Sample records for breast cancer target

  1. Theranostics Targeting Metastatic Breast Cancer

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0389 TITLE: Theranostics Targeting Metastatic Breast Cancer PRINCIPAL INVESTIGATOR: Kevin Burgess CONTRACTING...ADDRESS. 1. REPORT DATE October 2017 2. REPORT TYPE Annual 3. DATES COVERED 4. TITLE AND SUBTITLE Theranostics Targeting Metastatic Breast Cancer 5a...safe and effective interventions; (ii) elimination of mortality associated with metastatic breast cancer ; and, (iii) distinguishing aggressive breast

  2. Novel Targeted Therapies for Inflammatory Breast Cancer

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0461 TITLE: Novel Targeted Therapies for Inflammatory Breast Cancer PRINCIPAL INVESTIGATOR: Jose Silva CONTRACTING...CONTRACT NUMBER Novel Targeted Therapies for Inflammatory Breast Cancer 5b. GRANT NUMBER W81XWH-16-1-0461 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) l 5d...NOTES 14. ABSTRACT Inflammatory breast cancer (IBC, ~5% of all breast cancers ) is the most lethal form of breast cancer , presenting a 5- year

  3. Breast Cancer-Targeted Nuclear Drug Delivery Overcoming Drug Resistance for Breast Cancer Chemotherapy

    DTIC Science & Technology

    2011-09-01

    breast-cancer-targeted nuclear drug delivery carriers , but we found that the ability of the PEI to disrupt the endosome/lysosome membrane was not...AD_________________ Award Number: W81XWH-09-1-0502 TITLE: Breast Cancer-Targeted Nuclear Drug ...Delivery Overcoming Drug Resistance for Breast Cancer Chemotherapy PRINCIPAL INVESTIGATOR: Youqing Shen, Ph.D

  4. Targeted Therapy for Breast Cancer Prevention

    PubMed Central

    den Hollander, Petra; Savage, Michelle I.; Brown, Powel H.

    2013-01-01

    With a better understanding of the etiology of breast cancer, molecularly targeted drugs have been developed and are being testing for the treatment and prevention of breast cancer. Targeted drugs that inhibit the estrogen receptor (ER) or estrogen-activated pathways include the selective ER modulators (tamoxifen, raloxifene, and lasofoxifene) and aromatase inhibitors (AIs) (anastrozole, letrozole, and exemestane) have been tested in preclinical and clinical studies. Tamoxifen and raloxifene have been shown to reduce the risk of breast cancer and promising results of AIs in breast cancer trials, suggest that AIs might be even more effective in the prevention of ER-positive breast cancer. However, these agents only prevent ER-positive breast cancer. Therefore, current research is focused on identifying preventive therapies for other forms of breast cancer such as human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancer (TNBC, breast cancer that does express ER, progesterone receptor, or HER2). HER2-positive breast cancers are currently treated with anti-HER2 therapies including trastuzumab and lapatinib, and preclinical and clinical studies are now being conducted to test these drugs for the prevention of HER2-positive breast cancers. Several promising agents currently being tested in cancer prevention trials for the prevention of TNBC include poly(ADP-ribose) polymerase inhibitors, vitamin D, and rexinoids, both of which activate nuclear hormone receptors (the vitamin D and retinoid X receptors). This review discusses currently used breast cancer preventive drugs, and describes the progress of research striving to identify and develop more effective preventive agents for all forms of breast cancer. PMID:24069582

  5. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer

    PubMed Central

    Narayanan, Ramesh; Dalton, James T.

    2016-01-01

    Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER) and human epidermal growth factor receptor (HER2) are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR) is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer. PMID:27918430

  6. Targeting ESR1-Mutant Breast Cancer

    DTIC Science & Technology

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0359 TITLE: Targeting ESR1 -Mutant Breast Cancer PRINCIPAL INVESTIGATOR: Dr. Sarat Chandarlapaty CONTRACTING...31 Aug 2015 4. TITLE AND SUBTITLE Targeting ESR1 -Mutant Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0359 5c. PROGRAM ELEMENT...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The hypothesis of this proposal is that LBD mutations in ESR1 promote resistance to

  7. Targeting Breast Cancer Recurrence via Hedgehog-mediated Sensitization of Breast Cancer Stem Cells

    DTIC Science & Technology

    2011-07-01

    Hedgehog -mediated Sensitization of Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: David J. Robbins, Ph.D...June 2010 – 14 June 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Breast Cancer Recurrence via Hedgehog -mediated Sensitization of...this award. Introduction The purpose of the research supported by this award is to determine if targeting the hedgehog signaling pathway in

  8. Breast Cancer: Current Molecular Therapeutic Targets and New Players.

    PubMed

    Nagini, Siddavaram

    2017-01-01

    Breast cancer is the most common cancer and the most frequent cause of cancer death among women worldwide. Breast cancer is a complex, heterogeneous disease classified into hormone-receptor-positive, human epidermal growth factor receptor-2 overexpressing (HER2+) and triple-negative breast cancer (TNBC) based on histological features. Endocrine therapy, the mainstay of treatment for hormone-responsive breast cancer involves use of selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs) and aromatase inhibitors (AIs). Agents that target estrogen receptor (ER) and HER2 such as tamoxifen and trastuzumab have been the most extensively used therapeutics for breast cancer. Crosstalk between ER and other signalling networks as well as epigenetic mechanisms have been envisaged to contribute to endocrine therapy resistance. TNBC, a complex, heterogeneous, aggressive form of breast cancer in which the cells do not express ER, progesterone receptor or HER2 is refractory to therapy. Several molecular targets are being explored to target TNBC including androgen receptor, epidermal growth factor receptor (EGFR), poly(ADP-ribose) polymerase (PARP), and vascular endothelial growth factor (VEGF). Receptors, protein tyrosine kinases, phosphatases, proteases, PI3K/Akt signalling pathway, microRNAs (miRs) and long noncoding RNAs (lncRNAs) are potential therapeutic targets. miR-based therapeutic approaches include inhibition of oncomiRs by antisense oligonucleotides, restoration of tumour suppressors using miR mimics, and chemical modification of miRs. The lnRNAs HOTAIR, SPRY4-IT1, GAS5, and PANDAR, new players in tumour development and prognosis may have theranostic applications in breast cancer. Several novel classes of mechanism-based drugs have been designed and synthesised for treatment of breast cancer. Integration of nucleic acid sequencing studies with mass spectrometry-based peptide sequencing and posttranslational modifications as

  9. Targeting Histone Abnormality in Triple Negative Breast Cancer

    DTIC Science & Technology

    2015-08-01

    Casero RA, Davidson NE. Molecular mechanisms of polyamine analogues in cancer cells. Anti - Cancer Drugs, 16(3): 229-241, 2005. PMID: 15711175 18 3...1 AWARD NUMBER: W81XWH-14-1-0237 TITLE: Targeting Histone Abnormality in Triple-Negative Breast Cancer PRINCIPAL INVESTIGATOR: Yi...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Histone Abnormality in Triple-Negative Breast Cancer 5b. GRANT NUMBER W81XWH-14-1-0237 5c

  10. Targeting breast cancer with sugar-coated carbon nanotubes

    PubMed Central

    Fahrenholtz, Cale D; Hadimani, Mallinath; King, S Bruce; Torti, Suzy V; Singh, Ravi

    2015-01-01

    Aims To evaluate the use of glucosamine functionalized multiwalled carbon nanotubes (glyco-MWCNTs) for breast cancer targeting. Materials & methods Two types of glucosamine functionalized MWCNTs were developed (covalently linked glucosamine and non-covalently phospholipid-glucosamine coated) and evaluated for their potential to bind and target breast cancer cells in vitro and in vivo. Results & conclusion Binding of glyco-MWCNTs in breast cancer cells is mediated by specific interaction with glucose transporters. Glyco-MWCNTs prepared by non-covalent coating with phospholipid-glucosamine displayed an extended blood circulation time, delayed urinary clearance, low tissue retention and increased breast cancer tumor accumulation in vivo. These studies lay the foundation for development of a cancer diagnostic agent based upon glyco-MWCNTs with the potential for superior accuracy over current radiopharmaceuticals. PMID:26296098

  11. Characterizing and Targeting Replication Stress Response Defects in Breast Cancer

    DTIC Science & Technology

    2011-08-01

    induced RSR breast cell model, in which cyclin E can be conditionally induced to trigger RSR in normal breast cells. Using this model, we demonstrated...which makes these defects effective targets for both breast cancer prevention and breast cancer treatment. This project is to use cutting-edge...defective RSR; identify drugs that target these defects; and develop RSR-defect-targeting nanoparticles for diagnostic imaging, prevention, and

  12. Emerging therapeutic targets in metastatic progression: a focus on breast cancer

    PubMed Central

    Li, Zhuo; Kang, Yibin

    2016-01-01

    Metastasis is the underlying cause of death for the majority of breast cancer patients. Despite significant advances in recent years in basic research and clinical development, therapies that specifically target metastatic breast cancer remain inadequate, and represents the single greatest obstacle to reducing mortality of late-stage breast cancer. Recent efforts have leveraged genomic analysis of breast cancer and molecular dissection of tumor-stromal cross-talk to uncover a number of promising candidates for targeted treatment of metastatic breast cancer. Rational combinations of therapeutic agents targeting tumor-intrinsic properties and microenvironmental components provide a promising strategy to develop precision treatments with higher specificity and less toxicity. In this review, we discuss the emerging therapeutic targets in breast cancer metastasis, from tumor-intrinsic pathways to those that involve the host tissue components, including the immune system. PMID:27000769

  13. Targeting Androgen Receptor in Breast Cancer: Enzalutamide as a Novel Breast Cancer Therapeutic

    DTIC Science & Technology

    2015-09-01

    preclinical work. Clinical Aim 3: To determine if changes in molecular determinants between pre-treatment biopsies and tissue at time of disease ...D’Amato NC, Elias A, Richer JK. Androgen receptor biology in triple negative breast cancer: a case for AR+ and quadruple negative disease subtypes...cancer and can we target it? 14th Annual International Congress on the Future of Breast Cancer. PER. Huntington Beach, CA 7/17/15. Inventions

  14. FGFR-targeted therapeutics for the treatment of breast cancer.

    PubMed

    De Luca, Antonella; Frezzetti, Daniela; Gallo, Marianna; Normanno, Nicola

    2017-03-01

    Breast cancer is a complex disease and several molecular drivers regulate its progression. Fibroblast growth factor receptor (FGFR) signaling is frequently deregulated in many cancers, including breast cancer. Due the involvement of the FGFR/FGF axis in the pathogenesis and progression of tumors, FGFR-targeted agents might represent a potential therapeutic option for breast cancer patients. Areas covered: This review offers an overview of targeted agents against FGFRs and their clinical development in breast cancer. The most relevant literature and the latest studies in the Clinicaltrial.com database have been discussed. Expert opinion: FGFR inhibition has been recently considered as a promising therapeutic option for different tumor types. However, preliminary results of clinical trials of FGFR inhibitors in breast cancer have been quite disappointing. In order to increase the clinical benefit of FGFR therapies in breast cancer, future studies should focus on: understanding the role of the various FGFR aberrations in cancer progression; identifying potential biomarkers to select patients that could benefit of FGFR inhibitors and developing therapeutic strategies that improve the efficacy of these agents and minimize toxicities.

  15. Targeting the androgen receptor in triple-negative breast cancer.

    PubMed

    Gucalp, Ayca; Traina, Tiffany A

    Triple-negative breast cancer represents approximately 15%-20% of all newly diagnosed breast cancers, but it accounts for a disproportionate number of breast cancer-related deaths each year. Owing to the lack of estrogen, progesterone, and human epidermal growth factor receptor 2 expression, patients with triple-negative breast cancer do not benefit from generally well-tolerated and effective therapies targeting the estrogen and human epidermal growth factor receptor 2 signaling pathways and are faced with an increased risk of disease progression and poorer overall survival. The heterogeneity of triple-negative breast cancer has been increasingly recognized and this may lead to therapeutic opportunities because of newly defined oncogenic drivers and targets. A subset of triple-negative breast tumors expresses the androgen receptor (AR) and this may benefit from treatments that inhibit the AR-signaling pathway. The first proof-of-concept trial established activity of the AR antagonist, bicalutamide, in patients with advanced AR+ triple-negative breast cancer. Since that time, evidence further supports the activity of other next-generation AR-targeted agents such as enzalutamide. Not unlike in estrogen receptor-positive breast cancer, mechanisms of resistance are being investigated and rationale exists for thoughtful, well-designed combination regimens such as AR antagonism with CDK4/6 pathway inhibitors or PI3K inhibitors. Furthermore, novel agents developed for the treatment of prostate cancer, which reduce androgen production such as abiraterone acetate and seviteronel, are being tested as well. This review summarizes the underlying biology of AR signaling in breast cancer development and the available clinical trial data for the use of anti-androgen therapy in the treatment of AR+ triple-negative breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Targeted Therapies for Brain Metastases from Breast Cancer.

    PubMed

    Venur, Vyshak Alva; Leone, José Pablo

    2016-09-13

    The discovery of various driver pathways and targeted small molecule agents/antibodies have revolutionized the management of metastatic breast cancer. Currently, the major targets of clinical utility in breast cancer include the human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) receptor, mechanistic target of rapamycin (mTOR) pathway, and the cyclin-dependent kinase 4/6 (CDK-4/6) pathway. Brain metastasis, however, remains a thorn in the flesh, leading to morbidity, neuro-cognitive decline, and interruptions in the management of systemic disease. Approximately 20%-30% of patients with metastatic breast cancer develop brain metastases. Surgery, whole brain radiation therapy, and stereotactic radiosurgery are the traditional treatment options for patients with brain metastases. The therapeutic paradigm is changing due to better understanding of the blood brain barrier and the advent of tyrosine kinase inhibitors and monoclonal antibodies. Several of these agents are in clinical practice and several others are in early stage clinical trials. In this article, we will review the common targetable pathways in the management of breast cancer patients with brain metastases, and the current state of the clinical development of drugs against these pathways.

  17. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    PubMed

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  18. Pharmacological targets of breast cancer stem cells: a review.

    PubMed

    Pindiprolu, Sai Kiran S S; Krishnamurthy, Praveen T; Chintamaneni, Pavan Kumar

    2018-05-01

    Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.

  19. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer

    PubMed Central

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.

    2018-01-01

    Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910

  20. Targeting Histone Abnormality in Triple Negative Breast Cancer

    DTIC Science & Technology

    2016-08-01

    mechanisms of polyamine analogues in cancer cells. Anti - Cancer Drugs, 16(3): 229-241, 2005. PMID: 15711175 3. Huang Y, Nayak S, Jankowitz R, Davidson NE...immunoprecipitated with anti -LSD1 antibody followed by IB with anti -HDAC5 and LSD1 antibodies in indicated breast cancer cell lines. IgG was used as...AWARD NUMBER: W81XWH-14-1-0237 TITLE: Targeting Histone Abnormality in Triple-Negative Breast Cancer PRINCIPAL INVESTIGATOR: Yi Huang

  1. MicroRNA-320a inhibits breast cancer metastasis by targeting metadherin

    PubMed Central

    Zhang, Lei; Yang, Hai-Ping; Wang, Lei; Ding, Di; Chen, Qi; Yang, Wen-Lin; Ren, Ke-Han; Zhou, Dan-Mei; Zou, Qiang; Jin, Yi-Ting; Liu, Xiu-Ping

    2016-01-01

    Dysregulated microRNAs play important pathological roles in carcinogenesis that are yet to be fully elucidated. This study was performed to investigate the biological functions of microRNA-320a (miR-320a) in breast cancer and the underlying mechanisms. Function analyses for cell proliferation, cell cycle, and cell invasion/migration, were conducted after miR-320a silencing and overexpression. The specific target genes of miR-320a were predicted by TargetScan algorithm and then determined by dual luciferase reporter assay and rescue experiment. The relationship between miR-320a and its target genes was explored in human breast cancer tissues. We found that miR-320a overexpression could inhibit breast cancer invasion and migration abilities in vitro, while miR-320a silencing could enhance that. In addition, miR-320a could suppress activity of 3′-untranslated region luciferase of metadherin (MTDH), a potent oncogene. The rescue experiment revealed that MTDH was a functional target of miR-320a. Moreover, we found that MTDH was negatively correlated with miR-320a expression, and it was related to clinical outcomes of breast cancer. Further xenograft experiment also showed that miR-320a could inhibit breast cancer metastasis in vivo. Our findings clearly demonstrate that miR-320a suppresses breast cancer metastasis by directly inhibiting MTDH expression. The present study provides a new insight into anti-oncogenic roles of miR-320a and suggests that miR-320a/MTDH pathway is a putative therapeutic target in breast cancer. PMID:27229534

  2. Landscape phages and their fusion proteins targeted to breast cancer cells

    PubMed Central

    Fagbohun, Olusegun A.; Bedi, Deepa; Grabchenko, Natalia I.; Deinnocentes, Patricia A.; Bird, Richard C.; Petrenko, Valery A.

    2012-01-01

    Breast cancer is a leading cause of death among women in the USA. The efficacy of existing anticancer therapeutics can be improved by targeting them through conjugation with ligands binding to cellular receptors. Recently, we developed a novel drug targeting strategy based on the use of pre-selected cancer-specific ‘fusion pVIII proteins’ (fpVIII), as targeting ligands. To study the efficiency of this approach in animal models, we developed a panel of breast cancer cell-binding phages as a source of targeted fpVIIIs. Two landscape phage peptide libraries (8-mer f8/8 and 9-mer f8/9) were screened to isolate 132 phage variants that recognize breast carcinoma cells MCF-7 and ZR-75-1 and internalize into the cells. When tested for their interaction with the breast cancer cells in comparison with liver cancer cells HepG2, human mammary cells MCF-10A cells and serum, 16 of the phage probes selectively interacted with the breast cancer cells whereas 32 bound both breast and liver cancer cells. The most prominent cancer-specific phage DMPGTVLP, demonstrating sub-nanomolar Kd in interaction with target cells, was used for affinity chromatography of cellular membrane molecules to reveal its potential binding receptor. The isolated protein was identified by direct sequencing as cellular surface nucleolin. This conclusion was confirmed by inhibition of the phage–cell interaction with nucleolin antibodies. Other prominent phage binders VPTDTDYS, VEEGGYIAA, and DWRGDSMDS demonstrate consensus motifs common to previously identified cancer-specific peptides. Isolated phage proteins exhibit inherent binding specificity towards cancer cells, demonstrating the functional activity of the selected fused peptides. The selected phages, their peptide inserts and intact fusion proteins can serve as promising ligands for the development of targeted nanomedicines and their study in model mice with xenograft of human cells MCF-7 and ZR-75-1. PMID:22490956

  3. 2'-Hydroxyflavanone: A novel strategy for targeting breast cancer.

    PubMed

    Singhal, Jyotsana; Nagaprashantha, Lokesh; Chikara, Shireen; Awasthi, Sanjay; Horne, David; Singhal, Sharad S

    2017-09-26

    Breast cancer is the most common cancer in women that is driven by cross-talk with hormonal and cellular signaling pathways. The natural phytochemicals, due to broad-spectrum anti-inflammatory and anti-cancerous properties, present with novel opportunities for targeting breast cancer. Intake of citrus fruits is known to reduce the risk for incidence of breast cancer. Hence, we tested the efficacy of citrus flavonoid 2'-hydroxyflavanone (2HF) in breast cancer. 2HF inhibited survival, clonogenic ability, cell cycle progression and induced apoptosis in breast cancer cells. 2HF also decreased VEGF levels and inhibited migratory capacity of breast cancer cells. Administration of 2HF led to regression of triple-negative MDA-MB-231 tumors in the mice xenograft model. 2HF decreased the levels of RLIP76 both in vitro studies and in vivo MDA-MB-231 xenograft model of breast cancer. Western blot and histopathological analyses of resected tumors showed a decline in the levels of survival and proliferation markers Ki67, pAkt, survivin, and cell cycle proteins CDK4 and cyclin B1. 2HF treatment led to inhibition of angiogenesis as determined by decreased VEGF levels in vitro and angiogenesis marker CD31 in vivo . 2HF reversed the pro-/anti-apoptotic ratio of BAX/BCL-2 by decreasing anti-apoptotic protein BCL-2 and increasing pro-apoptotic proteins BAX and BIM in vivo . 2HF also decreased the mesenchymal markers vimentin and fibronectin along with causing a parallel increase in pro-differentiation protein E-cadherin. Collectively, the ability of 2HF to decrease RLIP76, VEGF and regulate critical proliferative, apoptotic and differentiation proteins together provides strong rationale to further develop 2HF based interventions for targeting breast cancer.

  4. Computational selection of antibody-drug conjugate targets for breast cancer

    PubMed Central

    Fauteux, François; Hill, Jennifer J.; Jaramillo, Maria L.; Pan, Youlian; Phan, Sieu; Famili, Fazel; O'Connor-McCourt, Maureen

    2016-01-01

    The selection of therapeutic targets is a critical aspect of antibody-drug conjugate research and development. In this study, we applied computational methods to select candidate targets overexpressed in three major breast cancer subtypes as compared with a range of vital organs and tissues. Microarray data corresponding to over 8,000 tissue samples were collected from the public domain. Breast cancer samples were classified into molecular subtypes using an iterative ensemble approach combining six classification algorithms and three feature selection techniques, including a novel kernel density-based method. This feature selection method was used in conjunction with differential expression and subcellular localization information to assemble a primary list of targets. A total of 50 cell membrane targets were identified, including one target for which an antibody-drug conjugate is in clinical use, and six targets for which antibody-drug conjugates are in clinical trials for the treatment of breast cancer and other solid tumors. In addition, 50 extracellular proteins were identified as potential targets for non-internalizing strategies and alternative modalities. Candidate targets linked with the epithelial-to-mesenchymal transition were identified by analyzing differential gene expression in epithelial and mesenchymal tumor-derived cell lines. Overall, these results show that mining human gene expression data has the power to select and prioritize breast cancer antibody-drug conjugate targets, and the potential to lead to new and more effective cancer therapeutics. PMID:26700623

  5. Targeting Sphingosine-1-Phosphate Axis in Obesity-Promoted Breast Cancer

    DTIC Science & Technology

    2016-05-01

    AWARD NUMBER: W81XWH-14-1-0071 TITLE: Targeting Sphingosine-1-Phosphate Axis in Obesity -Promoted Breast Cancer PRINCIPAL INVESTIGATOR...5a. CONTRACT NUMBER Targeting Sphingosine-1-Phosphate Axis in Obesity -Promoted Breast Cancer 5b. GRANT NUMBER W81XWH-14-1-0071 5c. PROGRAM ELEMENT...13. SUPPLEMENTARY NOTES 14. ABSTRACT Obesity , which induces low-grade inflammation, is a known risk factor for worse prognosis in many cancers

  6. Breast cancer stem cells, EMT and therapeutic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they aremore » also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.« less

  7. Stromal cells in breast cancer as a potential therapeutic target

    PubMed Central

    Dykes, Samantha S.; Hughes, Veronica S.; Wiggins, Jennifer M.; Fasanya, Henrietta O.; Tanaka, Mai; Siemann, Dietmar

    2018-01-01

    Breast cancer in the United States is the second most commonly diagnosed cancer in women. About 1 in 8 women will develop invasive breast cancer over the course of her lifetime and breast cancer remains the second leading cause of cancer-related death. In pursuit of novel therapeutic strategies, researchers have examined the tumor microenvironment as a potential anti-cancer target. In addition to neoplastic cells, the tumor microenvironment is composed of several critical normal cell types, including fibroblasts, vascular and lymph endothelial cells, osteoclasts, adipocytes, and immune cells. These cells have important roles in healthy tissue stasis, which frequently are altered in tumors. Indeed, tumor-associated stromal cells often contribute to tumorigenesis, tumor progression, and metastasis. Consequently, these host cells may serve as a possible target in anti-tumor and anti-metastatic therapeutic strategies. Targeting the tumor associated host cells offers the benefit that such cells do not mutate and develop resistance in response to treatment, a major cause of failure in cancer therapeutics targeting neoplastic cells. This review discusses the role of host cells in the tumor microenvironment during tumorigenesis, progression, and metastasis, and provides an overview of recent developments in targeting these cell populations to enhance cancer therapy efficacy.

  8. Familial breast cancer - targeted therapy in secondary and tertiary prevention.

    PubMed

    Kast, Karin; Rhiem, Kerstin

    2015-02-01

    The introduction of an increasing number of individualized molecular targeted therapies into clinical routine mirrors their importance in modern cancer prevention and treatment. Well-known examples for targeted agents are the monoclonal antibody trastuzumab and the selective estrogen receptor modulator tamoxifen. The identification of an unaltered gene in tumor tissue in colon cancer (KRAS) is a predictor for the patient's response to targeted therapy with a monoclonal antibody (cetuximab). Targeted therapy for hereditary breast and ovarian cancer has become a reality with the approval of olaparib for platin-sensitive late relapsed BRCA-associated ovarian cancer in December 2014. This manuscript reviews the status quo of poly-ADP-ribose polymerase inhibitors (PARPi) in the therapy of breast and ovarian cancer as well as the struggle for carboplatin as a potential standard of care for triple-negative and, in particular, BRCA-associated breast cancer. Details of the mechanism of action with information on tumor development are provided, and an outlook for further relevant research is given. The efficacy of agents against molecular targets together with the identification of an increasing number of cancer-associated genes will open the floodgates to a new era of treatment decision-making based on molecular tumor profiles. Current clinical trials involving patients with BRCA-associated cancer explore the efficacy of the molecular targeted therapeutics platinum and PARPi.

  9. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy

    PubMed Central

    Dandawate, Prasad R.; Subramaniam, Dharmalingam; Jensen, Roy A.; Anant, Shrikant

    2017-01-01

    Breast cancer is the most common form of cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths in the USA. Despite the development of newer diagnostic methods, selective as well as targeted chemotherapies and their combinations, surgery, hormonal therapy, radiotherapy, breast cancer recurrence, metastasis and drug resistance are still the major problems for breast cancer. Emerging evidence suggest the existence of cancer stem cells (CSCs), a population of cells with the capacity to self-renew, differentiate and be capable of initiating and sustaining tumor growth. In addition, CSCs are believed to be responsible for cancer recurrence, anticancer drug resistance, and metastasis. Hence, compounds targeting breast CSCs may be better therapeutic agents for treating breast cancer and control recurrence and metastasis. Naturally occurring compounds, mainly phytochemicals have gained immense attention in recent times because of their wide safety profile, ability to target heterogeneous populations of cancer cells as well as CSCs, and their key signaling pathways. Therefore, in the present review article, we summarize our current understanding of breast CSCs and their signaling pathways, and the phytochemicals that affect these cells including curcumin, resveratrol, tea polyphenols (epigallocatechin-3-gallate, epigallocatechin), sulforaphane, genistein, indole-3-carbinol, 3, 3′-di-indolylmethane, vitamin E, retinoic acid, quercetin, parthenolide, triptolide, 6-shogaol, pterostilbene, isoliquiritigenin, celastrol, and koenimbin. These phytochemicals may serve as novel therapeutic agents for breast cancer treatment and future leads for drug development. PMID:27609747

  10. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy.

    PubMed

    Dandawate, Prasad R; Subramaniam, Dharmalingam; Jensen, Roy A; Anant, Shrikant

    2016-10-01

    Breast cancer is the most common form of cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths in the USA. Despite the development of newer diagnostic methods, selective as well as targeted chemotherapies and their combinations, surgery, hormonal therapy, radiotherapy, breast cancer recurrence, metastasis and drug resistance are still the major problems for breast cancer. Emerging evidence suggest the existence of cancer stem cells (CSCs), a population of cells with the capacity to self-renew, differentiate and be capable of initiating and sustaining tumor growth. In addition, CSCs are believed to be responsible for cancer recurrence, anticancer drug resistance, and metastasis. Hence, compounds targeting breast CSCs may be better therapeutic agents for treating breast cancer and control recurrence and metastasis. Naturally occurring compounds, mainly phytochemicals have gained immense attention in recent times because of their wide safety profile, ability to target heterogeneous populations of cancer cells as well as CSCs, and their key signaling pathways. Therefore, in the present review article, we summarize our current understanding of breast CSCs and their signaling pathways, and the phytochemicals that affect these cells including curcumin, resveratrol, tea polyphenols (epigallocatechin-3-gallate, epigallocatechin), sulforaphane, genistein, indole-3-carbinol, 3, 3'-di-indolylmethane, vitamin E, retinoic acid, quercetin, parthenolide, triptolide, 6-shogaol, pterostilbene, isoliquiritigenin, celastrol, and koenimbin. These phytochemicals may serve as novel therapeutic agents for breast cancer treatment and future leads for drug development. Copyright © 2016. Published by Elsevier Ltd.

  11. Nanoparticles target early-stage breast cancer metastasis in vivo

    NASA Astrophysics Data System (ADS)

    Goldman, Evgeniya; Zinger, Assaf; da Silva, Dana; Yaari, Zvi; Kajal, Ashima; Vardi-Oknin, Dikla; Goldfeder, Mor; Schroeder, Josh E.; Shainsky-Roitman, Janna; Hershkovitz, Dov; Schroeder, Avi

    2017-10-01

    Despite advances in cancer therapy, treating cancer after it has metastasized remains an unmet clinical challenge. In this study we demonstrate that 100 nm liposomes target triple-negative murine breast-cancer metastases post intravenous administration. Metastatic breast cancer was induced in BALB/c mice either experimentally, by a tail vein injection of 4T1 cells, or spontaneously, after implanting a primary tumor xenograft. To track their biodistribution in vivo the liposomes were labeled with multi-modal diagnostic agents, including indocyanine green and rhodamine for whole-animal fluorescent imaging, gadolinium for magnetic resonance imaging (MRI), and europium for a quantitative biodistribution analysis. The accumulation of liposomes in the metastases peaked at 24 h post the intravenous administration, similar to the time they peaked in the primary tumor. The efficiency of liposomal targeting to the metastatic tissue exceeded that of a non-liposomal agent by 4.5-fold. Liposomes were detected at very early stages in the metastatic progression, including metastatic lesions smaller than 2 mm in diameter. Surprisingly, while nanoparticles target breast cancer metastasis, they may also be found in elevated levels in the pre-metastatic niche, several days before metastases are visualized by MRI or histologically in the tissue. This study highlights the promise of diagnostic and therapeutic nanoparticles for treating metastatic cancer, possibly even for preventing the onset of the metastatic dissemination by targeting the pre-metastatic niche.

  12. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Min; Li, Ruishu, E-mail: liruishu2016@yahoo.com; Zhang, Juan

    Targeting mitochondrial biogenesis has become a potential therapeutic strategy in cancer due to their unique metabolic dependencies. In this study, we show that levofloxacin, a FDA-approved antibiotic, is an attractive candidate for breast cancer treatment. This is achieved by the inhibition of proliferation and induction of apoptosis in a panel of breast cancer cell lines while sparing normal breast cells. It also acts synergistically with conventional chemo drug in two independent in vivo breast xenograft mouse models. Importantly, levofloxacin inhibits mitochondrial biogenesis as shown by the decreased level of mitochondrial respiration, membrane potential and ATP. In addition, the anti-proliferative and pro-apoptoticmore » effects of levofloxacin are reversed by acetyl-L-Carnitine (ALCAR, a mitochondrial fuel), confirming that levofloxacin's action in breast cancer cells is through inhibition of mitochondrial biogenesis. A consequence of mitochondrial biogenesis inhibition by levofloxacin in breast cancer cells is the deactivation of PI3K/Akt/mTOR and MAPK/ERK pathways. We further demonstrate that breast cancer cells have increased mitochondrial biogenesis than normal breast cells, and this explains their different sensitivity to levofloxacin. Our work suggest that levofloxacin is a useful addition to breast cancer treatment. Our work also establish the essential role of mitochondrial biogenesis on the activation of PI3K/Akt/mTOR and MAPK/ERK pathways in breast cancer cells. - Highlights: • Levofloxacin targets a panel of breast cancer cell lines in vitro and in vivo. • Levofloxacin acts synergistically with 5-Fluorouracil in breast cancer. • Levofloxacin targets breast cancer cells via inhibiting mitochondrial biogenesis. • Breast cancer cells have increased mitochondrial biogenesis than normal cells. • Mitochondrial biogenesis inhibition lead to deactivation of PI3K/Akt/mTOR pathway.« less

  13. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0644 TITLE: Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: Chun-Ju...U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public Release...Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0644 5c. PROGRAM ELEMENT

  14. Ghrelin is a prognostic marker and a potential therapeutic target in breast cancer.

    PubMed

    Grönberg, Malin; Ahlin, Cecilia; Naeser, Ylva; Janson, Eva Tiensuu; Holmberg, Lars; Fjällskog, Marie-Louise

    2017-01-01

    Ghrelin and obestatin are gastrointestinal peptides, encoded by the same preproghrelin gene. Both are expressed in breast cancer tissue and ghrelin has been implicated in breast cancer tumorigenesis. Despite recent advances in breast cancer management the need for new prognostic markers and potential therapeutic targets in breast cancer remains high. We studied the prognostic impact of ghrelin and obestatin in women with node negative breast cancer. Within a cohort of women with breast cancer with tumor size ≤ 50 mm, no lymph node metastases and no initiation of adjuvant chemotherapy, 190 women were identified who died from breast cancer and randomly selected 190 women alive at the corresponding time as controls. Tumor tissues were immunostained with antibodies versus the peptides. Ghrelin expression was associated with better breast cancer specific survival in univariate analyses (OR 0.55, 95% CI 0.36-0.84) and in multivariate models, adjusted for endocrine treatment and age (OR 0.57, 95% CI 0.36-0.89). Obestatin expression was non-informative (OR 1.2, 95% CI 0.60-2.46). Ghrelin expression is independent prognostic factor for breast cancer death in node negative patients-halving the risk for dying of breast cancer. Our data implies that ghrelin could be a potential therapeutic target in breast cancer treatment.

  15. [Current Status of Targeted Treatment in Breast Cancer].

    PubMed

    Seiffert, Katharina; Schmalfeldt, Barbara; Müller, Volkmar

    2017-11-01

    Within the last years, significant improvements have been achieved in breast cancer treatment, particularly with the development of targeted therapies. Major progress has been made in identifying the drivers malignant growth in oestrogen-receptor-positive breast cancer and the mechanisms of resistance to endocrine therapy. This progress has translated into several targeted therapies that enhance the efficacy of endocrine therapy; inhibitors of the cyclin-dependent kinases CDK4 and CDK6 like palbociclib and inhibitors of mTOR substantially improve progression-free survival. For patients with HER2-positive disease the addition of Pertuzumab to Trastuzumab in combination with chemotherapy has been a significant improvement in anti-HER2 therapy in early as well as metastatic breast cancer. Evidence-based further line therapy options in the metastatic setting include T-DM1 and in later lines Lapatinib. For triple negative disease the angiogenesis inhibitor Bevacizumab is approved, which increases progression free survival. Immune checkpoint inhibitors, PARP-inhibitors or anti-androgens represent promising strategies, all of which are currently being evaluated in clinical trials. The development of predictive biomarkers to guide targeted therapies is still the subject of research. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer

    DTIC Science & Technology

    2012-03-01

    patients with early stage ErbB2-overexpressing biopsies and ER- atypia . 13 REFERENCES: 1. Jordan VC. Tamoxifen for breast cancer prevention. Proc Soc...Summary01-03-2012 Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer Shalini Jain University of Texas M.D. Anderson Cancer Center Houston...SUBTITLE “Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer” 5a. CONTRACT NUMBER W81XWH-11-1-0004 5b. GRANT NUMBER

  17. Targeting Tryptophan Catabolism: A Novel Method to Block Triple-Negative Breast Cancer Metastasis

    DTIC Science & Technology

    2017-04-01

    AWARD NUMBER: W81XWH-15-1-0039 TITLE: Targeting Tryptophan Catabolism: A Novel Method to Block Triple- Negative Breast Cancer Metastasis...Mar 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Tryptophan Catabolism: A Novel Method to Block Triple-Negative Breast Cancer...Tryptophan Catabolism: A Novel Method to Block Triple-Negative Breast Cancer Metastasis,” Submitted by Jennifer K. Richer, PhD, University of Colorado

  18. Clinical Implementation of Novel Targeted Therapeutics in Advanced Breast Cancer.

    PubMed

    Chamberlin, Mary D; Bernhardt, Erica B; Miller, Todd W

    2016-11-01

    The majority of advanced breast cancers have genetic alterations that are potentially targetable with drugs. Through initiatives such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), data can be mined to provide context for next-generation sequencing (NGS) results in the landscape of advanced breast cancer. Therapies for targets other than estrogen receptor alpha (ER) and HER2, such as cyclin-dependent kinases CDK4 and CDK6, were recently approved based on efficacy in patient subpopulations, but no predictive biomarkers have been found, leaving clinicians to continue a trial-and-error approach with each patient. Next-generation sequencing identifies potentially actionable alterations in genes thought to be drivers in the cancerous process including phosphatidylinositol 3-kinase (PI3K), AKT, fibroblast growth factor receptors (FGFRs), and mutant HER2. Epigenetically directed and immunologic therapies have also shown promise for the treatment of breast cancer via histone deacetylases (HDAC) 1 and 3, programmed T cell death 1 (PD-1), and programmed T cell death ligand 1 (PD-L1). Identifying biomarkers to predict primary resistance in breast cancer will ultimately affect clinical decisions regarding adjuvant therapy in the first-line setting. However, the bulk of medical decision-making is currently made in the secondary resistance setting. Herein, we review the clinical potential of PI3K, AKT, FGFRs, mutant HER2, HDAC1/3, PD-1, and PD-L1 as therapeutic targets in breast cancer, focusing on the rationale for therapeutic development and the status of clinical testing. J. Cell. Biochem. 117: 2454-2463, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Breast Cancer Detection by B7-H3-Targeted Ultrasound Molecular Imaging.

    PubMed

    Bachawal, Sunitha V; Jensen, Kristin C; Wilson, Katheryne E; Tian, Lu; Lutz, Amelie M; Willmann, Jürgen K

    2015-06-15

    Ultrasound complements mammography as an imaging modality for breast cancer detection, especially in patients with dense breast tissue, but its utility is limited by low diagnostic accuracy. One emerging molecular tool to address this limitation involves contrast-enhanced ultrasound using microbubbles targeted to molecular signatures on tumor neovasculature. In this study, we illustrate how tumor vascular expression of B7-H3 (CD276), a member of the B7 family of ligands for T-cell coregulatory receptors, can be incorporated into an ultrasound method that can distinguish normal, benign, precursor, and malignant breast pathologies for diagnostic purposes. Through an IHC analysis of 248 human breast specimens, we found that vascular expression of B7-H3 was selectively and significantly higher in breast cancer tissues. B7-H3 immunostaining on blood vessels distinguished benign/precursors from malignant lesions with high diagnostic accuracy in human specimens. In a transgenic mouse model of cancer, the B7-H3-targeted ultrasound imaging signal was increased significantly in breast cancer tissues and highly correlated with ex vivo expression levels of B7-H3 on quantitative immunofluorescence. Our findings offer a preclinical proof of concept for the use of B7-H3-targeted ultrasound molecular imaging as a tool to improve the diagnostic accuracy of breast cancer detection in patients. ©2015 American Association for Cancer Research.

  20. The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy

    PubMed Central

    Law, Andrew M K; Lim, Elgene; Ormandy, Christopher J

    2017-01-01

    A cancer cell-centric view has long dominated the field of cancer biology. Research efforts have focussed on aberrant cancer cell signalling pathways and on changes to cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types within the tumour stroma co-evolve and support tumour growth and development, greatly modifying cancer cell behaviour, facilitating invasion and metastasis and controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent potential targets for cancer therapy. Among these cell types, immune cells have emerged as a promising target for therapy. The adaptive and the innate immune system play an important role in normal mammary development and breast cancer. The number of infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration occurs in a large proportion of cases. There is strong evidence demonstrating the importance of the immunosuppressive role of the innate immune system during breast cancer progression. A consideration of components of both the innate and the adaptive immune system is essential for the design and development of immunotherapies in breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) as potential targets for breast cancer therapy. PMID:28193698

  1. The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy.

    PubMed

    Law, Andrew M K; Lim, Elgene; Ormandy, Christopher J; Gallego-Ortega, David

    2017-04-01

    A cancer cell-centric view has long dominated the field of cancer biology. Research efforts have focussed on aberrant cancer cell signalling pathways and on changes to cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types within the tumour stroma co-evolve and support tumour growth and development, greatly modifying cancer cell behaviour, facilitating invasion and metastasis and controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent potential targets for cancer therapy. Among these cell types, immune cells have emerged as a promising target for therapy. The adaptive and the innate immune system play an important role in normal mammary development and breast cancer. The number of infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration occurs in a large proportion of cases. There is strong evidence demonstrating the importance of the immunosuppressive role of the innate immune system during breast cancer progression. A consideration of components of both the innate and the adaptive immune system is essential for the design and development of immunotherapies in breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) as potential targets for breast cancer therapy. © 2017 The authors.

  2. Targeting ESR1-Mutant Breast Cancer

    DTIC Science & Technology

    2015-09-01

    Award Number: W81XWH-14-1-0360 TITLE: Targeting ESR1 -Mutant Breast Cancer PRINCIPAL INVESTIGATOR: Geoffrey L. Greene, Ph.D. CONTRACTING...ADDRESS. 1. REPORT DATE September 2015 2. REPORT TYPE Annual 3. DATES COVERED 1 Sep 2014 - 31 Aug 2015 4. TITLE AND SUBTITLE Targeting ESR1 -Mutant...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The hypothesis of this proposal is that LBD mutations in ESR1 promote resistance to current FDA

  3. Targeted therapies in breast cancer: New challenges to fight against resistance

    PubMed Central

    Masoud, Viviana; Pagès, Gilles

    2017-01-01

    Breast cancer is the most common type of cancer found in women and today represents a significant challenge to public health. With the latest breakthroughs in molecular biology and immunotherapy, very specific targeted therapies have been tailored to the specific pathophysiology of different types of breast cancers. These recent developments have contributed to a more efficient and specific treatment protocol in breast cancer patients. However, the main challenge to be further investigated still remains the emergence of therapeutic resistance mechanisms, which develop soon after the onset of therapy and need urgent attention and further elucidation. What are the recent emerging molecular resistance mechanisms in breast cancer targeted therapy and what are the best strategies to apply in order to circumvent this important obstacle? The main scope of this review is to provide a thorough update of recent developments in the field and discuss future prospects for preventing resistance mechanisms in the quest to increase overall survival of patients suffering from the disease. PMID:28439493

  4. Curcumin in VIP-targeted sterically stabilized phospholipid nanomicelles: a novel therapeutic approach for breast cancer and breast cancer stem cells

    PubMed Central

    Khaja, Fatima; Kuzmis, Antonina; Önyüksel, Hayat

    2013-01-01

    Breast cancer is a leading cause of cancer deaths among women in the US, with 40 % chance of relapse after treatment. Recent studies outline the role of cancer stem cells (CSCs) in tumor initiation, propagation, and regeneration of cancer. Moreover, it has been established that breast CSCs reside in a quiescent state that makes them more resistant to conventional cancer therapies than bulk cancer cells resulting in tumor relapse. In this study, we establish that CSCs are associated with the overexpression of vasoactive intestinal peptide (VIP) receptors which can be used to actively target these cells. We investigated the potential of using a novel curcumin nanomedicine (C-SSM) surface conjugated with VIP to target and hinder breast cancer with CSCs. Here, we formulated, characterized, and evaluated the feasibility of C-SSM nanomedicine in vitro. We investigated the cytotoxicity of C-SSM on breast cancer cells and CSCs by tumorsphere formation assay. Our results suggest that curcumin can be encapsulated in SSM up to 200 μg/ml with 1 mM lipid concentration. C-SSM nanomedicine is easy to prepare and maintains its original physicochemical properties after lyophilization, with an IC50 that is significantly improved from that of free curcumin (14.2±1.2 vs. 26.1±3.0 μM). Furthermore, C-SSM-VIP resulted in up to 20 % inhibition of tumorsphere formation at a dose of 5 μM. To this end, our findings demonstrate the feasibility of employing our actively targeted nanomedicine as a potential therapy for CSCs-enriched breast cancer. PMID:24363979

  5. cGMP signaling as a target for the prevention and treatment of breast cancer.

    PubMed

    Windham, Perrin F; Tinsley, Heather N

    2015-04-01

    One in eight women in the United States will be diagnosed with invasive breast cancer in her lifetime. Advances in therapeutic strategies, diagnosis, and improved awareness have resulted in a significant reduction in breast cancer related mortality. However, there is a continued need for more effective and less toxic drugs for both the prevention and the treatment of breast cancer in order to see a continued decline in the morbidity and mortality associated with this disease. Recent studies suggest that the cGMP signaling pathway may be aberrantly regulated in breast cancer. As such, this pathway may serve as a source of novel targets for future breast cancer drug discovery efforts. This review provides an overview of cGMP signaling in normal physiology and in breast cancer as well as current strategies being investigated for targeting this pathway in breast cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Plasma Membrane Proteomics of Human Breast Cancer Cell Lines Identifies Potential Targets for Breast Cancer Diagnosis and Treatment

    PubMed Central

    Ziegler, Yvonne S.; Moresco, James J.; Tu, Patricia G.; Yates, John R.; Nardulli, Ann M.

    2014-01-01

    The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease. PMID:25029196

  7. Characterizing and Targeting Replication Stress Response Defects in Breast Cancer

    DTIC Science & Technology

    2015-08-01

    1 AD_________________ Award Number: W81XWH-10-1-0558 TITLE: Characterizing and Targeting Replication Stress Response Defects in Breast Cancer ...PRINCIPAL INVESTIGATOR: Shiaw-Yih Lin, Ph.D. CONTRACTING ORGANIZATION: University of Texas M. D. Anderson Cancer Center Houston, TX 77030 REPORT...Response Defects in Breast Cancer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Betty Diamond 5d. PROJECT NUMBER Chun-Jen Lin, Hui Dai

  8. Phospho-TCTP as a therapeutic target of dihydroartemisinin for aggressive breast cancer cells

    PubMed Central

    Lucibello, Maria; Adanti, Sara; Antelmi, Ester; Dezi, Dario; Ciafrè, Stefania; Carcangiu, Maria Luisa; Zonfrillo, Manuela; Nicotera, Giuseppe; Sica, Lorenzo; De Braud, Filippo; Pierimarchi, Pasquale

    2015-01-01

    Upregulation of Translationally Controlled Tumor Protein (TCTP) is associated with poorly differentiated aggressive tumors, including breast cancer, but the underlying mechanism(s) are still debated. Here, we show that in breast cancer cell lines TCTP is primarily localized in the nucleus, mostly in the phosphorylated form. The effects of Dihydroartemisinin (DHA), an anti-malaria agent that binds TCTP, were tested on breast cancer cells. DHA decreases cell proliferation and induces apoptotic cell death by targeting the phosphorylated form of TCTP. Remarkably, DHA enhances the anti-tumor effects of Doxorubicin in triple negative breast cancer cells resulting in an increased level of apoptosis. DHA also synergizes with Trastuzumab, used to treat HER2/neu positive breast cancers, to induce apoptosis of tumor cells. Finally, we present new clinical data that nuclear phospho-TCTP overexpression in primary breast cancer tissue is associated with high histological grade, increase expression of Ki-67 and with ER-negative breast cancer subtypes. Notably, phospho-TCTP expression levels increase in trastuzumab-resistant breast tumors, suggesting a possible role of phospho-TCTP as a new prognostic marker. In conclusion, the anti-tumor effect of DHA in vitro with conventional chemotherapeutics suggests a novel therapeutic strategy and identifies phospho-TCTP as a new promising target for advanced breast cancer. PMID:25779659

  9. SRC family kinases as novel therapeutic targets to treat breast cancer brain metastases.

    PubMed

    Zhang, Siyuan; Huang, Wen-Chien; Zhang, Lin; Zhang, Chenyu; Lowery, Frank J; Ding, Zhaoxi; Guo, Hua; Wang, Hai; Huang, Suyun; Sahin, Aysegul A; Aldape, Kenneth D; Steeg, Patricia S; Yu, Dihua

    2013-09-15

    Despite better control of early-stage disease and improved overall survival of patients with breast cancer, the incidence of life-threatening brain metastases continues to increase in some of these patients. Unfortunately, other than palliative treatments there is no effective therapy for this condition. In this study, we reveal a critical role for Src activation in promoting brain metastasis in a preclinical model of breast cancer and we show how Src-targeting combinatorial regimens can treat HER2(+) brain metastases in this model. We found that Src was hyperactivated in brain-seeking breast cancer cells derived from human cell lines or from patients' brain metastases. Mechanistically, Src activation promoted tumor cell extravasation into the brain parenchyma via permeabilization of the blood-brain barrier. When combined with the EGFR/HER2 dual-targeting drug lapatinib, an Src-targeting combinatorial regimen prevented outgrowth of disseminated breast cancer cells through the induction of cell-cycle arrest. More importantly, this combinatorial regimen inhibited the outgrowth of established experimental brain metastases, prolonging the survival of metastases-bearing mice. Our results provide a rationale for clinical evaluation of Src-targeting regimens to treat patients with breast cancer suffering from brain metastasis. ©2013 AACR.

  10. YSA-conjugated mesoporous silica nanoparticles effectively target EphA2-overexpressing breast cancer cells.

    PubMed

    Liu, Zhi; Tao, Zijian; Zhang, Qing; Wan, Song; Zhang, Fenglin; Zhang, Yan; Wu, Guanyu; Wang, Jiandong

    2018-04-01

    Neoadjuvant chemotherapy is commonly used to treat patients with locally advanced breast cancer and a common option for primary operable disease. However, systemic toxicity including cardiotoxicity and inefficient delivery are significant challenges form any chemotherapeutics. The development of targeted treatments that lower the risk of toxicity has, therefore, become an active area of research in the field of novel cancer therapeutics. Mesoporous silica nanoparticles (MSNs) have attracted significant attention as efficient drug delivery carriers, due to their high surface area and tailorable mesoporous structures. Eph receptors are the largest receptor tyrosine kinase family, which are divided into the A- and the B-type. Eph receptors play critical roles in embryonic development and human diseases including cancer. EphA2 is expressed in breast cancer cells and has roles in carcinogenesis, progression and prognosis of breast cancer. A homing peptide with the sequence YSAYPDSVPMMSK (YSA) that binds specifically to EphA2 was used to functionalize MSN. We focus on a novel EphA2-targeted delivery MSN system for breast cancer cells. We show that the EphA2 receptor is differentially expressed in breast cancer cells and highly expressed in the HER2-negative breast cancer cell line MCF7. Our results suggest that EphA2-targeted MSN for doxorubicin delivery (MSN-YSA-DOX) are more effective than MSN-DOX in treating breast cancer cell lines in vitro. Our preliminary observations suggest that the EphA2-targeted MSN delivery system may provide a strategy for enhancing delivery of therapeutic agents to breast cancer cells expressing EphA2, and potentially reduce toxicity while enhancing therapeutic efficacy.

  11. Covalent Targeting of Fibroblast Growth Factor Receptor Inhibits Metastatic Breast Cancer.

    PubMed

    Brown, Wells S; Tan, Li; Smith, Andrew; Gray, Nathanael S; Wendt, Michael K

    2016-09-01

    Therapeutic targeting of late-stage breast cancer is limited by an inadequate understanding of how tumor cell signaling evolves during metastatic progression and by the currently available small molecule inhibitors capable of targeting these processes. Herein, we demonstrate that both β3 integrin and fibroblast growth factor receptor-1 (FGFR1) are part of an epithelial-mesenchymal transition (EMT) program that is required to facilitate metastatic outgrowth in response to fibroblast growth factor-2 (FGF2). Mechanistically, β3 integrin physically disrupts an interaction between FGFR1 and E-cadherin, leading to a dramatic redistribution of FGFR1 subcellular localization, enhanced FGF2 signaling and increased three-dimensional (3D) outgrowth of metastatic breast cancer cells. This ability of β3 integrin to drive FGFR signaling requires the enzymatic activity of focal adhesion kinase (FAK). Consistent with these mechanistic data, we demonstrate that FGFR, β3 integrin, and FAK constitute a molecular signature capable of predicting decreased survival of patients with the basal-like subtype of breast cancer. Importantly, covalent targeting of a conserved cysteine in the P-loop of FGFR1-4 with our newly developed small molecule, FIIN-4, more effectively blocks 3D metastatic outgrowth as compared with currently available FGFR inhibitors. In vivo application of FIIN-4 potently inhibited the growth of metastatic, patient-derived breast cancer xenografts and murine-derived metastases growing within the pulmonary microenvironment. Overall, the current studies demonstrate that FGFR1 works in concert with other EMT effector molecules to drive aberrant downstream signaling, and that these events can be effectively targeted using our novel therapeutics for the treatment of the most aggressive forms of breast cancer. Mol Cancer Ther; 15(9); 2096-106. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. Experimental Therapy of Advanced Breast Cancer: Targeting NFAT1-MDM2-p53 Pathway.

    PubMed

    Qin, Jiang-Jiang; Wang, Wei; Zhang, Ruiwen

    2017-01-01

    Advanced breast cancer, especially advanced triple-negative breast cancer, is typically more aggressive and more difficult to treat than other breast cancer phenotypes. There is currently no curable option for breast cancer patients with advanced diseases, highlighting the urgent need for novel treatment strategies. We have recently discovered that the nuclear factor of activated T cells 1 (NFAT1) activates the murine double minute 2 (MDM2) oncogene. Both MDM2 and NFAT1 are overexpressed and constitutively activated in breast cancer, particularly in advanced breast cancer, and contribute to its initiation, progression, and metastasis. MDM2 regulates cancer cell proliferation, cell cycle progression, apoptosis, migration, and invasion through both p53-dependent and -independent mechanisms. We have proposed to target the NFAT1-MDM2-p53 pathway for the treatment of human cancers, especially breast cancer. We have recently identified NFAT1 and MDM2 dual inhibitors that have shown excellent in vitro and in vivo activities against breast cancer, including triple-negative breast cancer. Herein, we summarize recent advances made in the understanding of the oncogenic functions of MDM2 and NFAT1 in breast cancer, as well as current targeting strategies and representative inhibitors. We also propose several strategies for inhibiting the NFAT1-MDM2-p53 pathway, which could be useful for developing more specific and effective inhibitors for breast cancer therapy. Copyright © 2017. Published by Elsevier Inc.

  13. Neuropeptide Y Y1 receptors meditate targeted delivery of anticancer drug with encapsulated nanoparticles to breast cancer cells with high selectivity and its potential for breast cancer therapy.

    PubMed

    Li, Juan; Shen, Zheyu; Ma, Xuehua; Ren, Wenzhi; Xiang, Lingchao; Gong, An; Xia, Tian; Guo, Junming; Wu, Aiguo

    2015-03-11

    By enabling nanoparticle-based drug delivery system to actively target cancer cells with high selectivity, active targeted molecules have attracted great attention in the application of nanoparticles for anticancer drug delivery. However, the clinical application of most active targeted molecules in breast cancer therapy is limited, due to the low expression of their receptors in breast tumors or coexpression in the normal and tumor breast tissues. Here, a neuropeptide Y Y1 receptors ligand PNBL-NPY, as a novel targeted molecule, is conjugated with anticancer drug doxorubicin encapsulating albumin nanoparticles to investigate the effect of Y1 receptors on the delivery of drug-loaded nanoparticles to breast cancer cells and its potential for breast cancer therapy. The PNBL-NPY can actively recognize and bind to the Y1 receptors that are significantly overexpressed on the surface of the breast cancer cells, and the drug-loaded nanoparticles are delivered directly into the cancer cells through internalization. This system is highly selective and able to distinguish the breast cancer cells from the normal cells, due to normal breast cells that express Y2 receptors only. It is anticipated that this study may provide a guidance in the development of Y1 receptor-based nanoparticulate drug delivery system for a safer and more efficient breast cancer therapy.

  14. Chemokines: novel targets for breast cancer metastasis

    PubMed Central

    Ali, Simi; Lazennec, Gwendal

    2007-01-01

    Recent studies have highlighted the possible involvement of chemokines and their receptors in breast cancer progression and metastasis. Chemokines and their receptors constitute a superfamily of signalling factors whose prognosis value in breast cancer progression remains unclear. We will examine here the expression pattern of chemokines and their receptors in mammary gland physiology and carcinogenesis. The nature of the cells producing chemokines or harboring chemokine receptors appears to be crucial in certain conditions for example, the infiltration of the primary tumor by leukocytes and angiogenesis. In addition, chemokines, their receptors and the interaction with glycosaminoglycan (GAGs) are key players in the homing of cancer cells to distant metastasis sites. Several lines of evidence, including in vitro and in vivo models, suggest that the mechanism of action of chemokines in cancer development involves the modulation of proliferation, apoptosis, invasion, leukocyte recruitment or angiogenesis. Furthermore, we will discuss the regulation of chemokine network in tumor neovascularity by decoy receptors. The reasons accounting for the deregulation of chemokines and chemokine receptors expression in breast cancer are certainly crucial for the comprehension of chemokine role in breast cancer and are in several cases linked to estrogen receptor status. The targeting of chemokines and chemokine receptors by antibodies, small molecule antagonists, viral chemokine binding proteins and heparins appears as promising tracks to develop therapeutic strategies. Thus there is significant interest in developing strategies to antagonize the chemokine function, and an opportunity to interfere with metastasis, the leading cause of death in most patients. PMID:17717637

  15. Targeting the NFκB signaling pathways for breast cancer prevention and therapy.

    PubMed

    Wang, Wei; Nag, Subhasree A; Zhang, Ruiwen

    2015-01-01

    The activation of nuclear factor-kappaB (NFκB), a proinflammatory transcription factor, is a commonly observed phenomenon in breast cancer. It facilitates the development of a hormone-independent, invasive, high-grade, and late-stage tumor phenotype. Moreover, the commonly used cancer chemotherapy and radiotherapy approaches activate NFκB, leading to the development of invasive breast cancers that show resistance to chemotherapy, radiotherapy, and endocrine therapy. Inhibition of NFκB results in an increase in the sensitivity of cancer cells to the apoptotic effects of chemotherapeutic agents and radiation and restoring hormone sensitivity, which is correlated with increased disease-free survival in patients with breast cancer. In this review article, we focus on the role of the NFκB signaling pathways in the development and progression of breast cancer and the validity of NFκB as a potential target for breast cancer prevention and therapy. We also discuss the recent findings that NFκB may have tumor suppressing activity in certain cancer types. Finally, this review also covers the state-of-the-art development of NFκB inhibitors for cancer therapy and prevention, the challenges in targeting validation, and pharmacology and toxicology evaluations of these agents from the bench to the bedside.

  16. A Functional Genomics Approach to Identify Novel Breast Cancer Gene Targets in Yeast

    DTIC Science & Technology

    2004-05-01

    AD Award Number: DAMD17-03-1-0232 TITLE: A Functional Genomics Approach to Identify Novel Breast Cancer Gene Targets in Yeast PRINCIPAL INVESTIGATOR...Approach to Identify Novel Breast DAMD17-03-1-0232 Cancer Gene Targets in Yeast 6. A UTHOR(S) Craig Bennett, Ph.D. 7. PERFORMING ORGANIZA TION NAME(S...Unlimited 13. ABSTRACT (Maximum 200 Words) We are using the yeast Saccharomyces cerevisiae to identify new cancer gene targets that interact with the

  17. Targeting the androgen receptor in prostate and breast cancer – several new agents in development

    PubMed Central

    Proverbs-Singh, Tracy; Feldman, Jarett L.; Morris, Michael J.; Autio, Karen A.; Traina, Tiffany A.

    2016-01-01

    Prostate cancer and breast cancer share similarities as hormone-sensitive cancers with a wide heterogeneity of both phenotype and biology. The androgen receptor (AR) is a hormone receptor involved in both benign and malignant processes. Targeting androgen synthesis and the AR pathway has been and remains central to prostate cancer therapy. Recently, there is increased interest in the role of the AR in breast cancer development and growth, with data suggesting AR co-expression with estrogen, progesterone and human epidermal growth factor receptors, across all intrinsic subtypes of breast cancer. Targeting the AR axis is an evolving field with novel therapies in development which may ultimately be applicable for both tumor types. In this review, we offer an overview of available agents which target the AR axis in both prostate and breast cancer and provide insight into the novel drugs in development for targeting this signaling pathway. PMID:25722318

  18. RORα, a Potential Tumor Suppressor and Therapeutic Target of Breast Cancer

    PubMed Central

    Du, Jun; Xu, Ren

    2012-01-01

    The function of the nuclear receptor (NR) in breast cancer progression has been investigated for decades. The majority of the nuclear receptors have well characterized natural ligands, but a few of them are orphan receptors for which no ligand has been identified. RORα, one member of the retinoid orphan nuclear receptor (ROR) subfamily of orphan receptors, regulates various cellular and pathological activities. RORα is commonly down-regulated and/or hypoactivated in breast cancer compared to normal mammary tissue. Expression of RORα suppresses malignant phenotypes in breast cancer cells, in vitro and in vivo. Activity of RORα can be categorized into the canonical and non-canonical nuclear receptor pathways, which in turn regulate various breast cancer cellular function, including cell proliferation, apoptosis and invasion. This information suggests that RORα is a potent tumor suppressor and a potential therapeutic target for breast cancer. PMID:23443091

  19. Pertuzumab: a new targeted therapy for HER2-positive metastatic breast cancer.

    PubMed

    Malenfant, Stephanie J; Eckmann, Karen R; Barnett, Chad M

    2014-01-01

    Trastuzumab, a humanized monoclonal antibody, has become an important targeted therapy for patients with all stages of human epidermal growth factor receptor-2 (HER2)-positive breast cancer. However, primary and acquired resistance to trastuzumab remains a significant problem. Pertuzumab, a humanized monoclonal antibody that binds to a domain of the HER2 receptor separate from trastuzumab, may have the potential to overcome trastuzumab resistance. Clinical trials have shown that pertuzumab can be effectively combined with other biologic therapy or chemotherapy in patients with metastatic HER2-positive breast cancer. Pertuzumab is relatively well tolerated with minimal increases in hematologic and cardiac toxicity observed when added to trastuzumab and/or docetaxel. In addition to becoming the standard of care in combination with docetaxel and trastuzumab in patients with newly diagnosed HER2-positive metastatic breast cancer, clinical trials continue to evaluate pertuzumab in combination with other targeted therapy, chemotherapy, and in patients with early stage breast cancer. These trials will help to further determine the role of pertuzumab in the treatment of HER2-positive breast cancer. © 2013 Pharmacotherapy Publications, Inc.

  20. CCL2 and CCL5 Are Novel Therapeutic Targets for Estrogen-Dependent Breast Cancer.

    PubMed

    Svensson, Susanne; Abrahamsson, Annelie; Rodriguez, Gabriela Vazquez; Olsson, Anna-Karin; Jensen, Lasse; Cao, Yihai; Dabrosin, Charlotta

    2015-08-15

    Novel therapeutic targets of estrogen receptor (ER)-positive breast cancers are urgently needed because current antiestrogen therapy causes severe adverse effects, nearly 50% of patients are intrinsically resistant, and the majority of recurrences have maintained ER expression. We investigated the role of estrogen-dependent chemokine expression and subsequent cancer growth in human tissues and experimental breast cancer models. For in vivo sampling of human chemokines, microdialysis was used in breast cancers of women or normal human breast tissue before and after tamoxifen therapy. Estrogen exposure and targeted therapies were assessed in immune competent PyMT murine breast cancer, orthotopic human breast cancers in nude mice, cell culture of cancer cells, and freshly isolated human macrophages. Cancer cell dissemination was investigated using zebrafish. ER(+) cancers in women produced high levels of extracellular CCL2 and CCL5 in vivo, which was associated with infiltration of tumor-associated macrophages. In experimental breast cancer, estradiol enhanced macrophage influx and angiogenesis through increased release of CCL2, CCL5, and vascular endothelial growth factor. These effects were inhibited by anti-CCL2 or anti-CCL5 therapy, which resulted in potent inhibition of cancer growth. In addition, estradiol induced a protumorigenic activation of the macrophages. In a zebrafish model, macrophages increased cancer cell dissemination via CCL2 and CCL5 in the presence of estradiol, which was inhibited with anti-CCL2 and anti-CCL5 treatment. Our findings shed new light on the mechanisms underlying the progression of ER(+) breast cancer and indicate the potential of novel therapies targeting CCL2 and CCL5 pathways. ©2015 American Association for Cancer Research.

  1. MiR-300 regulate the malignancy of breast cancer by targeting p53.

    PubMed

    Xu, Xiao-Heng; Li, Da-Wei; Feng, Hui; Chen, Hong-Mei; Song, Yan-Qiu

    2015-01-01

    In this study, we investigated the role of miR-300 in regulating cell proliferation and invasion of breast cancer (BC) cells. MicroRNA and protein expression patterns were compared between breast cancer tissue and normal tissue and between two different prognostic groups. The up-regulation of miR-300 was confirmed by real-time reverse transcription polymerase chain reaction and its expression was analyzed in MCF-7 breast cancer cells. We observed that miR-300 expression was frequently and dramatically up-regulated in human breast cancer tissues and cell lines compared with the matched adjacent normal tissues and cells. We further showed that transient and stable over-expression of miR-300 could promote cell proliferation and cell cycle progression. Moreover, p53, a key inhibitor of cell cycle, was verified as a direct target of miR-300, suggesting that miR-300 might promote breast cancer cell proliferation and invasion by regulating p53 expression. Our findings indicated that miR-300 up-regulation might exert some sort of antagonistic function by targeting p53 in breast cancer cell proliferation during breast tumorigenesis.

  2. MiR-300 regulate the malignancy of breast cancer by targeting p53

    PubMed Central

    Xu, Xiao-Heng; Li, Da-Wei; Feng, Hui; Chen, Hong-Mei; Song, Yan-Qiu

    2015-01-01

    Objective: In this study, we investigated the role of miR-300 in regulating cell proliferation and invasion of breast cancer (BC) cells. Methods: MicroRNA and protein expression patterns were compared between breast cancer tissue and normal tissue and between two different prognostic groups. The up-regulation of miR-300 was confirmed by real-time reverse transcription polymerase chain reaction and its expression was analyzed in MCF-7 breast cancer cells. Results: We observed that miR-300 expression was frequently and dramatically up-regulated in human breast cancer tissues and cell lines compared with the matched adjacent normal tissues and cells. We further showed that transient and stable over-expression of miR-300 could promote cell proliferation and cell cycle progression. Moreover, p53, a key inhibitor of cell cycle, was verified as a direct target of miR-300, suggesting that miR-300 might promote breast cancer cell proliferation and invasion by regulating p53 expression. Conclusion: Our findings indicated that miR-300 up-regulation might exert some sort of antagonistic function by targeting p53 in breast cancer cell proliferation during breast tumorigenesis. PMID:26221232

  3. Targeting progesterone metabolism in breast cancer with l-proline derived new 14-azasteroids.

    PubMed

    Singh, Jyotsana; Singh, Ritesh; Gupta, Preeti; Rai, Smita; Ganesher, Asha; Badrinarayan, Preethi; Sastry, G Narahari; Konwar, Rituraj; Panda, Gautam

    2017-08-15

    Breast cancer cell proliferation is promoted by a variety of mitogenic signals. Classically estrogen is considered as most predominant mitogenic signal in hormone-dependent breast cancer and progesterone is primarily considered to have protective effect. However, it is suggested that some progesterone metabolite may promote breast cancer and progesterone metabolites like 5α-pregnane and 4-pregnene could serve as regulators of estrogen-responsiveness of breast cancer cells. Here, we estimated the potential of alternate targeting of breast cancer via progesterone signalling. l-Proline derived novel 14-azasteroid compounds were screened against MCF-7 and MDA-MB-231 cell lines using MTT assay. In silico studies, cell cycle, Annexin-V-FITC/PI, JC-1 mitochondrial assay, ROS analysis were performed to analyse the impact of hit compound 3b on breast cancer cells. Further, we analysed the impact of hit 3b on the progesterone, its metabolites and enzymes responsible for the conversion of progesterone and its metabolites using ELISA. Data suggests that compound 3b binds and down regulates of 5α-reductase by specifically inhibiting production of progesterone metabolites that are capable of promoting breast cancer proliferation, epithelial mesenchymal transition and migration. This study establishes the proof of concept and generation of new leads for additional targeting of breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Application of stem cells in targeted therapy of breast cancer: a systematic review.

    PubMed

    Madjd, Zahra; Gheytanchi, Elmira; Erfani, Elham; Asadi-Lari, Mohsen

    2013-01-01

    The aim of this systematic review was to investigate whether stem cells could be effectively applied in targeted therapy of breast cancer. A systematic literature search was performed for original articles published from January 2007 until May 2012. Nine studies met the inclusion criteria for phase I or II clinical trials, of which three used stem cells as vehicles, two trials used autologous hematopoetic stem cells and in four trials cancer stem cells were targeted. Mesenchymal stem cells (MSCs) were applied as cellular vehicles to transfer therapeutic agents. Cell therapy with MSC can successfully target resistant cancers. Cancer stem cells were selectively targeted via a proteasome-dependent suicide gene leading to tumor regression. Wnt/β-catenin signaling pathway has been also evidenced to be an attractive CSC-target. This systematic review focused on two different concepts of stem cells and breast cancer marking a turning point in the trials that applied stem cells as cellular vehicles for targeted delivery therapy as well as CSC-targeted therapies. Applying stem cells as targeted therapy could be an effective therapeutic approach for treatment of breast cancer in the clinic and in therapeutic marketing; however this needs to be confirmed with further clinical investigations.

  5. Targeted therapies with companion diagnostics in the management of breast cancer: current perspectives.

    PubMed

    Myers, Meagan B

    2016-01-01

    Breast cancer is a multifaceted disease exhibiting both intertumoral and intratumoral heterogeneity as well as variable disease course. Over 2 decades of research has advanced the understanding of the molecular substructure of breast cancer, directing the development of new therapeutic strategies against these actionable targets. In vitro diagnostics, and specifically companion diagnostics, have been integral in the successful development and implementation of these targeted therapies, such as those directed against the human epidermal growth factor receptor 2. Lately, there has been a surge in the development, commercialization, and marketing of diagnostic assays to assist in breast cancer patient care. More recently, multigene signature assays, such as Oncotype DX, MammaPrint, and Prosigna, have been integrated in the clinical setting in order to tailor decisions on adjuvant endocrine and chemotherapy treatment. This review provides an overview of the current state of breast cancer management and the use of companion diagnostics to direct personalized approaches in the treatment of breast cancer.

  6. IDENTIFYING AND TARGETING TUMOR-INITIATING CELLS IN THE TREATMENT OF BREAST CANCER

    PubMed Central

    Wei, Wei; Lewis, Michael T.

    2015-01-01

    Breast cancer is the most common cancer in women (exclusive of skin cancer), and is the second leading cause of cancer-related deaths. Although conventional and targeted therapies have improved survival rates, there are still considerable challenges in treating breast cancer, including treatment resistance, disease recurrence, and metastasis. Treatment resistance can be either de novo - due to traits that tumor cells possess prior to treatment, or acquired, - due to traits that tumor cells gain in response to treatment. A recently proposed mechanism of de novo resistance invokes existence of a specialized subset of cancer cells defined as tumor-initiating cells (TICs), or cancer stem cells (CSC). TICs have the capacity to self-renew and regenerate new tumors that consist of all clonally-derived cell types present in the parental tumor. There are data to suggest that TICs are resistant to many conventional cancer therapies, and survive treatment in spite of dramatic shrinkage of the tumor. Residual TICs can then eventually regrow resulting in disease relapse. It is also hypothesized that TIC may be responsible for metastatic disease. If these hypotheses are correct, targeting TICs may be imperative to achieve cure. In this review, we discuss evidence for breast TICs and their apparent resistance to conventional chemotherapy and radiotherapy, as well as to various targeted therapies. We also address the potential impact of breast TIC plasticity and metastatic potential on therapeutic strategies. Finally, we describe several genes and signaling pathways that appear important for TIC function that may represent promising therapeutic targets. PMID:25876646

  7. A Potent, Imaging Adenoviral Vector Driven by the Cancer-selective Mucin-1 Promoter That Targets Breast Cancer Metastasis

    PubMed Central

    Huyn, Steven T.; Burton, Jeremy B.; Sato, Makoto; Carey, Michael; Gambhir, Sanjiv S.; Wu, Lily

    2009-01-01

    Purpose With breast cancer, early detection and proper staging are critical, and will often influence both the treatment regimen and the therapeutic outcome for those affected with this disease. Improvements in these areas will play a profound role in reducing mortality from breast cancer. Experimental Design In this work we developed a breast cancertargeted serotype 5 adenoviral vector, utilizing the tumor-specific mucin-1 promoter in combination with the two-step transcriptional amplification system, a system used to augment the activity of weak tissue – specific promoters. Results We showed the strong specificity of this tumor-selective adenovirus to express the luciferase optical imaging gene, leading to diagnostic signals that enabled detection of sentinel lymph node metastasis of breast cancer. Furthermore, we were able to target hepatic metastases following systemic administration of this mucin-1 selective virus. Conclusions Collectively, we showed that the amplified mucin-1 promoter – driven vector is able to deliver to and selectively express a desirable transgene in metastatic lesions of breast tumors. This work has strong clinical relevance to current diagnostic staging approaches, and could add to targeted therapeutic strategies to advance the fight against breast cancer. PMID:19366829

  8. Developmental windows of breast cancer risk provide opportunities for targeted chemoprevention

    PubMed Central

    Martinson, Holly A.; Lyons, Traci R.; Giles, Erin D.; Borges, Virginia F.; Schedin, Pepper

    2014-01-01

    The magnitude of the breast cancer problem implores researchers to aggressively investigate prevention strategies. However, several barriers currently reduce the feasibility of breast cancer prevention. These barriers include the inability to accurately predict future breast cancer diagnosis at the individual level, the need for improved understanding of when to implement interventions, uncertainty with respect to optimal duration of treatment, and negative side effects associated with currently approved chemoprevention therapies. None-the-less, the unique biology of the mammary gland, with its postnatal development and conditional terminal differentiation, may permit the resolution of many of these barriers. Specifically, lifecycle-specific windows of breast cancer risk have been identified that may be amenable to risk-reducing strategies. Here, we argue for prevention research focused on two of these lifecycle windows of risk: postpartum mammary gland involution and peri-menopause. We provide evidence that these windows are highly amenable to targeted, limited duration treatments. Such approaches could result in the prevention of postpartum and postmenopausal breast cancers, correspondingly. PMID:23664839

  9. Targeting Metabolic Plasticity in Breast Cancer Cells via Mitochondrial Complex I Modulation

    PubMed Central

    Xu, Qijin; Biener-Ramanujan, Eva; Yang, Wei; Ramanujan, V Krishnan

    2016-01-01

    Purpose Heterogeneity commonly observed in clinical tumors stems both from the genetic diversity as well as from the differential metabolic adaptation of multiple cancer types during their struggle to maintain uncontrolled proliferation and invasion in vivo. This study aims to identify a potential metabolic window of such adaptation in aggressive human breast cancer cell lines. Methods With a multidisciplinary approach using high resolution imaging, cell metabolism assays, proteomic profiling and animal models of human tumor xenografts and via clinically-relevant, pharmacological approach for modulating mitochondrial complex I function in human breast cancer cell lines, we report a novel route to target metabolic plasticity in human breast cancer cells. Results By a systematic modulation of mitochondrial function and by mitigating metabolic switch phenotype in aggressive human breast cancer cells, we demonstrate that the resulting metabolic adaptation signatures can predictably decrease tumorigenic potential in vivo. Proteomic profiling of the metabolic adaptation in these cells further revealed novel protein-pathway interactograms highlighting the importance of antioxidant machinery in the observed metabolic adaptation. Conclusions Improved metabolic adaptation potential in aggressive human breast cancer cells contribute to improving mitochondrial function and reducing metabolic switch phenotype –which may be vital for targeting primary tumor growth in vivo. PMID:25677747

  10. Targeting fibroblast growth factor receptor in breast cancer: a promise or a pitfall?

    PubMed

    Bedussi, Francesca; Bottini, Alberto; Memo, Maurizio; Fox, Stephen B; Sigala, Sandra; Generali, Daniele

    2014-06-01

    Fibroblast growth factors (FGFs) along with their receptors (FGFRs) are involved in several cellular functions, from embryogenesis to metabolism. Because of the ability of FGFR signalling to induce cell proliferation, migration and survival in cancer, these have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. New evidences indicate that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-to-mesenchymal transition, invasion and tumour angiogenesis. This review focuses on the predictive and prognostic role of FGFRs, the role of FGFR signalling and how it may be most appropriately therapeutically targeted in breast cancer. Activation of the FGFR pathway is a common event in many cancer types and for this reason FGFR is an important potential target in cancer treatment. Relevant literature was reviewed to identify current and future role of FGFR family as a possible guide for selecting those patients who would be poor or good responders to the available or the upcoming target therapies for breast cancer treatment. The success of a personalised medicine approach using targeted therapies ultimately depends on being capable of identifying the patients who will benefit the most from any given drug. Outlining the molecular mechanisms of FGFR signalling and discussing the role of this pathway in breast cancer, we would like to endorse the incorporation of specific patient selection biomakers with the rationale for therapeutic intervention with FGFR-targeted therapy in breast cancer.

  11. Redox sensitive Pyk2 as a target for therapeutics in breast cancer.

    PubMed

    Felty, Quentin

    2011-01-01

    Breast cancer progression is dependent on the formation of new blood vessels that not only help the tumor by supplying additional nutrients, but also allow cancer cells to spread from the breast to distant sites in the body. Several studies suggest a positive correlation between new vessel formation and estrogens. Estrogenic environmental chemicals such as PCBs have been shown to increase the expression of factors known to promote vessel formation in breast tumors. These studies highlight a growing concern that women exposed to estrogenic environmental compounds may be more susceptible to either aggressive metastatic tumors or a high recurrence of breast cancer. Our concept offers a fundamental new understanding of the way the environment contributes to breast cancer progression. This review will be focused on a highly novel Pyk2 signaling complex as a target for therapy of estrogen dependent breast tumor angiogenesis. A better understanding of the role of Pyk2 signaling in estrogen dependent tumor vascularization may lead to the development of a new therapy against aggressive breast cancer using small molecule inhibitors of Pyk2.

  12. miR-411-5p inhibits proliferation and metastasis of breast cancer cell via targeting GRB2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yunda; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102; Xu, Guoxing

    miR-411-5p (previously called miR-411) is severely involved in human diseases, however, the relationship between miR-411-5p and breast cancer has not been investigated thoroughly. Here, we found that the expression of miR-411-5p was downregulated in breast cancer tissues compared with their matched adjacent non-neoplastic tissues. In addition, the expression of miR-411-5p was also lower in breast cancer cell lines in contrast with MCF-10A. Moreover, we investigated the target and mechanism of miR-411-5p in breast cancer using mimic and inhibitor, and demonstrated the involvement of GRB2 and Ras activation. Ectopic expression of miR-411-5p suppressed the breast cancer cell proliferation, migration and invasionmore » while low expression of miR-411-5p exhibited the opposite effect. Furthermore, GRB2 was demonstrated to be significantly overexpressed in breast cancer tissues compared with normal tissues, and low expression of GRB2 had a longer overall survival compared with high expression of GRB2 in breast cancer. In general, our study shed light on the miR-411-5p related mechanism in the progression of breast cancer and, miR-411-5p/GRB2/Ras axis is potential to be molecular target for breast cancer therapy. - Highlights: • miR-411-5p is downregulated in breast cancer tissues and cell lines. • miR-411-5p inhibits breast cancer cells growth, migration and invasion in vitro. • GRB2 is a direct target of miR-411-5p in breast cancer. • GRB2 is overexpressed in breast cancer and associates with disease outcome. • miR-411-5p suppresses breast cancer progression though GRB2-SOS-Ras pathway.« less

  13. CXCR4 in breast cancer: oncogenic role and therapeutic targeting

    PubMed Central

    Xu, Chao; Zhao, Hong; Chen, Haitao; Yao, Qinghua

    2015-01-01

    Chemokines are 8–12 kDa peptides that function as chemoattractant cytokines and are involved in cell activation, differentiation, and trafficking. Chemokines bind to specific G-protein-coupled seven-span transmembrane receptors. Chemokines play a fundamental role in the regulation of a variety of cellular, physiological, and developmental processes. Their aberrant expression can lead to a variety of human diseases including cancer. C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1 also called CXCL12). CXCR4 belongs to the superfamily of the seven transmembrane domain heterotrimeric G protein-coupled receptors and is functionally expressed on the cell surface of various types of cancer cells. CXCR4 also plays a role in the cell proliferation and migration of these cells. Recently, CXCR4 has been reported to play an important role in cell survival, proliferation, migration, as well as metastasis of several cancers including breast cancer. This review is mainly focused on the current knowledge of the oncogenic role and potential drugs that target CXCR4 in breast cancer. Additionally, CXCR4 proangiogenic molecular mechanisms will be reviewed. Strict biunivocal binding affinity and activation of CXCR4/CXCL12 complex make CXCR4 a unique molecular target for prevention and treatment of breast cancer. PMID:26356032

  14. MicroRNA-139 suppresses proliferation in luminal type breast cancer cells by targeting Topoisomerase II alpha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Wei; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi'an; Sa, Ke-Di

    The classification of molecular subtypes of breast cancer improves the prognostic accuracy and therapeutic benefits in clinic. However, because of the complexity of breast cancer, more biomarkers and functional molecules need to be explored. Here, analyzing the data in a huge cohort of breast cancer patients, we found that Topoisomerase II alpha (TOP2a), an important target of chemotherapy is a biomarker for prognosis in luminal type breast cancer patients, but not in basal like or HER2 positive breast cancer patients. We identified that miR-139, a previous reported anti-metastatic microRNA targets 3’-untranslated region (3′UTR) of TOP2a mRNA. Further more, we revealedmore » that the forced expression of miR-139 reduces the TOP2a expression at both mRNA and protein levels. And our functional experiments showed that the ectopic expression of miR-139 remarkably inhibits proliferation in luminal type breast cancer cells, while exogenous TOP2a expression could rescue inhibition of cell proliferation mediated by miR-139. Collectively, our present study demonstrates the miR-139-TOP2a regulatory axis is important for proliferation in luminal type breast cancer cells. This functional link may help us to further understand the specificity of subtypes of breast cancer and optimize the strategy of cancer treatment. - Highlights: • High levels of TOP2a expression are closely associated with poor prognosis in luminal type breast cancer patients. • TOP2a is a novel target of miR-139. • Overexpression of miR-139 inhibits proliferation in luminal type breast cancer cells. • TOP2a is essential for miR-139-induced growth arrest in luminal type breast cancer cells.« less

  15. Biotin-tagged platinum(iv) complexes as targeted cytostatic agents against breast cancer cells.

    PubMed

    Muhammad, Nafees; Sadia, Nasreen; Zhu, Chengcheng; Luo, Cheng; Guo, Zijian; Wang, Xiaoyong

    2017-09-05

    A biotin-guided platinum IV complex is highly cytotoxic against breast cancer cells but hypotoxic against mammary epithelial cells. The mono-biotinylated Pt IV complex is superior to the di-biotinylated one and hence a promising drug candidate for the targeted therapy of breast cancer.

