Science.gov

Sample records for breast imaging technical

  1. Development of Ultrasound Tomography for Breast Imaging: Technical Assessment

    SciTech Connect

    Duric, N; Littrup, P; Babkin, A; Chambers, D; Azevedo, S; Arkady, K; Pevzner, R; Tokarev, M; Holsapple, E

    2004-09-30

    Ultrasound imaging is widely used in medicine because of its benign characteristics and real-time capabilities. Physics theory suggests that the application of tomographic techniques may allow ultrasound imaging to reach its full potential as a diagnostic tool allowing it to compete with other tomographic modalities such as X-ray CT and MRI. This paper describes the construction and use of a prototype tomographic scanner and reports on the feasibility of implementing tomographic theory in practice and the potential of US tomography in diagnostic imaging. Data were collected with the prototype by scanning two types of phantoms and a cadaveric breast. A specialized suite of algorithms was developed and utilized to construct images of reflectivity and sound speed from the phantom data. The basic results can be summarized as follows: (1) A fast, clinically relevant US tomography scanner can be built using existing technology. (2) The spatial resolution, deduced from images of reflectivity, is 0.4 mm. The demonstrated 10 cm depth-of-field is superior to that of conventional ultrasound and the image contrast is improved through the reduction of speckle noise and overall lowering of the noise floor. (3) Images of acoustic properties such as sound speed suggest that it is possible to measure variations in the sound speed of 5 m/s. An apparent correlation with X-ray attenuation suggests that the sound speed can be used to discriminate between various types of soft tissue. (4) Ultrasound tomography has the potential to improve diagnostic imaging in relation to breast cancer detection.

  2. Imaging Guided Breast Interventions.

    PubMed

    Masroor, Imrana; Afzal, Shaista; Sufian, Saira Naz

    2016-06-01

    Breast imaging is a developing field, with new and upcoming innovations, decreasing the morbidity and mortality related to breast pathologies with main emphasis on breast cancer. Breast imaging has an essential role in the detection and management of breast disease. It includes a multimodality approach, i.e. mammography, ultrasound, magnetic resonance imaging, nuclear medicine techniques and interventional procedures, done for the diagnosis and definitive management of breast abnormalities. The range of methods to perform biopsy of a suspicious breast lesion found on imaging has also increased markedly from the 1990s with hi-technological progress in surgical as well as percutaneous breast biopsy methods. The image guided percutaneous breast biopsy procedures cause minimal breast scarring, save time, and relieve the patient of the anxiety of going to the operation theatre. The aim of this review was to describe and discuss the different image guided breast biopsy techniques presently employed along with the indications, contraindication, merits and demerits of each method. PMID:27353993

  3. [Breast cancer imaging].

    PubMed

    Canale, Sandra; Balleyguier, Corinne; Dromain, Clarisse

    2013-12-01

    Imaging of breast cancer is multimodal. Mammography uses X-rays, the development of digital mammography has improved its quality and enabled implementations of new technologies such astomosynthesis (3D mammography) or contrast-enhanced digital mammography. Ultrasound is added to mammography when there is need to improve detection in high-density breast, to characterize an image, or guide apuncture or biopsy. Breast MRI is the most sensitive imaging modality. It detects a possible tumor angiogenesis by highlighting an early and intense contrast uptake. This method has an excellent negative predictive value, but its lack of specificity (false positives) can be problematic, thus it has to be prescribed according to published standards. An imaging breast screening report must be concluded by the BI-RADS lexicon classification of the ACR and recommendations about monitoring or histological verification. PMID:24579332

  4. Artifacts in Breast Magnetic Resonance Imaging.

    PubMed

    Anthony, Marina-Portia; Nguyen, Dustin; Friedlander, Lauren; Mango, Victoria; Wynn, Ralph; Ha, Richard

    2016-01-01

    As breast magnetic resonance imaging has evolved to become a routine part of clinical practice, so too has the need for radiologists to be aware of its potential pitfalls and limitations. Unique challenges arise in the identification and remedy of artifacts in breast magnetic resonance imaging, and it is important that radiologists and technicians work together to optimize protocols and monitor examinations such that these may be minimized or avoided entirely. This article presents patient-related and technical artifacts that may give rise to reduced image quality and ways to recognize and reduce them. PMID:26343534

  5. [Radiotherapy of cancer of the breast. Technical problems and new approaches].

    PubMed

    Fourquet, A; Rosenwald, J C; Campana, F; Gaboriaud, G; Dendale, R; Vilcoq, J R

    2000-11-01

    Technical problems often arise during irradiation to the breast, chest wall, and regional lymph nodes. The following are among the most frequently encountered problems: avoidance of normal tissues (heart and lungs) during chest wall, internal mammary nodes, and large breast irradiations; dose heterogeneity in large breasts; under- or overdosage at field junctions (breast medial tangent and internal mammary fields in particular). Various technical solutions have been offered: modified treatment positions, field inclinations, and conformal irradiation. Many are currently under evaluation. These new technical approaches in breast cancer irradiation require modern facilities for imaging, simulation, and dosimetry, which help to individually design treatment planning. PMID:11194959

  6. Imaging of the Adolescent Breast

    PubMed Central

    Jones, Katie N.

    2013-01-01

    The mainstay of breast imaging in the adolescent is ultrasonography. There is occasionally a need for additional imaging, particularly with magnetic resonance imaging (MRI). Imaging of the adolescent breast differs substantially from the adult in both the imaging modalities utilized and the relative likelihood of pathologies encountered. The majority of lesions in the adolescent are benign, but the presence of a breast lesion may cause anxiety to patients and their families due to the wide awareness of breast malignancy in the adult population. It is important to be aware of the imaging modalities available to image the adolescent breast to prevent unnecessary radiation exposure while answering the clinical question. The current recommendations for adolescent diagnostic and screening breast imaging will be reviewed. Benign breast lesions such as fibroadenomas, fibrocystic change, pseudoangiomatous stromal hyperplasia, gynecomastia, and posttraumatic or infectious lesions with their associated imaging findings and management will be outlined. Additionally, review of breast malignancies that can affect adolescents will provide the reader with features to distinguish benign from malignant processes in the adolescent based on imaging findings and clinical presentation. PMID:24872737

  7. Evolution of Imaging in Breast Cancer.

    PubMed

    Garcia, Evelyn M; Crowley, James; Hagan, Catherine; Atkinson, Lisa L

    2016-06-01

    The following topics are discussed in this article. A historical review of the evolution of breast cancer imaging from thermography through digital breast tomosynthesis, molecular breast imaging, and advanced breast magnetic resonance imaging. Discussion of multiple clinical trials, their strengths, and weaknesses. Historical perspective on the Mammography Quality Standards Act and its relationship with development and implementation of the Breast Imaging-Reporting and Data System (BI-RADS). PMID:27029017

  8. Mechanical Imaging of the Breast

    PubMed Central

    Sarvazyan, Armen P.

    2008-01-01

    In this paper, we analyze the physical basis for elasticity imaging of the breast by measuring breast skin stress patterns that result from a force sensor array pressed against the breast tissue. Temporal and spatial changes in the stress pattern allow detection of internal structures with different elastic properties and assessment of geometrical and mechanical parameters of these structures. The method entitled mechanical imaging is implemented in the breast mechanical imager (BMI), a compact device consisting of a hand held probe equipped with a pressure sensor array, a compact electronic unit, and a touchscreen laptop computer. Data acquired by the BMI allows calculation of size, shape, consistency/hardness, and mobility of detected lesions. The BMI prototype has been validated in laboratory experiments on tissue models and in an ongoing clinical study. The obtained results prove that the BMI has potential to become a screening and diagnostic tool that could largely supplant clinical breast examination through its higher sensitivity, quantitative record storage, ease-of-use, and inherent low cost. PMID:18753043

  9. Semiautomated Multimodal Breast Image Registration

    PubMed Central

    Curtis, Charlotte; Frayne, Richard; Fear, Elise

    2012-01-01

    Consideration of information from multiple modalities has been shown to have increased diagnostic power in breast imaging. As a result, new techniques such as microwave imaging continue to be developed. Interpreting these novel image modalities is a challenge, requiring comparison to established techniques such as the gold standard X-ray mammography. However, due to the highly deformable nature of breast tissues, comparison of 3D and 2D modalities is a challenge. To enable this comparison, a registration technique was developed to map features from 2D mammograms to locations in the 3D image space. This technique was developed and tested using magnetic resonance (MR) images as a reference 3D modality, as MR breast imaging is an established technique in clinical practice. The algorithm was validated using a numerical phantom then successfully tested on twenty-four image pairs. Dice's coefficient was used to measure the external goodness of fit, resulting in an excellent overall average of 0.94. Internal agreement was evaluated by examining internal features in consultation with a radiologist, and subjective assessment concludes that reasonable alignment was achieved. PMID:22481910

  10. Breast tomosynthesis imaging configuration analysis.

    PubMed

    Rayford, Cleveland E; Zhou, Weihua; Chen, Ying

    2013-01-01

    Traditional two-dimensional (2D) X-ray mammography is the most commonly used method for breast cancer diagnosis. Recently, a three-dimensional (3D) Digital Breast Tomosynthesis (DBT) system has been invented, which is likely to challenge the current mammography technology. The DBT system provides stunning 3D information, giving physicians increased detail of anatomical information, while reducing the chance of false negative screening. In this research, two reconstruction algorithms, Back Projection (BP) and Shift-And-Add (SAA), were used to investigate and compare View Angle (VA) and the number of projection images (N) with parallel imaging configurations. In addition, in order to better determine which method displayed better-quality imaging, Modulation Transfer Function (MTF) analyses were conducted with both algorithms, ultimately producing results which improve upon better breast cancer detection. Research studies find evidence that early detection of the disease is the best way to conquer breast cancer, and earlier detection results in the increase of life span for the affected person. PMID:23900440

  11. Approach to breast magnetic resonance imaging interpretation.

    PubMed

    Palestrant, Sarah; Comstock, Christopher E; Moy, Linda

    2014-05-01

    With the increasing use of breast magnetic resonance (MR) imaging comes the expectation that the breast radiologist is as fluent in its interpretation as in that of mammography and breast ultrasonography. Knowledge of who should be included for imaging and how to perform the imaging are as essential as interpreting the images. When reading the examination, the radiologist should approach the images from both a global and focused perspective, synthesizing findings into a report that includes a management plan. This article reviews a systematic and organized approach to breast MR imaging interpretation. PMID:24792657

  12. Development of breast phantoms for use in breast imaging simulation

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael

    Dedicated x-ray breast computed tomography (BCT) and breast tomosynthesis (BT) using a cone-beam flat-panel detector system are modalities under investigation by a number of research teams. Several teams, including the University of Massachusetts Medical School (UMMS) Tomographic Breast Imaging Lab (TBIL), have fabricated a prototype, bench-top flat-panel CT breast imaging (CTBI) system. TBIL researchers also use computer simulation software to investigate various x-ray acquisition and reconstruction parameters. I have developed a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens in order to create an ensemble of three-dimensional (3D) digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. The resulting breast phantoms can then be used to simulate realistic projection data for both BCT and BT systems thereby providing a powerful evaluation and optimization mechanism for research and development of novel breast imaging systems as well as the optimization of imaging techniques for such systems.

  13. Optical imaging for breast cancer prescreening

    PubMed Central

    Godavarty, Anuradha; Rodriguez, Suset; Jung, Young-Jin; Gonzalez, Stephanie

    2015-01-01

    Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE) or self-breast examinations (SBEs). Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach. PMID:26229503

  14. Molecular breast imaging: advantages and limitations of a scintimammographic technique in patients with small breast tumors.

    PubMed

    O'Connor, Michael K; Phillips, Stephen W; Hruska, Carrie B; Rhodes, Deborah J; Collins, Douglas A

    2007-01-01

    Preliminary studies from our laboratory showed that molecular breast imaging (MBI) can reliably detect tumors <2 cm in diameter. This study extends our work to a larger patient population and examines the technical factors that influence the ability of MBI to detect small breast tumors. Following injection of 740 MBq Tc-99m sestamibi, MBI was performed on 100 patients scheduled for biopsy of a lesion suspicious for malignancy that measured <2 cm on mammography or sonography. Using a small field of view gamma camera, patients were imaged in the standard mammographic views using light pain-free compression. Subjective discomfort, breast thickness, the amount of breast tissue in the detector field of view, and breast counts per unit area were measured and recorded. Follow-up was obtained in 99 patients; 53 patients had 67 malignant tumors confirmed at surgery. Of these, 57 of 67 were detected by MBI (sensitivity 85%). Sensitivity was 29%, 86%, and 97% for tumors <5, 6-10, and > or =11 mm in diameter, respectively. In seven patients, MBI identified eight additional mammographically occult tumors. Of 47 patients with no evidence of cancer at biopsy or surgery, there were 36 true negative and 11 false positive scans on MBI. MBI has potential for the regular detection of malignant breast tumors less than 2 cm in diameter. Work in progress to optimize the imaging parameters and technique may further improve sensitivity and specificity. PMID:17214787

  15. Toward quantification of breast tomosynthesis imaging

    NASA Astrophysics Data System (ADS)

    Shafer, Christina M.; Samei, Ehsan; Saunders, Robert S.; Zerhouni, Moustafa; Lo, Joseph Y.

    2008-03-01

    Due to the high prevalence of breast cancer among women, much is being done to detect breast cancer earlier and more accurately. In current clinical practice, the most widely-used mode of breast imaging is mammography. Its main advantages are high sensitivity and low patient dose, although it is still merely a two-dimensional projection of a three-dimensional object. In digital breast tomosynthesis, a three-dimensional image of the breast can be reconstructed, but x-ray projection images of the breast are taken over a limited angular span. However, the breast tomosynthesis device itself is more similar to a digital mammography system and thus is a feasible replacement for mammography. Because of the angular undersampling in breast tomosynthesis, the reconstructed images are not considered quantitative, so a worthwhile question to answer would be whether the voxel values (VVs) in breast tomosynthesis images can be made to indicate tissue type as Hounsfield units do in CT. through some image processing scheme. To investigate this, simple phantoms were imaged consisting of layers of uniform, tissue-equivalent plastic for the background sandwiching a layer of interest containing multiple, small cuboids of tissue-equivalent plastic. After analyzing the reconstructed tomosynthesis images, it was found that the VV in each lesion increases linearly with tissue glandularity. However, for the two different x-ray tube energies and for the two different beam exposure levels tested, the trend-lines all have different slopes and y-intercepts. Thus, breast tomosynthesis has a definite potential to be quantitative, and it would be worthwhile to study other possible dependent parameters (phantom thickness, overall density, etc.) as well as alternative reconstruction algorithms.

  16. Dose reduction in molecular breast imaging

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Chowdhury, Samir; Hugg, James W.; Moats, Rex A.; Patt, Bradley E.

    2011-10-01

    Molecular Breast Imaging (MBI) is the imaging of radiolabeled drugs, cells, or nanoparticles for breast cancer detection, diagnosis, and treatment. Screening of broad populations of women for breast cancer with mammography has been augmented by the emergence of breast MRI in screening of women at high risk for breast cancer. Screening MBI may benefit the sub-population of women with dense breast tissue that obscures small tumors in mammography. Dedicated breast imaging equipment is necessary to enable detection of early-stage tumors less than 1 cm in size. Recent progress in the development of these instruments is reviewed. Pixellated CZT for single photon MBI imaging of 99mTc-sestamibi gives high detection sensitivity for early-stage tumors. The use of registered collimators in a near-field geometry gives significantly higher detection efficiency - a factor of 3.6-, which translates into an equivalent dose reduction factor given the same acquisition time. The radiation dose in the current MBI procedure has been reduced to the level of a four-view digital mammography study. In addition to screening of selected sub-populations, reduced MBI dose allows for dual-isotope, treatment planning, and repeated therapy assessment studies in the era of molecular medicine guided by quantitative molecular imaging.

  17. Dedicated 3D photoacoustic breast imaging

    PubMed Central

    Kruger, Robert A.; Kuzmiak, Cherie M.; Lam, Richard B.; Reinecke, Daniel R.; Del Rio, Stephen P.; Steed, Doreen

    2013-01-01

    Purpose: To report the design and imaging methodology of a photoacoustic scanner dedicated to imaging hemoglobin distribution throughout a human breast. Methods: The authors developed a dedicated breast photoacoustic mammography (PAM) system using a spherical detector aperture based on our previous photoacoustic tomography scanner. The system uses 512 detectors with rectilinear scanning. The scan shape is a spiral pattern whose radius varies from 24 to 96 mm, thereby allowing a field of view that accommodates a wide range of breast sizes. The authors measured the contrast-to-noise ratio (CNR) using a target comprised of 1-mm dots printed on clear plastic. Each dot absorption coefficient was approximately the same as a 1-mm thickness of whole blood at 756 nm, the output wavelength of the Alexandrite laser used by this imaging system. The target was immersed in varying depths of an 8% solution of stock Liposyn II-20%, which mimics the attenuation of breast tissue (1.1 cm−1). The spatial resolution was measured using a 6 μm-diameter carbon fiber embedded in agar. The breasts of four healthy female volunteers, spanning a range of breast size from a brassiere C cup to a DD cup, were imaged using a 96-mm spiral protocol. Results: The CNR target was clearly visualized to a depth of 53 mm. Spatial resolution, which was estimated from the full width at half-maximum of a profile across the PAM image of a carbon fiber, was 0.42 mm. In the four human volunteers, the vasculature was well visualized throughout the breast tissue, including to the chest wall. Conclusions: CNR, lateral field-of-view and penetration depth of our dedicated PAM scanning system is sufficient to image breasts as large as 1335 mL, which should accommodate up to 90% of the women in the United States. PMID:24320471

  18. Breast cancer histopathology image analysis: a review.

    PubMed

    Veta, Mitko; Pluim, Josien P W; van Diest, Paul J; Viergever, Max A

    2014-05-01

    This paper presents an overview of methods that have been proposed for the analysis of breast cancer histopathology images. This research area has become particularly relevant with the advent of whole slide imaging (WSI) scanners, which can perform cost-effective and high-throughput histopathology slide digitization, and which aim at replacing the optical microscope as the primary tool used by pathologist. Breast cancer is the most prevalent form of cancers among women, and image analysis methods that target this disease have a huge potential to reduce the workload in a typical pathology lab and to improve the quality of the interpretation. This paper is meant as an introduction for nonexperts. It starts with an overview of the tissue preparation, staining and slide digitization processes followed by a discussion of the different image processing techniques and applications, ranging from analysis of tissue staining to computer-aided diagnosis, and prognosis of breast cancer patients. PMID:24759275

  19. Review of optical breast imaging and spectroscopy.

    PubMed

    Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola

    2016-09-01

    Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy. PMID:27403837

  20. Scintimammography as an Adjunctive Breast Imaging Technology

    PubMed Central

    2007-01-01

    Executive Summary Objective X-ray mammography (XMM) represents the most useful screening tool in breast cancer detection, especially for patients over 50. Unfortunately, XMM is not reliable in the assessment of dense breast tissue found in approximately 25% of women younger than 50 years of age, or in differentiating scar tissue from a tumor. Currently, ultrasound (US) is being used as an adjunct to XMM, with the purpose of improving sensitivity and specificity of XMM in breast cancer detection. In an attempt to reduce the biopsy rate resulting from false positive tests, other adjunctive technologies are being explored, including scintimammography (SMM). A number of papers in the current literature suggest the high value of SMM in breast cancer detection. This evaluation addresses the clinical indications for and effectiveness of SMM in the diagnosis of breast cancer. The Technology SMM is a nuclear medicine imaging technique that uses radionuclides and has the ability to image malignant breast tumors. SMM requires the administration of a gamma-ray emitting radiopharmaceutical to the patient, and a camera for imaging the lesion. The most commonly used radiopharmaceutical for SMM is TC-99m-methoxy isobutyl isonitrile MIBI. Review Strategy In the 2003 Medical Advisory Secretariat assessment of SMM in the diagnosis of breast cancer, a structured search was used to identify English-language studies published between 1992 and October 2002. A meta-analysis was then conducted of the literature which compared the diagnostic value of SMM with US as the second line imaging technique. An updated search strategy was developed in order to identify all studies published from October 2002 to January 2007. Summary of Findings The results of the meta-analysis showed that SMM is as effective as US in differentiating benign and malignant breast lesions. However, there may be a role for SMM as a third line adjunctive technique in the evaluation of breast abnormalities, in particular

  1. Molecular Breast Imaging Using Emission Tomosynthesis

    SciTech Connect

    Gopan, O.; Gilland, D.; Weisenberger, Andrew G.; Kross, Brian J.; Welch, Benjamin L.

