of the quasinormal mode frequencies on the horizon radius of the black hole (brane) and the angular momentum (wave number) of vector- and scalar-type gravitational perturbations.

  19. Potentials between D-branes in a supersymmetric model of space-time foam

    SciTech Connect

    Ellis, John; Mavromatos, Nikolaos E.; Westmuckett, Michael

    2005-05-15

    We study a supersymmetric model of space-time foam with two stacks each of eight D8-branes with equal string tensions, separated by a single bulk dimension containing D0-brane particles that represent quantum fluctuations. The ground-state configuration with static D-branes has zero vacuum energy, but, when they move, the interactions among the D-branes and D-particles due to the exchanges of strings result in a nontrivial, positive vacuum energy. We calculate its explicit form in the limits of small velocities and large or small separations between the D-branes and/or the D-particles. This nontrivial vacuum energy appears as a central-charge deficit in the noncritical stringy {sigma} model describing perturbative string excitations on a moving D-brane. These calculations enable us to characterize the ground state of the D-brane/D-particle system, and provide a framework for discussing brany inflation and the possibility of residual dark energy in the present-day Universe.

  20. Magnetic branes in third order Lovelock-Born-Infeld gravity

    SciTech Connect

    Dehghani, M. H.; Bostani, N.; Hendi, S. H.

    2008-09-15

    Considering both the nonlinear invariant terms constructed by the electromagnetic field and the Riemann tensor in gravity action, we obtain a new class of (n+1)-dimensional magnetic brane solutions in third order Lovelock-Born-Infeld gravity. This class of solutions yields a spacetime with a longitudinal nonlinear magnetic field generated by a static source. These solutions have no curvature singularity and no horizons but have a conic geometry with a deficit angle {delta}. We find that, as the Born-Infeld parameter decreases, which is a measure of the increase of the nonlinearity of the electromagnetic field, the deficit angle increases. We generalize this class of solutions to the case of spinning magnetic solutions and find that, when one or more rotation parameters are nonzero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameters. Finally, we use the counterterm method in third order Lovelock gravity and compute the conserved quantities of these spacetimes. We found that the conserved quantities do not depend on the Born-Infeld parameter, which is evident from the fact that the effects of the nonlinearity of the electromagnetic fields on the boundary at infinity are wiped away. We also find that the properties of our solution, such as deficit angle, are independent of Lovelock coefficients.