  16. Optoacoustic imaging of gold nanoparticles targeted to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Eghtedari, Mohammad; Motamedi, Massoud; Popov, Vsevolod L.; Kotov, Nicholas A.; Oraevsky, Alexander A.

    2004-07-01

    Optoacoustic Tomography (OAT) is a rapidly growing technology that enables noninvasive deep imaging of biological tissues based on their light absorption. In OAT, the interaction of a pulsed laser with tissue increases the temperature of the absorbing components in a confined volume of tissue. Rapid perturbation of the temperature (<1°C) deep within tissue produces weak acoustic waves that easily travel to the surface of the tissue with minor attenuation. Abnormal angiogenesis in a malignant tumor, that increases its blood content, makes a native contrast for optoacoustic imaging; however, the application of OAT for early detection of malignant tumors requires the enhancement of optoacoustic signals originated from tumor by using an exogenous contrast agent. Due to their strong absorption, we have used gold nanoparticles (NP) as a contrast agent. 40nm spherical gold nanoparticles were attached to monoclonal antibody to target cell surface of breast cancer cells. The targeted cancer cells were implanted at depth of 5-6cm within a gelatinous object that optically resembles human breast. Experimental sensitivity measurements along with theoretical analysis showed that our optoacoustic imaging system is capable of detecting a phantom breast tumor with the volume of 0.15ml, which is composed of 25 million NP-targeted cancer cells, at a depth of 5 centimeters in vitro.

  17. Bone-Induced Expression of Tumoral Integrin beta3 Enables Targeted Nanotherapy of Breast Cancer Metastases

    NASA Astrophysics Data System (ADS)

    Ross, Michael H.

    Breast cancer is the most common cancer for women worldwide, representing approximately 25% of all new cancer cases in this population. While early detection and removal of breast cancer still confined to the primary site results in a good prognosis, approximately one- third of patients will develop distant metastases. In these patients, overall survival is markedly reduced. Of the common sites for breast cancer metastasis, the skeletal system is the most frequent. Treating breast cancer bone metastases has proven particularly difficult for several reasons, such as dissemination of metastases throughout the skeleton, poor drug localization to sites of interest, a lack of tumor-specific targets expressed across breast cancer subtypes, and the chemo-protective nature of the bone microenvironment. This dissertation is focused on investigating a potential tumor-target expressed on breast cancer bone metastases, and to improve drug treatment efficacy against tumor cells in the bone microenvironment. Integrins are heterodimeric cell surface receptors, composed of an alpha and beta subunit from a large family of selectively-compatible integrin subunits. As a heterodimeric complex, integrins can bind to components of the extracellular matrix or to other cells. One particular integrin complex, integrin alphavbeta3, is composed of the tightly regulated integrin subunit beta3 and the more widely expressed alphav subunit. I examined the expression of integrin beta3 on primary breast cancer as compared to metastases in murine cancer models, and observed that integrin expression is significantly elevated on bone metastases as compared to the primary tumors or visceral metastases. In addition, I evaluated tumor-associated integrin beta3 expression on a tissue microarray (TMA) composed of primary breast cancer and patient-matched bone metastatic tissue from 42 patients. Across nearly all patients, tumor-associated integrin beta3 expression was significantly elevated on bone

  18. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy

    DTIC Science & Technology

    2014-02-01

    Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy” 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0166 5c... Nanotechnologies in Living Systems”, Moscow Region, Russia, September, 2011. 3. “Ionic nanogels for drug delivery in cancer ”. NanoDDS’12; Atlantic City, New...AD Award Number: W81XWH-11-1-0166 TITLE: Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast

  19. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy

    DTIC Science & Technology

    2014-02-01

    Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy” 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0167 5c... Nanotechnologies in Living Systems”, Moscow Region, Russia, September, 2011. 3. “Ionic nanogels for drug delivery in cancer ”. NanoDDS’12; Atlantic City, New...AD Award Number: W81XWH-11-1-0167 TITLE: Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast

  20. Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells.

    PubMed

    Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra

    2011-09-01

    Breast cancer presents greatest challenge in health care in today's world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube's D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 min of photothermal therapy treatment by 1.5 W/cm(2) power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly.

  1. Targeting Alpha5 Beta1 Integrin to Prevent Metastatic Breast Cancer Cell Invasion: PhScN Target Site Definition and Plasma Stability

    DTIC Science & Technology

    2015-11-01

    systemic therapy to prevent breast cancer bone colony progression. Figure 6. Colocalization of Ac-PhscNGGK-Bio with DiI in lung– extravasated SUM149PT cells...breast cancer progression that are ultimately fatal. Hence, prevention of extravasation which leads to colony formation would increase life...1 Award Number: W81XWH-12-1-0097 TITLE: “Targeting Alpha5 Beta1 Integrin to Prevent Metastatic Breast Cancer Cell Invasion: PhScN Target Site

  2. Engineering Remotely Triggered Liposomes to Target Triple Negative Breast Cancer

    PubMed Central

    Sneider, Alexandra; Jadia, Rahul; Piel, Brandon; VanDyke, Derek; Tsiros, Christopher; Rai, Prakash

    2017-01-01

    Triple Negative Breast Cancer (TNBC) continues to present a challenge in the clinic, as there is still no approved targeted therapy. TNBC is the worst sub-type of breast cancer in terms of prognosis and exhibits a deficiency in estrogen, progesterone, and human epidermal growth factor 2 (HER2) receptors. One possible option for the treatment of TNBC is chemotherapy. The issue with many chemotherapy drugs is that their effectiveness is diminished due to poor water solubility, and the method of administration directly or with a co-solvent intravenously can lead to an increase in toxicity. The issues of drug solubility can be avoided by using liposomes as a drug delivery carrier. Liposomes are engineered, biological nanoconstructs that possess the ability to encapsulate both hydrophobic and hydrophilic drugs and have been clinically approved to treat cancer. Specific targeting of cancer cell receptors through the use of ligands conjugated to the surface of drug-loaded liposomes could lessen damage to normal, healthy tissue. This study focuses on polyethylene glycol (PEG)-coated, folate conjugated, benzoporphyrin derivative (BPD)-loaded liposomes for treatment via photodynamic therapy (PDT). The folate receptor is over expressed on TNBC cells so these liposomes are targeted for greater uptake into cancer cells. PDT involves remotely irradiating light at 690 nm to trigger BPD, a hydrophobic photosensitive drug, to form reactive oxygen species that cause tumor cell death. BPD also displays a fluorescence signal when excited by light making it possible to image the fluorescence prior to PDT and for theranostics. In this study, free BPD, non-targeted and folate-targeted PEGylated BPD-loaded liposomes were introduced to a metastatic breast cancer cell line (MDA-MB-231) in vitro. The liposomes were reproducibly synthesized and characterized for size, polydispersity index (PDI), zeta potential, stability, and BPD release kinetics. Folate competition tests, fluorescence

  3. Targeting Premalignant Lesions - Implications for Early Breast Cancer Detection and Intervention

    DTIC Science & Technology

    2017-04-01

    lesions. Peptide conjugated AgNP were injected intravenously in mice and mammary glands were isolated and analyzed for nanoparticle accumulation by silver ...Furthermore, these probes will be used to develop targeted therapeutic nanoparticles for early intervention in breast cancer. 2. KEYWORDS...cancer (Months 18-24) (To be done) Specific Aim 3: Target premalignant lesions utilizing peptide-conjugated nanoparticles to prevent/delay

  4. Targeting human breast cancer cells by an oncolytic adenovirus using microRNA-targeting strategy.

    PubMed

    Shayestehpour, Mohammad; Moghim, Sharareh; Salimi, Vahid; Jalilvand, Somayeh; Yavarian, Jila; Romani, Bizhan; Mokhtari-Azad, Talat

    2017-08-15

    MicroRNA-targeting strategy is a promising approach that enables oncolytic viruses to replicate in tumor cells but not in normal cells. In this study, we targeted adenoviral replication toward breast cancer cells by inserting ten complementary binding sites for miR-145-5p downstream of E1A gene. In addition, we evaluated the effect of increasing miR-145 binding sites on inhibition of virus replication. Ad5-control and adenoviruses carrying five or ten copies of miR145-5p target sites (Ad5-5miR145T, Ad5-10miR145T) were generated and inoculated into MDA-MB-453, BT-20, MCF-7 breast cancer cell lines and human mammary epithelial cells (HMEpC). Titer of Ad5-10miR145T in HMEpC was significantly lower than Ad5-control titer. Difference between the titer of these two viruses at 12, 24, 36, and 48h after infection was 1.25, 2.96, 3.06, and 3.77 log TCID 50 . No significant difference was observed between the titer of both adenoviruses in MDA-MB-453, BT-20 and MCF-7 cells. The infectious titer of adenovirus containing 10 miR-145 binding sites in HMEpC cells at 24, 36, and 48h post-infection was 1.7, 2.08, and 4-fold, respectively, lower than the titer of adenovirus carrying 5 miR-145 targets. Our results suggest that miR-145-targeting strategy provides selectivity for adenovirus replication in breast cancer cells. Increasing the number of miRNA binding sites within the adenoviral genome confers more selectivity for viral replication in cancer cells. Copyright © 2017. Published by Elsevier B.V.

  5. Receptor-Targeted Nanoparticles for In Vivo Imaging of Breast Cancer

    PubMed Central

    Yang, Lily; Peng, Xiang-Hong; Wang, Y. Andrew; Wang, Xiaoxia; Cao, Zehong; Ni, Chunchun; Karna, Prasanthi; Zhang, Xinjian; Wood, William C.; Gao, Xiaohu; Nie, Shuming; Mao, Hui

    2009-01-01

    Purpose Cell surface receptor-targeted magnetic iron oxide (IO) nanoparticles provide molecular magnetic resonance imaging (MRI) contrast agents for improving specificity of the detection of human cancer. Experimental design The present study reports the development of a novel targeted IO nanoparticle using a recombinant peptide containing the amino-terminal fragment (ATF) of urokinase plasminogen activator conjugated to IO nanoparticles (ATF-IO). This nanoparticle targets urokinase plasminogen activator receptor (uPAR), which is overexpressed in breast cancer tissues. Results ATF-IO nanoparticles are able to specifically bind to and be internalized by uPAR-expressing tumor cells. Systemic delivery of ATF-IO nanoparticles into mice bearing subcutaneous and intraperitoneal mammary tumors leads to the accumulation of the particles in tumors, generating a strong MRI contrast detectable by a clinical MRI scanner at a field strength of 3 Tesla. Target specificity of ATF-IO nanoparticles demonstrated by in vivo MRI is further confirmed by near infrared (NIR) fluorescence imaging of the mammary tumors using NIR dye-labeled ATF peptides conjugated to IO nanoparticles. Furthermore, mice administered ATF-IO nanoparticles exhibit lower uptake of the particles in the liver and spleen compared to those receiving non-targeted IO nanoparticles. Conclusions Our results suggest that uPAR-targeted ATF-IO nanoparticles have potential as molecularly-targeted, dual modality imaging agents for in vivo imaging of breast cancer. PMID:19584158

  6. Vascular targeting of a gold nanoparticle to breast cancer metastasis

    PubMed Central

    Peiris, Pubudu M.; Deb, Partha; Doolittle, Elizabeth; Doron, Gilad; Goldberg, Amy; Govender, Priya; Shah, Shruti; Rao, Swetha; Carbone, Sarah; Cotey, Thomas; Sylvestre, Meilyn; Singh, Sohaj; Schiemann, William P.; Lee, Zhenghong; Karathanasis, Efstathios

    2015-01-01

    The vast majority of breast cancer deaths are due to metastatic disease. While deep tissue targeting of nanoparticles is suitable for some primary tumors, vascular targeting may be a more attractive strategy for micrometastasis. This study combined a vascular targeting strategy with the enhanced targeting capabilities of a nanoparticle to evaluate the ability of a gold nanoparticle to specifically target the early spread of metastatic disease. As a ligand for the vascular targeting strategy, we utilized a peptide targeting alpha(v) beta(3) integrin, which is functionally linked to the development of micrometastases at a distal site. By employing a straightforward radiolabeling method to incorporate Technetium-99m into the gold nanoparticles, we used the high sensitivity of radionuclide imaging to monitor the longitudinal accumulation of the nanoparticles in metastatic sites. Animal and histological studies showed that vascular targeting of the nanoparticle facilitated highly accurate targeting of micrometastasis in the 4T1 mouse model of breast cancer metastasis using radionuclide imaging and a low dose of the nanoparticle. Due to the efficient targeting scheme, 14% of the injected AuNP deposited at metastatic sites in the lungs within 60 min after injection, indicating that the vascular bed of metastasis is a viable target site for nanoparticles. PMID:26036431

  7. Gold Nano Popcorn Attached SWCNT Hybrid Nanomaterial for Targeted Diagnosis and Photothermal Therapy of Human Breast Cancer Cells

    PubMed Central

    Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra

    2011-01-01

    Breast cancer presents greatest challenge in health care in today’s world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube’s D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 minutes of photothermal therapy treatment by 1.5 W/cm2 power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly. PMID:21842867

  8. MicroRNA-510 promotes cell and tumor growth by targeting peroxiredoxin1 in breast cancer

    PubMed Central

    2013-01-01

    Introduction MicroRNAs are small non-coding RNAs that are involved in the post-transcriptional negative regulation of mRNAs. MicroRNA 510 (miR-510) was initially shown to have a potential oncogenic role in breast cancer by the observation of its elevated levels in human breast tumor samples when compared to matched non-tumor samples. Few targets have been identified for miR-510. However, as microRNAs function through the negative regulation of their direct targets, the identification of those targets is critical for the understanding of their functional role in breast cancer. Methods Breast cancer cell lines were transfected with pre-miR-510 or antisense miR-510 and western blotting and quantitative real time PCR were performed. Functional assays performed included cell growth, migration, invasion, colony formation, cytotoxicity and in vivo tumor growth. We performed a PCR assay to identify novel direct targets of miR-510. The study focused on peroxiredoxin 1 (PRDX1) as it was identified through our screen and was bioinformatically predicted to contain a miR-510 seed site in its 3' untranslated region (3'UTR). Luciferase reporter assays and site-directed mutagenesis were performed to confirm PRDX1 as a direct target. The Student's two-sided, paired t-test was used and a P-value less than 0.05 was considered significant. Results We show that miR-510 overexpression in non-transformed and breast cancer cells can increase their cell growth, migration, invasion and colony formation in vitro. We also observed increased tumor growth when miR-510 was overexpressed in vivo. We identified PRDX1 through a novel PCR screen and confirmed it as a direct target using luciferase reporter assays. The reintroduction of PRDX1 into breast cancer cell lines without its regulatory 3'UTR confirmed that miR-510 was mediating its migratory phenotype at least in part through the negative regulation of PRDX1. Furthermore, the PI3K/Akt pathway was identified as a positive regulator of miR-510

  9. MicroRNA-510 promotes cell and tumor growth by targeting peroxiredoxin1 in breast cancer.

    PubMed

    Guo, Qi J; Mills, Jamie N; Bandurraga, Savannah G; Nogueira, Lourdes M; Mason, Natalie J; Camp, E Ramsay; Larue, Amanda C; Turner, David P; Findlay, Victoria J

    2013-01-01

    MicroRNAs are small non-coding RNAs that are involved in the post-transcriptional negative regulation of mRNAs. MicroRNA 510 (miR-510) was initially shown to have a potential oncogenic role in breast cancer by the observation of its elevated levels in human breast tumor samples when compared to matched non-tumor samples. Few targets have been identified for miR-510. However, as microRNAs function through the negative regulation of their direct targets, the identification of those targets is critical for the understanding of their functional role in breast cancer. Breast cancer cell lines were transfected with pre-miR-510 or antisense miR-510 and western blotting and quantitative real time PCR were performed. Functional assays performed included cell growth, migration, invasion, colony formation, cytotoxicity and in vivo tumor growth. We performed a PCR assay to identify novel direct targets of miR-510. The study focused on peroxiredoxin 1 (PRDX1) as it was identified through our screen and was bioinformatically predicted to contain a miR-510 seed site in its 3' untranslated region (3'UTR). Luciferase reporter assays and site-directed mutagenesis were performed to confirm PRDX1 as a direct target. The Student's two-sided, paired t-test was used and a P-value less than 0.05 was considered significant. We show that miR-510 overexpression in non-transformed and breast cancer cells can increase their cell growth, migration, invasion and colony formation in vitro. We also observed increased tumor growth when miR-510 was overexpressed in vivo. We identified PRDX1 through a novel PCR screen and confirmed it as a direct target using luciferase reporter assays. The reintroduction of PRDX1 into breast cancer cell lines without its regulatory 3'UTR confirmed that miR-510 was mediating its migratory phenotype at least in part through the negative regulation of PRDX1. Furthermore, the PI3K/Akt pathway was identified as a positive regulator of miR-510 both in vitro and in vivo

  10. PVT1-derived miR-1207-5p promotes breast cancer cell growth by targeting STAT6.

    PubMed

    Yan, Chen; Chen, Yaqing; Kong, Weiwei; Fu, Liya; Liu, Yunde; Yao, Qingjuan; Yuan, Yuhua

    2017-05-01

    Accumulating evidence indicates that ectopic expression of non-coding RNAs are responsible for breast cancer progression. Increased non-coding RNA PVT1, the host gene of microRNA-1207-5p (miR-1207-5p), has been associated with breast cancer proliferation. However, how PVT1 functions in breast cancer is still not clear. In this study, we show a PVT1-derived microRNA, miR-1207-5p, that promotes the proliferation of breast cancer cells by directly regulating STAT6. We first confirm the positive correlated expression pattern between PVT1 and miR-1207-5p by observing consistent induced expression by estrogen, and overexpression in breast cancer cell lines and breast cancer patient specimens. Moreover, silence of PVT1 also decreased miR-1207-5p expression. Furthermore, increased miR-1207-5p expression promoted, while decreased miR-1207-5p expression suppressed, cell proliferation, colony formation, and cell cycle progression in breast cancer cell lines. Mechanistically, a novel target of miR-1207-5p, STAT6, was identified by a luciferase reporter assay. Overexpression of miR-1207-5p decreased the levels of STAT6, which activated CDKN1A and CDKN1B to regulate the cell cycle. We also confirmed the reverse correlation of miR-1207-5p and STAT6 expression levels in breast cancer samples. Therefore, our findings reveal that PVT1-derived miR-1207-5p promotes the proliferation of breast cancer cells by targeting STAT6, which in turn controls CDKN1A and CDKN1B expression. These findings suggest miR-1207-5p might be a potential target for breast cancer therapy. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Novel targets for sensitizing breast cancer cells to TRAIL-induced apoptosis with siRNA delivery.

    PubMed

    Thapa, Bindu; Bahadur Kc, Remant; Uludağ, Hasan

    2018-02-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in variety of cancer cells without affecting most normal cells, which makes it a promising agent for cancer therapy. However, TRAIL therapy is clinically not effective due to resistance induction. To identify novel regulators of TRAIL that can aid in therapy, protein targets whose silencing sensitized breast cancer cells against TRAIL were screened with an siRNA library against 446 human apoptosis-related proteins in MDA-231 cells. Using a cationic lipopolymer (PEI-αLA) for delivery of library members, 16 siRNAs were identified that sensitized the TRAIL-induced death in MDA-231 cells. The siRNAs targeting BCL2L12 and SOD1 were further evaluated based on the novelty and their ability to sensitize TRAIL induced cell death. Silencing both targets sensitized TRAIL-mediated cell death in MDA-231 cells as well as TRAIL resistant breast cancer cells, MCF-7. Combination of TRAIL and siRNA silencing BCL2L12 had no effect in normal human umbilical vein cells and human bone marrow stromal cell. The silencing of BCL2L12 and SOD1 enhanced TRAIL-mediated apoptosis in MDA-231 cells via synergistically activating capsase-3 activity. Hence, here we report siRNAs targeting BCL2L12 and SOD1 as a novel regulator of TRAIL-induced cell death in breast cancer cells, providing a new approach for enhancing TRAIL therapy for breast cancer. The combination of siRNA targeting BCL2L12 and TRAIL can be a highly effective synergistic pair in breast cancer cells with minimal effect on the non-transformed cells. © 2017 UICC.

  12. miR-206 Inhibits Stemness and Metastasis of Breast Cancer by Targeting MKL1/IL11 Pathway.

    PubMed

    Samaeekia, Ravand; Adorno-Cruz, Valery; Bockhorn, Jessica; Chang, Ya-Fang; Huang, Simo; Prat, Aleix; Ha, Nahun; Kibria, Golam; Huo, Dezheng; Zheng, Hui; Dalton, Rachel; Wang, Yuhao; Moskalenko, Grigoriy Y; Liu, Huiping

    2017-02-15

    Purpose: Effective targeting of cancer stem cells is necessary and important for eradicating cancer and reducing metastasis-related mortality. Understanding of cancer stemness-related signaling pathways at the molecular level will help control cancer and stop metastasis in the clinic. Experimental Design: By analyzing miRNA profiles and functions in cancer development, we aimed to identify regulators of breast tumor stemness and metastasis in human xenograft models in vivo and examined their effects on self-renewal and invasion of breast cancer cells in vitro To discover the direct targets and essential signaling pathways responsible for miRNA functions in breast cancer progression, we performed microarray analysis and target gene prediction in combination with functional studies on candidate genes (overexpression rescues and pheno-copying knockdowns). Results: In this study, we report that hsa-miR-206 suppresses breast tumor stemness and metastasis by inhibiting both self-renewal and invasion. We identified that among the candidate targets, twinfilin ( TWF1 ) rescues the miR-206 phenotype in invasion by enhancing the actin cytoskeleton dynamics and the activity of the mesenchymal lineage transcription factors, megakaryoblastic leukemia (translocation) 1 (MKL1), and serum response factor (SRF). MKL1 and SRF were further demonstrated to promote the expression of IL11 , which is essential for miR-206's function in inhibiting both invasion and stemness of breast cancer. Conclusions: The identification of the miR-206/TWF1/MKL1-SRF/IL11 signaling pathway sheds lights on the understanding of breast cancer initiation and progression, unveils new therapeutic targets, and facilitates innovative drug development to control cancer and block metastasis. Clin Cancer Res; 23(4); 1091-103. ©2016 AACR . ©2016 American Association for Cancer Research.

  13. Hybrid promoters directed tBid gene expression to breast cancer cells by transcriptional targeting.

    PubMed

    Farokhimanesh, Samila; Rahbarizadeh, Fatemeh; Rasaee, Mohammad J; Kamali, Abbas; Mashkani, Baratali

    2010-01-01

    Developing cancer gene therapy constructs based on transcriptional targeting of genes to cancer cells is a new and promising modality for treatment of cancer. Introducing truncated Bid (tBid), a recently known member of the Bcl-2 family, eradicates cancer cells efficiently. For transcriptional targeting of tBid, two dual-specificity promoters, combining cancer specific core promoters and response modules, were designed. These two core promoter modules contained cancer specific promoters of MUC1 and Survivin genes accompanied by hypoxia-responsive elements and estrogen responsive elements (microenvironment condition of breast cancer cells) which were employed to achieve a higher and more specific level of tBid expression in breast cancer cells. Correlation of the level of tBid expression in normal and cancer cell lines with promoter activity was measured by RT-PCR after treatment with hypoxia and estrogen. The level of tBid expression under control of new hybrid promoters was compared with its expression under control of cytomegalovirus (CMV) promoter as a control. Our data revealed that the level of tBid expression in breast cancer cells were nearly 11 times more than normal cells because of the cancer specific promoters, although tBid expression under control of CMV promoter was almost the same in normal and cancer cell lines. Increased apoptosis was detected in the transfected breast cancer cell lines by the Caspase-3 activity assay. The application of these promoters may prove to have the advantage of tumor selective gene therapy in breast cancer cells and low-potential toxicity for normal tissues.

  14. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu

    2015-08-28

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observedmore » in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER{sup +} and ER{sup −} breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen.« less

  15. Vascular Targeting of a Gold Nanoparticle to Breast Cancer Metastasis.

    PubMed

    Peiris, Pubudu M; Deb, Partha; Doolittle, Elizabeth; Doron, Gilad; Goldberg, Amy; Govender, Priya; Shah, Shruti; Rao, Swetha; Carbone, Sarah; Cotey, Thomas; Sylvestre, Meilyn; Singh, Sohaj; Schiemann, William P; Lee, Zhenghong; Karathanasis, Efstathios

    2015-08-01

    The vast majority of breast cancer deaths are due to metastatic disease. Although deep tissue targeting of nanoparticles is suitable for some primary tumors, vascular targeting may be a more attractive strategy for micrometastasis. This study combined a vascular targeting strategy with the enhanced targeting capabilities of a nanoparticle to evaluate the ability of a gold nanoparticle (AuNP) to specifically target the early spread of metastatic disease. As a ligand for the vascular targeting strategy, we utilized a peptide targeting alpha(v) beta(3) integrin, which is functionally linked to the development of micrometastases at a distal site. By employing a straightforward radiolabeling method to incorporate Technetium-99m into the AuNPs, we used the high sensitivity of radionuclide imaging to monitor the longitudinal accumulation of the nanoparticles in metastatic sites. Animal and histological studies showed that vascular targeting of the nanoparticle facilitated highly accurate targeting of micrometastasis in the 4T1 mouse model of breast cancer metastasis using radionuclide imaging and a low dose of the nanoparticle. Because of the efficient targeting scheme, 14% of the injected AuNP deposited at metastatic sites in the lungs within 60 min after injection, indicating that the vascular bed of metastasis is a viable target site for nanoparticles. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. A Targeted RNAi Screen of the Breast Cancer Genome Identifies KIF14 and TLN1 as Genes That Modulate Docetaxel Chemosensitivity in Triple-Negative Breast Cancer

    PubMed Central

    Singel, Stina Mui; Cornelius, Crystal; Batten, Kimberly; Fasciani, Gail; Wright, Woodring E.; Lum, Lawrence; Shay, Jerry W.

    2015-01-01

    Purpose To identify biomarkers within the breast cancer genome that may predict chemosensitivity in breast cancer. Experimental Design We conducted an RNA interference (RNAi) screen within the breast cancer genome for genes whose loss-of-function enhanced docetaxel chemosensitivity in an estrogen receptor–negative, progesterone receptor–negative, and Her2-negative (ER−, PR−, and Her2−, respectively) breast cancer cell line, MDA-MB-231. Top candidates were tested for their ability to modulate chemosensitivity in 8 breast cancer cell lines and to show in vivo chemosensitivity in a mouse xenograft model. Results From ranking chemosensitivity of 328 short hairpin RNA (shRNA) MDA-MB-231 cell lines (targeting 133 genes with known somatic mutations in breast cancer), we focused on the top two genes, kinesin family member 14 (KIF14) and talin 1 (TLN1). KIF14 and TLN1 loss-of-function significantly enhanced chemosensitivity in four triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, HCC38, HCC1937, and Hs478T) but not in three hormone receptor–positive cell lines (MCF7, T47D, and HCC1428) or normal human mammary epithelial cells (HMEC). Decreased expression of KIF14, but not TLN1, also enhanced docetaxel sensitivity in a Her2-amplified breast cancer cell line, SUM190PT. Higher KIF14 and TLN1 expressions are found in TNBCs compared with the other clinical subtypes. Mammary fat pad xenografts of KIF14- and TLN1-deficient MDA-MB-231 cells revealed reduced tumor mass compared with control MDA-MB-231 cells after chemotherapy. KIF14 expression is also prognostic of relapse-free and overall survival in representative breast cancer expression arrays. Conclusion KIF14 and TLN1 are modulators of response to docetaxel and potential therapeutic targets in TNBC. PMID:23479679

  17. Fetoprotein Derived Short Peptide Coated Nanostructured Amphiphilic Surfaces for Targeting Mouse Breast Cancer Cells

    NASA Astrophysics Data System (ADS)

    Brown, Alexandra M.; Miranda-Alarćon, Yoliem S.; Knoll, Grant A.; Santora, Anthony M.; Banerjee, Ipsita A.

    In this work, self-assembled tumor targeting nanostructured surfaces were developed from a newly designed amphiphile by conjugating boc protected isoleucine with 2,2‧ ethylenedioxy bis ethylamine (IED). To target mouse mammary tumor cells, a short peptide sequence derived from the human alpha-fetoprotein (AFP), LSEDKLLACGEG was attached to the self-assembled nanostructures. Tumor targeting and cell proliferation were examined in the presence of nanoscale assemblies. To further obliterate mouse breast tumor cells, the chemotherapeutic drug tamoxifen was then entrapped into the nanoassemblies. Our studies indicated that the targeting systems were able to efficiently encapsulate and release tamoxifen. Cell proliferation studies showed that IED-AFP peptide loaded with tamoxifen decreased the proliferation of breast cancer cells while in the presence of the IED-AFP peptide nanoassemblies alone, the growth was relatively slower. In the presence of human dermal fibroblasts however cell proliferation continued similar to controls. Furthermore, the nanoscale assemblies were found to induce apoptosis in mouse breast cancer cells. To examine live binding interactions, SPR analysis revealed that tamoxifen encapsulated IED-AFP peptide nanoassemblies bound to the breast cancer cells more efficiently compared to unencapsulated assemblies. Thus, we have developed nanoscale assemblies that can specifically bind to and target tumor cells, with increased toxicity in the presence of a chemotherapeutic drug.

  18. Targeting Breast Cancer Recurrence via Hedgehog-Mediated Sensitization of Breast Cancer Stem Cells

    DTIC Science & Technology

    2011-07-01

    identification of Notch3 as a transcriptional target of ΔNp63α and a mediator of cellular quiescence in mammary stem cells. 2. Presentation of a poster...enhanced expression of Notch3 in HC11s and breast cancer cell lines, and ectopic expression of the Notch3 intracellular domain (N3ICD) was sufficient to...signaling or shRNA-mediated suppression of Notch3 were sufficient to bypass quiescence induced by ΔNp63α and other quiescence-inducing stimuli. these

  19. Targeting of CCBE1 by miR-330-3p in human breast cancer promotes metastasis.

    PubMed

    Mesci, Aruz; Huang, Xiaoyong; Taeb, Samira; Jahangiri, Sahar; Kim, Yohan; Fokas, Emmanouil; Bruce, Jeff; Leong, Hon S; Liu, Stanley K

    2017-05-09

    MicroRNAs (miRs) are involved in the regulation of many processes that contribute to malignancy, including cell proliferation, radiation resistance, invasion and metastasis. The role of miR-330-3p, an miR upregulated in breast cancer, remains unclear. We examine the association of miR-330-3p with distant relapse-free survival in the Oxford cohort of breast cancer patients. We also study miR-330-3p function using in vitro invasion and ex ovo metastasis assays. Using in vitro luciferase assays, we validate a novel target gene for miR-330-3p, Collagen And Calcium Binding EGF Domains 1 (CCBE1). We assess functional consequences of CCBE1 loss by using siRNA-mediated knockdown followed by in vitro invasion assays. Lastly, we examine the expression profile of CCBE1 in breast carcinomas in the Curtis and TCGA Breast Cancer data sets using Oncomine Platform as well as distant relapse-free and overall survival of patients in the Helsinki University breast cancer data set according to CCBE1 expression status. miR-330-3p is enriched in breast cancer, and higher levels of miR-330-3p expression are associated with lower distant relapse-free survival in a cohort of breast cancer patients. Consistent with these observations, overexpression of miR-330-3p in breast cancer cell lines results in greater invasiveness in vitro, and miR-330-3p-overexpressing cells also metastasise more aggressively ex ovo. We identify CCBE1 as a direct target of miR-330-3p, and show that knockdown of CCBE1 results in a greater invasive capacity. Accordingly, in breast cancer patients CCBE1 is frequently downregulated, and its loss is associated with reduced distant relapse-free and overall survival. We show for the first time that miR-330-3p targets CCBE1 to promote invasion and metastasis. miR-330-3p and CCBE1 may represent promising biomarkers in breast cancer.

  20. Alternative therapies for metastatic breast cancer: multimodal approach targeting tumor cell heterogeneity.

    PubMed

    Sambi, Manpreet; Haq, Sabah; Samuel, Vanessa; Qorri, Bessi; Haxho, Fiona; Hill, Kelli; Harless, William; Szewczuk, Myron R

    2017-01-01

    One of the primary challenges in developing effective therapies for malignant tumors is the specific targeting of a heterogeneous cancer cell population within the tumor. The cancerous tumor is made up of a variety of distinct cells with specialized receptors and proteins that could potentially be viable targets for drugs. In addition, the diverse signals from the local microenvironment may also contribute to the induction of tumor growth and metastasis. Collectively, these factors must be strategically studied and targeted in order to develop an effective treatment protocol. Targeted multimodal approaches need to be strategically studied in order to develop a treatment protocol that is successful in controlling tumor growth and preventing metastatic burden. Breast cancer, in particular, presents a unique problem because of the variety of subtypes of cancer that can arise and the multiple drug targets that could be exploited. For example, the tumor stage and subtypes often dictate the appropriate treatment regimen. Alternate multimodal therapies should consider the importance of time-dependent drug administration, as well as targeting the local and systemic tumor environment. Many reviews and papers have briefly touched on the clinical implications of this cellular heterogeneity; however, there has been very little discussion on the development of study models that reflect this diversity and on multimodal therapies that could target these subpopulations. Here, we summarize the current understanding of the origins of intratumoral heterogeneity in breast cancer subtypes, and its implications for tumor progression, metastatic potential, and treatment regimens. We also discuss the advantages and disadvantages of utilizing specific breast cancer models for research, including in vitro monolayer systems and three-dimensional mammospheres, as well as in vivo murine models that may have the capacity to encompass this heterogeneity. Lastly, we summarize some of the current

  1. Liver toxicity of chemotherapy and targeted therapy for breast cancer patients with hepatitis virus infection.

    PubMed

    Liu, Yu; Li, Zhan-Yi; Li, Xi; Wang, Jia-Ni; Huang, Qun-Ai; Huang, Yong

    2017-10-01

    Chemotherapy has greatly improved the prognosis of breast cancer patients. However, it may also result in undesirable side effects such as hepatitis virus reactivation. Little information is available on the liver toxicity of chemotherapy and targeted therapy for breast cancer patients with hepatitis virus (HBV/HCV) infection. We performed a retrospective survey of 835 patients diagnosed with breast cancer between January 2010 and December 2015 at our institution. All patients had been screened for HBV/HCV infection at the time of breast cancer diagnosis. We retrospectively investigated the toxicity of chemotherapy and the changes in HBV/HCV load based on a medical record review. 52 patients with positive anti-HBV antibody test and 21 patients with positive anti-HCV antibody tests received chemotherapy. 762 patients without HBV and HCV infection served as the control group. The morbidity of liver toxicity and disruptions in chemotherapy attributable to liver toxicity were not significantly different among control group, HBV group and HCV groups (27.7% vs 34.6% vs 42.9%, P = 0.189 and 5.0% vs 9.6% vs 9.5%, P = 0.173, respectively). No patients presented with HBV/HCV reactivation. Breast cancer patients with HCV can be treated with chemotherapy and targeted therapy with trastuzumab. Breast cancer patients with HBV who accept antiviral therapy can be treated with chemotherapy and targeted therapy with trastuzumab and patients can benefit from prophylactic antiviral therapy before chemotherapy. However, a multidisciplinary cooperation and closely monitoring liver function during the course of chemotherapy may benefit patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effective treatment of chemoresistant breast cancer in vitro and in vivo by a factor VII-targeted photodynamic therapy.

    PubMed

    Duanmu, J; Cheng, J; Xu, J; Booth, C J; Hu, Z

    2011-04-26

    The purpose of this study was to test a novel, dual tumour vascular endothelial cell (VEC)- and tumour cell-targeting factor VII-targeted Sn(IV) chlorin e6 photodynamic therapy (fVII-tPDT) by targeting a receptor tissue factor (TF) as an alternative treatment for chemoresistant breast cancer using a multidrug resistant (MDR) breast cancer line MCF-7/MDR. The TF expression by the MCF-7/MDR breast cancer cells and tumour VECs in MCF-7/MDR tumours from mice was determined separately by flow cytometry and immunohistochemistry using anti-human or anti-murine TF antibodies. The efficacy of fVII-tPDT was tested in vitro and in vivo and was compared with non-targeted PDT for treatment of chemoresistant breast cancer. The in vitro efficacy was determined by a non-clonogenic assay using crystal violet staining for monolayers, and apoptosis and necrosis were assayed to elucidate the underlying mechanisms. The in vivo efficacy of fVII-tPDT was determined in a nude mouse model of subcutaneous MCF-7/MDR tumour xenograft by measuring tumour volume. To our knowledge, this is the first presentation showing that TF was expressed on tumour VECs in chemoresistant breast tumours from mice. The in vitro efficacy of fVII-tPDT was 12-fold stronger than that of ntPDT for MCF-7/MDR cancer cells, and the mechanism of action involved induction of apoptosis and necrosis. Moreover, fVII-tPDT was effective and safe for the treatment of chemoresistant breast tumours in the nude mouse model. We conclude that fVII-tPDT is effective and safe for the treatment of chemoresistant breast cancer, presumably by simultaneously targeting both the tumour neovasculature and chemoresistant cancer cells. Thus, this dual-targeting fVII-tPDT could also have therapeutic potential for the treatment of other chemoresistant cancers.

  3. Breast cancer: updates and advances in 2016.

    PubMed

    Giordano, Sara B; Gradishar, William

    2017-02-01

    Approximately 1 in 8 US women (12%) will develop invasive breast cancer over the course of her lifetime. In 2016, an estimated 246,660 new cases of invasive breast cancer are expected to be diagnosed and approximately 40,450 would die as a result of it. The global burden of breast cancer exceeds all other cancers and the incidence is increasing. The heterogeneity of breast cancer makes it a challenging solid tumor to diagnose and treat. This review focuses on the recent advances in breast cancer therapy including hormonal treatment of metastatic breast cancer, targeting cyclin-dependent kinases (CDK) 4/6 in breast cancer, updates in targeting human epidermal growth factor receptor 2 (HER2) positive breast cancer, adaptive randomization trial design and cancer genetic risk assessment. Breast cancer is a heterogeneous disease and targeted therapy is improving the outcomes of women. The use of cyclin-dependent kinase inhibitors (CDK) 4/6 have demonstrated a substantial improvement in progression-free survival in the first line setting of metastatic hormone receptor positive breast cancer. And newer agents directed at HER2 continue to revolutionize HER2-positive breast cancer treatment. This review highlights the recent updates in breast cancer treatment, new concepts in clinical trial design and provides a current overview of cancer genetic risk assessment.

  4. New Advances in Nanotechnology-Based Diagnosis and Therapeutics for Breast Cancer: An Assessment of Active-Targeting Inorganic Nanoplatforms.

    PubMed

    Falagan-Lotsch, Priscila; Grzincic, Elissa M; Murphy, Catherine J

    2017-01-18

    Breast cancer is a major cause of suffering and mortality among women. Limitations in the current diagnostic methods and treatment approaches have led to new strategies to positively impact the survival rates and quality of life of breast cancer patients. Nanotechnology offers a real possibility of mitigating breast cancer mortality by early-stage cancer detection and more precise diagnosis as well as more effective treatments with minimal side effects. The current nanoplatforms approved for breast cancer therapeutics are based on passive tumor targeting using organic nanoparticles and have not provided the expected significant improvements in the clinic. In this review, we present the emerging approaches in breast cancer nanomedicine based on active targeting using versatile inorganic nanoplatforms with biomedical relevance, such as gold, silica, and iron oxide nanoparticles, as well as their efficacy in breast cancer imaging, drug and gene delivery, thermal therapy, combinational therapy, and theranostics in preclinical studies. The main challenges for clinical translation and perspectives are discussed.

  5. miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer.

    PubMed

    Corcoran, Claire; Rani, Sweta; Breslin, Susan; Gogarty, Martina; Ghobrial, Irene M; Crown, John; O'Driscoll, Lorraine

    2014-03-24

    While the treatment of HER2 over-expressing breast cancer with recent HER-targeted drugs has been highly effective for some patients, primary (also known as innate) or acquired resistance limits the success of these drugs. microRNAs have potential as diagnostic, prognostic and predictive biomarkers, as well as replacement therapies. Here we investigated the role of microRNA-630 (miR-630) in breast cancer progression and as a predictive biomarker for response to HER-targeting drugs, ultimately yielding potential as a therapeutic approach to add value to these drugs. We investigated the levels of intra- and extracellular miR-630 in cells and conditioned media from breast cancer cell lines with either innate- or acquired- resistance to HER-targeting lapatinib and neratinib, compared to their corresponding drug sensitive cell lines, using qPCR. To support the role of miR-630 in breast cancer, we examined the clinical relevance of this miRNA in breast cancer tumours versus matched peritumours. Transfection of miR-630 mimics and inhibitors was used to manipulate the expression of miR-630 to assess effects on response to HER-targeting drugs (lapatinib, neratinib and afatinib). Other phenotypic changes associated with cellular aggressiveness were evaluated by motility, invasion and anoikis assays. TargetScan prediction software, qPCR, immunoblotting and ELISAs, were used to assess miR-630's regulation of mRNA, proteins and their phosphorylated forms. We established that introducing miR-630 into cells with innate- or acquired- resistance to HER-drugs significantly restored the efficacy of lapatinib, neratinib and afatinib; through a mechanism which we have determined to, at least partly, involve miR-630's regulation of IGF1R. Conversely, we demonstrated that blocking miR-630 induced resistance/insensitivity to these drugs. Cellular motility, invasion, and anoikis were also observed as significantly altered by miR-630 manipulation, whereby introducing miR-630 into cells

  6. Tristetraprolin: A novel target of diallyl disulfide that inhibits the progression of breast cancer.

    PubMed

    Xiong, Ting; Liu, Xiao-Wang; Huang, Xue-Long; Xu, Xiong-Feng; Xie, Wei-Quan; Zhang, Su-Jun; Tu, Jian

    2018-05-01

    Diallyl disulfide (DADS), a volatile component of garlic oil, has various biological properties, including antioxidant, antiangiogenic and anticancer effects. The present study aimed to explore novel targets of DADS that may slow or stop the progression of breast cancer. First, xenograft tumor models were created by subcutaneously injecting MCF-7 and MDA-MB-231 breast cancer cells into nude mice. Subsequently, western blot analysis was performed to investigate the expression of tristetraprolin (TTP), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in the xenograft tumors, and cell cultures. Tablet cloning, Transwell and wound healing assays revealed that DADS treatment significantly inhibited the proliferation, invasion and migration of breast cancer cells. In addition, DADS treatment led to significant downregulation of uPA and MMP-9 protein expression, but significantly upregulated TTP expression in vivo and in vitro . Knocking down TTP expression using small interfering RNA reversed the aforementioned effects of DADS, which suggests TTP is a key target of DADS in inhibiting the progression of breast cancer.

  7. pH-Responsive Wormlike Micelles with Sequential Metastasis Targeting Inhibit Lung Metastasis of Breast Cancer.

    PubMed

    He, Xinyu; Yu, Haijun; Bao, Xiaoyue; Cao, Haiqiang; Yin, Qi; Zhang, Zhiwen; Li, Yaping

    2016-02-18

    Cancer metastasis is the main cause for the high mortality in breast cancer patients. Herein, we first report succinobucol-loaded pH-responsive wormlike micelles (PWMs) with sequential targeting capability to inhibit lung metastasis of breast cancer. PWMs can in a first step be delivered specifically to the sites of metastases in the lungs and then enable the intracellular pH-stimulus responsive drug release in cancer cells to improve the anti-metastatic effect. PWMs are identified as nanofibrillar assemblies with a diameter of 19.9 ± 1.9 nm and a length within the 50-200 nm range, and exhibited pH-sensitive drug release behavior in response to acidic intracellular environments. Moreover, PWMs can obviously inhibit the migration and invasion abilities of metastatic 4T1 breast cancer cells, and reduce the expression of the metastasis-associated vascular cell adhesion molecule-1 (VCAM-1) at 400 ng mL(-1) of succinobucol. In particular, PWMs can induce a higher specific accumulation in lung and be specifically delivered to the sites of metastases in lung, thereby leading to an 86.6% inhibition on lung metastasis of breast cancer. Therefore, the use of sequentially targeting PWMs can become an encouraging strategy for specific targeting and effective treatment of cancer metastasis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fibroblast growth factor receptors in breast cancer: expression, downstream effects, and possible drug targets.

    PubMed

    Tenhagen, M; van Diest, P J; Ivanova, I A; van der Wall, E; van der Groep, P

    2012-08-01

    Cancer treatments are increasingly focusing on the molecular mechanisms underlying the oncogenic processes present in tumors of individual patients. Fibroblast growth factor receptors (FGFRs) are among the many molecules that are involved in oncogenesis and are currently under investigation for their potential as drug targets in breast cancer patients. These receptor tyrosine kinases play a role in several processes including proliferation, angiogenesis, and migration. Alterations in these basal processes can contribute to the development and progression of tumors. Among breast cancer patients, several subgroups have been shown to harbor genetic aberrations in FGFRs, including amplifications of FGFR1, FGFR2, and FGFR4 and mutations in FGFR2 and FGFR4. Here, we review in vitro and in vivo models that have partly elucidated the molecular implications of these different genetic aberrations, the resulting tumor characteristics, and the potential of FGFRs as therapeutic targets for breast cancer treatment.

  9. Hydrophobically Modified Glycol Chitosan Nanoparticles for Targeting Breast Cancer Microcalcification Using Alendronate Probes

    NASA Astrophysics Data System (ADS)

    Vishnu, Kamalakannan

    In 2016, invasive breast cancer was diagnosed in about 246,660 women and 2,600 men. An additional 61,000 new cases of in situ breast cancer was diagnosed in women. Microcalcifications are most common abnormalities detected by mammography for breast cancer, present in about 30% of all malignant breast lesions. Tumor specific biomarkers are used for targeting these abnormalities. Nanoparticles with multimodal and combinatorial therapies and conjunction of bio-ligands for specific molecular targeting using surface modifications effectually deliver a variety of drugs and are simultaneously used to image tumor progression. Alendronate, a germinal bisphosphonate conjugation as a targeting ligand would improve the nanoparticle's direct binding to hydroxyapatite (HA) mimicking calcified spots in breast cancer lesions. In this study, the hydrophobically modified glycol chitosan (HGC) micelle was modified with alendronate surface functionalization using a biotin-avidin interaction to improve the nanomicelle's calcification targeting ability. Biotinylated, avidinlyated hydrophobically modified iv glycol chitosan particles were linked to biotinylated alendronate via a strong biotin-avidin linkage. Cyanine 3, a red fluorescent dye was conjugated to the amine groups on HGC for visualization of micelles. The size of the nanoparticles measured was 254.0 +/- 0.43 nm and 209.7 +/- 1.0 nm for Cy3- BHGCA and Cy3-BHGCA-BALN nanoparticles respectively. The average surface charge was measured to be +26.9 +/- 0.19 mV and +27.68 +/- 0.20 mV for Cy3-BHGCA and Cy3-BHGCA- BALN nanoparticles respectively. Binding affinity using hydroxyapatite (HA) revealed that both Cy3 BHGCA BALN and Cy3 BHGCA nanoparticles displayed 95% binding in 24 hours. However, the biotin quenched nanoparticle Cy3 BHGCAB displayed 68% binding in 24 hours. The synthesis and binding chemistry was verified using Fourier transform infrared spectroscopy (FTIR).

  10. Anti-miR-203 suppresses ER-positive breast cancer growth and stemness by targeting SOCS3.

    PubMed

    Muhammad, Naoshad; Bhattacharya, Sourav; Steele, Robert; Ray, Ratna B

    2016-09-06

    Breast cancer is a major public health problem worldwide in women and existing treatments are not adequately effective for this deadly disease. microRNAs (miRNAs) regulate the expression of many target genes and play pivotal roles in the development, as well as in the suppression of many cancers including breast cancer. We previously observed that miR-203 was highly upregulated in breast cancer tissues and in ER-positive breast cancer cell lines. In our present study, we observed that anti-miR-203 suppresses breast cancer cell proliferation in vitro. Orthotopic implantation of miR-203 depleted MCF-7 cells into nude mice displays smaller tumor growth as compared to control MCF-7 cells. Furthermore, miR-203 expression is significantly higher in ER-positive breast cancer patients as compared to ER-negative patients. We identified suppressor of cytokine signaling 3 (SOCS3) as a direct target of miR-203. Here we observed that miR-203 expression is inversely correlated with SOCS3 expression in ER-positive breast cancer samples. Additionally, we found that anti-miR-203 suppressed the expression of pStat3, pERK and c-Myc in MCF-7 and ZR-75-1 cells. We also demonstrated that anti-miR-203 decreased mammospheres formation and expression of stem cell markers in MCF-7 and ZR-75-1 cells. Taken together, our data suggest that anti-miR-203 has potential as a novel therapeutic strategy in ER-positive breast cancer treatment.

  11. Is androgen receptor targeting an emerging treatment strategy for triple negative breast cancer?

    PubMed

    Anestis, Aristomenis; Karamouzis, Michalis V; Dalagiorgou, Georgia; Papavassiliou, Athanasios G

    2015-06-01

    Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype. The absence of expression and/or amplification of estrogen and progesterone receptor as well as ERBB-2 prevent the use of currently available endocrine options and/or ERBB-2-directed drugs and indicates chemotherapy as the main current therapy. TNBC represents approximately 15% of breast cancer cases with high index of heterogeneity. Here, we review the role of androgen receptor in breast carcinogenesis and its association with alterations in the expression pattern and functional roles of regulatory molecules and signal transduction pathways in TNBC. Additionally, based on the so far preclinical and clinical published data, we evaluate the perspectives for using and/or developing androgen receptor targeting strategies for specific TNBC subtypes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Breast Cancer Targeting through Inhibition of the Endoplasmic Reticulum-Based Apoptosis Regulator Nrh/BCL2L10.

    PubMed

    Nougarede, Adrien; Popgeorgiev, Nikolay; Kassem, Loay; Omarjee, Soleilmane; Borel, Stephane; Mikaelian, Ivan; Lopez, Jonathan; Gadet, Rudy; Marcillat, Olivier; Treilleux, Isabelle; Villoutreix, Bruno O; Rimokh, Ruth; Gillet, Germain

    2018-03-15

    Drug resistance and metastatic relapse remain a top challenge in breast cancer treatment. In this study, we present preclinical evidence for a strategy to eradicate advanced breast cancers by targeting the BCL-2 homolog Nrh/BCL2L10, which we discovered to be overexpressed in >45% of a large cohort of breast invasive carcinomas. Nrh expression in these tumors correlated with reduced metastasis-free survival, and we determined it to be an independent marker of poor prognosis. Nrh protein localized to the endoplasmic reticulum. Mechanistic investigations showed that Nrh made BH4 domain-dependent interactions with the ligand-binding domain of the inositol-1,4,5-triphosphate receptor (IP3R), a type 1/3 Ca2 + channel, allowing Nrh to negatively regulate ER-Ca2 + release and to mediate antiapoptosis. Notably, disrupting Nrh/IP3R complexes by BH4 mimetic peptides was sufficient to inhibit the growth of breast cancer cells in vitro and in vivo Taken together, our results highlighted Nrh as a novel prognostic marker and a candidate therapeutic target for late stage breast cancers that may be addicted to Nrh. Significance: These findings offer a comprehensive molecular model for the activity of Nrh/BCL2L10, a little studied antiapoptotic molecule, prognostic marker, and candidate drug target in breast cancer. Cancer Res; 78(6); 1404-17. ©2018 AACR . ©2018 American Association for Cancer Research.

  13. Successful Targeted Therapies for Breast Cancer, The Worcester Foundation and Future Opportunities in Women's Health.

    PubMed

    Abderrahman, Balkees; Jordan, V Craig

    2018-06-19

    The signing of the National Cancer Act in 1971, was designed to take laboratory discoveries rapidly from the bench to the bedside. A "war on cancer" had been declared. Combination cytotoxic chemotherapy was predicted to cure all cancers based on the stunning success in treating childhood leukemia. Breast cancer treatments were primitive; radical mastectomy and radiation was standard of care for disease that had not spread. Ablative endocrine surgery (oophorectomy, hypophysectomy, and adrenalectomy) was a palliative last option for metastatic breast cancer. However, only 30% responded for a year or two: everybody died. The discovery of the estrogen receptor (ER), and translation to breast cancer treatment triggered a revolution in women's health. Two important, but interconnected events occurred at the Worcester Foundation for Experimental Biology (WFEB), which would exploit the breast tumor ER as the first target to save lives and prevent breast cancer development. Two new groups of medicines: Selective Estrogen Receptor Modulators (SERMs) and aromatase inhibitors (AIs) would continue the momentum of research at the WFEB to improve women's health. Here we recount the important progress made in women's health based upon knowledge of the endocrinology of breast cancer. We propose future opportunities in SERM therapeutics to "refresh" the current standards of care for breast cancer treatment. The opportunity is based upon emerging knowledge about acquired resistance to long term adjuvant AI therapy used to treat breast cancer.

  14. Selection of Optimal Adjuvant Chemotherapy and Targeted Therapy for Early Breast Cancer: ASCO Clinical Practice Guideline Focused Update.

    PubMed

    Denduluri, Neelima; Chavez-MacGregor, Mariana; Telli, Melinda L; Eisen, Andrea; Graff, Stephanie L; Hassett, Michael J; Holloway, Jamie N; Hurria, Arti; King, Tari A; Lyman, Gary H; Partridge, Ann H; Somerfield, Mark R; Trudeau, Maureen E; Wolff, Antonio C; Giordano, Sharon H

    2018-05-22

    Purpose To update key recommendations of the ASCO guideline adaptation of the Cancer Care Ontario guideline on the selection of optimal adjuvant chemotherapy regimens for early breast cancer and adjuvant targeted therapy for breast cancer. Methods An Expert Panel conducted targeted systematic literature reviews guided by a signals approach to identify new, potentially practice-changing data that might translate to revised practice recommendations. Results The Expert Panel reviewed phase III trials that evaluated adjuvant capecitabine after completion of standard preoperative anthracycline- and taxane-based combination chemotherapy by patients with early-stage breast cancer HER2-negative breast cancer with residual invasive disease at surgery; the addition of 1 year of adjuvant pertuzumab to combination chemotherapy and trastuzumab for patients with early-stage, HER2-positive breast cancer; and the use of neratinib as extended adjuvant therapy for patients after combination chemotherapy and trastuzumab-based adjuvant therapy with early-stage, HER2-positive breast cancer. Recommendations Patients with early-stage HER2-negative breast cancer with pathologic, invasive residual disease at surgery following standard anthracycline- and taxane-based preoperative therapy may be offered up to six to eight cycles of adjuvant capecitabine. Clinicians may add 1 year of adjuvant pertuzumab to trastuzumab-based combination chemotherapy in patients with high-risk, early-stage, HER2-positive breast cancer. Clinicians may use extended adjuvant therapy with neratinib to follow trastuzumab in patients with early-stage, HER2-positive breast cancer. Neratinib causes substantial diarrhea, and diarrhea prophylaxis must be used. Additional information can be found at www.asco.org/breast-cancer-guidelines .

  15. miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer

    PubMed Central

    2014-01-01

    Background While the treatment of HER2 over-expressing breast cancer with recent HER-targeted drugs has been highly effective for some patients, primary (also known as innate) or acquired resistance limits the success of these drugs. microRNAs have potential as diagnostic, prognostic and predictive biomarkers, as well as replacement therapies. Here we investigated the role of microRNA-630 (miR-630) in breast cancer progression and as a predictive biomarker for response to HER-targeting drugs, ultimately yielding potential as a therapeutic approach to add value to these drugs. Methods We investigated the levels of intra- and extracellular miR-630 in cells and conditioned media from breast cancer cell lines with either innate- or acquired- resistance to HER-targeting lapatinib and neratinib, compared to their corresponding drug sensitive cell lines, using qPCR. To support the role of miR-630 in breast cancer, we examined the clinical relevance of this miRNA in breast cancer tumours versus matched peritumours. Transfection of miR-630 mimics and inhibitors was used to manipulate the expression of miR-630 to assess effects on response to HER-targeting drugs (lapatinib, neratinib and afatinib). Other phenotypic changes associated with cellular aggressiveness were evaluated by motility, invasion and anoikis assays. TargetScan prediction software, qPCR, immunoblotting and ELISAs, were used to assess miR-630’s regulation of mRNA, proteins and their phosphorylated forms. Results We established that introducing miR-630 into cells with innate- or acquired- resistance to HER-drugs significantly restored the efficacy of lapatinib, neratinib and afatinib; through a mechanism which we have determined to, at least partly, involve miR-630’s regulation of IGF1R. Conversely, we demonstrated that blocking miR-630 induced resistance/insensitivity to these drugs. Cellular motility, invasion, and anoikis were also observed as significantly altered by miR-630 manipulation, whereby

  16. Targeting the chromatin remodeling enzyme BRG1 increases the efficacy of chemotherapy drugs in breast cancer cells

    PubMed Central

    Wu, Qiong; Sharma, Soni; Cui, Hang; LeBlanc, Scott E.; Zhang, Hong; Muthuswami, Rohini; Nickerson, Jeffrey A.; Imbalzano, Anthony N.

    2016-01-01

    Brahma related gene product 1 (BRG1) is an ATPase that drives the catalytic activity of a subset of the mammalian SWI/SNF chromatin remodeling enzymes. BRG1 is overexpressed in most human breast cancer tumors without evidence of mutation and is required for breast cancer cell proliferation. We demonstrate that knockdown of BRG1 sensitized triple negative breast cancer cells to chemotherapeutic drugs used to treat breast cancer. An inhibitor of the BRG1 bromodomain had no effect on breast cancer cell viability, but an inhibitory molecule that targets the BRG1 ATPase activity recapitulated the increased drug efficacy observed in the presence of BRG1 knockdown. We further demonstrate that inhibition of BRG1 ATPase activity blocks the induction of ABC transporter genes by these chemotherapeutic drugs and that BRG1 binds to ABC transporter gene promoters. This inhibition increased intracellular concentrations of the drugs, providing a likely mechanism for the increased chemosensitivity. Since ABC transporters and their induction by chemotherapy drugs are a major cause of chemoresistance and treatment failure, these results support the idea that targeting the enzymatic activity of BRG1 would be an effective adjuvant therapy for breast cancer. PMID:27029062

  17. miR-625 suppresses cell proliferation and migration by targeting HMGA1 in breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wen-bin; Zhong, Cai-neng; Luo, Xun-peng

    Dysregulation of microRNA contributes to the high incidence and mortality of breast cancer. Here, we show that miR-625 was frequently down-regulated in breast cancer. Decrease of miR-625 was closely associated with estrogen receptor (P = 0.004), human epidermal growth factor receptor 2 (P = 0.003) and clinical stage (P = 0.001). Kaplan–Meier and multivariate analyses indicated miR-625 as an independent factor for unfavorable prognosis (hazard ratio = 2.654, 95% confident interval: 1.300–5.382, P = 0.007). Re-expression of miR-625 impeded, whereas knockdown of miR-625 enhanced cell viabilities and migration abilities in breast cancer cells. HMGA1 was confirmed as a direct target of miR-625. The expressions of HMGA1 mRNA and protein weremore » induced by miR-625 mimics, but reduced by miR-625 inhibitor. Re-introduction of HMGA1 in cells expressing miR-625 distinctly abrogated miR-625-mediated inhibition of cell growth. Taken together, our data demonstrate that miR-625 suppresses cell proliferation and migration by targeting HMGA1 and suggest miR-625 as a promising prognostic biomarker and a potential therapeutic target for breast cancer. - Highlights: • miR-625 expression was significantly decreased in breast cancer. • Decrease of miR-625 was associated with poor clinical outcomes and unfavorable overall survival. • miR-625 overexpression inhibits cell proliferation and migration in vitro. • miR-625 directly targets and suppresses the expression of HMGA1.« less

  18. Estrogen Receptor β as a Therapeutic Target in Breast Cancer Stem Cells

    PubMed Central

    Ma, Ran; Karthik, Govindasamy-Muralidharan; Lövrot, John; Haglund, Felix; Rosin, Gustaf; Katchy, Anne; Zhang, Xiaonan; Viberg, Lisa; Frisell, Jan; Williams, Cecilia; Linder, Stig; Fredriksson, Irma

    2017-01-01

    Abstract Background: Breast cancer cells with tumor-initiating capabilities (BSCs) are considered to maintain tumor growth and govern metastasis. Hence, targeting BSCs will be crucial to achieve successful treatment of breast cancer. Methods: We characterized mammospheres derived from more than 40 cancer patients and two breast cancer cell lines for the expression of estrogen receptors (ERs) and stem cell markers. Mammosphere formation and proliferation assays were performed on cells from 19 cancer patients and five healthy individuals after incubation with ER-subtype selective ligands. Transcriptional analysis was performed to identify pathways activated in ERβ-stimulated mammospheres and verified using in vitro experiments. Xenograft models (n = 4 or 5 per group) were used to study the role of ERs during tumorigenesis. Results: We identified an absence of ERα but upregulation of ERβ in BSCs associated with phenotypic stem cell markers and responsible for the proliferative role of estrogens. Knockdown of ERβ caused a reduction of mammosphere formation in cell lines and in patient-derived cancer cells (40.7%, 26.8%, and 39.1%, respectively). Gene set enrichment analysis identified glycolysis-related pathways (false discovery rate < 0.001) upregulated in ERβ-activated mammospheres. We observed that tamoxifen or fulvestrant alone was insufficient to block proliferation of patient-derived BSCs while this could be accomplished by a selective inhibitor of ERβ (PHTPP; 53.7% in luminal and 45.5% in triple-negative breast cancers). Furthermore, PHTPP reduced tumor initiation in two patient-derived xenografts (75.9% and 59.1% reduction in tumor volume, respectively) and potentiated tamoxifen-mediated inhibition of tumor growth in MCF7 xenografts. Conclusion: We identify ERβ as a mediator of estrogen action in BSCs and a novel target for endocrine therapy. PMID:28376210

  19. Targeting Alpha5 Beta1 Integrin to Prevent Metastatic Breast Cancer Cell Invasion: PhScN Target Site Definition and Plasma Stability

    DTIC Science & Technology

    2015-11-01

    increased PhScN potency as a result of preventing endoproteolytic degradation. Finally, the in vivo lung extravasation and colonization data, as well as...successful colonization are late stages in breast cancer progression that are ultimately fatal. Hence, prevention of extravasation which leads to colony...Award Number: TITLE: “Targeting Alpha5 Beta1 Integrin to Prevent Metastatic Breast Cancer Cell Invasion: PhScN Target Site Definition and Plasma

  20. Recombinant nanocomposites by the clinical drugs of Abraxane® and Herceptin® as sequentially dual-targeting therapeutics for breast cancer.

    PubMed

    Ding, Shuang; Xiong, Jian; Lei, Dan; Zhu, Xiao-Li; Zhang, Hai-Jun

    2018-01-01

    Breast cancer greatly threatens the health of women all over the word despite of several effective drugs. Targeted therapy for breast cancer is limited to human epidermal growth factor receptor 2 (HER2). Herceptin ® , monoclonal antibody against HER2, is now widely used in HER2(+) breast cancer. Abraxane ® , the current gold standard for paclitaxel (PTX) delivery, has shown superiority in breast cancer based on nanoparticle albumin bound technology. Despite these advances, further novel targeted therapy with more improved anti-tumor efficacy for breast cancer is still urgently needed. Here, we report the recombinant nanocomposites (NPs) composed of the above two clinical drugs of Abraxane ® and Herceptin ® (Abra/anti-HER2), which at first migrates to the tumor region through the unique targeting mechanism of human serum albumin (HSA) of Abraxane ® , and sequentially further precisely recognize the HER2(+) breast cancer cells due to Herceptin ® . The Abra/anti-HER2 NPs were fabricated by a "one-step" synthesis using EDC/NHS. In vitro analysis of cell viability, apoptosis and cell cycle revealed that Abra/anti-HER2 NPs showed more anti-tumor efficacy against HER2(+) SK-BR-3 cells than Abraxane ® at equivalent PTX concentration. In addition, in HER2(+) breast cancer xenograft model, Abra/anti-HER2 NPs significantly inhibited tumor growth with less side effects. Moreover, the properties of more precise target and delayed release of PTX were proved by NIRF imaging. Thus, our results indicate that Abra/anti-HER2 NPs could represent a next-generation sequentially dual-targeting therapeutic agent for HER2(+) breast cancer.

  1. Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer.

    PubMed

    Merino, D; Lok, S W; Visvader, J E; Lindeman, G J

    2016-04-14

    The last three decades have seen significant progress in our understanding of the role of the pro-survival protein BCL-2 and its family members in apoptosis and cancer. BCL-2 and other pro-survival family members including Mcl-1 and BCL-XL have been shown to have a key role in keeping pro-apoptotic 'effector' proteins BAK and BAX in check. They also neutralize a group of 'sensor' proteins (such as BIM), which are triggered by cytotoxic stimuli such as chemotherapy. BCL-2 proteins therefore have a central role as guardians against apoptosis, helping cancer cells to evade cell death. More recently, an increasing number of BH3 mimetics, which bind and neutralize BCL-2 and/or its pro-survival relatives, have been developed. The utility of targeting BCL-2 in hematological malignancies has become evident in early-phase studies, with remarkable clinical responses seen in heavily pretreated patients. As BCL-2 is overexpressed in ~75% of breast cancer, there has been growing interest in determining whether this new class of drug could show similar promise in breast cancer. This review summarizes our current understanding of the role of BCL-2 and its family members in mammary gland development and breast cancer, recent progress in the development of new BH3 mimetics as well as their potential for targeting estrogen receptor-positive breast cancer.

  2. Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer.

    PubMed

    Garattini, Enrico; Bolis, Marco; Gianni', Maurizio; Paroni, Gabriela; Fratelli, Maddalena; Terao, Mineko

    2016-07-05

    Breast-cancer is heterogeneous and consists of various groups with different biological characteristics. Innovative pharmacological approaches accounting for this heterogeneity are needed. The forty eight human Nuclear-Hormone-Receptors are ligand-dependent transcription-factors and are classified into Endocrine-Receptors, Adopted-Orphan-Receptors (Lipid-sensors and Enigmatic-Orphans) and Orphan-receptors. Nuclear-Receptors represent ideal targets for the design/synthesis of pharmacological ligands. We provide an overview of the literature available on the expression and potential role played by Lipid-sensors, Enigmatic-Orphans and Orphan-Receptors in breast-cancer. The data are complemented by an analysis of the expression levels of each selected Nuclear-Receptor in the PAM50 breast-cancer groups, following re-elaboration of the data publicly available. The major aim is to support the idea that some of the Nuclear-Receptors represent largely unexploited therapeutic-targets in breast-cancer treatment/chemo-prevention. On the basis of our analysis, we conclude that the Lipid-Sensors, NR1C3, NR1H2 and NR1H3 are likely to be onco-suppressors in breast-cancer. The Enigmatic-Orphans, NR1F1 NR2A1 and NR3B3 as well as the Orphan-Receptors, NR0B1, NR0B2, NR1D1, NR2F1, NR2F2 and NR4A3 exert a similar action. These Nuclear-Receptors represent candidates for the development of therapeutic strategies aimed at increasing their expression or activating them in tumor cells. The group of Nuclear-Receptors endowed with potential oncogenic properties consists of the Lipid-Sensors, NR1C2 and NR1I2, the Enigmatic-Orphans, NR1F3, NR3B1 and NR5A2, as well as the Orphan-Receptors, NR2E1, NR2E3 and NR6A1. These oncogenic Nuclear-Receptors should be targeted with selective antagonists, reverse-agonists or agents/strategies capable of reducing their expression in breast-cancer cells.

  3. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer.

    PubMed

    Miller-Kleinhenz, Jasmine; Guo, Xiangxue; Qian, Weiping; Zhou, Hongyu; Bozeman, Erica N; Zhu, Lei; Ji, Xin; Wang, Y Andrew; Styblo, Toncred; O'Regan, Ruth; Mao, Hui; Yang, Lily

    2018-01-01

    Heterogeneous tumor cells, high incidence of tumor recurrence, and decrease in overall survival are the major challenges for the treatment of chemo-resistant breast cancer. Results of our study showed differential chemotherapeutic responses among breast cancer patient derived xenograft (PDX) tumors established from the same patients. All doxorubicin (Dox)-resistant tumors expressed higher levels of cancer stem-like cell biomarkers, including CD44, Wnt and its receptor LRP5/6, relative to Dox-sensitive tumors. To effectively treat resistant tumors, we developed an ultra-small magnetic iron oxide nanoparticle (IONP) drug carrier conjugated with peptides that are dually targeted to Wnt/LRP5/6 and urokinase plasminogen activator receptor (uPAR). Our results showed that simultaneous binding to LRP5/6 and uPAR by the dual receptor targeted IONPs was required to inhibit breast cancer cell invasion. Molecular analysis revealed that the dual receptor targeted IONPs significantly inhibited Wnt/β-catenin signaling and cancer stem-like phenotype of tumor cells, with marked reduction of Wnt ligand, CD44 and uPAR. Systemic administration of the dual targeted IONPs led to nanoparticle-drug delivery into PDX tumors, resulting in stronger tumor growth inhibition compared to non-targeted or single-targeted IONP-Dox in a human breast cancer PDX model. Therefore, co-targeting Wnt/LRP and uPAR using IONP drug carriers is a promising therapeutic approach for effective drug delivery to chemo-resistant breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A review of systematic reviews of the cost-effectiveness of hormone therapy, chemotherapy, and targeted therapy for breast cancer.

    PubMed

    Diaby, Vakaramoko; Tawk, Rima; Sanogo, Vassiki; Xiao, Hong; Montero, Alberto J

    2015-05-01

    Breast cancer is a global health concern. In fact, breast cancer is the primary cause of death among women worldwide and constitutes the most expensive malignancy to treat. As health care resources are finite, decisions regarding the adoption and coverage of breast cancer treatments are increasingly being based on "value for money," i.e., cost-effectiveness. As the evidence about the cost-effectiveness of breast cancer treatments is abundant, therefore difficult to navigate, systematic reviews of published systematic reviews offer the advantage of bringing together the results of separate systematic reviews in a single report. As a consequence, this paper presents an overview of systematic reviews of the cost-effectiveness of hormone therapy, chemotherapy, and targeted therapy for breast cancer to inform policy and reimbursement decision-making. A systematic review was conducted of published systematic reviews documenting cost-effectiveness analyses of breast cancer treatments from 2000 to 2014. Systematic reviews identified through a literature search of health and economic databases were independently assessed against inclusion and exclusion criteria. Systematic reviews of original evaluations were included only if they targeted breast cancer patients and specific breast cancer treatments (hormone therapy, chemotherapy, and targeted therapy only), documented incremental cost-effectiveness ratios, and were reported in the English language. The search strategy used a combination of these key words: "breast cancer," "systematic review/meta-analysis," and "cost-effectiveness/economics." Data were extracted using predefined extraction forms and qualitatively appraised using the assessment of multiple systematic reviews (AMSTAR) tool. The literature search resulted in 511 bibliographic records, of which ten met our inclusion criteria. Five reviews were conducted in the early-stage breast cancer setting and five reviews in the metastatic setting. In early-stage breast

  5. A review of systematic reviews of the cost-effectiveness of hormone therapy, chemotherapy, and targeted therapy for breast cancer

    PubMed Central

    Diaby, Vakaramoko; Xiao, Hong; Montero, Alberto J.

    2015-01-01

    Breast cancer is a global health concern. In fact, breast cancer is the primary cause of death among women worldwide and constitutes the most expensive malignancy to treat. As health care resources are finite, decisions regarding the adoption and coverage of breast cancer treatments are increasingly being based on “value for money,” i.e., cost-effectiveness. As the evidence about the cost-effectiveness of breast cancer treatments is abundant, therefore difficult to navigate, systematic reviews of published systematic reviews offer the advantage of bringing together the results of separate systematic reviews in a single report. As a consequence, this paper presents an overview of systematic reviews of the cost-effectiveness of hormone therapy, chemotherapy, and targeted therapy for breast cancer to inform policy and reimbursement decision-making. A systematic review was conducted of published systematic reviews documenting cost-effectiveness analyses of breast cancer treatments from 2000 to 2014. Systematic reviews identified through a literature search of health and economic databases were independently assessed against inclusion and exclusion criteria. Systematic reviews of original evaluations were included only if they targeted breast cancer patients and specific breast cancer treatments (hormone therapy, chemotherapy, and targeted therapy only), documented incremental cost-effectiveness ratios, and were reported in the English language. The search strategy used a combination of these key words: “breast cancer,” “systematic review/meta-analysis,” and “cost-effectiveness/economics.” Data were extracted using predefined extraction forms and qualitatively appraised using the assessment of multiple systematic reviews (AMSTAR) tool. The literature search resulted in 511 bibliographic records, of which ten met our inclusion criteria. Five reviews were conducted in the early-stage breast cancer setting and five reviews in the metastatic setting. In

  6. A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yu Kyeong; Lee, Jae Ho; Park, Ga-Young

    2013-01-25

    Highlights: ► A CDK4 inhibitor may be used for breast cancer stem cell-targeted therapy. ► The CDK4 inhibitor differentiated the cancer stem cell population (CD24{sup −}/CD44{sup +}) of MDA-MB-231. ► The differentiation of the cancer stem cells by the CDK4 inhibitor radiosensitized MDA-MB-231. -- Abstract: Cancer stem cells (CSCs) are one of the main reasons behind cancer recurrence due to their resistance to conventional anti-cancer therapies. Thus, many efforts are being devoted to developing CSC-targeted therapies to overcome the resistance of CSCs to conventional anti-cancer therapies and decrease cancer recurrence. Differentiation therapy is one potential approach to achieve CSC-targeted therapies.more » This method involves inducing immature cancer cells with stem cell characteristics into more mature or differentiated cancer cells. In this study, we found that a CDK4 inhibitor sensitized MDA-MB-231 cells but not MCF7 cells to irradiation. This difference appeared to be associated with the relative percentage of CSC-population between the two breast cancer cells. The CDK4 inhibitor induced differentiation and reduced the cancer stem cell activity of MDA-MB-231 cells, which are shown by multiple marker or phenotypes of CSCs. Thus, these results suggest that radiosensitization effects may be caused by reducing the CSC-population of MDA-MB-231 through the use of the CDK4 inhibitor. Thus, further investigations into the possible application of the CDK4 inhibitor for CSC-targeted therapy should be performed to enhance the efficacy of radiotherapy for breast cancer.« less

  7. [Systemic treatment of brain metastases from breast cancer: cytotoxic chemotherapy and targeted therapies].

    PubMed

    Bachelot, Thomas; Le Rhun, Emilie; Labidi-Gally, Intidar; Heudel, Pierre; Gilabert, Marine; Bonneterre, Jacques; Pierga, Jean-Yves; Gonçalves, Anthony

    2013-01-01

    Prevalence of brain metastases is increasing in breast cancer. Brain metastases represent a poor-prognosis disease for which local treatments continue to play a major role. In spite of the presence of a physiological blood-brain barrier limiting their activity, some systemic treatments may display a significant antitumor activity at the central nervous system level. In HER2-positive metastatic breast cancer with brain metastases not previously treated with whole brain radiotherapy, capecitabine and lapatinib combination obtains a volumetric reponse in two thirds of patients (LANDSCAPE study). If confirmed, these results could modify in selected patients the layout of therapeutic strategies. Promoting novel targeted approaches and innovative therapeutic combinations is a critical need to improve survival of breast cancer patients with brain metastases.

  8. Potential role for mammalian target of rapamycin inhibitors as first-line therapy in hormone receptor–positive advanced breast cancer

    PubMed Central

    Beck, J Thaddeus

    2015-01-01

    Despite advances in cytotoxic chemotherapy and targeted therapies, 5-year survival rates remain low for patients with advanced breast cancer at diagnosis. This highlights the limited effectiveness of current treatment options. An improved understanding of cellular functions associated with the development and progression of breast cancer has resulted in the creation of a number of novel targeted molecular therapies. However, more work is needed to improve outcomes, particularly in the first-line recurrent or metastatic hormone receptor–positive breast cancer setting. The phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) pathway is a major intracellular signaling pathway that is often upregulated in breast cancer, and overactivation of this pathway has been associated with primary or developed resistance to endocrine treatment. Clinical data from the Phase III Breast Cancer Trials of Oral Everolimus-2 (BOLERO-2) study of the mTOR inhibitor everolimus combined with exemestane in hormone receptor–positive advanced breast cancer were very promising, highlighting the potential role of mTOR inhibitors in combination with endocrine therapies as a first-line treatment option for these patients. It is hoped that the use of mTOR inhibitors combined with current standard-of-care endocrine therapies, such as aromatase inhibitors, in the first-line advanced breast cancer setting may result in greater antitumor effects and also delay or reverse treatment resistance. PMID:26675495

  9. Three-layered polyplex as a microRNA targeted delivery system for breast cancer gene therapy

    NASA Astrophysics Data System (ADS)

    Li, Yan; Dai, Yu; Zhang, Xiaojin; Chen, Jihua

    2017-07-01

    MicroRNAs (miRNAs), small non-coding RNAs, play an important role in modulating cell proliferation, migration, and differentiation. Since miRNAs can regulate multiple cancer-related genes simultaneously, regulating miRNAs could target a set of related oncogenic genes or pathways. Owing to their reduced immune response and low toxicity, miRNAs with small size and low molecular weight have become increasingly promising therapeutic drugs in cancer therapy. However, one of the major challenges of miRNAs-based cancer therapy is to achieve specific, effective, and safe delivery of therapeutic miRNAs into cancer cells. Here we provide a strategy using three-layered polyplex with folic acid as a targeting group to systemically deliver miR-210 into breast cancer cells, which results in breast cancer growth being inhibited.

  10. Three-layered polyplex as a microRNA targeted delivery system for breast cancer gene therapy.

    PubMed

    Li, Yan; Dai, Yu; Zhang, Xiaojin; Chen, Jihua

    2017-07-14

    MicroRNAs (miRNAs), small non-coding RNAs, play an important role in modulating cell proliferation, migration, and differentiation. Since miRNAs can regulate multiple cancer-related genes simultaneously, regulating miRNAs could target a set of related oncogenic genes or pathways. Owing to their reduced immune response and low toxicity, miRNAs with small size and low molecular weight have become increasingly promising therapeutic drugs in cancer therapy. However, one of the major challenges of miRNAs-based cancer therapy is to achieve specific, effective, and safe delivery of therapeutic miRNAs into cancer cells. Here we provide a strategy using three-layered polyplex with folic acid as a targeting group to systemically deliver miR-210 into breast cancer cells, which results in breast cancer growth being inhibited.