    2013-06-01

    Purpose: Tour objective is to design a novel SPECT system for molecular breast imaging (MBI) and evaluate its performance. The limited angle SPECT system, or emission tomosynthesis, is designed to achieve 3D images of the breast with high spatial resolution/sensitivity. The system uses a simplified detector motion and is conducive to on-board biopsy and mult-modal imaging with mammography. Methods: The novel feature of the proposed gamma camera is a variable-angle, slant-hole (VASH) collimator, which is well suited for limited angle SPECT of a mildly compressed breast. The collimator holes change slant angle while the camera surface remains flush against the compression paddle. This allows the camera to vary the angular view ({+-}30{degrees}, {+-}45{degrees}) for tomographic imaging while keeping the camera close to the object for high spatial resolution and/or sensitivity. Theoretical analysis and Monte Carlo simulations were performed assuming a point source and isolated breast phantom. Spatial resolution, sensitivity, contrast and SNR were measured. Results were compared to single-view, planar images and conventional SPECT. For both conventional SPECT and VASH, data were reconstructed using iterative algorithms. Finally, a proof-of-concept VASH collimator was constructed for experimental evaluation. Results: Measured spatial resolution/sensitivity with VASH showed good agreement with theory including depth-of-interaction (DOI) effects. The DOI effect diminished the depth resolution by approximately 2 mm. Increasing the slant angle range from {+-}30{degrees} to {+-}45{degrees} resulted in an approximately 1 mm improvement in the depth resolution. In the breast phantom images, VASH showed improved contrast and SNR over conventional SPECT and improved contrast over planar scintimmammography. Reconstructed images from the proof-of-concept VASH collimator demonstrated reasonable depth resolution capabilities using limited angle projection data. Conclusion: We

  2. Breast Imaging: The Face of Imaging 3.0.

    PubMed

    Mayo, Ray Cody; Parikh, Jay R

    2016-08-01

    In preparation for impending changes to the health care delivery and reimbursement models, the ACR has provided a roadmap for success via the Imaging 3.0 (®)platform. The authors illustrate how the field of breast imaging demonstrates the following Imaging 3.0 concepts: value, patient-centered care, clinical integration, structured reporting, outcome metrics, and radiology's role in the accountable care organization environment. Much of breast imaging's success may be adapted and adopted by other fields in radiology to ensure that all radiologists become more visible and provide the value sought by patients and payers. PMID:27162041

  3. [Imaging in silicone breast implantation].

    PubMed

    Gielens, Maaike P M; Koolen, Pieter G L; Hermens, Roland A E C; Rutten, Matthieu J C M

    2013-01-01

    Recently, there have been concerns regarding the use of breast implants from Poly Implant Prothèse (PIP, Seyne sur Mer, France) for breast augmentation due to their tendency to rupture and the possibility of having toxic contents. MRI using a specific silicone-sensitive sequence has proven to be the most sensitive and specific technique in the detection of intra- and extracapsular implant rupture. However, given its high costs, it is important that this technique is used sparingly. In this clinical lesson, we compare the sensitivity and specificity of mammography, ultrasound, CT and MRI for the detection of breast implant rupture. Based on two cases, a diagnostic approach is given in order to reduce health care costs. PMID:24252405

  4. Breast Cancer Imaging with Novel PET Tracers.

    PubMed

    Mankoff, David A; Lee, Jean H; Eubank, William B

    2009-10-01

    Whereas (18)F-fluorodeoxyglucose (FDG)-PET/computed tomography has proven to be valuable for breast cancer diagnosis and response evaluation, it is likely that PET radiopharmaceuticals beyond FDG will contribute further to the understanding of breast cancer and thereby further direct breast cancer care. Increasingly specific and quantitative approaches will help direct treatment selection from an ever-expanding and increasing array of targeted breast cancer therapies. This article highlights 4 areas of ongoing research where preliminary patient results look promising: (1) tumor perfusion and angiogenesis, (2) drug delivery and transport, (3) tumor receptor imaging, and (4) early response evaluation. For each area, the biologic background is reviewed and early results are highlighted. PMID:27157306

  5. Ultrasonic imaging techniques for breast cancer detection.

    SciTech Connect

    Goulding, N. R.; Marquez, J. D.; Prewett, E. M.; Claytor, T. N.; Nadler, B. R.; Huang, L.

    2006-01-01

    Improving the resolution and specificity of current ultrasonic imaging technology can enhance its relevance to detection of early-stage breast cancers. Ultrasonic evaluation of breast lesions is desirable because it is quick, inexpensive, and does not expose the patient to potentially harmful ionizing radiation. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors, thus reducing the number of biopsies performed, increasing treatment options, and lowering mortality, morbidity, and remission percentages. In this work, a novel ultrasonic imaging reconstruction method that exploits straight-ray migration is described. This technique, commonly used in seismic imaging, accounts for scattering more accurately than standard ultrasonic approaches, thus providing superior image resolution. A breast phantom with various inclusions is imaged using a pulse-echo approach. The data are processed using the ultrasonic migration method and results are compared to standard linear ultrasound and to x-ray computed tomography (CT) scans. For an ultrasonic frequency of 2.25 MHz, imaged inclusions and features of approximately 1mm are resolved, although better resolution is expected with minor modifications. Refinement of this application using other imaging techniques such as time-reversal mirrors (TRM), synthetic aperture focusing technique (SAFT), decomposition of the time reversal operator (DORT), and factorization methods is also briefly discussed.

  6. Mono- and multimodal registration of optical breast images

    NASA Astrophysics Data System (ADS)

    Pearlman, Paul C.; Adams, Arthur; Elias, Sjoerd G.; Mali, Willem P. Th. M.; Viergever, Max A.; Pluim, Josien P. W.

    2012-08-01

    Optical breast imaging offers the possibility of noninvasive, low cost, and high sensitivity imaging of breast cancers. Poor spatial resolution and a lack of anatomical landmarks in optical images of the breast make interpretation difficult and motivate registration and fusion of these data with subsequent optical images and other breast imaging modalities. Methods used for registration and fusion of optical breast images are reviewed. Imaging concerns relevant to the registration problem are first highlighted, followed by a focus on both monomodal and multimodal registration of optical breast imaging. Where relevant, methods pertaining to other imaging modalities or imaged anatomies are presented. The multimodal registration discussion concerns digital x-ray mammography, ultrasound, magnetic resonance imaging, and positron emission tomography.

  7. Multimodal optical imaging for detecting breast cancer

    NASA Astrophysics Data System (ADS)

    Patel, Rakesh; Khan, Ashraf; Wirth, Dennis; Kamionek, Michal; Kandil, Dina; Quinlan, Robert; Yaroslavsky, Anna N.

    2012-06-01

    The goal of the study was to evaluate wide-field and high-resolution multimodal optical imaging, including polarization, reflectance, and fluorescence for the intraoperative detection of breast cancer. Lumpectomy specimens were stained with 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged. Wide-field reflectance images were acquired between 390 and 750 nm. Wide-field fluorescence images were excited at 640 nm and registered between 660 and 750 nm. High resolution confocal reflectance and fluorescence images were excited at 642 nm. Confocal fluorescence images were acquired between 670 nm and 710 nm. After imaging, the specimens were processed for hematoxylin and eosin (H&E) histopathology. Histological slides were compared with wide-field and high-resolution optical images to evaluate correlation of tumor boundaries and cellular morphology, respectively. Fluorescence polarization imaging identified the location, size, and shape of the tumor in all the cases investigated. Averaged fluorescence polarization values of tumor were higher as compared to normal tissue. Statistical analysis confirmed the significance of these differences. Fluorescence confocal imaging enabled cellular-level resolution. Evaluation and statistical analysis of MB fluorescence polarization values registered from single tumor and normal cells demonstrated higher fluorescence polarization from cancer. Wide-field high-resolution fluorescence and fluorescence polarization imaging shows promise for intraoperative delineation of breast cancers.

  8. The quantitative potential for breast tomosynthesis imaging

    SciTech Connect

    Shafer, Christina M.; Samei, Ehsan; Lo, Joseph Y.

    2010-03-15

    Purpose: Due to its limited angular scan range, breast tomosynthesis has lower resolution in the depth direction, which may limit its accuracy in quantifying tissue density. This study assesses the quantitative potential of breast tomosynthesis using relatively simple reconstruction and image processing algorithms. This quantitation could allow improved characterization of lesions as well as image processing to present tomosynthesis images with the familiar appearance of mammography by preserving more low-frequency information. Methods: All studies were based on a Siemens prototype MAMMOMAT Novation TOMO breast tomo system with a 45 deg. total angular span. This investigation was performed using both simulations and empirical measurements. Monte Carlo simulations were conducted using the breast tomosynthesis geometry and tissue-equivalent, uniform, voxelized phantoms with cuboid lesions of varying density embedded within. Empirical studies were then performed using tissue-equivalent plastic phantoms which were imaged on the actual prototype system. The material surrounding the lesions was set to either fat-equivalent or glandular-equivalent plastic. From the simulation experiments, the effects of scatter, lesion depth, and background material density were studied. The empirical experiments studied the effects of lesion depth, background material density, x-ray tube energy, and exposure level. Additionally, the proposed analysis methods were independently evaluated using a commercially available QA breast phantom (CIRS Model 11A). All image reconstruction was performed with a filtered backprojection algorithm. Reconstructed voxel values within each slice were corrected to reduce background nonuniformities. Results: The resulting lesion voxel values varied linearly with known glandular fraction (correlation coefficient R{sup 2}>0.90) under all simulated and empirical conditions, including for the independent tests with the QA phantom. Analysis of variance performed

  9. Breast MR Imaging for Equivocal Mammographic Findings: Help or Hindrance?

    PubMed

    Giess, Catherine S; Chikarmane, Sona A; Sippo, Dorothy A; Birdwell, Robyn L

    2016-01-01

    Breast magnetic resonance (MR) imaging, because of its extremely high sensitivity in detecting invasive breast cancers, is sometimes used as a diagnostic tool to evaluate equivocal mammographic findings. However, breast MR imaging should never substitute for a complete diagnostic evaluation or for biopsy of suspected, localizable suspicious mammographic lesions, whenever possible. The modality's high cost, in addition to only moderate specificity, mandate that radiologists use it sparingly and with discrimination for problematic mammographic findings. It is rare that the reality or significance of a noncalcified mammographic finding remains equivocal or problematic at diagnostic mammography evaluation, which usually includes targeted ultrasonography (US). There are several reasons for this infrequent occurrence: (a) an asymmetry may persist on diagnostic views but be visible only on craniocaudal or mediolateral oblique projections, precluding three-dimensional localization for US or biopsy, or a lesion may persist on some diagnostic spot views but dissipate or efface on others; (b) uncertainty may exist as to whether apparent change is clinically important or owing to technical factors such as compression or positioning differences; or (c) a lesion may be suspected but biopsy options are limited owing to lack of a US correlate and lesion inaccessibility for stereotactic biopsy, or biopsy of a vague or questionably real lesion has been attempted unsuccessfully. This article will discuss the indications for problem-solving MR imaging for equivocal mammographic findings, present cases illustrating appropriate and inappropriate uses of problem-solving MR imaging, and present false-positive and false-negative cases affecting the specificity of breast MR imaging. (©)RSNA, 2016. PMID:27284757

  10. Advances in imaging technologies for planning breast reconstruction

    PubMed Central

    Mohan, Anita T.

    2016-01-01

    The role and choice of preoperative imaging for planning in breast reconstruction is still a disputed topic in the reconstructive community, with varying opinion on the necessity, the ideal imaging modality, costs and impact on patient outcomes. Since the advent of perforator flaps their use in microsurgical breast reconstruction has grown. Perforator based flaps afford lower donor morbidity by sparing the underlying muscle provide durable results, superior cosmesis to create a natural looking new breast, and are preferred in the context of radiation therapy. However these surgeries are complex; more technically challenging that implant based reconstruction, and leaves little room for error. The role of imaging in breast reconstruction can assist the surgeon in exploring or confirming flap choices based on donor site characteristics and presence of suitable perforators. Vascular anatomical studies in the lab have provided the surgeon a foundation of knowledge on location and vascular territories of individual perforators to improve our understanding for flap design and safe flap harvest. The creation of a presurgical map in patients can highlight any abnormal or individual anatomical variance to optimize flap design, intraoperative decision-making and execution of flap harvest with greater predictability and efficiency. This article highlights the role and techniques for preoperative planning using the newer technologies that have been adopted in reconstructive clinical practice: computed tomographic angiography (CTA), magnetic resonance angiography (MRA), laser-assisted indocyanine green fluorescence angiography (LA-ICGFA) and dynamic infrared thermography (DIRT). The primary focus of this paper is on the application of CTA and MRA imaging modalities. PMID:27047790

  11. Advances in imaging technologies for planning breast reconstruction.

    PubMed

    Mohan, Anita T; Saint-Cyr, Michel

    2016-04-01

    The role and choice of preoperative imaging for planning in breast reconstruction is still a disputed topic in the reconstructive community, with varying opinion on the necessity, the ideal imaging modality, costs and impact on patient outcomes. Since the advent of perforator flaps their use in microsurgical breast reconstruction has grown. Perforator based flaps afford lower donor morbidity by sparing the underlying muscle provide durable results, superior cosmesis to create a natural looking new breast, and are preferred in the context of radiation therapy. However these surgeries are complex; more technically challenging that implant based reconstruction, and leaves little room for error. The role of imaging in breast reconstruction can assist the surgeon in exploring or confirming flap choices based on donor site characteristics and presence of suitable perforators. Vascular anatomical studies in the lab have provided the surgeon a foundation of knowledge on location and vascular territories of individual perforators to improve our understanding for flap design and safe flap harvest. The creation of a presurgical map in patients can highlight any abnormal or individual anatomical variance to optimize flap design, intraoperative decision-making and execution of flap harvest with greater predictability and efficiency. This article highlights the role and techniques for preoperative planning using the newer technologies that have been adopted in reconstructive clinical practice: computed tomographic angiography (CTA), magnetic resonance angiography (MRA), laser-assisted indocyanine green fluorescence angiography (LA-ICGFA) and dynamic infrared thermography (DIRT). The primary focus of this paper is on the application of CTA and MRA imaging modalities. PMID:27047790

  12. Advanced imaging techniques for the detection of breast cancer.

    PubMed

    Jochelson, Maxine

    2012-01-01

    Mammography is the only breast imaging examination that has been shown to reduce breast cancer mortality. Population-based sensitivity is 75% to 80%, but sensitivity in high-risk women with dense breasts is only in the range of 50%. Breast ultrasound and contrast-enhanced breast magnetic resonance imaging (MRI) have become additional standard modalities used in the diagnosis of breast cancer. In high-risk women, ultrasound is known to detect approximately four additional cancers per 1,000 women. MRI is exquisitely sensitive for the detection of breast cancer. In high-risk women, it finds an additional four to five cancers per 100 women. However, both ultrasound and MRI are also known to lead to a large number of additional benign biopsies and short-term follow-up examinations. Many new breast imaging tools have improved and are being developed to improve on our current ability to diagnose early-stage breast cancer. These can be divided into two groups. The first group is those that are advances in current techniques, which include digital breast tomosynthesis and contrast-enhanced mammography and ultrasound with elastography or microbubbles. The other group includes new breast imaging platforms such as breast computed tomography (CT) scanning and radionuclide breast imaging. These are exciting advances. However, in this era of cost and radiation containment, it is imperative to look at all of them objectively to see which will provide clinically relevant additional information. PMID:24451711

  13. Radiolabeled androgens and progestins as imaging agents for tumors of the prostate and breast. Technical progress report, February 1, 1992--January 31, 1993

    SciTech Connect

    Katzenellenbogen, J.A.

    1992-08-08

    We are preparing progestins and androgens, labeled with the single photon emitters technetium-99m and rhenium-186 and the positron-emitting radionuclide fluorine-18. In both cases, ligands selected have very high affinity for the respective receptor, low affinity for blood and non-specific binders and to be reasonably resistant to metabolism: The progestins will be derivatives of the potent progestins ORG2058, norgestrel, RU486, and an unusual retroprogestin and the androgens will be derivatives of the high affinity analogs of natural and synthetic androgens. Radiometal labeling will involve carefully designed steroid conjugates with N{sub 2}S{sub 2} or related chelates, or novel metal linkages, and metal complexes that themselves mimic a steroid. Fluorine substitution will be made at positions where bulk and polarity are tolerated and metabolic defluorination is minimal. In vitro competitive binding studies will be performed on the unlabeled analogs to determine their binding characteristics towards a series of steroid receptors and blood binding proteins, and Log P values will be estimated from BPLC. Tissue distribution studies with the radiolabeled progestins will be done in estrogen-primed rats using the uterus as a target, and with the radioandrogens in estrogen-treated rats using the prostate as a target. Ultimately, in collaborative studies, these radiopharmaceuticals are to be used with SPECT or PET to image the receptor-positive tumors.

  14. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts

    SciTech Connect

    Drukker, Karen Sennett, Charlene A.; Giger, Maryellen L.

    2014-01-15

    Purpose: Develop a computer-aided detection method and investigate its feasibility for detection of breast cancer in automated 3D ultrasound images of women with dense breasts. Methods: The HIPAA compliant study involved a dataset of volumetric ultrasound image data, “views,” acquired with an automated U-Systems Somo•V{sup ®} ABUS system for 185 asymptomatic women with dense breasts (BI-RADS Composition/Density 3 or 4). For each patient, three whole-breast views (3D image volumes) per breast were acquired. A total of 52 patients had breast cancer (61 cancers), diagnosed through any follow-up at most 365 days after the original screening mammogram. Thirty-one of these patients (32 cancers) had a screening-mammogram with a clinically assigned BI-RADS Assessment Category 1 or 2, i.e., were mammographically negative. All software used for analysis was developed in-house and involved 3 steps: (1) detection of initial tumor candidates, (2) characterization of candidates, and (3) elimination of false-positive candidates. Performance was assessed by calculating the cancer detection sensitivity as a function of the number of “marks” (detections) per view. Results: At a single mark per view, i.e., six marks per patient, the median detection sensitivity by cancer was 50.0% (16/32) ± 6% for patients with a screening mammogram-assigned BI-RADS category 1 or 2—similar to radiologists’ performance sensitivity (49.9%) for this dataset from a prior reader study—and 45.9% (28/61) ± 4% for all patients. Conclusions: Promising detection sensitivity was obtained for the computer on a 3D ultrasound dataset of women with dense breasts at a rate of false-positive detections that may be acceptable for clinical implementation.

  15. Phase-contrast x-ray imaging of the breast: recent developments towards clinics

    NASA Astrophysics Data System (ADS)

    Coan, P.; Bravin, A.; Tromba, G.

    2013-12-01

    Breast imaging is one of the most demanding and delicate radiological applications. Mammography is the primary diagnosis tool in breast cancer detection and national screening programmes. Recognition of breast cancer depends on the detection of subtle architectural distortion, masses showing near normal breast tissue density, skin thickening and microcalcifications. The small differences in attenuation of x-rays between normal and malignant tissue result in low contrast and make cancer detection difficult in conventional x-ray absorption mammography. Because of these challenging aspects, breast imaging has been the first and most explored diagnostic field in phase-contrast imaging research. This novel imaging method has been extensively used and has demonstrated a unique capability in producing high-contrast and sensitive images at quasi-histological resolution. The most recent and significant technical developments are introduced and results obtained by the application of various phase-contrast imaging techniques for breast imaging are reported. The first phase-contrast mammography clinical trials project is also presented and the short- and long-term future perspectives of the method are discussed.

  16. Geomatics for precise 3D breast imaging.

    PubMed

    Alto, Hilary

    2005-02-01

    Canadian women have a one in nine chance of developing breast cancer during their lifetime. Mammography is the most common imaging technology used for breast cancer detection in its earliest stages through screening programs. Clusters of microcalcifications are primary indicators of breast cancer; the shape, size and number may be used to determine whether they are malignant or benign. However, overlapping images of calcifications on a mammogram hinder the classification of the shape and size of each calcification and a misdiagnosis may occur resulting in either an unnecessary biopsy being performed or a necessary biopsy not being performed. The introduction of 3D imaging techniques such as standard photogrammetry may increase the confidence of the radiologist when making his/her diagnosis. In this paper, traditional analytical photogrammetric techniques for the 3D mathematical reconstruction of microcalcifications are presented. The techniques are applied to a specially designed and constructed x-ray transparent Plexiglas phantom (control object). The phantom was embedded with 1.0 mm x-ray opaque lead pellets configured to represent overlapping microcalcifications. Control points on the phantom were determined by standard survey methods and hand measurements. X-ray films were obtained using a LORAD M-III mammography machine. The photogrammetric techniques of relative and absolute orientation were applied to the 2D mammographic films to analytically generate a 3D depth map with an overall accuracy of 0.6 mm. A Bundle Adjustment and the Direct Linear Transform were used to confirm the results. PMID:15649085

  17. Aerospace technology transfer to breast cancer imaging.

    PubMed

    Winfield, D L

    1997-01-01

    In the United States in 1996, an estimated 44,560 women died of breast cancer, and 184,300 new cases were diagnosed. Advances in space technology are now making significant improvements in the imaging technologies used in managing this important foe. The first of these spinoffs, a digital spot mammography system used to perform stereotactic fine-needle breast biopsy, uses a backside-thinned CCD developed originally for the Space Telescope Imaging Spectrometer. This paper describes several successful biomedical applications which have resulted from collaborative technology transfer programs between the National Aeronautics and Space Administration (NASA), the National Cancer Institute (NCI), and the U.S. Dept. of Health and Human Services Office on Women's Health (OWH). These programs have accelerated the introduction of direct digital mammography by two years. In follow-on work, RTI is now assisting the HHS Office on Women's Health to identify additional opportunities for transfer of aerospace, defense, and intelligence technologies to image-guided detection, diagnosis, and treatment of breast cancer. The technology identification and evaluation effort culminated in a May 1997 workshop, and the formative technology development partnerships are discussed. PMID:11541150

  18. Molecular Imaging of Biomarkers in Breast Cancer

    PubMed Central

    Ulaner, Gary A.; Riedl, Chris C.; Dickler, Maura N.; Jhaveri, Komal; Pandit-Taskar, Neeta; Weber, Wolfgang

    2016-01-01

    The success of breast cancer therapy is ultimately defined by clinical endpoints such as survival. It is valuable to have biomarkers that can predict the most efficacious therapies or measure response to therapy early in the course of treatment. Molecular imaging has a promising role in complementing and overcoming some of the limitations of traditional biomarkers by providing the ability to perform noninvasive, repeatable whole-body assessments. The potential advantages of imaging biomarkers are obvious and initial clinical studies have been promising, but proof of clinical utility still requires prospective multicenter clinical trials. PMID:26834103

  19. Implementing a breast MR imaging program: all things considered.

    PubMed

    Raza, Sughra

    2010-05-01

    The role of magnetic resonance (MR) imaging in breast imaging and evaluation has increased rapidly. MR imaging now encompasses diagnostic evaluation as well as screening for breast cancer in high-risk groups, monitoring the extent of disease and the response to chemotherapy. It is expected that the utility of breast MR imaging will continue to increase, requiring additional facilities and expertise. Establishing a breast MR imaging program requires familiarity with several unique issues pertaining to the nature of this imaging modality. This article attempts to address some of these issues, including selection of a magnet based on needs of the particular practice and magnet field strength, selection of a dedicated breast coil, magnet location and siting, advantages and challenges of higher strength magnets such as 3 Tesla, establishing a referral base, scheduling of breast MR examinations, patient safety concerns, and examination interpretation and reporting. PMID:20494305

  20. Issues to consider before implementing digital breast tomosynthesis into a breast imaging practice.

    PubMed

    Hardesty, Lara A

    2015-03-01

    OBJECTIVE. The purpose of this article is to discuss issues surrounding the implementation of digital breast tomosynthesis (DBT) into a clinical breast imaging practice and assist radiologists, technologists, and administrators who are considering the addition of this new technology to their practices. CONCLUSION. When appropriate attention is given to image acquisition, interpretation, storage, technologist and radiologist training, patient selection, billing, radiation dose, and marketing, implementation of DBT into a breast imaging practice can be successful. PMID:25714303

  1. Image-guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions

    PubMed Central

    Schmitz, A. C.; Gianfelice, D.; Daniel, B. L.; Mali, W. P. Th. M.