  11. Targeted inhibition of EG-1 blocks breast tumor growth.

    PubMed

    Lu, Ming; Sartippour, Maryam R; Zhang, Liping; Norris, Andrew J; Brooks, Mai N

    2007-06-01

    EG-1 is a gene product that is significantly elevated in human breast cancer tissues. Previously, we have shown that EG-1 overexpression stimulates cellular proliferation both in vitro and in vivo. Here, we ask whether this molecule can be targeted for experimental therapeutic purpose. siRNA lentivirus and polyclonal antibodies were designed to suppress EG-1 expression. These agents were then used in cell culture proliferation assays and breast tumor xenograft models. Serum and urine from breast cancer patients were also analyzed for the presence of EG-1 peptide. We report here for the first time that endogenous EG-1 can be targeted to inhibit breast tumor growth. This inhibition, whether delivered via siRNA lentivirus or polyclonal antibody, resulted in decreased cellular proliferation in culture and smaller xenografts in mice. The effects were shown in both ER (estrogen receptor)-positive human breast cancer MCF-7 cells, as well as in ER-negative MDA-MB-231 cells. Furthermore, we detected soluble EG-1 in serum and urine of breast cancer patients. These observations demonstrate that EG-1 is relevant to human breast cancer, and is a molecular target worthy of translational efforts into effective breast cancer therapy.

  12. Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics

    PubMed Central

    Bollig-Fischer, Aliccia; Michelhaugh, Sharon K.; Wijesinghe, Priyanga; Dyson, Greg; Kruger, Adele; Palanisamy, Nallasivam; Choi, Lydia; Alosh, Baraa; Ali-Fehmi, Rouba; Mittal, Sandeep

    2015-01-01

    Breast cancer brain metastases remain a significant clinical problem. Chemotherapy is ineffective and a lack of treatment options result in poor patient outcomes. Targeted therapeutics have proven to be highly effective in primary breast cancer, but lack of molecular genomic characterization of metastatic brain tumors is hindering the development of new treatment regimens. Here we contribute to fill this void by reporting on gene copy number variation (CNV) in 10 breast cancer metastatic brain tumors, assayed by array comparative genomic hybridization (aCGH). Results were compared to a list of cancer genes verified by others to influence cancer. Cancer gene aberrations were identified in all specimens and pathway-level analysis was applied to aggregate data, which identified stem cell pluripotency pathway enrichment and highlighted recurring, significant amplification of SOX2, PIK3CA, NTRK1, GNAS, CTNNB1, and FGFR1. For a subset of the metastatic brain tumor samples (n=4) we compared patient-matched primary breast cancer specimens. The results of our CGH analysis and validation by alternative methods indicate that oncogenic signals driving growth of metastatic tumors exist in the original cancer. This report contributes support for more rapid development of new treatments of metastatic brain tumors, the use of genomic-based diagnostic tools and repurposed drug treatments. PMID:25970776

  13. Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics.

    PubMed

    Bollig-Fischer, Aliccia; Michelhaugh, Sharon K; Wijesinghe, Priyanga; Dyson, Greg; Kruger, Adele; Palanisamy, Nallasivam; Choi, Lydia; Alosh, Baraa; Ali-Fehmi, Rouba; Mittal, Sandeep

    2015-06-10

    Breast cancer brain metastases remain a significant clinical problem. Chemotherapy is ineffective and a lack of treatment options result in poor patient outcomes. Targeted therapeutics have proven to be highly effective in primary breast cancer, but lack of molecular genomic characterization of metastatic brain tumors is hindering the development of new treatment regimens. Here we contribute to fill this void by reporting on gene copy number variation (CNV) in 10 breast cancer metastatic brain tumors, assayed by array comparative genomic hybridization (aCGH). Results were compared to a list of cancer genes verified by others to influence cancer. Cancer gene aberrations were identified in all specimens and pathway-level analysis was applied to aggregate data, which identified stem cell pluripotency pathway enrichment and highlighted recurring, significant amplification of SOX2, PIK3CA, NTRK1, GNAS, CTNNB1, and FGFR1. For a subset of the metastatic brain tumor samples (n = 4) we compared patient-matched primary breast cancer specimens. The results of our CGH analysis and validation by alternative methods indicate that oncogenic signals driving growth of metastatic tumors exist in the original cancer. This report contributes support for more rapid development of new treatments of metastatic brain tumors, the use of genomic-based diagnostic tools and repurposed drug treatments.

  14. Targeted expression of miR-34a using the T-VISA system suppresses breast cancer cell growth and invasion.

    PubMed

    Li, Laisheng; Xie, Xinhua; Luo, Jinmei; Liu, Min; Xi, Shaoyan; Guo, Jiaoli; Kong, Yanan; Wu, Minqing; Gao, Jie; Xie, Zeming; Tang, Jun; Wang, Xi; Wei, Weidong; Yang, Mingtian; Hung, Mien-Chie; Xie, Xiaoming

    2012-12-01

    Recurrence and metastasis result in a poor prognosis for breast cancer patients. Recent studies have demonstrated that microRNAs (miRNAs) play vital roles in the development and metastasis of breast cancer. In this study, we investigated the therapeutic potential of miR-34a in breast cancer. We found that miR-34a is downregulated in breast cancer cell lines and tissues, compared with normal cell lines and the adjacent nontumor tissues, respectively. To explore the therapeutic potential of miR-34a, we designed a targeted miR-34a expression plasmid (T-VISA-miR-34a) using the T-VISA system, and evaluated its antitumor effects, efficacy, mechanism of action, and systemic toxicity. T-VISA-miR-34a induced robust, persistent expression of miR-34a, and dramatically suppressed breast cancer cell growth, migration, and invasion in vitro by downregulating the protein expression levels of the miR-34a target genes E2F3, CD44, and SIRT1. In an orthotopic mouse model of breast cancer, intravenous injection of T-VISA-miR-34a:liposomal complex nanoparticles significantly inhibited tumor growth, prolonged survival, and did not induce systemic toxicity. In conclusion, T-VISA-miR-34a lead to robust, specific overexpression of miR-34a in breast cancer cells and induced potent antitumor effects in vitro and in vivo. T-VISA-miR-34a may provide a potentially useful, specific, and safe-targeted therapeutic approach for breast cancer.

  15. Targeted Expression of miR-34a Using the T-VISA System Suppresses Breast Cancer Cell Growth and Invasion

    PubMed Central

    Li, Laisheng; Xie, Xinhua; Luo, Jinmei; Liu, Min; Xi, Shaoyan; Guo, Jiaoli; Kong, Yanan; Wu, Minqing; Gao, Jie; Xie, Zeming; Tang, Jun; Wang, Xi; Wei, Weidong; Yang, Mingtian; Hung, Mien-Chie; Xie, Xiaoming

    2012-01-01

    Recurrence and metastasis result in a poor prognosis for breast cancer patients. Recent studies have demonstrated that microRNAs (miRNAs) play vital roles in the development and metastasis of breast cancer. In this study, we investigated the therapeutic potential of miR-34a in breast cancer. We found that miR-34a is downregulated in breast cancer cell lines and tissues, compared with normal cell lines and the adjacent nontumor tissues, respectively. To explore the therapeutic potential of miR-34a, we designed a targeted miR-34a expression plasmid (T-VISA-miR-34a) using the T-VISA system, and evaluated its antitumor effects, efficacy, mechanism of action, and systemic toxicity. T-VISA-miR-34a induced robust, persistent expression of miR-34a, and dramatically suppressed breast cancer cell growth, migration, and invasion in vitro by downregulating the protein expression levels of the miR-34a target genes E2F3, CD44, and SIRT1. In an orthotopic mouse model of breast cancer, intravenous injection of T-VISA-miR-34a:liposomal complex nanoparticles significantly inhibited tumor growth, prolonged survival, and did not induce systemic toxicity. In conclusion, T-VISA-miR-34a lead to robust, specific overexpression of miR-34a in breast cancer cells and induced potent antitumor effects in vitro and in vivo. T-VISA-miR-34a may provide a potentially useful, specific, and safe-targeted therapeutic approach for breast cancer. PMID:23032974

  16. HER2 Targeted Breast Cancer Therapy with Switchable "Off/On" Multifunctional "Smart" Magnetic Polymer Core-Shell Nanocomposites.

    PubMed

    Vivek, Raju; Thangam, Ramar; Kumar, Selvaraj Rajesh; Rejeeth, Chandrababu; Kumar, Gopal Senthil; Sivasubramanian, Srinivasan; Vincent, Savariar; Gopi, Dhanaraj; Kannan, Soundarapandian

    2016-01-27

    Multifunctional magnetic polymer nanocombinations are gaining importance in cancer nanotheranostics due to their safety and their potential in delivering targeted functions. Herein, we report a novel multifunctional core-shell magnetic polymer therapeutic nanocomposites (NCs) exhibiting pH dependent "Off-On" release of drug against breast cancer cells. The NCs are intact in blood circulation ("Off" state), i.e., at physiological pH, whereas activated ("On" state) at intracellular acidic pH environment of the targeted breast cancer cells. The NCs are prepared by coating the cannonball (iron nanocore) with hydrophobic nanopockets of pH-responsive poly(d,l-lactic-co-glycolic acid) (PLGA) polymer nanoshell that allows efficient loading of therapeutics. Further, the nanocore-polymer shell is stabilized by poly(vinylpyrrolidone) (PVP) and functionalized with a targeting HER2 ligand. The prepared Her-Fe3O4@PLGA-PVP nanocomposites facilitate packing of anticancer drug (Tamoxifen) without premature release in the bloodstream, recognizing the target cells through binding of Herceptin antibody to HER2, a cell surface receptor expressed by breast cancer cells to promote HER2 receptor mediated endocytosis and finally releasing the drug at the intracellular site of tumor cells ("On" state) to induce apoptosis. The therapeutic efficiency of hemo/cytocompatible NCs drug delivery system (DDS) in terms of targeted delivery and sustained release of therapeutic agent against breast cancer cells was substantiated by in vitro and in vivo studies. The multifunctional properties of Her-Tam-Fe3O4@PLGA-PVP NCs may open up new avenues in cancer therapy through overcoming the limitations of conventional cancer therapy.

  17. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    PubMed Central

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  18. Exploring Therapeutic Potential Of Nanocarrier Systems Against Breast Cancer.

    PubMed

    Kumar, Lalit; Baldi, Ashish; Verma, Shivani; Utreja, Puneet

    2018-06-03

    Breast cancer is most widely occurring non-cutaneous cancer in women. Treatment options available for breast cancer are limited and there are a number of toxicity concerns associated with them. Therefore, nanocarrier based approaches have been explored for breast cancer treatment. Nanocarriers implemented for breast cancer treatment are nanoliposomes, polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, gold nanoparticles, dendrimers, and protein nanocages. Objective of this review was to explore the therapeutic efficacy of various nanocarrier systems against breast cancer. Existing literature regarding nanocarrier systems for breast cancer therapy was reviewed using Pubmed and Google Scholar. Nanocarriers may show prolonged circulation time of chemotherapeutic agent with efficient breast tumor targeting. Both active and passive targeting methodologies can be explored to target breast cancer cells using different nanocarriers. Targeted nanocarriers have the capability to reduce side effects caused by various conventional formulations used to treat breast cancer. Various nanocarriers listed above have shown their therapeutic potential in preclinical studies to treat breast cancer. Satisfactory clinical evaluation and scale up techniques can promote their entry into the pharmaceutical market in greater extent. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. PKD1 is a potential biomarker and therapeutic target in triple-negative breast cancer.

    PubMed

    Spasojevic, Caroline; Marangoni, Elisabetta; Vacher, Sophie; Assayag, Franck; Meseure, Didier; Château-Joubert, Sophie; Humbert, Martine; Karam, Manale; Ricort, Jean Marc; Auclair, Christian; Regairaz, Marie; Bièche, Ivan

    2018-05-01

    Protein Kinase D1 (PKD1) is a serine/threonine kinase encoded by the PRKD1 gene. PKD1 has been previously shown to be a prognostic factor in ERα+ tamoxifen-resistant breast tumors and PKD1 overexpression confers estrogen independence to ERα+ MCF7 cells. In the present study, our goal was to determine whether PKD1 is a prognostic factor and/or a relevant therapeutic target in breast cancer. We analyzed PRKD1 mRNA levels in 527 primary breast tumors. We found that high PRKD1 mRNA levels were significantly and independently associated with a low metastasis-free survival in the whole breast cancer population and in the triple-negative breast cancer (TNBC) subtype specifically. High PRKD1 mRNA levels were also associated with a low overall survival in TNBC. We identified novel PKD1 inhibitors and assessed their antitumor activity in vitro in TNBC cell lines and in vivo in a TNBC patient-derived xenograft (PDX) model. Pharmacological inhibition and siRNA-mediated depletion of PKD1 reduced colony formation in MDA-MB-436 TNBC cells. PKD1 inhibition also reduced tumor growth in vivo in a TNBC PDX model. Together, these results establish PKD1 as a poor prognostic factor and a potential therapeutic target in TNBC.

  20. Fibroblast growth factor receptors in breast cancer.

    PubMed

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  1. Targeting Androgen Receptor in Breast Cancer: Enzalutamide as a Novel Breast Cancer Therapeutic

    DTIC Science & Technology

    2016-09-01

    24451109 Designated as Highly Cited by the journal Breast Cancer Research . Barton VN, D’Amato NC, Gordon MA, Lind HT, Spoelstra NS, Babbs B, Heinz RE...24451109 Designated as Highly Cited by the journal Breast Cancer Research . Barton VN, Gordon MA, Christenson J, D’Amato N, Richer JK. Androgen...2. Documentation of AR staining in a CLIA certified lab, but all IHC funded by this grant is for research purposes only – no clinical decisions

  2. Targeted Nanocurcumin Therapy Using Annexin A2 Anitbody Improves Tumor Accumulation and Therapeutic Efficacy Against Highly Metastatic Breast Cancer.

    PubMed

    Mukerjee, Anindita; Ranjan, Anmalendu P; Vishwanatha, Jamboor K

    2016-07-01

    A major challenge in pharmaceutical research is effective targeting strategies to their sites of action. Emerging knowledge and the current progress in nanotechnology based delivery systems has opened up exciting ways towards successful targeted nanodelivery systems. For cancer therapy, nanoparticle-based drug formulations hold several advantages over free drugs, including improved pharmacokinetics, enhanced tumor accumulation, reduced systemic exposure and side effects and better patient compliance. The goal of this study was to validate the in vivo targeting potential and evaluate the combinatorial therapeutic potential of novel Annexin A2 (AnxA2) antibody-conjugated curcumin loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (AnxA2-CPNP) against metastatic breast cancer. As a first step, we demonstrated that the cell-surface expression of AnxA2 is increases during breast cancer progression with very high expression in highly malignant cancer cells and basal expression in non-malignant cells. This confirmed AnxA2 as an excellent target for targeting our curcumin nanoparticles. Our results indicate that AnxA2-CPNP showed increased uptake in highly metastatic breast cancer cells than untargeted nanoparticles due to the differential AnxA2 expression. Cell viability, plasmin generation and wound healing assays reveal that AnxA2-CPNPs effectively inhibited cell proliferation, invasion and migration, key elements for cancer growth and metastasis. Further, angiogenesis assay illustrated that AnxA2-CPNPs decreased the formation of tube capillaries, thus inhibiting neoangiogenesis, a critical element in tumor growth. Live animal imaging demonstrated that AnxA2-PNPs and AnxA2-CPNPs effectively targeted and accumulated in the tumor as seen by the increased fluorescence intensity on the live scans. Xenograft studies in mice showed significant regression of breast tumor as a result of both effective targeting, accumulation and sustained release of curcumin in the tumor

  3. Bevacizumab Treatment for Advanced Breast Cancer

    PubMed Central

    Guarneri, Valentina; Icli, Fikri; Johnston, Stephen; Khayat, David; Loibl, Sibylle; Martin, Miguel; Zielinski, Christoph; Conte, PierFranco; Hortobagyi, Gabriel N.

    2011-01-01

    Significant advances in the treatment of patients with breast cancer have been made in the past 10 years. The current systemic treatment of breast cancer is characterized by the discovery of multiple cancer targets leading to treatments that are more sophisticated and specific than conventional cytotoxic chemotherapy. Two classes of compounds that have helped improve clinical outcomes are small molecules and monoclonal antibodies targeting specific tyrosine kinase receptors. Many novel targets have been discovered, and parallel multiple approaches to anticancer therapy have recently emerged from the literature. One promising strategy is targeting the proangiogenic vascular endothelial growth factors (VEGFs), either by ligand sequestration (preventing VEGF receptor binding) or inhibiting downstream receptor signaling. Bevacizumab, a monoclonal antibody directed against VEGF, has been shown to improve the efficacy of taxanes in frontline treatment of patients with metastatic breast cancer. This review outlines the most promising breast cancer studies using bevacizumab combined with traditional cytotoxic agents in advanced breast cancer. In addition, we discuss the current indications reviewed by the Oncologic Drug Advisory Committee and define our vision of how the benefit of patient clinical trials should be measured. PMID:21976315

  4. Breast cancer literacy and health beliefs related to breast cancer screening among American Indian women.

    PubMed

    Roh, Soonhee; Burnette, Catherine E; Lee, Yeon-Shim; Jun, Jung Sim; Lee, Hee Yun; Lee, Kyoung Hag

    2018-08-01

    The purpose of this article is to examine the health beliefs and literacy about breast cancer and their relationship with breast cancer screening among American Indian (AI) women. Using the Health Belief Model (HBM) and hierarchical logistic regression with data from a sample of 286 AI female adults residing in the Northern Plains, we found that greater awareness of breast cancer screening was linked to breast cancer screening practices. However, perceived barriers, one of the HBM constructs, prevented such screening practices. This study suggested that culturally relevant HBM factors should be targeted when developing culturally sensitive breast cancer prevention efforts.

  5. A glucose-targeted mixed micellar formulation outperforms Genexol in breast cancer cells.

    PubMed

    Moretton, Marcela A; Bernabeu, Ezequiel; Grotz, Estefanía; Gonzalez, Lorena; Zubillaga, Marcela; Chiappetta, Diego A

    2017-05-01

    Breast cancer represents the top cancer among women, accounting 521.000 deaths per year. Development of targeted nanomedicines to breast cancer tissues represents a milestone to reduce chemotherapy side effects. Taking advantage of the over-expression of glucose (Glu) membrane transporters in breast cancer cells, we aim to expand the potential of a paclitaxel (PTX)-loaded mixed micellar formulation based on polyvinyl caprolactam-polyvinylacetate-polyethylene glycol graft copolymer (Soluplus®) and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) by its surface decoration with Glu moieties. The glycopolymer (Soluplus(Glu)) was obtained by microwave-assisted ring opening reaction of δ-gluconolactone initiated by Soluplus®. The glycosylation was confirmed by 1 H NMR and by agglutination assays employing Concanavalin A. The hydrodynamic diameter of Soluplus(Glu) micelles was characterized by dynamic light scattering (100.3±3.8nm) as well as the critical micellar concentration value (0.0151% w/v). Then, a mixed micelle formulation employing Soluplus®, Soluplus(Glu) and TPGS (3:1:1wt ratio) loaded with PTX (4mg/mL) was developed as a multifunctional nanocarrier. Its in vitro anticancer performance in MCF-7 (1.6-fold) and MDA-MB-231 (14.1-fold) was significantly enhanced (p<0.05) versus the unique commercially available micellar-based PTX-nanoformulation (Genexol®). Furthermore, the in vitro PTX cellular uptake assays revealed that the drug intracellular/cell content was significantly (p<0.05) higher for the Glu-containing mixed micelles versus Genexol® after 6h of incubation with MCF-7 (30.5-fold) and MDA-MB-231 (5-fold). Overall, results confirmed the potential of our Glu-decorated mixed colloidal formulation as an intelligent nanocarrier for PTX-targeted breast cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Targeting Aberrant p70S6K Activation for Estrogen Receptor-Negative Breast Cancer Prevention.

    PubMed

    Wang, Xiao; Yao, Jun; Wang, Jinyang; Zhang, Qingling; Brady, Samuel W; Arun, Banu; Seewaldt, Victoria L; Yu, Dihua

    2017-11-01

    The prevention of estrogen receptor-negative (ER-) breast cancer remains a major challenge in the cancer prevention field, although antiestrogen and aromatase inhibitors have shown adequate efficacy in preventing estrogen receptor-positive (ER + ) breast cancer. Lack of commonly expressed, druggable targets is a major obstacle for meeting this challenge. Previously, we detected the activation of Akt signaling pathway in atypical hyperplasic early-stage lesions of patients. In the current study, we found that Akt and the downstream 70 kDa ribosomal protein S6 kinase (p70S6K) signaling pathway was highly activated in ER - premalignant breast lesions and ER - breast cancer. In addition, p70S6K activation induced transformation of ER - human mammary epithelial cells (hMEC). Therefore, we explored the potential of targeting Akt/p70S6K in the p70S6K activated, ER - hMEC models and mouse mammary tumor models for the prevention of ER - breast cancer. We found that a clinically applicable Akt/p70S6K dual inhibitor, LY2780301, drastically decreased proliferation of hMECs with ErbB2-induced p70S6K activation via Cyclin B1 inhibition and cell-cycle blockade at G 0 -G 1 phase, while it did not significantly reverse the abnormal acinar morphology of these hMECs. In addition, a brief treatment of LY2780301 in MMTV- neu mice that developed atypical hyperplasia (ADH) and mammary intraepithelial neoplasia (MIN) lesions with activated p70S6K was sufficient to suppress S6 phosphorylation and decrease cell proliferation in hyperplasic MECs. In summary, targeting the aberrant Akt/p70S6K activation in ER - hMEC models in vitro and in the MMTV- neu transgenic mouse model in vivo effectively inhibited Akt/S6K signaling and reduced proliferation of hMECs in vitro and ADH/MIN lesions in vivo , indicating its potential in prevention of p70S6K activated ER - breast cancer. Cancer Prev Res; 10(11); 641-50. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. EGFR Is Regulated by TFAP2C in Luminal Breast Cancer and Is a Target for Vandetanib.

    PubMed

    De Andrade, James P; Park, Jung M; Gu, Vivian W; Woodfield, George W; Kulak, Mikhail V; Lorenzen, Allison W; Wu, Vincent T; Van Dorin, Sarah E; Spanheimer, Philip M; Weigel, Ronald J

    2016-03-01

    Expression of TFAP2C in luminal breast cancer is associated with reduced survival and hormone resistance, partially explained through regulation of RET. TFAP2C also regulates EGFR in HER2 breast cancer. We sought to elucidate the regulation and functional role of EGFR in luminal breast cancer. We used gene knockdown (KD) and treatment with a tyrosine kinase inhibitor (TKI) in cell lines and primary cancer isolates to determine the role of RET and EGFR in regulation of p-ERK and tumorigenesis. KD of TFAP2C decreased expression of EGFR in a panel of luminal breast cancers, and chromatin immunoprecipitation sequencing (ChIP-seq) confirmed that TFAP2C targets the EGFR gene. Stable KD of TFAP2C significantly decreased cell proliferation and tumor growth, mediated in part through EGFR. While KD of RET or EGFR reduced proliferation (31% and 34%, P < 0.01), combined KD reduced proliferation greater than either alone (52% reduction, P < 0.01). The effect of the TKI vandetanib on proliferation and tumor growth response of MCF-7 cells was dependent upon expression of TFAP2C, and dual KD of RET and EGFR eliminated the effects of vandetanib. The response of primary luminal breast cancers to TKIs assessed by ERK activation established a correlation with expression of RET and EGFR. We conclude that TFAP2C regulates EGFR in luminal breast cancer. Response to vandetanib was mediated through the TFAP2C target genes EGFR and RET. Vandetanib may provide a therapeutic effect in luminal breast cancer, and RET and EGFR can serve as molecular markers for response. ©2016 American Association for Cancer Research.

  8. SF3B1 mutations constitute a novel therapeutic target in breast cancer

    PubMed Central

    Maguire, Sarah L; Leonidou, Andri; Wai, Patty; Marchiò, Caterina; Ng, Charlotte KY; Sapino, Anna; Salomon, Anne-Vincent; Reis-Filho, Jorge S; Weigelt, Britta; Natrajan, Rachael C

    2015-01-01

    Mutations in genes encoding proteins involved in RNA splicing have been found to occur at relatively high frequencies in several tumour types including myelodysplastic syndromes, chronic lymphocytic leukaemia, uveal melanoma, and pancreatic cancer, and at lower frequencies in breast cancer. To investigate whether dysfunction in RNA splicing is implicated in the pathogenesis of breast cancer, we performed a re-analysis of published exome and whole genome sequencing data. This analysis revealed that mutations in spliceosomal component genes occurred in 5.6% of unselected breast cancers, including hotspot mutations in the SF3B1 gene, which were found in 1.8% of unselected breast cancers. SF3B1 mutations were significantly associated with ER-positive disease, AKT1 mutations, and distinct copy number alterations. Additional profiling of hotspot mutations in a panel of special histological subtypes of breast cancer showed that 16% and 6% of papillary and mucinous carcinomas of the breast harboured the SF3B1 K700E mutation. RNA sequencing identified differentially spliced events expressed in tumours with SF3B1 mutations including the protein coding genes TMEM14C, RPL31, DYNL11, UQCC, and ABCC5, and the long non-coding RNA CRNDE. Moreover, SF3B1 mutant cell lines were found to be sensitive to the SF3b complex inhibitor spliceostatin A and treatment resulted in perturbation of the splicing signature. Albeit rare, SF3B1 mutations result in alternative splicing events, and may constitute drivers and a novel therapeutic target in a subset of breast cancers. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:25424858

  9. Targeting Common but Complex Proteoglycans on Breast Cancer Cells and Stem Cells Using Evolutionary Refined Malaria Proteins

    DTIC Science & Technology

    2015-11-01

    AWARD NUMBER: W81XWH-13-1-0139 TITLE: Targeting Common but Complex Proteoglycans on Breast Cancer Cells and Stem Cells Using Evolutionary Refined...DATES COVERED 15Aug2013 - 14Aug2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0139 Targeting Common but Complex Proteoglycans on...outbreaks in epidemic regions of the world. Prior to this application we discovered that human breast cancer cells express this same carbohydrate

  10. Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development.

    PubMed

    Costa, Ricardo; Shah, Ami N; Santa-Maria, Cesar A; Cruz, Marcelo R; Mahalingam, Devalingam; Carneiro, Benedito A; Chae, Young Kwang; Cristofanilli, Massimo; Gradishar, William J; Giles, Francis J

    2017-02-01

    Triple negative breast cancer (TNBC) accounts for 10-20% of cases in breast cancer. Despite recent advances in the treatment of hormonal receptor+ and HER2+ breast cancers, there are no targeted therapies available for TNBC. Evidence supports that most patients with TNBC express the transmembrane Epidermal Growth Factor Receptor (EGFR). However, early phase clinical trials failed to demonstrate significant activity of EGFR-targeted monoclonal antibodies and/or tyrosine kinase inhibitors. Here, we review the recent discoveries related to the underlying biology of the EGFR pathway in TNBC, clinical progress to date and suggest rational future approaches for investigational therapies in TNBC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. AR Signaling in Breast Cancer.

    PubMed

    Rahim, Bilal; O'Regan, Ruth

    2017-02-24

    Androgen receptor (AR, a member of the steroid hormone receptor family) status has become increasingly important as both a prognostic marker and potential therapeutic target in breast cancer. AR is expressed in up to 90% of estrogen receptor (ER) positive breast cancer, and to a lesser degree, human epidermal growth factor 2 (HER2) amplified tumors. In the former, AR signaling has been correlated with a better prognosis given its inhibitory activity in estrogen dependent disease, though conversely has also been shown to increase resistance to anti-estrogen therapies such as tamoxifen. AR blockade can mitigate this resistance, and thus serves as a potential target in ER-positive breast cancer. In HER2 amplified breast cancer, studies are somewhat conflicting, though most show either no effect or are associated with poorer survival. Much of the available data on AR signaling is in triple-negative breast cancer (TNBC), which is an aggressive disease with inferior outcomes comparative to other breast cancer subtypes. At present, there are no approved targeted therapies in TNBC, making study of the AR signaling pathway compelling. Gene expression profiling studies have also identified a luminal androgen receptor (LAR) subtype that is dependent on AR signaling in TNBC. Regardless, there seems to be an association between AR expression and improved outcomes in TNBC. Despite lower pathologic complete response (pCR) rates with neoadjuvant therapy, patients with AR-expressing TNBC have been shown to have a better prognosis than those that are AR-negative. Clinical studies targeting AR have shown somewhat promising results. In this paper we review the literature on the biology of AR in breast cancer and its prognostic and predictive roles. We also present our thoughts on therapeutic strategies.

  12. AR Signaling in Breast Cancer

    PubMed Central

    Rahim, Bilal; O’Regan, Ruth

    2017-01-01

    Androgen receptor (AR, a member of the steroid hormone receptor family) status has become increasingly important as both a prognostic marker and potential therapeutic target in breast cancer. AR is expressed in up to 90% of estrogen receptor (ER) positive breast cancer, and to a lesser degree, human epidermal growth factor 2 (HER2) amplified tumors. In the former, AR signaling has been correlated with a better prognosis given its inhibitory activity in estrogen dependent disease, though conversely has also been shown to increase resistance to anti-estrogen therapies such as tamoxifen. AR blockade can mitigate this resistance, and thus serves as a potential target in ER-positive breast cancer. In HER2 amplified breast cancer, studies are somewhat conflicting, though most show either no effect or are associated with poorer survival. Much of the available data on AR signaling is in triple-negative breast cancer (TNBC), which is an aggressive disease with inferior outcomes comparative to other breast cancer subtypes. At present, there are no approved targeted therapies in TNBC, making study of the AR signaling pathway compelling. Gene expression profiling studies have also identified a luminal androgen receptor (LAR) subtype that is dependent on AR signaling in TNBC. Regardless, there seems to be an association between AR expression and improved outcomes in TNBC. Despite lower pathologic complete response (pCR) rates with neoadjuvant therapy, patients with AR-expressing TNBC have been shown to have a better prognosis than those that are AR-negative. Clinical studies targeting AR have shown somewhat promising results. In this paper we review the literature on the biology of AR in breast cancer and its prognostic and predictive roles. We also present our thoughts on therapeutic strategies. PMID:28245550

  13. New Immunotherapy Strategies in Breast Cancer

    PubMed Central

    Yu, Lin-Yu; Tang, Jie; Zhang, Cong-Min; Zeng, Wen-Jing; Yan, Han; Li, Mu-Peng; Chen, Xiao-Ping

    2017-01-01

    Breast cancer is the most commonly diagnosed cancer among women. Therapeutic treatments for breast cancer generally include surgery, chemotherapy, radiotherapy, endocrinotherapy and molecular targeted therapy. With the development of molecular biology, immunology and pharmacogenomics, immunotherapy becomes a promising new field in breast cancer therapies. In this review, we discussed recent progress in breast cancer immunotherapy, including cancer vaccines, bispecific antibodies, and immune checkpoint inhibitors. Several additional immunotherapy modalities in early stages of development are also highlighted. It is believed that these new immunotherapeutic strategies will ultimately change the current status of breast cancer therapies. PMID:28085094

  14. EGFR Is Regulated by TFAP2C in Luminal Breast Cancer and Is a Target for Vandetanib

    PubMed Central

    De Andrade, James P.; Park, Jung M.; Gu, Vivian W.; Woodfield, George W.; Kulak, Mikhail V.; Lorenzen, Allison W.; Wu, Vincent T.; Van Dorin, Sarah E.; Spanheimer, Philip M.; Weigel, Ronald J.

    2016-01-01

    Expression of TFAP2C in luminal breast cancer is associated with reduced survival and hormone resistance, partially explained through regulation of RET. TFAP2C also regulates EGFR in HER2 breast cancer. We sought to elucidate the regulation and functional role of EGFR in luminal breast cancer. We used gene knockdown (KD) and treatment with a tyrosine kinase inhibitor (TKI) in cell lines and primary cancer isolates to determine the role of RET and EGFR in regulation of p-ERK and tumorigenesis. KD of TFAP2C decreased expression of EGFR in a panel of luminal breast cancers and ChIP-seq confirmed that TFAP2C targets the EGFR gene. Stable KD of TFAP2C significantly decreased cell proliferation and tumor growth, mediated in part through EGFR. While KD of RET or EGFR reduced proliferation (31% and 34%, p < 0.01), combined KD reduced proliferation greater than either alone (52% reduction, p < 0.01). The effect of the TKI vandetanib on proliferation and tumor growth response of MCF-7 cells was dependent upon expression of TFAP2C and dual KD of RET and EGFR eliminated the effects of vandetanib. The response of primary luminal breast cancers to TKIs assessed by ERK activation established a correlation with expression of RET and EGFR. We conclude that TFAP2C regulates EGFR in luminal breast cancer. Response to vandetanib was mediated though the TFAP2C target genes EGFR and RET. Vandetanib may provide a therapeutic effect in luminal breast cancer, and RET and EGFR can serve as molecular markers for response. PMID:26832794

  15. "US-detonated nano bombs" facilitate targeting treatment of resistant breast cancer.

    PubMed

    Shi, Jinjin; Liu, Wei; Fu, Yu; Yin, Na; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong

    2018-03-28

    Reversal of drug resistance and targeted therapy are the keys but remain challenging in resistant breast cancer treatment. Herein, low frequency ultrasound detonated "nano bombs" were rationally designed and used for treatment of resistant breast cancer. For the 'nano bombs', the ammunition (Doxorubicin, DOX) was loaded into the ammunition depot (hollow mesoporous TiO 2 , MTNs), and the safety device (dsDNA) was wrapped on the surface of MTNs to avoid the unexpected DOX release. We found the "US-detonated explosive" abilities of "nano bomb" MTNs (NBMTNs), including explosive generation of ROS, explosive release of DOX, US-triggered lysosome escape and mitochondrial targeting in the in vitro and in vivo studies. More importantly, the drug resistance of MCF-7/ADR cells could be reversed via the inhibition of mitochondrial energy supply approach caused by the "explosion" of NBMTNs. Furthermore, NBMTNs combined the superior chemotherapy efficacy of DOX and potent SDT efficacy in one single platform and significantly enhanced the anticancer efficacy. Our results demonstrate an approach for reversing resistance and specific targeting of tumors using 'US-detonated nano bombs'. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Targeting the Ron-Dek Signaling Axis in Breast Cancer

    DTIC Science & Technology

    2015-09-01

    myeloid cells exacerbate LPS-induced acute lung injury in the murine lung. Innate immunity. 2011; 17:499–507. 25. Stuart WD, Kulkarni RM, Gray JK...activation in human and murine breast cancer cell lines induces the accumulation of Dek protein. This accumulation of Dek is significant as Dek...overexpression in breast cancer cell lines leads to increases in cell growth and migration while Dek depletion in breast cancer cells leads to dramatic

  17. Targeting the Ron-Dek Signaling Axis in Breast Cancer

    DTIC Science & Technology

    2015-09-01

    deficient alveolar myeloid cells exacerbate LPS-induced acute lung injury in the murine lung. Innate immunity. 2011; 17:499–507. 25. Stuart WD, Kulkarni...induced Ron activation in human and murine breast cancer cell lines induces the accumulation of Dek protein. This accumulation of Dek is significant as...Dek overexpression in breast cancer cell lines leads to increases in cell growth and migration while Dek depletion in breast cancer cells leads to

  18. Molecular biology of breast cancer stem cells: potential clinical applications.

    PubMed

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.

  19. Molecular photoacoustic imaging of breast cancer using an actively targeted conjugated polymer

    PubMed Central

    Balasundaram, Ghayathri; Ho, Chris Jun Hui; Li, Kai; Driessen, Wouter; Dinish, US; Wong, Chi Lok; Ntziachristos, Vasilis; Liu, Bin; Olivo, Malini

    2015-01-01

    Conjugated polymers (CPs) are upcoming optical contrast agents in view of their unique optical properties and versatile synthetic chemistry. Biofunctionalization of these polymer-based nanoparticles enables molecular imaging of biological processes. In this work, we propose the concept of using a biofunctionalized CP for noninvasive photoacoustic (PA) molecular imaging of breast cancer. In particular, after verifying the PA activity of a CP nanoparticle (CP dots) in phantoms and the targeting efficacy of a folate-functionalized version of the same (folate-CP dots) in vitro, we systemically administered the probe into a folate receptor-positive (FR+ve) MCF-7 breast cancer xenograft model to demonstrate the possible application of folate-CP dots for imaging FR+ve breast cancers in comparison to CP dots with no folate moieties. We observed a strong PA signal at the tumor site of folate-CP dots-administered mice as early as 1 hour after administration as a result of the active targeting of the folate-CP dots to the FR+ve tumor cells but a weak PA signal at the tumor site of CP-dots-administered mice as a result of the passive accumulation of the probe by enhanced permeability and retention effect. We also observed that folate-CP dots produced ~4-fold enhancement in the PA signal in the tumor, when compared to CP dots. These observations demonstrate the great potential of this active-targeting CP to be used as a contrast agent for molecular PA diagnostic imaging in various biomedical applications. PMID:25609951

  20. Exercise in Targeting Metabolic Dysregulation in Stage I-III Breast or Prostate Cancer Survivors

    ClinicalTrials.gov

    2017-09-12

    Cancer Survivor; No Evidence of Disease; Obesity; Overweight; Prostate Carcinoma; Sedentary Lifestyle; Stage I Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  1. Understanding and Targeting Cell Growth Networks in Breast Cancer

    DTIC Science & Technology

    2010-04-01

    both monitoring and preventing the outbreak of cancer cells. A common target of ARF is the NPM/B23 oncogene, an abundant protein of the nucleolus ...phenotype is dependent on NPM and p68DDX5 expression in the nucleolus , with loss of either capable of completely reversing the phenotype back to...ARF, DDX5, and NPM in the nucleolus of breast epithelial cells and how they impact both ribosome biogenesis and cell growth to prevent and/or promote

  2. Targeting the androgen receptor in triple-negative breast cancer: current perspectives.

    PubMed

    Mina, Alain; Yoder, Rachel; Sharma, Priyanka

    2017-01-01

    Triple-negative breast cancer (TNBC) is an aggressive subtype associated with frequent recurrence and metastasis. Unlike hormone receptor-positive subtypes, treatment of TNBC is currently limited by the lack of clinically available targeted therapies. Androgen signaling is necessary for normal breast development, and its dysregulation has been implicated in breast tumorigenesis. In recent years, gene expression studies have identified a subset of TNBC that is enriched for androgen receptor (AR) signaling. Interference with androgen signaling in TNBC is promising, and AR-inhibiting drugs have shown antitumorigenic activity in preclinical and proof of concept clinical studies. Recent advances in our understanding of androgenic signaling in TNBC, along with the identification of interacting pathways, are allowing development of the next generation of clinical trials with AR inhibitors. As novel AR-targeting agents are developed and evaluated in clinical trials, it is equally important to establish a robust set of biomarkers for identification of TNBC tumors that are most likely to respond to AR inhibition.

  3. A Phenotypic Cell-Binding Screen Identifies a Novel Compound Targeting Triple-Negative Breast Cancer.

    PubMed

    Chen, Luxi; Long, Chao; Youn, Jonghae; Lee, Jiyong

    2018-06-11

    We describe a "phenotypic cell-binding screen" by which therapeutic candidate targeting cancer cells of a particular phenotype can be isolated without knowledge of drug targets. Chemical library beads are incubated with cancer cells of the phenotype of interest in the presence of cancer cells lacking the phenotype of interest, and then the beads bound to only cancer cells of the phenotype of interest are selected as hits. We have applied this screening strategy in discovering a novel compound (LC129-8) targeting triple-negative breast cancer (TNBC). LC129-8 displayed highly specific binding to TNBC in cancer cell lines and patient-derived tumor tissues. LC129-8 exerted anti-TNBC activity by inducing apoptosis, inhibiting proliferation, reversing epithelial-mesenchymal transition, downregulating cancer stem cell activity and blocking in vivo tumor growth.

  4. Screening Novel Molecular Targets of Metformin in Breast Cancer by Proteomic Approach

    PubMed Central

    Al-Zaidan, Lobna; El Ruz, Rasha Abu; Malki, Ahmed M.

    2017-01-01

    increase the understanding of breast cancer prognosis and permit future studies to examine the effect of metformin on the proteomic pathways against other types of cancers. Finally, it suggests the possibility to develop further therapeutic generations of metformin with increased anticancer effect through targeting specific proteomes. PMID:29085821

  5. Enhanced cellular uptake of LHRH-conjugated PEG-coated magnetite nanoparticles for specific targeting of triple negative breast cancer cells.

    PubMed

    Hu, J; Obayemi, J D; Malatesta, K; Košmrlj, A; Soboyejo, W O

    2018-07-01

    Targeted therapy is an emerging technique in cancer detection and treatment. This paper presents the results of a combined experimental and theoretical study of the specific targeting and entry of luteinizing hormone releasing hormone (LHRH)-conjugated PEG-coated magnetite nanoparticles into triple negative breast cancer (TNBC) cells and normal breast cells. The conjugated nanoparticles structures, cellular uptake of PEG-coated magnetite nanoparticles (MNPs) and LHRH-conjugated PEG-coated magnetite nanoparticles (LHRH-MNPs) into breast cancer cells and normal breast cells were investigated using a combination of transmission electron microscope, optical and confocal fluorescence microscopy techniques. The results show that the presence of LHRH enhances the uptake of LHRH-MNPs into TNBC cells. Nanoparticle entry into breast cancer cells is also studied using a combination of thermodynamics and kinetics models. The trends in the predicted nanoparticle entry times (into TNBC cells) and the size ranges of the engulfed nanoparticles (within the TNBC cells) are shown to be consistent with experimental observations. The implications of the results are then discussed for the specific targeting of TNBCs with LHRH-conjugated PEG-coated magnetite nanoparticles for the early detection and treatment of TNBC. Copyright © 2018. Published by Elsevier B.V.

  6. Contextual Refinement of Regulatory Targets Reveals Effects on Breast Cancer Prognosis of the Regulome

    PubMed Central

    Andrews, Erik; Wang, Yue; Xia, Tian; Cheng, Wenqing; Cheng, Chao

    2017-01-01

    Gene expression regulators, such as transcription factors (TFs) and microRNAs (miRNAs), have varying regulatory targets based on the tissue and physiological state (context) within which they are expressed. While the emergence of regulator-characterizing experiments has inferred the target genes of many regulators across many contexts, methods for transferring regulator target genes across contexts are lacking. Further, regulator target gene lists frequently are not curated or have permissive inclusion criteria, impairing their use. Here, we present a method called iterative Contextual Transcriptional Activity Inference of Regulators (icTAIR) to resolve these issues. icTAIR takes a regulator’s previously-identified target gene list and combines it with gene expression data from a context, quantifying that regulator’s activity for that context. It then calculates the correlation between each listed target gene’s expression and the quantitative score of regulatory activity, removes the uncorrelated genes from the list, and iterates the process until it derives a stable list of refined target genes. To validate and demonstrate icTAIR’s power, we use it to refine the MSigDB c3 database of TF, miRNA and unclassified motif target gene lists for breast cancer. We then use its output for survival analysis with clinicopathological multivariable adjustment in 7 independent breast cancer datasets covering 3,430 patients. We uncover many novel prognostic regulators that were obscured prior to refinement, in particular NFY, and offer a detailed look at the composition and relationships among the breast cancer prognostic regulome. We anticipate icTAIR will be of general use in contextually refining regulator target genes for discoveries across many contexts. The icTAIR algorithm can be downloaded from https://github.com/icTAIR. PMID:28103241

  7. Targeting multiple cannabinoid anti-tumour pathways with a resorcinol derivative leads to inhibition of advanced stages of breast cancer.

    PubMed

    Murase, Ryuichi; Kawamura, Rumi; Singer, Eric; Pakdel, Arash; Sarma, Pranamee; Judkins, Jonathon; Elwakeel, Eiman; Dayal, Sonali; Martinez-Martinez, Esther; Amere, Mukkanti; Gujjar, Ramesh; Mahadevan, Anu; Desprez, Pierre-Yves; McAllister, Sean D

    2014-10-01

    The psychoactive cannabinoid Δ(9) -tetrahydrocannabinol (THC) and the non-psychoactive cannabinoid cannabidiol (CBD) can both reduce cancer progression, each through distinct anti-tumour pathways. Our goal was to discover a compound that could efficiently target both cannabinoid anti-tumour pathways. To measure breast cancer cell proliferation/viability and invasion, MTT and Boyden chamber assays were used. Modulation of reactive oxygen species (ROS) and apoptosis was measured using dichlorodihydrofluorescein and annexin/propidium iodide, respectively, in combination with cell flow cytometry. Changes in protein levels were evaluated using Western analysis. Orthotopic and i.v. mouse models of breast cancer metastasis were used to test the activity of cannabinoids in vivo. CBD reduced breast cancer metastasis in advanced stages of the disease as the direct result of down-regulating the transcriptional regulator Id1. However, this was associated with moderate increases in survival. We therefore screened for analogues that could co-target cannabinoid anti-tumour pathways (CBD- and THC-associated) and discovered the compound O-1663. This analogue inhibited Id1, produced a marked stimulation of ROS, up-regulated autophagy and induced apoptosis. Of all the compounds tested, it was the most potent at inhibiting breast cancer cell proliferation and invasion in culture and metastasis in vivo. O-1663 prolonged survival in advanced stages of breast cancer metastasis. Developing compounds that can simultaneously target multiple cannabinoid anti-tumour pathways efficiently may provide a novel approach for the treatment of patients with metastatic breast cancer. © 2014 The British Pharmacological Society.

  8. Targeting multiple cannabinoid anti-tumour pathways with a resorcinol derivative leads to inhibition of advanced stages of breast cancer

    PubMed Central

    Murase, Ryuichi; Kawamura, Rumi; Singer, Eric; Pakdel, Arash; Sarma, Pranamee; Judkins, Jonathon; Elwakeel, Eiman; Dayal, Sonali; Martinez-Martinez, Esther; Amere, Mukkanti; Gujjar, Ramesh; Mahadevan, Anu; Desprez, Pierre-Yves; McAllister, Sean D

    2014-01-01

    Background and Purpose The psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) and the non-psychoactive cannabinoid cannabidiol (CBD) can both reduce cancer progression, each through distinct anti-tumour pathways. Our goal was to discover a compound that could efficiently target both cannabinoid anti-tumour pathways. Experimental Approach To measure breast cancer cell proliferation/viability and invasion, MTT and Boyden chamber assays were used. Modulation of reactive oxygen species (ROS) and apoptosis was measured using dichlorodihydrofluorescein and annexin/propidium iodide, respectively, in combination with cell flow cytometry. Changes in protein levels were evaluated using Western analysis. Orthotopic and i.v. mouse models of breast cancer metastasis were used to test the activity of cannabinoids in vivo. Key Results CBD reduced breast cancer metastasis in advanced stages of the disease as the direct result of down-regulating the transcriptional regulator Id1. However, this was associated with moderate increases in survival. We therefore screened for analogues that could co-target cannabinoid anti-tumour pathways (CBD- and THC-associated) and discovered the compound O-1663. This analogue inhibited Id1, produced a marked stimulation of ROS, up-regulated autophagy and induced apoptosis. Of all the compounds tested, it was the most potent at inhibiting breast cancer cell proliferation and invasion in culture and metastasis in vivo. Conclusions and Implications O-1663 prolonged survival in advanced stages of breast cancer metastasis. Developing compounds that can simultaneously target multiple cannabinoid anti-tumour pathways efficiently may provide a novel approach for the treatment of patients with metastatic breast cancer. PMID:24910342

  9. Docosahexaenoic acid suppresses breast cancer cell metastasis by targeting matrix-metalloproteinases.

    PubMed

    Yun, Eun-Jin; Song, Kyung-Sub; Shin, Soyeon; Kim, Soyeon; Heo, Jun-Young; Kweon, Gi-Ryang; Wu, Tong; Park, Jong-Il; Lim, Kyu

    2016-08-02

    Breast cancer is one of the most prevalent cancers in women, and nearly half of breast cancer patients develop distant metastatic disease after therapy. Despite the significant advances that have been achieved in understanding breast cancer metastasis in the past decades, metastatic cancer is still hard to cure. Here, we demonstrated an anti-cancer mechanism of docosahexaenoic acid (DHA) that suppressed lung metastasis in breast cancer. DHA could inhibit proliferation and invasion of breast cancer cells in vitro, and this was mainly through blocking Cox-2-PGE2-NF-κB-MMPs cascades. DHA treatment significantly decreased Cox-2 and NF-κB expression as well as nuclear translocation of NF-κB in MDA-MB-231 cells. In addition, DHA also reduced NF-κB binding to DNA which may lead to inactivation of MMPs. Moreover, in vivo studies using Fat-1 transgenic mice showed remarkable decrease of tumor growth and metastasis to EO771 cells to lung in DHA-rich environment. In conclusion, DHA attenuated breast cancer progression and lung metastasis in part through suppressing MMPs, and these findings suggest chemoprevention and potential therapeutic strategy to overcome malignant breast cancer.

  10. Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers.

    PubMed

    Song, W; Hwang, Y; Youngblood, V M; Cook, R S; Balko, J M; Chen, J; Brantley-Sieders, D M

    2017-10-05

    Basal-like/triple-negative breast cancers (TNBCs) are among the most aggressive forms of breast cancer, and disproportionally affects young premenopausal women and women of African descent. Patients with TNBC suffer a poor prognosis due in part to a lack of molecularly targeted therapies, which represents a critical barrier for effective treatment. Here, we identify EphA2 receptor tyrosine kinase as a clinically relevant target for TNBC. EphA2 expression is enriched in the basal-like molecular subtype in human breast cancers. Loss of EphA2 function in both human and genetically engineered mouse models of TNBC reduced tumor growth in culture and in vivo. Mechanistically, targeting EphA2 impaired cell cycle progression through S-phase via downregulation of c-Myc and stabilization of the cyclin-dependent kinase inhibitor p27/KIP1. A small molecule kinase inhibitor of EphA2 effectively suppressed tumor cell growth in vivo, including TNBC patient-derived xenografts. Thus, our data identify EphA2 as a novel molecular target for TNBC.

  11. Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers

    PubMed Central

    Song, W; Hwang, Y; Youngblood, V M; Cook, R S; Balko, J M; Chen, J; Brantley-Sieders, D M

    2017-01-01

    Basal-like/triple-negative breast cancers (TNBCs) are among the most aggressive forms of breast cancer, and disproportionally affects young premenopausal women and women of African descent. Patients with TNBC suffer a poor prognosis due in part to a lack of molecularly targeted therapies, which represents a critical barrier for effective treatment. Here, we identify EphA2 receptor tyrosine kinase as a clinically relevant target for TNBC. EphA2 expression is enriched in the basal-like molecular subtype in human breast cancers. Loss of EphA2 function in both human and genetically engineered mouse models of TNBC reduced tumor growth in culture and in vivo. Mechanistically, targeting EphA2 impaired cell cycle progression through S-phase via downregulation of c-Myc and stabilization of the cyclin-dependent kinase inhibitor p27/KIP1. A small molecule kinase inhibitor of EphA2 effectively suppressed tumor cell growth in vivo, including TNBC patient-derived xenografts. Thus, our data identify EphA2 as a novel molecular target for TNBC. PMID:28581527

  12. DNA/RNA-based formulations for treatment of breast cancer.

    PubMed

    Xie, Zhaolu; Zeng, Xianghui

    2017-12-01

    To develop a successful formulation for the gene therapy of breast cancer, an effective therapeutic nucleic acid and a proper delivery system are essential. Increased understanding of breast cancer, and developments in biotechnology, material science and nanotechnology have provided a major impetus in the development of effective formulations for the gene therapy of breast cancer. Areas covered: We discuss DNA/RNA-based formulations that can inhibit the growth of breast cancer cells and control the progress of breast cancer. Targets for the gene therapy of breast cancer, DNA/RNA-based therapeutics and delivery systems are summarized. And examples of successful DNA/RNA-based formulations for breast cancer gene therapy are reviewed. Expert opinion: Several challenges remain in developing effective DNA/RNA-based formulations for treatment of breast cancer. Firstly, most of the currently utilized targets are not effective enough as monotherapy for breast cancer. Secondly, the requirements for co-delivery system make the preparation of formulation more complicated. Thirdly, nanoparticles with the modification of tumor-targeting ligands could be more unstable in circulation and normal tissues. Lastly, immune responses against the viral vectors are unfavorable for the gene therapy of breast cancer because of the damage to the host and the impaired therapeutic ability.

  13. Preparation and Imaging Investigation of Dual-targeted C3F8-filled PLGA Nanobubbles as a Novel Ultrasound Contrast Agent for Breast Cancer.

    PubMed

    Du, Jing; Li, Xiao-Yu; Hu, He; Xu, Li; Yang, Shi-Ping; Li, Feng-Hua

    2018-03-01

    Molecularly-targeted contrast enhanced ultrasound (US) imaging is a promising imaging strategy with large potential for improving diagnostic accuracy of conventional US imaging in breast cancer detection. Therefore, we constructed a novel dual-targeted nanosized US contrast agent (UCA) directed at both vascular endothelial growth factor receptor 2 (VEGFR2) and human epidermal growth factor receptor 2 (HER2) based on perfluoropropane (C 3 F 8 )-filled poly(lactic-co-glycolic acid) (PLGA) (NBs) for breast cancer detection. In vitro, single- or dual-targeted PLGA NBs showed high target specificities and better effects of target enhancement in VEGFR2 or HER2-positive cells. In vivo, US imaging signal in the murine breast cancer model was significantly higher (P < 0.01) for dual-targeted NBs than single-targeted and non-targeted NBs. Small animal fluorescence imaging further confirmed the special affinity of the dual-targeted nanosized contrast agent to both VEGFR2 and HER2. Immunofluorescence and immunohistochemistry staining confirmed the expressions of VEGFR2 and HER2 on tumor neovasculature and tumor cells of breast cancer. In conclusions, the feasibility of using dual-targeted PLGA NBs to enhance ultrasonic images is demonstrated in vitro and in vivo. This may be a promising approach to target biomarkers of breast cancer for two site-specific US molecular imaging.

  14. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells

    PubMed Central

    Guo, Shanchun; Liu, Mingli; Wang, Guangdi; Torroella-Kouri, Marta; Gonzalez-Perez, Ruben R.

    2012-01-01

    Significant correlations between obesity and incidence of various cancers have been reported. Obesity, considered a mild inflammatory process, is characterized by a high level of secretion of several cytokines from adipose tissue. These molecules have disparate effects, which could be relevant to cancer development. Among the inflammatory molecules, leptin, mainly produced by adipose tissue and overexpressed with its receptor (Ob-R) in cancer cells is the most studied adipokine. Mutations of leptin or Ob-R genes associated with obesity or cancer are rarely found. However, leptin is an anti-apoptotic molecule in many cell types, and its central roles in obesity-related cancers are based on its pro-angiogenic, pro-inflammatory and mitogenic actions. Notably, these leptin actions are commonly reinforced through entangled crosstalk with multiple oncogenes, cytokines and growth factors. Leptin-induced signals comprise several pathways commonly triggered by many cytokines (i.e, canonical: JAK2/STAT; MAPK/ERK1/2 and PI-3K/AKT1 and, non-canonical signaling pathways: PKC, JNK and p38 MAP kinase). Each of these leptin-induced signals is essential to its biological effects on food intake, energy balance, adiposity, immune and endocrine systems, as well as oncogenesis. This review is mainly focused on the current knowledge of the oncogenic role of leptin in breast cancer. Additionally, leptin pro-angiogenic molecular mechanisms and its potential role in breast cancer stem cells will be reviewed. Strict biunivocal binding-affinity and activation of leptin/Ob-R complex makes it a unique molecular target for prevention and treatment of breast cancer, particularly in obesity contexts. PMID:22289780

  15. Reproduction and Breast Cancer Risk

    PubMed Central

    Hanf, Volker; Hanf, Dorothea

    2014-01-01

    Summary Reproduction is doubtlessly one of the main biological meanings of life. It is therefore not surprising that various aspects of reproduction impact on breast cancer risk. Various developmental levels may become targets of breast tumorigenesis. This review follows the chronologic sequence of events in the life of a female at risk, starting with the intrauterine development. Furthermore, the influence of both contraceptive measures and fertility treatment on breast cancer development is dealt with, as well as various pregnancy-associated factors, events, and perinatal outcomes. Finally, the contribution of breast feeding to a reduced breast cancer risk is discussed. PMID:25759622

  16. Exploring the breast cancer patient journey: do breast cancer survivors need menopause management support?

    PubMed

    Tanna, Nuttan; Buijs, Helene; Pitkin, Joan

    2011-12-01

    Breast cancer survivors can be expected to suffer from menopause symptoms with estrogen deprivation due to cancer treatments, in addition to natural menopause-related estrogen loss. To gain an understanding of what support breast cancer patients have when they suffer from menopausal symptoms, and utilize findings to further inform National Health Service (NHS) care provision for breast cancer survivors. Qualitative study with focus group sessions targeting Caucasian and Asian women with breast cancer. Patient stories, with women describing their breast cancer journey and speaking about support received for any menopausal symptoms. Thematic data analysis of transcription. Breast cancer patients were not sure if they had menopausal symptoms or whether this was due to their breast cancer condition or treatment. Patients had an attitude of acceptance of menopausal symptoms and reported trying to cope with these by themselves. This research identifies a need for more information that is culturally sensitive on managing menopause symptoms, both as side-effects of breast cancer treatments as well as for affect on quality of life during the survivorship phase. Our work also gives insight into cultural remedies used for hot flushes by Asian patients, which they consider as 'cooling' foods. Breast cancer patients want to know whether side-effects of cancer treatment persist long term and how these can be managed. There is a need for improved patient support within any new NHS service models that are developed along breast cancer patient pathways, and inclusion of personalized advice for menopause symptoms.

  17. DNA Topoisomerase I-Targeted Therapy for Breast Cancer

    DTIC Science & Technology

    1997-06-01

    Fort Detrick, Frederick, MD 21702-5012. 13. ABSTRACT (Maximum 200 words] Camptothecin analogues have been developed that show enhanced pre-clinical...activity against breast cancer cells. These analogues have been synthesized with two fundamental modifications that aid in their effectiveness against...activity. The new analogues , in both growth inhibition and clonogenic assays, are substantially more effective against breast cancer cells than those

  18. CD44-tropic polymeric nanocarrier for breast cancer targeted rapamycin chemotherapy.

    PubMed

    Zhao, Yunqi; Zhang, Ti; Duan, Shaofeng; Davies, Neal M; Forrest, M Laird

    2014-08-01

    In contrast with the conventional targeting of nanoparticles to cancer cells with antibody or peptide conjugates, a hyaluronic acid (HA) matrix nanoparticle with intrinsic-CD44-tropism was developed to deliver rapamycin for localized CD44-positive breast cancer treatment. Rapamycin was chemically conjugated to the particle surface via a novel sustained-release linker, 3-amino-4-methoxy-benzoic acid. The release of the drug from the HA nanoparticle was improved by 42-fold compared to HA-temsirolimus in buffered saline. In CD44-positive MDA-MB-468 cells, using HA as drug delivery carrier, the cell viability was significantly decreased compared to free rapamycin and CD44-blocked controls. Rat pharmacokinetics showed that the area under the curve of HA nanoparticle formulation was 2.96-fold greater than that of the free drug, and the concomitant total body clearance was 8.82-fold slower. Moreover, in immunocompetent BALB/c mice bearing CD44-positive 4T1.2neu breast cancer, the rapamycin-loaded HA particles significantly improved animal survival, suppressed tumor growth and reduced the prevalence of lung metastasis. This study demonstrates increased efficiency of rapamycin delivery and consequential treatment effects in a breast cancer model by hyaluronic acid - L-rapamycin conjugates with intrinsic tropism for CD44-positive cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. MiR-132 prohibits proliferation, invasion, migration, and metastasis in breast cancer by targeting HN1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhan-Guo, E-mail: zhang_zhanguo@hotmail.com; Chen, Wei-Xun, E-mail: chenweixunclark@163.com; Wu, Yan-Hui, E-mail: wuyanhui84@126.com

    2014-11-07

    Highlights: • MiR-132 is down-regulated in breast cancer tissues and cell lines. • MiR-132 directly regulates HN1 by binding its 3′ UTR. • MiR-132 shows regulatory role in proliferation, invasion, migration and metastasis. • HN1 is involved in miR-132-mediated cell behavior. • Aberrant HN1 is associated with worse overall survival of breast cancer patients. - Abstract: Accumulating evidence indicates that miRNAs play critical roles in tumorigenesis and cancer progression. This study aims to investigate the role and the underlying mechanism of miR-132 in breast cancer. Here, we report that miR-132 is significantly down-regulated in breast cancer tissues and cancer cellmore » lines. Additional study identifies HN1 as a novel direct target of miR-132. MiR-132 down-regulates HN1 expression by binding to the 3′ UTR of HN1 transcript, thereby, suppressing multiple oncogenic traits such as cancer cell proliferation, invasion, migration and metastasis in vivo and in vitro. Overexpression of HN1 restores miR-132-suppressed malignancy. Importantly, higher HN1 expression is significantly associated with worse overall survival of breast cancer patients. Taken together, our data demonstrate a critical role of miR-132 in prohibiting cell proliferation, invasion, migration and metastasis in breast cancer through direct suppression of HN1, supporting the potential utility of miR-132 as a novel therapeutic strategy against breast cancer.« less

  20. Coamplification of miR-4728 protects HER2-amplified breast cancers from targeted therapy

    PubMed Central

    Floros, Konstantinos V.; Hu, Bin; Monterrubio, Carles; Hughes, Mark T.; Wells, Jason D.; Morales, Cristina Bernadó; Ghotra, Maninderjit S.; Costa, Carlotta; Souers, Andrew J.; Boikos, Sosipatros A.; Leverson, Joel D.; Tan, Ming; Serra, Violeta; Koblinski, Jennifer E.; Arribas, Joaquin; Prat, Aleix; Paré, Laia; Miller, Todd W.; Harada, Hisashi; Windle, Brad E.; Scaltriti, Maurizio; Faber, Anthony C.

    2018-01-01

    HER2 (ERBB2) amplification is a driving oncogenic event in breast cancer. Clinical trials have consistently shown the benefit of HER2 inhibitors (HER2i) in treating patients with both local and advanced HER2+ breast cancer. Despite this benefit, their efficacy as single agents is limited, unlike the robust responses to other receptor tyrosine kinase inhibitors like EGFR inhibitors in EGFR-mutant lung cancer. Interestingly, the lack of HER2i efficacy occurs despite sufficient intracellular signaling shutdown following HER2i treatment. Exploring possible intrinsic causes for this lack of response, we uncovered remarkably depressed levels of NOXA, an endogenous inhibitor of the antiapoptotic MCL-1, in HER2-amplified breast cancer. Upon investigation of the mechanism leading to low NOXA, we identified a micro-RNA encoded in an intron of HER2, termed miR-4728, that targets the mRNA of the Estrogen Receptor α (ESR1). Reduced ESR1 expression in turn prevents ERα-mediated transcription of NOXA, mitigating apoptosis following treatment with the HER2i lapatinib. Importantly, resistance can be overcome with pharmacological inhibition of MCL-1. More generally, while many cancers like EGFR-mutant lung cancer are driven by activated kinases that when drugged lead to robust monotherapeutic responses, we demonstrate that the efficacy of targeted therapies directed against oncogenes active through focal amplification may be mitigated by coamplified genes. PMID:29476008

  1. HER-2 as a Progression Factor and Therapeutic Target in Breast Cancer.

    DTIC Science & Technology

    1999-06-01

    used gene specific targeting of HER-2 with hammerhead - ribozyme expression constructs, a technology which we have applied successfully in the...2 in MCF-7 cells by ribozyme -targeting estradiol lost its ability to induce anchorage- independent colony formation in soft agar of the tumor cells...between estrogen and HER-2 signal transduction is ongoing. 14. SUBJECT TERMS Breast Cancer HER-2, estradiol, ribozymes , apoptosis, cell cycle, cDNA

  2. A drug-delivery strategy for overcoming drug resistance in breast cancer through targeting of oncofetal fibronectin.

    PubMed

    Saw, Phei Er; Park, Jinho; Jon, Sangyong; Farokhzad, Omid C

    2017-02-01

    A major problem with cancer chemotherapy begins when cells acquire resistance. Drug-resistant cancer cells typically upregulate multi-drug resistance proteins such as P-glycoprotein (P-gp). However, the lack of overexpressed surface biomarkers has limited the targeted therapy of drug-resistant cancers. Here we report a drug-delivery carrier decorated with a targeting ligand for a surface marker protein extra-domain B(EDB) specific to drug-resistant breast cancer cells as a new therapeutic option for the aggressive cancers. We constructed EDB-specific aptide (APT EDB )-conjugated liposome to simultaneously deliver siRNA(siMDR1) and Dox to drug-resistant breast cancer cells. APT EDB -LS(Dox,siMDR1) led to enhanced delivery of payloads into MCF7/ADR cells and showed significantly higher accumulation and retention in the tumors. While either APT EDB -LS(Dox) or APT EDB -LS(siMDR1) did not lead to appreciable tumor retardation in MCF7/ADR orthotropic model, APT EDB -LS(Dox,siMDR1) treatment resulted in significant reduction of the drug-resistant breast tumor. Taken together, this study provides a new strategy of drug delivery for drug-resistant cancer therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Knocking down cyclin D1b inhibits breast cancer cell growth and suppresses tumor development in a breast cancer model.

    PubMed

    Wei, Min; Zhu, Li; Li, Yafen; Chen, Weiguo; Han, Baosan; Wang, Zhiwei; He, Jianrong; Yao, Hongliang; Yang, Zhongyin; Zhang, Qing; Liu, Bingya; Gu, Qinlong; Zhu, Zhenggang; Shen, Kunwei

    2011-08-01

    Cyclin D1 is aberrantly expressed in many types of cancers, including breast cancer. High levels of cyclin D1b, the truncated isoform of cyclin D1, have been reported to be associated with a poor prognosis for breast cancer patients. In the present study, we used siRNA to target cyclin D1b overexpression and assessed its ability to suppress breast cancer growth in nude mice. Cyclin D1b siRNA effectively inhibited overexpression of cyclin D1b. Depletion of cyclin D1b promoted apoptosis of cyclin D1b-overexpressing cells and blocked their proliferation and transformation phenotypes. Notably, cyclin D1b overexpression is correlated with triple-negative basal-like breast cancers, which lack specific therapeutic targets. Administration of cyclin D1b siRNA inhibited breast tumor growth in nude mice and cyclin D1b siRNA synergistically enhanced the cell killing effects of doxorubicin in cell culture, with this combination significantly suppressing tumor growth in the mouse model. In conclusion, the results indicate that cyclin D1b, which is overexpressed in breast cancer, may serve as a novel and effective therapeutic target. More importantly, the present study clearly demonstrated a very promising therapeutic potential for cyclin D1b siRNA in the treatment of cyclin D1b-overexpressing breast cancers, including the very malignant triple-negative breast cancers. © 2011 Japanese Cancer Association.

  4. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer.

    PubMed

    Li, Xiu Juan; Ren, Zhao Jun; Tang, Jin Hai; Yu, Qiao

    2017-01-01

    Treatment of breast cancer remains a clinical challenge. This study aims to validate exosomal microRNA-1246 (miR-1246) as a serum biomarker for breast cancer and understand the underlying mechanism in breast cancer progression. The expression levels of endogenous and exosomal miRNAs were examined by real time PCR, and the expression level of the target protein was detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes and to study their uptake and transfer. Luciferase reporter plasmids and its mutant were used to confirm direct targeting. Furthermore, the functional significance of exosomal miR-1246 was estimated by invasion assay and cell viability assay. In this study, we demonstrate that exosomes carrying microRNA can be transferred among different cell lines through direct uptake. miR-1246 is highly expressed in metastatic breast cancer MDA-MB-231 cells compared to non-metastatic breast cancer cells or non-malignant breast cells. Moreover, miR-1246 can suppress the expression level of its target gene, Cyclin-G2 (CCNG2), indicating its functional significance. Finally, treatment with exosomes derived from MDA-MB-231 cells could enhance the viability, migration and chemotherapy resistance of non-malignant HMLE cells. Together, our results support an important role of exosomes and exosomal miRNAs in regulating breast tumor progression, which highlights their potential for applications in miRNA-based therapeutics. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Hormonally up-regulated neu-associated kinase: A novel target for breast cancer progression.

    PubMed

    Zambrano, Joelle N; Neely, Benjamin A; Yeh, Elizabeth S

    2017-05-01

    Hormonally up-regulated neu-associated Kinase (Hunk) is a protein kinase that was originally identified in the murine mammary gland and has been shown to be highly expressed in Human Epidermal Growth Factor Receptor 2 positive (HER2 + /ErbB2 + ) breast cancer cell lines as well as MMTV-neu derived mammary tumor cell lines. However, the physiological role of Hunk has been largely elusive since its identification. Though Hunk is predicted to be a Serine/Threonine (Ser/Thr) protein kinase with homology to the SNF1/AMPK family of protein kinases, there are no known Hunk substrates that have been identified to date. Recent work demonstrates a role for Hunk in HER2 + /ErbB2 + breast cancer progression, including drug resistance to HER2/ErbB2 inhibitors, with Hunk potentially acting downstream of HER2/ErbB2 and the PI3K/Akt pathway. These studies have collectively shown that Hunk plays a vital role in promoting mammary tumorigenesis, as Hunk knockdown via shRNA in xenograft tumor models or crossing MMTV-neu or Pten-deficient genetically engineered mouse models into a Hunk knockout (Hunk-/-) background impairs mammary tumor growth in vivo. Because the majority of HER2 + /ErbB2 + breast cancer patients acquire drug resistance to HER2/ErbB2 inhibitors, the characterization of novel drug targets like Hunk that have the potential to simultaneously suppress tumorigenesis and potentially enhance efficacy of current therapeutics is an important facet of drug development. Therefore, work aimed at uncovering specific regulatory functions for Hunk that could contribute to this protein kinase's role in both tumorigenesis and drug resistance will be informative. This review focuses on what is currently known about this under-studied protein kinase, and how targeting Hunk may prove to be a potential therapeutic target for the treatment of breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    DOEpatents

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  7. Exercise Intervention in Targeting Adiposity and Inflammation With Movement to Improve Prognosis in Breast Cancer

    ClinicalTrials.gov

    2018-05-01

    Cancer Survivor; Central Obesity; Estrogen Receptor Positive; Postmenopausal; Progesterone Receptor Positive; Stage I Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  8. Awareness and current knowledge of breast cancer.

    PubMed

    Akram, Muhammad; Iqbal, Mehwish; Daniyal, Muhammad; Khan, Asmat Ullah

    2017-10-02

    Breast cancer remains a worldwide public health dilemma and is currently the most common tumour in the globe. Awareness of breast cancer, public attentiveness, and advancement in breast imaging has made a positive impact on recognition and screening of breast cancer. Breast cancer is life-threatening disease in females and the leading cause of mortality among women population. For the previous two decades, studies related to the breast cancer has guided to astonishing advancement in our understanding of the breast cancer, resulting in further proficient treatments. Amongst all the malignant diseases, breast cancer is considered as one of the leading cause of death in post menopausal women accounting for 23% of all cancer deaths. It is a global issue now, but still it is diagnosed in their advanced stages due to the negligence of women regarding the self inspection and clinical examination of the breast. This review addresses anatomy of the breast, risk factors, epidemiology of breast cancer, pathogenesis of breast cancer, stages of breast cancer, diagnostic investigations and treatment including chemotherapy, surgery, targeted therapies, hormone replacement therapy, radiation therapy, complementary therapies, gene therapy and stem-cell therapy etc for breast cancer.

  9. Targeting CD81 to Prevent Metastases in Breast Cancer

    DTIC Science & Technology

    2015-10-01

    in tumor cells would curb the formation of CTCs. Briefly, 4T1 cells either WT or cells in which CD81 has been knocked down stably using CRISPR -Cas9...expression in breast cancer cells impairs the number of circulating tumor cells . The experiments were performed using a protocol that we standardized for...detection of circulating tumor cells in an immunocompetent syngeneic mouse model of breast cancer using FASTcell™ system. 15. SUBJECT TERMS Breast

  10. Mitochondrial targeted catalase suppresses invasive breast cancer in mice.

    PubMed

    Goh, Jorming; Enns, Linda; Fatemie, Soroosh; Hopkins, Heather; Morton, John; Pettan-Brewer, Christina; Ladiges, Warren

    2011-05-23

    Treatment of invasive breast cancer has an alarmingly high rate of failure because effective targets have not been identified. One potential target is mitochondrial generated reactive oxygen species (ROS) because ROS production has been associated with changes in substrate metabolism and lower concentration of anti-oxidant enzymes in tumor and stromal cells and increased metastatic potential. Transgenic mice expressing a human catalase gene (mCAT) were crossed with MMTV-PyMT transgenic mice that develop metastatic breast cancer. All mice (33 mCAT positive and 23 mCAT negative) were terminated at 110 days of age, when tumors were well advanced. Tumors were histologically assessed for invasiveness, proliferation and metastatic foci in the lungs. ROS levels and activation status of p38 MAPK were determined. PyMT mice expressing mCAT had a 12.5 per cent incidence of high histological grade primary tumor invasiveness compared to a 62.5 per cent incidence in PyMT mice without mCAT. The histological grade correlated with incidence of metastasis with 56 per cent of PyMT mice positive for mCAT showing evidence of pulmonary metastasis compared to 85.4 per cent of PyMT mice negative for mCAT with pulmonary metastasis (p ≤ 0.05). PyMT tumor cells expressing mCAT had lower ROS levels and were more resistant to hydrogen peroxide-induced oxidative stress than wild type tumor cells, suggesting that mCAT has the potential of quenching intracellular ROS and subsequent invasive behavior. The metastatic tumor burden in PyMT mice expressing mCAT was 0.1 mm2/cm2 of lung tissue compared with 1.3 mm2/cm2 of lung tissue in PyMT mice expressing the wild type allele (p ≤ 0.01), indicating that mCAT could play a role in mitigating metastatic tumor progression at a distant organ site. Expression of mCAT in the lungs increased resistance to hydrogen peroxide-induced oxidative stress that was associated with decreased activation of p38MAPK suggesting ROS signaling is dependent on p38MAPK for

  11. The Fe-S cluster-containing NEET proteins mitoNEET and NAF-1 as chemotherapeutic targets in breast cancer.

    PubMed

    Bai, Fang; Morcos, Faruck; Sohn, Yang-Sung; Darash-Yahana, Merav; Rezende, Celso O; Lipper, Colin H; Paddock, Mark L; Song, Luhua; Luo, Yuting; Holt, Sarah H; Tamir, Sagi; Theodorakis, Emmanuel A; Jennings, Patricia A; Onuchic, José N; Mittler, Ron; Nechushtai, Rachel

    2015-03-24

    Identification of novel drug targets and chemotherapeutic agents is a high priority in the fight against cancer. Here, we report that MAD-28, a designed cluvenone (CLV) derivative, binds to and destabilizes two members of a unique class of mitochondrial and endoplasmic reticulum (ER) 2Fe-2S proteins, mitoNEET (mNT) and nutrient-deprivation autophagy factor-1 (NAF-1), recently implicated in cancer cell proliferation. Docking analysis of MAD-28 to mNT/NAF-1 revealed that in contrast to CLV, which formed a hydrogen bond network that stabilized the 2Fe-2S clusters of these proteins, MAD-28 broke the coordinative bond between the His ligand and the cluster's Fe of mNT/NAF-1. Analysis of MAD-28 performed with control (Michigan Cancer Foundation; MCF-10A) and malignant (M.D. Anderson-metastatic breast; MDA-MB-231 or MCF-7) human epithelial breast cells revealed that MAD-28 had a high specificity in the selective killing of cancer cells, without any apparent effects on normal breast cells. MAD-28 was found to target the mitochondria of cancer cells and displayed a surprising similarity in its effects to the effects of mNT/NAF-1 shRNA suppression in cancer cells, causing a decrease in respiration and mitochondrial membrane potential, as well as an increase in mitochondrial iron content and glycolysis. As expected, if the NEET proteins are targets of MAD-28, cancer cells with suppressed levels of NAF-1 or mNT were less susceptible to the drug. Taken together, our results suggest that NEET proteins are a novel class of drug targets in the chemotherapeutic treatment of breast cancer, and that MAD-28 can now be used as a template for rational drug design for NEET Fe-S cluster-destabilizing anticancer drugs.

  12. Optical imaging for breast cancer prescreening

    PubMed Central

    Godavarty, Anuradha; Rodriguez, Suset; Jung, Young-Jin; Gonzalez, Stephanie

    2015-01-01

    Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE) or self-breast examinations (SBEs). Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach. PMID:26229503

  13. Rare-earth doped nanocomposites enable multiscale targeted short-wave infrared imaging of metastatic breast cancer

    NASA Astrophysics Data System (ADS)

    Pierce, Mark C.; Higgins, Laura M.; Ganapathy, Vidya; Kantamneni, Harini; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.

    2017-02-01

    We are investigating the ability of targeted rare earth (RE) doped nanocomposites to detect and track micrometastatic breast cancer lesions to distant sites in pre-clinical in vivo models. Functionalizing RE nanocomposites with AMD3100 promotes targeting to CXCR4, a recognized marker for highly metastatic disease. Mice were inoculated with SCP-28 (CXCR4 positive) and 4175 (CXCR4 negative) cell lines. Whole animal in vivo SWIR fluorescence imaging was performed after bioluminescence imaging confirmed tumor burden in the lungs. Line-scanning confocal fluorescence microscopy provided high-resolution imaging of RE nanocomposite uptake and native tissue autofluorescence in ex vivo lung specimens. Co-registered optical coherence tomography imaging allowed assessment of tissue microarchitecture. In conclusion, multiscale optical molecular imaging can be performed in pre-clinical models of metastatic breast cancer, using targeted RE-doped nanocomposites.

  14. Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo.

    PubMed

    Bardhan, Rizia; Chen, Wenxue; Bartels, Marc; Perez-Torres, Carlos; Botero, Maria F; McAninch, Robin Ward; Contreras, Alejandro; Schiff, Rachel; Pautler, Robia G; Halas, Naomi J; Joshi, Amit

    2010-12-08

    Nanoparticle-based therapeutics with local delivery and external electromagnetic field modulation holds extraordinary promise for soft-tissue cancers such as breast cancer; however, knowledge of the distribution and fate of nanoparticles in vivo is crucial for clinical translation. Here we demonstrate that multiple diagnostic capabilities can be introduced in photothermal therapeutic nanocomplexes by simultaneously enhancing both near-infrared fluorescence and magnetic resonance imaging (MRI). We track nanocomplexes in vivo, examining the influence of HER2 antibody targeting on nanocomplex distribution over 72 h. This approach provides valuable, detailed information regarding the distribution and fate of complex nanoparticles designed for specific diagnostic and therapeutic functions.

  15. Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo

    PubMed Central

    Bardhan, Rizia; Chen, Wenxue; Bartels, Marc; Perez-Torres, Carlos; Botero, Maria F.; McAninch, Robin Ward; Contreras, Alejandro; Schiff, Rachel; Pautler, Robia G.; Halas, Naomi J.; Joshi, Amit

    2014-01-01

    Nanoparticle-based therapeutics with local delivery and external electromagnetic field modulation holds extraordinary promise for soft-tissue cancers such as breast cancer; however, knowledge of the distribution and fate of nanoparticles in vivo is crucial for clinical translation. Here we demonstrate that multiple diagnostic capabilities can be introduced in photothermal therapeutic nanocomplexes by simultaneously enhancing both near-infrared fluorescence and magnetic resonance imaging (MRI). We track nanocomplexes in vivo, examining the influence of HER2 antibody targeting on nanocomplex distribution over 72 h. This approach provides valuable, detailed information regarding the distribution and fate of complex nanoparticles designed for specific diagnostic and therapeutic functions. PMID:21090693

  16. Genomic screening for targets regulated by berberine in breast cancer cells.

    PubMed

    Wen, Chun-Jie; Wu, Lan-Xiang; Fu, Li-Juan; Yu, Jing; Zhang, Yi-Wen; Zhang, Xue; Zhou, Hong-Hao

    2013-01-01

    Berberine, a common isoquinoline alkaloid, has been shown to possess anti-cancer activities. However, the underlying molecular mechanisms are still not completely understood. In the current study, we investigated the effects of berberine on cell growth, colony formation, cell cycle distribution, and whether it improved the anticancer efficiency of cisplatin and doxorubicin in human breast cancer estrogen receptor positive (ER+) MCF-7 cells and estrogen receptor negative (ER-) MDA-MB-231 cells. Notably, berberine treatment significantly inhibited cell growth and colony formation in the two cell lines, berberine in combination with cisplatin exerting synergistic growth inhibitory effects. Accompanied by decreased growth, berberine induced G1 phase arrest in MCF-7 but not MDA-MB-231 cells. To provide a more detailed understanding of the mechanisms of action of berberine, we performed genome-wide expression profiling of berberine-treated cells using cDNA microarrays. This revealed that there were 3,397 and 2,706 genes regulated by berberine in MCF-7 and MDA-MB-231 cells, respectively. Fene oncology (GO) analysis identified that many of the target genes were involved in regulation of the cell cycle, cell migration, apoptosis, and drug responses. To confirm the microarray data, qPCR analysis was conducted for 10 selected genes based on previously reported associations with breast cancer and GO analysis. In conclusion, berberine exhibits inhibitory effects on breast cancer cells proliferation, which is likely mediated by alteration of gene expression profiles.

  17. Anticancer activity of celastrol in combination with ErbB2-targeted therapeutics for treatment of ErbB2-overexpressing breast cancers

    PubMed Central

    Clubb, Robert J; Ortega-Cava, Cesar; Williams, Stetson H; Bailey, Tameka A; Duan, Lei; Zhao, Xiangshan; Reddi, Alagarasamy L; Nyong, Abijah M; Natarajan, Amarnath; Band, Vimla

    2011-01-01

    The receptor tyrosine kinase ErbB2 is overexpressed in up to a third of breast cancers, allowing targeted therapy with ErbB2-directed humanized antibodies such as Trastuzumab. Concurrent targeting of ErbB2 stability with HSP90 inhibitors is synergistic with Trastuzumab, suggesting that pharmacological agents that can inhibit HSP90 as well as signaling pathways activated by ErbB2 could be useful against ErbB2-overexpressing breast cancers. The triterpene natural product Celastrol inhibits HSP90 and several pathways relevant to ErbB2-dependent oncogenesis including the NFκB pathway and the proteasome, and has shown promising activity in other cancer models. Here, we demonstrate that Celastrol exhibits in vitro antitumor activity against a panel of human breast cancer cell lines with selectivity towards those overexpressing ErbB2. Celastrol strongly synergized with ErbB2-targeted therapeutics Trastuzumab and Lapatinib, producing higher cytotoxicity with substantially lower doses of Celastrol. Celastrol significantly retarded the rate of growth of ErbB2-overexpressing human breast cancer cells in a mouse xenograft model with only minor systemic toxicity. Mechanistically, Celastrol not only induced the expected ubiquitinylation and degradation of ErbB2 and other HSP90 client proteins, but it also increased the levels of reactive oxygen species (ROS). Our studies show that the Michael Acceptor functionality in Celastrol is important for its ability to destabilize ErbB2 and exert its bioactivity against ErbB2-overexpressing breast cancer cells. These studies suggest the potential use of Michael acceptor-containing molecules as novel therapeutic modalities against ErbB2-driven breast cancer by targeting multiple biological attributes of the driver oncogene. PMID:21088503

  18. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers.

    PubMed

    Nolan, Emma; Vaillant, François; Branstetter, Daniel; Pal, Bhupinder; Giner, Göknur; Whitehead, Lachlan; Lok, Sheau W; Mann, Gregory B; Rohrbach, Kathy; Huang, Li-Ya; Soriano, Rosalia; Smyth, Gordon K; Dougall, William C; Visvader, Jane E; Lindeman, Geoffrey J

    2016-08-01

    Individuals who have mutations in the breast-cancer-susceptibility gene BRCA1 (hereafter referred to as BRCA1-mutation carriers) frequently undergo prophylactic mastectomy to minimize their risk of breast cancer. The identification of an effective prevention therapy therefore remains a 'holy grail' for the field. Precancerous BRCA1(mut/+) tissue harbors an aberrant population of luminal progenitor cells, and deregulated progesterone signaling has been implicated in BRCA1-associated oncogenesis. Coupled with the findings that tumor necrosis factor superfamily member 11 (TNFSF11; also known as RANKL) is a key paracrine effector of progesterone signaling and that RANKL and its receptor TNFRSF11A (also known as RANK) contribute to mammary tumorigenesis, we investigated a role for this pathway in the pre-neoplastic phase of BRCA1-mutation carriers. We identified two subsets of luminal progenitors (RANK(+) and RANK(-)) in histologically normal tissue of BRCA1-mutation carriers and showed that RANK(+) cells are highly proliferative, have grossly aberrant DNA repair and bear a molecular signature similar to that of basal-like breast cancer. These data suggest that RANK(+) and not RANK(-) progenitors are a key target population in these women. Inhibition of RANKL signaling by treatment with denosumab in three-dimensional breast organoids derived from pre-neoplastic BRCA1(mut/+) tissue attenuated progesterone-induced proliferation. Notably, proliferation was markedly reduced in breast biopsies from BRCA1-mutation carriers who were treated with denosumab. Furthermore, inhibition of RANKL in a Brca1-deficient mouse model substantially curtailed mammary tumorigenesis. Taken together, these findings identify a targetable pathway in a putative cell-of-origin population in BRCA1-mutation carriers and implicate RANKL blockade as a promising strategy in the prevention of breast cancer.

  19. Osteoclastic miR-214 targets TRAF3 to contribute to osteolytic bone metastasis of breast cancer

    PubMed Central

    Liu, Jin; Li, Defang; Dang, Lei; Liang, Chao; Guo, Baosheng; Lu, Cheng; He, Xiaojuan; Cheung, Hilda Y. S.; He, Bing; Liu, Biao; Li, Fangfei; Lu, Jun; Wang, Luyao; Shaikh, Atik Badshah; Jiang, Feng; Lu, Changwei; Peng, Songlin; Zhang, Zongkang; Zhang, Bao-Ting; Pan, Xiaohua; Xiao, Lianbo; Lu, Aiping; Zhang, Ge

    2017-01-01

    The role of osteoclastic miRNAs in regulating osteolytic bone metastasis (OBM) of breast cancer is still underexplored. Here, we examined the expression profiles of osteoclastogenic miRNAs in human bone specimens and identified that miR-214-3p was significantly upregulated in breast cancer patients with OBM. Consistently, we found increased miR-214-3p within osteoclasts, which was associated with the elevated bone resorption, during the development of OBM in human breast cancer xenografted nude mice (BCX). Furthermore, genetic ablation of osteoclastic miR-214-3p in nude mice prevent the development of OBM. Conditioned medium from MDA-MB-231 cells dramatically stimulated miR-214-3p expression to promote osteoclast differentiation. Mechanistically, a series of in vitro study showed that miR-214-3p directly targeted Traf3 to promote osteoclast activity and bone-resorbing activity. In addition, osteoclast-specific miR-214-3p knock-in mice showed remarkably increased bone resorption when compared to the littermate controls, which was attenuated after osteoclast-targeted treatment with Traf3 3′UTR-containing plasmid. In BCX nude mice, osteoclast-targeted antagomir-214-3p delivery could recover the TRAF3 protein expression and attenuate the development of OBM, respectively. Collectively, inhibition of osteoclastic miR-214-3p may be a potential therapeutic strategy for breast cancer patients with OBM. Meanwhile, the intraosseous TRAF3 could be a promising biomarker for evaluation of the treatment response of antagomir-214-3p. PMID:28071724

  20. Targeted therapy against EGFR and VEGFR using ZD6474 enhances the therapeutic potential of UV-B phototherapy in breast cancer cells.

    PubMed

    Sarkar, Siddik; Rajput, Shashi; Tripathi, Amit Kumar; Mandal, Mahitosh

    2013-10-20

    The hypoxic environment of tumor region stimulated the up regulation of growth factors responsible for angiogenesis and tumor proliferation. Thus, targeting the tumor vasculature along with the proliferation by dual tyrosine kinase inhibitor may be the efficient way of treating advanced breast cancers, which can be further enhanced by combining with radiotherapy. However, the effectiveness of radiotherapy may be severely compromised by toxicities and tumor resistance due to radiation-induced adaptive response contributing to recurrence and metastases of breast cancer. The rational of using ZD6474 is to evaluate the feasibility and efficacy of combined VEGFR2 and EGFR targeting with concurrent targeted and localized UV-B phototherapy in vitro breast cancer cells with the anticipation to cure skin lesions infiltrated with breast cancer cells. Breast cancer cells were exposed to UV-B and ZD6474 and the cell viability, apoptosis, invasion and motility studies were conducted for the combinatorial effect. Graphs and statistical analyses were performed using Graph Pad Prism 5.0. ZD6474 and UV-B decreased cell viability in breast cancers in combinatorial manner without affecting the normal human mammary epithelial cells. ZD6474 inhibited cyclin E expression and induced p53 expression when combined with UV-B. It activated stress induced mitochondrial pathway by inducing translocation of bax and cytochrome-c. The combination of ZD6474 with UV-B vs. either agent alone also more potently down-regulated the anti-apoptotic bcl-2 protein, up-regulated pro-apoptotic signaling events involving expression of bax, activation of caspase-3 and caspase-7 proteins, and induced poly (ADP-ribose) polymerase resulting in apoptosis. ZD6474 combined with UV-B inhibited invasion of breast cancer cells in vitro as compared to either single agent, indicating a potential involvement of pro-angiogenic growth factors in regulating the altered expression and reorganization of cytoskeletal proteins

  1. Breast cancer stem cells in HER2-negative breast cancer cells contribute to HER2-mediated radioresistance and molecular subtype conversion: clinical implications for serum HER2 in recurrent HER2-negative breast cancer.

    PubMed

    Kim, Yun Gyoung; Yoon, Yi Na; Choi, Hyang Suk; Kim, Ji-Hyun; Seol, Hyesil; Lee, Jin Kyung; Seong, Min-Ki; Park, In Chul; Kim, Kwang Il; Kim, Hyun-Ah; Kim, Jae-Sung; Noh, Woo Chul

    2018-01-19

    Although it has been proposed that the beneficial effect of HER2-targeted therapy in HER2-negative breast cancer is associated with the molecular subtype conversion, the underlying mechanism and the clinical biomarkers are unclear. Our study showed that breast cancer stem cells (BCSCs) mediated HER2 subtype conversion and radioresistance in HER2-negative breast cancer cells and evaluated serum HER2 as a clinical biomarker for HER2 subtype conversion. We found that the CD44 + /CD24 -/low BCSCs from HER2-negative breast cancer MCF7 cells overexpressed HER2 and EGFR and showed the radioresistant phenotype. In addition, we showed that trastuzumab treatment sensitized the radioresistant phenotype of the CD44 + /CD24 -/low cells with decreased levels of HER2 and EGFR, which suggested that HER2-targeted therapy in HER2-negative breast cancer could be useful for targeting BCSCs that overexpress HER2/EGFR. Importantly, our clinical data showed that serial serum HER2 measurement synchronously reflected the disease relapse and the change in tumor burden in some patients who were initially diagnosed as HER2-negative breast cancer, which indicated that serum HER2 could be a clinical biomarker for the evaluation of HER2 subtype conversion in patients with recurrent HER2-negative breast cancer. Therefore, our data have provided in vitro and in vivo evidence for the molecular subtype conversion of HER2-negative breast cancer.

  2. MicroRNA-548j functions as a metastasis promoter in human breast cancer by targeting Tensin1.

    PubMed

    Zhan, Yun; Liang, Xiaoshuan; Li, Lin; Wang, Baona; Ding, Fang; Li, Yi; Wang, Xiang; Zhan, Qimin; Liu, Zhihua

    2016-06-01

    MicroRNAs (miRNAs) are single-stranded, small non-coding RNA molecules that participate in important biological processes. Although the functions of many miRNAs in breast cancer metastasis have been established, the role of others remains to be characterized. To identify additional miRNAs involved in metastasis, we performed a genetic screen by transducing a Lenti-miR™ virus library into MCF-7 cells. Using transwell invasion assays we identified human miR-548j as an invasion-inducing miRNA. The endogenous levels of miR-548j expression in breast cancer cell lines were shown to correlate with invasiveness. Moreover, miR-548j was shown to stimulate breast cancer cell invasion and metastasis in vitro and in vivo, but had no effect on proliferation. Next, using a series of in vitro and in vivo experiments, we found that Tensin1 served as a direct and functional target of miR-548j. Both miR-548j and Tensin1 modulated the activation of Cdc42 to regulate cell invasion and siCdc42 or the selective Cdc42 inhibitor ML141 suppressed the pathway of miR-548j-mediated cell invasion. Furthermore, a strong correlation between miR-548j, Tensin1, metastasis and survival was observed using two sets of clinical breast cancer samples. Our findings demonstrate that miR-548j functions as a metastasis-promoting miRNA to regulate breast cancer cell invasion and metastasis by targeting Tensin1 and activating Cdc42, suggesting a potential therapeutic application in breast cancer. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer.

    PubMed

    Semkina, Alevtina S; Abakumov, Maxim A; Skorikov, Alexander S; Abakumova, Tatiana O; Melnikov, Pavel A; Grinenko, Nadejda F; Cherepanov, Sergey A; Vishnevskiy, Daniil A; Naumenko, Victor A; Ionova, Klavdiya P; Majouga, Alexander G; Chekhonin, Vladimir P

    2018-05-03

    In presented paper we have developed new system for cancer theranostics based on vascular endothelial growth factor (VEGF) targeted magnetic nanoparticles. Conjugation of anti-VEGF antibodies with bovine serum albumin coated PEGylated magnetic nanoparticles allows for improved binding with murine breast adenocarcinoma 4T1 cell line and facilitates doxorubicin delivery to tumor cells. It was shown that intravenous injection of doxorubicin loaded VEGF targeted nanoparticles increases median survival rate of mice bearing 4T1 tumors up to 50%. On the other hand magnetic resonance imaging (MRI) of 4T1 tumors 24 h after intravenous injection showed accumulation of nanoparticles in tumors, thus allowing simultaneous cancer therapy and diagnostics. Copyright © 2018. Published by Elsevier Inc.

  4. Targeting Transcription Elongation Machinery for Breast Cancer Therapy

    DTIC Science & Technology

    2017-04-01

    activation of EMT genes in breast cancer cells. 6-30 H. Lu (Zhou) 80% Subtask 2: Determine the molecular basis underlying high sensitivity of EMT and...interaction with the molecular chaperone heat shock protein HSP90 upon the KD. Fig. 1. Knockdown (KD) of HEXIM1 in T47D cells enhances breast cancer EMT...that the observed increase in EMT in ELL2-overexpressing cells was due to the elevated P-TEFb activity. Subtask 2: Determine the molecular basis

  5. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations.

    PubMed

    Fasehee, Hamidreza; Dinarvand, Rassoul; Ghavamzadeh, Ardeshir; Esfandyari-Manesh, Mehdi; Moradian, Hanieh; Faghihi, Shahab; Ghaffari, Seyed Hamidollah

    2016-04-21

    A folate-receptor-targeted poly (lactide-co-Glycolide) (PLGA)-Polyethylene glycol (PEG) nanoparticle is developed for encapsulation and delivery of disulfiram into breast cancer cells. After a comprehensive characterization of nanoparticles, cell cytotoxicity, apoptosis induction, cellular uptake and intracellular level of reactive oxygen species are analyzed. In vivo acute and chronic toxicity of nanoparticles and their efficacy on inhibition of breast cancer tumor growth is studied. The folate-receptor-targeted nanoparticles are internalized into the cells, induce reactive oxygen species formation, induce apoptosis and inhibit cell proliferation more efficiently compared to the untargeted nanoparticles. The acute and toxicity test show the maximum dose of disulfiram equivalent of nanoparticles for intra-venous injection is 6 mg/kg while show significant decrease in the breast cancer tumor growth rate. It is believed that the developed formulation could be used as a potential vehicle for successful delivery of disulfiram, an old and inexpensive drug, into breast cancer cells and other solid tumors.

  6. Targeting ESR1-Mutant Breast Cancer

    DTIC Science & Technology

    2015-09-01

    Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response , including the time...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c. THIS PAGE U UU...Cancer W81XWH-14-1-0359 5 2. Keywords Estrogen Receptor Estrogen Response Element Metastatic Breast Cancer Ligand Binding Domain Mutation

  7. Breast Cancer Treatment (PDQ®)—Patient Version

    Cancer.gov

    Breast cancer treatment depends on several factors and can include combinations of surgery, chemotherapy, radiation, hormone, and targeted therapy. Learn more about how breast cancer is diagnosed and treated in this expert-reviewed summary.

  8. MR-guided high-intensity focused ultrasound ablation of breast cancer with a dedicated breast platform.

    PubMed

    Merckel, Laura G; Bartels, Lambertus W; Köhler, Max O; van den Bongard, H J G Desirée; Deckers, Roel; Mali, Willem P Th M; Binkert, Christoph A; Moonen, Chrit T; Gilhuijs, Kenneth G A; van den Bosch, Maurice A A J

    2013-04-01

    Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.

  9. Alpha-v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    DTIC Science & Technology

    2008-08-01

    AD_________________ Award Number: W81XWH-04-1-0697 TITLE: Alpha -v Integrin Targeted PET Imaging of...SUBTITLE 5a. CONTRACT NUMBER Alpha -v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low- Dose Metronomic Anti-Angiogenic...Evaluation of biodistribution and anti-tumor effect of a dimeric RGD peptide-paclitaxel conjugate in mice with breast cancer” was published in Eur J Nucl

  10. Mitotic Vulnerability in Triple-Negative Breast Cancer Associated with LIN9 Is Targetable with BET Inhibitors.

    PubMed

    Sahni, Jennifer M; Gayle, Sylvia S; Webb, Bryan M; Weber-Bonk, Kristen L; Seachrist, Darcie D; Singh, Salendra; Sizemore, Steven T; Restrepo, Nicole A; Bebek, Gurkan; Scacheri, Peter C; Varadan, Vinay; Summers, Matthew K; Keri, Ruth A

    2017-10-01

    Triple-negative breast cancers (TNBC) are highly aggressive, lack FDA-approved targeted therapies, and frequently recur, making the discovery of novel therapeutic targets for this disease imperative. Our previous analysis of the molecular mechanisms of action of bromodomain and extraterminal protein inhibitors (BETi) in TNBC revealed these drugs cause multinucleation, indicating BET proteins are essential for efficient mitosis and cytokinesis. Here, using live cell imaging, we show that BET inhibition prolonged mitotic progression and induced mitotic cell death, both of which are indicative of mitotic catastrophe. Mechanistically, the mitosis regulator LIN9 was a direct target of BET proteins that mediated the effects of BET proteins on mitosis in TNBC. Although BETi have been proposed to function by dismantling super-enhancers (SE), the LIN9 gene lacks an SE but was amplified or overexpressed in the majority of TNBCs. In addition, its mRNA expression predicted poor outcome across breast cancer subtypes. Together, these results provide a mechanism for cancer selectivity of BETi that extends beyond modulation of SE-associated genes and suggest that cancers dependent upon LIN9 overexpression may be particularly vulnerable to BETi. Cancer Res; 77(19); 5395-408. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Urban Endocrine Disruptors Targeting Breast Cancer Proteins.

    PubMed

    Montes-Grajales, Diana; Bernardes, Gonçalo J L; Olivero-Verbel, Jesus

    2016-02-15

    Humans are exposed to a huge amount of environmental pollutants called endocrine disrupting chemicals (EDCs). These molecules interfere with the homeostasis of the body, usually through mimicking natural hormones leading to activation or blocking of their receptors. Many of these compounds have been associated with a broad range of diseases including the development or increased susceptibility to breast cancer, the most prevalent cancer in women worldwide, according to the World Health Organization. Thus, this article presents a virtual high-throughput screening (vHTS) to evaluate the affinity of proteins related to breast cancer, such as ESR1, ERBB2, PGR, BCRA1, and SHBG, among others, with EDCs from urban sources. A blind docking strategy was employed to screen each protein-ligand pair in triplicate in AutoDock Vina 2.0, using the computed binding affinities as ranking criteria. The three-dimensional structures were previously obtained from EDCs DataBank and Protein Data Bank, prepared and optimized by SYBYL X-2.0. Some of the chemicals that exhibited the best affinity scores for breast cancer proteins in each category were 1,3,7,8-tetrachlorodibenzo-p-dioxin, bisphenol A derivatives, perfluorooctanesulfonic acid, and benzo(a)pyrene, for catalase, several proteins, sex hormone-binding globulin, and cytochrome P450 1A2, respectively. An experimental validation of this approach was performed with a complex that gave a moderate binding affinity in silico, the sex hormone binding globulin (SHBG), and bisphenol A (BPA) complex. The protein was obtained using DNA recombinant technology and the physical interaction with BPA assessed through spectroscopic techniques. BPA binds on the recombinant SHBG, and this results in an increase of its α helix content. In short, this work shows the potential of several EDCs to bind breast cancer associated proteins as a tool to prioritize compounds to perform in vitro analysis to benefit the regulation or exposure prevention by the

  12. Antibody-Mediated BRCC36 Silencing: A Novel Approach for Targeted Breast Cancer Therapy

    DTIC Science & Technology

    2009-06-01

    complexes: new targets to overcome breast cancer radiation resistance. Expert Rev Anticancer Ther 6(2):187-96. Chen X, Arciero CA, Wang C, Broccoli D...1752s- 1756s. Chen X, Arciero CA, Wang C, Broccoli D, Godwin AK (2006). BRCC36 is essential for ionizing radiation-induced BRCA1 phosphorylation

  13. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    PubMed Central

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  14. Association of HADHA expression with the risk of breast cancer: targeted subset analysis and meta-analysis of microarray data

    PubMed Central

    2012-01-01

    Background The role of n-3 fatty acids in prevention of breast cancer is well recognized, but the underlying molecular mechanisms are still unclear. In view of the growing need for early detection of breast cancer, Graham et al. (2010) studied the microarray gene expression in histologically normal epithelium of subjects with or without breast cancer. We conducted a secondary analysis of this dataset with a focus on the genes (n = 47) involved in fat and lipid metabolism. We used stepwise multivariate logistic regression analyses, volcano plots and false discovery rates for association analyses. We also conducted meta-analyses of other microarray studies using random effects models for three outcomes--risk of breast cancer (380 breast cancer patients and 240 normal subjects), risk of metastasis (430 metastatic compared to 1104 non-metastatic breast cancers) and risk of recurrence (484 recurring versus 890 non-recurring breast cancers). Results The HADHA gene [hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit] was significantly under-expressed in breast cancer; more so in those with estrogen receptor-negative status. Our meta-analysis showed an 18.4%-26% reduction in HADHA expression in breast cancer. Also, there was an inconclusive but consistent under-expression of HADHA in subjects with metastatic and recurring breast cancers. Conclusions Involvement of mitochondria and the mitochondrial trifunctional protein (encoded by HADHA gene) in breast carcinogenesis is known. Our results lend additional support to the possibility of this involvement. Further, our results suggest that targeted subset analysis of large genome-based datasets can provide interesting association signals. PMID:22240105

  15. Mitochondrial targeted catalase suppresses invasive breast cancer in mice

    PubMed Central

    2011-01-01

    Background Treatment of invasive breast cancer has an alarmingly high rate of failure because effective targets have not been identified. One potential target is mitochondrial generated reactive oxygen species (ROS) because ROS production has been associated with changes in substrate metabolism and lower concentration of anti-oxidant enzymes in tumor and stromal cells and increased metastatic potential. Methods Transgenic mice expressing a human catalase gene (mCAT) were crossed with MMTV-PyMT transgenic mice that develop metastatic breast cancer. All mice (33 mCAT positive and 23 mCAT negative) were terminated at 110 days of age, when tumors were well advanced. Tumors were histologically assessed for invasiveness, proliferation and metastatic foci in the lungs. ROS levels and activation status of p38 MAPK were determined. Results PyMT mice expressing mCAT had a 12.5 per cent incidence of high histological grade primary tumor invasiveness compared to a 62.5 per cent incidence in PyMT mice without mCAT. The histological grade correlated with incidence of metastasis with 56 per cent of PyMT mice positive for mCAT showing evidence of pulmonary metastasis compared to 85.4 per cent of PyMT mice negative for mCAT with pulmonary metastasis (p ≤ 0.05). PyMT tumor cells expressing mCAT had lower ROS levels and were more resistant to hydrogen peroxide-induced oxidative stress than wild type tumor cells, suggesting that mCAT has the potential of quenching intracellular ROS and subsequent invasive behavior. The metastatic tumor burden in PyMT mice expressing mCAT was 0.1 mm2/cm2 of lung tissue compared with 1.3 mm2/cm2 of lung tissue in PyMT mice expressing the wild type allele (p ≤ 0.01), indicating that mCAT could play a role in mitigating metastatic tumor progression at a distant organ site. Expression of mCAT in the lungs increased resistance to hydrogen peroxide-induced oxidative stress that was associated with decreased activation of p38MAPK suggesting ROS signaling

  16. Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis

    PubMed Central

    Borin, Thaiz F.; Angara, Kartik; Rashid, Mohammad H.; Achyut, Bhagelu R.; Arbab, Ali S.

    2017-01-01

    Metastatic breast cancer (BC) (also referred to as stage IV) spreads beyond the breast to the bones, lungs, liver, or brain and is a major contributor to the deaths of cancer patients. Interestingly, metastasis is a result of stroma-coordinated hallmarks such as invasion and migration of the tumor cells from the primary niche, regrowth of the invading tumor cells in the distant organs, proliferation, vascularization, and immune suppression. Targeted therapies, when used as monotherapies or combination therapies, have shown limited success in decreasing the established metastatic growth and improving survival. Thus, novel therapeutic targets are warranted to improve the metastasis outcomes. We have been actively investigating the cytochrome P450 4 (CYP4) family of enzymes that can biosynthesize 20-hydroxyeicosatetraenoic acid (20-HETE), an important signaling eicosanoid involved in the regulation of vascular tone and angiogenesis. We have shown that 20-HETE can activate several intracellular protein kinases, pro-inflammatory mediators, and chemokines in cancer. This review article is focused on understanding the role of the arachidonic acid metabolic pathway in BC metastasis with an emphasis on 20-HETE as a novel therapeutic target to decrease BC metastasis. We have discussed all the significant investigational mechanisms and put forward studies showing how 20-HETE can promote angiogenesis and metastasis, and how its inhibition could affect the metastatic niches. Potential adjuvant therapies targeting the tumor microenvironment showing anti-tumor properties against BC and its lung metastasis are discussed at the end. This review will highlight the importance of exploring tumor-inherent and stromal-inherent metabolic pathways in the development of novel therapeutics for treating BC metastasis. PMID:29292756

  17. Fluorescence-guided surgery of a highly-metastatic variant of human triple-negative breast cancer targeted with a cancer-specific GFP adenovirus prevents recurrence

    PubMed Central

    Yano, Shuya; Takehara, Kiyoto; Miwa, Shinji; Kishimoto, Hiroyuki; Tazawa, Hiroshi; Urata, Yasuo; Kagawa, Shunsuke; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M.

    2016-01-01

    We have previously developed a genetically-engineered GFP-expressing telomerase-dependent adenovirus, OBP-401, which can selectively illuminate cancer cells. In the present report, we demonstrate that targeting a triple-negative high-invasive human breast cancer, orthotopically-growing in nude mice, with OBP-401 enables curative fluorescence-guided surgery (FGS). OBP-401 enabled complete resection and prevented local recurrence and greatly inhibited lymph-node metastasis due to the ability of the virus to selectively label and subsequently kill cancer cells. In contrast, residual breast cancer cells become more aggressive after bright (white)-light surgery (BLS). OBP-401-based FGS also improved the overall survival compared with conventional BLS. Thus, metastasis from a highly-aggressive triple-negative breast cancer can be prevented by FGS in a clinically-relevant mouse model. PMID:27689331

  18. Transforming growth factor-β signaling: emerging stem cell target in metastatic breast cancer?

    PubMed Central

    Tan, Antoinette R.; Alexe, Gabriela; Reiss, Michael

    2009-01-01

    In most human breast cancers, lowering of TGFβ receptor- or Smad gene expression combined with increased levels of TGFβs in the tumor microenvironment is sufficient to abrogate TGFβs tumor suppressive effects and to induce a mesenchymal, motile and invasive phenotype. In genetic mouse models, TGFβ signaling suppresses de novo mammary cancer formation but promotes metastasis of tumors that have broken through TGFβ tumor suppression. In mouse models of “triple-negative” or basal-like breast cancer, treatment with TGFβ neutralizing anti-bodies or receptor kinase inhibitors strongly inhibits development of lung- and bone metastases. These TGFβ antagonists do not significantly affect tumor cell proliferation or apoptosis. Rather, they de-repress anti-tumor immunity, inhibit angiogenesis and reverse the mesenchymal, motile, invasive phenotype characteristic of basal-like and HER2-positive breast cancer cells. Patterns of TGFβ target genes upregulation in human breast cancers suggest that TGFβ may drive tumor progression in estrogen-independent cancer, while it mediates a suppressive host cell response in estrogen-dependent luminal cancers. In addition, TGFβ appears to play a key role in maintaining the mammary epithelial (cancer) stem cell pool, in part by inducing a mesenchymal phenotype, while differentiated, estrogen receptor-positive, luminal cells are unresponsive to TGFβ because the TGFBR2 receptor gene is transcriptionally silent. These same cells respond to estrogen by downregulating TGFβ, while antiestrogens act by upregulating TGFβ. This model predicts that inhibiting TGFβ signaling should drive the differentiation of mammary stem cells into ductal cells. Consequently, TGFβ antagonists may convert basal-like or HER2-positive cancers to a more epithelioid, non-proliferating (and, perhaps, non-metastatic) phenotype. Conversely, these agents might antagonize the therapeutic effects of anti-estrogens in estrogen-dependent luminal cancers. These

  19. Radiation therapy for breast cancer: Literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaji, Karunakaran, E-mail: karthik.balaji85@gmail.com; School of Advanced Sciences, VIT University, Vellore; Subramanian, Balaji

    Concave shape with variable size target volume makes treatment planning for the breast/chest wall a challenge. Conventional techniques used for the breast/chest wall cancer treatment provided better sparing of organs at risk (OARs), with poor conformity and uniformity to the target volume. Advanced technologies such as intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) improve the target coverage at the cost of higher low dose volumes to OARs. Novel hybrid techniques present promising results in breast/chest wall irradiation in terms of target coverage as well as OARs sparing. Several published data compared these technologies for the benefit ofmore » the breast/chest wall with or without nodal volumes. The aim of this article is to review relevant data and identify the scope for further research in developing optimal treatment plan for breast/chest wall cancer treatment.« less

  20. Targeting Breast Cancer Micrometastases: To Eliminate the Seeds of Evil

    DTIC Science & Technology

    2017-04-01

    incurable and responsible for over 90% of breast cancer-related death . Thus, the prevention of metastasis is an imperative clinical need. We seek to...overcome the challenge of eliminating microscopic metastases of breast cancer, so that distant recurrences and related deaths can be significantly reduced

  1. Molecular Imaging and Precision Medicine in Breast Cancer.

    PubMed

    Chudgar, Amy V; Mankoff, David A

    2017-01-01

    Precision medicine, basing treatment approaches on patient traits and specific molecular features of disease processes, has an important role in the management of patients with breast cancer as targeted therapies continue to improve. PET imaging offers noninvasive information that is complementary to traditional tissue biomarkers, including information about tumor burden, tumor metabolism, receptor status, and proliferation. Several PET agents that image breast cancer receptors can visually demonstrate the extent and heterogeneity of receptor-positive disease and help predict which tumors are likely to respond to targeted treatments. This review presents applications of PET imaging in the targeted treatment of breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Targeted Cancer Therapy: Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity (Adv. Healthcare Mater. 11/2016).

    PubMed

    Othman, Basmah A; Greenwood, Christina; Abuelela, Ayman F; Bharath, Anil A; Chen, Shu; Theodorou, Ioannis; Douglas, Trevor; Uchida, Maskai; Ryan, Mary; Merzaban, Jasmeen S; Porter, Alexandra E

    2016-06-01

    On page 1310 J. S. Merzaban, A. E. Porter, and co-workers present fluorescently labeled RGD-targeted ZnO nanoparticles (NPs; green) for the targeted delivery of cytotoxic ZnO to integrin αvβ3 receptors expressed on triple negative breast cancer cells. Correlative light-electron microscopy shows that NPs dissolve into ionic Zn(2+) (blue) upon uptake and cause apoptosis (red) with intra-tumor heterogeneity, thereby providing a possible strategy for targeted breast cancer therapy. Cover design by Ivan Gromicho. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Guanylate-binding protein-1 is a potential new therapeutic target for triple-negative breast cancer.

    PubMed

    Quintero, Melissa; Adamoski, Douglas; Reis, Larissa Menezes Dos; Ascenção, Carolline Fernanda Rodrigues; Oliveira, Krishina Ratna Sousa de; Gonçalves, Kaliandra de Almeida; Dias, Marília Meira; Carazzolle, Marcelo Falsarella; Dias, Sandra Martha Gomes

    2017-11-07

    Triple-negative breast cancer (TNBC) is characterized by a lack of estrogen and progesterone receptor expression (ESR and PGR, respectively) and an absence of human epithelial growth factor receptor (ERBB2) amplification. Approximately 15-20% of breast malignancies are TNBC. Patients with TNBC often have an unfavorable prognosis. In addition, TNBC represents an important clinical challenge since it does not respond to hormone therapy. In this work, we integrated high-throughput mRNA sequencing (RNA-Seq) data from normal and tumor tissues (obtained from The Cancer Genome Atlas, TCGA) and cell lines obtained through in-house sequencing or available from the Gene Expression Omnibus (GEO) to generate a unified list of differentially expressed (DE) genes. Methylome and proteomic data were integrated to our analysis to give further support to our findings. Genes that were overexpressed in TNBC were then curated to retain new potentially druggable targets based on in silico analysis. Knocking-down was used to assess gene importance for TNBC cell proliferation. Our pipeline analysis generated a list of 243 potential new targets for treating TNBC. We finally demonstrated that knock-down of Guanylate-Binding Protein 1 (GBP1 ), one of the candidate genes, selectively affected the growth of TNBC cell lines. Moreover, we showed that GBP1 expression was controlled by epidermal growth factor receptor (EGFR) in breast cancer cell lines. We propose that GBP1 is a new potential druggable therapeutic target for treating TNBC with enhanced EGFR expression.

  4. Targeting the Psychosexual Challenges Faced by Couples with Breast Cancer: Can Couples Group Psychotherapy Help?

    PubMed Central

    Lagana, Luciana; Fobair, Patricia; Spiegel, David

    2016-01-01

    The need for the psychosexual rehabilitation of breast cancer survivors and their intimate partners is underscored by the high prevalence of multiple psychosexual difficulties encountered by this patient population. Concerns about health, sexuality, and emotional distress are common among women with breast cancer and are often related to the side effects of cancer treatment. Additionally, both intimate relationship problems and partners’ distress are likely to influence patients’ psychosexual health. A clearer understanding of these complex clinical issues is needed in order to implement effective psychosexual rehabilitation interventions. In this article, we extended the use of the manualized and empirically validated Supportive-Expressive Group Therapy (SEGT) model to target the specific psychosexual needs of couples with breast (as well as other types of) cancer. In view of the pertinent literature in this area and based on our clinical experience utilizing this group therapy model with different patient populations, we have discussed how clinicians involved in the psychosexual care of oncology patients could apply such a model within a couples group therapy format. PMID:27239398

  5. Epigenomics and breast cancer

    PubMed Central

    Lo, Pang-Kuo

    2009-01-01

    Breast carcinogenesis involves genetic and epigenetic alterations that cause aberrant gene function. Recent progress in the knowledge of epigenomics has had a profound impact on the understanding of mechanisms leading to breast cancer, and consequently the development of new strategies for diagnosis and treatment of breast cancer. Epigenetic regulation has been known to involve three mutually interacting events – DNA methylation, histone modifications and nucleosomal remodeling. These processes modulate chromatin structure to form euchromatin or heterochromatin, and in turn activate or silence gene expression. Alteration in expression of key genes through aberrant epigenetic regulation in breast cells can lead to initiation, promotion and maintenance of carcinogenesis, and is even implicated in the generation of drug resistance. We currently review known roles of the epigenetic machinery in the development and recurrence of breast cancer. Furthermore, we highlight the significance of epigenetic alterations as predictive biomarkers and as new targets of anticancer therapy. PMID:19072646

  6. Radium-223 dichloride bone-targeted alpha particle therapy for hormone-refractory breast cancer metastatic to bone

    PubMed Central

    2014-01-01

    Background Hormone-refractory breast cancer metastatic to bone is a clinically challenging disease associated with high morbidity, poor prognosis, and impaired quality of life owing to pain and skeletal-related events. In a preclinical study using a mouse model of breast cancer and bone metastases, Ra-223 dichloride was incorporated into bone matrix and inhibited proliferation of breast cancer cells and differentiation of osteoblasts and osteoclasts (all P values < .001) in vitro. Ra-223 dichloride also induced double-strand DNA breaks in cancer cells in vivo. Methods The US Food and Drug Administration recently approved radium-223 (Ra-223) dichloride (Ra-223; Xofigo injection) alpha-particle therapy for the treatment of symptomatic bone metastases in patients with castration-resistant prostate cancer. On the basis of a strong preclinical rationale, we used Ra-223 dichloride to treat bone metastases in a patient with breast cancer. Results A 44-year-old white woman with metastatic breast cancer who was estrogen receptor–positive, BRCA1-negative, BRCA2-negative, PIK3CA mutation (p.His1047Arg) positive presented with diffuse bony metastases and bone pain. She had hormone refractory and chemotherapy refractory breast cancer. After Ra-223 therapy initiation her bone pain improved, with corresponding decrease in tumor markers and mixed response in 18F-FDG PET/CT and 18F-NaF bone PET/CT. The patient derived clinical benefit from therapy. Conclusion We have shown that Ra-223 dichloride can be safely administered in a patient with hormone-refractory bone metastasis from breast cancer at the US FDA–approved dose for prostate cancer. Furthermore, because the treatment did not cause any drop in hematologic parameters, it has the potential to be combined with other radiosensitizing therapies, which may include chemotherapy or targeted therapies. Given that Ra-223 dichloride is already commercially available, this case report may help future patients and provide a

  7. Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system.

    PubMed

    Dadras, Pegah; Atyabi, Fatemeh; Irani, Shiva; Ma'mani, Leila; Foroumadi, Alireza; Mirzaie, Zahra Hadavand; Ebrahimi, Marzieh; Dinarvand, R

    2017-01-15

    Theranostic polymeric NPs developed for both cancer diagnosis and cancer therapy. This multifunctional polymeric vehicle was prepared by a single emulsion evaporation method, using carboxyl-terminated PLGA. LHRH as a targeting moiety, was conjugated to the surface of polymeric carrier by applying polyethylene glycol. The results indicated that the diameter of NPs was ~185.4±4.6nm as defined by DLS. The entrapment efficacy of docetaxel, silibinin, and SPIONs was 84.6±4.1%, 80.6±2.7%, and 77.9±4.3%, respectively. The NPs showed a triphasic in-vitro drug release pattern. MTT assay was done on two cell lines, MCF-7 and SKOV-3. Enhanced cellular uptake ability of the targeted NPs to MCF-7 was evaluated in-vitro by confocal laser scanning microscopy. The results indicated that compared to non-targeted NPs, the LHRH targeted NPs had significant efficacy at IC50 concentration. The effect of the NPs on VEGF expression in MCF-7 and SKOV-3 cells was investigated by Real-Time PCR method. VEGF mRNA level expression in MCF-7 cell line reduced by 83% in comparison to control cell line. The designed NPs can be used as promising multifunctional platform for detection and targeted drug delivery in breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. VE-cadherin RGD motifs promote metastasis and constitute a potential therapeutic target in melanoma and breast cancers.

    PubMed

    Bartolomé, Rubén A; Torres, Sofía; Isern de Val, Soledad; Escudero-Paniagua, Beatriz; Calviño, Eva; Teixidó, Joaquín; Casal, J Ignacio

    2017-01-03

    We have investigated the role of vascular-endothelial (VE)-cadherin in melanoma and breast cancer metastasis. We found that VE-cadherin is expressed in highly aggressive melanoma and breast cancer cell lines. Remarkably, inactivation of VE-cadherin triggered a significant loss of malignant traits (proliferation, adhesion, invasion and transendothelial migration) in melanoma and breast cancer cells. These effects, except transendothelial migration, were induced by the VE-cadherin RGD motifs. Co-immunoprecipitation experiments demonstrated an interaction between VE-cadherin and α2β1 integrin, with the RGD motifs found to directly affect β1 integrin activation. VE-cadherin-mediated integrin signaling occurred through specific activation of SRC, ERK and JNK, including AKT in melanoma. Knocking down VE-cadherin suppressed lung colonization capacity of melanoma or breast cancer cells inoculated in mice, while pre-incubation with VE-cadherin RGD peptides promoted lung metastasis for both cancer types. Finally, an in silico study revealed the association of high VE-cadherin expression with poor survival in a subset of melanoma patients and breast cancer patients showing low CD34 expression. These findings support a general role for VE-cadherin and other RGD cadherins as critical regulators of lung and liver metastasis in multiple solid tumours. These results pave the way for cadherin-specific RGD targeted therapies to control disseminated metastasis in multiple cancers.

  9. Carbohydrate Microarrays Identify Blood Group Precursor Cryptic Epitopes as Potential Immunological Targets of Breast Cancer

    PubMed Central

    Wang, Denong; Tang, Jin; Liu, Shaoyi

    2015-01-01

    Using carbohydrate microarrays, we explored potential natural ligands of antitumor monoclonal antibody HAE3. This antibody was raised against a murine mammary tumor antigen but was found to cross-react with a number of human epithelial tumors in tissues. Our carbohydrate microarray analysis reveals that HAE3 is specific for an O-glycan cryptic epitope that is normally hidden in the cores of blood group substances. Using HAE3 to screen tumor cell surface markers by flow cytometry, we found that the HAE3 glycoepitope, gpHAE3, was highly expressed by a number of human breast cancer cell lines, including some triple-negative cancers that lack the estrogen, progesterone, and Her2/neu receptors. Taken together, we demonstrate that HAE3 recognizes a conserved cryptic glycoepitope of blood group precursors, which is nevertheless selectively expressed and surface-exposed in certain breast tumor cells. The potential of this class of O-glycan cryptic antigens in breast cancer subtyping and targeted immunotherapy warrants further investigation. PMID:26539555

  10. Research Resource: Global Identification of Estrogen Receptor β Target Genes in Triple Negative Breast Cancer Cells

    PubMed Central

    Shanle, Erin K.; Zhao, Zibo; Hawse, John; Wisinski, Kari; Keles, Sunduz; Yuan, Ming

    2013-01-01

    Breast cancers that are negative for estrogen receptor α (ERα), progesterone receptor, and human epidermal growth factor receptor 2 are known as triple-negative breast cancers (TNBC). TNBCs are associated with an overall poor prognosis because they lack expression of therapeutic targets like ERα and are biologically more aggressive. A second estrogen receptor, ERβ, has been found to be expressed in 50% to 90% of ERα-negative breast cancers, and ERβ expression in TNBCs has been shown to correlate with improved disease-free survival and good prognosis. To elucidate the role of ERβ in regulating gene expression and cell proliferation in TNBC cells, the TNBC cell line MDA-MB-468 was engineered with inducible expression of full-length ERβ. In culture, ERβ expression inhibited cell growth by inducing a G1 cell cycle arrest, which was further enhanced by 17β-estradiol treatment. In xenografts, ERβ expression also inhibited tumor formation and growth, and 17β-estradiol treatment resulted in rapid tumor regression. Furthermore, genomic RNA sequencing identified both ligand-dependent and -independent ERβ target genes, some of which were also regulated by ERβ in other TNBC cell lines and correlated with ERβ expression in a cohort of TNBCs from the Cancer Genome Atlas Network. ERβ target genes were enriched in genes that regulate cell death and survival, cell movement, cell development, and growth and proliferation, as well as genes involved in the Wnt/β-catenin and the G1/S cell cycle phase checkpoint pathways. In addition to confirming the anti-proliferative effects of ERβ in TNBC cells, these data provide a comprehensive resource of ERβ target genes and suggest that ERβ may be targeted with ligands that can stimulate its growth inhibitory effects. PMID:23979844

  11. Family History of Breast Cancer, Breast Density, and Breast Cancer Risk in a U.S. Breast Cancer Screening Population.

    PubMed

    Ahern, Thomas P; Sprague, Brian L; Bissell, Michael C S; Miglioretti, Diana L; Buist, Diana S M; Braithwaite, Dejana; Kerlikowske, Karla

    2017-06-01

    Background: The utility of incorporating detailed family history into breast cancer risk prediction hinges on its independent contribution to breast cancer risk. We evaluated associations between detailed family history and breast cancer risk while accounting for breast density. Methods: We followed 222,019 participants ages 35 to 74 in the Breast Cancer Surveillance Consortium, of whom 2,456 developed invasive breast cancer. We calculated standardized breast cancer risks within joint strata of breast density and simple (1 st -degree female relative) or detailed (first-degree, second-degree, or first- and second-degree female relative) breast cancer family history. We fit log-binomial models to estimate age-specific breast cancer associations for simple and detailed family history, accounting for breast density. Results: Simple first-degree family history was associated with increased breast cancer risk compared with no first-degree history [Risk ratio (RR), 1.5; 95% confidence interval (CI), 1.0-2.1 at age 40; RR, 1.5; 95% CI, 1.3-1.7 at age 50; RR, 1.4; 95% CI, 1.2-1.6 at age 60; RR, 1.3; 95% CI, 1.1-1.5 at age 70). Breast cancer associations with detailed family history were strongest for women with first- and second-degree family history compared with no history (RR, 1.9; 95% CI, 1.1-3.2 at age 40); this association weakened in higher age groups (RR, 1.2; 95% CI, 0.88-1.5 at age 70). Associations did not change substantially when adjusted for breast density. Conclusions: Even with adjustment for breast density, a history of breast cancer in both first- and second-degree relatives is more strongly associated with breast cancer than simple first-degree family history. Impact: Future efforts to improve breast cancer risk prediction models should evaluate detailed family history as a risk factor. Cancer Epidemiol Biomarkers Prev; 26(6); 938-44. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. RNA interference targeting CD147 inhibits metastasis and invasion of human breast cancer MCF-7 cells by downregulating MMP-9/VEGF expression.

    PubMed

    Li, Fang; Zhang, Junping; Guo, Jiqiang; Jia, Yuan; Han, Yaping; Wang, Zhuanhua

    2018-06-12

    Breast cancer is one of the most common malignancies. It is necessary to identify new markers for predicting tumor progression and therapeutic molecular targets. It has been reported that CD147 is one of the most commonly expressed proteins in primary tumors and in metastatic cells. In this study, we investigated the role of CD147 in human breast cancer metastasis and invasion, and examined its underlying molecular mechanisms. Immunohistochemistry results revealed high expression of CD147 in human breast tumor tissues, which was positively correlated with the malignancy of breast cancer. MCF-7 cells were transfected with CD147 siRNA eukaryotic expression vector, which resulted in significant knockdown of CD147. We found that CD147 siRNA dramatically inhibited cell proliferation, metastasis, and invasion. Furthermore, our results demonstrated that CD147 siRNA inhibited the synthesis of matrix metalloproteinase 9 (MMP-9) but had no significant effect on matrix metalloproteinase 2 (MMP-2). In addition, CD147 siRNA significantly inhibited the production of vascular endothelial growth factor (VEGF). Taken together, these data indicate that CD147 promotes breast cancer cell proliferation, metastasis, and invasion by modulating MMP-9 and VEGF expression. Thus, CD147 may be used as an important indicator for the judgment of malignant behavior of breast cancer, and may be a potential novel target for breast cancer therapy.

  13. Breast cancer vaccines delivered by dendritic cell-targeted lentivectors induce potent antitumor immune responses and protect mice from mammary tumor growth.

    PubMed

    Bryson, Paul D; Han, Xiaolu; Truong, Norman; Wang, Pin

    2017-10-13

    Breast cancer immunotherapy is a potent treatment option, with antibody therapies such as trastuzumab increasing 2-year survival rates by 50%. However, active immunotherapy through vaccination has generally been clinically ineffective. One potential means of improving vaccine therapy is by delivering breast cancer antigens to dendritic cells (DCs) for enhanced antigen presentation. To accomplish this in vivo, we pseudotyped lentiviral vector (LV) vaccines with a modified Sindbis Virus glycoprotein so that they could deliver genes encoding the breast cancer antigen alpha-lactalbumin (Lalba) or erb-b2 receptor tyrosine kinase 2 (ERBB2 or HER2) directly to resident DCs. We hypothesized that utilizing these DC-targeting lentiviral vectors asa breast cancer vaccine could lead to an improved immune response against self-antigens found in breast cancer tumors. Indeed, single injections of the vaccine vectors were able to amplify antigen-specific CD8T cells 4-6-fold over naïve mice, similar to the best published vaccine regimens. Immunization of these mice completely inhibited tumor growth in a foreign antigen environment (LV-ERBB2 in wildtype mice), and it reduced the rate of tumor growth in a self-antigen environment (LV-Lalba in wildtype or LV-ERBB2 in MMTV-huHER2 transgenic). These results show that a single injection with targeted lentiviral vectors can be an effective immunotherapy for breast cancer. Furthermore, they could be combined with other immunotherapeutic regimens to improve outcomes for patients with breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Human Chorionic Gonadotropin and Breast Cancer

    PubMed Central

    Schüler-Toprak, Susanne; Treeck, Oliver; Ortmann, Olaf

    2017-01-01

    Breast cancer is well known as a malignancy being strongly influenced by female steroids. Pregnancy is a protective factor against breast cancer. Human chorionic gonadotropin (HCG) is a candidate hormone which could mediate this antitumoral effect of pregnancy. For this review article, all original research articles on the role of HCG in breast cancer were considered, which are listed in PubMed database and were written in English. The role of HCG in breast cancer seems to be a paradox. Placental heterodimeric HCG acts as a protective agent by imprinting a permanent genomic signature of the mammary gland determining a refractory condition to malignant transformation which is characterized by cellular differentiation, apoptosis and growth inhibition. On the other hand, ectopic expression of β-HCG in various cancer entities is associated with poor prognosis due to its tumor-promoting function. Placental HCG and ectopically expressed β-HCG exert opposite effects on breast tumorigenesis. Therefore, mimicking pregnancy by treatment with HCG is suggested as a strategy for breast cancer prevention, whereas targeting β-HCG expressing tumor cells seems to be an option for breast cancer therapy. PMID:28754015

  15. Targeting Epigenetics Therapy for Estrogen Receptor-Negative Breast Cancers

    DTIC Science & Technology

    2014-10-01

    inhibitor of both ERα+ and ERα_ breast cancers in vivo in a clinically -relevant xenograft animal model of breast cancer. In this aim, we...34 FTA EF"! >)8?! O18-38)%9! O-O8)4-! )3?)5)81,7! 9)78-4! )3! S%59-! =BD! N17896! 8?17-! O-O8)4-7! 7?1>-4!>-%V!5)34)3*7! 81!;ɘ=!>)8?!O11,! )3?)5)8)13!%𔄂

  16. Targeting Nuclear EGFR: Strategies for Improving Cetuximab Therapy in Lung Cancer

    DTIC Science & Technology

    2014-09-01

    Triple - negative breast cancer Mol Cancer Ther. 2014 May;13(5):1356-68. PMID: 24634415, PMCID: PMC4013210 6. Brand, TM, Iida, M...Receptor Is a Functional Molecular Target in Triple - Negative Breast Cancer . Molecular cancer therapeutics (2014). 11 26. Iida, M., Brand, T.M...2014). Brand, T.M., et al. Nuclear epidermal growth factor receptor is a functional molecular target in triple - negative breast cancer .

  17. Muscarinic Receptors as Targets for Metronomic Therapy in Breast Cancer.

    PubMed

    Sales, María Elena

    2016-01-01

    It is actually known that acetylcholine works as a signaling molecule in non-neuronal cells and tissues, in addition to its neuronal function as neurotransmitter. It can act on two types of receptors nicotinic and muscarinic receptors (mAChRs). The latter belong to the G protein coupled receptor family and there are five subtypes genetically cloned. Their activation triggers classical and non-classical intracellular signals that could be linked to the proliferation of normal and/or transformed cells. The M3 subtype was identified in different types of tumors and its stimulation with agonists triggers cell proliferation, migration, invasion and metastasis. Our laboratory has extensively investigated the expression and function of mAChRs in breast tumors from animal and human origins. We found a profuse expression of mAChRs in breast tumors, but opposite to this, an absence of these receptors in normal breast cells and tissues. The stimulation of mAChRs with the cholinergic agonist carbachol for 20 h increased tumor cell death. Moreover, the combination of subthreshold concentrations of the agonist with paclitaxel potentiates cell death. The usage of low dose chemotherapy with short drug free intervals was named metronomic therapy and it has emerged as a novel regimen for cancer treatment with very low incidence of side effects. Our work and that of others indicate that mAChRs that are over-expressed in different types of tumor cells could be a useful target for metronomic therapy in cancer treatment.

  18. Understanding breast cancer - The long and winding road.

    PubMed

    Lukong, Kiven Erique

    2017-06-01

    Despite a remarkable increase in the depth of our understanding and management of breast cancer in the past 50 years, the disease is still a major public health problem worldwide and poses significant challenges. The palpability of breast tumors has facilitated diagnosis and documentation since ancient times. The earliest descriptions of breast cancer date back to around 3500 BCE. For centuries to follow, theories by Hippocrates (460 BCE) and Galen (200 CE), attributing the cause of breast cancer to an "excess of black bile" and treatment options including the use of opium and castor oil, prevailed. Surgical resection was introduced in the 18th century. The advent of modern medicine led to the development of novel treatment options that include hormonal, targeted and chemo-therapies. There are still several therapeutic challenges including the treatment of triple negative breast cancer (TNBC), and overcoming drug resistance. The increased incidence and awareness of breast cancer has led to significant changes in diagnosis and treatment in recent decades. But, mankind has come a long way. Herein, I have traced how our understanding of breast cancer has evolved from the early description of the disease around 460 BCE as "black bile-containing crab-like tumors" to the conventional as a heterogeneous disease with high degree of diversity between and within tumors, as well as among breast cancer patients. How is breast cancer treated today and how do risk factors, breast cancer subtype and drug resistance contribute to the therapeutic challenges at the turn of the 21st century? Breast cancer remains a serious public health issue worldwide. However, appreciable growth in our understanding of breast cancer in the past century has led to remarkable progress in the early detection, treatment and prevention of the disease. The clinical focus is shifting more towards tailored therapy as more targets are characterized and novel highly innovative approaches are developed

  19. Phenotypic high-throughput screening elucidates target pathway in breast cancer stem cell-like cells.

    PubMed

    Carmody, Leigh C; Germain, Andrew R; VerPlank, Lynn; Nag, Partha P; Muñoz, Benito; Perez, Jose R; Palmer, Michelle A J

    2012-10-01

    Cancer stem cells (CSCs) are resistant to standard cancer treatments and are likely responsible for cancer recurrence, but few therapies target this subpopulation. Due to the difficulty in propagating CSCs outside of the tumor environment, previous work identified CSC-like cells by inducing human breast epithelial cells into an epithelial-to-mesenchymal transdifferentiated state (HMLE_sh_ECad). A phenotypic screen was conducted against HMLE_sh_ECad with 300 718 compounds from the Molecular Libraries Small Molecule Repository to identify selective inhibitors of CSC growth. The screen yielded 2244 hits that were evaluated for toxicity and selectivity toward an isogenic control cell line. An acyl hydrazone scaffold emerged as a potent and selective scaffold targeting HMLE_sh_ECad. Fifty-three analogues were acquired and tested; compounds ranged in potency from 790 nM to inactive against HMLE_sh_ECad. Of the analogues, ML239 was best-in-class with an IC(50)= 1.18 µM against HMLE_sh_ECad, demonstrated a >23-fold selectivity over the control line, and was toxic to another CSC-like line, HMLE_shTwist, and a breast carcinoma cell line, MDA-MB-231. Gene expression studies conducted with ML239-treated cells showed altered gene expression in the NF-κB pathway in the HMLE_sh_ECad line but not in the isogenic control line. Future studies will be directed toward the identification of ML239 target(s).

  20. Development of 99mTc-radiolabeled nanosilica for targeted detection of HER2-positive breast cancer

    PubMed Central

    Rainone, Paolo; Riva, Benedetta; Belloli, Sara; Sudati, Francesco; Ripamonti, Marilena; Verderio, Paolo; Colombo, Miriam; Colzani, Barbara; Gilardi, Maria Carla; Moresco, Rosa Maria; Prosperi, Davide

    2017-01-01

    The human epidermal growth factor receptor 2 (HER2) is normally associated with a highly aggressive and infiltrating phenotype in breast cancer lesions with propensity to spread into metastases. In clinic, the detection of HER2 in primary tumors and in their metastases is currently based on invasive methods. Recently, nuclear molecular imaging techniques, including positron emission tomography and single photon emission computed tomography (SPECT), allowed the detection of HER2 lesions in vivo. We have developed a 99mTc-radiolabeled nanosilica system, functionalized with a trastuzumab half-chain, able to act as drug carrier and SPECT radiotracer for the identification of HER2-positive breast cancer cells. To this aim, nanoparticles functionalized or not with trastuzumab half-chain, were radiolabeled using the 99mTc-tricarbonyl approach and evaluated in HER2 positive and negative breast cancer models. Cell uptake experiments, combined with flow cytometry and fluorescence imaging, suggested that active targeting provides higher efficiency and selectivity in tumor detection compared to passive diffusion, indicating that our radiolabeling strategy did not affect the nanoconjugate binding efficiency. Ex vivo biodistribution of 99mTc-nanosilica in a SK-BR-3 (HER2+) tumor xenograft at 4 h postinjection was higher in targeted compared to nontargeted nanosilica, confirming the in vitro data. In addition, viability and toxicity tests provided evidence on nanoparticle safety in cell cultures. Our results encourage further assessment of silica 99mTc-nanoconjugates to validate a safe and versatile nanoreporter system for both diagnosis and treatment of aggressive breast cancer. PMID:28496321

  1. Association analysis identifies 65 new breast cancer risk loci

    PubMed Central

    Lemaçon, Audrey; Soucy, Penny; Glubb, Dylan; Rostamianfar, Asha; Bolla, Manjeet K.; Wang, Qin; Tyrer, Jonathan; Dicks, Ed; Lee, Andrew; Wang, Zhaoming; Allen, Jamie; Keeman, Renske; Eilber, Ursula; French, Juliet D.; Chen, Xiao Qing; Fachal, Laura; McCue, Karen; McCart Reed, Amy E.; Ghoussaini, Maya; Carroll, Jason; Jiang, Xia; Finucane, Hilary; Adams, Marcia; Adank, Muriel A.; Ahsan, Habibul; Aittomäki, Kristiina; Anton-Culver, Hoda; Antonenkova, Natalia N.; Arndt, Volker; Aronson, Kristan J.; Arun, Banu; Auer, Paul L.; Bacot, François; Barrdahl, Myrto; Baynes, Caroline; Beckmann, Matthias W.; Behrens, Sabine; Benitez, Javier; Bermisheva, Marina; Bernstein, Leslie; Blomqvist, Carl; Bogdanova, Natalia V.; Bojesen, Stig E.; Bonanni, Bernardo; Børresen-Dale, Anne-Lise; Brand, Judith S.; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Broberg, Per; Brock, Ian W.; Broeks, Annegien; Brooks-Wilson, Angela; Brucker, Sara Y.; Brüning, Thomas; Burwinkel, Barbara; Butterbach, Katja; Cai, Qiuyin; Cai, Hui; Caldés, Trinidad; Canzian, Federico; Carracedo, Angel; Carter, Brian D.; Castelao, Jose E.; Chan, Tsun L.; Cheng, Ting-Yuan David; Chia, Kee Seng; Choi, Ji-Yeob; Christiansen, Hans; Clarke, Christine L.; Collée, Margriet; Conroy, Don M.; Cordina-Duverger, Emilie; Cornelissen, Sten; Cox, David G; Cox, Angela; Cross, Simon S.; Cunningham, Julie M.; Czene, Kamila; Daly, Mary B.; Devilee, Peter; Doheny, Kimberly F.; Dörk, Thilo; dos-Santos-Silva, Isabel; Dumont, Martine; Durcan, Lorraine; Dwek, Miriam; Eccles, Diana M.; Ekici, Arif B.; Eliassen, A. Heather; Ellberg, Carolina; Elvira, Mingajeva; Engel, Christoph; Eriksson, Mikael; Fasching, Peter A.; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fritschi, Lin; Gaborieau, Valerie; Gabrielson, Marike; Gago-Dominguez, Manuela; Gao, Yu-Tang; Gapstur, Susan M.; García-Sáenz, José A.; Gaudet, Mia M.; Georgoulias, Vassilios; Giles, Graham G.; Glendon, Gord; Goldberg, Mark S.; Goldgar, David E.; González-Neira, Anna; Grenaker Alnæs, Grethe I.; Grip, Mervi; Gronwald, Jacek; Grundy, Anne; Guénel, Pascal; Haeberle, Lothar; Hahnen, Eric; Haiman, Christopher A.; Håkansson, Niclas; Hamann, Ute; Hamel, Nathalie; Hankinson, Susan; Harrington, Patricia; Hart, Steven N.; Hartikainen, Jaana M.; Hartman, Mikael; Hein, Alexander; Heyworth, Jane; Hicks, Belynda; Hillemanns, Peter; Ho, Dona N.; Hollestelle, Antoinette; Hooning, Maartje J.; Hoover, Robert N.; Hopper, John L.; Hou, Ming-Feng; Hsiung, Chia-Ni; Huang, Guanmengqian; Humphreys, Keith; Ishiguro, Junko; Ito, Hidemi; Iwasaki, Motoki; Iwata, Hiroji; Jakubowska, Anna; Janni, Wolfgang; John, Esther M.; Johnson, Nichola; Jones, Kristine; Jones, Michael; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Kabisch, Maria; Kaczmarek, Katarzyna; Kang, Daehee; Kasuga, Yoshio; Kerin, Michael J.; Khan, Sofia; Khusnutdinova, Elza; Kiiski, Johanna I.; Kim, Sung-Won; Knight, Julia A.; Kosma, Veli-Matti; Kristensen, Vessela N.; Krüger, Ute; Kwong, Ava; Lambrechts, Diether; Marchand, Loic Le; Lee, Eunjung; Lee, Min Hyuk; Lee, Jong Won; Lee, Chuen Neng; Lejbkowicz, Flavio; Li, Jingmei; Lilyquist, Jenna; Lindblom, Annika; Lissowska, Jolanta; Lo, Wing-Yee; Loibl, Sibylle; Long, Jirong; Lophatananon, Artitaya; Lubinski, Jan; Luccarini, Craig; Lux, Michael P.; Ma, Edmond S.K.; MacInnis, Robert J.; Maishman, Tom; Makalic, Enes; Malone, Kathleen E; Kostovska, Ivana Maleva; Mannermaa, Arto; Manoukian, Siranoush; Manson, JoAnn E.; Margolin, Sara; Mariapun, Shivaani; Martinez, Maria Elena; Matsuo, Keitaro; Mavroudis, Dimitrios; McKay, James; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Menéndez, Primitiva; Menon, Usha; Meyer, Jeffery; Miao, Hui; Miller, Nicola; Mohd Taib, Nur Aishah; Muir, Kenneth; Mulligan, Anna Marie; Mulot, Claire; Neuhausen, Susan L.; Nevanlinna, Heli; Neven, Patrick; Nielsen, Sune F.; Noh, Dong-Young; Nordestgaard, Børge G.; Norman, Aaron; Olopade, Olufunmilayo I.; Olson, Janet E.; Olsson, Håkan; Olswold, Curtis; Orr, Nick; Pankratz, V. Shane; Park, Sue K.; Park-Simon, Tjoung-Won; Lloyd, Rachel; Perez, Jose I.A.; Peterlongo, Paolo; Peto, Julian; Phillips, Kelly-Anne; Pinchev, Mila; Plaseska-Karanfilska, Dijana; Prentice, Ross; Presneau, Nadege; Prokofieva, Darya; Pugh, Elizabeth; Pylkäs, Katri; Rack, Brigitte; Radice, Paolo; Rahman, Nazneen; Rennert, Gadi; Rennert, Hedy S.; Rhenius, Valerie; Romero, Atocha; Romm, Jane; Ruddy, Kathryn J; Rüdiger, Thomas; Rudolph, Anja; Ruebner, Matthias; Rutgers, Emiel J. Th.; Saloustros, Emmanouil; Sandler, Dale P.; Sangrajrang, Suleeporn; Sawyer, Elinor J.; Schmidt, Daniel F.; Schmutzler, Rita K.; Schneeweiss, Andreas; Schoemaker, Minouk J.; Schumacher, Fredrick; Schürmann, Peter; Scott, Rodney J.; Scott, Christopher; Seal, Sheila; Seynaeve, Caroline; Shah, Mitul; Sharma, Priyanka; Shen, Chen-Yang; Sheng, Grace; Sherman, Mark E.; Shrubsole, Martha J.; Shu, Xiao-Ou; Smeets, Ann; Sohn, Christof; Southey, Melissa C.; Spinelli, John J.; Stegmaier, Christa; Stewart-Brown, Sarah; Stone, Jennifer; Stram, Daniel O.; Surowy, Harald; Swerdlow, Anthony; Tamimi, Rulla; Taylor, Jack A.; Tengström, Maria; Teo, Soo H.; Terry, Mary Beth; Tessier, Daniel C.; Thanasitthichai, Somchai; Thöne, Kathrin; Tollenaar, Rob A.E.M.; Tomlinson, Ian; Tong, Ling; Torres, Diana; Truong, Thérèse; Tseng, Chiu-chen; Tsugane, Shoichiro; Ulmer, Hans-Ulrich; Ursin, Giske; Untch, Michael; Vachon, Celine; van Asperen, Christi J.; Van Den Berg, David; van den Ouweland, Ans M.W.; van der Kolk, Lizet; van der Luijt, Rob B.; Vincent, Daniel; Vollenweider, Jason; Waisfisz, Quinten; Wang-Gohrke, Shan; Weinberg, Clarice R.; Wendt, Camilla; Whittemore, Alice S.; Wildiers, Hans; Willett, Walter; Winqvist, Robert; Wolk, Alicja; Wu, Anna H.; Xia, Lucy; Yamaji, Taiki; Yang, Xiaohong R.; Yip, Cheng Har; Yoo, Keun-Young; Yu, Jyh-Cherng; Zheng, Wei; Zheng, Ying; Zhu, Bin; Ziogas, Argyrios; Ziv, Elad; Lakhani, Sunil R.; Antoniou, Antonis C.; Droit, Arnaud; Andrulis, Irene L.; Amos, Christopher I.; Couch, Fergus J.; Pharoah, Paul D.P.; Chang-Claude, Jenny; Hall, Per; Hunter, David J.; Milne, Roger L.; García-Closas, Montserrat; Schmidt, Marjanka K.; Chanock, Stephen J.; Dunning, Alison M.; Edwards, Stacey L.; Bader, Gary D.; Chenevix-Trench, Georgia; Simard, Jacques; Kraft, Peter; Easton, Douglas F.

    2017-01-01

    Breast cancer risk is influenced by rare coding variants in susceptibility genes such as BRCA1 and many common, mainly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. We report results from a genome-wide association study (GWAS) of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry1. We identified 65 new loci associated with overall breast cancer at p<5x10-8. The majority of credible risk SNPs in the new loci fall in distal regulatory elements, and by integrating in-silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all SNPs in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the utility of genetic risk scores for individualized screening and prevention. PMID:29059683

  2. miR-378a-3p modulates tamoxifen sensitivity in breast cancer MCF-7 cells through targeting GOLT1A

    PubMed Central

    Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Ueno, Toshihide; Suzuki, Takashi; Sato, Wataru; Shigekawa, Takashi; Osaki, Akihiko; Saeki, Toshiaki; Berezikov, Eugene; Mano, Hiroyuki; Inoue, Satoshi

    2015-01-01

    Breast cancer is a hormone-dependent cancer and usually treated with endocrine therapy using aromatase inhibitors or anti-estrogens such as tamoxifen. A majority of breast cancer, however, will often fail to respond to endocrine therapy. In the present study, we explored miRNAs associated with endocrine therapy resistance in breast cancer. High-throughput miRNA sequencing was performed using RNAs prepared from breast cancer MCF-7 cells and their derivative clones as endocrine therapy resistant cell models, including tamoxifen-resistant (TamR) and long-term estrogen-deprived (LTED) MCF-7 cells. Notably, miR-21 was the most abundantly expressed miRNA in MCF-7 cells and overexpressed in TamR and LTED cells. We found that miR-378a-3p expression was downregulated in TamR and LTED cells as well as in clinical breast cancer tissues. Additionally, lower expression levels of miR-378a-3p were associated with poor prognosis for tamoxifen-treated patients with breast cancer. GOLT1A was selected as one of the miR-378a-3p candidate target genes by in silico analysis. GOLT1A was overexpressed in breast cancer specimens and GOLT1A-specific siRNAs inhibited the growth of TamR cells. Low GOLT1A levels were correlated with better survival in patients with breast cancer. These results suggest that miR-378a-3p-dependent GOLT1A expression contributes to the mechanisms underlying breast cancer endocrine resistance. PMID:26255816

  3. Patient navigation in breast cancer: a systematic review.

    PubMed

    Robinson-White, Stephanie; Conroy, Brenna; Slavish, Kathleen H; Rosenzweig, Margaret

    2010-01-01

    The role of the patient navigator in cancer care and specifically in breast cancer care has grown to incorporate many titles and functions. To better evaluate the outcomes of patient navigation in breast cancer care, a comprehensive review of empiric literature detailing the efficacy of breast cancer navigation on breast cancer outcomes (screening, diagnosis, treatment, and participation in clinical research) was performed. Published articles were reviewed if published in the scientific literature between January 1990 and April 2009. Searches were conducted using PubMed and Ovid databases. Search terms included MeSH (Medical Subject Headings) terms, "patient navigator," "navigation," "breast cancer," and "adherence." Data-based literature indicates that the role of patient navigation is diverse with multiple roles and targeted populations. Navigation across many aspects of the breast cancer disease trajectory improves adherence to breast cancer care. The empiric review found that navigation interventions have been more commonly applied in breast cancer screening and early diagnosis than for adherence to treatment. There is evidence supporting the role of patient navigation in breast cancer to improve many aspects of breast cancer care. Data describing the role of patient navigation in breast cancer will assist in better defining future direction for the breast navigation role. Ongoing research will better inform issues related to role definition, integration into clinical breast cancer care, impact on quality of life, cost-effectiveness, and sustainability.

  4. Molecular Markers for Breast Cancer: Prediction on Tumor Behavior

    PubMed Central

    Banin Hirata, Bruna Karina; Oda, Julie Massayo Maeda; Losi Guembarovski, Roberta; Ariza, Carolina Batista; de Oliveira, Carlos Eduardo Coral; Watanabe, Maria Angelica Ehara

    2014-01-01

    Breast cancer is one of the most common cancers with greater than 1,300,000 cases and 450,000 deaths each year worldwide. The development of breast cancer involves a progression through intermediate stages until the invasive carcinoma and finally into metastatic disease. Given the variability in clinical progression, the identification of markers that could predict the tumor behavior is particularly important in breast cancer. The determination of tumor markers is a useful tool for clinical management in cancer patients, assisting in diagnostic, staging, evaluation of therapeutic response, detection of recurrence and metastasis, and development of new treatment modalities. In this context, this review aims to discuss the main tumor markers in breast carcinogenesis. The most well-established breast molecular markers with prognostic and/or therapeutic value like hormone receptors, HER-2 oncogene, Ki-67, and p53 proteins, and the genes for hereditary breast cancer will be presented. Furthermore, this review shows the new molecular targets in breast cancer: CXCR4, caveolin, miRNA, and FOXP3, as promising candidates for future development of effective and targeted therapies, also with lower toxicity. PMID:24591761

  5. Identification of Small Ligands Targeting Breast Cancer by In Vivo Screening of Peptide Libraries in Breast Cancer Patients

    DTIC Science & Technology

    2000-09-01

    safety of IV injection of filamentous phage in humans, including the use of filamentous phage as an effective vaccine vehicle and also as a vehicle...Society National Surgical Adjuvant Breast and Bowel Project New England Cancer Society Society of Surgical Oncology Vermont Cancer Center...PROFESSIONAL SOCIETY COMMITTEES National Surgical Adjuvant Breast and Bowel Project 1991 -Present Principal Investigator for clinical trials, University of

  6. Use of Synthetic Isoprenoids to Target Protein Prenylation and Rho GTPases in Breast Cancer Invasion

    PubMed Central

    Chen, Min; Knifley, Teresa; Subramanian, Thangaiah; Spielmann, H. Peter; O’Connor, Kathleen L.

    2014-01-01

    Dysregulation of Ras and Rho family small GTPases drives the invasion and metastasis of multiple cancers. For their biological functions, these GTPases require proper subcellular localization to cellular membranes, which is regulated by a series of post-translational modifications that result in either farnesylation or geranylgeranylation of the C-terminal CAAX motif. This concept provided the rationale for targeting farnesyltransferase (FTase) and geranylgeranyltransferases (GGTase) for cancer treatment. However, the resulting prenyl transferase inhibitors have not performed well in the clinic due to issues with alternative prenylation and toxicity. As an alternative, we have developed a unique class of potential anti-cancer therapeutics called Prenyl Function Inhibitors (PFIs), which are farnesol or geranyl-geraniol analogs that act as alternate substrates for FTase or GGTase. Here, we test the ability of our lead PFIs, anilinogeraniol (AGOH) and anilinofarnesol (AFOH), to block the invasion of breast cancer cells. We found that AGOH treatment effectively decreased invasion of MDA-MB-231 cells in a two-dimensional (2D) invasion assay at 100 µM while it blocked invasive growth in three-dimensional (3D) culture model at as little as 20 µM. Notably, the effect of AGOH on 3D invasive growth was phenocopied by electroporation of cells with C3 exotransferase. To determine if RhoA and RhoC were direct targets of AGOH, we performed Rho activity assays in MDA-MB-231 and MDA-MB-468 cells and found that AGOH blocked RhoA and RhoC activation in response to LPA and EGF stimulation. Notably, the geranylgeraniol analog AFOH was more potent than AGOH in inhibiting RhoA and RhoC activation and invasive growth. Interestingly, neither AGOH nor AFOH impacted 3D growth of MCF10A cells. Collectively, this study demonstrates that AGOH and AFOH dramatically inhibit breast cancer invasion, at least in part by blocking Rho function, thus, suggesting that targeting prenylation by using

  7. The sigma-2 receptor as a therapeutic target for drug delivery in triple negative breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makvandi, Mehran; Tilahun, Estifanos D.; Lieberman, Brian P.

    Background: Triple-negative breast cancer (TNBC) is associated with high relapse rates and increased mortality when compared with other breast cancer subtypes. In contrast to receptor positive breast cancers, there are no approved targeted therapies for TNBC. Identifying biomarkers for TNBC is of high importance for the advancement of patient care. The sigma-2 receptor has been shown to be overexpressed in triple negative breast cancer in vivo and has been characterized as a marker of proliferation. The aim of the present study was to define the sigma-2 receptor as a target for therapeutic drug delivery and biomarker in TNBC. Methods: Three TNBCmore » cell lines were evaluated: MDA-MB-231, HCC1937 and HCC1806. Sigma-2 compounds were tested for pharmacological properties specific to the sigma-2 receptor through competitive inhibition assays. Sigma-2 receptor expression was measured through radioligand receptor saturation studies. Drug sensitivity for taxol was compared to a sigma-2 targeting compound conjugated to a cytotoxic payload, SW IV-134. Cell viability was assessed after treatments for 2 or 48 h. Sigma-2 blockade was assessed to define sigma-2 mediated cytotoxicity of SW IV-134. Caspase 3/7 activation induced by SW IV-134 was measured at corresponding treatment time points. Results: SW IV-134 was the most potent compound tested in two of the three cell lines and was similarly effective in all three. MDA-MB-231 displayed a statistically significant higher sigma-2 receptor expression and also was the most sensitive cell line evaluated to SW IV-134. Conclusion: Targeting the sigma-2 receptor with a cytotoxic payload was effective in all the three cell lines evaluated and provides the proof of concept for future development of a therapeutic platform for the treatment of TNBC. - Highlights: • TNBC cells are sensitive to sigma-2 receptor targeted drug conjugate SW IV-134. • MDA-MB-231 displayed the highest amount of sigma-2 receptors and corresponded well

  8. Breast Cancer: Conventional Diagnosis and Treatment Modalities and Recent Patents and Technologies

    PubMed Central

    Nounou, Mohamed I.; ElAmrawy, Fatema; Ahmed, Nada; Abdelraouf, Kamilia; Goda, Satyanarayana; Syed-Sha-Qhattal, Hussaini

    2015-01-01

    Breast cancer is the most prevalent cancer among women worldwide. However, increased survival is due to the dramatic advances in the screening methods, early diagnosis, and breakthroughs in treatments. Over the course of the last decade, many acquisitions have taken place in this critical field of research in the pharmaceutical industry. Advances in molecular biology and pharmacology aided in better understanding of breast cancer, enabling the design of smarter therapeutics able to target cancer and respond to its microenvironment efficiently. Patents and research papers investigating diagnosis and treatment strategies for breast cancer using novel technologies have been surveyed for the past 15 years. Various nanocarriers have been introduced to improve the therapeutic efficacy of anticancer drugs, including liposomes, polymeric micelles, quantum dots, nanoparticles, and dendrimers. This review provides an overview of breast cancer, conventional therapy, novel technologies in the management of breast cancer, and rational approaches for targeting breast cancer. HIGHLIGHTS Breast cancer is the most common cancer in women worldwide. However, survival rates vary widely, optimistically heading toward a positive trend. Increased survival is due to the drastic shift in the screening methods, early diagnosis, and breakthroughs in treatments. Different strategies of breast cancer classification and staging have evolved over the years. Intrinsic (molecular) subtyping is essential in clinical trials and well understanding of the disease. Many novel technologies are being developed to detect distant metastases and recurrent disease as well as to assess response to breast cancer management. Intensive research efforts are actively ongoing to take novel breast cancer therapeutics to potential clinical application. Most of the recent research papers and patents discuss one of the following strategies: the development of new drug entities that specifically target the breast tumor

  9. A Physical Mechanism and Global Quantification of Breast Cancer

    PubMed Central

    Yu, Chong; Wang, Jin

    2016-01-01

    Initiation and progression of cancer depend on many factors. Those on the genetic level are often considered crucial. To gain insight into the physical mechanisms of breast cancer, we construct a gene regulatory network (GRN) which reflects both genetic and environmental aspects of breast cancer. The construction of the GRN is based on available experimental data. Three basins of attraction, representing the normal, premalignant and cancer states respectively, were found on the phenotypic landscape. The progression of breast cancer can be seen as switching transitions between different state basins. We quantified the stabilities and kinetic paths of the three state basins to uncover the biological process of breast cancer formation. The gene expression levels at each state were obtained, which can be tested directly in experiments. Furthermore, by performing global sensitivity analysis on the landscape topography, six key genes (HER2, MDM2, TP53, BRCA1, ATM, CDK2) and four regulations (HER2⊣TP53, CDK2⊣BRCA1, ATM→MDM2, TP53→ATM) were identified as being critical for breast cancer. Interestingly, HER2 and MDM2 are the most popular targets for treating breast cancer. BRCA1 and TP53 are the most important oncogene of breast cancer and tumor suppressor gene, respectively. This further validates the feasibility of our model and the reliability of our prediction results. The regulation ATM→MDM2 has been extensive studied on DNA damage but not on breast cancer. We notice the importance of ATM→MDM2 on breast cancer. Previous studies of breast cancer have often focused on individual genes and the anti-cancer drugs are mainly used to target the individual genes. Our results show that the network-based strategy is more effective on treating breast cancer. The landscape approach serves as a new strategy for analyzing breast cancer on both the genetic and epigenetic levels and can help on designing network based medicine for breast cancer. PMID:27410227

  10. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Xin; Lyu, Pengwei; Cao, Zhang

    miRNAs, sorting as non-coding RNAs, are differentially expressed in breast tumor and act as tumor promoters or suppressors. miR-206 could suppress the progression of breast cancer, the mechanism of which remains unclear. The study here was aimed to investigate the effect of miR-206 on human breast cancers. We found that miR-206 was down-regulated while one of its predicted targets, 6-Phosphofructo-2-kinase (PFKFB3) was up-regulated in human breast carcinomas. 17β-estradiol dose-dependently decreased miR-206 expression as well as enhanced PFKFB3 mRNA and protein expression in estrogen receptor α (ERα) positive breast cancer cells. Furthermore, we identified that miR-206 directly interacted with 3′-untranslated regionmore » (UTR) of PFKFB3 mRNA. miR-206 modulated PFKFB3 expression in MCF-7, T47D and SUM159 cells, which was influenced by 17β-estradiol depending on ERα expression. In addition, miR-206 overexpression impeded fructose-2,6-bisphosphate (F2,6BP) production, diminished lactate generation and reduced cell proliferation and migration in breast cancer cells. In conclusion, our study demonstrated that miR-206 regulated PFKFB3 expression in breast cancer cells, thereby stunting glycolysis, cell proliferation and migration. - Highlights: • miR-206 was down-regulated and PFKFB3 was up-regulated in human breast carcinomas. • 17β-estradiol regulated miR-206 and PFKFB3 expression in ERα+ cancer cells. • miR-206directly interacted with 3′-UTR of PFKFB3 mRNA. • miR-206 fructose-2,6-bisphosphate (F2,6BP) impeded production and lactate generation. • miR-206 reduced cell proliferation and migration in breast cancer cells.« less

  11. How may targeted proteomics complement genomic data in breast cancer?

    PubMed

    Guerin, Mathilde; Gonçalves, Anthony; Toiron, Yves; Baudelet, Emilie; Audebert, Stéphane; Boyer, Jean-Baptiste; Borg, Jean-Paul; Camoin, Luc

    2017-01-01

    Breast cancer (BC) is the most common female cancer in the world and was recently deconstructed in different molecular entities. Although most of the recent assays to characterize tumors at the molecular level are genomic-based, proteins are the actual executors of cellular functions and represent the vast majority of targets for anticancer drugs. Accumulated data has demonstrated an important level of quantitative and qualitative discrepancies between genomic/transcriptomic alterations and their protein counterparts, mostly related to the large number of post-translational modifications. Areas covered: This review will present novel proteomics technologies such as Reverse Phase Protein Array (RPPA) or mass-spectrometry (MS) based approaches that have emerged and that could progressively replace old-fashioned methods (e.g. immunohistochemistry, ELISA, etc.) to validate proteins as diagnostic, prognostic or predictive biomarkers, and eventually monitor them in the routine practice. Expert commentary: These different targeted proteomic approaches, able to complement genomic data in BC and characterize tumors more precisely, will permit to go through a more personalized treatment for each patient and tumor.