    2008-01-01

    Image-guided focussed ultrasound (FUS) ablation is a non-invasive procedure that has been used for treatment of benign or malignant breast tumours. Image-guidance during ablation is achieved either by using real-time ultrasound (US) or magnetic resonance imaging (MRI). The past decade phase I studies have proven MRI-guided and US-guided FUS ablation of breast cancer to be technically feasible and safe. We provide an overview of studies assessing the efficacy of FUS for breast tumour ablation as measured by percentages of complete tumour necrosis. Successful ablation ranged from 20% to 100%, depending on FUS system type, imaging technique, ablation protocol, and patient selection. Specific issues related to FUS ablation of breast cancer, such as increased treatment time for larger tumours, size of ablation margins, methods used for margin assessment and residual tumour detection after FUS ablation, and impact of FUS ablation on sentinel node procedure are presented. Finally, potential future applications of FUS for breast cancer treatment such as FUS-induced anti-tumour immune response, FUS-mediated gene transfer, and enhanced drug delivery are discussed. Currently, breast-conserving surgery remains the gold standard for breast cancer treatment. PMID:18351348

  2. Self-assembled levan nanoparticles for targeted breast cancer imaging.

    PubMed

    Kim, Sun-Jung; Bae, Pan Kee; Chung, Bong Hyun

    2015-01-01

    We report on the targeted imaging of breast cancer using self-assembled levan nanoparticles. Indocyanine green (ICG) was encapsulated in levan nanoparticles via self-assembly. Levan-ICG nanoparticles were found to be successfully accumulated in breast cancer via specific interaction between fructose moieties in levan and overexpressed glucose transporter 5 in breast cancer cells. PMID:25383444

  3. Molecular breast imaging with gamma emitters.

    PubMed

    Schillaci, O; Spanu, A; Danieli, R; Madeddu, G

    2013-12-01

    Following a diagnosis of breast cancer (BC), the early detection of local recurrence is important to define appropriate therapeutic strategies and increase the chances of a cure. In fact, despite major progress in surgical treatment, radiotherapy, and chemotherapy protocols, tumor recurrence is still a major problem. Moreover, the diagnosis of recurrence with conventional imaging methods can be difficult as a result of the presence of scar tissue. Molecular breast imaging (MBI) with gamma-ray emitting radiotracers may be very useful in this clinical setting, because it is not affected by the post-therapy morphologic changes. This review summarises the applications of 99mTc-sestamibi and 99mTc-tetrofosmin, the two most employed gamma emitter radiopharmaceuticals for MBI, in the diagnosis of local disease recurrence in patients with BC. The main limitation of MBI using conventional gamma-cameras is the low sensitivity for small BCs. The recent development of hybrid single photon emission computed tomography/computed tomography devices and especially of high-resolution specific breast cameras can improve the detection rate of sub-centimetric malignant lesions. Nevertheless, probably only the large availability of dedicated cameras will allow the clinical acceptance of MBI as useful complementary diagnostic technique in BC recurrence. The possible role of MBI with specific cameras in monitoring the local response of BC to neoadjuvant chemotherapy is also briefly discussed. PMID:24322791

  4. Molecular breast imaging using a dedicated high-performance instrument

    NASA Astrophysics Data System (ADS)

    O'Connor, Michael K.; Wagenaar, Douglas; Hruska, Carrie B.; Phillips, Stephen; Caravaglia, Gina; Rhodes, Deborah

    2006-08-01

    In women with radiographically dense breasts, the sensitivity of mammography is less than 50%. With the increase in the percent of women with dense breasts, it is important to look at alternative screening techniques for this population. This article reviews the strengths and weaknesses of current imaging techniques and focuses on recent developments in semiconductor-based gamma camera systems that offer significant improvements in image quality over that achievable with single-crystal sodium iodide systems. We have developed a technique known as Molecular Breast Imaging (MBI) using small field of view Cadmium Zinc Telluride (CZT) gamma cameras that permits the breast to be imaged in a similar manner to mammography, using light pain-free compression. Computer simulations and experimental studies have shown that use of low-energy high sensitivity collimation coupled with the excellent energy resolution and intrinsic spatial resolution of CZT detectors provides optimum image quality for the detection of small breast lesions. Preliminary clinical studies with a prototype dual-detector system have demonstrated that Molecular Breast Imaging has a sensitivity of ~90% for the detection of breast tumors less than 10 mm in diameter. By comparison, conventional scintimammography only achieves a sensitivity of 50% in the detection of lesions < 10 mm. Because Molecular Breast Imaging is not affected by breast density, this technique may offer an important adjunct to mammography in the evaluation of women with dense breast parenchyma.

  5. Anisotropic imaging performance in breast tomosynthesis

    SciTech Connect

    Badano, Aldo; Kyprianou, Iacovos S.; Jennings, Robert J.; Sempau, Josep

    2007-11-15

    We describe the anisotropy in imaging performance caused by oblique x-ray incidence in indirect detectors for breast tomosynthesis based on columnar scintillator screens. We use MANTIS, a freely available combined x-ray, electron, and optical Monte Carlo transport package which models the indirect detection processes in columnar screens, interaction by interaction. The code has been previously validated against published optical distributions. In this article, initial validation results are provided concerning the blur for particular designs of phosphor screens for which some details with respect to the columnar geometry are available from scanning electron microscopy. The polyenergetic x-ray spectrum utilized comes from a database of experimental data for three different anode/filter/kVp combinations: Mo/Mo at 28 kVp, Rh/Rh at 28 kVp, and W/Al at 42 kVp. The x-ray spectra were then filtered with breast tissue (3, 4, and 6 cm thickness), compression paddle, and support base, according to the oblique paths determined by the incidence angle. The composition of the breast tissue was 50%/50% adipose/glandular tissue mass ratio. Results are reported on the pulse-height statistics of the light output and on spatial blur, expressed as the response of the detector to a pencil beam with a certain incidence angle. Results suggest that the response is nonsymmetrical and that the resolution properties of a tomosynthesis system vary significantly with the angle of x-ray incidence. In contrast, it is found that the noise due to the variability in the number of light photons detected per primary x-ray interaction changes only a few percent. The anisotropy in the response is not less in screens with absorptive backings while the noise introduced by variations in the depth-dependent light output and optical transport is larger. The results suggest that anisotropic imaging performance across the detector area can be incorporated into reconstruction algorithms for improving the image

  6. Communication Between Breast Cancer Patients And Their Physicians About Breast-Related Body Image Issues

    PubMed Central

    Cohen, Mallory; Anderson, Rebecca C.; Jensik, Kathleen; Xiang, Qun; Pruszynski, Jessica; Walker, Alonzo P.

    2014-01-01

    Breast cancer patients encounter body image changes throughout their diagnosis, treatment, and recovery from breast cancer. No prospective studies were identified investigating communication between physicians and breast cancer patients related to body image. This qualitative pilot study determines 1) how breast cancer patients prefer their physicians communicate regarding body image changes, and 2) how comfortable physicians are in discussing body image issues with their patients. Data was collected from patients over twelve weeks through the Breast Evaluation Questionnaire (BEQ), a valid and reliable instrument, and a qualitative questionnaire. Ten physicians completed a qualitative questionnaire. The data were analyzed using frequency analysis. Nearly seventy percent of the patients reported there was more the physician could do to improve patient comfort in discussing breast-related body image concerns. Honesty, openness, and directness were important to the patients. Thirty-three percent of the patients answered that their physicians should be honest, open, and direct discussing these issues. On a five point Likert scale (1= very uncomfortable and 5= very comfortable), the physicians most frequently answered a 4 when asked how comfortable they are speaking about breast-related body image issues, however, only four out of ten always address the topic themselves during the patient's visit. This data suggests that patients want honesty, openness, and directness from their physicians related to the discussion of breast-related body image issues. The physicians report they are comfortable speaking about breast-related body image issues; yet, they do not directly initiate the topic. PMID:22929196

  7. High resolution PET breast imager with improved detection efficiency

    DOEpatents

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  8. Breast Ultrasound: Indications and Findings.

    PubMed

    Gundry, Kathleen R

    2016-06-01

    Breast ultrasound is a widely used adjuvant to mammography for the detection of breast cancer. This chapter will review some of the basic ultrasound technical factors and techniques, describe findings on ultrasound with an emphasis on the Breast Imaging Reporting and Data System terminology, and present the indications for breast ultrasound. New innovations in breast ultrasound, such as elastography, ultrasound contrast, 3-dimensional, and automated whole-breast ultrasound, will be reviewed. Ultrasound-guided breast procedures are also presented. PMID:26974219

  9. Image to physical space registration of supine breast MRI for image guided breast surgery

    NASA Astrophysics Data System (ADS)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  10. Mammographic breast density: effect on imaging and breast cancer risk.

    PubMed

    Pinsky, Renee W; Helvie, Mark A

    2010-10-01

    Mammographic breast density has been studied for more than 30 years. Greater breast density not only is related to decreased sensitivity of mammograms because of a masking effect but also is a major independent risk factor for breast cancer. This article defines breast density and reviews literature on quantification of mammographic density that is key to future clinical and research protocols. Important influences on breast density are addressed, including age, menopausal status, exogenous hormones, and genetics of density. Young women with dense breasts benefit from digital mammographic technique. The potential use of supplemental MRI and ultrasound screening techniques in high-risk women and women with dense breasts is explored, as are potential risk reduction strategies. PMID:20971840

  11. Multistatic adaptive microwave imaging for early breast cancer detection.

    PubMed

    Xie, Yao; Guo, Bin; Xu, Luzhou; Li, Jian; Stoica, Petre

    2006-08-01

    We propose a new multistatic adaptive microwave imaging (MAMI) method for early breast cancer detection. MAMI is a two-stage robust Capon beamforming (RCB) based image formation algorithm. MAMI exhibits higher resolution, lower sidelobes, and better noise and interference rejection capabilities than the existing approaches. The effectiveness of using MAMI for breast cancer detection is demonstrated via a simulated 3-D breast model and several numerical examples. PMID:16916099

  12. Imaging probe for breast cancer localization

    NASA Astrophysics Data System (ADS)

    Soluri, A.; Scafè, R.; Capoccetti, F.; Burgio, N.; Schiaratura, A.; Pani, R.; Pellegrini, R.; Cinti, M. N.; Mechella, M.; Amanti, A.; David, V.; Scopinaro, F.

    2003-01-01

    High spatial resolution, small Field Of View (FOV), fully portable scintillation cameras are lower cost and obviously lower weight than large FOV, not transportable Anger gamma cameras. Portable cameras allow easy transfer of the detector, thus of radioisotope imaging, where the bioptical procedure takes place. In this paper we describe a preliminary experience on radionuclide Breast Cancer (BC) imaging with a 22.8×22.8 mm 2 FOV minicamera, already used by our group for sentinel node detection with the name of Imaging Probe (IP). In this work IP BC detection was performed with the aim of guiding biopsy, in particular open biopsy, or to help or modify fine needle or needle addressing when main driving method was echography or digital radiography. The IP prototype weight was about 1 kg. This small scintillation camera is based on the compact Position Sensitive Photomultiplier Tube Hamamatsu R7600-00-C8, coupled to a CsI(Tl) scintillation array 2.6×2.6×5.0 mm 3 crystal-pixel size. Spatial resolution of the IP was 2.5 mm Full-Width at Half-Maximum at laboratory tests. IP was provided with acquisition software allowing quick change of pixels number on the computer acquisition frame and an on-line image-smoothing program. Both these programs were developed in order to allow nuclear physicians to quickly get target source when the patient was anesthetized in the operator room, with sterile conditions. 99mTc Sestamibi (MIBI) was injected at the dose of 740 MBq 1 h before imaging and biopsy to 14 patients with suspicious or known BC. Scintigraphic images were acquired before and after biopsy in each patient. Operator was allowed to take into account scintigraphic images as well as previously performed X-ray mammograms and echographies. High-resolution IP images were able to guide biopsy toward cancer or washout zones of the cancer, that are thought to be chemoresistant in 7 patients out of 10. Four patients, in whom IP and MIBI were not able to guide biopsy, did not show

  13. SPECT functional brain imaging. Technical considerations.

    PubMed

    Devous, M D

    1995-07-01

    The technical aspects of functional brain single-photon emission computed tomography (SPECT) imaging, referring primarily to the most common SPECT brain function measure--regional cerebral blood flow--are reviewed. SPECT images of regional cerebral blood flow are influenced by a number of factors unrelated to pathology, including tomographic quality, radiopharmaceuticals, environmental conditions at the time of radiotracer administration, characteristics of the subject (e.g., age, sex), image presentation, and image processing techniques. Modern SPECT scans yield excellent image quality, and instrumentation continues to improve. The armamentarium of regional cerebral blood flow and receptor radiopharmaceuticals is rapidly expanding. Standards regarding the environment for patient imaging and image presentation are emerging. However, there is still much to learn about the circumstances for performances and evaluation of SPECT functional brain imaging. Challenge tests, primarily established in cerebrovascular disease (i.e., the acetazolamide test), offer great promise in defining the extent and nature of disease, as well as predicting therapeutic responses. Clearly, SPECT brain imaging is a powerful clinical and research tool. However, SPECT will only achieve its full potential in the management of patients with cerebral pathology through close cooperation among members of the nuclear medicine, neurology, psychiatry, neurosurgery, and internal medicine specialties. PMID:7626833

  14. Breast cancer imaging: A perspective for the next decade

    SciTech Connect

    Karellas, Andrew; Vedantham, Srinivasan

    2008-11-15

    Breast imaging is largely indicated for detection, diagnosis, and clinical management of breast cancer and for evaluation of the integrity of breast implants. In this work, a prospective view of techniques for breast cancer detection and diagnosis is provided based on an assessment of current trends. The potential role of emerging techniques that are under various stages of research and development is also addressed. It appears that the primary imaging tool for breast cancer screening in the next decade will be high-resolution, high-contrast, anatomical x-ray imaging with or without depth information. MRI and ultrasonography will have an increasingly important adjunctive role for imaging high-risk patients and women with dense breasts. Pilot studies with dedicated breast CT have demonstrated high-resolution three-dimensional imaging capabilities, but several technological barriers must be overcome before clinical adoption. Radionuclide based imaging techniques and x-ray imaging with intravenously injected contrast offer substantial potential as a diagnostic tools and for evaluation of suspicious lesions. Developing optical and electromagnetic imaging techniques hold significant potential for physiologic information and they are likely to be of most value when integrated with or adjunctively used with techniques that provide anatomic information. Experimental studies with breast specimens suggest that phase-sensitive x-ray imaging techniques can provide edge enhancement and contrast improvement but more research is needed to evaluate their potential role in clinical breast imaging. From the technological perspective, in addition to improvements within each modality, there is likely to be a trend towards multi-modality systems that combine anatomic with physiologic information. We are also likely to transition from a standardized screening, where all women undergo the same imaging exam (mammography), to selection of a screening modality or modalities based an

  15. Breast cancer imaging: A perspective for the next decade

    PubMed Central

    Karellas, Andrew; Vedantham, Srinivasan

    2008-01-01

    Breast imaging is largely indicated for detection, diagnosis, and clinical management of breast cancer and for evaluation of the integrity of breast implants. In this work, a prospective view of techniques for breast cancer detection and diagnosis is provided based on an assessment of current trends. The potential role of emerging techniques that are under various stages of research and development is also addressed. It appears that the primary imaging tool for breast cancer screening in the next decade will be high-resolution, high-contrast, anatomical x-ray imaging with or without depth information. MRI and ultrasonography will have an increasingly important adjunctive role for imaging high-risk patients and women with dense breasts. Pilot studies with dedicated breast CT have demonstrated high-resolution three-dimensional imaging capabilities, but several technological barriers must be overcome before clinical adoption. Radionuclide based imaging techniques and x-ray imaging with intravenously injected contrast offer substantial potential as a diagnostic tools and for evaluation of suspicious lesions. Developing optical and electromagnetic imaging techniques hold significant potential for physiologic information and they are likely to be of most value when integrated with or adjunctively used with techniques that provide anatomic information. Experimental studies with breast specimens suggest that phase-sensitive x-ray imaging techniques can provide edge enhancement and contrast improvement but more research is needed to evaluate their potential role in clinical breast imaging. From the technological perspective, in addition to improvements within each modality, there is likely to be a trend towards multi-modality systems that combine anatomic with physiologic information. We are also likely to transition from a standardized screening, where all women undergo the same imaging exam (mammography), to selection of a screening modality or modalities based an

  16. Imaging Breast Density: Established and Emerging Modalities1

    PubMed Central

    Chen, Jeon-Hor; Gulsen, Gultekin; Su, Min-Ying

    2015-01-01

    Mammographic density has been proven as an independent risk factor for breast cancer. Women with dense breast tissue visible on a mammogram have a much higher cancer risk than women with little density. A great research effort has been devoted to incorporate breast density into risk prediction models to better estimate each individual’s cancer risk. In recent years, the passage of breast density notification legislation in many states in USA requires that every mammography report should provide information regarding the patient’s breast density. Accurate definition and measurement of breast density are thus important, which may allow all the potential clinical applications of breast density to be implemented. Because the two-dimensional mammography-based measurement is subject to tissue overlapping and thus not able to provide volumetric information, there is an urgent need to develop reliable quantitative measurements of breast density. Various new imaging technologies are being developed. Among these new modalities, volumetric mammographic density methods and three-dimensional magnetic resonance imaging are the most well studied. Besides, emerging modalities, including different x-ray–based, optical imaging, and ultrasound-based methods, have also been investigated. All these modalities may either overcome some fundamental problems related to mammographic density or provide additional density and/or compositional information. The present review article aimed to summarize the current established and emerging imaging techniques for the measurement of breast density and the evidence of the clinical use of these density methods from the literature. PMID:26692524

  17. Fully automated quantitative analysis of breast cancer risk in DCE-MR images

    NASA Astrophysics Data System (ADS)

    Jiang, Luan; Hu, Xiaoxin; Gu, Yajia; Li, Qiang

    2015-03-01

    Amount of fibroglandular tissue (FGT) and background parenchymal enhancement (BPE) in dynamic contrast enhanced magnetic resonance (DCE-MR) images are two important indices for breast cancer risk assessment in the clinical practice. The purpose of this study is to develop and evaluate a fully automated scheme for quantitative analysis of FGT and BPE in DCE-MR images. Our fully automated method consists of three steps, i.e., segmentation of whole breast, fibroglandular tissues, and enhanced fibroglandular tissues. Based on the volume of interest extracted automatically, dynamic programming method was applied in each 2-D slice of a 3-D MR scan to delineate the chest wall and breast skin line for segmenting the whole breast. This step took advantages of the continuity of chest wall and breast skin line across adjacent slices. We then further used fuzzy c-means clustering method with automatic selection of cluster number for segmenting the fibroglandular tissues within the segmented whole breast area. Finally, a statistical method was used to set a threshold based on the estimated noise level for segmenting the enhanced fibroglandular tissues in the subtraction images of pre- and post-contrast MR scans. Based on the segmented whole breast, fibroglandular tissues, and enhanced fibroglandular tissues, FGT and BPE were automatically computed. Preliminary results of technical evaluation and clinical validation showed that our fully automated scheme could obtain good segmentation of the whole breast, fibroglandular tissues, and enhanced fibroglandular tissues to achieve accurate assessment of FGT and BPE for quantitative analysis of breast cancer risk.