  12. Public Education and Targeted Outreach to Underserved Women Through the National Breast and Cervical Cancer Early Detection Program

    PubMed Central

    Levano, Whitney; Miller, Jacqueline W.; Leonard, Banning; Bellick, Linda; Crane, Barbara E.; Kennedy, Stephenie K.; Haslage, Natalie M.; Hammond, Whitney; Tharpe, Felicia S.

    2015-01-01

    The National Breast and Cervical Cancer Early Detection Program (NBCCEDP) was established to provide low-income, uninsured, and underinsured women access to cancer screening and diagnostic services with the goal of increasing the early detection and prevention of breast and cervical cancer. Although this is a valuable resource for women who might not have the means to get screened otherwise, providing services at no cost, by itself, does not guarantee uptake of screening services. Public education and targeted outreach facilitate the critical link between public service programs and the communities they serve. The purpose of public education and outreach in the NBCCEDP is to increase the number of women who use breast and cervical cancer screening services by raising awareness, providing education, addressing barriers, and motivating women to complete screening exams and follow-up. Effective strategies focus on helping to remove structural, physical, interpersonal, financial, and cultural barriers; educate women about the importance of screening and inform women about the services available to them. This article provides an overview of the importance of public education and targeted outreach activities for cancer screening through community-based programs including examples from NBCCEDP grantees that highlight successes, challenges, and solutions, encountered when conducting these types of interventions. PMID:25099902

  13. Targeted exome sequencing of Korean triple-negative breast cancer reveals homozygous deletions associated with poor prognosis of adjuvant chemotherapy-treated patients

    PubMed Central

    Jeong, Hae Min; Kim, Ryong Nam; Kwon, Mi Jeong; Oh, Ensel; Han, Jinil; Lee, Se Kyung; Choi, Jong-Sun; Park, Sara; Nam, Seok Jin; Gong, Gyung Yup; Nam, Jin Wu; Choi, Doo Ho; Lee, Hannah; Nam, Byung-Ho; Choi, Yoon-La; Shin, Young Kee

    2017-01-01

    Triple-negative breast cancer is characterized by the absence of estrogen and progesterone receptors and human epidermal growth factor receptor 2, and is associated with a poorer outcome than other subtypes of breast cancer. Moreover, there are no accurate prognostic genes or effective therapeutic targets, thereby necessitating continued intensive investigation. This study analyzed the genetic mutation landscape in 70 patients with triple-negative breast cancer by targeted exome sequencing of tumor and matched normal samples. Sequencing showed that more than 50% of these patients had deleterious mutations and homozygous deletions of DNA repair genes, such as ATM, BRCA1, BRCA2, WRN, and CHEK2. These findings suggested that a large number of patients with triple-negative breast cancer have impaired DNA repair function and that therefore a poly ADP-ribose polymerase inhibitor may be an effective drug in the treatment of this disease. Notably, homozygous deletion of three genes, EPHA5, MITF, and ACSL3, was significantly associated with an increased risk of recurrence or distant metastasis in adjuvant chemotherapy-treated patients. PMID:28977883

  14. Dietary targeting of tumor suppressors and oncogenes for breast cancer prevention

    USDA-ARS?s Scientific Manuscript database

    Breast cancer is a complex disease that arises from genetic and epigenetic changes in molecules that are critical for growth control, DNA repair, apoptosis, and differentiation. The incidence of breast cancer varies worldwide, implicating diet and lifestyle disparities among the general population a...

  15. Aberrant Expression of miR-142-3p and its Target Gene HMGA1 and FZD7 in Breast Cancer and its Clinical Significance.

    PubMed

    Jia, Xiu-Peng; Meng, Ling-Li; Fang, Jian-Chen; Wang, Hong-Wei; Chen, Jie; Zhou, Jue; Wang, Chun-Nian; Jiang, Wei-Feng

    2018-06-01

    Breast cancer is the second leading cause of cancer-related death among women worldwide. The aim of this study is to investigate the role of miR-142-3p in breast cancer cells and the related mechanism. Sixty paired breast cancer tissues were collected and 60 breast tissues from patients with mammary hyperplasia served as the control group. The expression of miR-142-3p was examined using RT-qPCR methods; moreover, we also performed receiver operating characteristic (ROC) curve analysis to determine whether miR142-3p can distinguish breast cancer patients from the controls. Next, HMGA1 and FZD7 have been predicted as target genes of miR-142-3p, and the expressions of HMGA1 and FZD7 in breast cancer tissue and the control group were examined using RT-qPCR and western blot methods. miR-142-3p was significantly down-regulated in breast cancer tissue compared with the controls, and the levels of miR-142-3p was negatively correlated with the tumor size, degree of differentiation, and metastasis (p < 0.01). Moreover, results of ROC curve analysis indicated that the expression of miR-142-3p can distinguish between patients with breast cancer and the control group (AUC = 0.819, 95% CI, 0.756 - 0.881). Furthermore, the expressions of HMGA1 and FZD7 were significantly up-regulated in patients with breast cancer compared with the controls. The level of miR-142-3p was negatively correlated with expressions of HMGA1 (r = -0.3507, p = 0.006) and FZD7 (r = -0.3410, p = 0.0077) in patients with breast cancer. Our results proved that miR-142-3p may serve as a tumor suppressor in breast cancer by suppressing the expression of oncogene HMGA1 and FZD7, suggesting that miR-142-3p has the potential to become a diagnostic marker and therapeutic target for the early diagnosis and treatment of breast cancer.

  16. Limited fibrosis accompanies triple-negative breast cancer metastasis in multiple model systems and is not a preventive target.

    PubMed

    Brooks, Danielle; Zimmer, Alexandra; Wakefield, Lalage; Lyle, L Tiffany; Difilippantonio, Simone; Tucci, Fabio C; Illiano, Stephane; Annunziata, Christina M; Steeg, Patricia S

    2018-05-04

    The lysophosphatidic acid receptor 1 (LPAR1) is mechanistically implicated in both tumor metastasis and tissue fibrosis. Previously, metastasis was increased when fulminant fibrosis was first induced in mice, suggesting a direct connection between these processes. The current report examined the extent of metastasis-induced fibrosis in breast cancer model systems, and tested the metastasis preventive efficacy and fibrosis attenuation of antagonists for LPAR1 and Idiopathic Pulmonary Fibrosis (IPF) in breast and ovarian cancer models. Staining analysis demonstrated only focal, low-moderate levels of fibrosis in lungs from eleven metastasis model systems. Two orally available LPAR1 antagonists, SAR100842 and EPGN9878, significantly inhibited breast cancer motility to LPA in vitro . Both compounds were negative for metastasis prevention and failed to reduce fibrosis in the experimental MDA-MB-231T and spontaneous murine 4T1 in vivo breast cancer metastasis models. SAR100842 demonstrated only occasional reductions in invasive metastases in the SKOV3 and OVCAR5 ovarian cancer experimental metastasis models. Two approved drugs for IPF, nintedanib and pirfenidone, were investigated. Both were ineffective at preventing MDA-MB-231T metastasis, with no attenuation of fibrosis. In summary, metastasis-induced fibrosis is only a minor component of metastasis in untreated progressive breast cancer. LPAR1 antagonists, despite in vitro evidence of specificity and efficacy, were ineffective in vivo as oral agents, as were approved IPF drugs. The data argue against LPAR1 and fibrosis as monotherapy targets for metastasis prevention in triple-negative breast cancer and ovarian cancer.

  17. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer.

    PubMed

    Lv, Li; Liu, Chunxia; Chen, Chuxiong; Yu, Xiaoxia; Chen, Guanghui; Shi, Yonghui; Qin, Fengchao; Ou, Jiebin; Qiu, Kaifeng; Li, Guocheng

    2016-05-31

    The combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated. Studies demonstrated that BNDQ was more effectively taken up with less efflux by doxorubicin-resistant MCF-7 breast cancer cells (MCF-7/ADR cells) than by the cells treated with the free drugs, single-drug-loaded nanoparticles, or non-biotin-decorated nanoparticles. BNDQ exhibited clear inhibition of both the activity and expression of P-glycoprotein in MCF-7/ADR cells. More importantly, it caused a significant reduction in doxorubicin resistance in MCF-7/ADR breast cancer cells both in vitro and in vivo, among all the groups. Overall, this study suggests that BNDQ has a potential role in the treatment of drug-resistant breast cancer.

  18. Male Breast Cancer Treatment (PDQ®)—Patient Version

    Cancer.gov

    Male breast cancer treatment options include surgery with or without radiation therapy, chemotherapy, hormonal therapy, and/or targeted therapy. Learn more about the diagnosis and treatment of newly diagnosed and recurrent male breast cancer in this expert-reviewed summary.

  19. Epigenetic suppression of neprilysin regulates breast cancer invasion.

    PubMed

    Stephen, H M; Khoury, R J; Majmudar, P R; Blaylock, T; Hawkins, K; Salama, M S; Scott, M D; Cosminsky, B; Utreja, N K; Britt, J; Conway, R E

    2016-03-07

    In women, invasive breast cancer is the second most common cancer and the second cause of cancer-related death. Therefore, identifying novel regulators of breast cancer invasion could lead to additional biomarkers and therapeutic targets. Neprilysin, a cell-surface enzyme that cleaves and inactivates a number of substrates including endothelin-1 (ET1), has been implicated in breast cancer, but whether neprilysin promotes or inhibits breast cancer cell progression and metastasis is unclear. Here, we asked whether neprilysin expression predicts and functionally regulates breast cancer cell invasion. RT-PCR and flow cytometry analysis of MDA-MB-231 and MCF-7 breast cancer cell lines revealed decreased neprilysin expression compared with normal epithelial cells. Expression was also suppressed in invasive ductal carcinoma (IDC) compared with normal tissue. In addition, in vtro invasion assays demonstrated that neprilysin overexpression decreased breast cancer cell invasion, whereas neprilysin suppression augmented invasion. Furthermore, inhibiting neprilysin in MCF-7 breast cancer cells increased ET1 levels significantly, whereas overexpressing neprilysin decreased extracellular-signal related kinase (ERK) activation, indicating that neprilysin negatively regulates ET1-induced activation of mitogen-activated protein kinase (MAPK) signaling. To determine whether neprilysin was epigenetically suppressed in breast cancer, we performed bisulfite conversion analysis of breast cancer cells and clinical tumor samples. We found that the neprilysin promoter was hypermethylated in breast cancer; chemical reversal of methylation in MDA-MB-231 cells reactivated neprilysin expression and inhibited cancer cell invasion. Analysis of cancer databases revealed that neprilysin methylation significantly associates with survival in stage I IDC and estrogen receptor-negative breast cancer subtypes. These results demonstrate that neprilysin negatively regulates the ET axis in breast cancer

  20. Epigenetic suppression of neprilysin regulates breast cancer invasion

    PubMed Central

    Stephen, H M; Khoury, R J; Majmudar, P R; Blaylock, T; Hawkins, K; Salama, M S; Scott, M D; Cosminsky, B; Utreja, N K; Britt, J; Conway, R E

    2016-01-01

    In women, invasive breast cancer is the second most common cancer and the second cause of cancer-related death. Therefore, identifying novel regulators of breast cancer invasion could lead to additional biomarkers and therapeutic targets. Neprilysin, a cell-surface enzyme that cleaves and inactivates a number of substrates including endothelin-1 (ET1), has been implicated in breast cancer, but whether neprilysin promotes or inhibits breast cancer cell progression and metastasis is unclear. Here, we asked whether neprilysin expression predicts and functionally regulates breast cancer cell invasion. RT–PCR and flow cytometry analysis of MDA-MB-231 and MCF-7 breast cancer cell lines revealed decreased neprilysin expression compared with normal epithelial cells. Expression was also suppressed in invasive ductal carcinoma (IDC) compared with normal tissue. In addition, in vtro invasion assays demonstrated that neprilysin overexpression decreased breast cancer cell invasion, whereas neprilysin suppression augmented invasion. Furthermore, inhibiting neprilysin in MCF-7 breast cancer cells increased ET1 levels significantly, whereas overexpressing neprilysin decreased extracellular-signal related kinase (ERK) activation, indicating that neprilysin negatively regulates ET1-induced activation of mitogen-activated protein kinase (MAPK) signaling. To determine whether neprilysin was epigenetically suppressed in breast cancer, we performed bisulfite conversion analysis of breast cancer cells and clinical tumor samples. We found that the neprilysin promoter was hypermethylated in breast cancer; chemical reversal of methylation in MDA-MB-231 cells reactivated neprilysin expression and inhibited cancer cell invasion. Analysis of cancer databases revealed that neprilysin methylation significantly associates with survival in stage I IDC and estrogen receptor-negative breast cancer subtypes. These results demonstrate that neprilysin negatively regulates the ET axis in breast cancer

  1. MiR-137 Targets Estrogen-Related Receptor Alpha and Impairs the Proliferative and Migratory Capacity of Breast Cancer Cells

    PubMed Central

    Zhao, Yuanyin; Li, Yuping; Lou, Guiyu; Zhao, Li; Xu, Zhizhen; Zhang, Yan; He, Fengtian

    2012-01-01

    ERRα is an orphan nuclear receptor emerging as a novel biomarker of breast cancer. Over-expression of ERRα in breast tumor is considered as a prognostic factor of poor clinical outcome. The mechanisms underlying the dysexpression of this nuclear receptor, however, are poorly understood. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level and play important roles in tumor initiation and progression. In the present study, we have identified that the expression of ERRα is regulated by miR-137, a potential tumor suppressor microRNA. The bioinformatics search revealed two putative and highly conserved target-sites for miR-137 located within the ERRα 3′UTR at nt 480–486 and nt 596–602 respectively. Luciferase-reporter assay demonstrated that the two predicted target sites were authentically functional. They mediated the repression of reporter gene expression induced by miR-137 in an additive manner. Moreover, ectopic expression of miR-137 down-regulated ERRα expression at both protein level and mRNA level, and the miR-137 induced ERRα-knockdown contributed to the impaired proliferative and migratory capacity of breast cancer cells. Furthermore, transfection with miR-137mimics suppressed at least two downstream target genes of ERRα–CCNE1 and WNT11, which are important effectors of ERRα implicated in tumor proliferation and migration. Taken together, our results establish a role of miR-137 in negatively regulating ERRα expression and breast cancer cell proliferation and migration. They suggest that manipulating the expression level of ERRα by microRNAs has the potential to influence breast cancer progression. PMID:22723937

  2. MiR-137 targets estrogen-related receptor alpha and impairs the proliferative and migratory capacity of breast cancer cells.

    PubMed

    Zhao, Yuanyin; Li, Yuping; Lou, Guiyu; Zhao, Li; Xu, Zhizhen; Zhang, Yan; He, Fengtian

    2012-01-01

    ERRα is an orphan nuclear receptor emerging as a novel biomarker of breast cancer. Over-expression of ERRα in breast tumor is considered as a prognostic factor of poor clinical outcome. The mechanisms underlying the dysexpression of this nuclear receptor, however, are poorly understood. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level and play important roles in tumor initiation and progression. In the present study, we have identified that the expression of ERRα is regulated by miR-137, a potential tumor suppressor microRNA. The bioinformatics search revealed two putative and highly conserved target-sites for miR-137 located within the ERRα 3'UTR at nt 480-486 and nt 596-602 respectively. Luciferase-reporter assay demonstrated that the two predicted target sites were authentically functional. They mediated the repression of reporter gene expression induced by miR-137 in an additive manner. Moreover, ectopic expression of miR-137 down-regulated ERRα expression at both protein level and mRNA level, and the miR-137 induced ERRα-knockdown contributed to the impaired proliferative and migratory capacity of breast cancer cells. Furthermore, transfection with miR-137 mimics suppressed at least two downstream target genes of ERRα-CCNE1 and WNT11, which are important effectors of ERRα implicated in tumor proliferation and migration. Taken together, our results establish a role of miR-137 in negatively regulating ERRα expression and breast cancer cell proliferation and migration. They suggest that manipulating the expression level of ERRα by microRNAs has the potential to influence breast cancer progression.

  3. Targeted Vaccination against Human α-Lactalbumin for Immunotherapy and Primary Immunoprevention of Triple Negative Breast Cancer

    PubMed Central

    Tuohy, Vincent K.; Jaini, Ritika; Johnson, Justin M.; Loya, Matthew G.; Wilk, Dennis; Downs-Kelly, Erinn; Mazumder, Suparna

    2016-01-01

    We have proposed that safe and effective protection against the development of adult onset cancers may be achieved by vaccination against tissue-specific self-proteins that are “retired” from expression at immunogenic levels in normal tissues as we age, but are overexpressed in emerging tumors. α-Lactalbumin is an example of a “retired” self-protein because its expression in normal tissues is confined exclusively to the breast during late pregnancy and lactation, but is also expressed in the vast majority of human triple negative breast cancers (TNBC)—the most aggressive and lethal form of breast cancer and the predominant form that occurs in women at high genetic risk including those with mutated BRCA1 genes. In anticipation of upcoming clinical trials, here we provide preclinical data indicating that α-lactalbumin has the potential as a vaccine target for inducing safe and effective primary immunoprevention as well as immunotherapy against TNBC. PMID:27322324

  4. Treating triple negative breast cancer cells with erlotinib plus a select antioxidant overcomes drug resistance by targeting cancer cell heterogeneity.

    PubMed

    Bao, Bin; Mitrea, Cristina; Wijesinghe, Priyanga; Marchetti, Luca; Girsch, Emily; Farr, Rebecca L; Boerner, Julie L; Mohammad, Ramzi; Dyson, Greg; Terlecky, Stanley R; Bollig-Fischer, Aliccia

    2017-03-10

    Among breast cancer patients, those diagnosed with the triple-negative breast cancer (TNBC) subtype have the worst prog-nosis. TNBC does not express estrogen receptor-alpha, progesterone receptor, or the HER2 oncogene; therefore, TNBC lacks targets for molecularly-guided therapies. The concept that EGFR oncogene inhibitor drugs could be used as targeted treatment against TNBC has been put forth based on estimates that 30-60% of TNBC express high levels of EGFR. However, results from clinical trials testing EGFR inhibitors, alone or in combination with cytotoxic chemotherapy, did not improve patient outcomes. Results herein offer an explanation as to why EGFR inhibitors failed TNBC patients and support how combining a select antioxidant and an EGFR-specific small molecule kinase inhibitor (SMKI) could be an effective, novel therapeutic strategy. Treatment with CAT-SKL-a re-engineered protein form of the antioxidant enzyme catalase-inhibited cancer stem-like cells (CSCs), and treatment with the EGFR-specific SMKI erlotinib inhibited non-CSCs. Thus, combining the antioxidant CAT-SKL with erlotinib targeted both CSCs and bulk cancer cells in cultures of EGFR-expressing TNBC-derived cells. We also report evidence that the mechanism for CAT-SKL inhibition of CSCs may depend on antioxidant-induced downregulation of a short alternative mRNA splicing variant of the methyl-CpG binding domain 2 gene, isoform MBD2c.

  5. Environmental pollutants and breast cancer.

    PubMed Central

    Brody, Julia Green; Rudel, Ruthann A

    2003-01-01

    Breast cancer is the most common cancer in women and the leading cause of cancer death among women 35-54 years of age. Rising incidence, increased risk among migrants to higher risk regions, and poor prediction of individual risk have prompted a search for additional modifiable factors. Risk factors for breast cancer include reproductive characteristics associated with estrogen and other hormones, pharmaceutical hormones, and activities such as alcohol use and lack of exercise that affect hormone levels. As a result, investigation of hormonally active compounds in commercial products and pollution is a priority. Compounds that cause mammary tumors in animals are additional priorities. Animal models provide insight into possible mechanisms for effects of environmental pollutants on breast cancer and identify chemical exposures to target in epidemiologic studies. Although few epidemiologic studies have been conducted for chemical exposures, occupational studies show associations between breast cancer and exposure to certain organic solvents and polycyclic aromatic hydrocarbons (PAHs). Population-based studies have been limited to a few organochlorine compounds and PAHs and have been mostly negative. A variety of challenges in studies of breast cancer and the environment may have contributed to negative findings. Lack of exposure assessment tools and few hypothesis-generating toxicologic studies limit the scope of epidemiologic studies. Issues of timing with respect to latency and periods of breast vulnerability, and individual differences in susceptibility pose other challenges. Substantial work is needed in exposure assessment, toxicology, and susceptibility before we can expect a pay-off from large epidemiologic studies of breast cancer and environment. PMID:12826474

  6. TTK/hMPS1 Is an Attractive Therapeutic Target for Triple-Negative Breast Cancer

    PubMed Central

    Maire, Virginie; Baldeyron, Céline; Richardson, Marion; Tesson, Bruno; Vincent-Salomon, Anne; Gravier, Eléonore; Marty-Prouvost, Bérengère; De Koning, Leanne; Rigaill, Guillem; Dumont, Aurélie; Gentien, David; Barillot, Emmanuel; Roman-Roman, Sergio; Depil, Stéphane; Cruzalegui, Francisco; Pierré, Alain; Tucker, Gordon C.; Dubois, Thierry

    2013-01-01

    Triple-negative breast cancer (TNBC) represents a subgroup of breast cancers (BC) associated with the most aggressive clinical behavior. No targeted therapy is currently available for the treatment of patients with TNBC. In order to discover potential therapeutic targets, we searched for protein kinases that are overexpressed in human TNBC biopsies and whose silencing in TNBC cell lines causes cell death. A cohort including human BC biopsies obtained at Institut Curie as well as normal tissues has been analyzed at a gene-expression level. The data revealed that the human protein kinase monopolar spindle 1 (hMPS1), also known as TTK and involved in mitotic checkpoint, is specifically overexpressed in TNBC, compared to the other BC subgroups and healthy tissues. We confirmed by immunohistochemistry and reverse phase protein array that TNBC expressed higher levels of TTK protein compared to the other BC subgroups. We then determined the biological effects of TTK depletion by RNA interference, through analyses of tumorigenic capacity and cell viability in different human TNBC cell lines. We found that RNAi-mediated depletion of TTK in various TNBC cell lines severely compromised their viability and their ability to form colonies in an anchorage-independent manner. Moreover, we observed that TTK silencing led to an increase in H2AX phosphorylation, activation of caspases 3/7, sub-G1 cell population accumulation and high annexin V staining, as well as to a decrease in G1 phase cell population and an increased aneuploidy. Altogether, these data indicate that TTK depletion in TNBC cells induces apoptosis. These results point out TTK as a protein kinase overexpressed in TNBC that may represent an attractive therapeutic target specifically for this poor prognosis associated subgroup of breast cancer. PMID:23700430

  7. Breast cancer screening

    MedlinePlus

    Mammogram - breast cancer screening; Breast exam - breast cancer screening; MRI - breast cancer screening ... performed to screen women to detect early breast cancer when it is more likely to be cured. ...

  8. Association analysis identifies 65 new breast cancer risk loci.

    PubMed

    Michailidou, Kyriaki; Lindström, Sara; Dennis, Joe; Beesley, Jonathan; Hui, Shirley; Kar, Siddhartha; Lemaçon, Audrey; Soucy, Penny; Glubb, Dylan; Rostamianfar, Asha; Bolla, Manjeet K; Wang, Qin; Tyrer, Jonathan; Dicks, Ed; Lee, Andrew; Wang, Zhaoming; Allen, Jamie; Keeman, Renske; Eilber, Ursula; French, Juliet D; Qing Chen, Xiao; Fachal, Laura; McCue, Karen; McCart Reed, Amy E; Ghoussaini, Maya; Carroll, Jason S; Jiang, Xia; Finucane, Hilary; Adams, Marcia; Adank, Muriel A; Ahsan, Habibul; Aittomäki, Kristiina; Anton-Culver, Hoda; Antonenkova, Natalia N; Arndt, Volker; Aronson, Kristan J; Arun, Banu; Auer, Paul L; Bacot, François; Barrdahl, Myrto; Baynes, Caroline; Beckmann, Matthias W; Behrens, Sabine; Benitez, Javier; Bermisheva, Marina; Bernstein, Leslie; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bonanni, Bernardo; Børresen-Dale, Anne-Lise; Brand, Judith S; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Broberg, Per; Brock, Ian W; Broeks, Annegien; Brooks-Wilson, Angela; Brucker, Sara Y; Brüning, Thomas; Burwinkel, Barbara; Butterbach, Katja; Cai, Qiuyin; Cai, Hui; Caldés, Trinidad; Canzian, Federico; Carracedo, Angel; Carter, Brian D; Castelao, Jose E; Chan, Tsun L; David Cheng, Ting-Yuan; Seng Chia, Kee; Choi, Ji-Yeob; Christiansen, Hans; Clarke, Christine L; Collée, Margriet; Conroy, Don M; Cordina-Duverger, Emilie; Cornelissen, Sten; Cox, David G; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Devilee, Peter; Doheny, Kimberly F; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dumont, Martine; Durcan, Lorraine; Dwek, Miriam; Eccles, Diana M; Ekici, Arif B; Eliassen, A Heather; Ellberg, Carolina; Elvira, Mingajeva; Engel, Christoph; Eriksson, Mikael; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fritschi, Lin; Gaborieau, Valerie; Gabrielson, Marike; Gago-Dominguez, Manuela; Gao, Yu-Tang; Gapstur, Susan M; García-Sáenz, José A; Gaudet, Mia M; Georgoulias, Vassilios; Giles, Graham G; Glendon, Gord; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Grenaker Alnæs, Grethe I; Grip, Mervi; Gronwald, Jacek; Grundy, Anne; Guénel, Pascal; Haeberle, Lothar; Hahnen, Eric; Haiman, Christopher A; Håkansson, Niclas; Hamann, Ute; Hamel, Nathalie; Hankinson, Susan; Harrington, Patricia; Hart, Steven N; Hartikainen, Jaana M; Hartman, Mikael; Hein, Alexander; Heyworth, Jane; Hicks, Belynda; Hillemanns, Peter; Ho, Dona N; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Robert N; Hopper, John L; Hou, Ming-Feng; Hsiung, Chia-Ni; Huang, Guanmengqian; Humphreys, Keith; Ishiguro, Junko; Ito, Hidemi; Iwasaki, Motoki; Iwata, Hiroji; Jakubowska, Anna; Janni, Wolfgang; John, Esther M; Johnson, Nichola; Jones, Kristine; Jones, Michael; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Kabisch, Maria; Kaczmarek, Katarzyna; Kang, Daehee; Kasuga, Yoshio; Kerin, Michael J; Khan, Sofia; Khusnutdinova, Elza; Kiiski, Johanna I; Kim, Sung-Won; Knight, Julia A; Kosma, Veli-Matti; Kristensen, Vessela N; Krüger, Ute; Kwong, Ava; Lambrechts, Diether; Le Marchand, Loic; Lee, Eunjung; Lee, Min Hyuk; Lee, Jong Won; Neng Lee, Chuen; Lejbkowicz, Flavio; Li, Jingmei; Lilyquist, Jenna; Lindblom, Annika; Lissowska, Jolanta; Lo, Wing-Yee; Loibl, Sibylle; Long, Jirong; Lophatananon, Artitaya; Lubinski, Jan; Luccarini, Craig; Lux, Michael P; Ma, Edmond S K; MacInnis, Robert J; Maishman, Tom; Makalic, Enes; Malone, Kathleen E; Kostovska, Ivana Maleva; Mannermaa, Arto; Manoukian, Siranoush; Manson, JoAnn E; Margolin, Sara; Mariapun, Shivaani; Martinez, Maria Elena; Matsuo, Keitaro; Mavroudis, Dimitrios; McKay, James; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Menéndez, Primitiva; Menon, Usha; Meyer, Jeffery; Miao, Hui; Miller, Nicola; Taib, Nur Aishah Mohd; Muir, Kenneth; Mulligan, Anna Marie; Mulot, Claire; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Nielsen, Sune F; Noh, Dong-Young; Nordestgaard, Børge G; Norman, Aaron; Olopade, Olufunmilayo I; Olson, Janet E; Olsson, Håkan; Olswold, Curtis; Orr, Nick; Pankratz, V Shane; Park, Sue K; Park-Simon, Tjoung-Won; Lloyd, Rachel; Perez, Jose I A; Peterlongo, Paolo; Peto, Julian; Phillips, Kelly-Anne; Pinchev, Mila; Plaseska-Karanfilska, Dijana; Prentice, Ross; Presneau, Nadege; Prokofyeva, Darya; Pugh, Elizabeth; Pylkäs, Katri; Rack, Brigitte; Radice, Paolo; Rahman, Nazneen; Rennert, Gadi; Rennert, Hedy S; Rhenius, Valerie; Romero, Atocha; Romm, Jane; Ruddy, Kathryn J; Rüdiger, Thomas; Rudolph, Anja; Ruebner, Matthias; Rutgers, Emiel J T; Saloustros, Emmanouil; Sandler, Dale P; Sangrajrang, Suleeporn; Sawyer, Elinor J; Schmidt, Daniel F; Schmutzler, Rita K; Schneeweiss, Andreas; Schoemaker, Minouk J; Schumacher, Fredrick; Schürmann, Peter; Scott, Rodney J; Scott, Christopher; Seal, Sheila; Seynaeve, Caroline; Shah, Mitul; Sharma, Priyanka; Shen, Chen-Yang; Sheng, Grace; Sherman, Mark E; Shrubsole, Martha J; Shu, Xiao-Ou; Smeets, Ann; Sohn, Christof; Southey, Melissa C; Spinelli, John J; Stegmaier, Christa; Stewart-Brown, Sarah; Stone, Jennifer; Stram, Daniel O; Surowy, Harald; Swerdlow, Anthony; Tamimi, Rulla; Taylor, Jack A; Tengström, Maria; Teo, Soo H; Beth Terry, Mary; Tessier, Daniel C; Thanasitthichai, Somchai; Thöne, Kathrin; Tollenaar, Rob A E M; Tomlinson, Ian; Tong, Ling; Torres, Diana; Truong, Thérèse; Tseng, Chiu-Chen; Tsugane, Shoichiro; Ulmer, Hans-Ulrich; Ursin, Giske; Untch, Michael; Vachon, Celine; van Asperen, Christi J; Van Den Berg, David; van den Ouweland, Ans M W; van der Kolk, Lizet; van der Luijt, Rob B; Vincent, Daniel; Vollenweider, Jason; Waisfisz, Quinten; Wang-Gohrke, Shan; Weinberg, Clarice R; Wendt, Camilla; Whittemore, Alice S; Wildiers, Hans; Willett, Walter; Winqvist, Robert; Wolk, Alicja; Wu, Anna H; Xia, Lucy; Yamaji, Taiki; Yang, Xiaohong R; Har Yip, Cheng; Yoo, Keun-Young; Yu, Jyh-Cherng; Zheng, Wei; Zheng, Ying; Zhu, Bin; Ziogas, Argyrios; Ziv, Elad; Lakhani, Sunil R; Antoniou, Antonis C; Droit, Arnaud; Andrulis, Irene L; Amos, Christopher I; Couch, Fergus J; Pharoah, Paul D P; Chang-Claude, Jenny; Hall, Per; Hunter, David J; Milne, Roger L; García-Closas, Montserrat; Schmidt, Marjanka K; Chanock, Stephen J; Dunning, Alison M; Edwards, Stacey L; Bader, Gary D; Chenevix-Trench, Georgia; Simard, Jacques; Kraft, Peter; Easton, Douglas F

    2017-11-02

    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10 -8 . The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.

  9. EGFR and HER2 signaling in breast cancer brain metastasis

    PubMed Central

    Sirkisoon, Sherona R.; Carpenter, Richard L.; Rimkus, Tadas; Miller, Lance; Metheny-Barlow, Linda; Lo, Hui-Wen

    2016-01-01

    Breast cancer occurs in approximately 1 in 8 women and 1 in 37 women with breast cancer succumbed to the disease. Over the past decades, new diagnostic tools and treatments have substantially improved the prognosis of women with local diseases. However, women with metastatic disease still have a dismal prognosis without effective treatments. Among different molecular subtypes of breast cancer, the HER2-enriched and basal-like subtypes typically have higher rates of metastasis to the brain. Basal-like metastatic breast tumors frequently express EGFR. Consequently, HER2- and EGFR-targeted therapies are being used in the clinic and/or evaluated in clinical trials for treating breast cancer patients with brain metastases. In this review, we will first provide an overview of the HER2 and EGFR signaling pathways. The roles that EGFR and HER2 play in breast cancer metastasis to the brain will then be discussed. Finally, we will summarize the preclinical and clinical effects of EGFR- and HER2-targeted therapies on breast cancer metastasis. PMID:26709660

  10. Targeted delivery of siRNA into breast cancer cells via phage fusion proteins.

    PubMed

    Bedi, Deepa; Gillespie, James W; Petrenko, Vasily A; Ebner, Andreas; Leitner, Michael; Hinterdorfer, Peter; Petrenko, Valery A

    2013-02-04

    Nucleic acids, including antisense oligonucleotides, small interfering RNA (siRNA), aptamers, and rybozymes, emerged as versatile therapeutics due to their ability to interfere in a well-planned manner with the flow of genetic information from DNA to protein. However, a systemic use of NAs is hindered by their instability in physiological liquids and inability of intracellular accumulation in the site of action. We first evaluated the potential of cancer specific phage fusion proteins as targeting ligands that provide encapsulation, protection, and navigation of siRNA to the target cell. The tumor-specific proteins were isolated from phages that were affinity selected from a landscape phage library against target breast cancer cells. It was found that fusion phage coat protein fpVIII displaying cancer-targeting peptides can effectively encapsulate siRNAs and deliver them into the cells leading to specific silencing of the model gene GAPDH. Complexes of siRNA and phage protein form nanoparticles (nanophages), which were characterized by atomic force microscopy and ELISA, and their stability was demonstrated by resistance of encapsulated siRNA to degradation by serum nucleases. The phage protein/siRNA complexes can make a new type of highly selective, stable, active, and physiologically acceptable cancer nanomedicine.

  11. Novel pyrrolopyrimidines as Mps1/TTK kinase inhibitors for breast cancer.

    PubMed

    Sugimoto, Yasuro; Sawant, Dwitiya B; Fisk, Harold A; Mao, Liguang; Li, Chenglong; Chettiar, Somsundaram; Li, Pui-Kai; Darby, Michael V; Brueggemeier, Robert W

    2017-04-01

    New targeted therapy approaches for certain subtypes of breast cancer, such as triple-negative breast cancers and other aggressive phenotypes, are desired. High levels of the mitotic checkpoint kinase Mps1/TTK have correlated with high histologic grade in breast cancer, suggesting a potential new therapeutic target for aggressive breast cancers (BC). Novel small molecules targeting Mps1 were designed by computer assisted docking analyses, and several candidate compounds were synthesized. These compounds were evaluated in anti-proliferative assays of a panel of 15 breast cancer cell lines and further examined for their ability to inhibit a variety of Mps1-dependent biological functions. The results indicate that the lead compounds have strong anti-proliferative potential through Mps1/TTK inhibition in both basal and luminal BC cell lines, exhibiting IC 50 values ranging from 0.05 to 1.0μM. In addition, the lead compounds 1 and 13 inhibit Mps1 kinase enzymatic activity with IC 50 values from 0.356μM to 0.809μM, and inhibited Mps1-associated cellular functions such as centrosome duplication and the spindle checkpoint in triple negative breast cancer cells. The most promising analog, compound 13, significantly decreased tumor growth in nude mice containing Cal-51 triple negative breast cancer cell xenografts. Using drug discovery technologies, computational modeling, medicinal chemistry, cell culture and in vivo assays, novel small molecule Mps1/TTK inhibitors have been identified as potential targeted therapies for breast cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Novel Array-Based Target Identification for Synergistic Sensitization of Breast Cancer to Herceptin

    DTIC Science & Technology

    2010-05-01

    cancer cell lines and expressed in human breast tumors. Oncotarget, (submitted). Abstract Farah Rahmatpanah, Zhenyu Jia, Tatsuya Azum, Eileen Adamson...Michael McClelland, Eileen Adamson, Dan Mercola. Egr1 regulates the coordinated expression of numerous EGF receptor target genes as identified by...ChIP on chip. Genome Biology 2008, 9:R166 [Epub ahead of print]. Jun Hayakawa, Shalu Mittal, Yipeng Wang, Kemal Korkmaz, Mashide Ohmichi, Eileen

  13. Tumor Heterogeneity in Breast Cancer

    PubMed Central

    Turashvili, Gulisa; Brogi, Edi

    2017-01-01

    Breast cancer is a heterogeneous disease and differs greatly among different patients (intertumor heterogeneity) and even within each individual tumor (intratumor heterogeneity). Clinical and morphologic intertumor heterogeneity is reflected by staging systems and histopathologic classification of breast cancer. Heterogeneity in the expression of established prognostic and predictive biomarkers, hormone receptors, and human epidermal growth factor receptor 2 oncoprotein is the basis for targeted treatment. Molecular classifications are indicators of genetic tumor heterogeneity, which is probed with multigene assays and can lead to improved stratification into low- and high-risk groups for personalized therapy. Intratumor heterogeneity occurs at the morphologic, genomic, transcriptomic, and proteomic levels, creating diagnostic and therapeutic challenges. Understanding the molecular and cellular mechanisms of tumor heterogeneity that are relevant to the development of treatment resistance is a major area of research. Despite the improved knowledge of the complex genetic and phenotypic features underpinning tumor heterogeneity, there has been only limited advancement in diagnostic, prognostic, or predictive strategies for breast cancer. The current guidelines for reporting of biomarkers aim to maximize patient eligibility for targeted therapy, but do not take into account intratumor heterogeneity. The molecular classification of breast cancer is not implemented in routine clinical practice. Additional studies and in-depth analysis are required to understand the clinical significance of rapidly accumulating data. This review highlights inter- and intratumor heterogeneity of breast carcinoma with special emphasis on pathologic findings, and provides insights into the clinical significance of molecular and cellular mechanisms of heterogeneity. PMID:29276709

  14. Targeting CXCR1/2 Significantly Reduces Breast Cancer Stem Cell Activity and Increases the Efficacy of Inhibiting HER2 via HER2-dependent and -independent Mechanisms

    PubMed Central

    Singh, Jagdeep K.; Farnie, Gillian; Bundred, Nigel J.; Simões, Bruno M; Shergill, Amrita; Landberg, Göran; Howell, Sacha; Clarke, Robert B.

    2012-01-01

    Purpose Breast cancer stem-like cells (CSCs) are an important therapeutic target as they are predicted to be responsible for tumour initiation, maintenance and metastases. Interleukin-8 (IL-8) is upregulated in breast cancer and associated with poor prognosis. Breast cancer cell line studies indicate that IL-8 via its cognate receptors, CXCR1 and CXCR2, is important in regulating breast CSC activity. We investigated the role of IL-8 in the regulation of CSC activity using patient-derived breast cancers and determined the potential benefit of combining CXCR1/2 inhibition with HER2-targeted therapy. Experimental design CSC activity of metastatic and invasive human breast cancers (n=19) was assessed ex vivo using the mammosphere colony forming assay. Results Metastatic fluid IL-8 level correlated directly with mammosphere formation (r=0.652; P<0.05; n=10). Recombinant IL-8 directly increased mammosphere formation/self-renewal in metastatic and invasive breast cancers (n=17). IL-8 induced activation of EGFR/HER2 and downstream signalling pathways and effects were abrogated by inhibition of SRC, EGFR/HER2, PI3K or MEK. Furthermore, lapatinib inhibited the mammosphere-promoting effect of IL-8 in both HER2-positive and negative patient-derived cancers. CXCR1/2 inhibition also blocked the effect of IL-8 on mammosphere formation and added to the efficacy of lapatinib in HER2-positive cancers. Conclusions These studies establish a role for IL-8 in the regulation of patient-derived breast CSC activity and demonstrate that IL-8/CXCR1/2 signalling is partly mediated via a novel SRC and EGFR/HER2-dependent pathway. Combining CXCR1/2 inhibitors with current HER2-targeted therapies has potential as an effective therapeutic strategy to reduce CSC activity in breast cancer and improve the survival of HER2-positive patients. PMID:23149820

  15. FBXO32 suppresses breast cancer tumorigenesis through targeting KLF4 to proteasomal degradation.

    PubMed

    Zhou, H; Liu, Y; Zhu, R; Ding, F; Wan, Y; Li, Y; Liu, Z

    2017-06-08

    Krüppel-like factor 4 (KLF4, GKLF) is a zinc-finger transcription factor involved in a large variety of cellular processes, including apoptosis, cell cycle progression, as well as stem cell renewal. KLF4 is critical for cell fate decision and has an ambivalent role in tumorigenesis. Emerging data keep reminding us that KLF4 dysregulation either facilitates or impedes tumor progression, making it important to clarify the regulating network of KLF4. Like most transcription factors, KLF4 has a rather short half-life within the cell and its turnover must be carefully orchestrated by ubiquitination and ubiquitin-proteasome system. To better understand the mechanism of KLF4 ubiquitination, we performed a genome-wide screen of E3 ligase small interfering RNA library based on western blot and identified SCF-FBXO32 to be a new E3 ligase, which is responsible for KLF4 ubiquitination and degradation. The F-box domain is critical for FBXO32-dependent KLF4 ubiquitination and degradation. Furthermore, we demonstrated that FBXO32 physically interacts with the N-terminus (1-60 aa) of KLF4 via its C-terminus (228-355 aa) and directly targets KLF4 for ubiquitination and degradation. We also found out that p38 mitogen-activated protein kinase pathway may be implicated in FBXO32-mediated ubiquitination of KLF4, as p38 kinase inhibitor coincidently abrogates endogenous KLF4 ubiquitination and degradation, as well as FBXO32-dependent exogenous KLF4 ubiquitination and degradation. Finally, FBXO32 inhibits colony formation in vitro and primary tumor initiation and growth in vivo through targeting KLF4 into degradation. Our findings thus further elucidate the tumor-suppressive function of FBXO32 in breast cancer. These results expand our understanding of the posttranslational modification of KLF4 and of its role in breast cancer development and provide a potential target for diagnosis and therapeutic treatment of breast cancer.

  16. Target specific delivery of anticancer drug in silk fibroin based 3D distribution model of bone-breast cancer cells.

    PubMed

    Subia, Bano; Dey, Tuli; Sharma, Shaily; Kundu, Subhas C

    2015-02-04

    To avoid the indiscriminating action of anticancer drugs, the cancer cell specific targeting of drug molecule becomes a preferred choice for the treatment. The successful screening of the drug molecules in 2D culture system requires further validation. The failure of target specific drug in animal model raises the issue of creating a platform in between the in vitro (2D) and in vivo animal testing. The metastatic breast cancer cells migrate and settle at different sites such as bone tissue. This work evaluates the in vitro 3D model of the breast cancer and bone cells to understand the cellular interactions in the presence of a targeted anticancer drug delivery system. The silk fibroin based cytocompatible 3D scaffold is used as in vitro 3D distribution model. Human breast adenocarcinoma and osteoblast like cells are cocultured to evaluate the efficiency of doxorubicin loaded folic acid conjugated silk fibroin nanoparticle as drug delivery system. Decreasing population of the cancer cells, which lower the levels of vascular endothelial growth factors, glucose consumption, and lactate production are observed in the drug treated coculture constructs. The drug treated constructs do not show any major impact on bone mineralization. The diminished expression of osteogenic markers such as osteocalcein and alkaline phosphatase are recorded. The result indicates that this type of silk based 3D in vitro coculture model may be utilized as a bridge between the traditional 2D and animal model system to evaluate the new drug molecule (s) or to reassay the known drug molecules or to develop target specific drug in cancer research.

  17. MMP9 polymorphisms and breast cancer risk: a report from the Shanghai Breast Cancer Genetics Study.

    PubMed

    Beeghly-Fadiel, Alicia; Lu, Wei; Shu, Xiao-Ou; Long, Jirong; Cai, Qiuyin; Xiang, Yongbin; Gao, Yu-Tang; Zheng, Wei

    2011-04-01

    In addition to tumor invasion and angiogenesis, matrix metalloproteinase (MMP)9 also contributes to carcinogenesis and tumor growth. Genetic variation that may influence MMP9 expression was evaluated among participants of the Shanghai Breast Cancer Genetics Study (SBCGS) for associations with breast cancer susceptibility. In stage 1, 11 MMP9 single nucleotide polymorphisms (SNPs) were genotyped by the Affymetrix Targeted Genotyping System and/or the Affymetrix Genome-Wide Human SNP Array 6.0 among 4,227 SBCGS participants. One SNP was further genotyped using the Sequenom iPLEX MassARRAY platform among an additional 6,270 SBCGS participants. Associations with breast cancer risk were evaluated by odds ratios (OR) and 95% confidence intervals (CI) from logistic regression models that included adjustment for age, education, and genotyping stage when appropriate. In Stage 1, rare allele homozygotes for a promoter SNP (rs3918241) or a non-synonymous SNP (rs2274756, R668Q) tended to occur more frequently among breast cancer cases (P value = 0.116 and 0.056, respectively). Given their high linkage disequilibrium (D' = 1.0, r (2) = 0.97), one (rs3918241) was selected for additional analysis. An association with breast cancer risk was not supported by additional Stage 2 genotyping. In combined analysis, no elevated risk of breast cancer among homozygotes was found (OR: 1.2, 95% CI: 0.8-1.8). Common genetic variation in MMP9 was not found to be significantly associated with breast cancer susceptibility among participants of the Shanghai Breast Cancer Genetics Study.

  18. Predictors of CVD among breast cancer survivors in an integrated health system | Division of Cancer Prevention

    Cancer.gov

    PROJECT SUMMARY / ABSTRACT Breast cancer survivors are at high risk of developing and dying from cardiovascular disease (CVD) following breast cancer diagnosis, but subpopulations at increased risk and targets for intervention have not been well- characterized. A growing body of literature links CVD with specific cardiotoxic cancer treatments. CVD risk among breast cancer

  19. Breast Cancer Overview

    MedlinePlus

    ... are here Home > Types of Cancer > Breast Cancer Breast Cancer This is Cancer.Net’s Guide to Breast Cancer. Use the menu below to choose the Overview/ ... social workers, and patient advocates. Cancer.Net Guide Breast Cancer Introduction Statistics Medical Illustrations Risk Factors and Prevention ...

  20. tRNA and Its Activation Targets as Biomarkers and Regulators of Breast Cancer

    DTIC Science & Technology

    2013-09-01

    linked tRNA misregulation to cancer. We have previously reported that tRNA levels are significantly elevated in breast cancer and multiple myeloma ...significantly elevated in breast cancer and multiple myeloma cells. To further investigate the cellular and physiological effects of tRNA overexpression, we...tRNA levels are elevated in breast cancer and multiple myeloma cell lines (Pavon-Eternod et al. 2009; Zhou et al. 2009). Though abnormal RNA polymerase

  1. Tc-99m Labeled and VIP Receptor Targeted Liposomes for Effective Imaging of Breast Cancer

    DTIC Science & Technology

    2004-09-01

    conjugated VIP to an activated DSPE-PEG-NHS and the DSPE-PEG-VIP was inserted into preformed radionuclide (Technetium)-loaded SSL by incubation at 37TC...Chemotherapy with Actively Targeted Phospholipid Nanocarriers". CONCLUSIONS We have successfully conjugated VIP to DSPE-PEG34oo and incorporated this conjugate ...loaded with imaging or therapeutic agents, and with surface ligands specific to VIP-R could potentially be actively targeted to breast cancer. This

  2. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer

    PubMed Central

    Chen, Hongwei; Wang, Liya; Yu, Qiqi; Qian, Weiping; Tiwari, Diana; Yi, Hong; Wang, Andrew Y; Huang, Jing; Yang, Lily; Mao, Hui

    2013-01-01

    Antifouling magnetic iron oxide nanoparticles (IONPs) coated with block copolymer poly(ethylene oxide)-block-poly(γ-methacryloxypropyltrimethoxysilane) (PEO-b-PγMPS) were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv) of antibody against epidermal growth factor receptor (ScFvEGFR) to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs). The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours) in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs. PMID:24124366

  3. American Indian Breast Cancer Project: Educational Development and Implementation.

    ERIC Educational Resources Information Center

    Hodge, Felicia Schanche; Casken, John

    1999-01-01

    Describes the development, implementation, and evaluation of Pathways to Health, a breast cancer education program targeting American Indian women in California. Discusses initial focus group results concerning belief in breast cancer risk, barriers to cancer screening and treatment, culturally sensitive issues, and illness beliefs. Describes…

  4. Targeting of Breast Cancer through MT1-MMP/Tetraspanin Complexes

    DTIC Science & Technology

    2011-08-01

    protease, called ADAM10, also contributes to breast cancer. The purpose of our studies was to investigate how tetraspanin proteins regulate the...maturation and functions of proteases MT1-MMP and ADAM10. We hypothesized that manipulation/alteration of tetraspanin proteins (e.g. CD9, CD81, TSPAN12...that perturbation of tetraspanin proteins may provide an unconventional approach towards limiting the growth, invasion and metastasis of breast cancer

  5. Breast Cancer -- Male

    MedlinePlus

    ... Home > Types of Cancer > Breast Cancer in Men Breast Cancer in Men This is Cancer.Net’s Guide to Breast Cancer in Men. Use the menu below to choose ... social workers, and patient advocates. Cancer.Net Guide Breast Cancer in Men Introduction Statistics Risk Factors and Prevention ...

  6. Magnetic nanobubbles with potential for targeted drug delivery and trimodal imaging in breast cancer: an in vitro study.

    PubMed

    Song, Weixiang; Luo, Yindeng; Zhao, Yajing; Liu, Xinjie; Zhao, Jiannong; Luo, Jie; Zhang, Qunxia; Ran, Haitao; Wang, Zhigang; Guo, Dajing

    2017-05-01

    The aim of this study was to improve tumor-targeted therapy for breast cancer by designing magnetic nanobubbles with the potential for targeted drug delivery and multimodal imaging. Herceptin-decorated and ultrasmall superparamagnetic iron oxide (USPIO)/paclitaxel (PTX)-embedded nanobubbles (PTX-USPIO-HER-NBs) were manufactured by combining a modified double-emulsion evaporation process with carbodiimide technique. PTX-USPIO-HER-NBs were examined for characterization, specific cell-targeting ability and multimodal imaging. PTX-USPIO-HER-NBs exhibited excellent entrapment efficiency of Herceptin/PTX/USPIO and showed greater cytotoxic effects than other delivery platforms. Low-frequency ultrasound triggered accelerated PTX release. Moreover, the magnetic nanobubbles were able to enhance ultrasound, magnetic resonance and photoacoustics trimodal imaging. These results suggest that PTX-USPIO-HER-NBs have potential as a multimodal contrast agent and as a system for ultrasound-triggered drug release in breast cancer.

  7. Cost-effectiveness of digital mammography breast cancer screening.

    PubMed

    Tosteson, Anna N A; Stout, Natasha K; Fryback, Dennis G; Acharyya, Suddhasatta; Herman, Benjamin A; Hannah, Lucy G; Pisano, Etta D

    2008-01-01

    The DMIST (Digital Mammography Imaging Screening Trial) reported improved breast cancer detection with digital mammography compared with film mammography in selected population subgroups, but it did not assess the economic value of digital relative to film mammography screening. To evaluate the cost-effectiveness of digital mammography screening for breast cancer. Validated, discrete-event simulation model. Data from DMIST and publicly available U.S. data. U.S. women age 40 years or older. Lifetime. Societal and Medicare. All-film mammography screening; all-digital mammography screening; and targeted digital mammography screening, which is age-targeted digital mammography (for women <50 years of age) and age- and density-targeted digital mammography (for women <50 years of age or women > or =50 years of age with dense breasts). Cost per quality-adjusted life-year (QALY) gained. All-digital mammography screening cost $331,000 (95% CI, $268,000 to $403,000) per QALY gained relative to all-film mammography screening but was more costly and less effective than targeted digital mammography screening. Targeted digital mammography screening resulted in more screen-detected cases of cancer and fewer deaths from cancer than either all-film or all-digital mammography screening, with cost-effectiveness estimates ranging from $26,500 (CI, $21,000 to $33,000) per QALY gained for age-targeted digital mammography to $84,500 (CI, $75,000 to $93,000) per QALY gained for age- and density-targeted digital mammography. In the Medicare population, the cost-effectiveness of density-targeted digital mammography screening varied from a base-case estimate of $97,000 (CI, $77,000 to $131,000) to $257,000 per QALY gained (CI, $91,000 to $536,000) in the alternative-case analyses, in which the sensitivity of film mammography was increased and the sensitivity of digital mammography in women with nondense breasts was decreased. Results were sensitive to the cost of digital mammography and to

  8. Targeting Thromboxane A2 Receptor for Anti-Metastasis Therapy of Breast Cancer

    DTIC Science & Technology

    2011-09-01

    of cell function by Rho GTPases." Drug News Perspect 14(7): 389-95. Erickson, J. W., R. A. Cerione, et al. (1997). "Identification of an actin...Focusing Tumor Microenvironment, Stem Cells and Metastasis 570 (MTOC) and Golgi apparatus to the front of the nucleus, oriented toward the direction of...define the function of TP in tumor cell motility and to validate TP as a target for anti-metastasis therapy of breast cancer. In the first aim, the

  9. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer.

    PubMed

    Nahta, Rita; Yu, Dihua; Hung, Mien-Chie; Hortobagyi, Gabriel N; Esteva, Francisco J

    2006-05-01

    Trastuzumab is a monoclonal antibody targeted against the human epidermal growth factor receptor (HER) 2 tyrosine kinase receptor, which is overexpressed in approximately 25% of invasive breast cancers. The majority of patients with metastatic breast cancer who initially respond to trastuzumab, however, demonstrate disease progression within 1 year of treatment initiation. Preclinical studies have indicated several molecular mechanisms that could contribute to the development of trastuzumab resistance. Increased signaling via the phosphatidylinositol 3-kinase/Akt pathway could contribute to trastuzumab resistance because of activation of multiple receptor pathways that include HER2-related receptors or non-HER receptors such as the insulin-like growth factor 1 receptor, which appears to be involved in a cross-talk with HER2 in resistant cells. Additionally, loss of function of the tumor suppressor PTEN gene, the negative regulator of Akt, results in heightened Akt signaling that leads to decreased sensitivity to trastuzumab. Decreased interaction between trastuzumab and its target receptor HER2, which is due to steric hindrance of HER2 by cell surface proteins such as mucin-4 (MUC4), may block the inhibitory actions of trastuzumab. Novel therapies targeted against these aberrant molecular pathways offer hope that the effectiveness and duration of response to trastuzumab can be greatly improved.

  10. Contrast-Enhanced Computed Tomography Evaluation of Hepatic Metastases in Breast Cancer Patients Before and After Cytotoxic Chemotherapy or Targeted Therapy.

    PubMed

    He, Hongying; Cai, Chunyan; Charnsangavej, Chusilp; Theriault, Richard L; Green, Marjorie; Quraishi, Mohammad A; Yang, Wei T

    2015-11-01

    To evaluate change in size vs computed tomography (CT) density of hepatic metastases in breast cancer patients before and after cytotoxic chemotherapy or targeted therapy. A database search in a single institution identified 48 breast cancer patients who had hepatic metastases treated with either cytotoxic chemotherapy alone or targeted therapy alone, and who had contrast-enhanced CT (CECT) scans of the abdomen at baseline and within 4 months of initiation of therapy in the past 10 years. Two radiologists retrospectively evaluated CT scans and identified up to 2 index lesions in each patient. The size (centimeters) of each lesion was measured according to Response Evaluation Criteria in Solid Tumors (RECIST) criteria, and CT density (Hounsfield units) was measured by drawing a region of interest around the margin of the entire lesion. The percent change in sum of lesion size and mean CT density on pre- and post-treatment scans was computed for each patient; results were compared within each treatment group. Thirty-nine patients with 68 lesions received cytotoxic chemotherapy only; 9 patients with 15 lesions received targeted therapy only. The mean percent changes in sum of lesion size and mean CT density were statistically significant within the cytotoxic chemotherapy group before and after treatment, but not significant in the targeted therapy group. The patients in the targeted therapy group tend to have better 2-year survival. The patients who survived at 2 years tend to have more decrease in tumour size in the cytotoxic chemotherapy group. Cytotoxic chemotherapy produced significant mean percent decrease in tumour size and mean CT density of hepatic metastases from breast cancer before and after treatment, whereas targeted therapy did not. Nonetheless, there is a trend that the patients in the targeted therapy group had better 2-year survival rate. This suggests that RECIST is potentially inadequate in evaluating tumour response in breast cancer liver

  11. Breast Cancer Surgery

    MedlinePlus

    FACTS FOR LIFE Breast Cancer Surgery The goal of breast cancer surgery is to remove the whole tumor from the breast. Some lymph nodes ... might still be in the body. Types of breast cancer surgery There are two types of breast cancer ...

  12. Ammonium tetrathiomolybdate treatment targets the copper transporter ATP7A and enhances sensitivity of breast cancer to cisplatin

    PubMed Central

    Wong, Ada Hang-Heng; Vazquez-Ortiz, Guelaguetza; Chen, Weiping; Xu, Xiaoling; Deng, Chu-Xia

    2016-01-01

    Cisplatin is an effective breast cancer drug but resistance often develops over prolonged chemotherapy. Therefore, we performed a candidate approach RNAi screen in combination with cisplatin treatment to identify molecular pathways conferring survival advantages. The screen identified ATP7A as a therapeutic target. ATP7A is a copper ATPase transporter responsible for intercellular movement and sequestering of cisplatin. Pharmaceutical replacement for ATP7A by ammonium tetrathiomolybdate (TM) enhanced cisplatin treatment in breast cancer cells. Allograft and xenograft models in athymic nude mice treated with cisplatin/TM exhibited retarded tumor growth, reduced accumulation of cancer stem cells and decreased cell proliferation as compared to mono-treatment with cisplatin or TM. Cisplatin/TM treatment of cisplatin-resistant tumors reduced ATP7A protein levels, attenuated cisplatin sequestering by ATP7A, increased nuclear availability of cisplatin, and subsequently enhanced DNA damage and apoptosis. Microarray analysis of gene ontology pathways that responded uniquely to cisplatin/TM double treatment depicted changes in cell cycle regulation, specifically in the G1/S transition. These findings offer the potential to combat platinum-resistant tumors and sensitize patients to conventional breast cancer treatment by identifying and targeting the resistant tumors' unique molecular adaptations. PMID:27806319

  13. Breast cancer detection using time reversal

    NASA Astrophysics Data System (ADS)

    Sheikh Sajjadieh, Mohammad Hossein

    Breast cancer is the second leading cause of cancer death after lung cancer among women. Mammography and magnetic resonance imaging (MRI) have certain limitations in detecting breast cancer, especially during its early stage of development. A number of studies have shown that microwave breast cancer detection has potential to become a successful clinical complement to the conventional X-ray mammography. Microwave breast imaging is performed by illuminating the breast tissues with an electromagnetic waveform and recording its reflections (backscatters) emanating from variations in the normal breast tissues and tumour cells, if present, using an antenna array. These backscatters, referred to as the overall (tumour and clutter) response, are processed to estimate the tumour response, which is applied as input to array imaging algorithms used to estimate the location of the tumour. Due to changes in the breast profile over time, the commonly utilized background subtraction procedures used to estimate the target (tumour) response in array processing are impractical for breast cancer detection. The thesis proposes a new tumour estimation algorithm based on a combination of the data adaptive filter with the envelope detection filter (DAF/EDF), which collectively do not require a training step. After establishing the superiority of the DAF/EDF based approach, the thesis shows that the time reversal (TR) array imaging algorithms outperform their conventional conterparts in detecting and localizing tumour cells in breast tissues at SNRs ranging from 15 to 30dB.

  14. Histological, molecular and functional subtypes of breast cancers

    PubMed Central

    Malhotra, Gautam K; Zhao, Xiangshan; Band, Hamid

    2010-01-01

    Increased understanding of the molecular heterogeneity that is intrinsic to the various subtypes of breast cancer will likely shape the future of breast cancer diagnosis, prognosis and treatment. Advances in the field over the last several decades have been remarkable and have clearly translated into better patient care as evidenced by the earlier detection, better prognosis and new targeted therapies. There have been two recent advances in the breast cancer research field that have lead to paradigm shifts: first, the identification of intrinsic breast tumor subtypes, which has changed the way we think about breast cancer and second, the recent characterization of cancer stem cells (CSCs), which are suspected to be responsible for tumor initiation, recurrence and resistance to therapy. These findings have opened new exciting avenues to think about breast cancer therapeutic strategies. While these advances constitute major paradigm shifts within the research realm, the clinical arena has yet to adopt and apply our understanding of the molecular basis of the disease to early diagnosis, prognosis and therapy of breast cancers. Here, we will review the current clinical approach to classification of breast cancers, newer molecular-based classification schemes and potential future of biomarkers representing a functional classification of breast cancer. PMID:21057215

  15. Knowledge of breast cancer and breast self-examination practice among Iranian women in Hamedan, Iran.

    PubMed

    Akhtari-Zavare, Mehrnoosh; Ghanbari-Baghestan, Abbas; Latiff, Latiffah A; Matinnia, Nasrin; Hoseini, Mozhgan

    2014-01-01

    In Iran, breast cancer is the most prevalent cancer in women and a major public health problem. A cross sectional study was carried out to determine knowledge on breast cancer and breast self- examination (BSE) practices of 384 females living in the city of Hamadan, Iran. A purposive sampling method was adopted and data were collected via face-to-face interviews based on a validated questionnaire developed for this study. Among respondents 268 (69.8%) were married and 144 (37.5%) of the respondents reported having a family history of breast cancer. One hundred respondents (26.0%) claimed they practiced BSE. Level of breast cancer knowledge was significantly associated with BSE practice (p=0.000). There was no association with demographic details (p<0.05). The findings showed that Iranian women's knowledge regarding breast cancer and the practice of BSE is inadequate. Targeted education should be implemented to improve early detection of breast cancer.

  16. Palliative systemic therapy for young women with metastatic breast cancer.

    PubMed

    Eng, Lee Guek; Dawood, Shaheenah; Dent, Rebecca

    2015-09-01

    Breast cancer in young women age less than 40 years remains a relatively rare disease. Emerging data suggest that the biology of breast cancer in younger women may differ from that of older women. Although metastatic breast cancer remains incurable, it is definitely treatable; especially in this era of emerging novel therapeutics. Most women have hormone receptor-positive disease and strategies that interfere with proliferation and the PI3 kinase pathway are reporting exciting results. The prognosis of the metastatic HER2 subtype has been extended to a median survival of 56 months with dual HER2 targeting agents in the first-line setting. Finally, triple negative breast cancer has an enlarging range of therapeutic options including immunotherapy, antiangiogenesis therapy, and targeted therapies including agents that interfere with androgen receptor signaling. Combined palliative and holistic approaches are essential to help young women navigate the marathon of treatment for metastatic breast cancer.

  17. Somatic mutations in benign breast disease tissue and risk of subsequent invasive breast cancer.

    PubMed

    Rohan, Thomas E; Miller, Christopher A; Li, Tiandao; Wang, Yihong; Loudig, Olivier; Ginsberg, Mindy; Glass, Andrew; Mardis, Elaine

    2018-06-06

    Insights into the molecular pathogenesis of breast cancer might come from molecular analysis of tissue from early stages of the disease. We conducted a case-control study nested in a cohort of women who had biopsy-confirmed benign breast disease (BBD) diagnosed between 1971 and 2006 at Kaiser Permanente Northwest and who were followed to mid-2015 to ascertain subsequent invasive breast cancer (IBC); cases (n = 218) were women with BBD who developed subsequent IBC and controls, individually matched (1:1) to cases, were women with BBD who did not develop IBC in the same follow-up interval as that for the corresponding case. Targeted sequence capture and sequencing were performed for 83 genes of importance in breast cancer. There were no significant case-control differences in mutation burden overall, for non-silent mutations, for individual genes, or with respect either to the nature of the gene mutations or to mutational enrichment at the pathway level. For seven subjects with DNA from the BBD and ipsilateral IBC, virtually no mutations were shared. This study, the first to use a targeted multi-gene sequencing approach on early breast cancer precursor lesions to investigate the genomic basis of the disease, showed that somatic mutations detected in BBD tissue were not associated with breast cancer risk.

  18. 6 Common Cancers - Breast Cancer

    MedlinePlus

    ... Bar Home Current Issue Past Issues 6 Common Cancers - Breast Cancer Past Issues / Spring 2007 Table of Contents For ... her down. Photo: AP Photo/Brett Flashnick Breast Cancer Breast cancer is a malignant (cancerous) growth that ...

  19. Targeting IL13Ralpha2 activates STAT6-TP63 pathway to suppress breast cancer lung metastasis.

    PubMed

    Papageorgis, Panagiotis; Ozturk, Sait; Lambert, Arthur W; Neophytou, Christiana M; Tzatsos, Alexandros; Wong, Chen K; Thiagalingam, Sam; Constantinou, Andreas I

    2015-07-25

    Basal-like breast cancer (BLBC) is an aggressive subtype often characterized by distant metastasis, poor patient prognosis, and limited treatment options. Therefore, the discovery of alternative targets to restrain its metastatic potential is urgently needed. In this study, we aimed to identify novel genes that drive metastasis of BLBC and to elucidate the underlying mechanisms of action. An unbiased approach using gene expression profiling of a BLBC progression model and in silico leveraging of pre-existing tumor transcriptomes were used to uncover metastasis-promoting genes. Lentiviral-mediated knockdown of interleukin-13 receptor alpha 2 (IL13Ralpha2) coupled with whole-body in vivo bioluminescence imaging was performed to assess its role in regulating breast cancer tumor growth and lung metastasis. Gene expression microarray analysis was followed by in vitro validation and cell migration assays to elucidate the downstream molecular pathways involved in this process. We found that overexpression of the decoy receptor IL13Ralpha2 is significantly enriched in basal compared with luminal primary breast tumors as well as in a subset of metastatic basal-B breast cancer cells. Importantly, breast cancer patients with high-grade tumors and increased IL13Ralpha2 levels had significantly worse prognosis for metastasis-free survival compared with patients with low expression. Depletion of IL13Ralpha2 in metastatic breast cancer cells modestly delayed primary tumor growth but dramatically suppressed lung metastasis in vivo. Furthermore, IL13Ralpha2 silencing was associated with enhanced IL-13-mediated phosphorylation of signal transducer and activator of transcription 6 (STAT6) and impaired migratory ability of metastatic breast cancer cells. Interestingly, genome-wide transcriptional analysis revealed that IL13Ralpha2 knockdown and IL-13 treatment cooperatively upregulated the metastasis suppressor tumor protein 63 (TP63) in a STAT6-dependent manner. These observations

  20. Simultaneous Vascular Targeting and Tumor Targeting of Cerebral Breast Cancer Metastases Using a T-Cell Receptor Mimic Antibody

    DTIC Science & Technology

    2014-05-01

    in May 2013, the difference between nude mice (which lack T- cells , but still have a partially functional adaptive and innate immune system) and NSG...Mangada J, Greiner DL, Handgretinger R. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human...Targeting of Cerebral Breast Cancer Metastases Using a T- Cell Receptor Mimic Antibody PRINCIPAL INVESTIGATOR: Ulrich Bickel

  1. MELK as a potential target to control cell proliferation in triple-negative breast cancer MDA-MB-231 cells

    PubMed Central

    Li, Gang; Yang, Mei; Zuo, Li; Wang, Mei-Xing

    2018-01-01

    Maternal embryonic leucine zipper kinase (MELK) is an important regulator in tumorigenesis of human breast cancer, and if silenced leads to programmed cell death in specific breast cancer cell lines, including MDA-MB-231 cells. In the present study, RNA interference, proliferation assay and semi-quantification of cell cycle relative proteins were performed to determine the effects of MELK in human breast cancer cells. Data demonstrated that the highest level of MELK protein in the MDA-MB-231 cell line among eight breast cancer cell lines. The sensitivity of MELK small interfering-RNA varied in different breast cancer cell lines, but MELK silencing resulted in marked suppression of proliferation of triple-negative breast cancer (TNBC) and non-TNBC cells. Specific silencing of MELK caused G2 arrest in TNBC MDA-MB-231 and HCC1143 cells, and G1 arrest in non-TNBC T47D and MCF7 cells. Notably, the knockdown of MELK did not induce apoptosis in HCC1143 cells, indicated by the lack of caspase-3 expression. In addition, in response to MELK silencing, cyclin B and cyclin D1 were downregulated in four breast cancer cell lines. Furthermore, the silencing of MELK resulted in the upregulation of p21, p27 and phosphorylated (p)-c-Jun N-terminal kinase (JNK) in HCC1143 TNBC cells, and downregulation of p21 and p-JNK in T47D non-TNBC cells. Additionally, MELK protein was markedly suppressed in non-TNBC cells in response to estrogen deprivation. The findings from the present study suggested that MELK may be a potential target in MDA-MB-231 cells, although genetic knockdown of MELK resulted in inhibitory effects on proliferation of TNBC and non-TNBC cells. MELK exert its effect on different breast cancer cells via arrest of different cell cycle phases and therefore mediated by different mediators, which may be involved in the crosstalk with MELK signaling and with the estrogen receptor signaling pathway. PMID:29805690

  2. Obesity, insulin resistance and breast cancer outcomes.

    PubMed

    Goodwin, Pamela J

    2015-11-01

    There is growing evidence that obesity is associated with poor outcomes in early stage breast cancer. This paper addresses four current areas of focus: 1. Is obesity associated with poor outcomes in all biologic subtypes of breast cancer? 2. Does obesity effect AI efficacy or estrogen suppression in the adjuvant setting? 3. What are the potential biologic underpinnings of the obesity-breast cancer association? 4. Are intervention studies warranted? If so, which interventions in which populations? Research is needed to resolve these questions; intervention trials involving lifestyle interventions or targeting the biology postulated to link obesity and cancer are recommended. Copyright © 2015. Published by Elsevier Ltd.

  3. Synthesis and characterization of Her2-NLP peptide conjugates targeting circulating breast cancer cells: cellular uptake and localization by fluorescent microscopic imaging.

    PubMed

    Cai, Huawei; Singh, Ajay N; Sun, Xiankai; Peng, Fangyu

    2015-01-01

    To synthesize a fluorescent Her2-NLP peptide conjugate consisting of Her2/neu targeting peptide and nuclear localization sequence peptide (NLP) and assess its cellular uptake and intracellular localization for radionuclide cancer therapy targeting Her2/neu-positive circulating breast cancer cells (CBCC). Fluorescent Cy5.5 Her2-NLP peptide conjugate was synthesized by coupling a bivalent peptide sequence, which consisted of a Her2-binding peptide (NH2-GSGKCCYSL) and an NLP peptide (CGYGPKKKRKVGG) linked by a polyethylene glycol (PEG) chain with 6 repeating units, with an activated Cy5.5 ester. The conjugate was separated and purified by HPLC and then characterized by Maldi-MS. The intracellular localization of fluorescent Cy5.5 Her2-NLP peptide conjugate was assessed by fluorescent microscopic imaging using a confocal microscope after incubation of Cy5.5-Her2-NLP with Her2/neu positive breast cancer cells and Her2/neu negative control breast cancer cells, respectively. Fluorescent signals were detected in cytoplasm of Her2/neu positive breast cancer cells (SKBR-3 and BT474 cell lines), but not or little in cytoplasm of Her2/neu negative breast cancer cells (MDA-MB-231), after incubation of the breast cancer cells with Cy5.5-Her2-NLP conjugates in vitro. No fluorescent signals were detected within the nuclei of Her2/neu positive SKBR-3 and BT474 breast cancer cells, neither Her2/neu negative MDA-MB-231 cells, incubated with the Cy5.5-Her2-NLP peptide conjugates, suggesting poor nuclear localization of the Cy5.5-Her2-NLP conjugates localized within the cytoplasm after their cellular uptake and internalization by the Her2/neu positive breast cancer cells. Her2-binding peptide (KCCYSL) is a promising agent for radionuclide therapy of Her2/neu positive breast cancer using a β(-) or α emitting radionuclide, but poor nuclear localization of the Her2-NLP peptide conjugates may limit its use for eradication of Her2/neu-positive CBCC using I-125 or other Auger electron

  4. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer.

    PubMed

    Tian, Fengchun; Dahmani, Fatima Zohra; Qiao, Jianan; Ni, Jiang; Xiong, Hui; Liu, Tengfei; Zhou, Jianping; Yao, Jing

    2018-06-03

    Several obstacles are currently impeding the successful treatment of breast cancer, namely impaired drug accumulation into the tumor site, toxicity to normal cells and narrow therapeutic index of chemotherapy, multidrug resistance (MDR) and the metastatic spread of cancer cells through the blood and lymphatic vessels. In this regard, we designed a novel multifunctional nano-sized drug delivery system based on LyP-1 peptide-modified low-molecular-weight heparin-quercetin conjugate (PLQ). This nanosystem was developed for targeted co-delivery of multiple anticancer drugs to p32-overexpressing tumor cells and peritumoral lymphatic vessels, using LyP-1 peptide as active targeting ligand, with the aim to achieve a targeted combinatorial chemo/angiostatic therapy and MDR reversal. The cellular uptake of PLQ nanoparticles by p32-overexpressing breast cancer cells was significantly higher than nonfunctionalized nanoparticles. Besides, the anti-angiogenic activity of PLQ nanoparticles was proven by the effective inhibition of the bFGF-induced neovascularization in subcutaneous Matrigel plugs. More importantly, PLQ/GA nanoparticles with better targeting ability toward p32-positive tumors, displayed a high antitumor outcome by inhibition of tumor cells proliferation and angiogenesis. Immunohistochemistry and western blot assay showed that PLQ/GA nanoparticles significantly disrupted the lymphatic formation of tumor, and inhibited the P-glycoprotein (P-gp) expression in MCF-7 tumor cells, respectively. In conclusion, PLQ/GA nanoparticles provide a synergistic strategy for effective targeted co-delivery of chemotherapeutic and antiangiogenic agents and reversing MDR and metastasis in breast cancer. Herein, we successfully developed a novel amphiphilic nanomaterial, LyP-1-LMWH-Qu (PLQ) conjugate, consisting of a tumor-targeting moiety LyP-1, a hydrophobic quercetin (a multidrug resistance [MDR]-reversing drug) inner core, and a hydrophilic low-molecular-weight heparin (an

  5. Consumer Health Education. Breast Cancer.

    ERIC Educational Resources Information Center

    Arkansas Univ., Fayetteville, Cooperative Extension Service.

    This short booklet is designed to be used by health educators when teaching women about breast cancer and its early detection and the procedure for breast self-examination. It includes the following: (1) A one-page teaching plan consisting of objectives, subject matter, methods (including titles of films and printed materials), target audience,…

  6. Breast cancer cell targeted MR molecular imaging probe: Anti-MUC1 antibody-based magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Moradi Khaniabadi, P.; S. A Majid, A. M.; Asif, M.; Moradi Khaniabadi, B.; Shahbazi-Gahrouei, D.; Jaafar, M. S.

    2017-05-01

    Effective and specific diagnostic imaging techniques are important in early-stage breast cancer treatment. The objective of this study was to develop a specific breast cancer contrast agent for magnetic resonance imaging (MRI). In so doing, superparamagnetic iron oxide nanoparticles (SPIONs) were conjugated to C595 monoclonal antibody using EDC chemistry to produce nanoprobe with high relaxivity and narrow size (87.4±0.7 nm). To test the developed nanoprobe in vitro, assessments including Cell toxicity, targeting efficacy, cellular binding, and MR imaging were carried out. The results indicated that after 6 hrs incubation with MCF-7 cells at 200 to 25 µg Fe/ml doses, 76% to 16% T2 reduction was obtained. The presence of iron localised in MCF-7 cells measured by atomic absorption spectroscopy (AAS) was about 9.95±0.09 ppm iron/cell at higher doses of nanoprobe. Moreover, a linear relationship between iron concentration of nontoxic SPION-C595 and T2 relaxation times was observed. This study also revealed that developed nanoprobe might be used as a specific negative contrast agent for detecting breast cancer.

  7. African American Women’s Perspectives on Breast Cancer: Implications for Communicating Risk of Basal-like Breast Cancer

    PubMed Central

    Allicock, Marlyn; Graves, Neasha; Gray, Kathleen; Troester, Melissa A.

    2013-01-01

    African American women suffer a higher burden of basal-like breast cancer, an aggressive subtype that has no targeted therapy. While epidemiologic research has identified key prevention strategies, little is known about how best to communicate risk to this population. This study explored women’s knowledge, beliefs, and attitudes about breast cancer to learn about risk perceptions. Six focus groups with 57 women (ages 18–49) women were conducted in North Carolina. Findings revealed that age, race (especially perceptions of cancer as a “White disease”), and lack of family history of breast cancer contributed to women’s perceptions of low breastcancer susceptibility. Perceptions of low risk were also attributed to conflicting risk information from family, media, and health providers. Women had little knowledge about breast cancer subtypes, but emphasized that health communications should be personally relevant, culturally appropriate, and convenient. These study findings will assist in developing health communication tools that encourage prevention. PMID:23728042

  8. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination.

    PubMed

    Fonseca, Nuno A; Rodrigues, Ana S; Rodrigues-Santos, Paulo; Alves, Vera; Gregório, Ana C; Valério-Fernandes, Ângela; Gomes-da-Silva, Lígia C; Rosa, Manuel Santos; Moura, Vera; Ramalho-Santos, João; Simões, Sérgio; Moreira, João Nuno

    2015-11-01

    Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mesoporous silica nanoparticles as a breast cancer targeting contrast agent for ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Milgroom, Andrew Carson

    Current clinical use of ultrasound for breast cancer diagnostics is strictly limited to a role as a supplementary detection method to other modalities, such as mammography or MRI. A major reason for ultrasound’s role as a secondary method is its inability to discern between cancerous and non-cancerous bodies of similar density, like dense calcifications or benign fibroadenomas. Its detection capabilities are further diminished by the variable density of the surrounding breast tissue with the progression of age. Preliminary studies suggest that mesoporous silica nanoparticles (MSNs) are a good candidate as an in situ contrast agent for ultrasound. By tagging the silica particle surface with the cancer-targeting antibody trastuzumab (Herceptin), suspect regions of interest can be better identified in real time with standard ultrasound equipment. Once the silica-antibody conjugate is injected into the bloodstream and enters the cancerous growth’s vasculature, the antibody arm will bind to HER2, a cell surface receptor known to be dysfunctional or overexpressed in certain types of breast cancer. As more particles aggregate at the cell surface, backscatter of the ultrasonic waves increases as a result of the higher porous silica concentration. This translates to an increased contrast around the lesion boundary. Tumor detection through ultrasound contrast enhancement provides a tremendous advantage over current cancer diagnostics because is it significantly cheaper and can be monitored in real time. Characterization of MCM-41 type MSNs suggests that these particles have sufficient stability and particle size distribution to penetrate through fenestrated tumor vasculature and accumulate in HER2+ breast cancer cells through the enhanced permeation and retention (EPR) effect. A study of acoustic properties showed that particle concentration is linearly correlated to image contrast in clinical frequency-range ultrasound, although less pronounced than typical microbubble

  10. Dysregulation of metabolic-associated pathways in muscle of breast cancer patients: preclinical evaluation of interleukin-15 targeting fatigue.

    PubMed

    Bohlen, Joseph; McLaughlin, Sarah L; Hazard-Jenkins, Hannah; Infante, Aniello M; Montgomery, Cortney; Davis, Mary; Pistilli, Emidio E

    2018-03-26

    growth for 4 weeks, and this greater muscle fatigue was attenuated in transgenic mice that overexpressed the cytokine IL-15. Our data identify novel genes and pathways dysregulated in the muscles of breast cancer patients with early stage non-metastatic disease, with particularly aberrant expression among genes that would predispose these patients to greater muscle fatigue. Furthermore, we demonstrate that IL-15 overexpression can attenuate muscle fatigue associated with mammary tumour growth in a preclinical mouse model of breast cancer. Therefore, we propose that skeletal muscle fatigue is an inherent consequence of breast tumour growth, and this greater fatigue can be targeted therapeutically. © 2018 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  11. XIAP over-expression is an independent poor prognostic marker in Middle Eastern breast cancer and can be targeted to induce efficient apoptosis.

    PubMed

    Hussain, Azhar R; Siraj, Abdul Khalid; Ahmed, Maqbool; Bu, Rong; Pratheeshkumar, Poyil; Alrashed, Alanood M; Qadri, Zeeshan; Ajarim, Dahish; Al-Dayel, Fouad; Beg, Shaham; Al-Kuraya, Khawla S

    2017-09-11

    Breast cancer is the most common cancer in females and is ranked second in cancer-related deaths all over the world in women. Despite improvement in diagnosis, the survival rate of this disease has still not improved. X-linked Inhibitor of Apoptosis (XIAP) has been shown to be over-expressed in various cancers leading to poor overall survival. However, the role of XIAP in breast cancer from Middle Eastern region has not been fully explored. We examined the expression of XIAP in more than 1000 Middle Eastern breast cancer cases by immunohistochemistry. Apoptosis was measured by flow cytometry. Protein expression was determined by western blotting. Finally, in vivo studies were performed on nude mice following xenografting and treatment with inhibitors. XIAP was found to be over-expressed in 29.5% of cases and directly associated with clinical parameters such as tumor size, extra nodal extension, triple negative breast cancer and poorly differentiated breast cancer subtype. In addition, XIAP over-expression was also significantly associated with PI3-kinase pathway protein; p-AKT, proliferative marker; Ki-67 and anti-apoptotic marker; PARP. XIAP over-expression in our cohort of breast cancer was an independent poor prognostic marker in multivariate analysis. Next, we investigated inhibition of XIAP using a specific inhibitor; embelin and found that embelin treatment led to inhibition of cell viability and induction of apoptosis in breast cancer cells. Finally, breast cancer cells treated with combination of embelin and PI3-kinase inhibitor; LY294002 synergistically induced apoptosis and caused tumor growth regression in vivo. These data suggest that XIAP may be playing an important role in the pathogenesis of breast cancer and can be therapeutically targeted either alone or in combination with PI3-kinase inhibition to induce efficient apoptosis in breast cancer cells.

  12. Chapter 27 -- Breast Cancer Genomics, Section VI, Pathology and Biological Markers of Invasive Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spellman, Paul T.; Heiser, Laura; Gray, Joe W.

    2009-06-18

    reveal the molecular differences between cancer and normal that may be exploited to therapeutic benefit or that provide targets for molecular assays that may enable early cancer detection, and predict individual disease progression or response to treatment. This chapter reviews current and future directions in genome analysis and summarizes studies that provide insights into breast cancer pathophysiology or that suggest strategies to improve breast cancer management.« less

  13. Role of MicroRNA Regulation in Obesity-Associated Breast Cancer: Nutritional Perspectives.

    PubMed

    Kasiappan, Ravi; Rajarajan, Dheeran

    2017-11-01

    Breast cancer is the most common malignancy diagnosed in women, and the incidence of breast cancer is increasing every year. Obesity has been identified as one of the major risk factors for breast cancer progression. The mechanisms by which obesity contributes to breast cancer development is not yet understood; however, there are a few mechanisms counted as potential producers of breast cancer in obesity, including insulin resistance, chronic inflammation and inflammatory cytokines, adipokines, and sex hormones. Recent emerging evidence suggests that alterations in microRNA (miRNA) expressions are found in several diseases, including breast cancer and obesity; however, miRNA roles in obesity-linked breast cancer are beginning to unravel. miRNAs are thought to be potential noninvasive biomarkers for diagnosis and prognosis of cancer patients with comorbid conditions of obesity as well as therapeutic targets. Recent studies have evidenced that nutrients and other dietary factors protect against cancer and obesity through modulation of miRNA expressions. Herein, we summarize a comprehensive overview of up-to-date information related to miRNAs and their molecular targets involved in obesity-associated breast cancer. We also address the mechanisms by which dietary factors modulate miRNA expression and its protective roles in obesity-associated breast cancer. It is hoped that this review would provide new therapeutic strategies for the treatment of obesity-associated breast cancer to reduce the burden of breast cancer. © 2017 American Society for Nutrition.

  14. ONC201 kills breast cancer cells in vitro by targeting mitochondria.

    PubMed

    Greer, Yoshimi Endo; Porat-Shliom, Natalie; Nagashima, Kunio; Stuelten, Christina; Crooks, Dan; Koparde, Vishal N; Gilbert, Samuel F; Islam, Celia; Ubaldini, Ashley; Ji, Yun; Gattinoni, Luca; Soheilian, Ferri; Wang, Xiantao; Hafner, Markus; Shetty, Jyoti; Tran, Bao; Jailwala, Parthav; Cam, Maggie; Lang, Martin; Voeller, Donna; Reinhold, William C; Rajapakse, Vinodh; Pommier, Yves; Weigert, Roberto; Linehan, W Marston; Lipkowitz, Stanley

    2018-04-06

    We report a novel mechanism of action of ONC201 as a mitochondria-targeting drug in cancer cells. ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and subsequently kills cancer cells by activating TRAIL death receptors. In this study, we examined ONC201 toxicity on multiple human breast and endometrial cancer cell lines. ONC201 attenuated cell viability in all cancer cell lines tested. Unexpectedly, ONC201 toxicity was not dependent on either TRAIL receptors nor caspases. Time-lapse live cell imaging revealed that ONC201 induces cell membrane ballooning followed by rupture, distinct from the morphology of cells undergoing apoptosis. Further investigation found that ONC201 induces phosphorylation of AMP-dependent kinase and ATP loss. Cytotoxicity and ATP depletion were significantly enhanced in the absence of glucose, suggesting that ONC201 targets mitochondrial respiration. Further analysis indicated that ONC201 indirectly inhibits mitochondrial respiration. Confocal and electron microscopic analysis demonstrated that ONC201 triggers mitochondrial structural damage and functional impairment. Moreover, ONC201 decreased mitochondrial DNA (mtDNA). RNAseq analysis revealed that ONC201 suppresses expression of multiple mtDNA-encoded genes and nuclear-encoded mitochondrial genes involved in oxidative phosphorylation and other mitochondrial functions. Importantly, fumarate hydratase deficient cancer cells and multiple cancer cell lines with reduced amounts of mtDNA were resistant to ONC201. These results indicate that cells not dependent on mitochondrial respiration are ONC201-resistant. Our data demonstrate that ONC201 kills cancer cells by disrupting mitochondrial function and further suggests that cancer cells that are dependent on glycolysis will be resistant to ONC201.

  15. ONC201 kills breast cancer cells in vitro by targeting mitochondria

    PubMed Central

    Greer, Yoshimi Endo; Porat-Shliom, Natalie; Nagashima, Kunio; Stuelten, Christina; Crooks, Dan; Koparde, Vishal N.; Gilbert, Samuel F.; Islam, Celia; Ubaldini, Ashley; Ji, Yun; Gattinoni, Luca; Soheilian, Ferri; Wang, Xiantao; Hafner, Markus; Shetty, Jyoti; Tran, Bao; Jailwala, Parthav; Cam, Maggie; Lang, Martin; Voeller, Donna; Reinhold, William C.; Rajapakse, Vinodh; Pommier, Yves; Weigert, Roberto; Linehan, W. Marston; Lipkowitz, Stanley

    2018-01-01

    We report a novel mechanism of action of ONC201 as a mitochondria-targeting drug in cancer cells. ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and subsequently kills cancer cells by activating TRAIL death receptors. In this study, we examined ONC201 toxicity on multiple human breast and endometrial cancer cell lines. ONC201 attenuated cell viability in all cancer cell lines tested. Unexpectedly, ONC201 toxicity was not dependent on either TRAIL receptors nor caspases. Time-lapse live cell imaging revealed that ONC201 induces cell membrane ballooning followed by rupture, distinct from the morphology of cells undergoing apoptosis. Further investigation found that ONC201 induces phosphorylation of AMP-dependent kinase and ATP loss. Cytotoxicity and ATP depletion were significantly enhanced in the absence of glucose, suggesting that ONC201 targets mitochondrial respiration. Further analysis indicated that ONC201 indirectly inhibits mitochondrial respiration. Confocal and electron microscopic analysis demonstrated that ONC201 triggers mitochondrial structural damage and functional impairment. Moreover, ONC201 decreased mitochondrial DNA (mtDNA). RNAseq analysis revealed that ONC201 suppresses expression of multiple mtDNA-encoded genes and nuclear-encoded mitochondrial genes involved in oxidative phosphorylation and other mitochondrial functions. Importantly, fumarate hydratase deficient cancer cells and multiple cancer cell lines with reduced amounts of mtDNA were resistant to ONC201. These results indicate that cells not dependent on mitochondrial respiration are ONC201-resistant. Our data demonstrate that ONC201 kills cancer cells by disrupting mitochondrial function and further suggests that cancer cells that are dependent on glycolysis will be resistant to ONC201. PMID:29719618

  16. Targeted Nanodiamonds as Phenotype Specific Photoacoustic Contrast Agents for Breast Cancer

    PubMed Central

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Cheng, Kun; Yang, Xinmai; Chang, Huan-Cheng; Forrest, M. Laird

    2015-01-01

    Aim The aim is to develop irradiated nanodiamonds (INDs) as a molecularly-targeted contrast agent for high resolution and phenotype-specific detection of breast cancer with photoacoustic (PA) imaging. Materials & Methods The surface of acid treated radiation-damaged nanodiamonds was grafted with polyethylene glycol (PEG) to improve its stability and circulation time in blood, followed by conjugation to an anti-Human epidermal growth factor receptor-2 (HER2) peptide (KCCYSL) with a final nanoparticle size of ca. 92 nm. Immunocompetent mice bearing orthotopic HER2 positive or negative tumors were administered INDs and PA imaged using an 820-nm near infrared laser. Results PA images demonstrated that INDs accumulate in tumors and completely delineated the entire tumor within 10 hours. HER2 targeting significantly enhanced imaging of HER2-positive tumors. Pathological examination demonstrated INDs are non-toxic. Conclusions PA technology is adaptable to low-cost bedside medicine, and with new contrast agents described herein, PA can achieve high resolution (sub-mm) and phenotype specific monitoring of cancer growth. PMID:25723091

  17. Breast Cancer

    MedlinePlus

    Breast cancer affects one in eight women during their lives. No one knows why some women get breast cancer, but there are many risk factors. Risks that ... who have family members with breast or ovarian cancer may wish to be tested for the genes. ...

  18. Prohibitin promotes androgen receptor activation in ER-positive breast cancer

    PubMed Central

    Liu, Pengying; Xu, Yumei; Zhang, Wenwen; Li, Yan; Tang, Lin; Chen, Weiwei; Xu, Jing; Sun, Qian; Guan, Xiaoxiang

    2017-01-01

    ABSTRACT Prohibitin (PHB) is an evolutionarily conserved protein with multiple functions in both normal and cancer cells. Androgen receptor (AR) was reported to act as a different role in the ER-positive and ER-negative breast cancer. However, little is known about the role of PHB and whether PHB could regulate AR expression in the ER-positive breast cancer. Here, we determined the expression and clinical outcomes of PHB in breast cancer samples using 121 breast cancer tissues and published databases, and investigated the role of PHB in breast cancer cell growth, apoptosis and cell cycle arrest in the ER-positive breast cancer cells. We obtained the expression of PHB is significantly low in breast cancer samples, and low PHB expression positively correlated with poor prognosis of breast cancer. We detected that PHB could inhibit breast cancer cell proliferation, change cell cycle distribution and promote cell apoptosis in the ER-positive breast cancer cells. Moreover, we found PHB could significantly increase AR expression in both mRNA and protein levels in the ER-positive breast cancer cells. Additionally, a significant positive correlation between PHB and AR expression was identified in the 121 breast cancer tissues. PHB and AR expression are associated with prognosis in the ER-positive breast cancer patients. Our results indicate that PHB promotes AR activation in ER-positive breast cancer, making PHB and AR potential molecular targets for ER-positive breast cancer therapy. PMID:28272969

  19. Nanoparticles for imaging and treatment of metastatic breast cancer

    PubMed Central

    Mu, Qingxin; Wang, Hui; Zhang, Miqin

    2017-01-01

    Introduction Metastatic breast cancer is one of the most devastating cancers that have no cure. Many therapeutic and diagnostic strategies have been extensively studied in the past decade. Among these strategies, cancer nanotechnology has emerged as a promising strategy in preclinical studies by enabling early identification of primary tumors and metastases, and by effective killing of cancer cells. Areas covered This review covers the recent progress made in targeting and imaging of metastatic breast cancer with nanoparticles, and treatment using nanoparticle-enabled chemo-, gene, photothermal- and radio-therapies. This review also discusses recent developments of nanoparticle-enabled stem cell therapy and immunotherapy. Expert opinion Nanotechnology is expected to play important roles in modern therapy for cancers, including metastatic breast cancer. Nanoparticles are able to target and visualize metastasis in various organs, and deliver therapeutic agents. Through targeting cancer stem cells, nanoparticles are able to treat resistant tumors with minimal toxicity to healthy tissues/organs. Nanoparticles are also able to activate immune cells to eliminate tumors. Owing to their multifunctional, controllable and trackable features, nanotechnology-based imaging and therapy could be a highly potent approach for future cancer research and treatment. PMID:27401941

  20. Curcumin targets breast cancer stem-like cells with microtentacles that persist in mammospheres and promote reattachment

    PubMed Central

    Charpentier, Monica S.; Whipple, Rebecca A.; Vitolo, Michele I.; Boggs, Amanda E.; Slovic, Jana; Thompson, Keyata N.; Bhandary, Lekhana; Martin, Stuart S.

    2014-01-01

    Cancer stem-like cells (CSC) and circulating tumor cells (CTCs) have related properties associated with distant metastasis, but the mechanisms through which CSCs promote metastasis are unclear. In this study, we report that breast cancer cell lines with more stem-like properties display higher levels of microtentacles (McTNs), a type of tubulin-based protrusion of the plasma cell membrane which forms on detached or suspended cells and aid in cell reattachment. We hypothesized that CSCs with large numbers of McTNs would more efficiently attach to distant tissues, promoting metastatic efficiency. The naturally occurring stem-like subpopulation of the HMLE breast cell line presents increased McTNs compared to its isogenic non-stem-like subpopulation. This increase was supported by elevated α-tubulin detyrosination and vimentin protein levels and organization. Increased McTNs in stem-like HMLEs promoted a faster initial reattachment of suspended cells that was inhibited by the tubulin-directed drug, colchicine, confirming a functional role for McTN in stem cell reattachment. Moreover, live cell confocal microscopy showed that McTN persist in breast stem cell mammospheres as flexible, motile protrusions on the surface of the mammosphere. While exposed to the environment, they also function as extensions between adjacent cells along cell-cell junctions. We found that treatment with the breast CSC-targeting compound curcumin rapidly extinguished McTN in breast CSC, preventing reattachment from suspension. Together, our results support a model in which breast CSCs with cytoskeletal alterations that promote McTN can mediate attachment and metastasis but might be targeted by curcumin as an anti-metastatic strategy. PMID:24371229

  1. Identification of the Downstream Promoter Targets of Smad Tumor Suppressors in Human Breast Cancer Cells

    DTIC Science & Technology

    2004-10-01

    signaling mediator Smad2, Smad3 and Smad4 which form oligomeric complexes and migrate into nucleus to function as transcription factors to modulate... Smad3 and Smad4. 2. Identification of the downstream promoter targets of Smad3 or Smad4 in breast cancer cells. 3. Identify Smad4 regulated downstream...Development of a novel chromatin immunoprecipitation assay (CHIPS) using a TAP-TAG system to isolate in vivo binding targets of Smad3 and Smad4

  2. miRNA-205 affects infiltration and metastasis of breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhouquan; Department of Tumor, SenGong Hospital of Shaanxi, Xi’an 710300; Liao, Hehe

    2013-11-08

    Highlights: •We detected expression of miR-205 in breast cancer cell lines and tissue samples. •We suggest miR-205 is downregulated in human breast cancer tissues and MCF7 cells. •We suggest the lower expression of miR-205 play a role in breast cancer onset. •These data suggest that miR-205 directly targets HER3 in human breast cancer. -- Abstract: Background: An increasing number of studies have shown that miRNAs are commonly deregulated in human malignancies, but little is known about the function of miRNA-205 (miR-205) in human breast cancer. The present study investigated the influence of miR-205 on breast cancer malignancy. Methods: The expressionmore » level of miR-205 in the MCF7 breast cancer cell line was determined by quantitative (q)RT-PCR. We then analyzed the expression of miR-205 in breast cancer and paired non-tumor tissues. Finally, the roles of miR-205 in regulating tumor proliferation, apoptosis, migration, and target gene expression were studied by MTT assay, flow cytometry, qRT-PCR, Western blotting and luciferase assay. Results: miR-205 was downregulated in breast cancer cells or tissues compared with normal breast cell lines or non-tumor tissues. Overexpression of miR-205 reduced the growth and colony-formation capacity of MCF7 cells by inducing apoptosis. Overexpression of miR-205 inhibited MCF7 cell migration and invasiveness. By bioinformation analysis, miR-205 was predicted to bind to the 3′ untranslated regions of human epidermal growth factor receptor (HER)3 mRNA, and upregulation of miR-205 reduced HER3 protein expression. Conclusion: miR-205 is a tumor suppressor in human breast cancer by post-transcriptional inhibition of HER3 expression.« less

  3. Screening circular RNA related to chemotherapeutic resistance in breast cancer.

    PubMed

    Gao, Danfeng; Zhang, Xiufen; Liu, Beibei; Meng, Dong; Fang, Kai; Guo, Zijian; Li, Lihua

    2017-09-01

    We aimed to identify circular RNAs (circRNAs) associated with breast cancer chemoresistance. CircRNA microarray expression profiles were obtained from Adriamycin (ADM) resistant MCF-7 breast cancer cells (MCF-7/ADM) and parental MCF-7 cells and were validated using quantitative real-time reverse transcription PCR. The expression data were analyzed bioinformatically. We detected 3093 circRNAs and identified 18 circRNAs that are differentially expressed between MCF-7/ADM and MCF-7 cells; after validating by quantitative real-time reverse transcription PCR, we predicted the possible miRNAs and potential target genes of the seven upregulated circRNAs using TargetScan and miRanda. The bioinformatics analysis revealed several target genes related to cancer-related signaling pathways. Additionally, we discovered a regulatory role of the circ_0006528-miR-7-5p-Raf1 axis in ADM-resistant breast cancer. These results revealed that circRNAs may play a role in breast cancer chemoresistance and that hsa_circ_0006528 might be a promising candidate for further functional analysis.

  4. Breast Cancer: A Molecular and Redox Snapshot.

    PubMed

    Raman, Deepika; Foo, Chuan Han Jonathan; Clement, Marie-Veronique; Pervaiz, Shazib

    2016-08-20

    Breast cancer is a unique disease characterized by heterogeneous cell populations causing roadblocks in therapeutic medicine, owing to its complex etiology and primeval understanding of the biology behind its genesis, progression, and sustenance. Globocan statistics indicate over 1.7 million new breast cancer diagnoses in 2012, accounting for 25% of all cancer morbidities. Despite these dismal statistics, the introduction of molecular gene signature platforms, progressive therapeutic approaches in diagnosis, and management of breast cancer has led to more effective treatment strategies and control measures concurrent with an equally reassuring decline in the mortality rate. However, an enormous body of research in this area is requisite as high mortality associated with metastatic and/or drug refractory tumors continues to present a therapeutic challenge. Despite advances in systemic chemotherapy, the median survival of patients harboring metastatic breast cancers continues to be below 2 years. Hence, a massive effort to scrutinize and evaluate chemotherapeutics on the basis of the molecular classification of these cancers is undertaken with the objective to devise more attractive and feasible approaches to treat breast cancers and improve patients' quality of life. This review aims to summarize the current understanding of the biology of breast cancer as well as challenges faced in combating breast cancer, with special emphasis on the current battery of treatment strategies. We will also try and gain perspective from recent encounters on novel findings responsible for the progression and metastatic transformation of breast cancer cells in an endeavor to develop more targeted treatment options. Antioxid. Redox Signal. 25, 337-370.

  5. Kinome screening for regulators of the estrogen receptor identifies LMTK3 as a new therapeutic target in breast cancer.

    PubMed

    Giamas, Georgios; Filipović, Aleksandra; Jacob, Jimmy; Messier, Walter; Zhang, Hua; Yang, Dongyun; Zhang, Wu; Shifa, Belul Assefa; Photiou, Andrew; Tralau-Stewart, Cathy; Castellano, Leandro; Green, Andrew R; Coombes, R Charles; Ellis, Ian O; Ali, Simak; Lenz, Heinz-Josef; Stebbing, Justin

    2011-06-01

    Therapies targeting estrogen receptor α (ERα, encoded by ESR1) have transformed the treatment of breast cancer. However, large numbers of women relapse, highlighting the need for the discovery of new regulatory targets modulating ERα pathways. An siRNA screen identified kinases whose silencing alters the estrogen response including those previously implicated in regulating ERα activity (such as mitogen-activated protein kinase and AKT). Among the most potent regulators was lemur tyrosine kinase-3 (LMTK3), for which a role has not previously been assigned. In contrast to other modulators of ERα activity, LMTK3 seems to have been subject to Darwinian positive selection, a noteworthy result given the unique susceptibility of humans to ERα+ breast cancer. LMTK3 acts by decreasing the activity of protein kinase C (PKC) and the phosphorylation of AKT (Ser473), thereby increasing binding of forkhead box O3 (FOXO3) to the ESR1 promoter. LMTK3 phosphorylated ERα, protecting it from proteasomal degradation in vitro. Silencing of LMTK3 reduced tumor volume in an orthotopic mouse model and abrogated proliferation of ERα+ but not ERα- cells, indicative of its role in ERα activity. In human cancers, LMTK3 abundance and intronic polymorphisms were significantly associated with disease-free and overall survival and predicted response to endocrine therapies. These findings yield insights into the natural history of breast cancer in humans and reveal LMTK3 as a new therapeutic target.

  6. Melatonin potentiates "inside-out" nano-thermotherapy in human breast cancer cells: a potential cancer target multimodality treatment based on melatonin-loaded nanocomposite particles.

    PubMed

    Xie, Wensheng; Gao, Qin; Wang, Dan; Wang, Wei; Yuan, Jie; Guo, Zhenhu; Yan, Hao; Wang, Xiumei; Sun, Xiaodan; Zhao, Lingyun

    2017-01-01

    With the wide recognition of oncostatic effect of melatonin, the current study proposes a potential breast cancer target multimodality treatment based on melatonin-loaded magnetic nanocomposite particles (Melatonin-MNPs). Melatonin-MNPs were fabricated by the single emulsion solvent extraction/evaporation method. Based on the facilitated transport of melatonin by the GLUT overexpressed on the cell membrane, such Melatonin-MNPs can be more favorably uptaken by MCF-7 cells compared with the melatonin-free nanocomposite particles, which indicates the cancer targeting ability of melatonin molecule. Inductive heating can be generated by exposure to the Melatonin-MNPs internalized within cancer cells under alternative magnetic field, so as to achieve the "inside-out" magnetic nano-thermotherapy. In addition to demonstrating the superior cytotoxic effect of such nano-thermotherapy over the conventional exogenous heating by metal bath, more importantly, the sustainable release of melatonin from the Melatonin-MNPs can be greatly promoted upon responsive to the magnetic heating. The multimodality treatment based on Melatonin-MNPs can lead to more significant decrease in cell viability than any single treatment, suggesting the potentiated effect of melatonin on the cytotoxic response to nano-thermotherapy. This study is the first to fabricate the precisely engineered melatonin-loaded multifunctional nanocomposite particles and demonstrate the potential in breast cancer target multimodality treatment.

  7. Differential microRNA expression is associated with androgen receptor expression in breast cancer.

    PubMed

    Shi, Yaqin; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Gu, Jun; Guan, Xiaoxiang

    2017-01-01

    The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)‑positive breast cancer compared with ER‑negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone‑dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR‑positive and ‑negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR‑positive compared with AR‑negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug‑resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer.

  8. Palbociclib: A new hope in the treatment of breast cancer.

    PubMed

    Palanisamy, R Priyadharsini

    2016-01-01

    Breast cancer being one of the common cancers has high morbidity and mortality. Despite the conventional treatment, the burden of the disease increases year after year. There is a need for newer drugs that target the different mechanisms in the pathogenesis. The interaction of cyclins with cyclin dependent kinases (CDKs) plays a major role in the abnormal cell cycle in cancer and it is considered to be an important target. Palbociclib is a CDK inhibitor currently approved for the treatment of breast cancer. The preclinical studies with breast cancer lines were sensitive to palbociclib and the clinical trials phase I, phase II (PALOMA 1), and phase III (PALOMA 2, 3, PENTELOPE, PEARL) showed that the drug was efficacious when combined other conventional drugs for breast cancer. Palbociclib was also been tested in various other germ cell tumors, melanoma, multiple myeloma, glioblastoma multiforme etc., The major adverse effect of the drug includes hematological toxicity mainly neutropenia, gastrointestinal adverse effects.

  9. Current advances in biomarkers for targeted therapy in triple-negative breast cancer

    PubMed Central

    Fleisher, Brett; Clarke, Charlotte; Ait-Oudhia, Sihem

    2016-01-01

    Triple-negative breast cancer (TNBC) is a complex heterogeneous disease characterized by the absence of three hallmark receptors: human epidermal growth factor receptor 2, estrogen receptor, and progesterone receptor. Compared to other breast cancer subtypes, TNBC is more aggressive, has a higher prevalence in African-Americans, and more frequently affects younger patients. Currently, TNBC lacks clinically accepted targets for tailored therapy, warranting the need for candidate biomarkers. BiomarkerBase, an online platform used to find biomarkers reported in clinical trials, was utilized to screen all potential biomarkers for TNBC and select only the ones registered in completed TNBC trials through clinicaltrials.gov. The selected candidate biomarkers were classified as surrogate, prognostic, predictive, or pharmacodynamic (PD) and organized by location in the blood, on the cell surface, in the cytoplasm, or in the nucleus. Blood biomarkers include vascular endothelial growth factor/vascular endothelial growth factor receptor and interleukin-8 (IL-8); cell surface biomarkers include EGFR, insulin-like growth factor binding protein, c-Kit, c-Met, and PD-L1; cytoplasm biomarkers include PIK3CA, pAKT/S6/p4E-BP1, PTEN, ALDH1, and the PIK3CA/AKT/mTOR-related metabolites; and nucleus biomarkers include BRCA1, the gluco-corticoid receptor, TP53, and Ki67. Candidate biomarkers were further organized into a “cellular protein network” that demonstrates potential connectivity. This review provides an inventory and reference point for promising biomarkers for breakthrough targeted therapies in TNBC. PMID:27785100

  10. Early Detection and Screening for Breast Cancer.

    PubMed

    Coleman, Cathy

    2017-05-01

    To review the history, current status, and future trends related to breast cancer screening. Peer-reviewed articles, web sites, and textbooks. Breast cancer remains a complex, heterogeneous disease. Serial screening with mammography is the most effective method to detect early stage disease and decrease mortality. Although politics and economics may inhibit organized mammography screening programs in many countries, the judicious use of proficient clinical and self-breast examination can also identify small tumors leading to reduced morbidity. Oncology nurses have exciting opportunities to lead, facilitate, and advocate for delivery of high-quality screening services targeting individuals and communities. A practical approach is needed to translate the complexities and controversies surrounding breast cancer screening into improved care outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Hypnosis for Hot Flashes and Associated Symptomsin Women with Breast Cancer.

    PubMed

    Roberts, R Lynae; Na, Hyeji; Yek, Ming Hwei; Elkins, Gary

    2017-10-01

    Women with breast cancer experience a host of physical and psychological symptoms, including hot flashes, sleep difficulties, anxiety, and depression. Therefore, treatment for women with breast cancer should target these symptoms and be individualized to patients' specific presentations. The current article reviews the common symptoms associated with breast cancer in women, then examines clinical hypnosis as a treatment for addressing these symptoms and improving the quality of life of women with breast cancer. Clinical hypnosis is an effective, nonpharmaceutical treatment for hot flashes and addressing many symptoms typically experienced by breast cancer patients. A case example is provided to illustrate the use of clinical hypnosis for the treatment of hot flashes with a patient with breast cancer.

  12. Novel Targeting Approach for Breast Cancer Gene Therapy

    DTIC Science & Technology

    2010-09-01

    haloperidol and ibogaine)- conjugated polyamidoamine (PAMAM) dendrimers Poly(amidoamine) (PAMAM) dendrimers of 3.5 generation with carboxylate surface...Mukherjee A, Prasad TK, Rao NM, Banerjee R. Haloperidol associated stealth liposomes. A potent carrier for delivering genes to human breast cancer cells

  13. Developing an effective breast cancer vaccine.

    PubMed

    Soliman, Hatem

    2010-07-01

    Harnessing the immune response in treating breast cancer would potentially offer a less toxic, more targeted approach to eradicating residual disease. Breast cancer vaccines are being developed to effectively train cytotoxic T cells to recognize and kill transformed cells while sparing normal ones. However, achieving this goal has been problematic due to the ability of established cancers to suppress and evade the immune response. A review of the literature on vaccines and breast cancer treatment was conducted, specifically addressing strategies currently available, as well as appropriate settings, paradigms for vaccine development and response monitoring, and challenges with immunosuppression. Multiple issues need to be addressed in order to optimize the benefits offered by breast cancer vaccines. Primary issues include the following: (1) cancer vaccines will likely work better in a minimal residual disease state, (2) clinical trial design for immunotherapy should incorporate recommendations from expert groups such as the Cancer Vaccine Working Group and use standardized immune response measurements, (3) the presently available cancer vaccine approaches, including dendritic cell-based, tumor-associated antigen peptide-based, and whole cell-based, have various pros and cons, (4) to date, no one approach has been shown to be superior to another, and (5) vaccines will need to be combined with immunoregulatory agents to overcome tumor-related immunosuppression. Combining a properly optimized cancer vaccine with novel immunomodulating agents that overcome tumor-related immunosuppression in a well-designed clinical trial offers the best hope for developing an effective breast cancer vaccine strategy.

  14. HER2-positive breast cancer, how far away from the cure?-on the current situation of anti-HER2 therapy in breast cancer treatment and survival of patients.

    PubMed

    Liao, Ning

    2016-06-01

    With the diagnosis and treatment of tumor enter into the area of precision medical, based on selected targeted molecular typing of patients with individualized diagnosis and treatment play an important role. HER gene encoded epidermal growth factor receptor 2 (HER2) leading to increased early distant metastasis of breast cancer in patients and poor prognosis. However, a number of clinical studies provided evidence-based anti-HER2 targeted therapy and confirmed the benefit of anti-HER2 targeted therapy in patient survival. In recent years, through the tireless efforts of scholars in the field of breast cancer in our country, the whole diagnosis and treatment of breast cancer has accomplished an international standard. But based on a variety of factors, the anti-HER2 targeted therapy between China and the developed countries, and between different areas in China still exists certain gaps, is now a problem need to be solved. This article will analyzing the diagnostic and treatment on HER2-positive breast cancer in the United States and China, exploring reasons and looking for answers to narrow down the gap in the treatment of HER2-positive breast cancer between China and the United States. Improve the anti-HER2 targeted therapy in our country, let the patients get maximum benefit from anti-HER2 targeted therapy.

  15. Common breast cancer susceptibility loci are associated with triple negative breast cancer

    PubMed Central

    Stevens, Kristen N.; Vachon, Celine M.; Lee, Adam M.; Slager, Susan; Lesnick, Timothy; Olswold, Curtis; Fasching, Peter A.; Miron, Penelope; Eccles, Diana; Carpenter, Jane E.; Godwin, Andrew K.; Ambrosone, Christine; Winqvist, Robert; Schmidt, Marjanka K.; Cox, Angela; Cross, Simon S.; Sawyer, Elinor; Hartmann, Arndt; Beckmann, Matthias W.; Schulz-Wendtland, Rüdiger; Ekici, Arif B.; Tapper, William J; Gerty, Susan M; Durcan, Lorraine; Graham, Nikki; Hein, Rebecca; Nickels, Stephan; Flesch-Janys, Dieter; Heinz, Judith; Sinn, Hans-Peter; Konstantopoulou, Irene; Fostira, Florentia; Pectasides, Dimitrios; Dimopoulos, Athanasios M.; Fountzilas, George; Clarke, Christine L.; Balleine, Rosemary; Olson, Janet E.; Fredericksen, Zachary; Diasio, Robert B.; Pathak, Harsh; Ross, Eric; Weaver, JoEllen; Rüdiger, Thomas; Försti, Asta; Dünnebier, Thomas; Ademuyiwa, Foluso; Kulkarni, Swati; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Ko, Yon-Dschun; Van Limbergen, Erik; Janssen, Hilde; Peto, Julian; Fletcher, Olivia; Giles, Graham G.; Baglietto, Laura; Verhoef, Senno; Tomlinson, Ian; Kosma, Veli-Matti; Beesley, Jonathan; Greco, Dario; Blomqvist, Carl; Irwanto, Astrid; Liu, Jianjun; Blows, Fiona M.; Dawson, Sarah-Jane; Margolin, Sara; Mannermaa, Arto; Martin, Nicholas G.; Montgomery, Grant W; Lambrechts, Diether; dos Santos Silva, Isabel; Severi, Gianluca; Hamann, Ute; Pharoah, Paul; Easton, Douglas F.; Chang-Claude, Jenny; Yannoukakos, Drakoulis; Nevanlinna, Heli; Wang, Xianshu; Couch, Fergus J.

    2012-01-01

    Triple negative breast cancers are an aggressive subtype of breast cancer with poor survival, but there remains little known about the etiological factors which promote its initiation and development. Commonly inherited breast cancer risk factors identified through genome wide association studies (GWAS) display heterogeneity of effect among breast cancer subtypes as defined by estrogen receptor (ER) and progesterone receptor (PR) status. In the Triple Negative Breast Cancer Consortium (TNBCC), 22 common breast cancer susceptibility variants were investigated in 2,980 Caucasian women with triple negative breast cancer and 4,978 healthy controls. We identified six single nucleotide polymorphisms (SNPs) significantly associated with risk of triple negative breast cancer, including rs2046210 (ESR1), rs12662670 (ESR1), rs3803662 (TOX3), rs999737 (RAD51L1), rs8170 (19p13.11) and rs8100241 (19p13.11). Together, our results provide convincing evidence of genetic susceptibility for triple negative breast cancer. PMID:21844186

  16. Pleiotrophin as a Growth Factor and Therapeutic Target in Breast Cancer.

    DTIC Science & Technology

    1998-10-01

    Hs578T cells by stable transfection with hammerhead ribozymes as done for a number of different genes by my laboratory (for a review see reference [28...angiogenesis and metastasis. 14. SUBJECT TERMS Breast Cancer growth factor, pleiotrophin, hormones, retrovirus, ribozymes 15. NUMBER OF PAGES...of their endogenous PTN with specific ribozymes [10-12]. We were the first laboratory to purify PTN from human cancer cells (MDA-MB 231 breast

  17. EHMT2 is a metastasis regulator in breast cancer.

    PubMed

    Kim, Kwangho; Son, Mi-Young; Jung, Cho-Rok; Kim, Dae-Soo; Cho, Hyun-Soo

    2018-02-05

    Various modes of epigenetic regulation of breast cancer proliferation and metastasis have been investigated, but epigenetic mechanisms involved in breast cancer metastasis remain elusive. Thus, in this study, EHMT2 (a histone methyltransferase) was determined to be significantly overexpressed in breast cancer tissues and in Oncomine data. In addition, knockdown of EHMT2 reduced cell migration/invasion and regulated the expression of EMT-related markers (E-cadherin, Claudin 1, and Vimentin). Furthermore, treatment with BIX-01294, a specific inhibitor of EHMT2, affected migration/invasion in MDA-MB-231 cells. Therefore, our findings demonstrate functions of EHMT2 in breast cancer metastasis and suggest that targeting EHMT2 may be an effective therapeutic strategy for preventing breast cancer metastasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. d-Fructose-Decorated Poly(ethylene imine) for Human Breast Cancer Cell Targeting.

    PubMed

    Englert, Christoph; Pröhl, Michael; Czaplewska, Justyna A; Fritzsche, Carolin; Preußger, Elisabeth; Schubert, Ulrich S; Traeger, Anja; Gottschaldt, Michael

    2017-08-01

    The high affinity of GLUT5 transporter for d-fructose in breast cancer cells has been discussed intensely. In this contribution, high molar mass linear poly(ethylene imine) (LPEI) is functionalized with d-fructose moieties to combine the selectivity for the GLUT5 transporter with the delivery potential of PEI for genetic material. The four-step synthesis of a thiol-group bearing d-fructose enables the decoration of a cationic polymer backbone with d-fructose via thiol-ene photoaddition. The functionalization of LPEI is confirmed by 2D NMR techniques, elemental analysis, and size exclusion chromatography. Importantly, a d-fructose decoration of 16% renders the polymers water-soluble and eliminates the cytotoxicity of PEI in noncancer L929 cells, accompanied by a reduced unspecific cellular uptake of the genetic material. In contrast, the cytotoxicity as well as the cell specific uptake is increased for triple negative MDA-MB-231 breast cancer cells. Therefore, the introduction of d-fructose shows superior potential for cell targeting, which can be assumed to be GLUT5 dependent. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Suppression of breast cancer metastasis through the inactivation of ADP-ribosylation factor 1.

    PubMed

    Xie, Xiayang; Tang, Shou-Ching; Cai, Yafei; Pi, Wenhu; Deng, Libin; Wu, Guangyu; Chavanieu, Alain; Teng, Yong

    2016-09-06

    Metastasis is the major cause of cancer-related death in breast cancer patients, which is controlled by specific sets of genes. Targeting these genes may provide a means to delay cancer progression and allow local treatment to be more effective. We report for the first time that ADP-ribosylation factor 1 (ARF1) is the most amplified gene in ARF gene family in breast cancer, and high-level amplification of ARF1 is associated with increased mRNA expression and poor outcomes of patients with breast cancer. Knockdown of ARF1 leads to significant suppression of migration and invasion in breast cancer cells. Using the orthotopic xenograft model in NSG mice, we demonstrate that loss of ARF1 expression in breast cancer cells inhibits pulmonary metastasis. The zebrafish-metastasis model confirms that the ARF1 gene depletion suppresses breast cancer cells to metastatic disseminate throughout fish body, indicating that ARF1 is a very compelling target to limit metastasis. ARF1 function largely dependents on its activation and LM11, a cell-active inhibitor that specifically inhibits ARF1 activation through targeting the ARF1-GDP/ARNO complex at the Golgi, significantly impairs metastatic capability of breast cancer cell in zebrafish. These findings underline the importance of ARF1 in promoting metastasis and suggest that LM11 that inhibits ARF1 activation may represent a potential therapeutic approach to prevent or treat breast cancer metastasis.

  20. Role of inflammation in obesity-related breast cancer.

    PubMed

    Crespi, Elisa; Bottai, Giulia; Santarpia, Libero

    2016-12-01

    Chronic inflammation associated with obesity is now recognized to be an important condition in promoting carcinogenesis and progression in breast cancer patients, mostly in postmenopausal women with tumors expressing estrogen and progesterone receptors. In obese patients, altered levels of several inflammatory mediators regulating aromatase and estrogen expression are one of the mechanisms responsible of increase breast cancer risk. Growing attention has also been paid to the local adipose inflammation and the role played by macrophages as determinants of breast cancer risk recurrence and prognosis. The inflammation-obesity axis offers different molecular signaling pathways for therapeutic interventions and potential pharmacological targets. The increasing rate of obesity worldwide associated with the recent findings linking inflammation and breast cancer urge further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Vitamin D: Are We Ready to Supplement for Breast Cancer Prevention and Treatment?

    PubMed Central

    Crew, Katherine D.

    2013-01-01

    Vitamin D deficiency is a potentially modifiable risk factor that may be targeted for breast cancer prevention and treatment. Preclinical studies support various antitumor effects of vitamin D in breast cancer. Numerous observational studies have reported an inverse association between vitamin D status, including circulating 25-hydroxyvitamin D (25(OH)D) levels, and breast cancer risk. The relationship between vitamin D and mammographic density, a strong predictor of breast cancer risk, remains unclear. Studies analyzing the link between genetic polymorphisms in vitamin D pathway genes and breast cancer incidence and prognosis have yielded inconsistent results. Vitamin D deficiency among breast cancer patients has been associated with poorer clinical outcomes and increased mortality. Despite a number of clinical trials of vitamin D supplementation, the efficacy, optimal dosage of vitamin D, and target blood level of 25(OH)D for breast cancer prevention have yet to be determined. Even with substantial literature on vitamin D and breast cancer, future studies need to focus on gaining a better understanding of the biologic effects of vitamin D in breast tissue. Despite compelling data from experimental and observational studies, there is still insufficient data from clinical trials to make recommendations for vitamin D supplementation for breast cancer prevention or treatment. PMID:23533810

  2. Regional Delivery of Chimeric Antigen Receptor-Engineered T Cells Effectively Targets HER2+ Breast Cancer Metastasis to the Brain.

    PubMed

    Priceman, Saul J; Tilakawardane, Dileshni; Jeang, Brook; Aguilar, Brenda; Murad, John P; Park, Anthony K; Chang, Wen-Chung; Ostberg, Julie R; Neman, Josh; Jandial, Rahul; Portnow, Jana; Forman, Stephen J; Brown, Christine E

    2018-01-01

    Purpose: Metastasis to the brain from breast cancer remains a significant clinical challenge, and may be targeted with CAR-based immunotherapy. CAR design optimization for solid tumors is crucial due to the absence of truly restricted antigen expression and potential safety concerns with "on-target off-tumor" activity. Here, we have optimized HER2-CAR T cells for the treatment of breast to brain metastases, and determined optimal second-generation CAR design and route of administration for xenograft mouse models of breast metastatic brain tumors, including multifocal and leptomeningeal disease. Experimental Design: HER2-CAR constructs containing either CD28 or 4-1BB intracellular costimulatory signaling domains were compared for functional activity in vitro by measuring cytokine production, T-cell proliferation, and tumor killing capacity. We also evaluated HER2-CAR T cells delivered by intravenous, local intratumoral, or regional intraventricular routes of administration using in vivo human xenograft models of breast cancer that have metastasized to the brain. Results: Here, we have shown that HER2-CARs containing the 4-1BB costimulatory domain confer improved tumor targeting with reduced T-cell exhaustion phenotype and enhanced proliferative capacity compared with HER2-CARs containing the CD28 costimulatory domain. Local intracranial delivery of HER2-CARs showed potent in vivo antitumor activity in orthotopic xenograft models. Importantly, we demonstrated robust antitumor efficacy following regional intraventricular delivery of HER2-CAR T cells for the treatment of multifocal brain metastases and leptomeningeal disease. Conclusions: Our study shows the importance of CAR design in defining an optimized CAR T cell, and highlights intraventricular delivery of HER2-CAR T cells for treating multifocal brain metastases. Clin Cancer Res; 24(1); 95-105. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Mitochondrial “power” drives tamoxifen resistance: NQO1 and GCLC are new therapeutic targets in breast cancer

    PubMed Central

    Fiorillo, Marco; Sotgia, Federica; Sisci, Diego; Cappello, Anna Rita; Lisanti, Michael P.

    2017-01-01

    Here, we identified two new molecular targets, which are functionally sufficient to metabolically confer the tamoxifen-resistance phenotype in human breast cancer cells. Briefly, ~20 proteins were first selected as potential candidates, based on unbiased proteomics analysis, using tamoxifen-resistant cell lines. Then, the cDNAs of the most promising candidates were systematically transduced into MCF-7 cells. Remarkably, NQO1 and GCLC were both functionally sufficient to autonomously confer a tamoxifen-resistant metabolic phenotype, characterized by i) increased mitochondrial biogenesis, ii) increased ATP production and iii) reduced glutathione levels. Thus, we speculate that pharmacological inhibition of NQO1 and GCLC may be new therapeutic strategies for overcoming tamoxifen-resistance in breast cancer patients. In direct support of this notion, we demonstrate that treatment with a known NQO1 inhibitor (dicoumarol) is indeed sufficient to revert the tamoxifen-resistance phenotype. As such, these findings could have important translational significance for the prevention of tumor recurrence in ER(+) breast cancers, which is due to an endocrine resistance phenotype. Importantly, we also show here that NQO1 has significant prognostic value as a biomarker for the prediction of tumor recurrence. More specifically, higher levels of NQO1 mRNA strongly predict patient relapse in high-risk ER(+) breast cancer patients receiving endocrine therapy (mostly tamoxifen; H.R. > 2.15; p = 0.007). PMID:28411284

  4. Potential Diagnostic and Therapeutic Applications of Oligonucleotide Aptamers in Breast Cancer.

    PubMed

    Wu, Xiaoqiu; Shaikh, Atik Badshah; Yu, Yuanyuan; Li, Yongshu; Ni, Shuaijian; Lu, Aiping; Zhang, Ge

    2017-08-25

    Breast cancer is one of the most common causes of cancer related deaths in women. Currently, with the development of early detection, increased social awareness and kinds of treatment options, survival rate has improved in nearly every type of breast cancer patients. However, about one third patients still have increased chances of recurrence within five years and the five-year relative survival rate in patients with metastasis is less than 30%. Breast cancer contains multiple subtypes. Each subtype could cause distinct clinical outcomes and systemic interventions. Thereby, new targeted therapies are of particular importance to solve this major clinical problem. Aptamers, often termed "chemical antibodies", are functionally similar to antibodies and have demonstrated their superiority of recognizing target with high selectivity, affinity and stability. With these intrinsic properties, aptamers have been widely studied in cancer biology and some are in clinical trials. In this review, we will firstly discuss about the global impacts and mechanisms of breast cancer, then briefly highlight applications of aptamers that have been developed for breast cancer and finally summarize various challenges in clinical translation of aptamers.

  5. Immunotherapeutic interventions of Triple Negative Breast Cancer.

    PubMed

    Li, Zehuan; Qiu, Yiran; Lu, Weiqi; Jiang, Ying; Wang, Jin

    2018-05-30

    Triple Negative Breast Cancer (TNBC) is a highly heterogeneous subtype of breast cancer that lacks the expression of oestrogen receptors, progesterone receptors and human epidermal growth factor receptor 2. Although TNBC is sensitive to chemotherapy, the overall outcomes of TNBC are worse than for other breast cancers, and TNBC is still one of the most fatal diseases for women. With the discovery of antigens specifically expressed in TNBC cells and the developing technology of monoclonal antibodies, chimeric antigen receptors and cancer vaccines, immunotherapy is emerging as a novel promising option for TNBC. This review is mainly focused on the tumour microenvironment and host immunity, Triple Negative Breast Cancer and the clinical treatment of TNBC, novel therapies for cancer and immunotherapy for TNBC, and the future outlook for the treatment for TNBC and the interplay between the therapies, including immune checkpoint inhibitors, combination of immune checkpoint inhibitors with targeted treatments in TNBC, adoptive cell therapy, cancer vaccines. The review also highlights recent reports on the synergistic effects of immunotherapy and chemotherapy, antibody-drug conjugates, and exosomes, as potential multifunctional therapeutic agents in TNBC.

  6. Fatty acid metabolism in breast cancer subtypes

    PubMed Central

    Monaco, Marie E.

    2017-01-01

    Dysregulation of fatty acid metabolism is recognized as a component of malignant transformation in many different cancers, including breast; yet the potential for targeting this pathway for prevention and/or treatment of cancer remains unrealized. Evidence indicates that proteins involved in both synthesis and oxidation of fatty acids play a pivotal role in the proliferation, migration and invasion of breast cancer cells. The following essay summarizes data implicating specific fatty acid metabolic enzymes in the genesis and progression of breast cancer, and further categorizes the relevance of specific metabolic pathways to individual intrinsic molecular subtypes of breast cancer. Based on mRNA expression data, the less aggressive luminal subtypes appear to rely on a balance between de novo fatty acid synthesis and oxidation as sources for both biomass and energy requirements, while basal-like, receptor negative subtypes overexpress genes involved in the utilization of exogenous fatty acids. With these differences in mind, treatments may need to be tailored to individual subtypes. PMID:28412757

  7. The metabolic regulator ERRα, a downstream target of HER2/IGF-1, as a therapeutic target in breast cancer

    PubMed Central

    Chang, Ching-yi; Kazmin, Dmitri; Jasper, Jeff S.; Kunder, Rebecca; Zuercher, William J.; McDonnell, Donald P.

    2011-01-01

    Summary A genomic signature designed to assess the activity of the estrogen-related receptor alpha (ERRα) was used to profile more than eight hundred breast tumors, revealing a shorter disease-free survival in patients with tumors exhibiting elevated receptor activity. Importantly, this signature also predicted the ability of an ERRα antagonist, XCT790, to inhibit proliferation in cellular models of breast cancer. Using a chemical genomic approach, it was determined that activation of the Her2/IGF-1 signaling pathways and subsequent C-MYC stabilization upregulate the expression of peroxisome proliferator-activated receptor gamma coactivator-1 beta (PGC-1β), an obligate cofactor for ERRα activity. PGC-1β knockdown in breast cancer cells impaired ERRα signaling and reduced cell proliferation, implicating a functional role for PGC1β/ERRα in the pathogenesis of breast cancers. Significance Overexpression of ERRα has been correlated with progression of breast and ovarian cancers in several small studies. Using a genomic approach, we defined specific aspects of the activity of this receptor that track with shorter disease-free survival in multiple cohorts of breast cancer patients. Importantly, cellular models of breast cancer exhibiting high ERRα activity are more sensitive to growth inhibition by an ERRα antagonist. This finding highlights a promising treatment strategy for those aggressive tumors that currently have limited therapeutic options. PMID:22014575

  8. Targeting Common but Complex Proteoglycans on Breast Cancer Cells and Stem Cells Using Evolutionary Refined Malaria Proteins

    DTIC Science & Technology

    2014-09-01

    chondroitin sulfate A proteoglycans present on all tested breast cancer cells and the vast majority of tested tissue biopsies. Using pull down assays...Invited, Daugaard. C) 2014. Gordon research conference, July 6-11; Targeting of cancer-specific chondroitin sulfate on circulating tumor cells using...now successfully identified a number of proteoglycans that interact with the recombinant malaria protein VAR2CSA when sulfated on carbon 4 of the CS

  9. The use of nanoparticulates to treat breast cancer.

    PubMed

    Tang, Xiaomeng; Loc, Welley S; Dong, Cheng; Matters, Gail L; Butler, Peter J; Kester, Mark; Meyers, Craig; Jiang, Yixing; Adair, James H

    2017-10-01

    Breast cancer is a major ongoing public health issue among women in both developing and developed countries. Significant progress has been made to improve the breast cancer treatment in the past decades. However, the current clinical approaches are invasive, of low specificity and can generate severe side effects. As a rapidly developing field, nanotechnology brings promising opportunities to human cancer diagnosis and treatment. The use of nanoparticulate-based platforms overcomes biological barriers and allows prolonged blood circulation time, simultaneous tumor targeting and enhanced accumulation of drugs in tumors. Currently available and clinically applicable innovative nanoparticulate-based systems for breast cancer nanotherapies are discussed in this review.

  10. Chromatin reprogramming in breast cancer.

    PubMed

    Swinstead, Erin E; Paakinaho, Ville; Hager, Gordon

    2018-04-24

    Reprogramming of the chromatin landscape is a critical component to the transcriptional response in breast cancer. Effects of sex hormones such as estrogens and progesterone have been well described to have a critical impact on breast cancer proliferation. However, the complex network of the chromatin landscape, enhancer regions, and mode of function of steroid receptors (SRs) and other transcription factors (TFs), is an intricate web of signaling and functional processes that is still largely misunderstood at the mechanistic level. In this review, we describe what is currently known about the dynamic interplay between TFs with chromatin and the reprogramming of enhancer elements. Emphasis has been placed on characterizing the different modes of action of TFs in regulating enhancer activity, specifically, how different SRs target enhancer regions and reprogram chromatin in breast cancer cells. In addition, we discuss current techniques employed to study enhancer function at a genome-wide level. Further, we have noted recent advances in live cell imaging technology. These single cell approaches enable the coupling of population based assays with real-time studies to address many unsolved questions about SRs and chromatin dynamics in breast cancer.

  11. S14 as a Therapeutic Target in Breast Cancer

    DTIC Science & Technology

    2006-08-01

    stained agarose gel is shown. Total RNA was analyzed by RT-PCR. Templates (500 ng) were from HepG2 hepatocarcinoma , T47D lipogenic breast cancer, and...cancer, but not MCF10a mammary epithelial or HepG2 hepatocarcinoma cells (not shown). We attempted to reduce S14 mRNA and protein expression using

  12. Curcumin targets breast cancer stem-like cells with microtentacles that persist in mammospheres and promote reattachment.

    PubMed

    Charpentier, Monica S; Whipple, Rebecca A; Vitolo, Michele I; Boggs, Amanda E; Slovic, Jana; Thompson, Keyata N; Bhandary, Lekhana; Martin, Stuart S

    2014-02-15

    Cancer stem-like cells (CSC) and circulating tumor cells (CTC) have related properties associated with distant metastasis, but the mechanisms through which CSCs promote metastasis are unclear. In this study, we report that breast cancer cell lines with more stem-like properties display higher levels of microtentacles (McTN), a type of tubulin-based protrusion of the plasma cell membrane that forms on detached or suspended cells and aid in cell reattachment. We hypothesized that CSCs with large numbers of McTNs would more efficiently attach to distant tissues, promoting metastatic efficiency. The naturally occurring stem-like subpopulation of the human mammary epithelial (HMLE) cell line presents increased McTNs compared with its isogenic non-stem-like subpopulation. This increase was supported by elevated α-tubulin detyrosination and vimentin protein levels and organization. Increased McTNs in stem-like HMLEs promoted a faster initial reattachment of suspended cells that was inhibited by the tubulin-directed drug, colchicine, confirming a functional role for McTNs in stem cell reattachment. Moreover, live-cell confocal microscopy showed that McTNs persist in breast stem cell mammospheres as flexible, motile protrusions on the surface of the mammosphere. Although exposed to the environment, they also function as extensions between adjacent cells along cell-cell junctions. We found that treatment with the breast CSC-targeting compound curcumin rapidly extinguished McTN in breast CSC, preventing reattachment from suspension. Together, our results support a model in which breast CSCs with cytoskeletal alterations that promote McTNs can mediate attachment and metastasis but might be targeted by curcumin as an antimetastatic strategy. ©2013 AACR.

  13. Blocking the Adhesion Cascade at the Premetastatic Niche for Prevention of Breast Cancer Metastasis

    PubMed Central

    Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi

    2015-01-01

    Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)–/CD44+ hormone-independent breast cancer cells, but not of the ER+/CD44-/low hormone-dependent breast cancer cells. Coincidentally, CD44+ breast cancer cells were abundant in metastatic lung and brain lesions in ER– breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER–/CD44+ breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44+ cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER–/CD44+ breast cancer. PMID:25815697

  14. Blocking the adhesion cascade at the premetastatic niche for prevention of breast cancer metastasis.

    PubMed

    Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi

    2015-06-01

    Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)(-)/CD44(+) hormone-independent breast cancer cells, but not of the ER(+)/CD44(-/low) hormone-dependent breast cancer cells. Coincidentally, CD44(+) breast cancer cells were abundant in metastatic lung and brain lesions in ER(-) breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER(-)/CD44(+) breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44(+) cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER(-)/CD44(+) breast cancer.

  15. Leptin–cytokine crosstalk in breast cancer

    PubMed Central

    Newman, Gale; Gonzalez-Perez, Ruben Rene

    2013-01-01

    decreased the levels of VEGF/VEGFR2, IL-1 and Notch. Inhibition of leptin–cytokine crosstalk might serve as a preventative or adjuvant measure to target breast cancer, particularly in obese women. This review is intended to present an update analysis of leptin actions in breast cancer, highlighting its crosstalk to inflammatory cytokines and growth fact ors essential for tumor development, angiogenesis and potential role in BCSC. PMID:23562747

  16. New protein kinase inhibitors in breast cancer: afatinib and neratinib.

    PubMed

    Zhang, Xiaosong; Munster, Pamela N

    2014-06-01

    Human epidermal growth factor receptor (HER) 2 is overexpressed in 20 - 25% of breast cancers, and has historically been a poor prognostic marker. The introduction of trastuzumab, the first fully humanized monoclonal antibody targeting HER2, has drastically changed the outcomes of metastatic breast cancers. However, despite initial response, most patients develop resistance. Recent data suggest that strategies targeting more than one member of HER family may circumvent trastuzumab resistance and confer synergistic effects. Following a literature search on PubMed, national meetings and clinicaltrials.gov using 'afatinib', 'neratinib', 'HER2' and 'breast cancer' as keywords, we critically analyzed the different HER2-targeted therapies for their drug development and evidence-based therapeutic strategies. Afatinib and neratinib, two second-generation tyrosine kinase inhibitors (TKIs) that irreversibly inhibit more than one HER family member, are being actively investigated in clinical trials either as monotherapy or in combination. We reviewed the efficacy and optimal use of these agents in various settings, such as systemic therapy for advanced breast cancer including brain metastases, and neoadjuvant therapy in early-stage breast cancer. HER2-targeted therapies have been widely used and greatly improved the outcome of HER2-positive breast cancer. Despite the accelerated advancement in recent years, several crucial questions remain unanswered, such as how to treat a prior resistance or affect a sanctuary site, that is, CNS metastasis. The novel next-generation TKIs, afatinib and neratinib, were rationally designed to overcome the resistance by targeting multiple HER family members and irreversibly binding the targets. In spite of the encouraging results of the afatinib and neratinib monotherapies, they have not been proven more efficacious in the combination therapies yet, even though multicenter international trials are still ongoing. The key tasks in the future are

  17. Risk determination and prevention of breast cancer.

    PubMed

    Howell, Anthony; Anderson, Annie S; Clarke, Robert B; Duffy, Stephen W; Evans, D Gareth; Garcia-Closas, Montserat; Gescher, Andy J; Key, Timothy J; Saxton, John M; Harvie, Michelle N

    2014-09-28

    Breast cancer is an increasing public health problem. Substantial advances have been made in the treatment of breast cancer, but the introduction of methods to predict women at elevated risk and prevent the disease has been less successful. Here, we summarize recent data on newer approaches to risk prediction, available approaches to prevention, how new approaches may be made, and the difficult problem of using what we already know to prevent breast cancer in populations. During 2012, the Breast Cancer Campaign facilitated a series of workshops, each covering a specialty area of breast cancer to identify gaps in our knowledge. The risk-and-prevention panel involved in this exercise was asked to expand and update its report and review recent relevant peer-reviewed literature. The enlarged position paper presented here highlights the key gaps in risk-and-prevention research that were identified, together with recommendations for action. The panel estimated from the relevant literature that potentially 50% of breast cancer could be prevented in the subgroup of women at high and moderate risk of breast cancer by using current chemoprevention (tamoxifen, raloxifene, exemestane, and anastrozole) and that, in all women, lifestyle measures, including weight control, exercise, and moderating alcohol intake, could reduce breast cancer risk by about 30%. Risk may be estimated by standard models potentially with the addition of, for example, mammographic density and appropriate single-nucleotide polymorphisms. This review expands on four areas: (a) the prediction of breast cancer risk, (b) the evidence for the effectiveness of preventive therapy and lifestyle approaches to prevention, (c) how understanding the biology of the breast may lead to new targets for prevention, and (d) a summary of published guidelines for preventive approaches and measures required for their implementation. We hope that efforts to fill these and other gaps will lead to considerable advances in our

  18. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine

    PubMed Central

    Theocharis, Achilleas D.; Skandalis, Spyros S.; Neill, Thomas; Multhaupt, Hinke A. B.; Hubo, Mario; Frey, Helena; Gopal, Sandeep; Gomes, Angélica; Afratis, Nikos; Lim, Hooi Ching; Couchman, John R.; Filmus, Jorge; Sanderson, Ralph D.; Schaefer, Liliana; Iozzo, Renato V.; Karamanos, Nikos K.

    2015-01-01

    Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer. PMID:25829250

  19. Epigenetic Regulation of miRNAs and Breast Cancer Stem Cells

    PubMed Central

    Duru, Nadire; Gernapudi, Ramkishore; Eades, Gabriel; Eckert, Richard; Zhou, Qun

    2015-01-01

    MicroRNAs have emerged as important targets of chemopreventive strategies in breast cancer. We have found that miRNAs are dysregulated at an early stage in breast cancer, in non-malignant Ductal Carcinoma In Situ. Many dietary chemoprevention agents can act by epigenetically activating miRNA-signaling pathways involved in tumor cell proliferation and invasive progression. In addition, many miRNAs activated via chemopreventive strategies target cancer stem cell signaling and prevent tumor progression or relapse. Specifically, we have found that miRNAs regulate DCIS stem cells, which may play important roles in breast cancer progression to invasive disease. We have shown that chemopreventive agents can directly inhibit DCIS stem cells and block tumor formation in vivo, via activation of tumor suppressor miRNAs. PMID:26052481

  20. Targeting tissue factor as a novel therapeutic oncotarget for eradication of cancer stem cells isolated from tumor cell lines, tumor xenografts and patients of breast, lung and ovarian cancer.

    PubMed

    Hu, Zhiwei; Xu, Jie; Cheng, Jijun; McMichael, Elizabeth; Yu, Lianbo; Carson, William E

    2017-01-03

    Targeting cancer stem cell (CSC) represents a promising therapeutic approach as it can potentially fight cancer at its root. The challenge is to identify a surface therapeutic oncotarget on CSC. Tissue factor (TF) is known as a common yet specific surface target for cancer cells and tumor neovasculature in several solid cancers. However, it is unknown if TF is expressed by CSCs. Here we demonstrate that TF is constitutively expressed on CD133 positive (CD133+) or CD24-CD44+ CSCs isolated from human cancer cell lines, tumor xenografts from mice and breast tumor tissues from patients. TF-targeted agents, i.e., a factor VII (fVII)-conjugated photosensitizer (fVII-PS for targeted photodynamic therapy) and fVII-IgG1Fc (Immunoconjugate or ICON for immunotherapy), can eradicate CSC via the induction of apoptosis and necrosis and via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, respectively. In conclusion, these results demonstrate that TF is a novel surface therapeutic oncotarget for CSC, in addition to cancer cell TF and tumor angiogenic vascular endothelial TF. Moreover, this research highlights that TF-targeting therapeutics can effectively eradicate CSCs, without drug resistance, isolated from breast, lung and ovarian cancer with potential to translate into other most commonly diagnosed solid cancer, in which TF is also highly expressed.

  1. Balancing the benefits and detriments among women targeted by the Norwegian Breast Cancer Screening Program.

    PubMed

    Hofvind, Solveig; Román, Marta; Sebuødegård, Sofie; Falk, Ragnhild S

    2016-12-01

    To compute a ratio between the estimated numbers of lives saved from breast cancer death and the number of women diagnosed with a breast cancer that never would have been diagnosed during the woman's lifetime had she not attended screening (epidemiologic over-diagnosis) in the Norwegian Breast Cancer Screening Program. The Norwegian Breast Cancer Screening Program invites women aged 50-69 to biennial mammographic screening. Results from published studies using individual level data from the programme for estimating breast cancer mortality and epidemiologic over-diagnosis comprised the basis for the ratio. The mortality reduction varied from 36.8% to 43% among screened women, while estimates on epidemiologic over-diagnosis ranged from 7% to 19.6%. We computed the average estimates for both values. The benefit-detriment ratio, number of lives saved, and number of women over-diagnosed were computed for different scenarios of reduction in breast cancer mortality and epidemiologic over-diagnosis. For every 10,000 biennially screened women, followed until age 79, we estimated that 53-61 (average 57) women were saved from breast cancer death, and 45-126 (average 82) were over-diagnosed. The benefit-detriment ratio using average estimates was 1:1.4, indicating that the programme saved about one life per 1-2 women with epidemiologic over-diagnosis. The benefit-detriment ratio estimates of the Norwegian Breast Cancer Screening Program, expressed as lives saved from breast cancer death and epidemiologic over-diagnosis, should be interpreted with care due to substantial uncertainties in the estimates, and the differences in the scale of values of the events compared. © The Author(s) 2016.

  2. Progestins and breast cancer.

    PubMed

    Pasqualini, Jorge R

    2007-10-01

    Progestins exert their progestational activity by binding to the progesterone receptor (form A, the most active and form B, the less active) and may also interact with other steroid receptors (androgen, glucocorticoid, mineralocorticoid, estrogen). They can have important effects in other tissues besides the endometrium, including the breast, liver, bone and brain. The biological responses of progestins cover a very large domain: lipids, carbohydrates, proteins, water and electrolyte regulation, hemostasis, fibrinolysis, and cardiovascular and immunological systems. At present, more than 200 progestin compounds have been synthesized, but the biological response could be different from one to another depending on their structure, metabolism, receptor affinity, experimental conditions, target tissue or cell line, as well as the biological response considered. There is substantial evidence that mammary cancer tissue contains all the enzymes responsible for the local biosynthesis of estradiol (E(2)) from circulating precursors. Two principal pathways are implicated in the final steps of E(2) formation in breast cancer tissue: the 'aromatase pathway', which transforms androgens into estrogens, and the 'sulfatase pathway', which converts estrone sulfate (E(1)S) into estrone (E(1)) via estrone sulfatase. The final step is the conversion of weak E(1) to the potent biologically active E(2) via reductive 17beta-hydroxysteroid dehydrogenase type 1 activity. It is also well established that steroid sulfotransferases, which convert estrogens into their sulfates, are present in breast cancer tissues. It has been demonstrated that various progestins (e.g. nomegestrol acetate, medrogestone, promegestone) as well as tibolone and their metabolites can block the enzymes involved in E(2) bioformation (sulfatase, 17beta-hydroxysteroid dehydrogenase) in breast cancer cells. These substances can also stimulate the sulfotransferase activity which converts estrogens into the biologically

  3. Epigenetics of breast cancer: modifying role of environmental and bioactive food compounds

    PubMed Central

    Romagnolo, Donato F.; Daniels, Kevin D.; Grunwald, Jonathan T.; Ramos, Stephan A.; Propper, Catherine R.; Selmin, Ornella I.

    2017-01-01

    Scope Reduced expression of tumor suppressor genes (TSG) increases the susceptibility to breast cancer. However, only a small percentage of breast tumors is related to family history and mutational inactivation of TSG. Epigenetics refers to non-mutational events that alter gene expression. Endocrine disruptors found in foods and drinking water may disrupt epigenetically hormonal regulation and increase breast cancer risk. This review centers on the working hypothesis that agonists of the aromatic hydrocarbon receptor (AHR); bisphenol A (BPA); and arsenic compounds, induce in TSG epigenetic signatures that mirror those often seen in sporadic breast tumors. Conversely, it is hypothesized that bioactive food components that target epigenetic mechanisms protect against sporadic breast cancer induced by these disruptors. Methods and results This review highlights 1) overlaps between epigenetic signatures placed in TSG by AHR-ligands, BPA, and arsenic with epigenetic alterations associated with sporadic breast tumorigenesis; and 2) potential opportunities for prevention of sporadic breast cancer with food components that target the epigenetic machinery. Conclusions Characterizing the overlap between epigenetic signatures elicited in TSG by endocrine disruptors with those observed in sporadic breast tumors may afford new strategies for breast cancer prevention with specific bioactive food components or diet. PMID:27144894

  4. Aptamer-conjugated Magnetic Nanoparticles as Targeted Magnetic Resonance Imaging Contrast Agent for Breast Cancer.

    PubMed

    Keshtkar, Mohammad; Shahbazi-Gahrouei, Daryoush; Khoshfetrat, Seyyed Mehdi; Mehrgardi, Masoud A; Aghaei, Mahmoud

    2016-01-01

    Early detection of breast cancer is the most effective way to improve the survival rate in women. Magnetic resonance imaging (MRI) offers high spatial resolution and good anatomic details, and its lower sensitivity can be improved by using targeted molecular imaging. In this study, AS1411 aptamer was conjugated to Fe 3 O 4 @Au nanoparticles for specific targeting of mouse mammary carcinoma (4T1) cells that overexpress nucleolin. In vitro cytotoxicity of aptamer-conjugated nanoparticles was assessed on 4T1 and HFFF-PI6 (control) cells. The ability of the synthesized nanoprobe to target specifically the nucleolin overexpressed cells was assessed with the MRI technique. Results show that the synthesized nanoprobe produced strongly darkened T 2 -weighted magnetic resonance (MR) images with 4T1 cells, whereas the MR images of HFFF-PI6 cells incubated with the nanoprobe are brighter, showing small changes compared to water. The results demonstrate that in a Fe concentration of 45 μg/mL, the nanoprobe reduced by 90% MR image intensity in 4T1 cells compared with the 27% reduction in HFFF-PI6 cells. Analysis of MR signal intensity showed statistically significant signal intensity difference between 4T1 and HFFF-PI6 cells treated with the nanoprobe. MRI experiments demonstrate the high potential of the synthesized nanoprobe as a specific MRI contrast agent for detection of nucleolin-expressing breast cancer cells.

  5. Advances in chemical pharmacotherapy to manage advanced breast cancer.

    PubMed

    Gombos, Andrea; Awada, Ahmad

    2017-01-01

    Advanced breast cancer is still incurable. However, patients diagnosed with this fatal disease live longer. The selection of systemic therapy is mainly based on molecular subtype. The aim of management in these patients is to not only improve outcome, but also to maintain quality of life. Areas covered: In this paper we focus on available treatments and drugs under late development in the three main subtypes of breast cancer: luminal (hormone receptor positive), HER2 positive and triple negative disease. Main advances during the last years have been made in the treatment of HER2 positive breast cancer with the approval of several new targeted agents. Luminal breast cancer is also a field of active clinical research. So far triple negative breast cancer remains the subtype with the worse prognosis, even though new discoveries have been made to better understand the huge heterogeneity of this type of breast cancer. Expert opinion: Several new treatment options have recently been established in metastatic breast cancer. Side effects are sometimes cumbersome for the patient and are difficult to manage easily. Thus, identification of patients who derive the most benefit is needed. In addition, collaborative efforts should integrate the genotypic fragmentation in the management and future clinical research strategies of metastatic breast cancer patients.

  6. Development of a Brochure for Increasing Awareness of Inherited Breast Cancer in Black Women

    PubMed Central

    Quinn, Gwendolyn P.; Gjyshi, Anxhela; Pal, Tuya

    2011-01-01

    Low levels of awareness about hereditary breast cancer and ovarian cancer and underutilization of genetic services combined with the high incidence of early onset breast cancer in the black community underscore the urgent need to provide information about hereditary breast and ovarian cancer to black women. The primary goal of the present study was to develop a culturally targeted brochure designed to increase awareness about inherited breast cancer among black women using the principles of Learner Verification. Three focus groups were conducted with black women, including those with or without a history of breast cancer (n = 46), to evaluate the brochure. Data were analyzed through hand coding using a simple classification system placing participants' responses in the predetermined Learner Verification categories. On the basis of the feedback obtained, the brochure has been modified to improve cultural-targeting, relevance, and clarity and has been made available for dissemination. Our study illustrates the importance of obtaining feedback from the target audience when developing a culturally targeted informational brochure for black women. Further, the complexity of our subject matter (i.e., inherited breast and ovarian cancer) underscores the importance of using inviting visuals and personal vignettes, while maintaining a simple and clear message. PMID:21275654

  7. Breast Cancer in Men

    MedlinePlus

    FACTS FOR LIFE Breast Cancer in Men Do men get breast cancer? Since men have breast tissue, they can get breast cancer, but it’s rare. About 1 percent of ... breast cancer cases in the U.S. occur in men. It may sound like a small number, but ...

  8. Breast and gastrointestinal cancer updates from ASCO 2015.

    PubMed

    Dawood, Shaheenah

    2015-01-01

    This review focuses on the updates presented at the ASCO 2015 symposium in breast and gastrointestinal malignancies. Some were practice changing while others gave us an exciting glimpse into what's to come in the very near future. Immunotherapy was the buzz word this year with data presented on every tumor site. Data on the efficacy of anti PD-1 agents in colorectal, hepatocellular and gastric cancer were presented. In breast cancer we saw data on a new and exciting therapeutic target in the form of androgen receptor among triple receptor negative breast tumors presented. Positive results of the PALOMA 3 trial were presented that has given women with hormone receptor positive metastatic breast cancer another therapeutic option. Furthermore data on strategies to further improve anti her2 therapy, optimizing of chemotherapy in the early and advanced stage and various strategies to improve endocrine therapy among patients with breast cancer were presented.

  9. Male Breast Cancer

    MedlinePlus

    ... or to other parts of the body. Where breast cancer begins in men Everyone is born with a ... and inflammatory breast cancer. Inherited genes that increase breast cancer risk Some men inherit abnormal (mutated) genes from ...

  10. Risks of Breast Cancer Screening

    MedlinePlus

    ... of Breast & Gynecologic Cancers Breast Cancer Screening Research Breast Cancer Screening (PDQ®)–Patient Version What is screening? Go ... cancer screening: Cancer Screening Overview General Information About Breast Cancer Key Points Breast cancer is a disease in ...

  11. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer.

    PubMed

    Tang, Yew Chung; Ho, Szu-Chi; Tan, Elisabeth; Ng, Alvin Wei Tian; McPherson, John R; Goh, Germaine Yen Lin; Teh, Bin Tean; Bard, Frederic; Rozen, Steven G

    2018-03-22

    Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers. To discover broad-spectrum PTEN-SSL genes in breast cancer, we used a multi-step approach that started with (1) a genome-wide short interfering RNA (siRNA) screen of ~ 21,000 genes in a pair of isogenic human mammary epithelial cell lines, followed by (2) a short hairpin RNA (shRNA) screen of ~ 1200 genes focused on hits from the first screen in a panel of 11 breast cancer cell lines; we then determined reproducibility of hits by (3) identification of overlaps between our results and reanalyzed data from 3 independent gene-essentiality screens, and finally, for selected candidate PTEN-SSL genes we (4) confirmed PTEN-SSL activity using either drug sensitivity experiments in a panel of 19 cell lines or mutual exclusivity analysis of publicly available pan-cancer somatic mutation data. The screens (steps 1 and 2) and the reproducibility analysis (step 3) identified six candidate broad-spectrum PTEN-SSL genes (PIK3CB, ADAMTS20, AP1M2, HMMR, STK11, and NUAK1). PIK3CB was previously identified as PTEN-SSL, while the other five genes represent novel PTEN-SSL candidates. Confirmation studies (step 4) provided additional evidence that NUAK1 and STK11 have PTEN-SSL patterns of activity. Consistent with PTEN-SSL status, inhibition of the NUAK1 protein kinase by the small molecule drug HTH-01-015 selectively impaired viability in multiple PTEN-deficient breast cancer cell lines, while mutations affecting STK11 and PTEN were largely mutually exclusive across large pan-cancer data sets. Six genes showed PTEN

  12. The cis decoy against the estrogen response element suppresses breast cancer cells via target disrupting c-fos not mitogen-activated protein kinase activity.

    PubMed

    Wang, Li Hua; Yang, Xiao Yi; Zhang, Xiaohu; Mihalic, Kelly; Xiao, Weihua; Farrar, William L

    2003-05-01

    Breast cancer, the most common malignancy in women, has been demonstrated to be associated with the steroid hormone estrogen and its receptor (ER), a ligand-activated transcription factor. Therefore, we developed a phosphorothiolate cis-element decoy against the estrogen response element (ERE decoy) to target disruption of ER DNA binding and transcriptional activity. Here, we showed that the ERE decoy potently ablated the 17beta-estrogen-inducible cell proliferation and induced apoptosis of human breast carcinoma cells by functionally affecting expression of c-fos gene and AP-1 luciferase gene reporter activity. Specificity of the decoy was demonstrated by its ability to directly block ER binding to a cis-element probe and transactivation. Moreover, the decoy failed to inhibit ER-mediated mitogen-activated protein kinase signaling pathways and cell growth of ER-negative breast cancer cells. Taken together, these data suggest that estrogen-mediated cell growth of breast cancer cells can be preferentially restricted via targeted disruption of ER at the level of DNA binding by a novel and specific decoy strategy applied to steroid nuclear receptors.

  13. [Population screening for breast cancer: an interim assessment].

    PubMed

    van der Maas, P J

    2000-06-03

    The Dutch national breast cancer programme started in 1989 and ten years later complete coverage of the target population was realised. Screening will save the lives of 27% of all women with screen detected breast cancer. In the other 73% survival will not change, but they will know some years earlier that they have breast cancer. There are 4 lessons from the 12 year experience: (a) mortality reduction due to the present programme can only be identified in individual follow-up data of all women with breast cancer; (b) systematic improvement of the programme's performance can only be based on feedback from a detailed quality and outcome monitoring system; (c) the advice to increase the upper age limit to 75 years was based on the interpretation of trial results for younger age groups and model analysis; (d) breast cancer screening contributed to the systematic improvement of clinical procedures. Current scientific and practical challenges are mortality evaluation, optimising test properties, setting upper and lower age limits, understanding regional differences, developing optimal screening frequencies in women with an elevated breast cancer risk, digital mammography and computer assisted diagnosis.

  14. Combinatorial Effects of Lapatinib and Rapamycin in Triple-Negative Breast Cancer Cells

    PubMed Central

    Liu, Tongrui; Yacoub, Rami; Taliaferro-Smith, LaTonia D.; Sun, Shi-Yong; Graham, Tisheeka R.; Dolan, Ryan; Lobo, Christine; Tighiouart, Mourad; Yang, Lily; Adams, Amy; O'Regan, Ruth M.

    2016-01-01

    Triple-negative breast cancers, which lack estrogen receptor, progesterone receptor, and HER2/neu overexpression, account for approximately 15% of breast cancers, but occur more commonly in African Americans. The poor survival outcomes seen with triple-negative breast cancers patients are, in part, due to a lack of therapeutic targets. Epidermal growth factor receptor (EGFR) is overexpressed in 50% of triple-negative breast cancers, but EGFR inhibitors have not been effective in patients with metastatic breast cancers. However, mTOR inhibition has been shown to reverse resistance to EGFR inhibitors. We examined the combination effects of mTOR inhibition with EGFR inhibition in triple-negative breast cancer in vitro and in vivo. The combination of EGFR inhibition by using lapatinib and mTOR inhibition with rapamycin resulted in significantly greater cytotoxicity than the single agents alone and these effects were synergistic in vitro. The combination of rapamycin and lapatinib significantly decreased growth of triple-negative breast cancers in vivo compared with either agent alone. EGFR inhibition abrogated the expression of rapamycin-induced activated Akt in triple-negative breast cancer cells in vitro. The combination of EGFR and mTOR inhibition resulted in increased apoptosis in some, but not all, triple-negative cell lines, and these apoptotic effects correlated with a decrease in activated eukaryotic translation initiation factor (eIF4E). These results suggest that mTOR inhibitors could sensitize a subset of triple-negative breast cancers to EGFR inhibitors. Given the paucity of effective targeted agents in triple-negative breast cancers, these results warrant further evaluation. PMID:21690228

  15. The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms

    PubMed Central

    Abdal Dayem, Ahmed; Choi, Hye Yeon; Yang, Gwang-Mo; Kim, Kyeongseok; Saha, Subbroto Kumar; Cho, Ssang-Goo

    2016-01-01

    The high incidence of breast cancer in developed and developing countries, and its correlation to cancer-related deaths, has prompted concerned scientists to discover novel alternatives to deal with this challenge. In this review, we will provide a brief overview of polyphenol structures and classifications, as well as on the carcinogenic process. The biology of breast cancer cells will also be discussed. The molecular mechanisms involved in the anti-cancer activities of numerous polyphenols, against a wide range of breast cancer cells, in vitro and in vivo, will be explained in detail. The interplay between autophagy and apoptosis in the anti-cancer activity of polyphenols will also be highlighted. In addition, the potential of polyphenols to target cancer stem cells (CSCs) via various mechanisms will be explained. Recently, the use of natural products as chemotherapeutics and chemopreventive drugs to overcome the side effects and resistance that arise from using chemical-based agents has garnered the attention of the scientific community. Polyphenol research is considered a promising field in the treatment and prevention of breast cancer. PMID:27657126

  16. Male Breast Cancer

    MedlinePlus

    Although breast cancer is much more common in women, men can get it too. It happens most often to men between ... 60 and 70. Breast lumps usually aren't cancer. However, most men with breast cancer have lumps. ...

  17. Overexpression of caspase 7 is ERα dependent to affect proliferation and cell growth in breast cancer cells by targeting p21(Cip).