  18. Breast cancer imaging by microwave-induced thermoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Xu, Minghua; Ku, Geng; Jin, Xing; Wang, Lihong V.; Fornage, Bruno D.; Hunt, Kelly K.

    2005-04-01

    We report a preliminary study of breast cancer imaging by microwave-induced thermoacoustic tomography. In this study, we built a prototype of breast cancer imager based on a circular scan mode. A 3-GHz 0.3~0.5-μs microwave is used as the excitation energy source. A 2.25-MHz ultrasound transducer scans the thermoacoustic signals. All the measured data is transferred to a personal computer for imaging based on our proposed back-projection reconstruction algorithms. We quantified the line spread function of the imaging system. It shows the spatial resolution of our experimental system reaches 0.5 mm. After phantom experiments demonstrated the principle of this technique, we moved the imaging system to the University of Texas MD Anderson Cancer Center to image the excised breast cancer specimens. After the surgery performed by the physicians at the Cancer Center, the excised breast specimen was placed in a plastic cylindrical container with a diameter of 10 cm; and it was then imaged by three imaging modalities: radiograph, ultrasound and thermoacoustic imaging. Four excised breast specimens have been tested. The tumor regions have been clearly located. This preliminary study demonstrated the potential of microwave-induced thermoacoustic tomography for applications in breast cancer imaging.

  19. Automated quality assessment in three-dimensional breast ultrasound images.

    PubMed

    Schwaab, Julia; Diez, Yago; Oliver, Arnau; Martí, Robert; van Zelst, Jan; Gubern-Mérida, Albert; Mourri, Ahmed Bensouda; Gregori, Johannes; Günther, Matthias

    2016-04-01

    Automated three-dimensional breast ultrasound (ABUS) is a valuable adjunct to x-ray mammography for breast cancer screening of women with dense breasts. High image quality is essential for proper diagnostics and computer-aided detection. We propose an automated image quality assessment system for ABUS images that detects artifacts at the time of acquisition. Therefore, we study three aspects that can corrupt ABUS images: the nipple position relative to the rest of the breast, the shadow caused by the nipple, and the shape of the breast contour on the image. Image processing and machine learning algorithms are combined to detect these artifacts based on 368 clinical ABUS images that have been rated manually by two experienced clinicians. At a specificity of 0.99, 55% of the images that were rated as low quality are detected by the proposed algorithms. The areas under the ROC curves of the single classifiers are 0.99 for the nipple position, 0.84 for the nipple shadow, and 0.89 for the breast contour shape. The proposed algorithms work fast and reliably, which makes them adequate for online evaluation of image quality during acquisition. The presented concept may be extended to further image modalities and quality aspects. PMID:27158633

  20. A review of biomechanically informed breast image registration.

    PubMed

    Hipwell, John H; Vavourakis, Vasileios; Han, Lianghao; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J

    2016-01-21

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice. PMID:26733349

  1. A review of biomechanically informed breast image registration

    NASA Astrophysics Data System (ADS)

    Hipwell, John H.; Vavourakis, Vasileios; Han, Lianghao; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J.

    2016-01-01

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice.

  2. Spectral imaging of breast fibroadenoma using second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Wang, Yuhua

    2014-09-01

    Fibroadenoma (FA), typically composed of stroma and epithelial cells, is a very common benign breast disease. Women with FA are associated with an increased risk of future breast cancer. The objective of this study was to demonstrate the potential of multiphoton laser scanning microscopy (MPLSM) for characterizing the morphology of collagen in the human breast fibroadenomas. In the study, high-contrast SHG images of human normal breast tissues and fibroadenoma tissues were obtained for comparison. The morphology of collagen was different between normal breast tissue and fibroadenoma. This study shows that MPLSM has the ability to distinguish fibroadenoma tissues from the normal breast tissues based on the noninvasive SHG imaging. With the advent of the clinical portability of miniature MPLSM, we believe that the technique has great potential to be used in vivo studies and for monitoring the treatment responses of fibroadenomas in clinical.

  3. Advances in Optical Spectroscopy and Imaging of Breast Lesions

    SciTech Connect

    Demos, S; Vogel, A J; Gandjbakhche, A H

    2006-01-03

    A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and monitoring of treatment.

  4. Imaging spectrum of breast implant complications: mammography, ultrasound, and magnetic resonance imaging.

    PubMed

    O'Toole, M; Caskey, C I

    2000-10-01

    Knowledge of the various complications resulting from breast implants and the ways in which they can present radiographically is useful so that a complete evaluation can be made, thus, increasing the accuracy of diagnosis. In this article, a working knowledge of the more common breast implant types, essential to the accurate interpretation of breast implant imaging studies, is presented. In addition, imaging techniques and normal appearances of breast prostheses are described by using mammographic, sonographic, and magnetic resonance (MR) imaging. The findings of breast implant complications by using these modalities are described, including rupture, silicone extravasation, gel bleed, polyurethane breakdown, and peri-implant fluid collections. PMID:11071616

  5. Scintimammography (Breast Specific Gamma Imaging-BSGI)

    MedlinePlus

    ... computer to help investigate an abnormality discovered on mammography. Its ability to detect cancer is not limited ... a breast abnormality that has been discovered on mammography. Scintimammography is also known as Breast Specific Gamma ...

  6. Generation of anatomically realistic numerical phantoms for optoacoustic breast imaging

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Mitsuhashi, Kenji; Appleton, Catherine M.; Oraevsky, Alexander; Anastasio, Mark A.

    2016-03-01

    Because optoacoustic tomography (OAT) can provide functional information based on hemoglobin contrast, it is a promising imaging modality for breast cancer diagnosis. Developing an effective OAT breast imaging system requires balancing multiple design constraints, which can be expensive and time-consuming. Therefore, computer- simulation studies are often conducted to facilitate this task. However, most existing computer-simulation studies of OAT breast imaging employ simple phantoms such as spheres or cylinders that over-simplify the complex anatomical structures in breasts, thus limiting the value of these studies in guiding real-world system design. In this work, we propose a method to generate realistic numerical breast phantoms for OAT research based on clinical magnetic resonance imaging (MRI) data. The phantoms include a skin layer that defines breast-air boundary, major vessel branches that affect light absorption in the breast, and fatty tissue and fibroglandular tissue whose acoustical heterogeneity perturbs acoustic wave propagation. By assigning realistic optical and acoustic parameters to different tissue types, we establish both optic and acoustic breast phantoms, which will be exported into standard data formats for cross-platform usage.

  7. [Digital imaging in the surgical detection of breast neoplasms].

    PubMed

    Rulli, A; Cirocchi, R; Carli, L; Cagini, L

    1993-12-01

    Microcalcific clusters represent good indicators for breast cancer detection. The Authors evaluated 98 cases of breast microcalcifications in patients with no palpable lesions. The patients had undergone mammography, biopsy and excised specimen's radiography to confirm that the target lesion was adequately removed. The presence of microcalcifications was detected through a computerized instrument which allows the digitalization of the image. PMID:8167081

  8. Multifractal analysis of dynamic infrared imaging of breast cancer

    NASA Astrophysics Data System (ADS)

    Gerasimova, E.; Audit, B.; Roux, S. G.; Khalil, A.; Argoul, F.; Naimark, O.; Arneodo, A.

    2013-12-01

    The wavelet transform modulus maxima (WTMM) method was used in a multifractal analysis of skin breast temperature time-series recorded using dynamic infrared (IR) thermography. Multifractal scaling was found for healthy breasts as the signature of a continuous change in the shape of the probability density function (pdf) of temperature fluctuations across time scales from \\sim0.3 to 3 s. In contrast, temperature time-series from breasts with malignant tumors showed homogeneous monofractal temperature fluctuations statistics. These results highlight dynamic IR imaging as a very valuable non-invasive technique for preliminary screening in asymptomatic women to identify those with risk of breast cancer.

  9. Image-guided breast biopsy: state-of-the-art.

    PubMed

    O'Flynn, E A M; Wilson, A R M; Michell, M J

    2010-04-01

    Percutaneous image-guided breast biopsy is widely practised to evaluate predominantly non-palpable breast lesions. There has been steady development in percutaneous biopsy techniques. Fine-needle aspiration cytology was the original method of sampling, followed in the early 1990s by large core needle biopsy. The accuracy of both has been improved by ultrasound and stereotactic guidance. Larger bore vacuum-assisted biopsy devices became available in the late 1990s and are now commonplace in most breast units. We review the different types of breast biopsy devices currently available together with various localization techniques used, focusing on their advantages, limitations and current controversial clinical management issues. PMID:20338392

  10. A 3D Level Set Method for Microwave Breast Imaging

    PubMed Central

    Colgan, Timothy J.; Hagness, Susan C.; Van Veen, Barry D.

    2015-01-01

    Objective Conventional inverse-scattering algorithms for microwave breast imaging result in moderate resolution images with blurred boundaries between tissues. Recent 2D numerical microwave imaging studies demonstrate that the use of a level set method preserves dielectric boundaries, resulting in a more accurate, higher resolution reconstruction of the dielectric properties distribution. Previously proposed level set algorithms are computationally expensive and thus impractical in 3D. In this paper we present a computationally tractable 3D microwave imaging algorithm based on level sets. Methods We reduce the computational cost of the level set method using a Jacobian matrix, rather than an adjoint method, to calculate Frechet derivatives. We demonstrate the feasibility of 3D imaging using simulated array measurements from 3D numerical breast phantoms. We evaluate performance by comparing full 3D reconstructions to those from a conventional microwave imaging technique. We also quantitatively assess the efficacy of our algorithm in evaluating breast density. Results Our reconstructions of 3D numerical breast phantoms improve upon those of a conventional microwave imaging technique. The density estimates from our level set algorithm are more accurate than those of conventional microwave imaging, and the accuracy is greater than that reported for mammographic density estimation. Conclusion Our level set method leads to a feasible level of computational complexity for full 3D imaging, and reconstructs the heterogeneous dielectric properties distribution of the breast more accurately than conventional microwave imaging methods. Significance 3D microwave breast imaging using a level set method is a promising low-cost, non-ionizing alternative to current breast imaging techniques. PMID:26011863

  11. Imaging dose in breast radiotherapy: does breast size affect the dose to the organs at risk and the risk of secondary cancer to the contralateral breast?

    SciTech Connect

    Batumalai, Vikneswary; Quinn, Alexandra; Jameson, Michael; Delaney, Geoff; Holloway, Lois

    2015-03-15

    Correct target positioning is crucial for accurate dose delivery in breast radiotherapy resulting in utilisation of daily imaging. However, the radiation dose from daily imaging is associated with increased probability of secondary induced cancer. The aim of this study was to quantify doses associated with three imaging modalities and investigate the correlation of dose and varying breast size in breast radiotherapy. Planning computed tomography (CT) data sets of 30 breast cancer patients were utilised to simulate the dose received by various organs from a megavoltage computed tomography (MV-CT), megavoltage electronic portal image (MV-EPI) and megavoltage cone-beam computed tomography (MV-CBCT). The mean dose to organs adjacent to the target volume (contralateral breast, lungs, spinal cord and heart) were analysed. Pearson correlation analysis was performed to determine the relationship between imaging dose and primary breast volume and the lifetime attributable risk (LAR) of induced secondary cancer was calculated for the contralateral breast. The highest contralateral breast mean dose was from the MV-CBCT (1.79 Gy), followed by MV-EPI (0.22 Gy) and MV-CT (0.11 Gy). A similar trend was found for all organs at risk (OAR) analysed. The primary breast volume inversely correlated with the contralateral breast dose for all three imaging modalities. As the primary breast volume increases, the likelihood of a patient developing a radiation-induced secondary cancer to the contralateral breast decreases. MV-CBCT showed a stronger relationship between breast size and LAR of developing a radiation-induced contralateral breast cancer in comparison with the MV-CT and MV-EPI. For breast patients, imaging dose to OAR depends on imaging modality and treated breast size. When considering the use of imaging during breast radiotherapy, the patient's breast size and contralateral breast dose should be taken into account.

  12. Breast cancer detection in rotational thermography images using texture features

    NASA Astrophysics Data System (ADS)

    Francis, Sheeja V.; Sasikala, M.; Bhavani Bharathi, G.; Jaipurkar, Sandeep D.

    2014-11-01

    Breast cancer is a major cause of mortality in young women in the developing countries. Early diagnosis is the key to improve survival rate in cancer patients. Breast thermography is a diagnostic procedure that non-invasively images the infrared emissions from breast surface to aid in the early detection of breast cancer. Due to limitations in imaging protocol, abnormality detection by conventional breast thermography, is often a challenging task. Rotational thermography is a novel technique developed in order to overcome the limitations of conventional breast thermography. This paper evaluates this technique's potential for automatic detection of breast abnormality, from the perspective of cold challenge. Texture features are extracted in the spatial domain, from rotational thermogram series, prior to and post the application of cold challenge. These features are fed to a support vector machine for automatic classification of normal and malignant breasts, resulting in a classification accuracy of 83.3%. Feature reduction has been performed by principal component analysis. As a novel attempt, the ability of this technique to locate the abnormality has been studied. The results of the study indicate that rotational thermography holds great potential as a screening tool for breast cancer detection.

  13. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.

    PubMed

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng

    2016-05-01

    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p < 0.05). In addition, the BPD calculated from MR images was smaller than the BPD from ABUS images (MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p < 0.05). The intra-operator and inter-operator variant analysis results indicated that there was no statistically significant difference in breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health. PMID:26831342

  14. Evaluation of back projection methods for breast tomosynthesis image reconstruction.

    PubMed

    Zhou, Weihua; Lu, Jianping; Zhou, Otto; Chen, Ying

    2015-06-01

    Breast cancer is the most common cancer among women in the USA. Compared to mammography, digital breast tomosynthesis is a new imaging technique that may improve the diagnostic accuracy by removing the ambiguities of overlapped tissues and providing 3D information of the breast. Tomosynthesis reconstruction algorithms generate 3D reconstructed slices from a few limited angle projection images. Among different reconstruction algorithms, back projection (BP) is considered an important foundation of quite a few reconstruction techniques with deblurring algorithms such as filtered back projection. In this paper, two BP variants, including α-trimmed BP and principal component analysis-based BP, were proposed to improve the image quality against that of traditional BP. Computer simulations and phantom studies demonstrated that the α-trimmed BP may improve signal response performance and suppress noise in breast tomosynthesis image reconstruction. PMID:25384538

  15. Digital optical tomography system for dynamic breast imaging

    PubMed Central

    Flexman, Molly L.; Khalil, Michael A.; Al Abdi, Rabah; Kim, Hyun K.; Fong, Christopher J.; Desperito, Elise; Hershman, Dawn L.; Barbour, Randall L.; Hielscher, Andreas H.

    2011-01-01

    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold. PMID:21806275

  16. Evaluation of scatter effects on image quality for breast tomosynthesis

    SciTech Connect

    Wu Gang; Mainprize, James G.; Boone, John M.; Yaffe, Martin J.

    2009-10-15

    Digital breast tomosynthesis uses a limited number (typically 10-20) of low-dose x-ray projections to produce a pseudo-three-dimensional volume tomographic reconstruction of the breast. The purpose of this investigation was to characterize and evaluate the effect of scattered radiation on the image quality for breast tomosynthesis. In a simulation, scatter point spread functions generated by a Monte Carlo simulation method were convolved over the breast projection to estimate the distribution of scatter for each angle of tomosynthesis projection. The results demonstrate that in the absence of scatter reduction techniques, images will be affected by cupping artifacts, and there will be reduced accuracy of attenuation values inferred from the reconstructed images. The effect of x-ray scatter on the contrast, noise, and lesion signal-difference-to-noise ratio (SDNR) in tomosynthesis reconstruction was measured as a function of the tumor size. When a with-scatter reconstruction was compared to one without scatter for a 5 cm compressed breast, the following results were observed. The contrast in the reconstructed central slice image of a tumorlike mass (14 mm in diameter) was reduced by 30%, the voxel value (inferred attenuation coefficient) was reduced by 28%, and the SDNR fell by 60%. The authors have quantified the degree to which scatter degrades the image quality over a wide range of parameters relevant to breast tomosynthesis, including x-ray beam energy, breast thickness, breast diameter, and breast composition. They also demonstrate, though, that even without a scatter rejection device, the contrast and SDNR in the reconstructed tomosynthesis slice are higher than those of conventional mammographic projection images acquired with a grid at an equivalent total exposure.

  17. In vivo breast sound-speed imaging with ultrasound tomography

    SciTech Connect

    Huang, Lianjie; Li, Cuiping; Duric, Neb; Littrup, Peter

    2009-01-01

    We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density categories 1-4. For all four breast types from fatty to dense, the improvements for average sharpness (in the unit of (m{center_dot} s) {sup -1}) of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4 fold compared to the straight ray tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast parenchyma as 1422 {+-} 9 mls (mean{+-} SD) and1487 {+-} 21 mls, respectively. Based on 32 lesions in a cohort of 61 patients, we also found that the mean sound-speed for malignant breast lesions (1548{+-}17 mls) was higher, on average, than that of benign ones (1513{+-}27 mls) (one-sided pbreast density (, and therefore, breast cancer risk), as well as detect and help differentiate breast lesions. Finally, our sound-speed tomograms may also be a useful tool to monitor clinical response of breast cancer patients to neo-adjuvant chemotherapy.

  18. Breast imaging with the SoftVue imaging system: first results

    NASA Astrophysics Data System (ADS)

    Duric, Neb; Littrup, Peter; Schmidt, Steven; Li, Cuiping; Roy, Olivier; Bey-Knight, Lisa; Janer, Roman; Kunz, Dave; Chen, Xiaoyang; Goll, Jeffrey; Wallen, Andrea; Zafar, Fouzaan; Allada, Veerendra; West, Erik; Jovanovic, Ivana; Li, Kuo; Greenway, William

    2013-03-01

    For women with dense breast tissue, who are at much higher risk for developing breast cancer, the performance of mammography is at its worst. Consequently, many early cancers go undetected when they are the most treatable. Improved cancer detection for women with dense breasts would decrease the proportion of breast cancers diagnosed at later stages, which would significantly lower the mortality rate. The emergence of whole breast ultrasound provides good performance for women with dense breast tissue, and may eliminate the current trade-off between the cost effectiveness of mammography and the imaging performance of more expensive systems such as magnetic resonance imaging. We report on the performance of SoftVue, a whole breast ultrasound imaging system, based on the principles of ultrasound tomography. SoftVue was developed by Delphinus Medical Technologies and builds on an early prototype developed at the Karmanos Cancer Institute. We present results from preliminary testing of the SoftVue system, performed both in the lab and in the clinic. These tests aimed to validate the expected improvements in image performance. Initial qualitative analyses showed major improvements in image quality, thereby validating the new imaging system design. Specifically, SoftVue's imaging performance was consistent across all breast density categories and had much better resolution and contrast. The implications of these results for clinical breast imaging are discussed and future work is described.

  19. Imaging of breast cancer with mid- and long-wave infrared camera.

    PubMed

    Joro, R; Lääperi, A-L; Dastidar, P; Soimakallio, S; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Järvenpää, R

    2008-01-01

    In this novel study the breasts of 15 women with palpable breast cancer were preoperatively imaged with three technically different infrared (IR) cameras - micro bolometer (MB), quantum well (QWIP) and photo voltaic (PV) - to compare their ability to differentiate breast cancer from normal tissue. The IR images were processed, the data for frequency analysis were collected from dynamic IR images by pixel-based analysis and from each image selectively windowed regional analysis was carried out, based on angiogenesis and nitric oxide production of cancer tissue causing vasomotor and cardiogenic frequency differences compared to normal tissue. Our results show that the GaAs QWIP camera and the InSb PV camera demonstrate the frequency difference between normal and cancerous breast tissue; the PV camera more clearly. With selected image processing operations more detailed frequency analyses could be applied to the suspicious area. The MB camera was not suitable for tissue differentiation, as the difference between noise and effective signal was unsatisfactory. PMID:18432466

  20. Double difference tomography for breast ultrasound sound speed imaging

    NASA Astrophysics Data System (ADS)

    Li, Cuiping; Duric, Neb; Rama, Olsi; Burger, Angelika; Polin, Lisa; Nechiporchik, Nicole

    2011-03-01

    Breast ultrasound tomography is a rapidly developing imaging modality that has the potential to impact breast cancer screening and diagnosis. Double difference (DD) tomography utilizes more accurate differential time-of-flight (ToF) data to reconstruct the sound speed structure of the breast. It can produce more precise and better resolution sound speed images than standard tomography that uses absolute ToF data. We apply DD tomography to phantom data and excised mouse mammary glands data. DD tomograms demonstrate sharper sound speed contrast than the standard tomograms.

  1. Spectral imaging detects breast cancer in fresh unstained specimens

    NASA Astrophysics Data System (ADS)

    Chung, Alice; Gaon, Mark; Jeong, Jihoon; Karlan, Scott; Lindsley, Erik; Wachsmann-Hogiu, Sebastian; Xiong, Yizhi; Zhao, Tong; Farkas, Daniel L.