    PubMed

    Chaudhary, S; Madhukrishna, B; Adhya, A K; Keshari, S; Mishra, S K

    2016-04-18

    Caspase 7 (CASP7) expression has important function during cell cycle progression and cell growth in certain cancer cells and is also involved in the development and differentiation of dental tissues. However, the function of CASP7 in breast cancer cells is unclear. The aim of this study was to analyze the expression of CASP7 in breast carcinoma patients and determine the role of CASP7 in regulating tumorigenicity in breast cancer cells. In this study, we show that the CASP7 expression is high in breast carcinoma tissues compared with normal counterpart. The ectopic expression of CASP7 is significantly associated with ERα expression status and persistently elevated in different stages of the breast tumor grades. High level of CASP7 expression showed better prognosis in breast cancer patients with systemic endocrine therapy as observed from Kaplan-Meier analysis. S3 and S4, estrogen responsive element (ERE) in the CASP7 promoter, is important for estrogen-ERα-mediated CASP7 overexpression. Increased recruitment of p300, acetylated H3 and pol II in the ERE region of CASP7 promoter is observed after hormone stimulation. Ectopic expression of CASP7 in breast cancer cells results in cell growth and proliferation inhibition via p21(Cip) reduction, whereas small interfering RNA (siRNA) mediated reduction of CASP7 rescued p21(Cip) levels. We also show that pro- and active forms of CASP7 is located in the nucleus apart from cytoplasmic region of breast cancer cells. The proliferation and growth of breast cancer cells is significantly reduced by broad-spectrum peptide inhibitors and siRNA of CASP7. Taken together, our findings show that CASP7 is aberrantly expressed in breast cancer and contributes to cell growth and proliferation by downregulating p21(Cip) protein, suggesting that targeting CASP7-positive breast cancer could be one of the potential therapeutic strategies.

  18. Elevated prefrontal myo-inositol and choline following breast cancer chemotherapy.

    PubMed

    Kesler, Shelli R; Watson, Christa; Koovakkattu, Della; Lee, Clement; O'Hara, Ruth; Mahaffey, Misty L; Wefel, Jeffrey S

    2013-12-01

    Breast cancer survivors are at increased risk for cognitive dysfunction, which reduces quality of life. Neuroimaging studies provide critical insights regarding the mechanisms underlying these cognitive deficits as well as potential biologic targets for interventions. We measured several metabolite concentrations using (1)H magnetic resonance spectroscopy as well as cognitive performance in 19 female breast cancer survivors and 17 age-matched female controls. Women with breast cancer were all treated with chemotherapy. Results indicated significantly increased choline (Cho) and myo-inositol (mI) with correspondingly decreased N-acetylaspartate (NAA)/Cho and NAA/mI ratios in the breast cancer group compared to controls. The breast cancer group reported reduced executive function and memory, and subjective memory ability was correlated with mI and Cho levels in both groups. These findings provide preliminary evidence of an altered metabolic profile that increases our understanding of neurobiologic status post-breast cancer and chemotherapy.

  19. PKCλ/ι signaling promotes triple-negative breast cancer growth and metastasis.

    PubMed

    Paul, A; Gunewardena, S; Stecklein, S R; Saha, B; Parelkar, N; Danley, M; Rajendran, G; Home, P; Ray, S; Jokar, I; Vielhauer, G A; Jensen, R A; Tawfik, O; Paul, S

    2014-09-01

    Triple-negative breast cancer (TNBC) is a distinct breast cancer subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu), and the patients with TNBC are often diagnosed with higher rates of recurrence and metastasis. Because of the absence of ER, PR and HER2/neu expressions, TNBC patients are insensitive to HER2-directed and endocrine therapies available for breast cancer treatment. Here, we report that expression of atypical protein kinase C isoform, PKCλ/ι, significantly increased and activated in all invasive breast cancer (invasive ductal carcinoma or IDC) subtypes including the TNBC subtype. Because of the lack of targeted therapies for TNBC, we choose to study PKCλ/ι signaling as a potential therapeutic target for TNBC. Our observations indicated that PKCλ/ι signaling is highly active during breast cancer invasive progression, and metastatic breast cancers, the advanced stages of breast cancer disease that developed more frequently in TNBC patients, are also characterized with high levels of PKCλ/ι expression and activation. Functional analysis in experimental mouse models revealed that depletion of PKCλ/ι significantly reduces TNBC growth as well as lung metastatic colonization. Furthermore, we have identified a PKCλ/ι-regulated gene signature consisting of 110 genes, which are significantly associated with indolent to invasive progression of human breast cancer and poor prognosis. Mechanistically, cytokines such as TGFβ and IL1β could activate PKCλ/ι signaling in TNBC cells and depletion of PKCλ/ι impairs NF-κB p65 (RelA) nuclear localization. We observed that cytokine-PKCλ/ι-RelA signaling axis, at least in part, involved in modulating gene expression to regulate invasion of TNBC cells. Overall, our results indicate that induction and activation of PKCλ/ι promote TNBC growth, invasion and metastasis. Thus, targeting PKCλ/ι signaling could be a

  20. PKCλ/ι signaling promotes triple-negative breast cancer growth and metastasis

    PubMed Central

    Paul, A; Gunewardena, S; Stecklein, S R; Saha, B; Parelkar, N; Danley, M; Rajendran, G; Home, P; Ray, S; Jokar, I; Vielhauer, G A; Jensen, R A; Tawfik, O; Paul, S

    2014-01-01

    Triple-negative breast cancer (TNBC) is a distinct breast cancer subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu), and the patients with TNBC are often diagnosed with higher rates of recurrence and metastasis. Because of the absence of ER, PR and HER2/neu expressions, TNBC patients are insensitive to HER2-directed and endocrine therapies available for breast cancer treatment. Here, we report that expression of atypical protein kinase C isoform, PKCλ/ι, significantly increased and activated in all invasive breast cancer (invasive ductal carcinoma or IDC) subtypes including the TNBC subtype. Because of the lack of targeted therapies for TNBC, we choose to study PKCλ/ι signaling as a potential therapeutic target for TNBC. Our observations indicated that PKCλ/ι signaling is highly active during breast cancer invasive progression, and metastatic breast cancers, the advanced stages of breast cancer disease that developed more frequently in TNBC patients, are also characterized with high levels of PKCλ/ι expression and activation. Functional analysis in experimental mouse models revealed that depletion of PKCλ/ι significantly reduces TNBC growth as well as lung metastatic colonization. Furthermore, we have identified a PKCλ/ι-regulated gene signature consisting of 110 genes, which are significantly associated with indolent to invasive progression of human breast cancer and poor prognosis. Mechanistically, cytokines such as TGFβ and IL1β could activate PKCλ/ι signaling in TNBC cells and depletion of PKCλ/ι impairs NF-κB p65 (RelA) nuclear localization. We observed that cytokine-PKCλ/ι-RelA signaling axis, at least in part, involved in modulating gene expression to regulate invasion of TNBC cells. Overall, our results indicate that induction and activation of PKCλ/ι promote TNBC growth, invasion and metastasis. Thus, targeting PKCλ/ι signaling could be a

  1. Sevoflurane suppresses proliferation by upregulating microRNA-203 in breast cancer cells.

    PubMed

    Liu, Jiaying; Yang, Longqiu; Guo, Xia; Jin, Guangli; Wang, Qimin; Lv, Dongdong; Liu, Junli; Chen, Qiu; Song, Qiong; Li, Baolin

    2018-05-03

    Rapid proliferation is one of the critical characteristics of breast cancer. However, the underlying regulatory mechanism of breast cancer cell proliferation is largely unclear. The present study indicated that sevoflurane, one of inhalational anesthetics, could significantly suppress breast cancer cell proliferation by arresting cell cycle at G1 phase. Notably, the rescue experiment indicated that miR-203 was upregulated by sevoflurane and mediated the function of sevoflurane on suppressing the breast cancer cell proliferation. The present study indicated the function of the sevoflurane/miR-203 signaling pathway on regulating breast cancer cell proliferation. These results provide mechanistic insight into how the sevoflurane/miR-203 signaling pathway supresses proliferation of breast cancer cells, suggesting the sevoflurane/miR-203 pathway may be a potential target in the treatment of breast cancer.

  2. TARGETING THE MUC1-C ONCOPROTEIN DOWNREGULATES HER2 ACTIVATION AND ABROGATES TRASTUZUMAB RESISTANCE IN BREAST CANCER CELLS

    PubMed Central

    Raina, Deepak; Uchida, Yasumitsu; Kharbanda, Akriti; Rajabi, Hasan; Panchamoorthy, Govind; Jin, Caining; Kharbanda, Surender; Scaltriti, Maurizio; Baselga, Jose; Kufe, Donald

    2014-01-01

    Patients with HER2 positive breast cancer often exhibit intrinsic or acquired resistance to trastuzumab treatment. The transmembrane MUC1-C oncoprotein is aberrantly overexpressed in breast cancer cells and associates with HER2. The present studies demonstrate that silencing MUC1-C in HER2-overexpressing SKBR3 and BT474 breast cancer cells results in downregulation of constitutive HER2 activation. Moreover, treatment with the MUC1-C inhibitor, GO-203, was associated with disruption of MUC1-C/HER2 complexes and decreases in tyrosine phosphorylated HER2 (p-HER2) levels. In studies of trastuzumab-resistant SKBR3R and BT474R cells, we found that the association between MUC1-C and HER2 is markedly increased (~20-fold) as compared to that in sensitive cells. Additionally, silencing MUC1-C in the trastuzumab-resistant cells or treatment with GO-203 decreased p-HER2 and AKT activation. Moreover, targeting MUC1-C was associated with downregulation of phospho-p27 and cyclin E, which confer trastuzumab resistance. Consistent with these results, targeting MUC1-C inhibited the growth and clonogenic survival of both trastuzumab-resistant cells. Our results further demonstrate that silencing MUC1-C reverses resistance to trastuzumab and that the combination of GO-203 and trastuzumab is highly synergistic. These findings indicate that MUC1-C contributes to constitutive activation of the HER2 pathway and that targeting MUC1-C represents a potential approach to abrogate trastuzumab resistance. PMID:23912457

  3. Imaging features of breast cancers on digital breast tomosynthesis according to molecular subtype: association with breast cancer detection.

    PubMed

    Lee, Su Hyun; Chang, Jung Min; Shin, Sung Ui; Chu, A Jung; Yi, Ann; Cho, Nariya; Moon, Woo Kyung

    2017-12-01

    To evaluate imaging features of breast cancers on digital breast tomosynthesis (DBT) according to molecular subtype and to determine whether the molecular subtype affects breast cancer detection on DBT. This was an institutional review board--approved study with a waiver of informed consent. DBT findings of 288 invasive breast cancers were reviewed according to Breast Imaging Reporting and Data System lexicon. Detectability of breast cancer was quantified by the number of readers (0-3) who correctly detected the cancer in an independent blinded review. DBT features and the cancer detectability score according to molecular subtype were compared using Fisher's exact test and analysis of variance. Of 288 invasive cancers, 194 were hormone receptor (HR)-positive, 48 were human epidermal growth factor receptor 2 (HER2) positive and 46 were triple negative breast cancers. The most common DBT findings were irregular spiculated masses for HR-positive cancer, fine pleomorphic or linear branching calcifications for HER2 positive cancer and irregular masses with circumscribed margins for triple negative breast cancers (p < 0.001). Cancer detectability on DBT was not significantly different according to molecular subtype (p = 0.213) but rather affected by tumour size, breast density and presence of mass or calcifications. Breast cancers showed different imaging features according to molecular subtype; however, it did not affect the cancer detectability on DBT. Advances in knowledge: DBT showed characteristic imaging features of breast cancers according to molecular subtype. However, cancer detectability on DBT was not affected by molecular subtype of breast cancers.

  4. ApoptomiRs of Breast Cancer: Basics to Clinics

    PubMed Central

    Sharma, Shivani; Patnaik, Praveen K.; Aronov, Stella; Kulshreshtha, Ritu

    2016-01-01

    Apoptosis, a form of programmed cell death, is a highly regulated process, the deregulation of which has been associated with the tumor initiation, progression, and metastasis in various cancers including breast cancer. Induction of apoptosis is a popular target of various therapies currently being tested or used for breast cancer treatment. Thus, identifying apoptotic mediators and regulators is imperative for molecular biologists and clinicians for benefit of patients. The regulation of apoptosis is complex and involves a tight equilibrium between the pro- and anti-apoptotic factors. Recent studies have highlighted the role of miRNAs in the control of apoptosis and their interplay with p53, the master guardian of apoptosis. Here, we summarize and integrate the data on the role of miRNAs in apoptosis in breast cancer and the clinical advantage it may offer for the prognosis or treatment of breast cancer patients. PMID:27746811

  5. ApoptomiRs of Breast Cancer: Basics to Clinics.

    PubMed

    Sharma, Shivani; Patnaik, Praveen K; Aronov, Stella; Kulshreshtha, Ritu

    2016-01-01

    Apoptosis, a form of programmed cell death, is a highly regulated process, the deregulation of which has been associated with the tumor initiation, progression, and metastasis in various cancers including breast cancer. Induction of apoptosis is a popular target of various therapies currently being tested or used for breast cancer treatment. Thus, identifying apoptotic mediators and regulators is imperative for molecular biologists and clinicians for benefit of patients. The regulation of apoptosis is complex and involves a tight equilibrium between the pro- and anti-apoptotic factors. Recent studies have highlighted the role of miRNAs in the control of apoptosis and their interplay with p53, the master guardian of apoptosis. Here, we summarize and integrate the data on the role of miRNAs in apoptosis in breast cancer and the clinical advantage it may offer for the prognosis or treatment of breast cancer patients.

  6. Expression of miRNA-26b-5p and its target TRPS1 is associated with radiation exposure in post-Chernobyl breast cancer.

    PubMed

    Wilke, Christina M; Hess, Julia; Klymenko, Sergiy V; Chumak, Vadim V; Zakhartseva, Liubov M; Bakhanova, Elena V; Feuchtinger, Annette; Walch, Axel K; Selmansberger, Martin; Braselmann, Herbert; Schneider, Ludmila; Pitea, Adriana; Steinhilber, Julia; Fend, Falko; Bösmüller, Hans C; Zitzelsberger, Horst; Unger, Kristian

    2018-02-01

    Ionizing radiation is a well-recognized risk factor for the development of breast cancer. However, it is unknown whether radiation-specific molecular oncogenic mechanisms exist. We investigated post-Chernobyl breast cancers from radiation-exposed female clean-up workers and nonexposed controls for molecular changes. Radiation-associated alterations identified in the discovery cohort (n = 38) were subsequently validated in a second cohort (n = 39). Increased expression of hsa-miR-26b-5p was associated with radiation exposure in both of the cohorts. Moreover, downregulation of the TRPS1 protein, which is a transcriptional target of hsa-miR-26b-5p, was associated with radiation exposure. As TRPS1 overexpression is common in sporadic breast cancer, its observed downregulation in radiation-associated breast cancer warrants clarification of the specific functional role of TRPS1 in the radiation context. For this purpose, the impact of TRPS1 on the transcriptome was characterized in two radiation-transformed breast cell culture models after siRNA-knockdown. Deregulated genes upon TRPS1 knockdown were associated with DNA-repair, cell cycle, mitosis, cell migration, angiogenesis and EMT pathways. Furthermore, we identified the interaction partners of TRPS1 from the transcriptomic correlation networks derived from gene expression data on radiation-transformed breast cell culture models and sporadic breast cancer tissues provided by the TCGA database. The genes correlating with TRPS1 in the radiation-transformed breast cell lines were primarily linked to DNA damage response and chromosome segregation, while the transcriptional interaction partners in the sporadic breast cancers were mostly associated with apoptosis. Thus, upregulation of hsa-miR-26b-5p and downregulation of TRPS1 in radiation-associated breast cancer tissue samples suggests these molecules representing radiation markers in breast cancer. © 2017 UICC.

  7. Perceived Versus Objective Breast Cancer, Breast Cancer Risk in Diverse Women

    PubMed Central

    Fehniger, Julia; Livaudais-Toman, Jennifer; Karliner, Leah; Kerlikowske, Karla; Tice, Jeffrey A.; Quinn, Jessica; Ozanne, Elissa

    2014-01-01

    Abstract Background: Prior research suggests that women do not accurately estimate their risk for breast cancer. Estimating and informing women of their risk is essential for tailoring appropriate screening and risk reduction strategies. Methods: Data were collected for BreastCARE, a randomized controlled trial designed to evaluate a PC-tablet based intervention providing multiethnic women and their primary care physicians with tailored information about breast cancer risk. We included women ages 40–74 visiting general internal medicine primary care clinics at one academic practice and one safety net practice who spoke English, Spanish, or Cantonese, and had no personal history of breast cancer. We collected baseline information regarding risk perception and concern. Women were categorized as high risk (vs. average risk) if their family history met criteria for referral to genetic counseling or if they were in the top 5% of risk for their age based on the Gail or Breast Cancer Surveillance Consortium Model (BCSC) breast cancer risk model. Results: Of 1,261 participants, 25% (N=314) were classified as high risk. More average risk than high risk women had correct risk perception (72% vs. 18%); 25% of both average and high risk women reported being very concerned about breast cancer. Average risk women with correct risk perception were less likely to be concerned about breast cancer (odds ratio [OR]=0.3; 95% confidence interval [CI]=0.2–0.4) while high risk women with correct risk perception were more likely to be concerned about breast cancer (OR=5.1; 95%CI=2.7–9.6). Conclusions: Many women did not accurately perceive their risk for breast cancer. Women with accurate risk perception had an appropriate level of concern about breast cancer. Improved methods of assessing and informing women of their breast cancer risk could motivate high risk women to apply appropriate prevention strategies and allay unnecessary concern among average risk women. PMID:24372085

  8. Persistent breast pain among women with histories of breast conserving surgery for breast cancer compared to women without histories of breast surgery or cancer

    PubMed Central

    Edmond, Sara N.; Shelby, Rebecca A.; Keefe, Francis J.; Fisher, Hannah M.; Schmidt, John; Soo, Mary Scott; Skinner, Celette Sugg; Ahrendt, Gretchen M.; Manculich, Jessica; Sumkin, Jules H.; Zuley, Margarita L.; Bovbjerg, Dana H.

    2016-01-01

    Objectives This study compared persistent breast pain among women who received breast-conserving surgery for breast cancer and women without a history of breast cancer. Methods Breast cancer survivors (n=200) were recruited at their first post-surgical surveillance mammogram (6-15 months post-surgery). Women without a breast cancer history (n=150) were recruited at the time of a routine screening mammogram. All women completed measures of breast pain, pain interference with daily activities and intimacy, worry about breast pain, anxiety symptoms, and depression symptoms. Demographic and medical information were also collected. Results Persistent breast pain (duration ≥ 6 months) was reported by 46.5% of breast cancer survivors and 12.7% of women without a breast cancer history (p<0.05). Breast cancer survivors also had significantly higher rates of clinically significant persistent breast pain (pain intensity score ≥3/10), as well as higher average breast pain intensity and unpleasantness scores. Breast cancer survivors with persistent breast pain had significantly higher levels of depressive symptoms, as well as pain worry and interference, compared to survivors without persistent breast pain or women without a breast cancer history. Anxiety symptoms were significantly higher in breast cancer survivors with persistent breast pain compared to women without a breast cancer history. Discussion Results indicate that persistent breast pain negatively impacts women with a history of breast conserving cancer surgery compared to women without that history. Strategies to ameliorate persistent breast pain and to improve adjustment among women with persistent breast pain should be explored for incorporation into standard care for breast cancer survivors. PMID:27922843

  9. Relationship of Predicted Risk of Developing Invasive Breast Cancer, as Assessed with Three Models, and Breast Cancer Mortality among Breast Cancer Patients

    PubMed Central

    Pfeiffer, Ruth M.; Miglioretti, Diana L.; Kerlikowske, Karla; Tice, Jeffery; Vacek, Pamela M.; Gierach, Gretchen L.

    2016-01-01

    Purpose Breast cancer risk prediction models are used to plan clinical trials and counsel women; however, relationships of predicted risks of breast cancer incidence and prognosis after breast cancer diagnosis are unknown. Methods Using largely pre-diagnostic information from the Breast Cancer Surveillance Consortium (BCSC) for 37,939 invasive breast cancers (1996–2007), we estimated 5-year breast cancer risk (<1%; 1–1.66%; ≥1.67%) with three models: BCSC 1-year risk model (BCSC-1; adapted to 5-year predictions); Breast Cancer Risk Assessment Tool (BCRAT); and BCSC 5-year risk model (BCSC-5). Breast cancer-specific mortality post-diagnosis (range: 1–13 years; median: 5.4–5.6 years) was related to predicted risk of developing breast cancer using unadjusted Cox proportional hazards models, and in age-stratified (35–44; 45–54; 55–69; 70–89 years) models adjusted for continuous age, BCSC registry, calendar period, income, mode of presentation, stage and treatment. Mean age at diagnosis was 60 years. Results Of 6,021 deaths, 2,993 (49.7%) were ascribed to breast cancer. In unadjusted case-only analyses, predicted breast cancer risk ≥1.67% versus <1.0% was associated with lower risk of breast cancer death; BCSC-1: hazard ratio (HR) = 0.82 (95% CI = 0.75–0.90); BCRAT: HR = 0.72 (95% CI = 0.65–0.81) and BCSC-5: HR = 0.84 (95% CI = 0.75–0.94). Age-stratified, adjusted models showed similar, although mostly non-significant HRs. Among women ages 55–69 years, HRs approximated 1.0. Generally, higher predicted risk was inversely related to percentages of cancers with unfavorable prognostic characteristics, especially among women 35–44 years. Conclusions Among cases assessed with three models, higher predicted risk of developing breast cancer was not associated with greater risk of breast cancer death; thus, these models would have limited utility in planning studies to evaluate breast cancer mortality reduction strategies. Further, when offering

  10. The Effect of Breast Cancer Fatalism on Breast Cancer Awareness Among Turkish Women.

    PubMed

    Altintas, Hulya Kulakci; Ayyildiz, Tulay Kuzlu; Veren, Funda; Topan, Aysel Kose

    2017-10-01

    The aim of this study was to evaluate the effect of breast cancer fatalism and other factors on breast cancer awareness among Turkish women. This cross-sectional and comparative descriptive study was conducted with 894 women. Data were collected by Personal Information Form, Powe Fatalism Inventory and Champion's Health Belief Model Scale. Seriousness, health motivation, BSE benefits and BSE self-efficacy perceptions of the women were moderate, and susceptibility and BSE barriers perceptions were low. It was determined that awareness of breast cancer of the women was affected by breast cancer fatalism, age, education level, employment status, marital status, family type, economic status, social assurance, menopause status, family history of cancer, family history of breast cancer, knowledge on BSE, source of information on BSE, performing of BSE, frequency of BSE performing, having a problem with breast, having a breast examination in hospital, feeling during breast examination by healthcare professional, sex of healthcare professional for breast examination and their health beliefs (p < .05). The results suggested that awareness of breast cancer of the women was affected by breast cancer fatalism. In providing breast cancer early diagnosis behaviors, it is recommended to evaluate fatalism perceptions and health beliefs of the women and to arrange educational programs for this purpose.

  11. Breast cancer in men

    MedlinePlus

    ... in situ - male; Intraductal carcinoma - male; Inflammatory breast cancer - male; Paget disease of the nipple - male; Breast cancer - male ... The cause of breast cancer in men is not clear. But there are risk factors that make breast cancer more likely in men: Exposure to ...

  12. An estrogen receptor targeted ruthenium complex as a two-photon photodynamic therapy agent for breast cancer cells.

    PubMed

    Zhao, Xueze; Li, Mingle; Sun, Wen; Fan, Jiangli; Du, Jianjun; Peng, Xiaojun

    2018-06-21

    In this study, we reported a tamoxifen modified Ru(ii) polypyridyl complex (Ru-tmxf) as an estrogen receptor (ER) targeted photosensitizer. Ru-tmxf displays enhanced cellular uptake and PDT efficiency toward breast cancer cells with high ER expression due to the specific targeting of tamoxifen to ER and finally localizes in lysosomes. Moreover, Ru-tmxf can be activated by two-photon excitation, generating 1O2 to damage lysosomes and result in cell death.

  13. The proteomic landscape of triple-negative breast cancer.

    PubMed

    Lawrence, Robert T; Perez, Elizabeth M; Hernández, Daniel; Miller, Chris P; Haas, Kelsey M; Irie, Hanna Y; Lee, Su-In; Blau, C Anthony; Villén, Judit

    2015-04-28

    Triple-negative breast cancer is a heterogeneous disease characterized by poor clinical outcomes and a shortage of targeted treatment options. To discover molecular features of triple-negative breast cancer, we performed quantitative proteomics analysis of twenty human-derived breast cell lines and four primary breast tumors to a depth of more than 12,000 distinct proteins. We used this data to identify breast cancer subtypes at the protein level and demonstrate the precise quantification of biomarkers, signaling proteins, and biological pathways by mass spectrometry. We integrated proteomics data with exome sequence resources to identify genomic aberrations that affect protein expression. We performed a high-throughput drug screen to identify protein markers of drug sensitivity and understand the mechanisms of drug resistance. The genome and proteome provide complementary information that, when combined, yield a powerful engine for therapeutic discovery. This resource is available to the cancer research community to catalyze further analysis and investigation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Targeting Androgen Receptor in Breast Cancer: Enzalutamide as a Novel Breast Cancer Therapeutic

    DTIC Science & Technology

    2016-09-01

    for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be...activity in breast cancer as a single agent and in combination with exemestane. Activity is seen in both triple negative AR + BC and also ER+ AR + BC...Clinical data in Her2+ AR + BC is too immature to make conclusions. The proposed clinical trials for Years 3-5 appear to be justified based on

  15. Targeting Androgen Receptor in Breast Cancer: Enzalutamide as a Novel Breast Cancer Therapeutic

    DTIC Science & Technology

    2014-09-01

    testing . of either ana (1 mg) or exe (25 mg). PATIENT ELIGIBILITY STUDY DESIGN Key criteria All stages 1. Women with advanced breast cancer (aBC...report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated ...Month 24 The timeline for these tasks have not yet been reached. Clinical Aim 3: To determine if changes in molecular determinants between pre

  16. Breast cancer prevention knowledge, attitudes, and behaviors among college women and mother-daughter communication.

    PubMed

    Kratzke, Cynthia; Vilchis, Hugo; Amatya, Anup

    2013-06-01

    Although breast cancer prevention targets mostly women ages 40 and older, little is known about breast cancer prevention for young women and mother's advice. The purpose of this study was to examine breast cancer prevention knowledge, attitudes, and behaviors among college women and mother-daughter communication. Hispanic and non-Hispanic students at a southwestern university completed a breast cancer prevention survey with items for mother's advice, breast self-awareness and risk reduction knowledge, self-efficacy, susceptibility, family history, provider breast self-exam (BSE) recommendation, peer norms, BSE practice, and demographics. An openended item was also used to elicit types of mother's advice. Logistic regression was used to assess predictors for receiving mother's advice for breast cancer prevention and BSE practice. Self-reported data using a survey were obtained from 546 college women with a mean age of 23.3 (SD = 7.75). Nearly 36 % received mothers' advice and 55 % conducted BSE. Predictors for receiving mother's advice were age, self-efficacy, and family history of breast cancer. Predictors for BSE practice were mother's advice, age, self-efficacy, and provider BSE recommendation. Family history of breast cancer and knowledge were not significant predictors for BSE practice. Findings support the need for clinicians, community health educators, and mothers to provide breast cancer prevention education targeting college women.

  17. The role of heparins and nano-heparins as therapeutic tool in breast cancer.

    PubMed

    Afratis, Nikos A; Karamanou, Konstantina; Piperigkou, Zoi; Vynios, Demitrios H; Theocharis, Achilleas D

    2017-06-01

    Glycosaminoglycans are integral part of the dynamic extracellular matrix (ECM) network that control crucial biochemical and biomechanical signals required for tissue morphogenesis, differentiation, homeostasis and cancer development. Breast cancer cells communicate with stromal ones to modulate ECM mainly through release of soluble effectors during cancer progression. The intracellular cross-talk between cell surface receptors and estrogen receptors is important for the regulation of breast cancer cell properties and production of ECM molecules. In turn, reorganized ECM-cell surface interface modulates signaling cascades, which regulate almost all aspects of breast cell behavior. Heparan sulfate chains present on cell surface and matrix proteoglycans are involved in regulation of breast cancer functions since they are capable of binding numerous matrix molecules, growth factors and inflammatory mediators thus modulating their signaling. In addition to its anticoagulant activity, there is accumulating evidence highlighting various anticancer activities of heparin and nano-heparin derivatives in numerous types of cancer. Importantly, heparin derivatives significantly reduce breast cancer cell proliferation and metastasis in vitro and in vivo models as well as regulates the expression profile of major ECM macromolecules, providing strong evidence for therapeutic targeting. Nano-formulations of the glycosaminoglycan heparin are possibly novel tools for targeting tumor microenvironment. In this review, the role of heparan sulfate/heparin and its nano-formulations in breast cancer biology are presented and discussed in terms of future pharmacological targeting.

  18. Elevated prefrontal myo-inositol and choline following breast cancer chemotherapy

    PubMed Central

    Watson, Christa; Koovakkattu, Della; Lee, Clement; O’Hara, Ruth; Mahaffey, Misty L.; Wefel, Jeffrey S.

    2013-01-01

    Breast cancer survivors are at increased risk for cognitive dysfunction, which reduces quality of life. Neuroimaging studies provide critical insights regarding the mechanisms underlying these cognitive deficits as well as potential biologic targets for interventions. We measured several metabolite concentrations using 1H magnetic resonance spectroscopy as well as cognitive performance in 19 female breast cancer survivors and 17 age-matched female controls. Women with breast cancer were all treated with chemotherapy. Results indicated significantly increased choline (Cho) and myo-inositol (mI) with correspondingly decreased N-acetylaspartate (NAA)/Cho and NAA/mI ratios in the breast cancer group compared to controls. The breast cancer group reported reduced executive function and memory, and subjective memory ability was correlated with mI and Cho levels in both groups. These findings provide preliminary evidence of an altered metabolic profile that increases our understanding of neurobiologic status post-breast cancer and chemotherapy. PMID:23536015

  19. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Rae-Kwon; Uddin, Nizam; Hyun, Jin-Won

    Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44{sup +} cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2more » and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse. - Highlights: • Phloroglucinol suppresses in vivo tumor formation. • Phloroglucinol sensitizes breast cancer cells to anticancer agents. • Phloroglucinol inhibits breast cancer stem-like cells. • Phloroglucinol inhibits PI3K/AKT and KRAS/RAF/ERK signaling pathways.« less

  20. Patient Navigation in Breast Cancer Treatment and Survivorship: A Systematic Review.

    PubMed

    Baik, Sharon H; Gallo, Linda C; Wells, Kristen J

    2016-07-25

    Patient navigation is an intervention approach that improves cancer outcomes by reducing barriers and facilitating timely access to cancer care. Little is known about the benefits of patient navigation during breast cancer treatment and survivorship. This systematic review evaluates the efficacy of patient navigation in improving treatment and survivorship outcomes in women with breast cancer. The review included experimental and quasi-experimental studies of patient navigation programs that target breast cancer treatment and breast cancer survivorship. Articles were systematically obtained through electronic database searches of PubMed/MEDLINE, PsycINFO, Web of Science, CINAHL, and Cochrane Library. The Effective Public Health Practice Project Quality Assessment Tool was used to evaluate the methodologic quality of individual studies. Thirteen studies met the inclusion criteria. Most were of moderate to high quality. Outcomes targeted included timeliness of treatment initiation, adherence to cancer treatment, and adherence to post-treatment surveillance mammography. Heterogeneity of outcome assessments precluded a meta-analysis. Overall, results demonstrated that patient navigation increases surveillance mammography rates, but only minimal evidence was found with regard to its effectiveness in improving breast cancer treatment outcomes. This study is the most comprehensive systematic review of patient navigation research focused on improving breast cancer treatment and survivorship. Minimal research has indicated that patient navigation may be effective for post-treatment surveillance; however, more studies are needed to draw definitive conclusions about the efficacy of patient navigation during and after cancer treatment. © 2016 by American Society of Clinical Oncology.

  1. Patient Navigation in Breast Cancer Treatment and Survivorship: A Systematic Review

    PubMed Central

    Baik, Sharon H.; Gallo, Linda C.

    2016-01-01

    Purpose Patient navigation is an intervention approach that improves cancer outcomes by reducing barriers and facilitating timely access to cancer care. Little is known about the benefits of patient navigation during breast cancer treatment and survivorship. This systematic review evaluates the efficacy of patient navigation in improving treatment and survivorship outcomes in women with breast cancer. Methods The review included experimental and quasi-experimental studies of patient navigation programs that target breast cancer treatment and breast cancer survivorship. Articles were systematically obtained through electronic database searches of PubMed/MEDLINE, PsycINFO, Web of Science, CINAHL, and Cochrane Library. The Effective Public Health Practice Project Quality Assessment Tool was used to evaluate the methodologic quality of individual studies. Results Thirteen studies met the inclusion criteria. Most were of moderate to high quality. Outcomes targeted included timeliness of treatment initiation, adherence to cancer treatment, and adherence to post-treatment surveillance mammography. Heterogeneity of outcome assessments precluded a meta-analysis. Overall, results demonstrated that patient navigation increases surveillance mammography rates, but only minimal evidence was found with regard to its effectiveness in improving breast cancer treatment outcomes. Conclusion This study is the most comprehensive systematic review of patient navigation research focused on improving breast cancer treatment and survivorship. Minimal research has indicated that patient navigation may be effective for post-treatment surveillance; however, more studies are needed to draw definitive conclusions about the efficacy of patient navigation during and after cancer treatment. PMID:27458298

  2. Breast cancer disparities: high-risk breast cancer and African ancestry.

    PubMed

    Newman, Lisa A

    2014-07-01

    African American women have a lower lifetime incidence of breast cancer than white/Caucasian Americans yet have a higher risk of breast cancer mortality. African American women are also more likely to be diagnosed with breast cancer at young ages, and they have higher risk for the biologically more aggressive triple-negative breast cancers. These features are also more common among women from western, sub-Saharan Africa who share ancestry with African Americans, and this prompts questions regarding an association between African ancestry and inherited susceptibility for certain patterns of mammary carcinogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Activated matriptase as a target to treat breast cancer with a drug conjugate

    PubMed Central

    Lin, Hongxia; Banach-Petrosky, Whitney; Hirshfield, Kim M.; Lin, Chen-Yong; Johnson, Michael D.; Szekely, Zoltan; Bertino, Joseph R.

    2018-01-01

    The antitumor effects of a novel antibody drug conjugate (ADC) was tested against human solid tumor cell lines and against human triple negative breast cancer (TNBC) xenografts in immunosuppressed mice. The ADC targeting activated matriptase of tumor cells was synthesized by using the potent anti-tubulin toxin, monomethyl auristatin-E linked to the activated matriptase-specific monoclonal antibody (M69) via a lysosomal protease-cleavable dipeptide linker. This ADC was found to be cytotoxic against multiple activated matriptase-positive epithelial carcinoma cell lines in vitro and markedly inhibited growth of triple negative breast cancer xenografts and a primary human TNBC (PDX) in vivo. Overexpression of activated matriptase may be a biomarker for response to this ADC. The ADC had potent anti-tumor activity, while the unconjugated M69 antibody was ineffective in a mouse model study using MDA-MB-231 xenografts in mice. Treatment of a human TNBC (MDA-MB-231) showed potent anti-tumor effects in combination with cisplatin in mice. This ADC alone or in combination with cisplatin has the potential to improve the treatment outcomes of patients with TNBC as well as other tumors overexpressing activated matriptase. PMID:29899836

  4. Breast cancer prevention.

    PubMed

    Euhus, David M; Diaz, Jennifer

    2015-01-01

    Breast cancer is the most common cancer in women with 232,670 new cases estimated in the USA for 2014. Approaches for reducing breast cancer risk include lifestyle modification, chemoprevention, and prophylactic surgery. Lifestyle modification has a variety of health benefits with few associated risks and is appropriate for all women regardless of breast cancer risk. Chemoprevention options have expanded rapidly, but most are directed at estrogen receptor positive breast cancer and uptake is low. Prophylactic surgery introduces significant additional risks of its own and is generally reserved for the highest risk women. © 2014 Wiley Periodicals, Inc.

  5. The Breast and Cervical Cancer Early Detection Program, Medicaid, and breast cancer outcomes among Ohio's underserved women.

    PubMed

    Koroukian, Siran M; Bakaki, Paul M; Htoo, Phyo Than; Han, Xiaozhen; Schluchter, Mark; Owusu, Cynthia; Cooper, Gregory S; Rose, Johnie; Flocke, Susan A

    2017-08-15

    As an organized screening program, the national Breast and Cervical Cancer Early Detection Program (BCCEDP) was launched in the early 1990s to improve breast cancer outcomes among underserved women. To analyze the impact of the BCCEDP on breast cancer outcomes in Ohio, this study compared cancer stages and mortality across BCCEDP participants, Medicaid beneficiaries, and "all others." This study linked data across the Ohio Cancer Incidence Surveillance System, Medicaid, the BCCEDP database, death certificates, and the US Census and identified 26,426 women aged 40 to 64 years who had been diagnosed with incident invasive breast cancer during the years 2002-2008 (deaths through 2010). The study groups were as follows: BCCEDP participants (1-time or repeat users), Medicaid beneficiaries (women enrolled in Medicaid before their cancer diagnosis [Medicaid/prediagnosis] or around the time of their cancer diagnosis [Medicaid/peridiagnosis]), and all others (women identified as neither BCCEDP participants nor Medicaid beneficiaries). The outcomes included advanced-stage cancer at diagnosis and mortality. A multivariable logistic and survival analysis was conducted to examine the independent association between the BCCEDP and Medicaid status and the outcomes. The percentage of women presenting with advanced-stage disease was highest among women in the Medicaid/peridiagnosis group (63.4%) and lowest among BCCEDP repeat users (38.6%). With adjustments for potential confounders and even in comparison with Medicaid/prediagnosis beneficiaries, those in the Medicaid/peridiagnosis group were twice as likely to be diagnosed with advanced-stage disease (adjusted odds ratio, 2.20; 95% confidence interval, 1.83-2.66). Medicaid/peridiagnosis women are at particularly high risk to be diagnosed with advanced-stage disease. Efforts to reduce breast cancer disparities must target this group of women before they present to Medicaid. Cancer 2017;123:3097-106. © 2017 American Cancer Society

  6. A serum glycomics approach to breast cancer biomarkers.

    PubMed

    Kirmiz, Crystal; Li, Bensheng; An, Hyun Joo; Clowers, Brian H; Chew, Helen K; Lam, Kit S; Ferrige, Anthony; Alecio, Robert; Borowsky, Alexander D; Sulaimon, Shola; Lebrilla, Carlito B; Miyamoto, Suzanne

    2007-01-01

    Because the glycosylation of proteins is known to change in tumor cells during the development of breast cancer, a glycomics approach is used here to find relevant biomarkers of breast cancer. These glycosylation changes are known to correlate with increasing tumor burden and poor prognosis. Current antibody-based immunochemical tests for cancer biomarkers of ovarian (CA125), breast (CA27.29 or CA15-3), pancreatic, gastric, colonic, and carcinoma (CA19-9) target highly glycosylated mucin proteins. However, these tests lack the specificity and sensitivity for use in early detection. This glycomics approach to find glycan biomarkers of breast cancer involves chemically cleaving oligosaccharides (glycans) from glycosylated proteins that are shed or secreted by breast cancer tumor cell lines. The resulting free glycan species are analyzed by MALDI-FT-ICR MS. Further structural analysis of the glycans can be performed in FTMS through the use of tandem mass spectrometry with infrared multiphoton dissociation. Glycan profiles were generated for each cell line and compared. These methods were then used to analyze sera obtained from a mouse model of breast cancer and a small number of serum samples obtained from human patients diagnosed with breast cancer or patients with no known history of breast cancer. In addition to the glycosylation changes detected in mice as mouse mammary tumors developed, glycosylation profiles were found to be sufficiently different to distinguish patients with cancer from those without. Although the small number of patient samples analyzed so far is inadequate to make any legitimate claims at this time, these promising but very preliminary results suggest that glycan profiles may contain distinct glycan biomarkers that may correspond to glycan "signatures of cancer."

  7. The exploration of contrasting pathways in Triple Negative Breast Cancer (TNBC).

    PubMed

    Narrandes, Shavira; Huang, Shujun; Murphy, Leigh; Xu, Wayne

    2018-01-04

    Triple Negative Breast Cancers (TNBCs) lack the appropriate targets for currently used breast cancer therapies, conferring an aggressive phenotype, more frequent relapse and poorer survival rates. The biological heterogeneity of TNBC complicates the clinical treatment further. We have explored and compared the biological pathways in TNBC and other subtypes of breast cancers, using an in silico approach and the hypothesis that two opposing effects (Yin and Yang) pathways in cancer cells determine the fate of cancer cells. Identifying breast subgroup specific components of these opposing pathways may aid in selecting potential therapeutic targets as well as further classifying the heterogeneous TNBC subtype. Gene expression and patient clinical data from The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) were used for this study. Gene Set Enrichment Analysis (GSEA) was used to identify the more active pathways in cancer (Yin) than in normal and the more active pathways in normal (Yang) than in cancer. The clustering analysis was performed to compare pathways of TNBC with other types of breast cancers. The association of pathway classified TNBC sub-groups to clinical outcomes was tested using Cox regression model. Among 4729 curated canonical pathways in GSEA database, 133 Yin pathways (FDR < 0.05) and 71 Yang pathways (p-value <0.05) were discovered in TNBC. The FOXM1 is the top Yin pathway while PPARα is the top Yang pathway in TNBC. The TNBC and other types of breast cancers showed different pathways enrichment significance profiles. Using top Yin and Yang pathways as classifier, the TNBC can be further subtyped into six sub-groups each having different clinical outcomes. We first reported that the FOMX1 pathway is the most upregulated and the PPARα pathway is the most downregulated pathway in TNBC. These two pathways could be simultaneously targeted in further studies. Also the pathway classifier we

  8. Do we need regional guidelines for breast cancer management in the MENA region? MENA Breast Cancer Guidelines project.

    PubMed

    Fayed, Reham; Hamza, Dina; Abdallah, Heba; Kelany, Mohamed; Tahseen, Amira; Aref, Adel T

    2017-01-01

    Breast cancer is the most common cancer among females worldwide in general and in the Middle East and the North African region (MENA region) in particular. Management of breast cancer in the MENA region faces a lot of challenges, which include younger age at presentation, aggressive behaviour, lack of national breast screening programmes and lack of reliable data registries as well as socioeconomic factors. These factors make applying the international guidelines for breast cancer management very challenging. The aim of this project is to explore the need for a regional breast cancer guideline as well as to screen the clinical practice of breast cancer management in the MENA region. Three web-based designed surveys were sent to more than 600 oncologists in the MENA region from the period of August 2013 to October 2014. Full descriptive data and information regarding the application of international breast cancer guidelines were collected. The software was using the IP address to prevent duplication of collected data. Descriptive analysis and results were shown as numbers and percentages. During the period of the survey, 104 oncologists responded, representing around an 11% response rate. The majority of replies came from Egypt (59 responses (59%)), followed by Saudi Arabia (ten responses (9.6%)). Fifty-one per cent of responders had more than ten years of experience, and further 31.7% had 5-10 years of experience. Seventy-four per cent were working in governmental hospitals, which is our target sector. There was a major defect in having a genetic counsel unit (78.8% declared an absence of this service), presence of a national breast screening programme (55.8% declared an absence of this service), performing sentinel lymph node biopsy (43.3% declared an absence of this service). The need for regional guidelines for the management of breast cancer was agreed upon by 90.6% of responders. There is a clear need to improve the management of breast cancer in the MENA

  9. Development, Characterization and Validation of Trastuzumab-Modified Gold Nanoparticles for Molecularly Targeted Radiosensitization of Breast Cancer

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Niladri

    The overexpression of the human epidermal growth factor receptor-2 (HER-2) in 20--25% of human breast cancers was investigated as a target for development of a gold nanoparticle (AuNP) based radiosensitizer for improving the efficacy of neoadjuvant X-radiation therapy of the disease. HER-2 targeted AuNPs were developed by covalently conjugating trastuzumab, a Health Canada approved monoclonal antibody for the treatment of HER-2-overexpressing breast cancer, to 30 nm AuNPs. Trastuzumab conjugated AuNPs were efficiently internalized by HER-2-overexpressing breast cancer cells (as assessed by darkfield microscopy and transmission electron microscopy) and increased DNA damage from X-radiation in these cells by more than 5-fold. To optimize delivery of AuNPs to HER-2-overexpressing tumors, high resolution microSPECT/CT imaging was used to track the in vivo fate of 111In-labelled non-targeted and HER-2 targeted AuNPs following intravenous (i.v.) or intratumoral (i.t.) injection. For i.v. injection, the effects of GdCl3 (for deactivation of macrophages) and non-specific (anti-CD20) antibody rituximab (for blocking of Fc mediated liver and spleen uptake) were studied. It was found that HER-2 targeting via attachment of trastuzumab paradoxically decreased tumor uptake as a result of faster elimination of the targeted AuNPs from the blood while improving internalization in HER-2-positive tumor cells as compared to non-targeted AuNPs. This phenomenon could be attributed to Fc-mediated recognition and subsequent sequestration of trastuzumab conjugated AuNP by the reticuloendothelial system (RES). Blocking of the RES did not increase tumor uptake of either HER-2 targeted or non-targeted AuNPs. Following i.t. injection, our results suggest that Au-NTs redistribute over time and traffick to the liver via the ipsilateral axillary lymph node leading to comparable exposure as seen with i.v. administration. In contrast, targeted AuNPs are bound and internalized by HER-2

  10. Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells.

    PubMed

    Gener, Petra; Gouveia, Luis Pleno; Sabat, Guillem Romero; de Sousa Rafael, Diana Fernandes; Fort, Núria Bergadà; Arranja, Alexandra; Fernández, Yolanda; Prieto, Rafael Miñana; Ortega, Joan Sayos; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2015-11-01

    To be able to study the efficacy of targeted nanomedicines in marginal population of highly aggressive cancer stem cells (CSC), we have developed a novel in vitro fluorescent CSC model that allows us to visualize these cells in heterogeneous population and to monitor CSC biological performance after therapy. In this model tdTomato reporter gene is driven by CSC specific (ALDH1A1) promoter and contrary to other similar models, CSC differentiation and un-differentiation processes are not restrained and longitudinal studies are feasible. We used this model for preclinical validation of poly[(d,l-lactide-co-glycolide)-co-PEG] (PLGA-co-PEG) micelles loaded with paclitaxel. Further, active targeting against CD44 and EGFR receptors was validated in breast and colon cancer cell lines. Accordingly, specific active targeting toward surface receptors enhances the performance of nanomedicines and sensitizes CSC to paclitaxel based chemotherapy. Many current cancer therapies fail because of the failure to target cancer stem cells. This surviving population soon proliferates and differentiates into more cancer cells. In this interesting article, the authors designed an in vitro cancer stem cell model to study the effects of active targeting using antibody-labeled micelles containing chemotherapeutic agent. This new model should allow future testing of various drug/carrier platforms before the clinical phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Prognostically favorable abdominal breast cancer metastases with stomach involvement.

    PubMed

    Akcali, Zafer; Sakalli, Hakan; Ozyilkan, Ozgur; Demirhan, Beyhan; Haberal, Mehmet

    2005-05-01

    Abdominal metastases with stomach involvement are rare in breast cancer. The median disease free interval from the time of breast cancer diagnosis to gastric metastasis is usually very long. Treatment is generally palliative, and expected survival time is less than 1 year. A 59-year-old woman with breast cancer developed diffuse abdominal metastases involving stomach, abdominal lymph nodes, and omentum 9 years after she underwent mastectomy and adjuvant chemotherapy. The histopathologic diagnosis found by stomach specimen examination was invasive lobular carcinoma, and the cells expressed high levels of estrogen and progesterone receptors. The abdominal metastases were treated with surgery, postoperative chemotherapy, and further hormonal therapy. This was successful, and the patient has been in remission for more than 3 years. Once the definitive diagnosis of breast cancer metastases to the abdomen including the stomach is established, treatment that targets systemic breast cancer must be initiated. Our patient's extended survival time suggests that surgical treatment could be considered for selected patients.

  12. Stereotactic Image-Guided Navigation During Breast Reconstruction in Patients With Breast Cancer

    ClinicalTrials.gov

    2017-04-12

    Ductal Breast Carcinoma in Situ; Lobular Breast Carcinoma in Situ; Recurrent Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer

  13. Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer.

    PubMed

    Fusco, Nicola; Geyer, Felipe C; De Filippo, Maria R; Martelotto, Luciano G; Ng, Charlotte K Y; Piscuoglio, Salvatore; Guerini-Rocco, Elena; Schultheis, Anne M; Fuhrmann, Laetitia; Wang, Lu; Jungbluth, Achim A; Burke, Kathleen A; Lim, Raymond S; Vincent-Salomon, Anne; Bamba, Masamichi; Moritani, Suzuko; Badve, Sunil S; Ichihara, Shu; Ellis, Ian O; Reis-Filho, Jorge S; Weigelt, Britta

    2016-11-01

    Adenoid cystic carcinoma of the breast is a rare histological type of triple-negative breast cancer with an indolent clinical behavior, often driven by the MYB-NFIB fusion gene. Here we sought to define the repertoire of somatic genetic alterations in two adenoid cystic carcinomas associated with high-grade triple-negative breast cancer. The different components of each case were subjected to copy number profiling and massively parallel sequencing targeting all exons and selected regulatory and intronic regions of 488 genes. Reverse transcription PCR and fluorescence in situ hybridization were employed to investigate the presence of the MYB-NFIB translocation. The MYB-NFIB fusion gene was detected in both adenoid cystic carcinomas and their associated high-grade triple-negative breast cancer components. Although the distinct components of both cases displayed similar patterns of gene copy number alterations, massively parallel sequencing analysis revealed intratumor genetic heterogeneity. In case 1, progression from the trabecular adenoid cystic carcinoma to the high-grade triple-negative breast cancer was found to involve clonal shifts with enrichment of mutations affecting EP300, NOTCH1, ERBB2 and FGFR1 in the high-grade triple-negative breast cancer. In case 2, a clonal KMT2C mutation was present in the cribriform adenoid cystic carcinoma, solid adenoid cystic carcinoma and high-grade triple-negative breast cancer components, whereas a mutation affecting MYB was present only in the solid and high-grade triple-negative breast cancer areas and additional three mutations targeting STAG2, KDM6A and CDK12 were restricted to the high-grade triple-negative breast cancer. In conclusion, adenoid cystic carcinomas of the breast with high-grade transformation are underpinned by the MYB-NFIB fusion gene and, akin to other forms of cancer, may be constituted by a mosaic of cancer cell clones at diagnosis. The progression from adenoid cystic carcinoma to high-grade triple

  14. Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer

    PubMed Central

    Fusco, Nicola; Geyer, Felipe C; De Filippo, Maria R; Martelotto, Luciano G; Ng, Charlotte K Y; Piscuoglio, Salvatore; Guerini-Rocco, Elena; Schultheis, Anne M; Fuhrmann, Laetitia; Wang, Lu; Jungbluth, Achim A; Burke, Kathleen A; Lim, Raymond S; Vincent-Salomon, Anne; Bamba, Masamichi; Moritani, Suzuko; Badve, Sunil S; Ichihara, Shu; Ellis, Ian O; Reis-Filho, Jorge S; Weigelt, Britta

    2016-01-01

    Adenoid cystic carcinoma of the breast is a rare histologic type of triple-negative breast cancer with an indolent clinical behavior, often driven by the MYB-NFIB fusion gene. Here we sought to define the repertoire of somatic genetic alterations in two adenoid cystic carcinomas associated with high-grade triple-negative breast cancer. The different components of each case were subjected to copy number profiling and massively parallel sequencing targeting all exons and selected regulatory and intronic regions of 488 genes. Reverse transcription PCR and fluorescence in situ hybridization were employed to investigate the presence of the MYB-NFIB translocation. The MYB-NFIB fusion gene was detected in both adenoid cystic carcinomas and their associated high-grade triple-negative breast cancer components. Whilst the distinct components of both cases displayed similar patterns of gene copy number alterations, massively parallel sequencing analysis revealed intra-tumor genetic heterogeneity. In case 1, progression from the trabecular adenoid cystic carcinoma to the high-grade triple-negative breast cancer was found to involve clonal shifts with enrichment of mutations affecting EP300, NOTCH1, ERBB2 and FGFR1 in the high-grade triple-negative breast cancer. In case 2, a clonal KMT2C mutation was present in the cribriform adenoid cystic carcinoma, solid adenoid cystic carcinoma and high-grade triple-negative breast cancer components, whereas a mutation affecting MYB was present only in the solid and high-grade triple-negative breast cancer areas and additional three mutations targeting STAG2, KDM6A and CDK12 were restricted to the high-grade triple-negative breast cancer. In conclusion, adenoid cystic carcinomas of the breast with high-grade transformation are underpinned by MYB-NFIB fusion gene, and, akin to other forms of cancer, may be constituted by a mosaic of cancer cell clones at diagnosis. The progression from adenoid cystic carcinoma to high-grade triple

  15. Breast Cancer

    MedlinePlus

    ... the body. Breast cancer is the second most common cancer among women (after skin cancer). The good news is that the rate of death from ... is removed during surgery. Surgery is the most common treatment for breast ... effects on your body. Take good care of yourself. Eat a healthy diet, get ...

  16. Polyphenols as Promising Drugs against Main Breast Cancer Signatures

    PubMed Central

    Herranz-López, María; Micol, Vicente

    2017-01-01

    Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs) and epidermal growth factor receptor 2 (HER2). Tumors with none of these receptors are classified as triple negative breast cancer (TNBC) and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation. PMID:29112149

  17. Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer.

    PubMed

    Zhao, Na; Cao, Jin; Xu, Longyong; Tang, Qianzi; Dobrolecki, Lacey E; Lv, Xiangdong; Talukdar, Manisha; Lu, Yang; Wang, Xiaoran; Hu, Dorothy Z; Shi, Qing; Xiang, Yu; Wang, Yunfei; Liu, Xia; Bu, Wen; Jiang, Yi; Li, Mingzhou; Gong, Yingyun; Sun, Zheng; Ying, Haoqiang; Yuan, Bo; Lin, Xia; Feng, Xin-Hua; Hartig, Sean M; Li, Feng; Shen, Haifa; Chen, Yiwen; Han, Leng; Zeng, Qingping; Patterson, John B; Kaipparettu, Benny Abraham; Putluri, Nagireddy; Sicheri, Frank; Rosen, Jeffrey M; Lewis, Michael T; Chen, Xi

    2018-04-02

    The unfolded protein response (UPR) is a cellular homeostatic mechanism that is activated in many human cancers and plays pivotal roles in tumor progression and therapy resistance. However, the molecular mechanisms for UPR activation and regulation in cancer cells remain elusive. Here, we show that oncogenic MYC regulates the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) branch of the UPR in breast cancer via multiple mechanisms. We found that MYC directly controls IRE1 transcription by binding to its promoter and enhancer. Furthermore, MYC forms a transcriptional complex with XBP1, a target of IRE1, and enhances its transcriptional activity. Importantly, we demonstrate that XBP1 is a synthetic lethal partner of MYC. Silencing of XBP1 selectively blocked the growth of MYC-hyperactivated cells. Pharmacological inhibition of IRE1 RNase activity with small molecule inhibitor 8866 selectively restrained the MYC-overexpressing tumor growth in vivo in a cohort of preclinical patient-derived xenograft models and genetically engineered mouse models. Strikingly, 8866 substantially enhanced the efficacy of docetaxel chemotherapy, resulting in rapid regression of MYC-overexpressing tumors. Collectively, these data establish the synthetic lethal interaction of the IRE1/XBP1 pathway with MYC hyperactivation and provide a potential therapy for MYC-driven human breast cancers.

  18. Genomic pathways modulated by Twist in breast cancer.

    PubMed

    Vesuna, Farhad; Bergman, Yehudit; Raman, Venu

    2017-01-13

    dysregulation of Twist at the cellular level drives alterations in gene pathways in the Twist metastatic mouse model which are comparable to changes seen in human breast cancers. Lastly, we have identified novel genes and pathways that could be further investigated as targets for drugs to treat metastatic breast cancer.

  19. Prevention of breast cancer.

    PubMed

    Olver, Ian N

    2016-11-21

    Modifiable lifestyle factors may reduce the risk of developing breast cancer. Obesity is associated particularly with post-menopausal breast cancer. Diet is important, and exercise equivalent to running for up to 8 hours each week reduces the risk of breast cancer, both in its own right and through reducing obesity. Alcohol consumption may be responsible for 5.8% of breast cancers in Australia and it is recommended to reduce this to two standard drinks per day. Drinking alcohol and smoking increases the risk for breast cancer and, therefore, it is important to quit tobacco smoking. Prolonged use of combined oestrogen and progesterone hormone replacement therapy and oral contraceptives may increase breast cancer risk and this must be factored into individual decisions about their use. Ionising radiation, either from diagnostic or therapeutic radiation or through occupational exposure, is associated with a high incidence of breast cancer and exposure may be reduced in some cases. Tamoxifen chemoprevention may reduce the incidence of oestrogen receptor positive cancer in 51% of women with high risk of breast cancer. Uncommon but serious side effects include thromboembolism and uterine cancer. Raloxifene, which can also reduce osteoporosis, can be used in post-menopausal women and is not associated with the development of uterine cancer. Surgical prophylaxis with bilateral mastectomy and salpingo-oophorectomy can reduce the risk of breast cancer in patients carrying BRCA1 or BRCA2 mutations. For preventive treatments, mammographic screening can identify other women at high risk.

  20. Transcriptomic profiling of curcumin treated human breast stem cells identifies a role for stearoyl coa-desaturase in breast cancer prevention

    PubMed Central

    Colacino, Justin A.; McDermott, Sean P.; Sartor, Maureen A.; Wicha, Max S.; Rozek, Laura S.

    2017-01-01

    Curcumin is a potential agent for both the prevention and treatment of cancers. Curcumin treatment alone, or in combination with piperine, limits breast stem cell self-renewal while remaining non-toxic to normal differentiated cells. We paired fluorescence activated cell sorting with RNA sequencing to characterize the genome-wide changes induced specifically in normal breast stem cells following treatment with these compounds. We generated genome-wide maps of the transcriptional changes that occur in epithelial-like (ALDH+) and mesenchymal-like (ALDH−/CD44+/CD24−) normal breast stem/progenitor cells following treatment with curcumin and piperine. We show that curcumin targets both stem cell populations by down-regulating expression of breast stem cell genes including ALDH1A3, CD49f, PROM1, and TP63. We also identified novel genes and pathways targeted by curcumin, including downregulation of SCD. Transient siRNA knockdown of SCD in MCF10A cells significantly inhibited mammosphere formation and the mean proportion of CD44+/CD24− cells, suggesting that SCD is a regulator of breast stemness and a target of curcumin in breast stem cells. These findings extend previous reports of curcumin targeting stem cells, here in two phenotypically distinct stem/progenitor populations isolated from normal human breast tissue. We identified novel mechanisms by which curcumin and piperine target breast stem cell self-renewal, such as by targeting lipid metabolism, providing a mechanistic link between curcumin treatment and stem cell self renewal. These results elucidate the mechanisms by which curcumin may act as a cancer preventive compound and provide novel targets for cancer prevention and treatment. PMID:27306423

  1. Transcriptomic profiling of curcumin-treated human breast stem cells identifies a role for stearoyl-coa desaturase in breast cancer prevention.

    PubMed

    Colacino, Justin A; McDermott, Sean P; Sartor, Maureen A; Wicha, Max S; Rozek, Laura S

    2016-07-01

    Curcumin is a potential agent for both the prevention and treatment of cancers. Curcumin treatment alone, or in combination with piperine, limits breast stem cell self-renewal, while remaining non-toxic to normal differentiated cells. We paired fluorescence-activated cell sorting with RNA sequencing to characterize the genome-wide changes induced specifically in normal breast stem cells following treatment with these compounds. We generated genome-wide maps of the transcriptional changes that occur in epithelial-like (ALDH+) and mesenchymal-like (ALDH-/CD44+/CD24-) normal breast stem/progenitor cells following treatment with curcumin and piperine. We show that curcumin targets both stem cell populations by down-regulating expression of breast stem cell genes including ALDH1A3, CD49f, PROM1, and TP63. We also identified novel genes and pathways targeted by curcumin, including downregulation of SCD. Transient siRNA knockdown of SCD in MCF10A cells significantly inhibited mammosphere formation and the mean proportion of CD44+/CD24- cells, suggesting that SCD is a regulator of breast stemness and a target of curcumin in breast stem cells. These findings extend previous reports of curcumin targeting stem cells, here in two phenotypically distinct stem/progenitor populations isolated from normal human breast tissue. We identified novel mechanisms by which curcumin and piperine target breast stem cell self-renewal, such as by targeting lipid metabolism, providing a mechanistic link between curcumin treatment and stem cell self-renewal. These results elucidate the mechanisms by which curcumin may act as a cancer-preventive compound and provide novel targets for cancer prevention and treatment.

  2. Targeting PCNA Phosphorylation in Breast Cancer

    DTIC Science & Technology

    2013-04-01

    yl)acetate hydrochloride ( 1 g, 5.81 mmol) in ACN (35 mL) was added 1 -bromo-3- chloropropane (0.69 mL, 6.97 mmol, 1.2 equiv.). And Et3N (3.26 mL, 23.2...and antibody labeling. Scheme 1 shows the improved synthesis of d0 and d4-R6G for antibody labeling. The labeling efficiencies of each of these dyes...AD_________________ Award Number: W81XWH-10- 1 -0105 TITLE: Targeting PCNA Phosphorylation in Breast

  3. Murine models of breast cancer bone metastasis

    PubMed Central

    Wright, Laura E; Ottewell, Penelope D; Rucci, Nadia; Peyruchaud, Olivier; Pagnotti, Gabriel M; Chiechi, Antonella; Buijs, Jeroen T; Sterling, Julie A

    2016-01-01

    Bone metastases cause significant morbidity and mortality in late-stage breast cancer patients and are currently considered incurable. Investigators rely on translational models to better understand the pathogenesis of skeletal complications of malignancy in order to identify therapeutic targets that may ultimately prevent and treat solid tumor metastasis to bone. Many experimental models of breast cancer bone metastases are in use today, each with its own caveats. In this methods review, we characterize the bone phenotype of commonly utilized human- and murine-derived breast cell lines that elicit osteoblastic and/or osteolytic destruction of bone in mice and report methods for optimizing tumor-take in murine models of bone metastasis. We then provide protocols for four of the most common xenograft and syngeneic inoculation routes for modeling breast cancer metastasis to the skeleton in mice, including the intra-cardiac, intra-arterial, orthotopic and intra-tibial methods of tumor cell injection. Recommendations for in vivo and ex vivo assessment of tumor progression and bone destruction are provided, followed by discussion of the strengths and limitations of the available tools and translational models that aid investigators in the study of breast cancer metastasis to bone. PMID:27867497

  4. Targeting One-Carbon Metabolism in Breast Cancer

    DTIC Science & Technology

    2014-04-01

    14.42 - α-lactose 8.63 both sorbitol 6-phosphate 16.90 both α-mannose 1-phosphate 10.98 - succinate 16.20 - taurine 14.85 - threonine 14.26 both 10...OGT) as a donor substrate to modify proteins via covalent attachment of GlcNAc to serine and/or threonine residues (Ma and Vosseller, 2013). Of...gene and association studies with diabetes and diabetic nephropathy. Mol Genet Metab 82, 321–328. Elenbaas, B. (2001). Human breast cancer cells

  5. Targeting invadopodia-mediated breast cancer metastasis by using ABL kinase inhibitors

    PubMed Central

    Meirson, Tomer; Genna, Alessandro; Lukic, Nikola; Makhnii, Tetiana; Alter, Joel; Sharma, Ved P.; Wang, Yarong; Samson, Abraham O.; Condeelis, John S.; Gil-Henn, Hava

    2018-01-01

    Metastatic dissemination of cancer cells from the primary tumor and their spread to distant sites in the body is the leading cause of mortality in breast cancer patients. While researchers have identified treatments that shrink or slow metastatic tumors, no treatment that permanently eradicates metastasis exists at present. Here, we show that the ABL kinase inhibitors imatinib, nilotinib, and GNF-5 impede invadopodium precursor formation and cortactin-phosphorylation dependent invadopodium maturation, leading to decreased actin polymerization in invadopodia, reduced extracellular matrix degradation, and impaired matrix proteolysis-dependent invasion. Using a mouse xenograft model we demonstrate that, while primary tumor size is not affected by ABL kinase inhibitors, the in vivo matrix metalloproteinase (MMP) activity, tumor cell invasion, and consequent spontaneous metastasis to lungs are significantly impaired in inhibitor-treated mice. Further proteogenomic analysis of breast cancer patient databases revealed co-expression of the Abl-related gene (Arg) and cortactin across all hormone- and human epidermal growth factor receptor 2 (HER2)-receptor status tumors, which correlates synergistically with distant metastasis and poor patient prognosis. Our findings establish a prognostic value for Arg and cortactin as predictors of metastatic dissemination and suggest that therapeutic inhibition of ABL kinases may be used for blocking breast cancer metastasis. PMID:29774130

  6. Intervention Approaches for Addressing Breast Cancer Disparities among African American Women

    PubMed Central

    Coughlin, Steven S

    2014-01-01

    African American women in the U.S. have a higher mortality rate from breast cancer than white women. Black-white differences in survival persist even after accounting for disease stage and tumor characteristics suggesting that the higher rates of breast cancer mortality are due to social factors. Several factors may account for racial differences in breast cancer mortality including socioeconomic factors, access to screening mammography and timely treatment, and biological factors. Efforts to prevent deaths from breast cancer and to address breast cancer disparities have focused on early detection through routine mammography and timely referral for treatment. There is a need for culturally appropriate, tailored health messages for African American women to increase their knowledge and awareness of health behaviors for the early detection of breast cancer. Several promising intervention approaches are reviewed in this article including: 1) the use of cell phone text messaging and smart phone apps to increase breast cancer screening; 2) the use of radio stations that target African American audiences (“black radio”) for health promotion activities; and 3) church-based behavioral interventions to promote breast cancer screening among African American women. PMID:25568890

  7. The transtheoretical model, health belief model, and breast cancer screening among Iranian women with a family history of breast cancer.

    PubMed

    Farajzadegan, Ziba; Fathollahi-Dehkordi, Fariba; Hematti, Simin; Sirous, Reza; Tavakoli, Neda; Rouzbahani, Reza

    2016-01-01

    Participation of Iranian women with a family history of breast cancer in breast cancer screening programs is low. This study evaluates the compliance of women having a family history of breast cancer with clinical breast exam (CBE) according to the stage of transtheoretical model (TTM) and health belief model (HBM). In this cross-sectional study, we used Persian version of champion's HBM scale to collect factors associated with TTM stages applied to screening from women over 20 years and older. The obtained data were analyzed by SPSS, using descriptive statistics, Chi-square test, independent t -test, and analysis of covariance. Final sample size was 162 women. Thirty-three percent were in action/maintenance stage. Older women, family history of breast cancer in first-degree relatives, personal history of breast disease, insurance coverage, and a history of breast self-examination were associated with action/maintenance stage. Furthermore, women in action/maintenance stages had significantly fewer perceived barriers in terms of CBE in comparison to women in other stages ( P < 0.05). There was no significant difference in other HBM subscales scores between various stages of CBE screening behavior ( P > 0.05). The finding indicates that the rate of women in action/maintenance stage of CBE is low. Moreover, results show a strong association between perceived barriers and having a regular CBE. These clarify the necessity of promoting national target programs for breast cancer screening, which should be considered as the first preference for reducing CBE barriers.

  8. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer.

    PubMed

    Sabra, Sally A; Elzoghby, Ahmed O; Sheweita, Salah A; Haroun, Medhat; Helmy, Maged W; Eldemellawy, Maha A; Xia, Ying; Goodale, David; Allan, Alison L; Rohani, Sohrab

    2018-07-01

    Protein-based micelles have shown significant potential for tumor-targeted delivery of anti-cancer drugs. In this light, self-assembled nanocarriers based on GRAS (Generally recognized as safe) amphiphilic protein co-polymers were synthesized via carbodiimide coupling reaction. The new nano-platform is composed of the following key components: (i) hydrophobic zein core to encapsulate the hydrophobic drugs rapamycin (RAP) and wogonin (WOG) with high encapsulation efficiency, (ii) hydrophilic lactoferrin (Lf) corona to enhance the tumor targeting, and prolong systemic circulation of the nanocarriers, and (iii) glutaraldehyde (GLA)-crosslinking to reduce the particle size and improve micellar stability. Zein-Lf micelles showed relatively rapid release of WOG followed by slower diffusion of RAP from zein core. This sequential release may aid in efflux pump inhibition by WOG thus sensitizing tumor cells to RAP action. Interestingly, these micelles showed good hemocompatibility as well as enhanced serum stability owing to the brush-like architecture of Lf shell. Moreover, this combined nano-delivery system maximized synergistic cytotoxicity of RAP and WOG in terms of tumor inhibition in MCF-7 breast cancer cells and Ehrlich ascites tumor animal model as a result of enhanced active targeting. Collectively, GLA-crosslinked zein-Lf micelles hold great promise for combined RAP/WOG delivery to breast cancer with reduced drug dose, minimized side effects and maximized anti-tumor efficacy. Copyright © 2018. Published by Elsevier B.V.

  9. Imaging dose in breast radiotherapy: does breast size affect the dose to the organs at risk and the risk of secondary cancer to the contralateral breast?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batumalai, Vikneswary, E-mail: vikneswary.batumalai@sswahs.nsw.gov.au; South Western Clinical School, University of New South Wales, Sydney, New South Wales; Quinn, Alexandra

    Correct target positioning is crucial for accurate dose delivery in breast radiotherapy resulting in utilisation of daily imaging. However, the radiation dose from daily imaging is associated with increased probability of secondary induced cancer. The aim of this study was to quantify doses associated with three imaging modalities and investigate the correlation of dose and varying breast size in breast radiotherapy. Planning computed tomography (CT) data sets of 30 breast cancer patients were utilised to simulate the dose received by various organs from a megavoltage computed tomography (MV-CT), megavoltage electronic portal image (MV-EPI) and megavoltage cone-beam computed tomography (MV-CBCT). Themore » mean dose to organs adjacent to the target volume (contralateral breast, lungs, spinal cord and heart) were analysed. Pearson correlation analysis was performed to determine the relationship between imaging dose and primary breast volume and the lifetime attributable risk (LAR) of induced secondary cancer was calculated for the contralateral breast. The highest contralateral breast mean dose was from the MV-CBCT (1.79 Gy), followed by MV-EPI (0.22 Gy) and MV-CT (0.11 Gy). A similar trend was found for all organs at risk (OAR) analysed. The primary breast volume inversely correlated with the contralateral breast dose for all three imaging modalities. As the primary breast volume increases, the likelihood of a patient developing a radiation-induced secondary cancer to the contralateral breast decreases. MV-CBCT showed a stronger relationship between breast size and LAR of developing a radiation-induced contralateral breast cancer in comparison with the MV-CT and MV-EPI. For breast patients, imaging dose to OAR depends on imaging modality and treated breast size. When considering the use of imaging during breast radiotherapy, the patient's breast size and contralateral breast dose should be taken into account.« less

  10. Tracking Progesterone Receptor-Mediated Actions in Breast Cancer

    PubMed Central

    Knutson, Todd P.; Lange, Carol A.

    2014-01-01

    Ovarian steroid hormones contribute to breast cancer initiation and progression primarily through the actions of their nuclear transcription factors, the estrogen receptor alpha (ERα) and progesterone receptors (PRs). These receptors are important drivers of the luminal A and B subtypes of breast cancer, where estrogen-blocking drugs have been effective endocrine therapies for patients with these tumors. However, many patients do not respond, or become resistant to treatment. When endocrine therapies fail, the luminal subtypes of breast cancer are more difficult to treat because these subtypes are among the most heterogeneous in terms of mutation diversity and gene expression profiles. Recent evidence suggests that progestin and PR actions may be important drivers of luminal breast cancers. Clinical trial data has demonstrated that hormone replacement therapy with progestins drives invasive breast cancer and results in greater mortality. PR transcriptional activity is dependent upon cross-talk with growth factor signaling pathways that alter PR phosphorylation, acetylation, or SUMOylation as mechanisms for regulating PR target gene selection required for increased cell proliferation and survival. Site-specific PR phosphorylation is the primary driver of gene-selective PR transcriptional activity. However, PR phosphorylation and heightened transcriptional activity is coupled to rapid PR protein degradation; the range of active PR detected in tumors is likely to be dynamic. Thus, PR target gene signatures may provide a more accurate means of tracking PR’s contribution to tumor progression rather than standard clinical protein-based (IHC) assays. Further development of antiprogestin therapies should be considered along side antiestrogens and aromatase inhibitors. PMID:24291072

  11. Enhancing the Breadth and Efficacy of Therapeutic Vaccines for Breast Cancer

    DTIC Science & Technology

    2016-06-01

    infiltrating T cells. Our team has achieved a number of accomplishments. We have determined the likely specificity of immunogenic peptides for MHC alleles...endeavoring to identify antigenic targets for breast cancer- infiltrating T cells. We have identified a number of candidates in breast cancer tissues as well

  12. Targeted Agents Active Against Breast Cancer: Q&A

    Cancer.gov

    ALTTO was a clinical trial designed to determine whether the combination of the monoclonal antibody trastuzumab (Herceptin) and the drug lapatinib (Tykerb) was more effective in treating HER2/ErbB2-positive breast cancer when combined with chemotherapy than either agent alone. Results from ALTTO did not show additional benefit from combining lapatinib and trastuzumab compared with trastuzumab treatment alone.

  13. Chaperonin Containing-TCP-1 Protein Level in Breast Cancer Cells Predicts Therapeutic Application of a Cytotoxic Peptide

    PubMed Central

    Bassiouni, Rania; Nemec, Kathleen; Iketani, Ashley; Flores, Orielyz; Showalter, Anne; Khaled, Amr S.; Vishnubhotla, Priya; Sprung, Robert W.; Kaittanis, Charalambos; Perez, Jesus M.; Khaled, Annette R.

    2016-01-01

    Purpose Metastatic disease is a leading cause of death for patients with breast cancer, driving the need for new therapies. CT20p is a peptide previously discovered by our group that displays cancer-specific cytotoxicity. To design the optimal therapeutic use of the peptide, we identified the intracellular target of CT20p in breast cancer cells, correlating expression patterns of the target with susceptibility to CT20p. Experimental Design Using polymeric nanoparticles to deliver CT20p, we assessed cytoskeletal changes, cell migration, adhesion, and viability in cells treated with the peptide. Protein pull-down experiments, coupled to mass spectrometry, enabled identification of the peptide’s intracellular target. Biochemical and histological techniques validated target identity in human cell lines and breast cancer tissue microarrays and revealed susceptibility patterns to CT20p. Results Chaperonin Containing TCP-1 (CCT) was identified as the intracellular target of CT20p. Cancer cells susceptible to CT20p had increased CCT, and overexpression of CCTβ, a subunit of the CCT complex, enhanced susceptibility to CT20p. Susceptible cells displayed reduced tubulin, a substrate of CCT, and inhibition of migration upon CT20p treatment. CCTβ levels were higher in invasive ductal carcinomas than in cancer adjacent tissues and increased with breast cancer stage. Decreased breast cancer patient survival correlated with genomic alternations in CCTβ and higher levels of the chaperone. Conclusion Increased CCT protein in breast cancer cells underlies the cytotoxicity of CT20p. CCT is thus a potential target for therapeutic intervention and serves as a companion diagnostic to personalize the therapeutic use of CT20p for breast cancer treatment. PMID:27012814

  14. Endocrine resistance in breast cancer – an overview and update

    PubMed Central

    Clarke, Robert; Tyson, John J.; Dixon, J. Michael

    2015-01-01

    Tumors that express detectable levels of the product of the ESR1 gene (estrogen receptor-α; ERα) represent the single largest molecular subtype of breast cancer. More women eventually die from ERα+ breast cancer than from either HER2+ disease (almost half of which also express ERα) and/or from triple negative breast cancer (ERα-negative, progesterone receptor-negative, and HER2-negative). Antiestrogens and aromatase inhibitors are largely indistinguishable from each other in their abilities to improve overall survival and almost 50% of ERα+ breast cancers will eventually fail one or more of these endocrine interventions. The precise reasons why these therapies fail in ERα+ breast cancer remain largely unknown. Pharmacogenetic explanations for Tamoxifen resistance are controversial. The role of ERα mutations in endocrine resistance remains unclear. Targeting the growth factors and oncogenes most strongly correlated with endocrine resistance has proven mostly disappointing in their abilities to improve overall survival substantially, particularly in the metastatic setting. Nonetheless, there are new concepts in endocrine resistance that integrate molecular signaling, cellular metabolism, and stress responses including endoplasmic reticulum stress and the unfolded protein response (UPR) that provide novel insights and suggest innovative therapeutic targets. Encouraging evidence that drug combinations with CDK4/CDK6 inhibitors can extend recurrence free survival may yet translate to improvements in overall survival. Whether the improvements seen with immunotherapy in other cancers can be achieved in breast cancer remains to be determined, particularly for ERα+ breast cancers. This review explores the basic mechanisms of resistance to endocrine therapies, concluding with some new insights from systems biology approaches further implicating autophagy and the UPR in detail, and a brief discussion of exciting new avenues and future prospects. PMID:26455641

  15. Targeting Nuclear FGF Receptor to Improve Chemotherapy Response in Triple-Negative Breast Cancer

    DTIC Science & Technology

    2015-10-01

    Facility and maintained in Ham’s F-12 medium containing 5 % heat-inactivated FBS, 5 μg/ml insulin, and 1 μg/ml hydrocortisone . BT549 TN breast cancer cells... hydrocortisone (1 μg/ml). The sphere assay was setup in Costar 6-Well Li et al. Breast Cancer Research (2015) 17:91 Page 3 of 16Ultra Low Attachment

  16. Screening, prevention, detection, and treatment of cancer therapy-induced bone loss in patients with breast cancer.

    PubMed

    Limburg, Connie E

    2007-01-01

    To identify protocols to screen, detect, prevent, and treat cancer therapy-induced bone loss resulting in osteoporosis in patients with breast cancer. Published books and articles. Normal bone remodeling is affected by hormonal stimulation. Breast cancer therapies target hormones that promote cancer cell growth. Chemotherapy regimens and hormone ablation may cause ovarian failure, resulting in decreased hormone levels. A decrease in hormones, in estrogen- and progesterone-positive and -negative patients, introduces an environment for decreased bone remodeling, which may result in thinning bone and osteoporosis. The acceleration of bone loss leading to osteoporosis can result in higher fracture rates among breast cancer survivors. With proper use of screening tools, patient education, and advice about lifestyle changes, all prior to cancer treatment, healthcare professionals may decrease or prevent bone loss in patients with breast cancer. Doing so minimizes healthcare costs and decreases morbidity and mortality rates in breast cancer survivors. As more individuals diagnosed with breast cancer are surviving for extended periods of time, oncology nurses are providing long-term follow-up care. Part of the care should include proper screening and patient education for healthier recovery and prevention of further healthcare complications as a result of cancer treatment.

  17. Role of TGF-β in breast cancer bone metastases

    PubMed Central

    Chiechi, Antonella; Waning, David L.; Stayrook, Keith R.; Buijs, Jeroen T.; Guise, Theresa A.; Mohammad, Khalid S.

    2014-01-01

    Breast cancer is the most prevalent cancer among females worldwide leading to approximately 350,000 deaths each year. It has long been known that cancers preferentially metastasize to particular organs, and bone metastases occur in ~70% of patients with advanced breast cancer. Breast cancer bone metastases are predominantly osteolytic and accompanied by increased fracture risk, pain, nerve compression and hypercalcemia, causing severe morbidity. In the bone matrix, transforming growth factor-β (TGF-β) is one of the most abundant growth factors, which is released in active form upon tumor-induced osteoclastic bone resorption. TGF-β, in turn, stimulates bone metastatic tumor cells to secrete factors that further drive osteolytic bone destruction adjacent to the tumor. Thus, TGF-β is a crucial factor responsible for driving the feed-forward vicious cycle of cancer growth in bone. Moreover, TGF-β activates epithelial-to-mesenchymal transition, increases tumor cell invasiveness and angiogenesis and induces immunosuppression. Blocking the TGF-β signaling pathway to interrupt this vicious cycle between breast cancer and bone offers a promising target for therapeutic intervention to decrease skeletal metastasis. This review will describe the role of TGF-β in breast cancer and bone metastasis, and pre-clinical and clinical data will be evaluated for the potential use of TGF-β inhibitors in clinical practice to treat breast cancer bone metastases. PMID:24558636

  18. Targeting Metabolic Remodeling in Triple Negative Breast Cancer in a Murine Model

    PubMed Central

    García-Castillo, Verónica; López-Urrutia, Eduardo; Villanueva-Sánchez, Octavio; Ávila-Rodríguez, Miguel Á.; Zentella-Dehesa, Alejandro; Cortés-González, Carlo; López-Camarillo, César; Jacobo-Herrera, Nadia J; Pérez-Plasencia, Carlos

    2017-01-01

    Background: Chemotherapy is the backbone of systemic treatment for triple negative breast cancer (TNBC), which is one of the most relevant breast cancers molecular types due to the ability of tumor cells to develop drug resistance, highlighting the urgent need to design newer and safer drug combinations for treatment. In this context, to overcome tumor cell drug resistance, we employed a novel combinatorial treatment including Doxorubicin, Metformin, and Sodium Oxamate (DoxMetOx). Such pharmacological combination targets indispensable hallmarks of cancer-related to aerobic glycolysis and DNA synthesis. Materials and Methods: Thirty-five female nude mice were transplanted subcutaneously with MDA-MB-231 triple negative human cancer cell line. Once tumors were visible, mice were treated with doxorubicin, metformin, oxamate or all possible pharmacologic combinations. Treatments were administered daily for 15 days and tumors were measured by calipers every day. MicroPET images were taken in three different occasions, basal state, in the middle of the treatment, and at the end of treatment. Western blot analyses, qRT-PCR, flow cytometry, and cytotoxicity assays were performed to elucidate the mechanism of cell death promoted by the drugs in vitro. Results: In this work we assessed the proof of concept of metabolic correction in solid tumors as an effective drug treatment; hence, mice bearing tumors treated with the DoxMetOx therapy showed a complete inhibition of the tumor mass growing in 15 days of treatment depicted by the micro PET images. In vitro studies displayed that the three drugs together act by inhibiting both, mTOR-phosphorylation and expression of LDH-A gene, promoting apoptosis via dependent on the caspase-3 pathway, accompanied by cleavage of PARP. Moreover, induction of autophagy process was observed by the accumulation of LC3-II, a primordial protein implicated in the conformation and elongation of the autophagolysosome. Conclusions: The lack of

  19. [CHEK2-mutation in Dutch breast cancer families: expanding genetic testing for breast cancer].