    2006-02-01

    Spectral imaging has recently been introduced in the biomedical field as a noninvasive, quantitative means of studying biological tissues. Many of its potential applications have been demonstrated (in vitro and, to a lesser degree, in vivo) with the use of stains or dyes. Successful translation to the clinical environment has been largely lagging, due to safety considerations and regulatory limitations preventing use of contrast agents in humans. We report experiments showing the feasibility of high-resolution spectral imaging of breast cancer without the use of contrast agents, thus completing the continuum of translational research, to in vivo imaging that will be directly applicable in the clinical environment. Our initial work focused on image acquisition using Fourier transform microinterferometry and subsequent segmentation of both stained and unstained breast cancer slides-derived image sets. We then applied our techniques to imaging fresh unstained ex vivo specimens of rat breast cancer and sentinel lymph nodes. We also investigated multiple methods of classification to optimize our image analyses, and preliminary results for the best algorithm tested yielded an overall sensitivity of 96%, and a specificity of 92% for cancer detection. Using spectral imaging and classification techniques, we were able to demonstrate that reliable detection of breast cancer in fixed and fresh unstained specimens of breast tissue is possible.

  2. Absorption imaging performance in a future Talbot-Lau interferometer based breast imaging system

    NASA Astrophysics Data System (ADS)

    Ge, Yongshuai; Zhao, Wei; Garrett, John; Li, Ke; Chen, Guang-Hong

    2015-03-01

    A grating-based x-ray multi-contrast imaging system integrates a source grating G0, a diffraction grating G1, and an analyzer grating G2 into a conventional x-ray imaging system to generate images with three contrast mechanisms: absorption contrast, differential phase contrast, and dark field contrast. To facilitate the potential translation of this multi-contrast imaging system into a clinical setting, our group has developed several single-shot data acquisition methods to eliminate the necessity of the time-consuming phase stepping procedure. These methods have enabled us to acquire multi-contrast images with the same data acquisition time currently used for absorption imaging. One of the proposed methods is the use a staggered G2 grating. In this work, we propose to incorporate this staggered G2 grating into a state-of-the-art breast tomosynthesis imaging system to generate tomosynthesis images with three contrast mechanisms. The introduction of this staggered G2 grating will reject scatter and thus improve image contrast at the detector plane, but it will also absorb some x-ray photons reaching detector, thus increasing noise and reducing the contrast to noise ratio (CNR). Therefore, a key technical question is whether the CNR and dose efficiency can be maintained for absorption imaging after the introduction of this staggered G2 grating. In this paper, both the CNR and scatter-to-primary ratio (SPR) of absorption imaging were investigated with Monte Carlo simulations for a variety of staggered G2 grating designs.

  3. IN VIVO BREAST SOUND-SPEED IMAGING WITH ULTRASOUND TOMOGRAPHY

    PubMed Central

    Li, Cuiping; Duric, Nebojsa; Littrup, Peter; Huang, Lianjie

    2014-01-01

    We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density categories 1 through 4. Our analysis showed that the improvements for average sharpness (in the unit of (m · s)−1) of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4-fold compared with the straight ray tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast parenchyma as 1422±9 m/s (mean±SD) and 1487±21 m/s, respectively. Based on 32 lesions in a cohort of 61 patients, we also found that the mean sound-speed for malignant breast lesions 1548±17 m/s was higher, on average, than that of benign ones (1513±27 m/s) (one-sided p < 0.001). These results suggest that, clinically, sound-speed tomograms can be used to assess breast density (and therefore, breast cancer risk), as well as detect and help differentiate breast lesions. Finally, our sound-speed tomograms may also be a useful tool to monitor the clinical response of breast cancer patients to neo-adjuvant chemotherapy. PMID:19647920

  4. Breast-specific gamma-imaging: molecular imaging of the breast using 99mTc-sestamibi and a small-field-of-view gamma-camera.

    PubMed

    Jones, Elizabeth A; Phan, Trinh D; Blanchard, Deborah A; Miley, Abbe

    2009-12-01

    Breast-specific gamma-imaging (BSGI), also known as molecular breast imaging, is breast scintigraphy using a small-field-of-view gamma-camera and (99m)Tc-sestamibi. There are many different types of breast cancer, and many have characteristics making them challenging to detect by mammography and ultrasound. BSGI is a cost-effective, highly sensitive and specific technique that complements other imaging modalities currently being used to identify malignant lesions in the breast. Using the current Society of Nuclear Medicine guidelines for breast scintigraphy, Legacy Good Samaritan Hospital began conducting BSGI, breast scintigraphy with a breast-optimized gamma-camera. In our experience, optimal imaging has been conducted in the Breast Center by a nuclear medicine technologist. In addition, the breast radiologists read the BSGI images in correlation with the mammograms, ultrasounds, and other imaging studies performed. By modifying the current Society of Nuclear Medicine protocol to adapt it to the practice of breast scintigraphy with these new systems and by providing image interpretation in conjunction with the other breast imaging studies, our center has found BSGI to be a valuable adjunctive procedure in the diagnosis of breast cancer. The development of a small-field-of-view gamma-camera, designed to optimize breast imaging, has resulted in improved detection capabilities, particularly for lesions less than 1 cm. Our experience with this procedure has proven to aid in the clinical work-up of many of our breast patients. After reading this article, the reader should understand the history of breast scintigraphy, the pharmaceutical used, patient preparation and positioning, imaging protocol guidelines, clinical indications, and the role of breast scintigraphy in breast cancer diagnosis. PMID:19914975

  5. Inverse scattering and refraction corrected reflection for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Wiskin, J.; Borup, D.; Johnson, S.; Berggren, M.; Robinson, D.; Smith, J.; Chen, J.; Parisky, Y.; Klock, John

    2010-03-01

    Reflection ultrasound (US) has been utilized as an adjunct imaging modality for over 30 years. TechniScan, Inc. has developed unique, transmission and concomitant reflection algorithms which are used to reconstruct images from data gathered during a tomographic breast scanning process called Warm Bath Ultrasound (WBU™). The transmission algorithm yields high resolution, 3D, attenuation and speed of sound (SOS) images. The reflection algorithm is based on canonical ray tracing utilizing refraction correction via the SOS and attenuation reconstructions. The refraction correction reflection algorithm allows 360 degree compounding resulting in the reflection image. The requisite data are collected when scanning the entire breast in a 33° C water bath, on average in 8 minutes. This presentation explains how the data are collected and processed by the 3D transmission and reflection imaging mode algorithms. The processing is carried out using two NVIDIA® Tesla™ GPU processors, accessing data on a 4-TeraByte RAID. The WBU™ images are displayed in a DICOM viewer that allows registration of all three modalities. Several representative cases are presented to demonstrate potential diagnostic capability including: a cyst, fibroadenoma, and a carcinoma. WBU™ images (SOS, attenuation, and reflection modalities) are shown along with their respective mammograms and standard ultrasound images. In addition, anatomical studies are shown comparing WBU™ images and MRI images of a cadaver breast. This innovative technology is designed to provide additional tools in the armamentarium for diagnosis of breast disease.

  6. Invasive ductal carcinoma arising from dense accessory breast visualized with 99mTc-MIBI breast-specific γ imaging.

    PubMed

    Yoon, Hai-Jeon; Sung, Sun Hee; Moon, Byung In; Kim, Bom Sahn

    2014-08-01

    Primary accessory breast cancer is extremely rare, and the diagnostic efficacy of Tc-MIBI breast-specific γ imaging (BSGI) has not been reported elsewhere. We present a case of primary carcinoma arising from dense accessory breast that was visualized with BSGI. A 43-year-old female patient with a palpable axillary mass underwent mammography, which showed dense parenchyma on both of the anatomic and accessory breasts with no abnormality. Subsequent BSGI showed no abnormal uptake in bilateral anatomic breasts, but focal abnormal uptake was noted in the accessory breast. Permanent pathologic evaluation confirmed invasive ductal carcinoma (not otherwise specified type) of the accessory breast. PMID:24445272

  7. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    PubMed Central

    Gupta, Suneet; Porwal, Rabins

    2016-01-01

    Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images. PMID:27127497

  8. Quantification of background enhancement in breast magnetic resonance imaging

    PubMed Central

    Klifa, C; Suzuki, S; Aliu, S; Singer, L; Wilmes, L; Newitt, D; Joe, B; Hylton, N

    2011-01-01

    Purpose To present a novel technique for measuring tissue enhancement in breast fibroglandular tissue regions on contrast-enhanced breast MR images aimed at quantifying the enhancement of breast parenchyma, also known as “background enhancement”. Materials and Methods Our quantitative method for measuring breast MRI background enhancement was evaluated in a population of 16 healthy volunteers. We also demonstrate the use of our new technique in the case study of one subject classified as high risk for developing breast cancer who underwent 3 months of tamoxifen therapy. Results We obtained quantitative measures of background enhancement in all cases. The high-risk patient exhibited a 37% mean reduction in background enhancement with treatment. Conclusion Our quantitative method is a robust and promising tool that may allow investigators to quantify and document the potential adverse effect of background enhancement on diagnostic accuracy in larger populations. PMID:21509883

  9. Diffuse optical imaging of the breast using structured-light

    NASA Astrophysics Data System (ADS)

    Kwong, Jessica; Nouizi, Farouk; Cho, Jaedu; Zheng, Jie; Li, Yifan; Chen, Jeon-hor; Su, Min-Ying; Gulsen, Gultekin

    2015-03-01

    Diffuse optical imaging with structured-light illumination and detection can provide rapid, wide-field anatomical and functional imaging of the breast with an application for breast cancer screening. Our aims for this study were to test the feasibility of structured-light, test our pattern set, and develop and optimize our image reconstruction algorithm. For our phantom studies, we created an agar phantom with dimensions similar to a compressed breast. A cubic inclusion of 30mm by 30mm by 25mm with twice the amount of absorption contrast than the background was placed at the center. Near-infrared light of eleven patterns including a full illumination and single stripes was illuminated onto the breast phantom and detected with a CCD camera, with integration of the signals according to the patterns performed post-data acquisition, with a total of 121 measurements. These measurements were then used in our reconstruction algorithm that iteratively minimized the difference between the collected data and the estimation from our FEM-based forward model of photon diffusion to calculate the absorption values. Reconstructions of the 3D absorption maps detect an inclusion at the center and indicate that our selected set of patterns may be sufficient for structured-light imaging. We are currently improving our instrumentation and testing with additional phantom studies, while also performing simulations of numerical breast phantoms created from MR images to test structured-light's ability to image complex and realistic breast tissue composition. We hope to use this technique as optical method to image molecular markers, such as hemoglobin, water and lipid, within the breast.

  10. Characterization of human breast cancer tissues by infrared imaging.

    PubMed

    Verdonck, M; Denayer, A; Delvaux, B; Garaud, S; De Wind, R; Desmedt, C; Sotiriou, C; Willard-Gallo, K; Goormaghtigh, E

    2016-01-21

    Fourier Transform InfraRed (FTIR) spectroscopy coupled to microscopy (IR imaging) has shown unique advantages in detecting morphological and molecular pathologic alterations in biological tissues. The aim of this study was to evaluate the potential of IR imaging as a diagnostic tool to identify characteristics of breast epithelial cells and the stroma. In this study a total of 19 breast tissue samples were obtained from 13 patients. For 6 of the patients, we also obtained Non-Adjacent Non-Tumor tissue samples. Infrared images were recorded on the main cell/tissue types identified in all breast tissue samples. Unsupervised Principal Component Analyses and supervised Partial Least Square Discriminant Analyses (PLS-DA) were used to discriminate spectra. Leave-one-out cross-validation was used to evaluate the performance of PLS-DA models. Our results show that IR imaging coupled with PLS-DA can efficiently identify the main cell types present in FFPE breast tissue sections, i.e. epithelial cells, lymphocytes, connective tissue, vascular tissue and erythrocytes. A second PLS-DA model could distinguish normal and tumor breast epithelial cells in the breast tissue sections. A patient-specific model reached particularly high sensitivity, specificity and MCC rates. Finally, we showed that the stroma located close or at distance from the tumor exhibits distinct spectral characteristics. In conclusion FTIR imaging combined with computational algorithms could be an accurate, rapid and objective tool to identify/quantify breast epithelial cells and differentiate tumor from normal breast tissue as well as normal from tumor-associated stroma, paving the way to the establishment of a potential complementary tool to ensure safe tumor margins. PMID:26535413

  11. Breast imaging with SoftVue: initial clinical evaluation

    NASA Astrophysics Data System (ADS)

    Duric, Neb; Littrup, Peter; Li, Cuiping; Roy, Olivier; Schmidt, Steven; Cheng, Xiaoyang; Seamans, John; Wallen, Andrea; Bey-Knight, Lisa

    2014-03-01

    We describe the clinical performance of SoftVue, a breast imaging device based on the principles of ultrasound tomography. Participants were enrolled in an IRB-approved study at Wayne State University, Detroit, MI. The main research findings indicate that SoftVue is able to image the whole uncompressed breast up to cup size H. Masses can be imaged in even the densest breasts with the ability to discern margins and mass shapes. Additionally, it is demonstrated that multi-focal disease can also be imaged. The system was also tested in its research mode for additional imaging capabilities. These tests demonstrated the potential for generating tissue stiffness information for the entire breast using through-transmission data. This research capability differentiates SoftVue from the other whole breast systems on the market. It is also shown that MRI-like images can be generated using alternative processing of the echo data. Ongoing research is focused on validating and quantifying these findings in a larger sample of study participants and quantifying SoftVue's ability to differentiate benign masses from cancer.

  12. Sexuality and body image in younger women with breast cancer.

    PubMed

    Schover, L R

    1994-01-01

    Breast cancer has the potential to be most devastating to the sexual function and self-esteem of premenopausal women. Nevertheless, not one study has systematically compared the impact of breast cancer treatment on sexual issues across age groups. Research shows that younger women with breast cancer have more severe emotional distress than older cohorts. In a group of patients seeking sexual rehabilitation in a cancer center, younger couples were more distressed, but also had the best prognosis with treatment. In theory, loss of a breast or poor breast appearance would be more distressing to women whose youth gives them high expectations for physical beauty. Seeking new dating relationships after breast cancer treatment is a special stressor for single women. Potential infertility also may impact on a woman's self-concept as a sexual person. Systemic treatment disrupts sexual function by causing premature menopause, with estrogen loss leading to vaginal atrophy and androgen loss perhaps decreasing sexual desire and arousability. Research on mastectomy versus breast conservation across all ages of women has demonstrated that general psychological distress, marital satisfaction, and overall sexual frequency and function do not differ between the two treatment groups. Women with breast conservation do rate their body image more highly and are more comfortable with nudity and breast caressing. There is some evidence that breast conservation offers more psychological "protection" for younger women. Research on the impact of breast reconstruction is sparse, but reveals similar patterns. Future studies should use rigorous methodology and focus on the impact of premature menopause and the effectiveness of sexual rehabilitation for younger women. PMID:7999462

  13. How I report breast magnetic resonance imaging studies for breast cancer staging and screening.

    PubMed

    Vinnicombe, Sarah

    2016-01-01

    Magnetic resonance imaging (MRI) of the breast is the most sensitive imaging technique for the diagnosis and local staging of primary breast cancer and yet, despite the fact that it has been in use for 20 years, there is little evidence that its widespread uncritical adoption has had a positive impact on patient-related outcomes.This has been attributed previously to the low specificity that might be expected with such a sensitive modality, but with modern techniques and protocols, the specificity and positive predictive value for malignancy can exceed that of breast ultrasound and mammography. A more likely explanation is that historically, clinicians have acted on MRI findings and altered surgical plans without prior histological confirmation. Furthermore, modern adjuvant therapy for breast cancer has improved so much that it has become a very tall order to show a an improvement in outcomes such as local recurrence rates.In order to obtain clinically useful information, it is necessary to understand the strengths and weaknesses of the technique and the physiological processes reflected in breast MRI. An appropriate indication for the scan, proper patient preparation and good scan technique, with rigorous quality assurance, are all essential prerequisites for a diagnostically relevant study.The use of recognised descriptors from a standardised lexicon is helpful, since assessment can then dictate subsequent recommendations for management, as in the American College of Radiology BI-RADS (Breast Imaging Reporting and Data System) lexicon (Morris et al., ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System, 2013). It also enables audit of the service. However, perhaps the most critical factor in the generation of a meaningful report is for the reporting radiologist to have a thorough understanding of the clinical question and of the findings that will influence management. This has never been more important than at present, when we are in the throes of a

  14. CS based confocal microwave imaging algorithm for breast cancer detection.

    PubMed

    Sun, Y P; Zhang, S; Cui, Z; Qu, L L

    2016-04-29

    Based on compressive sensing (CS) technology, a high resolution confocal microwave imaging algorithm is proposed for breast cancer detection. With the exploitation of the spatial sparsity of the target space, the proposed image reconstruction problem is cast within the framework of CS and solved by the sparse constraint optimization. The effectiveness and validity of the proposed CS imaging method is verified by the full wave synthetic data from numerical breast phantom using finite-difference time-domain (FDTD) method. The imaging results have shown that the proposed imaging scheme can improve the imaging quality while significantly reducing the amount of data measurements and collection time when compared to the traditional delay-and-sum imaging algorithm. PMID:27177106

  15. Online advertising by three commercial breast imaging services: message takeout and effectiveness.

    PubMed

    Johnson, Rebecca; Jalleh, Geoffrey; Pratt, Iain S; Donovan, Robert J; Lin, Chad; Saunders, Christobel; Slevin, Terry

    2013-10-01

    Mammography is widely acknowledged to be the most cost-effective technique for population screening for breast cancer. Recently in Australia, imaging modalities other than mammography, including thermography, electrical impedance, and computerised breast imaging, have been increasingly promoted as alternative methods of breast cancer screening. This study assessed the impact of three commercial breast imaging companies' promotional material upon consumers' beliefs about the effectiveness of the companies' technology in detecting breast cancer, and consumers' intentions to seek more information or consider having their breasts imaged by these modalities. Results showed 90% of respondents agreed that the companies' promotional material promoted the message that the advertised breast imaging method was effective in detecting breast cancer, and 80% agreed that the material promoted the message that the imaging method was equally or more effective than a mammogram. These findings have implications for women's preference for and uptake of alternative breast imaging services over mammography. PMID:23422256

  16. Stereotactic mammography imaging combined with 3D US imaging for image guided breast biopsy

    SciTech Connect

    Surry, K. J. M.; Mills, G. R.; Bevan, K.; Downey, D. B.; Fenster, A.

    2007-11-15

    Stereotactic X-ray mammography (SM) and ultrasound (US) guidance are both commonly used for breast biopsy. While SM provides three-dimensional (3D) targeting information and US provides real-time guidance, both have limitations. SM is a long and uncomfortable procedure and the US guided procedure is inherently two dimensional (2D), requiring a skilled physician for both safety and accuracy. The authors developed a 3D US-guided biopsy system to be integrated with, and to supplement SM imaging. Their goal is to be able to biopsy a larger percentage of suspicious masses using US, by clarifying ambiguous structures with SM imaging. Features from SM and US guided biopsy were combined, including breast stabilization, a confined needle trajectory, and dual modality imaging. The 3D US guided biopsy system uses a 7.5 MHz breast probe and is mounted on an upright SM machine for preprocedural imaging. Intraprocedural targeting and guidance was achieved with real-time 2D and near real-time 3D US imaging. Postbiopsy 3D US imaging allowed for confirmation that the needle was penetrating the target. The authors evaluated 3D US-guided biopsy accuracy of their system using test phantoms. To use mammographic imaging information, they registered the SM and 3D US coordinate systems. The 3D positions of targets identified in the SM images were determined with a target localization error (TLE) of 0.49 mm. The z component (x-ray tube to image) of the TLE dominated with a TLE{sub z} of 0.47 mm. The SM system was then registered to 3D US, with a fiducial registration error (FRE) and target registration error (TRE) of 0.82 and 0.92 mm, respectively. Analysis of the FRE and TRE components showed that these errors were dominated by inaccuracies in the z component with a FRE{sub z} of 0.76 mm and a TRE{sub z} of 0.85 mm. A stereotactic mammography and 3D US guided breast biopsy system should include breast compression for stability and safety and dual modality imaging for target localization

  17. Stereotactic Image-Guided Navigation During Breast Reconstruction in Patients With Breast Cancer

    ClinicalTrials.gov

    2015-08-27

    Ductal Breast Carcinoma in Situ; Lobular Breast Carcinoma in Situ; Recurrent Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer

  18. Identification of breast contour for nipple segmentation in breast magnetic resonance images

    SciTech Connect

    Gwo, Chih-Ying; Gwo, Allen; Wei, Chia-Hung; Huang, Pai Jung

    2014-02-15

    Purpose: The purpose of this study is to develop a method to simulate the breast contour and segment the nipple in breast magnetic resonance images. Methods: This study first identifies the chest wall and removes the chest part from the breast MR images. Subsequently, the cleavage and its motion artifacts are removed, distinguishing the separate breasts, where the edge points are sampled for curve fitting. Next, a region growing method is applied to find the potential nipple region. Finally, the potential nipple region above the simulated curve can be removed in order to retain the original smooth contour. Results: The simulation methods can achieve the least root mean square error (RMSE) for certain cases. The proposed YBnd and (Dmin+Dmax)/2 methods are significant due toP = 0.000. The breast contour curve detected by the two proposed methods is closer than that determined by the edge detection method. The (Dmin+Dmax)/2 method can achieve the lowest RMSE of 1.1029 on average, while the edge detection method results in the highest RMSE of 6.5655. This is only slighter better than the comparison methods, which implies that the performance of these methods depends upon the conditions of the cases themselves. Under this method, the maximal Dice coefficient is 0.881, and the centroid difference is 0.36 pixels. Conclusions: The contributions of this study are twofold. First, a method was proposed to identify and segment the nipple in breast MR images. Second, a curve-fitting method was used to simulate the breast contour, allowing the breast to retain its original smooth shape.