    PubMed

    Adank, Muriel A; Hes, Frederik J; van Zelst-Stams, Wendy A G; van den Tol, M Petrousjka; Seynaeve, Caroline; Oosterwijk, Jan C

    2015-01-01

    In the majority of breast cancer families, DNA testing does not show BRCA1 or BRCA2 mutations and the genetic cause of breast cancer remains unexplained. Routine testing for the CHEK2*1100delC mutation has recently been introduced in breast cancer families in the Netherlands. The 1100delC mutation in the CHEK2-gene may explain the occurrence of breast cancer in about 5% of non-BRCA1/2 families in the Netherlands. In the general population the CHEK2*1100delC mutation confers a slightly increased breast cancer risk, but in a familial breast cancer setting this risk is between 35-55% for first degree female carriers. Female breast cancer patients with the CHEK2*1100delC mutation are at increased risk of contralateral breast cancer and may have a less favourable prognosis. Female heterozygous CHEK2*1100delC mutation carriers are offered annual mammography and specialist breast surveillance between the ages of 35-60 years. Prospective research in CHEK2-positive families is essential in order to develop more specific treatment and screening strategies.

  20. Myeloid-derived suppressor cells in breast cancer.

    PubMed

    Markowitz, Joseph; Wesolowski, Robert; Papenfuss, Tracey; Brooks, Taylor R; Carson, William E

    2013-07-01

    Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells defined by their suppressive actions on immune cells such as T cells, dendritic cells, and natural killer cells. MDSCs typically are positive for the markers CD33 and CD11b but express low levels of HLADR in humans. In mice, MDSCs are typically positive for both CD11b and Gr1. These cells exert their suppressive activity on the immune system via the production of reactive oxygen species, arginase, and cytokines. These factors subsequently inhibit the activity of multiple protein targets such as the T cell receptor, STAT1, and indoleamine-pyrrole 2,3-dioxygenase. The numbers of MDSCs tend to increase with cancer burden while inhibiting MDSCs improves disease outcome in murine models. MDSCs also inhibit immune cancer therapeutics. In light of the poor prognosis of metastatic breast cancer in women and the correlation of increasing levels of MDSCs with increasing disease burden, the purposes of this review are to (1) discuss why MDSCs may be important in breast cancer, (2) describe model systems used to study MDSCs in vitro and in vivo, (3) discuss mechanisms involved in MDSC induction/function in breast cancer, and (4) present pre-clinical and clinical studies that explore modulation of the MDSC-immune system interaction in breast cancer. MDSCs inhibit the host immune response in breast cancer patients and diminishing MDSC actions may improve therapeutic outcomes.

  1. Derailed Estrogen Signaling and Breast Cancer: An Authentic Couple

    PubMed Central

    Dey, Oindrilla; Gajulapalli, Vijay Narsihma Reddy; Bhatia, Raghavendra Singh; Bugide, Suresh; Kumar, Rakesh

    2013-01-01

    Estrogen or 17β-estradiol, a steroid hormone, plays a critical role in the development of mammary gland via acting through specific receptors. In particular, estrogen receptor-α (ERα) acts as a transcription factor and/or a signal transducer while participating in the development of mammary gland and breast cancer. Accumulating evidence suggests that the transcriptional activity of ERα is altered by the action of nuclear receptor coregulators and might be responsible, at least in part, for the development of breast cancer. In addition, this process is driven by various posttranslational modifications of ERα, implicating active participation of the upstream receptor modifying enzymes in breast cancer progression. Emerging studies suggest that the biological outcome of breast cancer cells is also influenced by the cross talk between microRNA and ERα signaling, as well as by breast cancer stem cells. Thus, multiple regulatory controls of ERα render mammary epithelium at risk for transformation upon deregulation of normal homeostasis. Given the importance that ERα signaling has in breast cancer development, here we will highlight how the activity of ERα is controlled by various regulators in a spatial and temporal manner, impacting the progression of the disease. We will also discuss the possible therapeutic value of ERα modulators as alternative drug targets to retard the progression of breast cancer. PMID:22947396

  2. Translational Genomics: Practical Applications of the Genomic Revolution in Breast Cancer.

    PubMed

    Yates, Lucy R; Desmedt, Christine

    2017-06-01

    The genomic revolution has fundamentally changed our perception of breast cancer. It is now apparent from DNA-based massively parallel sequencing data that at the genomic level, every breast cancer is unique and shaped by the mutational processes to which it was exposed during its lifetime. More than 90 breast cancer driver genes have been identified as recurrently mutated, and many occur at low frequency across the breast cancer population. Certain cancer genes are associated with traditionally defined histologic subtypes, but genomic intertumoral heterogeneity exists even between cancers that appear the same under the microscope. Most breast cancers contain subclonal populations, many of which harbor driver alterations, and subclonal structure is typically remodeled over time, across metastasis and as a consequence of treatment interventions. Genomics is deepening our understanding of breast cancer biology, contributing to an accelerated phase of targeted drug development and providing insights into resistance mechanisms. Genomics is also providing tools necessary to deliver personalized cancer medicine, but a number of challenges must still be addressed. Clin Cancer Res; 23(11); 2630-9. ©2017 AACR See all articles in this CCR Focus section, "Breast Cancer Research: From Base Pairs to Populations." ©2017 American Association for Cancer Research.

  3. Optical Imaging in Breast Cancer Diagnosis: The Next Evolution

    PubMed Central

    Ruibal, Alvaro

    2012-01-01

    Breast cancer is one of the most common cancers among the population of the Western world. Diagnostic methods include mammography, ultrasound, and magnetic resonance; meanwhile, nuclear medicine techniques have a secondary role, being useful in regional assessment and therapy followup. Optical imaging is a very promising imaging technique that uses near-infrared light to assess optical properties of tissues and is expected to play an important role in breast cancer detection. Optical breast imaging can be performed by intrinsic breast tissue contrast alone (hemoglobin, water, and lipid content) or with the use of exogenous fluorescent probes that target specific molecules for breast cancer. Major advantages of optical imaging are that it does not use any radioactive components, very high sensitivity, relatively inexpensive, easily accessible, and the potential to be combined in a multimodal approach with other technologies such as mammography, ultrasound, MRI, and positron emission tomography. Moreover, optical imaging agents could, potentially, be used as “theranostics,” combining the process of diagnosis and therapy. PMID:23304141

  4. Dutch digital breast cancer screening: implications for breast cancer care.

    PubMed

    Timmers, Johanna M; den Heeten, Gerard J; Adang, Eddy M; Otten, Johannes D; Verbeek, André L; Broeders, Mireille J

    2012-12-01

    In comparison to other European population-based breast cancer screening programmes, the Dutch programme has a low referral rate, similar breast cancer detection and a high breast cancer mortality reduction. The referral rate in the Netherlands has increased over time and is expected to rise further, mainly following nationwide introduction of digital mammography, completed in 2010. This study explores the consequences of the introduction of digital mammography on the balance between referral rate, detection of breast cancer, diagnostic work-up and associated costs. Detailed information on diagnostic work-up (chart review) was obtained from referred women (n = 988) in 2000-06 (100% analogue mammography) and 2007 (75% digital mammography) in Nijmegen, the Netherlands. The average referral rate increased from 15 (2000-06) to 34 (2007) per 1000 women screened. The number of breast cancers detected increased from 5.5 to 7.8 per 1000 screens, whereas the positive predictive value fell from 37% to 23%. A sharp rise in diagnostic work-up procedures and total diagnostic costs was seen. On the other hand, costs of a single work-up slightly decreased, as less surgical biopsies were performed. Our study shows that a low referral rate in combination with the introduction of digital mammography affects the balance between referral rate and detection rate and can substantially influence breast cancer care and associated costs. Referral rates in the Netherlands are now more comparable to other countries. This effect is therefore of value in countries where implementation of digital breast cancer screening has just started or is still under discussion.

  5. [Definition of nodal volumes in breast cancer treatment and segmentation guidelines].

    PubMed

    Kirova, Y M; Castro Pena, P; Dendale, R; Campana, F; Bollet, M A; Fournier-Bidoz, N; Fourquet, A

    2009-06-01

    To assist in the determination of breast and nodal volumes in the setting of radiotherapy for breast cancer and establish segmentation guidelines. Materials and methods. Contrast metarial enhanced CT examinations were obtained in the treatment position in 25 patients to clearly define the target volumes. The clinical target volume (CTV) including the breast, internal mammary nodes, supraclavicular and subclavicular regions and axxilary region were segmented along with the brachial plexus and interpectoral nodes. The following critical organs were also segmented: heart, lungs, contralateral breast, thyroid, esophagus and humeral head. A correlation between clinical and imaging findings and meeting between radiation oncologists and breast specialists resulted in a better definition of irradiation volumes for breast and nodes with establishement of segmentation guidelines and creation of an anatomical atlas. A practical approach, based on anatomical criteria, is proposed to assist in the segmentation of breast and node volumes in the setting of breast cancer treatment along with a definition of irradiation volumes.

  6. Identification of targets of miRNA-221 and miRNA-222 in fulvestrant-resistant breast cancer

    PubMed Central

    Liu, Pengfei; Sun, Manna; Jiang, Wenhua; Zhao, Jinkun; Liang, Chunyong; Zhang, Huilai

    2016-01-01

    The present study aimed to identify the differentially expressed genes (DEGs) regulated by microRNA (miRNA)-221 and miRNA-222 that are associated with the resistance of breast cancer to fulvestrant. The GSE19777 transcription profile was downloaded from the Gene Expression Omnibus database, and includes data from three samples of antisense miRNA-221-transfected fulvestrant-resistant MCF7-FR breast cancer cells, three samples of antisense miRNA-222-transfected fulvestrant-resistant MCF7-FR cells and three samples of control inhibitor (green fluorescent protein)-treated fulvestrant-resistant MCF7-FR cells. The linear models for microarray data package in R/Bioconductor was employed to screen for DEGs in the miRNA-transfected cells, and the pheatmap package in R was used to perform two-way clustering. Pathway enrichment was conducted using the Gene Set Enrichment Analysis tool. Furthermore, a miRNA-messenger (m) RNA regulatory network depicting interactions between miRNA-targeted upregulated DEGs was constructed and visualized using Cytoscape. In total, 492 and 404 DEGs were identified for the antisense miRNA-221-transfected MCF7-FR cells and the antisense miRNA-222-transfected MCF7-FR cells, respectively. Genes of the pentose phosphate pathway (PPP) were significantly enriched in the antisense miRNA-221-transfected MCF7-FR cells. In addition, components of the Wnt signaling pathway and cell adhesion molecules (CAMs) were significantly enriched in the antisense miRNA-222-transfected MCF7-FR cells. In the miRNA-mRNA regulatory network, miRNA-222 was demonstrated to target protocadherin 10 (PCDH10). The results of the present study suggested that the PPP and Wnt signaling pathways, as well as CAMs and PCDH10, may be associated with the resistance of breast cancer to fulvestrant. PMID:27895744

  7. The Effect of Simvastatin on Breast Cancer Cell Growth in Women With Stage I-II Breast Cancer

    ClinicalTrials.gov

    2018-03-02

    Invasive Breast Carcinoma; Stage I Breast Cancer AJCC v7; Stage IA Breast Cancer AJCC v7; Stage IB Breast Cancer AJCC v7; Stage II Breast Cancer AJCC v6 and v7; Stage IIA Breast Cancer AJCC v6 and v7; Stage IIB Breast Cancer AJCC v6 and v7

  8. Neratinib (HKI-272) in the treatment of breast cancer.

    PubMed

    López-Tarruella, Sara; Jerez, Yolanda; Márquez-Rodas, Iván; Martín, Miguel

    2012-06-01

    Neratinib is an orally available, small, irreversible, pan-HER kinase inhibitor. HER-2-positive breast cancer is a breast cancer subtype with an increasing body of knowledge regarding potential targeted drug combinations that are significantly improving outcomes through a biologically tailored therapy approach; neratinib emerges as a promising tool in this context. This article reviews the molecular and clinical development of neratinib, an example of a covalent drug, from preclinical models to Phase III clinical trials, focusing on breast cancer treatment. The potential combinations of neratinib with chemotherapy in the metastatic, adjuvant and even neoadjuvant settings are appraised. These results and future perspectives will be discussed.

  9. Epigenetic Mechanisms of Tamoxifen Resistance in Luminal Breast Cancer.

    PubMed

    Abdel-Hafiz, Hany A

    2017-07-06

    Breast cancer is one of the most common cancers and the second leading cause of cancer death in the United States. Estrogen receptor (ER)-positive cancer is the most frequent subtype representing more than 70% of breast cancers. These tumors respond to endocrine therapy targeting the ER pathway including selective ER modulators (SERMs), selective ER downregulators (SERDs) and aromatase inhibitors (AIs). However, resistance to endocrine therapy associated with disease progression remains a significant therapeutic challenge. The precise mechanisms of endocrine resistance remain unclear. This is partly due to the complexity of the signaling pathways that influence the estrogen-mediated regulation in breast cancer. Mechanisms include ER modifications, alteration of coregulatory function and modification of growth factor signaling pathways. In this review, we provide an overview of epigenetic mechanisms of tamoxifen resistance in ER-positive luminal breast cancer. We highlight the effect of epigenetic changes on some of the key mechanisms involved in tamoxifen resistance, such as tumor-cell heterogeneity, ER signaling pathway and cancer stem cells (CSCs). It became increasingly recognized that CSCs are playing an important role in driving metastasis and tamoxifen resistance. Understanding the mechanism of tamoxifen resistance will provide insight into the design of novel strategies to overcome the resistance and make further improvements in breast cancer therapeutics.

  10. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression.

    PubMed

    Zu, Xuyu; Ma, Jun; Liu, Hongxia; Liu, Feng; Tan, Chunyan; Yu, Lingling; Wang, Jue; Xie, Zhenhua; Cao, Deliang; Jiang, Yuyang

    2011-03-10

    Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Pokemon expression and its correlation with the progression and prognosis of the disease. DNA microarray analysis of MCF-7 cells that overexpress Pokemon was used to identify Pokemon target genes. Chromatin immunoprecipitation (ChIP) and site-directed mutagenesis were utilized to determine how Pokemon regulates survivin expression, a target gene. Pokemon was found to be overexpressed in 158 (86.8%) of 182 breast cancer tissues, and its expression was correlated with tumor size (P = 0.0148) and lymph node metastasis (P = 0.0014). Pokemon expression led to worse overall (n = 175, P = 0.01) and disease-related (n = 79, P = 0.0134) patient survival. DNA microarray analyses revealed that in MCF-7 breast cancer cells, Pokemon regulates the expression of at least 121 genes involved in several signaling and metabolic pathways, including anti-apoptotic survivin. In clinical specimens, Pokemon and survivin expression were highly correlated (n = 49, r = 0.6799, P < 0.0001). ChIP and site-directed mutagenesis indicated that Pokemon induces survivin expression by binding to the GT boxes in its promoter. Pokemon promotes breast cancer progression by upregulating survivin expression and thus may be a potential target for the treatment of this malignancy.

  11. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression

    PubMed Central

    2011-01-01

    Introduction Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Methods Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Pokemon expression and its correlation with the progression and prognosis of the disease. DNA microarray analysis of MCF-7 cells that overexpress Pokemon was used to identify Pokemon target genes. Chromatin immunoprecipitation (ChIP) and site-directed mutagenesis were utilized to determine how Pokemon regulates survivin expression, a target gene. Results Pokemon was found to be overexpressed in 158 (86.8%) of 182 breast cancer tissues, and its expression was correlated with tumor size (P = 0.0148) and lymph node metastasis (P = 0.0014). Pokemon expression led to worse overall (n = 175, P = 0.01) and disease-related (n = 79, P = 0.0134) patient survival. DNA microarray analyses revealed that in MCF-7 breast cancer cells, Pokemon regulates the expression of at least 121 genes involved in several signaling and metabolic pathways, including anti-apoptotic survivin. In clinical specimens, Pokemon and survivin expression were highly correlated (n = 49, r = 0.6799, P < 0.0001). ChIP and site-directed mutagenesis indicated that Pokemon induces survivin expression by binding to the GT boxes in its promoter. Conclusions Pokemon promotes breast cancer progression by upregulating survivin expression and thus may be a potential target for the treatment of this malignancy. PMID:21392388

  12. Androgen and AR contribute to breast cancer development and metastasis: an insight of mechanisms.

    PubMed

    Feng, J; Li, L; Zhang, N; Liu, J; Zhang, L; Gao, H; Wang, G; Li, Y; Zhang, Y; Li, X; Liu, D; Lu, J; Huang, B

    2017-05-18

    The role of androgen and androgen receptor (AR) in breast carcinogenesis has long been a disputed issue. This report provides a mechanistic insight into how androgen and AR contributes to invasion and metastasis of breast cancer. We find that dihydrotestosterone (DHT) is able to induce the epithelial-to-mesenchymal transition in breast cancer cells in an AR-dependent/estrogen receptor-independent manner. This process is dependent on the demethylation activity of lysine-specific demethylase 1A (LSD1) by epigenetically regulating the target genes E-cadherin and vimentin. In vivo, DHT promotes metastasis in a nude mouse model, and AR and LSD1 are indispensable in this process. We establish that higher expression of nucleus AR to cytoplasm AR associated with worse prognostic outcomes in breast cancer patient samples. This study maps an 'androgen-AR/LSD1-target genes' pathway in breast carcinogenesis, implicating the importance of hormonal balance in women, and the potential clinical significance of serum androgen and AR in prediction of breast cancer and selection of breast cancer therapy.

  13. Olaparib In Metastatic Breast Cancer

    ClinicalTrials.gov

    2018-03-27

    Metastatic Breast Cancer; Invasive Breast Cancer; Somatic Mutation Breast Cancer (BRCA1); Somatic Mutation Breast Cancer (BRCA2); CHEK2 Gene Mutation; ATM Gene Mutation; PALB2 Gene Mutation; RAD51 Gene Mutation; BRIP1 Gene Mutation; NBN Gene Mutation

  14. Breast Density and Risk of Breast Cancer in Asian Women: A Meta-analysis of Observational Studies.

    PubMed

    Bae, Jong-Myon; Kim, Eun Hee

    2016-11-01

    The established theory that breast density is an independent predictor of breast cancer risk is based on studies targeting white women in the West. More Asian women than Western women have dense breasts, but the incidence of breast cancer is lower among Asian women. This meta-analysis investigated the association between breast density in mammography and breast cancer risk in Asian women. PubMed and Scopus were searched, and the final date of publication was set as December 31, 2015. The effect size in each article was calculated using the interval-collapse method. Summary effect sizes (sESs) and 95% confidence intervals (CIs) were calculated by conducting a meta-analysis applying a random effect model. To investigate the dose-response relationship, random effect dose-response meta-regression (RE-DRMR) was conducted. Six analytical epidemiology studies in total were selected, including one cohort study and five case-control studies. A total of 17 datasets were constructed by type of breast density index and menopausal status. In analyzing the subgroups of premenopausal vs. postmenopausal women, the percent density (PD) index was confirmed to be associated with a significantly elevated risk for breast cancer (sES, 2.21; 95% CI, 1.52 to 3.21; I 2 =50.0%). The RE-DRMR results showed that the risk of breast cancer increased 1.73 times for each 25% increase in PD in postmenopausal women (95% CI, 1.20 to 2.47). In Asian women, breast cancer risk increased with breast density measured using the PD index, regardless of menopausal status. We propose the further development of a breast cancer risk prediction model based on the application of PD in Asian women.

  15. Destabilization of mitochondrial functions as a target against breast cancer progression: Role of TPP{sup +}-linked-polyhydroxybenzoates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval-Acuña, Cristian

    Mitochondrion is an accepted molecular target in cancer treatment since it exhibits a higher transmembrane potential in cancer cells, making it susceptible to be targeted by lipophilic-delocalized cations of triphenylphosphonium (TPP{sup +}). Thus, we evaluated five TPP{sup +}-linked decyl polyhydroxybenzoates as potential cytotoxic agents in several human breast cancer cell lines that differ in estrogen receptor and HER2/neu expression, and in metabolic profile. Results showed that all cell lines tested were sensitive to the cytotoxic action of these compounds. The mechanism underlying the cytotoxicity would be triggered by their weak uncoupling effect on the oxidative phosphorylation system, while having amore » wider and safer therapeutic range than other uncouplers and a significant lowering in transmembrane potential. Noteworthy, while the TPP{sup +}-derivatives alone led to almost negligible losses of ATP, when these were added in the presence of an AMP-activated protein kinase inhibitor, the levels of ATP fell greatly. Overall, data presented suggest that decyl polyhydroxybenzoates-TPP{sup +} and its derivatives warrant future investigation as potential anti-tumor agents. - Highlights: • TPP{sup +}-polyhydroxybenzoates are cytotoxic to various subtypes of breast cancer cells. • Cytotoxicity is not-dependent on the expression of estrogen/growth factor receptors. • Cytotoxicity appears to be triggered by a weak mitochondrial uncoupling effect. • Effects include loss of transmembrane potential and apoptosis was detected. • TPP{sup +}-polyhydroxybenzoates inhibit migration of highly metastatic cells.« less

  16. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer.

    PubMed

    Zhang, Le; Xu, Liang; Zhang, Fengchun; Vlashi, Erina

    2017-04-18

    Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic.

  17. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer

    PubMed Central

    Xu, Liang; Zhang, Fengchun; Vlashi, Erina

    2017-01-01

    ABSTRACT Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic. PMID:27753527

  18. Breast cancer statistics, 2011.

    PubMed

    DeSantis, Carol; Siegel, Rebecca; Bandi, Priti; Jemal, Ahmedin

    2011-01-01

    In this article, the American Cancer Society provides an overview of female breast cancer statistics in the United States, including trends in incidence, mortality, survival, and screening. Approximately 230,480 new cases of invasive breast cancer and 39,520 breast cancer deaths are expected to occur among US women in 2011. Breast cancer incidence rates were stable among all racial/ethnic groups from 2004 to 2008. Breast cancer death rates have been declining since the early 1990s for all women except American Indians/Alaska Natives, among whom rates have remained stable. Disparities in breast cancer death rates are evident by state, socioeconomic status, and race/ethnicity. While significant declines in mortality rates were observed for 36 states and the District of Columbia over the past 10 years, rates for 14 states remained level. Analyses by county-level poverty rates showed that the decrease in mortality rates began later and was slower among women residing in poor areas. As a result, the highest breast cancer death rates shifted from the affluent areas to the poor areas in the early 1990s. Screening rates continue to be lower in poor women compared with non-poor women, despite much progress in increasing mammography utilization. In 2008, 51.4% of poor women had undergone a screening mammogram in the past 2 years compared with 72.8% of non-poor women. Encouraging patients aged 40 years and older to have annual mammography and a clinical breast examination is the single most important step that clinicians can take to reduce suffering and death from breast cancer. Clinicians should also ensure that patients at high risk of breast cancer are identified and offered appropriate screening and follow-up. Continued progress in the control of breast cancer will require sustained and increased efforts to provide high-quality screening, diagnosis, and treatment to all segments of the population. Copyright © 2011 American Cancer Society, Inc.

  19. New Language and Old Problems in Breast Cancer Radiotherapy.

    PubMed

    Chiricuţă, Ion Christian

    2017-01-01

    New developments in breast cancer radiotherapy make possible new standards in treatment recommandations based on international guidelines. Developments in radiotherapy irradiation techniques from 2D to 3D-Conformal RT and to IMRT (Intensity Modulated Arc Therapy) make possible to reduce the usual side effects on the organs at risk as: skin, lung, miocard, bone, esophagus and brahial plexus. Dispite of all these progresses acute and late side effects are present. Side effects are as old as the radiotherapy was used. New solutions are available now by improving irradiation techniques. New techniques as sentinel node procedure (SNP) or partial breast irradiation (PBRT) and immediate breast reconstruction with silicon implants (IBRIS) make necessary new considerations regarding the target volume delineations. A new language for definition of gross tumor volume (GTV), clinical target volume (CTV) based on the new diagnostic methods as PET/CT,nonaparticle MRI will have real impact on target delineation and irradiation techniques. "The new common language in breast cancer therapy" would be the first step to improve the endresults and finally the quality of life of the patients. Celsius.

  20. Screening for Breast Cancer.

    PubMed

    Niell, Bethany L; Freer, Phoebe E; Weinfurtner, Robert Jared; Arleo, Elizabeth Kagan; Drukteinis, Jennifer S

    2017-11-01

    The goal of screening is to detect breast cancers when still curable to decrease breast cancer-specific mortality. Breast cancer screening in the United States is routinely performed with mammography, supplemental digital breast tomosynthesis, ultrasound, and/or MR imaging. This article aims to review the most commonly used breast imaging modalities for screening, discuss how often and when to begin screening with specific imaging modalities, and examine the pros and cons of screening. By the article's end, the reader will be better equipped to have informed discussions with patients and medical professionals regarding the benefits and disadvantages of breast cancer screening. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells.

    PubMed

    Coker-Gurkan, Ajda; Celik, Merve; Ugur, Merve; Arisan, Elif-Damla; Obakan-Yerlikaya, Pinar; Durdu, Zeynep Begum; Palavan-Unsal, Narcin

    2018-05-16

    Curcumin is assumed to be a plant-derived therapeutic drug that triggers apoptotic cell death in vitro and in vivo by affecting different molecular targets such as NF-κB. Phase I/II trial of curcumin alone or with chemotherapeutic drugs has been accomplished in pancreatic, colon, prostate and breast cancer cases. Recently, autocrine growth hormone (GH) signaling-induced cell growth, metastasis and drug resistance have been demonstrated in breast cancer. In this study, our aim was to investigate the potential therapeutic effect of curcumin by evaluating the molecular machinery of curcumin-triggered apoptotic cell death via focusing on NF-κB signaling and polyamine (PA) metabolism in autocrine GH-expressing MCF-7, MDA-MB-453 and MDA-MB-231 breast cancer cells. For this purpose, a pcDNA3.1 (+) vector with a GH gene insert was transfected by a liposomal agent in all breast cancer cells and then selection was conducted in neomycin (G418) included media. Autocrine GH-induced curcumin resistance was overcome in a dose-dependent manner and curcumin inhibited cell proliferation, invasion-metastasis and phosphorylation of p65 (Ser536), and thereby partly prevented its DNA binding activity in breast cancer cells. Moreover, curcumin induced caspase-mediated apoptotic cell death by activating the PA catabolic enzyme expressions, which led to generation of toxic by-products such as H 2 O 2 in MCF-7, MDA-MB-453 and MDA-MB-231 GH+ breast cancer cells. In addition, transient silencing of SSAT prevented curcumin-induced cell viability loss and apoptotic cell death in each breast cancer cells. In conclusion, curcumin could overcome the GH-mediated resistant phenotype via modulating cell survival, death-related signaling routes and activating PA catabolic pathway.

  2. Role of dietary bioactive natural products in estrogen receptor-positive breast cancer

    PubMed Central

    Bak, Min Ji; Das Gupta, Soumyasri; Wahler, Joseph; Suh, Nanjoo

    2016-01-01

    Estrogen receptor (ER)-positive breast cancer, including luminal-A and -B, is the most common type of breast cancer. Extended exposure to estrogen is associated with an increased risk of breast cancer. Both ER-dependent and ER-independent mechanisms have been implicated in estrogen-mediated carcinogenesis. The ER-dependent pathway involves cell growth and proliferation triggered by the binding of estrogen to the ER. The ER-independent mechanisms depend on the metabolism of estrogen to generate genotoxic metabolites, free radicals and reactive oxygen species to induce breast cancer. A better understanding of the mechanisms that drive ER-positive breast cancer will help optimize targeted approaches to prevent or treat breast cancer. A growing emphasis is being placed on alternative medicine and dietary approaches toward the prevention and treatment of breast cancer. Many natural products and bioactive compounds found in foods have been shown to inhibit breast carcinogenesis via inhibition of estrogen induced oxidative stress as well as ER signaling. This review summarizes the role of bioactive natural products that are involved in the prevention and treatment of estrogen-related and ER-positive breast cancer. PMID:27016037

  3. Breast Cancer (For Kids)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Breast Cancer KidsHealth / For Kids / Breast Cancer What's in this ... for it when they are older. What Is Breast Cancer? The human body is made of tiny building ...

  4. AR Expression in Breast Cancer CTCs Associates with Bone Metastases.

    PubMed

    Aceto, Nicola; Bardia, Aditya; Wittner, Ben S; Donaldson, Maria C; O'Keefe, Ryan; Engstrom, Amanda; Bersani, Francesca; Zheng, Yu; Comaills, Valentine; Niederhoffer, Kira; Zhu, Huili; Mackenzie, Olivia; Shioda, Toshi; Sgroi, Dennis; Kapur, Ravi; Ting, David T; Moy, Beverly; Ramaswamy, Sridhar; Toner, Mehmet; Haber, Daniel A; Maheswaran, Shyamala

    2018-04-01

    Molecular drivers underlying bone metastases in human cancer are not well understood, in part due to constraints in bone tissue sampling. Here, RNA sequencing was performed of circulating tumor cells (CTC) isolated from blood samples of women with metastatic estrogen receptor (ER) + breast cancer, comparing cases with progression in bone versus visceral organs. Among the activated cellular pathways in CTCs from bone-predominant breast cancer is androgen receptor (AR) signaling. AR gene expression is evident, as is its constitutively active splice variant AR-v7. AR expression within CTCs is correlated with the duration of treatment with aromatase inhibitors, suggesting that it contributes to acquired resistance to endocrine therapy. In an established breast cancer xenograft model, a bone-tropic derivative displays increased AR expression, whose genetic or pharmacologic suppression reduces metastases to bone but not to lungs. Together, these observations identify AR signaling in CTCs from women with bone-predominant ER + breast cancer, and provide a rationale for testing androgen inhibitors in this subset of patients. Implications: This study highlights a role for the AR in breast cancer bone metastasis, and suggests that therapeutic targeting of the AR may benefit patients with metastatic breast cancer. Mol Cancer Res; 16(4); 720-7. ©2018 AACR . ©2018 American Association for Cancer Research.

  5. Breast cancer and protein biomarkers

    PubMed Central

    Gam, Lay-Harn

    2012-01-01

    Breast cancer is a healthcare concern of women worldwide. Despite procedures being available for diagnosis, prognosis and treatment of breast cancer, researchers are working intensively on the disease in order to improve the life quality of breast cancer patients. At present, there is no single treatment known to bring a definite cure for breast cancer. One of the possible solutions for combating breast cancer is through identification of reliable protein biomarkers that can be effectively used for early detection, prognosis and treatments of the cancer. Therefore, the task of identification of biomarkers for breast cancer has become the focus of many researchers worldwide. PMID:24520539

  6. The After Breast Cancer Pooling Project: rationale, methodology, and breast cancer survivor characteristics.

    PubMed

    Nechuta, Sarah J; Caan, Bette J; Chen, Wendy Y; Flatt, Shirley W; Lu, Wei; Patterson, Ruth E; Poole, Elizabeth M; Kwan, Marilyn L; Chen, Zhi; Weltzien, Erin; Pierce, John P; Shu, Xiao Ou

    2011-09-01

    The After Breast Cancer Pooling Project was established to examine the role of physical activity, adiposity, dietary factors, supplement use, and quality of life (QOL) in breast cancer prognosis. This paper presents pooled and harmonized data on post-diagnosis lifestyle factors, clinical prognostic factors, and breast cancer outcomes from four prospective cohorts of breast cancer survivors (three US-based and one from Shanghai, China) for 18,314 invasive breast cancer cases diagnosed between 1976 and 2006. Most participants were diagnosed with stage I-II breast cancer (84.7%). About 60% of breast tumors were estrogen receptor (ER)+/progesterone receptor (PR)+; 21% were ER-/PR-. Among 8,118 participants with information on HER-2 tumor status, 74.8% were HER-2- and 18.5% were HER-2+. At 1-2 years post-diagnosis (on average), 17.9% of participants were obese (BMI ≥ 30 kg/m2), 32.6% were overweight (BMI 25-29 kg/m2), and 59.9% met the 2008 Physical Activity Guidelines for Americans (≥ 2.5 h per week of moderate activity). During follow-up (mean = 8.4 years), 3,736 deaths (2,614 from breast cancer) and 3,564 recurrences have been documented. After accounting for differences in year of diagnosis and timing of post-diagnosis enrollment, five-year overall survival estimates were similar across cohorts. This pooling project of 18,000 breast cancer survivors enables the evaluation of associations of post-diagnosis lifestyle factors, QOL, and breast cancer outcomes with an adequate sample size for investigation of heterogeneity by hormone receptor status and other clinical predictors. The project sets the stage for international collaborations for the investigation of modifiable predictors for breast cancer outcomes.

  7. Breast cancer histopathology image analysis: a review.

    PubMed

    Veta, Mitko; Pluim, Josien P W; van Diest, Paul J; Viergever, Max A

    2014-05-01

    This paper presents an overview of methods that have been proposed for the analysis of breast cancer histopathology images. This research area has become particularly relevant with the advent of whole slide imaging (WSI) scanners, which can perform cost-effective and high-throughput histopathology slide digitization, and which aim at replacing the optical microscope as the primary tool used by pathologist. Breast cancer is the most prevalent form of cancers among women, and image analysis methods that target this disease have a huge potential to reduce the workload in a typical pathology lab and to improve the quality of the interpretation. This paper is meant as an introduction for nonexperts. It starts with an overview of the tissue preparation, staining and slide digitization processes followed by a discussion of the different image processing techniques and applications, ranging from analysis of tissue staining to computer-aided diagnosis, and prognosis of breast cancer patients.

  8. Synergistic tumor microenvironment targeting and blood-brain barrier penetration via a pH-responsive dual-ligand strategy for enhanced breast cancer and brain metastasis therapy.

    PubMed

    Li, Man; Shi, Kairong; Tang, Xian; Wei, Jiaojie; Cun, Xingli; Long, Yang; Zhang, Zhirong; He, Qin

    2018-05-22

    Cancer associated fibroblasts (CAFs) which shape the tumor microenvironment (TME) and the presence of blood brain barrier (BBB) remain great challenges in targeting breast cancer and its brain metastasis. Herein, we reported a strategy using PTX-loaded liposome co-modified with acid-cleavable folic acid (FA) and BBB transmigrating cell penetrating peptide dNP2 peptide (cFd-Lip/PTX) for enhanced delivery to orthotopic breast cancer and its brain metastasis. Compared with single ligand or non-cleavable Fd modified liposomes, cFd-Lip exhibited synergistic TME targeting and BBB transmigration. Moreover, upon arrival at the TME, the acid-cleavable cFd-Lip/PTX showed sensitive cleavage of FA, which reduced the hindrance effect and maximized the function of both FA and dNP2 peptide. Consequently, efficient targeting of folate receptor (FR)-positive tumor cells and FR-negative CAFs was achieved, leading to enhanced anti-tumor activity. This strategy provides a feasible approach to the cascade targeting of TME and BBB transmigration in orthotopic and metastatic cancer treatment. Copyright © 2018. Published by Elsevier Inc.

  9. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy

    PubMed Central

    Mast, Natalia; Lin, Joseph B.

    2015-01-01

    Cytochrome P450 CYP27A1 is the only enzyme in humans converting cholesterol to 27-hydroxycholesterol, an oxysterol of multiple functions, including tissue-specific modulation of estrogen and liver X receptors. Both receptors seem to mediate adverse effects of 27-hydroxycholesterol in breast cancer when the levels of this oxysterol are elevated. The present work assessed druggability of CYP27A1 as a potential antibreast cancer target. We selected 26 anticancer and noncancer medications, most approved by the Food and Drug Administration, and evaluated them first in vitro for inhibition of purified recombinant CYP27A1 and binding to the enzyme active site. Six strong CYP27A1 inhibitors/binders were identified. These were the two antibreast cancer pharmaceuticals anastrozole and fadrozole, antiprostate cancer drug bicalutamide, sedative dexmedetomidine, and two antifungals ravuconazole and posaconazole. Anastrozole was then tested in vivo on mice, which received subcutaneous drug injections for 1 week. Mouse plasma and hepatic 27-hydroxycholesterol levels were decreased 2.6- and 1.6-fold, respectively, whereas plasma and hepatic cholesterol content remained unchanged. Thus, pharmacologic CYP27A1 inhibition is possible in the whole body and individual organs, but does not negatively affect cholesterol elimination. Our results enhance the potential of CYP27A1 as an antibreast cancer target, could be of importance for the interpretation of Femara versus Anastrozole Clinical Evaluation Trial, and bring attention to posaconazole as a potential complementary anti-breast cancer medication. More medications on the US market may have unanticipated off-target inhibition of CYP27A1, and we propose strategies for their identification. PMID:26082378

  10. Management Options in Triple-Negative Breast Cancer

    PubMed Central

    Minami, Christina A.; Chung, Debra U.; Chang, Helena R.

    2011-01-01

    Notorious for its poor prognosis and aggressive nature, triple-negative breast cancer (TNBC) is a heterogeneous disease entity. The nature of its biological specificity, which is similar to basal-like cancers, tumors arising in BRCA1 mutation carriers, and claudin-low cancers, is currently being explored in hopes of finding the targets for novel biologics and chemotherapeutic agents. In this review, we aim to give a broad overview of the disease’s nomenclature and epidemiology, as well as the basic mechanisms of emerging targeted therapies and their performance in clinical trials to date. PMID:21863131

  11. miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness.

    PubMed

    Götte, M; Mohr, C; Koo, C-Y; Stock, C; Vaske, A-K; Viola, M; Ibrahim, S A; Peddibhotla, S; Teng, Y H-F; Low, J-Y; Ebnet, K; Kiesel, L; Yip, G W

    2010-12-16

    Micro RNAs are small non-coding RNAs, which regulate fundamental cellular and developmental processes at the transcriptional and translational level. In breast cancer, miR-145 expression is downregulated compared with healthy control tissue. As several predicted targets of miR-145 potentially regulate cell motility, we aimed at investigating a potential role for miR-145 in breast cancer cell motility and invasiveness. Assisted by Affymetrix array technology, we demonstrate that overexpression of miR-145 in MDA-MB-231, MCF-7, MDA-MB-468 and SK-BR-3 breast cancer cells and in Ishikawa endometrial carcinoma cells leads to a downregulation of the cell-cell adhesion protein JAM-A and of the actin bundling protein fascin. Moreover, podocalyxin and Serpin E1 mRNA levels were downregulated, and gamma-actin, transgelin and MYL9 were upregulated upon miR-145 overexpression. These miR-145-dependent expression changes drastically decreased cancer cell motility, as revealed by time-lapse video microscopy, scratch wound closure assays and matrigel invasion assays. Immunofluorescence microscopy demonstrated restructuring of the actin cytoskeleton and a change in cell morphology by miR-145 overexpression, resulting in a more cortical actin distribution, and reduced actin stress fiber and filopodia formation. Nuclear rotation was observed in 10% of the pre-miR-145 transfected MDA-MB-231 cells, accompanied by a reduction of perinuclear actin. Luciferase activation assays confirmed direct miR-145-dependent regulation of the 3'UTR of JAM-A, whereas siRNA-mediated knockdown of JAM-A expression resulted in decreased motility and invasiveness of MDA-MB-231 and MCF-7 breast cancer cells. Our data identify JAM-A and fascin as novel targets of miR-145, firmly establishing a role for miR-145 in modulating breast cancer cell motility. Our data provide a rationale for future miR-145-targeted approaches of antimetastatic cancer therapy.

  12. MFAP5 promotes tumor progression and bone metastasis by regulating ERK/MMP signaling pathways in breast cancer.

    PubMed

    Wu, Zhiqiang; Wang, Ting; Fang, Meng; Huang, Wending; Sun, Zhengwang; Xiao, Jianru; Yan, Wangjun

    2018-04-06

    Breast cancer accounts for about 30% of all cancers in women, while approximately 70% breast cancer patients developed bone metastases throughout the course of their disease, highlighting the importance of exploring new therapeutic targets. Microfibrillar-associated protein 5 (MFAP5) is a component of extracellular elastic microfibril which has been confirmed to function in tissue development and cancer progression. But the role of MFAP5 in breast cancer remains unclear. The present study demonstrated that MFAP5 was up-regulated in breast cancers compared with that in normal breast tissues, and further increased in breast cancer bone metastasis. Functionally, MFAP5 overexpression accelerated breast cancer cell proliferation and migration, while an opposite effect was observed when MFAP5 was knocked down. In addition, up-regulation of MFAP5 increased the expression of MMP2 and MMP9 and activated the ERK signaling pathway. Conversely, inhibition of MFAP5 suppressed the expression of MMP2, MMP9, p-FAK, p-Erk1/2 and p-cJun. These findings may provide a better understanding about the mechanism of breast cancer and suggest that MFAP5 may be a potential prognostic biomarker and therapeutic target for breast cancer, especially for bone metastasis of breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Applications of nanomedicine in breast cancer detection, imaging, and therapy.

    PubMed

    Saadeh, Yamaan; Leung, Tiffany; Vyas, Arpita; Chaturvedi, Lakshmi Shankar; Perumal, Omathanu; Vyas, Dinesh

    2014-01-01

    Worldwide, breast cancer remains as one of the most common cancer diagnosis and cause of cancer related death among women. Fortunately, nanomedicine has brought forth new potential and hope in breast cancer research. The extremely small size of nanoparticles makes it advantageous and potentially superior to use in tumor detection and imaging. One of the more extensively studied particles is quantum dots, semiconductor crystals which are capable of enhanced labeling and imaging of cancer cells. In addition, due to serious toxicity of chemotherapeutic agents, nano-formulations of breast cancer chemotherapy are under investigation and development. This may provide easier administering route and reduced frequency of drugs. With the use of nanoparticles, drug delivery can be carried out in a minimally invasive fashion and treatment regimens can be made much more targeted and specific for each patient. In this review article, we provide an overview on the role nanomedicine has played in breast cancer and mention some of the latest diagnostic and treatment modalities researched to date.

  14. Treatment Optimization Using Computed Tomography-Delineated Targets Should be Used for Supraclavicular Irradiation for Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liengsawangwong, Raweewan; Yu, T.-K.; Sun, T.-L.

    2007-11-01

    Background: The purpose of this study was to determine whether the use of optimized CT treatment planning offered better coverage of axillary level III (LIII)/supraclavicular (SC) targets than the empirically derived dose prescription that are commonly used. Materials/Methods: Thirty-two consecutive breast cancer patients who underwent CT treatment planning of a SC field were evaluated. Each patient was categorized according to body mass index (BMI) classes: normal, overweight, or obese. The SC and LIII nodal beds were contoured, and four treatment plans for each patient were generated. Three of the plans used empiric dose prescriptions, and these were compared with amore » CT-optimized plan. Each plan was evaluated by two criteria: whether 98% of target volume receive >90% of prescribed dose and whether < 5% of the irradiated volume received 105% of prescribed dose. Results: The mean depth of SC and LIII were 3.2 cm (range, 1.4-6.7 cm) and 3.1 (range, 1.7-5.8 cm). The depth of these targets varied according across BMI classes (p = 0.01). Among the four sets of plans, the CT-optimized plans were the most successful at achieving both of the dosimetry objectives for every BMI class (normal BMI, p = .003; overweight BMI, p < .0001; obese BMI, p < .001). Conclusions: Across all BMI classes, routine radiation prescriptions did not optimally cover intended targets for every patient. Optimized CT-based treatment planning generated the most successful plans; therefore, we recommend the use of routine CT simulation and treatment planning of SC fields in breast cancer.« less

  15. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies

    PubMed Central

    Lehmann, Brian D.; Bauer, Joshua A.; Chen, Xi; Sanders, Melinda E.; Chakravarthy, A. Bapsi; Shyr, Yu; Pietenpol, Jennifer A.

    2011-01-01

    Triple-negative breast cancer (TNBC) is a highly diverse group of cancers, and subtyping is necessary to better identify molecular-based therapies. In this study, we analyzed gene expression (GE) profiles from 21 breast cancer data sets and identified 587 TNBC cases. Cluster analysis identified 6 TNBC subtypes displaying unique GE and ontologies, including 2 basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem–like (MSL), and a luminal androgen receptor (LAR) subtype. Further, GE analysis allowed us to identify TNBC cell line models representative of these subtypes. Predicted “driver” signaling pathways were pharmacologically targeted in these cell line models as proof of concept that analysis of distinct GE signatures can inform therapy selection. BL1 and BL2 subtypes had higher expression of cell cycle and DNA damage response genes, and representative cell lines preferentially responded to cisplatin. M and MSL subtypes were enriched in GE for epithelial-mesenchymal transition, and growth factor pathways and cell models responded to NVP-BEZ235 (a PI3K/mTOR inhibitor) and dasatinib (an abl/src inhibitor). The LAR subtype includes patients with decreased relapse-free survival and was characterized by androgen receptor (AR) signaling. LAR cell lines were uniquely sensitive to bicalutamide (an AR antagonist). These data may be useful in biomarker selection, drug discovery, and clinical trial design that will enable alignment of TNBC patients to appropriate targeted therapies. PMID:21633166

  16. Educating Normal Breast Mucosa to Prevent Breast Cancer

    DTIC Science & Technology

    2016-12-01

    prevention of breast cancer and the feasibility of translating this approach into preventive breast cancer vaccine setting. 15. SUBJECT TERMS...immunity. Our overall goal is to develop a preventative vaccination strategy to reduce the incidence and mortality from breast cancer based on...thorough understanding of the immunity in breast mucosa will enable the design of appropriate vaccination strategies aimed at generating persistent

  17. Circular RNA hsa_circ_0001982 Promotes Breast Cancer Cell Carcinogenesis Through Decreasing miR-143.

    PubMed

    Tang, Yi-Yin; Zhao, Ping; Zou, Tian-Ning; Duan, Jia-Jun; Zhi, Rong; Yang, Si-Yuan; Yang, De-Chun; Wang, Xiao-Li

    2017-11-01

    Circular RNAs (circRNAs) are a type of noncoding RNAs generated from back-splicing, which have been verified to mediate multiple tumorigenesis. With the development of high-throughput sequencing, massive circRNAs are discovered in tumorous tissue. However, the potential physiological effect of circRNAs in breast cancer is still unknown. The purpose of this study is to investigate the expression profile of circRNA in breast cancer tissue and explore the in-depth regulatory mechanism in breast cancer tumorigenesis. In the present study, we screened the circRNA expression profiles in breast cancer tissue using circRNA microarray analysis. Totally 1705 circRNAs were identified to be significantly aberrant. Among these dysregulated circRNAs, hsa_circ_0001982 was markedly overexpressed in breast cancer tissue and cell lines. Bioinformatics analysis predicted that miR-143 acted as target of hsa_circ_0001982, which was confirmed by Dual-luciferase reporter assay. Loss-of-function and rescue experiments revealed that hsa_circ_0001982 knockdown suppressed breast cancer cell proliferation and invasion and induced apoptosis by targeting miR-143. In summary, our study preliminarily investigates the circRNA expression in breast cancer tissue and explores the role of competing endogenous RNA (ceRNA) mechanism in the progression, providing a novel insight for breast cancer tumorigenesis.

  18. Identification of direct target genes of miR-7, miR-9, miR-96, and miR-182 in the human breast cancer cell lines MCF-7 and MDA-MB-231.

    PubMed

    Moazzeni, Hamidreza; Najafi, Ali; Khani, Marzieh

    2017-08-01

    Some microRNAs have carcinogenic or tumor suppressive effects in breast cancer, which is the most common cancer in women worldwide. MiR-7 and miR-9 are tumor suppressor microRNAs, which induce apoptosis and inhibit proliferation in breast cancer cells. Moreover, miR-96 and miR-182 are onco-microRNAs that increase proliferation, migration, and tumorigenesis in breast cancer cells. This study aimed to identify the direct target genes of these four microRNAs in the human breast cancer cell lines MCF-7 and MDA-MB-231. Initially, bioinformatics tools were used to identify the target genes that have binding sites for miR-7, MiR-9, MiR-96, and miR-182 and are also associated with breast cancer. Subsequently, the findings of the bioinformatics analysis relating to the effects of these four microRNAs on the 3'-UTR activity of the potential target genes were confirmed using the dual luciferase assay in MCF-7 and MDA-MB-231 cells co-transfected with the vectors containing 3'-UTR segments of the target genes downstream of a luciferase coding gene and each of the microRNAs. Finally, the effects of microRNAs on the endogenous expression of potential target genes were assessed by the overexpression of each of the four microRNAs in MCF-7 and MDA-MB-231 cells. Respectively, three, three, three, and seven genes were found to have binding sites for miR-7, miR-9, miR-96, and miR-182 and were associated with breast cancer. The results of empirical studies including dual luciferase assays and real-time PCR confirmed that miR-7 regulates the expression of BRCA1 and LASP1; MiR-9 regulates the expression of AR; miR-96 regulates the expression of ABCA1; and miR-182 regulates the expression of NBN, TOX3, and LASP1. Taken together, our results suggest that the tumor suppressive effects of miR-7 may be mediated partly by regulating the expression of BRCA1 as a tumor suppressor gene in breast cancer. In addition, this microRNA and miR-182 may have effects on the nodal-positivity and tumor

  19. Eph receptor A10 has a potential as a target for a prostate cancer therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagano, Kazuya; Yamashita, Takuya; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871

    2014-07-18

    Highlights: • EphA10 mRNA is overexpressed in breast, prostate and colon cancer cell lines. • EphA10 is overexpressed in clinical prostate tumors at mRNA and protein levels. • Anti-EphA10 antibodies were cytotoxic on EphA10-positive prostate cancer cells. - Abstract: We recently identified Eph receptor A10 (EphA10) as a novel breast cancer-specific protein. Moreover, we also showed that an in-house developed anti-EphA10 monoclonal antibody (mAb) significantly inhibited proliferation of breast cancer cells, suggesting EphA10 as a promising target for breast cancer therapy. However, the only other known report for EphA10 was its expression in the testis at the mRNA level. Therefore,more » the potency of EphA10 as a drug target against cancers other than the breast is not known. The expression of EphA10 in a wide variety of cancer cells was studied and the potential of EphA10 as a drug target was evaluated. Screening of EphA10 mRNA expression showed that EphA10 was overexpressed in breast cancer cell lines as well as in prostate and colon cancer cell lines. Thus, we focused on prostate cancers in which EphA10 expression was equivalent to that in breast cancers. As a result, EphA10 expression was clearly shown in clinical prostate tumor tissues as well as in cell lines at the mRNA and protein levels. In order to evaluate the potential of EphA10 as a drug target, we analyzed complement-dependent cytotoxicity effects of anti-EphA10 mAb and found that significant cytotoxicity was mediated by the expression of EphA10. Therefore, the idea was conceived that the overexpression of EphA10 in prostate cancers might have a potential as a target for prostate cancer therapy, and formed the basis for the studies reported here.« less

  20. Epigenetic Biomarkers of Breast Cancer Risk: Across the Breast Cancer Prevention Continuum.

    PubMed

    Terry, Mary Beth; McDonald, Jasmine A; Wu, Hui Chen; Eng, Sybil; Santella, Regina M

    2016-01-01

    Epigenetic biomarkers, such as DNA methylation, can increase cancer risk through altering gene expression. The Cancer Genome Atlas (TCGA) Network has demonstrated breast cancer-specific DNA methylation signatures. DNA methylation signatures measured at the time of diagnosis may prove important for treatment options and in predicting disease-free and overall survival (tertiary prevention). DNA methylation measurement in cell free DNA may also be useful in improving early detection by measuring tumor DNA released into the blood (secondary prevention). Most evidence evaluating the use of DNA methylation markers in tertiary and secondary prevention efforts for breast cancer comes from studies that are cross-sectional or retrospective with limited corresponding epidemiologic data, raising concerns about temporality. Few prospective studies exist that are large enough to address whether DNA methylation markers add to the prediction of tertiary and secondary outcomes over and beyond standard clinical measures. Determining the role of epigenetic biomarkers in primary prevention can help in identifying modifiable pathways for targeting interventions and reducing disease incidence. The potential is great for DNA methylation markers to improve cancer outcomes across the prevention continuum. Large, prospective epidemiological studies will provide essential evidence of the overall utility of adding these markers to primary prevention efforts, screening, and clinical care.

  1. Therapeutic potential of novel formulated forms of curcumin in the treatment of breast cancer by the targeting of cellular and physiological dysregulated pathways.

    PubMed

    Tajbakhsh, Amir; Hasanzadeh, Malihe; Rezaee, Mehdi; Khedri, Mostafa; Khazaei, Majid; ShahidSales, Soodabeh; Ferns, Gordon A; Hassanian, Seyed Mahdi; Avan, Amir

    2018-03-01

    Breast cancer is among the most important causes of cancer related death in women. There is a need for novel agents for targeting key signaling pathways to either improve the efficacy of the current therapy, or reduce toxicity. There is some evidence that curcumin may have antitumor activity in breast cancer. Several clinical trials have investigated its activity in patients with breast cancer, including a recent trial in breast cancer patients receiving radiotherapy, in whom it was shown that curcumin reduced the severity of radiation dermatitis, although it is associated with low bioavailability. Several approaches have been developed to increase its absorption rate (e.g., nano crystals, liposomes, polymers, and micelles) and co-delivery of curcumin with adjuvants as well as different conjugation to enhance its bioavailability. In particular, micro-emulsions is an option for transdermal curcumin delivery, which has been reported to increase its absorption. Lipid-based nano-micelles is another approach to enhance curcumin absorption via gastrointestinal tract, while polymer-based nano-formulations (e.g., poly D, L-lactic-co-glycolic [PLGA]) allows the release of curcumin at a sustained level. This review summarizes the current data of the therapeutic potential of novel formulations of curcumin with particular emphasis on recent preclinical and clinical studies in the treatment of breast cancer. © 2017 Wiley Periodicals, Inc.

  2. Observed and Predicted Risk of Breast Cancer Death in Randomized Trials on Breast Cancer Screening

    PubMed Central

    Autier, Philippe; Sullivan, Richard; Boyle, Peter

    2016-01-01

    Background The role of breast screening in breast cancer mortality declines is debated. Screening impacts cancer mortality through decreasing the number of advanced cancers with poor diagnosis, while cancer treatment works through decreasing the case-fatality rate. Hence, reductions in cancer death rates thanks to screening should directly reflect reductions in advanced cancer rates. We verified whether in breast screening trials, the observed reductions in the risk of breast cancer death could be predicted from reductions of advanced breast cancer rates. Patients and Methods The Greater New York Health Insurance Plan trial (HIP) is the only breast screening trial that reported stage-specific cancer fatality for the screening and for the control group separately. The Swedish Two-County trial (TCT)) reported size-specific fatalities for cancer patients in both screening and control groups. We computed predicted numbers of breast cancer deaths, from which we calculated predicted relative risks (RR) and (95% confidence intervals). The Age trial in England performed its own calculations of predicted relative risk. Results The observed and predicted RR of breast cancer death were 0.72 (0.56–0.94) and 0.98 (0.77–1.24) in the HIP trial, and 0.79 (0.78–1.01) and 0.90 (0.80–1.01) in the Age trial. In the TCT, the observed RR was 0.73 (0.62–0.87), while the predicted RR was 0.89 (0.75–1.05) if overdiagnosis was assumed to be negligible and 0.83 (0.70–0.97) if extra cancers were excluded. Conclusions In breast screening trials, factors other than screening have contributed to reductions in the risk of breast cancer death most probably by reducing the fatality of advanced cancers in screening groups. These factors were the better management of breast cancer patients and the underreporting of breast cancer as the underlying cause of death. Breast screening trials should publish stage-specific fatalities observed in each group. PMID:27100174

  3. Observed and Predicted Risk of Breast Cancer Death in Randomized Trials on Breast Cancer Screening.

    PubMed

    Autier, Philippe; Boniol, Mathieu; Smans, Michel; Sullivan, Richard; Boyle, Peter

    2016-01-01

    The role of breast screening in breast cancer mortality declines is debated. Screening impacts cancer mortality through decreasing the number of advanced cancers with poor diagnosis, while cancer treatment works through decreasing the case-fatality rate. Hence, reductions in cancer death rates thanks to screening should directly reflect reductions in advanced cancer rates. We verified whether in breast screening trials, the observed reductions in the risk of breast cancer death could be predicted from reductions of advanced breast cancer rates. The Greater New York Health Insurance Plan trial (HIP) is the only breast screening trial that reported stage-specific cancer fatality for the screening and for the control group separately. The Swedish Two-County trial (TCT)) reported size-specific fatalities for cancer patients in both screening and control groups. We computed predicted numbers of breast cancer deaths, from which we calculated predicted relative risks (RR) and (95% confidence intervals). The Age trial in England performed its own calculations of predicted relative risk. The observed and predicted RR of breast cancer death were 0.72 (0.56-0.94) and 0.98 (0.77-1.24) in the HIP trial, and 0.79 (0.78-1.01) and 0.90 (0.80-1.01) in the Age trial. In the TCT, the observed RR was 0.73 (0.62-0.87), while the predicted RR was 0.89 (0.75-1.05) if overdiagnosis was assumed to be negligible and 0.83 (0.70-0.97) if extra cancers were excluded. In breast screening trials, factors other than screening have contributed to reductions in the risk of breast cancer death most probably by reducing the fatality of advanced cancers in screening groups. These factors were the better management of breast cancer patients and the underreporting of breast cancer as the underlying cause of death. Breast screening trials should publish stage-specific fatalities observed in each group.

  4. Systemic targeted therapy for her2-positive early female breast cancer: a systematic review of the evidence for the 2014 Cancer Care Ontario systemic therapy guideline.

    PubMed

    Mates, M; Fletcher, G G; Freedman, O C; Eisen, A; Gandhi, S; Trudeau, M E; Dent, S F

    2015-03-01

    This systematic review addresses the question "What is the optimal targeted therapy for female patients with early-stage human epidermal growth factor receptor 2 (her2)-positive breast cancer?" The medline and embase databases were searched for the period January 2008 to May 2014. The Standards and Guidelines Evidence directory of cancer guidelines and the Web sites of major guideline organizations were also searched. Sixty publications relevant to the targeted therapy portion of the systematic review were identified. In four major trials (hera, National Surgical Adjuvant Breast and Bowel Project B-31, North Central Cancer Treatment Group N9831, and Breast Cancer International Research Group 006), adjuvant trastuzumab for 1 year was superior in disease-free survival (dfs) and overall survival (os) to no trastuzumab; trastuzumab showed no benefit in one trial (pacs 04). A shorter duration of trastuzumab (less than 1 year compared with 1 year) was evaluated, with mixed results for dfs: one trial showed superiority (finher), one trial could not demonstrate noninferiority (phare), another trial showed equivalent results (E 2198), and one trial is still ongoing (persephone). Longer trastuzumab duration (hera: 2 years vs. 1 year) showed no improvement in dfs or os and a higher rate of cardiac events. Newer her2-targeted agents (lapatinib, pertuzumab, T-DM1, neratinib) have been or are still being evaluated in both adjuvant and neoadjuvant trials, either by direct comparison with trastuzumab alone or combined with trastuzumab. In the neoadjuvant setting (neoaltto, GeparQuinto, Neosphere), trastuzumab alone or in combination with another anti-her2 agent (lapatinib, pertuzumab) was compared with either lapatinib or pertuzumab alone and showed superior or equivalent rates of pathologic complete response. In the adjuvant setting, lapatinib alone or in combination with trastuzumab, compared with trastuzumab alone (altto) or with placebo (teach), was not superior in dfs. The

  5. Systemic targeted therapy for her2-positive early female breast cancer: a systematic review of the evidence for the 2014 Cancer Care Ontario systemic therapy guideline

    PubMed Central

    Mates, M.; Fletcher, G.G.; Freedman, O.C.; Eisen, A.; Gandhi, S.; Trudeau, M.E.; Dent, S.F.

    2015-01-01

    Background This systematic review addresses the question “What is the optimal targeted therapy for female patients with early-stage human epidermal growth factor receptor 2 (her2)–positive breast cancer?” Methods The medline and embase databases were searched for the period January 2008 to May 2014. The Standards and Guidelines Evidence directory of cancer guidelines and the Web sites of major guideline organizations were also searched. Results Sixty publications relevant to the targeted therapy portion of the systematic review were identified. In four major trials (hera, National Surgical Adjuvant Breast and Bowel Project B-31, North Central Cancer Treatment Group N9831, and Breast Cancer International Research Group 006), adjuvant trastuzumab for 1 year was superior in disease-free survival (dfs) and overall survival (os) to no trastuzumab; trastuzumab showed no benefit in one trial (pacs 04). A shorter duration of trastuzumab (less than 1 year compared with 1 year) was evaluated, with mixed results for dfs: one trial showed superiority (finher), one trial could not demonstrate noninferiority (phare), another trial showed equivalent results (E 2198), and one trial is still ongoing (persephone). Longer trastuzumab duration (hera: 2 years vs. 1 year) showed no improvement in dfs or os and a higher rate of cardiac events. Newer her2-targeted agents (lapatinib, pertuzumab, T-DM1, neratinib) have been or are still being evaluated in both adjuvant and neoadjuvant trials, either by direct comparison with trastuzumab alone or combined with trastuzumab. In the neoadjuvant setting (neoaltto, GeparQuinto, Neosphere), trastuzumab alone or in combination with another anti-her2 agent (lapatinib, pertuzumab) was compared with either lapatinib or pertuzumab alone and showed superior or equivalent rates of pathologic complete response. In the adjuvant setting, lapatinib alone or in combination with trastuzumab, compared with trastuzumab alone (altto) or with placebo (teach

  6. Use of Bifunctional Immunotherapeutic Agents to Target Breast Cancer

    DTIC Science & Technology

    2007-07-01

    Science 270, 1500–1502. 32. Pasqualini , R., Koivunen, E., and Ruoslahti, E. (1997) v integrins as receptors for tumor targeting by circulating ligands...Nat. Biotech- nol. 15, 542–546. 33. Arap, W., Pasqualini , R., and Ruoslahti, E. (1998) Cancer treatment by targeted drug delivery to tumor...Cancer Res. 2, 663–673. 47. Arap, W., Pasqualini , R., and Ruoslahti, E. (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a

  7. CHEK2*1100delC heterozygosity in women with breast cancer associated with early death, breast cancer-specific death, and increased risk of a second breast cancer.

    PubMed

    Weischer, Maren; Nordestgaard, Børge G; Pharoah, Paul; Bolla, Manjeet K; Nevanlinna, Heli; Van't Veer, Laura J; Garcia-Closas, Montserrat; Hopper, John L; Hall, Per; Andrulis, Irene L; Devilee, Peter; Fasching, Peter A; Anton-Culver, Hoda; Lambrechts, Diether; Hooning, Maartje; Cox, Angela; Giles, Graham G; Burwinkel, Barbara; Lindblom, Annika; Couch, Fergus J; Mannermaa, Arto; Grenaker Alnæs, Grethe; John, Esther M; Dörk, Thilo; Flyger, Henrik; Dunning, Alison M; Wang, Qin; Muranen, Taru A; van Hien, Richard; Figueroa, Jonine; Southey, Melissa C; Czene, Kamila; Knight, Julia A; Tollenaar, Rob A E M; Beckmann, Matthias W; Ziogas, Argyrios; Christiaens, Marie-Rose; Collée, Johanna Margriet; Reed, Malcolm W R; Severi, Gianluca; Marme, Frederik; Margolin, Sara; Olson, Janet E; Kosma, Veli-Matti; Kristensen, Vessela N; Miron, Alexander; Bogdanova, Natalia; Shah, Mitul; Blomqvist, Carl; Broeks, Annegien; Sherman, Mark; Phillips, Kelly-Anne; Li, Jingmei; Liu, Jianjun; Glendon, Gord; Seynaeve, Caroline; Ekici, Arif B; Leunen, Karin; Kriege, Mieke; Cross, Simon S; Baglietto, Laura; Sohn, Christof; Wang, Xianshu; Kataja, Vesa; Børresen-Dale, Anne-Lise; Meyer, Andreas; Easton, Douglas F; Schmidt, Marjanka K; Bojesen, Stig E

    2012-12-10

    We tested the hypotheses that CHEK2*1100delC heterozygosity is associated with increased risk of early death, breast cancer-specific death, and risk of a second breast cancer in women with a first breast cancer. From 22 studies participating in the Breast Cancer Association Consortium, 25,571 white women with invasive breast cancer were genotyped for CHEK2*1100delC and observed for up to 20 years (median, 6.6 years). We examined risk of early death and breast cancer-specific death by estrogen receptor status and risk of a second breast cancer after a first breast cancer in prospective studies. CHEK2*1100delC heterozygosity was found in 459 patients (1.8%). In women with estrogen receptor-positive breast cancer, multifactorially adjusted hazard ratios for heterozygotes versus noncarriers were 1.43 (95% CI, 1.12 to 1.82; log-rank P = .004) for early death and 1.63 (95% CI, 1.24 to 2.15; log-rank P < .001) for breast cancer-specific death. In all women, hazard ratio for a second breast cancer was 2.77 (95% CI, 2.00 to 3.83; log-rank P < .001) increasing to 3.52 (95% CI, 2.35 to 5.27; log-rank P < .001) in women with estrogen receptor-positive first breast cancer only. Among women with estrogen receptor-positive breast cancer, CHEK2*1100delC heterozygosity was associated with a 1.4-fold risk of early death, a 1.6-fold risk of breast cancer-specific death, and a 3.5-fold risk of a second breast cancer. This is one of the few examples of a genetic factor that influences long-term prognosis being documented in an extensive series of women with breast cancer.

  8. Young women's responses to smoking and breast cancer risk information

    PubMed Central

    Bottorff, Joan L.; McKeown, Stephanie Barclay; Carey, Joanne; Haines, Rebecca; Okoli, Chizimuzo; Johnson, Kenneth C.; Easley, Julie; Ferrence, Roberta; Baillie, Lynne; Ptolemy, Erin

    2010-01-01

    Current evidence confirms that young women who smoke or who have regular long-term exposure to secondhand smoke (SHS) have an increased risk of developing premenopausal breast cancer. The aim of this research was to examine the responses of young women to health information about the links between active smoking and SHS exposure and breast cancer and obtain their advice about messaging approaches. Data were collected in focus groups with 46 women, divided in three age cohorts: 15–17, 18–19 and 20–24 and organized according to smoking status (smoking, non-smoking and mixed smoking status groups). The discussion questions were preceded by information about passive and active smoking and its associated breast cancer risk. The study findings show young women's interest in this risk factor for breast cancer. Three themes were drawn from the analysis: making sense of the information on smoking and breast cancer, personal susceptibility and tobacco exposure and suggestions for increasing awareness about tobacco exposure and breast cancer. There was general consensus on framing public awareness messages about this risk factor on ‘protecting others’ from breast cancer to catch smokers’ attention, providing young women with the facts and personal stories of breast cancer to help establish a personal connection with this information and overcome desensitization related to tobacco messages, and targeting all smokers who may place young women at risk. Cautions were also raised about the potential for stigmatization. Implications for raising awareness about this modifiable risk factor for breast cancer are discussed. PMID:20080807

  9. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts

    PubMed Central

    Liang, Yayun; Mafuvadze, Benford; Besch-Williford, Cynthia; Hyder, Salman M

    2018-01-01

    Background Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53) lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood vessels, which serve as the major route for tumor metastasis, in tumor xenografts compared with either agent alone. Conclusion Based on our findings, we contend that breast tumor growth might effectively be controlled by simultaneous

  10. Expression profiling of nuclear receptors in breast cancer identifies TLX as a mediator of growth and invasion in triple-negative breast cancer

    PubMed Central

    Remenyi, Judit; Banerji, Christopher R.S.; Lai, Chun-Fui; Periyasamy, Manikandan; Lombardo, Ylenia; Busonero, Claudia; Ottaviani, Silvia; Passey, Alun; Quinlan, Philip R.; Purdie, Colin A.; Jordan, Lee B.; Thompson, Alastair M.; Finn, Richard S.; Rueda, Oscar M.; Caldas, Carlos; Gil, Jesus; Coombes, R. Charles; Fuller-Pace, Frances V.; Teschendorff, Andrew E.; Buluwela, Laki; Ali, Simak

    2015-01-01

    The Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer. In order to examine the inter-relationships between nuclear receptors, and to obtain evidence for previously unsuspected roles for any NRs, we undertook quantitative RT-PCR and bioinformatics analysis to examine their expression in breast cancer. While most NRs were expressed, bioinformatic analyses differentiated tumours into distinct prognostic groups that were validated by analyzing public microarray data sets. Although ERα and progesterone receptor were dominant in distinguishing prognostic groups, other NR strengthened these groups. Clustering analysis identified several family members with potential importance in breast cancer. Specifically, RORγ is identified as being co-expressed with ERα, whilst several NRs are preferentially expressed in ERα-negative disease, with TLX expression being prognostic in this subtype. Functional studies demonstrated the importance of TLX in regulating growth and invasion in ERα-negative breast cancer cells. PMID:26280373

  11. Expression profiling of nuclear receptors in breast cancer identifies TLX as a mediator of growth and invasion in triple-negative breast cancer.

    PubMed

    Lin, Meng-Lay; Patel, Hetal; Remenyi, Judit; Banerji, Christopher R S; Lai, Chun-Fui; Periyasamy, Manikandan; Lombardo, Ylenia; Busonero, Claudia; Ottaviani, Silvia; Passey, Alun; Quinlan, Philip R; Purdie, Colin A; Jordan, Lee B; Thompson, Alastair M; Finn, Richard S; Rueda, Oscar M; Caldas, Carlos; Gil, Jesus; Coombes, R Charles; Fuller-Pace, Frances V; Teschendorff, Andrew E; Buluwela, Laki; Ali, Simak

    2015-08-28

    The Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer. In order to examine the inter-relationships between nuclear receptors, and to obtain evidence for previously unsuspected roles for any NRs, we undertook quantitative RT-PCR and bioinformatics analysis to examine their expression in breast cancer. While most NRs were expressed, bioinformatic analyses differentiated tumours into distinct prognostic groups that were validated by analyzing public microarray data sets. Although ERα and progesterone receptor were dominant in distinguishing prognostic groups, other NR strengthened these groups. Clustering analysis identified several family members with potential importance in breast cancer. Specifically, RORγ is identified as being co-expressed with ERα, whilst several NRs are preferentially expressed in ERα-negative disease, with TLX expression being prognostic in this subtype. Functional studies demonstrated the importance of TLX in regulating growth and invasion in ERα-negative breast cancer cells.

  12. Vitamin Supplement Use and Risk for Breast Cancer: The Shanghai Breast Cancer Study.

    PubMed Central

    Dorjgochoo, Tsogzolmaa; Shrubsole, Martha J.; Shu, Xiao Ou; Lu, Wei; Ruan, Zhixian; Zhen, Ying; Dai, Qi; Gu, Kai; Gao, Yu-Tang; Zheng, Wei

    2008-01-01

    Objective: The influence of vitamin supplements on risk for breast cancer is unclear. Also the interactive effects of vitamins from dietary and supplemental sources are unknown. This study investigated the association between self-reported vitamin supplement use (A, B, C, E and multivitamin) and breast cancer among urban Chinese women. It also examined the combined effect of vitamin supplements in relation to particular dietary vitamin intakes on breast cancer risk. Methods: Study subjects were identified from The Shanghai Breast Cancer Study (SBCS) and was a population-based case-control study conducted in Shanghai in 1996-1998 (Phase I) and 2002-2004 (Phase II). Participants were aged 25 to 64 and 20 to 70 years for phase I and for phase II, respectively. The analyses included 3,454 incident breast cancer cases and 3,474 controls. Unconditional logistic regression models were used to determine adjusted odds ratios (ORs) for breast cancer risk associated with vitamin supplement use. Results: Overall, the breast cancer risk was not related to intakes of any vitamin supplement. However, an approximately 20% reduction in breast cancer risk was observed with use of vitamin E supplement among women with low-dietary vitamin E intake (OR=0.8; 95% confidence interval (CI), 0.6-0.9) with a significant does-response inverse association (P trend =0.01 for duration). Modest risk reduction was observed among vitamin B supplement users with low dietary intake of the same vitamin (OR=0.9; 95% CI, 0.6-1.0). However, vitamin B supplement was adversely associated with breast cancer risk among those with high dietary vitamin B intake with a significant dose-response effect (P trend =0.04 for duration). Conclusions: This study suggests that vitamins E and B supplement may confer a prevention of breast cancer among women who have low dietary intake of those vitamins. PMID:17917808

  13. Benign Breast Disease, Mammographic Breast Density, and the Risk of Breast Cancer

    PubMed Central

    2013-01-01

    Background Benign breast disease and high breast density are prevalent, strong risk factors for breast cancer. Women with both risk factors may be at very high risk. Methods We included 42818 women participating in the Breast Cancer Surveillance Consortium who had no prior diagnosis of breast cancer and had undergone at least one benign breast biopsy and mammogram; 1359 women developed incident breast cancer in 6.1 years of follow-up (78.1% invasive, 21.9% ductal carcinoma in situ). We calculated hazard ratios (HRs) using Cox regression analysis. The referent group was women with nonproliferative changes and average density. All P values are two-sided. Results Benign breast disease and breast density were independently associated with breast cancer. The combination of atypical hyperplasia and very high density was uncommon (0.6% of biopsies) but was associated with the highest risk for breast cancer (HR = 5.34; 95% confidence interval [CI] = 3.52 to 8.09, P < .001). Proliferative disease without atypia (25.6% of biopsies) was associated with elevated risk that varied little across levels of density: average (HR = 1.37; 95% CI = 1.11 to 1.69, P = .003), high (HR = 2.02; 95% CI = 1.68 to 2.44, P < .001), or very high (HR = 2.05; 95% CI = 1.54 to 2.72, P < .001). Low breast density (4.5% of biopsies) was associated with low risk (HRs <1) for all benign pathology diagnoses. Conclusions Women with high breast density and proliferative benign breast disease are at very high risk for future breast cancer. Women with low breast density are at low risk, regardless of their benign pathologic diagnosis. PMID:23744877

  14. Benign breast disease, mammographic breast density, and the risk of breast cancer.

    PubMed

    Tice, Jeffrey A; O'Meara, Ellen S; Weaver, Donald L; Vachon, Celine; Ballard-Barbash, Rachel; Kerlikowske, Karla

    2013-07-17

    Benign breast disease and high breast density are prevalent, strong risk factors for breast cancer. Women with both risk factors may be at very high risk. We included 42818 women participating in the Breast Cancer Surveillance Consortium who had no prior diagnosis of breast cancer and had undergone at least one benign breast biopsy and mammogram; 1359 women developed incident breast cancer in 6.1 years of follow-up (78.1% invasive, 21.9% ductal carcinoma in situ). We calculated hazard ratios (HRs) using Cox regression analysis. The referent group was women with nonproliferative changes and average density. All P values are two-sided. Benign breast disease and breast density were independently associated with breast cancer. The combination of atypical hyperplasia and very high density was uncommon (0.6% of biopsies) but was associated with the highest risk for breast cancer (HR = 5.34; 95% confidence interval [CI] = 3.52 to 8.09, P < .001). Proliferative disease without atypia (25.6% of biopsies) was associated with elevated risk that varied little across levels of density: average (HR = 1.37; 95% CI = 1.11 to 1.69, P = .003), high (HR = 2.02; 95% CI = 1.68 to 2.44, P < .001), or very high (HR = 2.05; 95% CI = 1.54 to 2.72, P < .001). Low breast density (4.5% of biopsies) was associated with low risk (HRs <1) for all benign pathology diagnoses. Women with high breast density and proliferative benign breast disease are at very high risk for future breast cancer. Women with low breast density are at low risk, regardless of their benign pathologic diagnosis.

  15. Phytochemicals for breast cancer therapy: current status and future implications.

    PubMed

    Siddiqui, Jawed Akhtar; Singh, Aru; Chagtoo, Megha; Singh, Nidhi; Godbole, Madan Madhav; Chakravarti, Bandana

    2015-01-01

    Breast cancer is one of the most common malignancies among women, representing nearly 30% of newly diagnosed cancers every year. Till date, various therapeutic interventions, including surgery, chemotherapy, hormonal therapy, and radiotherapy are available and are known to cause a significant decline in the overall mortality rate. However, therapeutic resistance, recurrence and lack of treatment in metastasis are the major challenges that need to be addressed. Increasing evidence suggests the presence of cancer stem cells (CSCs) in heterogeneous population of breast tumors capable of selfrenewal and differentiation and is considered to be responsible for drug resistance and recurrence. Therefore, compound that can target both differentiated cancer cells, as well as CSCs, may provide a better treatment strategy. Due to safe nature of dietary agents and health products, investigators are introducing them into clinical trials in place of chemotherapeutic agents.This current review focuses on phytochemicals, mainly flavonoids that are in use for breast cancer therapy in preclinical phase. As phytochemicals have several advantages in breast cancer and cancer stem cells, new synthetic series for breast cancer therapy from analogues of most potent natural molecule can be developed via rational drug design approach.

  16. Breast cancer knowledge, attitudes and screening behaviors among Indian-Australian women.

    PubMed

    Kwok, C; Tranberg, R; Lee, F C

    2015-12-01

    The aims of the study were to report breast cancer screening practices among Indian-Australian women and to examine the relationship between demographic characteristics, cultural beliefs and women's breast cancer screening (BCS) behaviors. A descriptive and cross-sectional method was used. Two hundred and forty two Indian-Australian women were recruited from several Indian organizations. English versions of the Breast Cancer Screening Beliefs Questionnaire (BCSBQ) were administered. The main research variables are BCS practices, demographic characteristics and total scores on each of the BCSBQ subscales. The majority of participants (72.7%-81.4%) had heard of breast awareness, clinical breast examination (CBE) and mammograms. Only 28.9% performed a BSE monthly and although 60% had practiced CBE, only 27.3% of women within the targeted age group had annual CBE. Only 23.6% of women within the targeted age group reported they had a mammogram biennial. Marital status and length of stay in Australia were positively associated with women's screening behaviors. In terms of BCSBQ score, women who had the three screening practices regularly as recommended obtained significantly higher scores on the "attitude towards general health check-ups" and "barriers to mammographic screening" subscales. There was a significant difference in the mean score of the "knowledge and perceptions about breast cancer" between women who did and who did not engage in breast awareness. Our study reveals that attitudes toward health check-ups and perceived barriers to mammographic screening were influential in determining compliance with breast cancer screening practices among Indian-Australian women. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Subclonal diversification of primary breast cancer revealed by multiregion sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian

    Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and latemore » in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.« less

  18. Subclonal diversification of primary breast cancer revealed by multiregion sequencing

    DOE PAGES

    Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian; ...

    2015-06-22

    Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and latemore » in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.« less

  19. A Partnership Training Program: Studying Targeted Drug Delivery Using Nanoparticles in Breast Cancer Diagnosis and Therapy

    DTIC Science & Technology

    2014-10-01

    time-resolved synchrotron SAXS and WAXS study. J Cryst Growth 2012;344:51–8. Hurst SJ, Lytton-Jean AKR , Mirkin CA. Maximizing DNA loading on a range of...TITLE: A Partnership Training Program: Studying Targeted Drug Delivery Using Nanoparticles in Breast Cancer Diagnosis and Therapy PRINCIPAL...notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it

  20. Mixed Lineage Kinase3 as a Novel Target for Invasive Breast Cancer

    DTIC Science & Technology

    2013-04-01

    critical for breast cancermetastasis inmouse xenograft models (2, 3). High levels of CXCR4 are found in breast tumor cells isolated from pleural ... effusions (4) and correlate with lymph nodemetastases (5) and poor overall survival in patients (5, 6). Hepatocyte growth factor/scatter factor (HGF...associated with metastatic cells in effusions of breast carcinoma patients. Int J Cancer 2007;121:1036–46. 5. KatoM, Kitayama J, Kazama S, NagawaH. Expression