  19. Magnetic Resonance Imaging Features of Adenosis in the Breast

    PubMed Central

    Gity, Masoumeh; Arabkheradmand, Ali; Shakiba, Madjid; Khademi, Yassaman; Bijan, Bijan; Sadaghiani, Mohammad Salehi; Jalali, Amir Hossein

    2015-01-01

    Purpose Adenosis lesions of the breast, including sclerosing adenosis and adenosis tumors, are a group of benign proliferative disorders that may mimic the features of malignancy on imaging. In this study, we aim to describe the features of breast adenosis lesions with suspicious or borderline findings on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods In our database, we identified 49 pathologically proven breast adenosis lesions for which the final assessment of the breast MRI report was classified as either category 4 (n=45) or category 5 (n=4), according to the Breast Imaging Reporting and Data System (BI-RADS) published by the American College of Radiology (ACR). The lesions had a final diagnosis of either pure adenosis (n=33, 67.3%) or mixed adenosis associated with other benign pathologies (n=16, 32.7%). Results Of the 49 adenosis lesions detected on DCE-MRI, 32 (65.3%) appeared as enhancing masses, 16 (32.7%) as nonmass enhancements, and one (2.1%) as a tiny enhancing focus. Analysis of the enhancing masses based on the ACR BI-RADS lexicon revealed that among the mass descriptors, the most common features were irregular shape in 12 (37.5%), noncircumscribed margin in 20 (62.5%), heterogeneous internal pattern in 16 (50.0%), rapid initial enhancement in 32 (100.0%), and wash-out delayed en-hancement pattern in 21 (65.6%). Of the 16 nonmass enhancing lesions, the most common descriptors included focal distribution in seven (43.8%), segmental distribution in six (37.5%), clumped internal pattern in nine (56.3%), rapid initial enhancement in 16 (100.0%), and wash-out delayed enhancement pattern in eight (50.0%). Conclusion Adenosis lesions of the breast may appear suspicious on breast MRI. Awareness of these suspi-cious-appearing features would be helpful in obviating unnecessary breast biopsies. PMID:26155296

  20. Multi-modal Ultrasound Imaging for Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Medina-Valdés, L.; Pérez-Liva, M.; Camacho, J.; Udías, J. M.; Herraiz, J. L.; González-Salido, N.

    This work describes preliminary results of a two-modality imaging system aimed at the early detection of breast cancer. The first technique is based on compounding conventional echographic images taken at regular angular intervals around the imaged breast. The other modality obtains tomographic images of propagation velocity using the same circular geometry. For this study, a low-cost prototype has been built. It is based on a pair of opposed 128-element, 3.2 MHz array transducers that are mechanically moved around tissue mimicking phantoms. Compounded images around 360° provide improved resolution, clutter reduction, artifact suppression and reinforce the visualization of internal structures. However, refraction at the skin interface must be corrected for an accurate image compounding process. This is achieved by estimation of the interface geometry followed by computing the internal ray paths. On the other hand, sound velocity tomographic images from time of flight projections have been also obtained. Two reconstruction methods, Filtered Back Projection (FBP) and 2D Ordered Subset Expectation Maximization (2D OSEM), were used as a first attempt towards tomographic reconstruction. These methods yield useable images in short computational times that can be considered as initial estimates in subsequent more complex methods of ultrasound image reconstruction. These images may be effective to differentiate malignant and benign masses and are very promising for breast cancer screening.

  1. Viscoelastic Imaging of Breast Tumor Microenvironment With Ultrasound

    PubMed Central

    Insana, Michael F.; Pellot-Barakat, Claire; Sridhar, Mallika; Lindfors, Karen K.

    2009-01-01

    Imaging systems are most effective for detection and classification when they exploit contrast mechanisms specific to particular disease processes. A common example is mammography, where the contrast depends on local changes in cell density and the presence of microcalcifications. Unfortunately the specificity for classifying malignant breast disease is relatively low for many current diagnostic techniques. This paper describes a new ultrasonic technique for imaging the viscoelastic properties of breast tissue. The mechanical properties of glandular breast tissue, like most biopolymers, react to mechanical stimuli in a manner specific to the microenvironment of the tissue. Elastic properties allow noninvasive imaging of desmoplasia while viscous properties describe metabolism-dependent features such as pH. These ultrasonic methods are providing new tools for studying disease mechanisms as well as improving diagnosis. PMID:15838608

  2. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  3. Rotational flaps in oncologic breast surgery. Anatomical and technical considerations.

    PubMed

    Acea Nebril, Benigno; Builes Ramírez, Sergio; García Novoa, Alejandra; Varela Lamas, Cristina

    2016-01-01

    Local flaps are a group of surgical procedures that can solve the thoracic closure of large defects after breast cancer surgery with low morbidity. Its use in skin necrosis complications after conservative surgery or skin sparing mastectomies facilitates the initiation of adjuvant treatments and reduces delays in this patient group. This article describes the anatomical basis for the planning of thoracic and abdominal local flaps. Also, the application of these local flaps for closing large defects in the chest and selective flaps for skin coverage by necrosis in breast conserving surgery. PMID:27140865

  4. Tactile imaging of palpable breast cancer

    NASA Astrophysics Data System (ADS)

    Srikanchana, Rujirutana; Wang, Yue J.; Freedman, Matthew T.; Nguyen, Charles C.

    2002-05-01

    This paper presents the development of a prototype Tactile Mapping Device (TMD) system comprised mainly of a tactile sensor array probe (TSAP), a 3-D camera, and a force/torque sensor, which can provide the means to produce tactile maps of the breast lumps during a breast palpation. Focusing on the key tactile topology features for breast palpation such as spatial location, size/shape of the detected lesion, and the force levels used to demonstrate the palpable abnormalities, these maps can record the results of clinical breast examination with a set of pressure distribution profiles and force sensor measurements due to detected lesion. By combining the knowledge of vision based, neural networks and tactile sensing technology; the TMD is integrated for the investigation of soft tissue interaction with tactile/force sensor, where the hard inclusion (breast cancer) can be characterized through neural network learning capability, instead of using simplified complex biomechanics model with many heuristic assumptions. These maps will serve as an objective documentation of palpable lesions for future comparative examinations. Preliminary results of simulated experiments and limited pre-clinical evaluations of the TMD prototype have tested this hypothesis and provided solid promising data showing the feasibility of the TMD in real clinical applications.

  5. Management of breast magnetic resonance imaging-detected lesions.

    PubMed

    Seely, Jean M

    2012-08-01

    Breast magnetic resonance imaging (MRI) has become an essential component of breast imaging. Whether it is used as a problem-solving tool or a screening test or for staging patients with breast cancer, it detects many lesions in the breast. The challenge for the radiologist is to distinguish significant from insignificant lesions and to direct their management. A brief summary of the terminology according to the American College of Radiologists lexicon will be provided. This review article will cover the differential diagnosis of enhancing lesions, including masses and nonmass enhancement, from benign and malignant causes. Some of the specific morphologic and kinetic features that help to differentiate benign from malignant lesions will be illustrated, and positive predictive values of these features will be reviewed. The various methods of investigating enhancing lesions of the breast will be discussed, including second-look ultrasound, ultrasound-guided biopsy, stereotactic biopsy, and MRI-guided biopsy. A practical approach to the management of MRI-detected lesions will include timing of follow-up, when to biopsy and when to ignore enhancing lesions in the breast. PMID:21798693

  6. Automatic correspondence detection in mammogram and breast tomosynthesis images

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Krüger, Julia; Bischof, Arpad; Barkhausen, Jörg; Handels, Heinz

    2012-02-01

    Two-dimensional mammography is the major imaging modality in breast cancer detection. A disadvantage of mammography is the projective nature of this imaging technique. Tomosynthesis is an attractive modality with the potential to combine the high contrast and high resolution of digital mammography with the advantages of 3D imaging. In order to facilitate diagnostics and treatment in the current clinical work-flow, correspondences between tomosynthesis images and previous mammographic exams of the same women have to be determined. In this paper, we propose a method to detect correspondences in 2D mammograms and 3D tomosynthesis images automatically. In general, this 2D/3D correspondence problem is ill-posed, because a point in the 2D mammogram corresponds to a line in the 3D tomosynthesis image. The goal of our method is to detect the "most probable" 3D position in the tomosynthesis images corresponding to a selected point in the 2D mammogram. We present two alternative approaches to solve this 2D/3D correspondence problem: a 2D/3D registration method and a 2D/2D mapping between mammogram and tomosynthesis projection images with a following back projection. The advantages and limitations of both approaches are discussed and the performance of the methods is evaluated qualitatively and quantitatively using a software phantom and clinical breast image data. Although the proposed 2D/3D registration method can compensate for moderate breast deformations caused by different breast compressions, this approach is not suitable for clinical tomosynthesis data due to the limited resolution and blurring effects perpendicular to the direction of projection. The quantitative results show that the proposed 2D/2D mapping method is capable of detecting corresponding positions in mammograms and tomosynthesis images automatically for 61 out of 65 landmarks. The proposed method can facilitate diagnosis, visual inspection and comparison of 2D mammograms and 3D tomosynthesis images for

  7. From Bombs to Breast Cancer Imaging: Los Alamos National Laboratory

    SciTech Connect

    Martineau, Rebecca M

    2012-07-26

    . Currently, there is fierce debate surrounding the age at which breast cancer screening should begin, and once begun, how often it should occur. The American Cancer Society recommends yearly mammograms starting at age 40. On the other hand, the U.S. Preventive Services Task Force recommends against routine so early. Rather, the Task Force recommends biennial mammography screening for women aged 50 to 74 years. The ten-year discrepancy in the onset of screening results from recent data suggesting that the frequent use of X-ray radiation during screenings could potentially increase the likelihood of developing cancer. This danger is increased by the low sensitivity and accuracy of mammograms, which sometimes require multiple screenings to yield results. Furthermore, mammograms are often not only inaccurate, but average appalling misdiagnoses rates: about 80% false positives and 15% false negatives. These misdiagnoses lead to unwarranted biopsies at an estimated health care cost of $2 billion per year, while at the same time, resulting in excessive cases of undetected cancer. As such, the National Cancer Institute recommends more studies on the advantages of types and frequency of screenings, as well as alternative screening options. The UST technology developed at LANL could be an alternative option to greatly improve the specificity and sensitivity of breast cancer screening without using ionizing radiation. LANL is developing high-resolution ultrasound tomography algorithms and a clinical ultrasound tomography scanner to conduct patient studies at the UNM Hospital. During UST scanning, the patient lies face-down while her breast, immersed in a tank of warm water, is scanned by phased-transducer arrays. UST uses recorded ultrasound signals to reconstruct a high-resolution three-dimensional image of the breast, showing the spatial distribution of mechanical properties within the breast. Breast cancers are detected by higher values of mechanical properties compared to

  8. Characterization of image quality for 3D scatter-corrected breast CT images

    NASA Astrophysics Data System (ADS)

    Pachon, Jan H.; Shah, Jainil; Tornai, Martin P.

    2011-03-01

    The goal of this study was to characterize the image quality of our dedicated, quasi-monochromatic spectrum, cone beam breast imaging system under scatter corrected and non-scatter corrected conditions for a variety of breast compositions. CT projections were acquired of a breast phantom containing two concentric sets of acrylic spheres that varied in size (1-8mm) based on their polar position. The breast phantom was filled with 3 different concentrations of methanol and water, simulating a range of breast densities (0.79-1.0g/cc); acrylic yarn was sometimes included to simulate connective tissue of a breast. For each phantom condition, 2D scatter was measured for all projection angles. Scatter-corrected and uncorrected projections were then reconstructed with an iterative ordered subsets convex algorithm. Reconstructed image quality was characterized using SNR and contrast analysis, and followed by a human observer detection task for the spheres in the different concentric rings. Results show that scatter correction effectively reduces the cupping artifact and improves image contrast and SNR. Results from the observer study indicate that there was no statistical difference in the number or sizes of lesions observed in the scatter versus non-scatter corrected images for all densities. Nonetheless, applying scatter correction for differing breast conditions improves overall image quality.

  9. Texture Features from Mammographic Images and Risk of Breast Cancer

    PubMed Central

    Manduca, Armando; Carston, Michael J.; Heine, John J.; Scott, Christopher G.; Pankratz, V. Shane; Brandt, Kathy R.; Sellers, Thomas A.; Vachon, Celine M.; Cerhan, James R.

    2009-01-01

    Mammographic percent density (PD) is a strong risk factor for breast cancer, but there has been relatively little systematic evaluation of other features in mammographic images that might additionally predict breast cancer risk. We evaluated the association of a large number of image texture features with risk of breast cancer using a clinic-based case-control study of digitized film mammograms, all with screening mammograms prior to breast cancer diagnosis. The sample was split into training (123 cases, 258 controls) and validation (123 cases, 264 controls) datasets. Age and body mass index (BMI)-adjusted Odds Ratios (ORs) per standard deviation change in the feature, 95% confidence intervals, and the area under the receiver operator characteristic curve (AUC) were obtained using logistic regression. A bootstrap approach was used to identify the strongest features in the training dataset, and results for features that validated in the second half of the sample were reported using the full dataset. The mean age at mammography was 64.0 ± 10.2 years, and the mean time from mammography to breast cancer was 3.7 ± 1.0 (range 2.0-5.9 years). PD was associated with breast cancer risk (OR=1.49; 1.25-1.78). The strongest features that validated from each of several classes (Markovian, run-length, Laws, wavelet and Fourier) showed similar ORs as PD and predicted breast cancer at a similar magnitude (AUC=0.58-0.60) as PD (AUC=0.58). All of these features were automatically calculated (unlike PD), and measure texture at a coarse scale. These features were moderately correlated with PD (r = 0.39-0.64), and after adjustment for PD, each of the features attenuated only slightly and retained statistical significance. However, simultaneous inclusion of these features in a model with PD did not significantly improve the ability to predict breast cancer. PMID:19258482

  10. Medical imaging and computers in the diagnosis of breast cancer

    NASA Astrophysics Data System (ADS)

    Giger, Maryellen L.

    2014-09-01

    Computer-aided diagnosis (CAD) and quantitative image analysis (QIA) methods (i.e., computerized methods of analyzing digital breast images: mammograms, ultrasound, and magnetic resonance images) can yield novel image-based tumor and parenchyma characteristics (i.e., signatures that may ultimately contribute to the design of patient-specific breast cancer management plans). The role of QIA/CAD has been expanding beyond screening programs towards applications in risk assessment, diagnosis, prognosis, and response to therapy as well as in data mining to discover relationships of image-based lesion characteristics with genomics and other phenotypes; thus, as they apply to disease states. These various computer-based applications are demonstrated through research examples from the Giger Lab.

  11. Compositional breast imaging using a dual-energy mammography protocol

    SciTech Connect

    Laidevant, Aurelie D.; Malkov, Serghei; Flowers, Chris I.; Kerlikowske, Karla; Shepherd, John A.

    2010-01-15

    Purpose: Mammography has a low sensitivity in dense breasts due to low contrast between malignant and normal tissue confounded by the predominant water density of the breast. Water is found in both adipose and fibroglandular tissue and constitutes most of the mass of a breast. However, significant protein mass is mainly found in the fibroglandular tissue where most cancers originate. If the protein compartment in a mammogram could be imaged without the influence of water, the sensitivity and specificity of the mammogram may be improved. This article describes a novel approach to dual-energy mammography, full-field digital compositional mammography (FFDCM), which can independently image the three compositional components of breast tissue: water, lipid, and protein. Methods: Dual-energy attenuation and breast shape measures are used together to solve for the three compositional thicknesses. Dual-energy measurements were performed on breast-mimicking phantoms using a full-field digital mammography unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the compositional compartments. They were made of two main stacks of thicknesses around 2 and 4 cm. Twenty-six thickness and composition combinations were used to derive the compositional calibration using a least-squares fitting approach. Results: Very high accuracy was achieved with a simple cubic fitting function with root mean square errors of 0.023, 0.011, and 0.012 cm for the water, lipid, and protein thicknesses, respectively. The repeatability (percent coefficient of variation) of these measures was tested using sequential images and was found to be 0.5%, 0.5%, and 3.3% for water, lipid, and protein, respectively. However, swapping the location of the two stacks of the phantom on the imaging plate introduced further errors showing the need for more complete system uniformity corrections. Finally, a preliminary breast image is presented of each of the compositional

  12. Quantitative mitochondrial redox imaging of breast cancer metastatic potential

    NASA Astrophysics Data System (ADS)

    Xu, He N.; Nioka, Shoko; Glickson, Jerry D.; Chance, Britton; Li, Lin Z.

    2010-05-01

    Predicting tumor metastatic potential remains a challenge in cancer research and clinical practice. Our goal was to identify novel biomarkers for differentiating human breast tumors with different metastatic potentials by imaging the in vivo mitochondrial redox states of tumor tissues. The more metastatic (aggressive) MDA-MB-231 and less metastatic (indolent) MCF-7 human breast cancer mouse xenografts were imaged with the low-temperature redox scanner to obtain multi-slice fluorescence images of reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp). The nominal concentrations of NADH and Fp in tissue were measured using reference standards and used to calculate the Fp redox ratio, Fp/(NADH+Fp). We observed significant core-rim differences, with the core being more oxidized than the rim in all aggressive tumors but not in the indolent tumors. These results are consistent with our previous observations on human melanoma mouse xenografts, indicating that mitochondrial redox imaging potentially provides sensitive markers for distinguishing aggressive from indolent breast tumor xenografts. Mitochondrial redox imaging can be clinically implemented utilizing cryogenic biopsy specimens and is useful for drug development and for clinical diagnosis of breast cancer.

  13. Parametric dynamic F-18-FDG PET/CT breast imaging

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Feiglin, David; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Krol, Andrzej

    2008-03-01

    This study was undertaken to estimate metabolic tissue properties from dynamic breast F-18-FDG PET/CT image series and to display them as 3D parametric images. Each temporal PET series was obtained immediately after injection of 10 mCi of F-18-FDG and consisted of fifty 1- minute frames. Each consecutive frame was nonrigidly registered to the first frame using a finite element method (FEM) based model and fiducial skin markers. Nonlinear curve fitting of activity vs. time based on a realistic two-compartment model was performed for each voxel of the volume. Curve fitting was accomplished by application of the Levenburg-Marquardt algorithm (LMA) that minimized X2. We evaluated which parameters are most suitable to determine the spatial extent and malignancy in suspicious lesions. In addition, Patlak modeling was applied to the data. A mixture model was constructed and provided a classification system for the breast tissue. It produced unbiased estimation of the spatial extent of the lesions. We conclude that nonrigid registration followed by voxel-by-voxel based nonlinear fitting to a realistic two-compartment model yields better quality parametric images, as compared to unprocessed dynamic breast PET time series. By comparison with the mixture model, we established that the total cumulated activity and maximum activity parametric images provide the best delineation of suspicious breast tissue lesions and hyperactive subregions within the lesion that cannot be discerned in unprocessed images.

  14. Breast imaging with ultrasound tomography: a comparative study with MRI

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan; Littrup, Peter; Duric, Neb; Li, Cuiping; Schmidt, Steven; Lupinacci, Jessica; Myc, Lukasz; Szczepanski, Amy; Rama, Olsi; Bey-Knight, Lisa

    2010-03-01

    The purpose of this study was to investigate the performance of an ultrasound tomography (UST) prototype relative to magnetic resonance (MR) for imaging overall breast anatomy and accentuating tumors relative to background tissue. The study was HIPAA compliant, approved by the Institutional Review Board, and performed after obtaining the requisite informed consent. Twenty-three patients were imaged with MR and the UST prototype. T1 weighted images with fat saturation, with and without gadolinium enhancement, were used to examine anatomical structures and tumors, while T2 weighted images were used to identify cysts. The UST scans generated sound speed, attenuation, and reflection images. A qualitative visual comparison of the MRI and UST images was then used to identify anatomical similarities. A more focused approach that involved a comparison of reported masses, lesion volumes, and breast density was used to quantify the findings from the visual assessment. Our acoustic tomography prototype imaged distributions of fibrous stroma, parenchyma, fatty tissues, and lesions in patterns similar to those seen in the MR images. The range of thresholds required to establish tumor volume equivalency between MRI and UST suggested that a universal threshold for isolating masses relative to background tissue is feasible with UST. UST has demonstrated the ability to visualize and characterize breast tissues in a manner comparable to MRI. Thresholding techniques accentuate masses relative to background anatomy, which may prove clinically useful for early cancer detection.

  15. Malignant lymphoma of the breast in a male patient: ultrasound imaging features.

    PubMed

    Ikeda, Tatsuhiko; Bando, Hiroko; Iguchi, Akiko; Tanaka, Yuko; Tohno, Eriko; Hara, Hisato

    2015-03-01

    Non-Hodgkin lymphoma (NHL) of the breast is a rare disease. Herein, we report a rare case of secondary involvement of the breast by NHL in a male patient and the ultrasound imaging findings. A 70-year-old man noticed an induration of the subareolar region of the right breast. He had been diagnosed as having mantle cell lymphoma 5 years before and treated with several series of chemoradiotherapy. On supine examination, palpation revealed bilateral breast enlargement, but detection of a lump was difficult. Ultrasonography showed a hypoechoic non-mass image-forming lesion in the subareolar region of the right breast. The final pathological diagnosis was recurrence of mantle cell lymphoma in the right breast. The diagnosis of malignant lymphoma of the breast by imaging modalities is difficult because there are no specific features. Breast lymphoma should be included with gynecomastia and breast cancer in the differential diagnosis of male patients with breast enlargement. PMID:22396322

  16. Economic challenges in breast imaging. A survivor's guide to success.

    PubMed

    Feig, S A

    2000-07-01

    Most breast imaging centers today operate under financial strain. Among strategies designed to improve their bottom line, more efficient use of the radiologist's time is the most fundamental strategy and the one most likely to succeed in all breast imaging centers. Tasks performed by the radiologist that are not directly related to interpretation and consultation should be shifted to other personnel. Other strategies that may help some breast imaging centers include accepting only self-paying patients, renegotiating the hospital contract, performing more interventional procedures, and extending the hours of operation. Measures that can improve the economic efficiency of screening mammography include batch interpretation of mammograms; paperwork reduction; brief automated reports; limiting requests for previous films from other facilities to only potentially necessary cases; dedicated screening mammography examination rooms; reduction in recall rates; and, in certain circumstances, extension of breast center hours. Measures that can improve the economic efficiency of diagnostic mammography performance and interpretation include dedicated diagnostic mammography examination rooms, automated film rotators, improved scheduling, and efficient work-flow patterns for examination performance. Measures that can improve the economic efficiency of both screening and diagnostic mammography include improved triage of screening and diagnostic patients, reminder telephone calls to confirm mammography appointments, greater use of medical assistants to help the radiologists and technologists, and streamlined film library procedures and operations. Measures that can improve the economic efficiency of breast interventional procedures include preprocedure work-up, establishment of scheduling protocols, and greater involvement of technologists and medical assistants in assisting the radiologist who performs the interventional procedures. All of these methods are intended to create a

  17. Efficient iterative image reconstruction algorithm for dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan

    2016-03-01

    Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.

  18. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    PubMed

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast. PMID:27153374

  19. Simulated lesion, human observer performance comparison between thin-section dedicated breast CT images versus computed thick-section simulated projection images of the breast

    PubMed Central

    Chen, L; Boone, JM; Abbey, CK; Hargreaves, J; Bateni, C; Lindfors, KK; Yang, K; Nosratieh, A; Hernandez, A; Gazi, P

    2015-01-01

    Objectives The objective of this study was to compare the lesion detection performance of human observers between thin-section computed tomography images of the breast, with thick-section (>40 mm) simulated projection images of the breast. Methods Three radiologists and six physicists each executed a two alterative force choice (2AFC) study involving simulated spherical lesions placed mathematically into breast images produced on a prototype dedicated breast CT scanner. The breast image data sets from 88 patients were used to create 352 pairs of image data. Spherical lesions with diameters of 1, 2, 3, 5, and 11 mm were simulated and adaptively positioned into 3D breast CT image data sets; the native thin section (0.33 mm) images were averaged to produce images with different slice thicknesses; average section thicknesses of 0.33 mm, 0.71 mm, 1.5 mm, and 2.9 mm were representative of breast CT; the average 43 mm slice thickness served to simulate simulated projection images of the breast. Results The percent correct of the human observer’s responses were evaluated in the 2AFC experiments. Radiologists lesion detection performance was significantly (p<0.05) better in the case of thin-section images, compared to thick section images similar to mammography, for all but the 1 mm lesion diameter lesions. For example, the average of three radiologist’s performance for 3 mm diameter lesions was 92 % correct for thin section breast CT images while it was 67 % for the simulated projection images. A gradual reduction in observer performance was observed as the section thickness increased beyond about 1 mm. While a performance difference based on breast density was seen in both breast CT and the projection image results, the average radiologist performance using breast CT images in dense breasts outperformed the performance using simulated projection images in fatty breasts for all lesion diameters except 11 mm. The average radiologist performance outperformed that of the

  20. Sentinel lymph node biopsy in breast cancer: a technical and clinical appraisal.

    PubMed

    Manca, Gianpiero; Tardelli, Elisa; Rubello, Domenico; Gennaro, Marta; Marzola, Maria Cristona; Cook, Gary J; Volterrani, Duccio

    2016-06-01

    Breast cancer is the most common type of cancer diagnosed in women worldwide. Regional lymph node status is one of the strongest predictors of long-term prognosis in primary breast cancer. Sentinel lymph node biopsy (SLNB) has replaced axillary lymph node dissection as the standard surgical procedure for staging clinically tumor-free regional nodes in patients with early-stage breast cancer. SLNB staging considerably reduces surgical morbidity in terms of shoulder dysfunction and lymphedema, without affecting diagnostic accuracy and prognostic information. Clinicians should not recommend axillary lymph node dissection for women with early-stage breast cancer who have tumor-free findings on SLNB because there is no advantage in terms of overall survival and disease-free survival. Starting from the early 1990s, SLNB has increasingly been used in breast cancer management, but its role is still debated under many clinical circumstances. Moreover, there is still a lack of standardization of the basic technical details of the procedure that is likely to be responsible for the variability found in the false-negative rate of the procedure (5.5-16.7%). In this article, we report the aspects of SLNB that are well established, those that are still debated, and the advancements that have taken place over the last 20 years. We have provided an update on the methodology from both a technical and a clinical point of view in the light of the most recent publications. PMID:26886421

  1. Combined Optical and X-ray Tomosynthesis Breast Imaging1

    PubMed Central

    Selb, Juliette; Carp, Stefan A.; Boverman, Gregory; Miller, Eric L.; Brooks, Dana H.; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.

    2011-01-01

    Purpose: To explore the optical and physiologic properties of normal and lesion-bearing breasts by using a combined optical and digital breast tomosynthesis (DBT) imaging system. Materials and Methods: Institutional review board approval and patient informed consent were obtained for this HIPAA-compliant study. Combined optical and tomosynthesis imaging analysis was performed in 189 breasts from 125 subjects (mean age, 56 years ± 13 [standard deviation]), including 138 breasts with negative findings and 51 breasts with lesions. Three-dimensional (3D) maps of total hemoglobin concentration (HbT), oxygen saturation (So2), and tissue reduced scattering coefficients were interpreted by using the coregistered DBT images. Paired and unpaired t tests were performed between various tissue types to identify significant differences. Results: The estimated average bulk HbT from 138 normal breasts was 19.2 μmol/L. The corresponding mean So2 was 0.73, within the range of values in the literature. A linear correlation (R = 0.57, P < .0001) was found between HbT and the fibroglandular volume fraction derived from the 3D DBT scans. Optical reconstructions of normal breasts revealed structures corresponding to chest-wall muscle, fibroglandular, and adipose tissues in the HbT, So2, and scattering images. In 26 malignant tumors of 0.6–2.5 cm in size, HbT was significantly greater than that in the fibroglandular tissue of the same breast (P = .0062). Solid benign lesions (n = 17) and cysts (n = 8) had significantly lower HbT contrast than did the malignant lesions (P = .025 and P = .0033, respectively). Conclusion: The optical and DBT images were structurally consistent. The malignant tumors and benign lesions demonstrated different HbT and scattering contrasts, which can potentially be exploited to reduce the false-positive rate of conventional mammography and unnecessary biopsies. © RSNA, 2010 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol

  2. Numerical simulations of the thermoacoustic computed tomography breast imaging system

    NASA Astrophysics Data System (ADS)

    Kiser, William Lester, Jr.

    A thermoacoustic wave is produced when an object absorbs energy and experiences a subsequent thermal expansion. We have developed a Thermoacoustic Computed Tomography (TACT) breast imaging system to exploit the thermoacoustic phenomena as a method of soft tissue imaging. By exposing the breast to short pulses of 434 MHz microwaves, ultrasonic pulses are generated and detected with a hemispherical transducer array submersed in a water bath. Filtering and back projecting the transducer signals generates a 3-D image that maps the localized microwave absorption properties of the breast. In an effort to understand the factors limiting image quality, the TACT system was numerically simulated. The simulations were used to generate the transducer signals that would be collected by the TACT system during a scan of an object. These simulated data streams were then fed into the system image reconstruction software to provide images of simulated phantoms. The effects of transducer diameter, transducer response, transducer array geometry and stimulating pulse width on the spatial and contrast resolution of the system were quantified using the simulations. The spatial resolution was highly dependent upon location in the imaging volume. This was due to the off axis response of transducers of finite aperture. Simulated data were compared with experimental data, obtained by imaging a parallel-piped resolution phantom, to verify the accuracy of the simulation code. A contrast-detail phantom was numerically simulated to determine the ability of the system to image spheres of diameters <1 cm with absorption values on the order of physiologic saline, when located in a background of noise. The results of the contrast-detail analysis were dependent on the location of the spheres in the imaging volume and the diameter of the simulated transducers. This work sets the foundation for the initial image quality studies of the TACT system. Improvements to the current imaging system, based on

  3. Raman imaging at biological interfaces: applications in breast cancer diagnosis

    PubMed Central

    2013-01-01

    Background One of the most important areas of Raman medical diagnostics is identification and characterization of cancerous and noncancerous tissues. The methods based on Raman scattering has shown significant potential for probing human breast tissue to provide valuable information for early diagnosis of breast cancer. A vibrational fingerprint from the biological tissue provides information which can be used to identify, characterize and discriminate structures in breast tissue, both in the normal and cancerous environment. Results The paper reviews recent progress in understanding structure and interactions at biological interfaces of the human tissue by using confocal Raman imaging and IR spectroscopy. The important differences between the noncancerous and cancerous human breast tissues were found in regions characteristic for vibrations of carotenoids, fatty acids, proteins, and interfacial water. Particular attention was paid to the role played by unsaturated fatty acids and their derivatives as well as carotenoids and interfacial water. Conclusions We demonstrate that Raman imaging has reached a clinically relevant level in regard to breast cancer diagnosis applications. The results presented in the paper may have serious implications on understanding mechanisms of interactions in living cells under realistically crowded conditions of biological tissue. PMID:23705882

  4. Quantitative phase imaging of Breast cancer cell based on SLIM

    NASA Astrophysics Data System (ADS)

    Wu, Huaqin; Li, Zhifang; Li, Hui; Wu, Shulian

    2016-02-01

    We illustrated a novel optical microscopy technique to observe cell dynamics via spatial light interference microscopy (SLIM). SLIM combines Zemike's phase contrast microscopy and Gabor's holography. When the light passes through the transparent specimens, it could render high contrast intensity and record the phase information from the object. We reconstructed the Breast cancer cell phase image by SLIM and the reconstruction algorithm. Our investigation showed that SLIM has the ability to achieve the quantitative phase imaging (QPI).

  5. Harmonic Motion Microwave Doppler Imaging method for breast tumor detection.

    PubMed

    Top, Can Barıs; Tafreshi, Azadeh Kamali; Gençer, Nevzat G

    2014-01-01

    Harmonic Motion Microwave Doppler Imaging (HMMDI) method is recently proposed as a non-invasive hybrid breast imaging technique for tumor detection. The acquired data depend on acoustic, elastic and electromagnetic properties of the tissue. The potential of the method is analyzed with simulation studies and phantom experiments. In this paper, the results of these studies are summarized. It is shown that HMMDI method has a potential to detect malignancies inside fibro-glandular tissue. PMID:25571382

  6. An infrared image based methodology for breast lesions screening

    NASA Astrophysics Data System (ADS)

    Morais, K. C. C.; Vargas, J. V. C.; Reisemberger, G. G.; Freitas, F. N. P.; Oliari, S. H.; Brioschi, M. L.; Louveira, M. H.; Spautz, C.; Dias, F. G.; Gasperin, P.; Budel, V. M.; Cordeiro, R. A. G.; Schittini, A. P. P.; Neto, C. D.

    2016-05-01

    The objective of this paper is to evaluate the potential of utilizing a structured methodology for breast lesions screening, based on infrared imaging temperature measurements of a healthy control group to establish expected normality ranges, and of breast cancer patients, previously diagnosed through biopsies of the affected regions. An analysis of the systematic error of the infrared camera skin temperature measurements was conducted in several different regions of the body, by direct comparison to high precision thermistor temperature measurements, showing that infrared camera temperatures are consistently around 2 °C above the thermistor temperatures. Therefore, a method of conjugated gradients is proposed to eliminate the infrared camera direct temperature measurement imprecision, by calculating the temperature difference between two points to cancel out the error. The method takes into account the human body approximate bilateral symmetry, and compares measured dimensionless temperature difference values (Δ θ bar) between two symmetric regions of the patient's breast, that takes into account the breast region, the surrounding ambient and the individual core temperatures, and doing so, the results interpretation for different individuals become simple and non subjective. The range of normal whole breast average dimensionless temperature differences for 101 healthy individuals was determined, and admitting that the breasts temperatures exhibit a unimodal normal distribution, the healthy normal range for each region was considered to be the dimensionless temperature difference plus/minus twice the standard deviation of the measurements, Δ θ bar ‾ + 2σ Δ θ bar ‾ , in order to represent 95% of the population. Forty-seven patients with previously diagnosed breast cancer through biopsies were examined with the method, which was capable of detecting breast abnormalities in 45 cases (96%). Therefore, the conjugated gradients method was considered effective

  7. Volumetric breast density evaluation from ultrasound tomography images

    SciTech Connect

    Glide-Hurst, Carri K.; Duric, Neb; Littrup, Peter

    2008-09-15

    Previous ultrasound tomography work conducted by our group showed a direct correlation between measured sound speed and physical density in vitro, and increased in vivo sound speed with increasing mammographic density, a known risk factor for breast cancer. Building on these empirical results, the purpose of this work was to explore a metric to quantify breast density using our ultrasound tomography sound speed images in a manner analogous to computer-assisted mammogram segmentation for breast density analysis. Therefore, volumetric ultrasound percent density (USPD) is determined by segmenting high sound speed areas from each tomogram using a k-means clustering routine, integrating these results over the entire volume of the breast, and dividing by whole-breast volume. First, a breast phantom comprised of fat inclusions embedded in fibroglandular tissue was scanned four times with both our ultrasound tomography clinical prototype (with 4 mm spatial resolution) and CT. The coronal transmission tomograms and CT images were analyzed using semiautomatic segmentation routines, and the integrated areas of the phantom's fat inclusions were compared between the four repeated scans. The average variability for inclusion segmentation was {approx}7% and {approx}2%, respectively, and a close correlation was observed in the integrated areas between the two modalities. Next, a cohort of 93 patients was imaged, yielding volumetric coverage of the breast (45-75 sound speed tomograms/patient). The association of USPD with mammographic percent density (MPD) was evaluated using two measures: (1) qualitative, as determined by a radiologist's visual assessment using BI-RADS Criteria and (2) quantitative, via digitization and semiautomatic segmentation of craniocaudal and mediolateral oblique mammograms. A strong positive association between BI-RADS category and USPD was demonstrated [Spearman {rho}=0.69 (p<0.001)], with significant differences between all BI-RADS categories as assessed

  8. Dynamic infrared imaging in identification of breast cancer tissue with combined image processing and frequency analysis.

    PubMed

    Joro, R; Lääperi, A-L; Soimakallio, S; Järvenpää, R; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Dastidar, P

    2008-01-01

    Five combinations of image-processing algorithms were applied to dynamic infrared (IR) images of six breast cancer patients preoperatively to establish optimal enhancement of cancer tissue before frequency analysis. mid-wave photovoltaic (PV) IR cameras with 320x254 and 640x512 pixels were used. The signal-to-noise ratio and the specificity for breast cancer were evaluated with the image-processing combinations from the image series of each patient. Before image processing and frequency analysis the effect of patient movement was minimized with a stabilization program developed and tested in the study by stabilizing image slices using surface markers set as measurement points on the skin of the imaged breast. A mathematical equation for superiority value was developed for comparison of the key ratios of the image-processing combinations. The ability of each combination to locate the mammography finding of breast cancer in each patient was compared. Our results show that data collected with a 640x512-pixel mid-wave PV camera applying image-processing methods optimizing signal-to-noise ratio, morphological image processing and linear image restoration before frequency analysis possess the greatest superiority value, showing the cancer area most clearly also in the match centre of the mammography estimation. PMID:18666012

  9. Towards breast tomography with synchrotron radiation at Elettra: first images.

    PubMed

    Longo, R; Arfelli, F; Bellazzini, R; Bottigli, U; Brez, A; Brun, F; Brunetti, A; Delogu, P; Di Lillo, F; Dreossi, D; Fanti, V; Fedon, C; Golosio, B; Lanconelli, N; Mettivier, G; Minuti, M; Oliva, P; Pinchera, M; Rigon, L; Russo, P; Sarno, A; Spandre, G; Tromba, G; Zanconati, F

    2016-02-21

    The aim of the SYRMA-CT collaboration is to set-up the first clinical trial of phase-contrast breast CT with synchrotron radiation (SR). In order to combine high image quality and low delivered dose a number of innovative elements are merged: a CdTe single photon counting detector, state-of-the-art CT reconstruction and phase retrieval algorithms. To facilitate an accurate exam optimization, a Monte Carlo model was developed for dose calculation using GEANT4. In this study, high isotropic spatial resolution (120 μm)(3) CT scans of objects with dimensions and attenuation similar to a human breast were acquired, delivering mean glandular doses in the range of those delivered in clinical breast CT (5-25 mGy). Due to the spatial coherence of the SR beam and the long distance between sample and detector, the images contain, not only absorption, but also phase information from the samples. The application of a phase-retrieval procedure increases the contrast-to-noise ratio of the tomographic images, while the contrast remains almost constant. After applying the simultaneous algebraic reconstruction technique to low-dose phase-retrieved data sets (about 5 mGy) with a reduced number of projections, the spatial resolution was found to be equal to filtered back projection utilizing a four fold higher dose, while the contrast-to-noise ratio was reduced by 30%. These first results indicate the feasibility of clinical breast CT with SR. PMID:26836274

  10. Infrared microspectroscopic imaging of benign breast tumor tissue sections

    NASA Astrophysics Data System (ADS)

    Fabian, H.; Lasch, P.; Boese, M.; Haensch, W.

    2003-12-01

    We have applied infrared microspectroscopic imaging for the examination of benign breast tumor tissue sections. The IR spectra of the sections were obtained by classical point microscopy with a movable stage and via a microscope equipped with a focal plane array detector. The infrared microscopic data were analysed using functional group mapping techniques and cluster analysis. The output values of the two procedures were reassembled into infrared images of the tissues, and were compared with standard staining images of the corresponding tissue region. The comparative examination of identical tissue sections by the two IR approaches enabled us to assess potential problems associated with tissue microheterogeneity. It was found that in case of fibroadenoma, a benign lesion located in breast ducts, point microscopy with a spot size of ˜30 μm is a useful practical approach which minimizes the possibility of 'contamination' of the spectra because of spectral averaging of all tissue components present in the corresponding microareas. A comparison of the spectra of the benign breast tumor with those of a malignant ductal carcinoma in situ revealed that IR microspectroscopy has the potential to differentiate between these two breast tumor types.

  11. Towards breast tomography with synchrotron radiation at Elettra: first images

    NASA Astrophysics Data System (ADS)

    Longo, R.; Arfelli, F.; Bellazzini, R.; Bottigli, U.; Brez, A.; Brun, F.; Brunetti, A.; Delogu, P.; Di Lillo, F.; Dreossi, D.; Fanti, V.; Fedon, C.; Golosio, B.; Lanconelli, N.; Mettivier, G.; Minuti, M.; Oliva, P.; Pinchera, M.; Rigon, L.; Russo, P.; Sarno, A.; Spandre, G.; Tromba, G.; Zanconati, F.

    2016-02-01

    The aim of the SYRMA-CT collaboration is to set-up the first clinical trial of phase-contrast breast CT with synchrotron radiation (SR). In order to combine high image quality and low delivered dose a number of innovative elements are merged: a CdTe single photon counting detector, state-of-the-art CT reconstruction and phase retrieval algorithms. To facilitate an accurate exam optimization, a Monte Carlo model was developed for dose calculation using GEANT4. In this study, high isotropic spatial resolution (120 μm)3 CT scans of objects with dimensions and attenuation similar to a human breast were acquired, delivering mean glandular doses in the range of those delivered in clinical breast CT (5-25 mGy). Due to the spatial coherence of the SR beam and the long distance between sample and detector, the images contain, not only absorption, but also phase information from the samples. The application of a phase-retrieval procedure increases the contrast-to-noise ratio of the tomographic images, while the contrast remains almost constant. After applying the simultaneous algebraic reconstruction technique to low-dose phase-retrieved data sets (about 5 mGy) with a reduced number of projections, the spatial resolution was found to be equal to filtered back projection utilizing a four fold higher dose, while the contrast-to-noise ratio was reduced by 30%. These first results indicate the feasibility of clinical breast CT with SR.

  12. Automated analysis of image mammogram for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Nurhasanah, Sampurno, Joko; Faryuni, Irfana Diah; Ivansyah, Okto

    2016-03-01

    Medical imaging help doctors in diagnosing and detecting diseases that attack the inside of the body without surgery. Mammogram image is a medical image of the inner breast imaging. Diagnosis of breast cancer needs to be done in detail and as soon as possible for determination of next medical treatment. The aim of this work is to increase the objectivity of clinical diagnostic by using fractal analysis. This study applies fractal method based on 2D Fourier analysis to determine the density of normal and abnormal and applying the segmentation technique based on K-Means clustering algorithm to image abnormal for determine the boundary of the organ and calculate the area of organ segmentation results. The results show fractal method based on 2D Fourier analysis can be used to distinguish between the normal and abnormal breast and segmentation techniques with K-Means Clustering algorithm is able to generate the boundaries of normal and abnormal tissue organs, so area of the abnormal tissue can be determined.

  13. Breast image feature learning with adaptive deconvolutional networks

    NASA Astrophysics Data System (ADS)

    Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.

    2012-03-01

    Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).

  14. Innovative biomagnetic imaging sensors for breast cancer: A model-based study

    SciTech Connect

    Deng, Y.; Golkowski, M.

    2012-04-01

    Breast cancer is a serious potential health problem for all women and is the second leading cause of cancer deaths in the United States. The current screening procedures and imaging techniques, including x-ray mammography, clinical biopsy, ultrasound imaging, and magnetic resonance imaging, provide only 73% accuracy in detecting breast cancer. This gives the impetus to explore alternate techniques for imaging the breast and detecting early stage tumors. Among the complementary methods, the noninvasive biomagnetic breast imaging is attractive and promising, because both ionizing radiation and breast compressions that the prevalent x-ray mammography suffers from are avoided. It furthermore offers very high contrast because of the significant electromagnetic properties' differences between the cancerous, benign, and normal breast tissues. In this paper, a hybrid and accurate modeling tool for biomagnetic breast imaging is developed, which couples the electromagnetic and ultrasonic energies, and initial validations between the model predication and experimental findings are conducted.

  15. CT guided diffuse optical tomography for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Baikejiang, Reheman; Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as blood, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer detection. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at wavelengths of 650 and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements, the width of measurement patch, have been investigated. Our results indicate that an EMCCD camera with air cooling is good enough for the transmission mode DOT imaging. We have also found that measurements at six projections are sufficient for DOT to reconstruct the optical targets with 4 times absorption contrast when the CT guidance is applied. Finally, we report our effort and progress on the integration of the multispectral DOT imaging system into a breast CT scanner.

  16. Ultrasound - Breast

    MedlinePlus

    ... discharge) and to characterize potential abnormalities seen on mammography or breast magnetic resonance imaging (MRI). Ultrasound imaging ... supply in breast lesions . Supplemental Breast Cancer Screening Mammography is the only screening tool for breast cancer ...

  17. Bilateral breast cancer: radiation therapy results and technical considerations. [/sup 60/Co

    SciTech Connect

    Kopelson, G.; Munzenrider, J.E.; Doppke, K.; Wang, C.C.

    1981-03-01

    A retrospective review was done of 34 women with bilateral breast carcinoma who received bilateral breast irradiation from 1964 to 1979. For the 31 curative patients, the 10-year actuarial survival rate after completion of irradiation to the second primary was 67%. Based upon the development of bilateral medial subcutaneous fibrosis/necrosis in 3/15 long-term survivors, various technical problems unique to bilateral breast irradiation were examined: In metachronous presentations, the dose to the contralateral subcutaneous medial tissue was determined as a function of the distance across the midline and the total dose that this point should receive if future contralateral IMC irradiation is required also. In synchronous presentations the doses to the spinal cord and anterior pericardium were determined for bilateral IMC irradiation as a function of modality, field width and energy. Suggestions for solving these technical problems are made, and the importance of permanent skin markings documenting portal placement to aid in possible future contralteral breast irradiation is stressed.

  18. Initial study of breast tissue retraction toward image guided breast surgery

    NASA Astrophysics Data System (ADS)

    Shannon, Michael J.; Meszoely, Ingrid M.; Ondrake, Janet E.; Pheiffer, Thomas S.; Simpson, Amber L.; Sun, Kay; Miga, Michael I.

    2012-02-01

    Image-guided surgery may reduce the re-excision rate in breast-conserving tumor-resection surgery, but image guidance is difficult since the breast undergoes significant deformation during the procedure. In addition, any imaging performed preoperatively is usually conducted in a very different presentation to that in surgery. Biomechanical models combined with low-cost ultrasound imaging and laser range scanning may provide an inexpensive way to provide intraoperative guidance information while also compensating for soft tissue deformations that occur during breast-conserving surgery. One major cause of deformation occurs after an incision into the tissue is made and the skin flap is pulled back with the use of retractors. Since the next step in the surgery would be to start building a surgical plane around the tumor to remove cancerous tissue, in an image-guidance environment, it would be necessary to have a model that corrects for the deformation caused by the surgeon to properly guide the application of resection tools. In this preliminary study, two anthropomorphic breast phantoms were made, and retractions were performed on both with improvised retractors. One phantom underwent a deeper retraction that the other. A laser range scanner (LRS) was used to monitor phantom tissue change before and after retraction. The surface data acquired with the LRS and retractors were then used to drive the solution of a finite element model. The results indicate an encouraging level of agreement between model predictions and data. The surface target error for the phantom with the deep retraction was 2.2 +/- 1.2 mm (n=47 targets) with the average deformation of the surface targets at 4.2 +/- 1.6mm. For the phantom with the shallow retraction, the surface target error was 2.1 +/- 1.0 mm (n=70 targets) with the average deformation of the surface targets at 4.0 +/- 2.0 mm.

  19. Development of an imaging-planning program for screen/film and computed radiography mammography for breasts with short chest wall to nipple distance

    PubMed Central

    Dong, S L; Su, J L; Yeh, Y H; Chu, T C; Lin, Y C; Chuang, K S

    2011-01-01

    Objective Imaging breasts with a short chest wall to nipple distance (CWND) using a traditional mammographic X-ray unit is a technical challenge for mammographers. The purpose of this study is the development of an imaging-planning program to assist in determination of imaging parameters of screen/film (SF) and computed radiography (CR) mammography for short CWND breasts. Methods A traditional mammographic X-ray unit (Mammomat 3000, Siemens, Munich, Germany) was employed. The imaging-planning program was developed by combining the compressed breast thickness correction, the equivalent polymethylmethacrylate thickness assessment for breasts and the tube loading (mAs) measurement. Both phantom exposures and a total of 597 exposures were used for examining the imaging-planning program. Results Results of the phantom study show that the tube loading rapidly decreased with the CWND when the automatic exposure control (AEC) detector was not fully covered by the phantom. For patient exposures with the AEC fully covered by breast tissue, the average fractional tube loadings, defined as the ratio of the predicted mAs using the imaging-planning program and mAs of the mammogram, were 1.10 and 1.07 for SF and CR mammograms, respectively. The predicted mAs values were comparable to the mAs values, as determined by the AEC. Conclusion By applying the imaging-planning program in clinical practice, the experiential dependence of the mammographer for determination of the imaging parameters for short CWND breasts is minimised. PMID:21123310

  20. Breast ultrasound image classification based on multiple-instance learning.

    PubMed

    Ding, Jianrui; Cheng, H D; Huang, Jianhua; Liu, Jiafeng; Zhang, Yingtao

    2012-10-01

    Breast ultrasound (BUS) image segmentation is a very difficult task due to poor image quality and speckle noise. In this paper, local features extracted from roughly segmented regions of interest (ROIs) are used to describe breast tumors. The roughly segmented ROI is viewed as a bag. And subregions of the ROI are considered as the instances of the bag. Multiple-instance learning (MIL) method is more suitable for classifying breast tumors using BUS images. However, due to the complexity of BUS images, traditional MIL method is not applicable. In this paper, a novel MIL method is proposed for solving such task. First, a self-organizing map is used to map the instance space to the concept space. Then, we use the distribution of the instances of each bag in the concept space to construct the bag feature vector. Finally, a support vector machine is employed for classifying the tumors. The experimental results show that the proposed method can achieve better performance: the accuracy is 0.9107 and the area under receiver operator characteristic curve is 0.96 (p < 0.005). PMID:22733258

  1. Evaluation of a photon-counting breast tomosynthesis imaging system

    NASA Astrophysics Data System (ADS)

    Maidment, Andrew D. A.; Ullberg, Christer; Lindman, Karin; Adelöw, Leif; Egerström, Johan; Eklund, Mathias; Francke, Tom; Jordung, Ulf; Kristoffersson, Tomas; Lindqvist, Lars; Marchal, Daniel; Olla, Hans; Penton, Erik; Rantanen, Juha; Solokov, Skiff; Weber, Niclas; Westerberg, Hans

    2006-03-01

    Digital breast tomosynthesis promises solutions to many of the problems associated with projection mammography, including elimination of artifactual densities due to the superposition of normal tissues and increasing the conspicuity of true lesions that would otherwise be masked by superimposed normal tissue. We have investigated tomosynthesis using a digital camera containing 48 photon counting, orientation sensitive, linear detectors which are precisely aligned with the focal spot of the x-ray source. The x-ray source and the digital detectors are scanned in a continuous motion across the object (patient), each linear detector collecting an image at a distinct angle. A preliminary assessment of tomosynthesis image quality has been performed with both qualitative and quantitative methods. Measured values of MTF and NPS appear concordant with theoretical values. The MTF in the scanning direction is dominated by scanning unsharpness and geometric factors, while the NPS is white. The MTF and NPS in the strip direction are somewhat lower than in the scan direction. The NPS of tomographic images show a slight decrease with increasing spatial frequency, related to the sampling and interpolation in the reconstruction process. A phase I clinical trial is ongoing; 9 women have been recruited. Breast positioning is comparable to other imaging systems. The visualization of breast anatomy appears to be superior to screen-film mammography, at the same average glandular dose. Examination of images reconstructed with a sub-sampled set of projection images appears to support the hypothesis that image quality is superior when more projection images are used in the reconstruction.

  2. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  3. Molecular imaging of breast cancer: present and future directions

    PubMed Central

    Alcantara, David; Leal, Manuel Pernia; García-Bocanegra, Irene; García-Martín, Maria L.

    2014-01-01

    Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumor is located in the body, but also to visualize the expression and activity of specific molecules (e.g., proteases and protein kinases) and biological processes (e.g., apoptosis, angiogenesis, and metastasis) that influence tumor behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises. PMID:25566530

  4. Molecular Imaging of Breast Cancer: Present and future directions

    NASA Astrophysics Data System (ADS)

    Alcantara, David; Pernia Leal, Manuel; Garcia, Irene; Garcia-Martin, Maria Luisa

    2014-12-01

    Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases) and biological processes (e.g. apoptosis, angiogenesis, and metastasis) that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  5. A TSVD Analysis of Microwave Inverse Scattering for Breast Imaging

    PubMed Central

    Shea, Jacob D.; Van Veen, Barry D.; Hagness, Susan C.

    2013-01-01

    A variety of methods have been applied to the inverse scattering problem for breast imaging at microwave frequencies. While many techniques have been leveraged toward a microwave imaging solution, they are all fundamentally dependent on the quality of the scattering data. Evaluating and optimizing the information contained in the data are, therefore, instrumental in understanding and achieving optimal performance from any particular imaging method. In this paper, a method of analysis is employed for the evaluation of the information contained in simulated scattering data from a known dielectric profile. The method estimates optimal imaging performance by mapping the data through the inverse of the scattering system. The inverse is computed by truncated singular-value decomposition of a system of scattering equations. The equations are made linear by use of the exact total fields in the imaging volume, which are available in the computational domain. The analysis is applied to anatomically realistic numerical breast phantoms. The utility of the method is demonstrated for a given imaging system through the analysis of various considerations in system design and problem formulation. The method offers an avenue for decoupling the problem of data selection from the problem of image formation from that data. PMID:22113770

  6. Impact of image acquisition timing on image quality for dual energy contrast-enhanced breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Hill, Melissa L.; Mainprize, James G.; Puong, Sylvie; Carton, Ann-Katherine; Iordache, Razvan; Muller, Serge; Yaffe, Martin J.

    2012-03-01

    Dual-energy contrast-enhanced digital breast tomosynthesis (DE CE-DBT) image quality is affected by a large parameter space including the tomosynthesis acquisition geometry, imaging technique factors, the choice of reconstruction algorithm, and the subject breast characteristics. The influence of most of these factors on reconstructed image quality is well understood for DBT. However, due to the contrast agent uptake kinetics in CE imaging, the subject breast characteristics change over time, presenting a challenge for optimization . In this work we experimentally evaluate the sensitivity of the reconstructed image quality to timing of the low-energy and high-energy images and changes in iodine concentration during image acquisition. For four contrast uptake patterns, a variety of acquisition protocols were tested with different timing and geometry. The influence of the choice of reconstruction algorithm (SART or FBP) was also assessed. Image quality was evaluated in terms of the lesion signal-difference-to-noise ratio (LSDNR) in the central slice of DE CE-DBT reconstructions. Results suggest that for maximum image quality, the low- and high-energy image acquisitions should be made within one x-ray tube sweep, as separate low- and high-energy tube sweeps can degrade LSDNR. In terms of LSDNR per square-root dose, the image quality is nearly equal between SART reconstructions with 9 and 15 angular views, but using fewer angular views can result in a significant improvement in the quantitative accuracy of the reconstructions due to the shorter imaging time interval.

  7. Diagnosis of breast cancer biopsies using quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Majeed, Hassaan; Kandel, Mikhail E.; Han, Kevin; Luo, Zelun; Macias, Virgilia; Tangella, Krishnarao; Balla, Andre; Popescu, Gabriel

    2015-03-01

    The standard practice in the histopathology of breast cancers is to examine a hematoxylin and eosin (H&E) stained tissue biopsy under a microscope. The pathologist looks at certain morphological features, visible under the stain, to diagnose whether a tumor is benign or malignant. This determination is made based on qualitative inspection making it subject to investigator bias. Furthermore, since this method requires a microscopic examination by the pathologist it suffers from low throughput. A quantitative, label-free and high throughput method for detection of these morphological features from images of tissue biopsies is, hence, highly desirable as it would assist the pathologist in making a quicker and more accurate diagnosis of cancers. We present here preliminary results showing the potential of using quantitative phase imaging for breast cancer screening and help with differential diagnosis. We generated optical path length maps of unstained breast tissue biopsies using Spatial Light Interference Microscopy (SLIM). As a first step towards diagnosis based on quantitative phase imaging, we carried out a qualitative evaluation of the imaging resolution and contrast of our label-free phase images. These images were shown to two pathologists who marked the tumors present in tissue as either benign or malignant. This diagnosis was then compared against the diagnosis of the two pathologists on H&E stained tissue images and the number of agreements were counted. In our experiment, the agreement between SLIM and H&E based diagnosis was measured to be 88%. Our preliminary results demonstrate the potential and promise of SLIM for a push in the future towards quantitative, label-free and high throughput diagnosis.

  8. Imaging changes after breast reconstruction with fat grafting - Retrospective study of 90 breast cancer

    PubMed Central

    Noor, Lubna; Reeves, Helen Rosemarry; Kumar, Dileep; Alozairi, Ous; Bhaskar, Pudhupalayam

    2016-01-01

    Objective: To evaluate the breast imaging changes after fat grafting and its impact on cancer follow up. Methods: This is a retrospective observational study conducted on patients who underwent fat grafting for breast reconstruction. We reviewed mammographic and ultrasound images of patients. Fisher’s exact test was used to analyze results. The level of significance was set at P < 0.05. Results: A total of ninety patients with breast cancer had fat grafting. Fifty eight patients for defects following post mastectomy reconstruction and 32 for wide local excision defects. The mean follow up was 37.4 months. Benign lumps were identified in 23/90 cases (25 percent). Mammograms were reported as BI-RADS I in 21/32 cases (72 percent) and BI-RADS II in 8/32 cases (28 percent). BI-RADs III score was reported in two patients on further follow up imaging, both were re-classified as BI-RADS II after biopsy. A total of eight patients (8.9 percent) required biopsy. No local recurrences or new cancers were observed in any patients. Conclusion: Our study suggests radiological changes after fat grafting are almost always benign with no adverse outcome on cancer follow up. PMID:27022335

  9. Diffusion tensor MR imaging and fiber tractography: technical considerations.

    PubMed

    Mukherjee, P; Chung, S W; Berman, J I; Hess, C P; Henry, R G

    2008-05-01

    This second article of the 2-part review builds on the theoretic background provided by the first article to cover the major technical factors that affect image quality in diffusion imaging, including the acquisition sequence, magnet field strength, gradient amplitude, and slew rate as well as multichannel radio-frequency coils and parallel imaging. The sources of many common diffusion image artifacts are also explored in detail. The emphasis is on optimizing these technical factors for state-of-the-art diffusion-weighted imaging and diffusion tensor imaging (DTI) based on the best available evidence in the literature. An overview of current methods for quantitative analysis of DTI data and fiber tractography in clinical research is also provided. PMID:18339719

  10. Male Breast: Clinical and Imaging Evaluations of Benign and Malignant Entities with Histologic Correlation.

    PubMed

    Chau, Alec; Jafarian, Neda; Rosa, Marilin

    2016-08-01

    Breast cancer is an uncommon disease in men. As a result, the diagnosis may not initially be considered. Understanding the common benign and malignant entities affecting the male breast is critical for timely and accurate diagnosis in the primary care setting. Most patients present with a palpable breast mass or pain. The usual etiology is gynecomastia, the most common breast condition in males, but breast cancer must always be excluded through careful imaging evaluation when physical examination findings are suspicious or inconclusive. Imaging of the male breast generally relies on mammography and ultrasound, with mammography employed as the initial imaging modality of choice and ultrasound when a mass is detected or suspected. Here we describe the normal male breast anatomy and present an evaluation algorithm for the male patient with breast signs or symptoms. The most common benign and malignant entities are described. PMID:26844632

  11. Inverse imaging of the breast with a material classification technique.

    PubMed

    Manry, C W; Broschat, S L

    1998-03-01

    In recent publications [Chew et al., IEEE Trans. Blomed. Eng. BME-9, 218-225 (1990); Borup et al., Ultrason. Imaging 14, 69-85 (1992)] the inverse imaging problem has been solved by means of a two-step iterative method. In this paper, a third step is introduced for ultrasound imaging of the breast. In this step, which is based on statistical pattern recognition, classification of tissue types and a priori knowledge of the anatomy of the breast are integrated into the iterative method. Use of this material classification technique results in more rapid convergence to the inverse solution--approximately 40% fewer iterations are required--as well as greater accuracy. In addition, tumors are detected early in the reconstruction process. Results for reconstructions of a simple two-dimensional model of the human breast are presented. These reconstructions are extremely accurate when system noise and variations in tissue parameters are not too great. However, for the algorithm used, degradation of the reconstructions and divergence from the correct solution occur when system noise and variations in parameters exceed threshold values. Even in this case, however, tumors are still identified within a few iterations. PMID:9514017

  12. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology

    NASA Astrophysics Data System (ADS)

    Heijblom, M.; Piras, D.; Brinkhuis, M.; van Hespen, J. C. G.; van den Engh, F. M.; van der Schaaf, M.; Klaase, J. M.; van Leeuwen, T. G.; Steenbergen, W.; Manohar, S.

    2015-07-01

    Photoacoustic (optoacoustic) imaging can visualize vasculature deep in tissue using the high contrast of hemoglobin to light, with the high-resolution possible with ultrasound detection. Since angiogenesis, one of the hallmarks of cancer, leads to increased vascularity, photoacoustics holds promise in imaging breast cancer as shown in proof-of-principle studies. Here for the first time, we investigate if there are specific photoacoustic appearances of breast malignancies which can be related to the tumor vascularity, using an upgraded research imaging system, the Twente Photoacoustic Mammoscope. In addition to comparisons with x-ray and ultrasound images, in subsets of cases the photoacoustic images were compared with MR images, and with vascular staining in histopathology. We were able to identify lesions in suspect breasts at the expected locations in 28 of 29 cases. We discovered generally three types of photoacoustic appearances reminiscent of contrast enhancement types reported in MR imaging of breast malignancies, and first insights were gained into the relationship with tumor vascularity.

  13. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology

    PubMed Central

    Heijblom, M.; Piras, D.; Brinkhuis, M.; van Hespen, J. C. G.; van den Engh, F. M.; van der Schaaf, M.; Klaase, J. M.; van Leeuwen, T. G.; Steenbergen, W.; Manohar, S.

    2015-01-01

    Photoacoustic (optoacoustic) imaging can visualize vasculature deep in tissue using the high contrast of hemoglobin to light, with the high-resolution possible with ultrasound detection. Since angiogenesis, one of the hallmarks of cancer, leads to increased vascularity, photoacoustics holds promise in imaging breast cancer as shown in proof-of-principle studies. Here for the first time, we investigate if there are specific photoacoustic appearances of breast malignancies which can be related to the tumor vascularity, using an upgraded research imaging system, the Twente Photoacoustic Mammoscope. In addition to comparisons with x-ray and ultrasound images, in subsets of cases the photoacoustic images were compared with MR images, and with vascular staining in histopathology. We were able to identify lesions in suspect breasts at the expected locations in 28 of 29 cases. We discovered generally three types of photoacoustic appearances reminiscent of contrast enhancement types reported in MR imaging of breast malignancies, and first insights were gained into the relationship with tumor vascularity. PMID:26159440

  14. Kilovoltage cone-beam CT imaging dose during breast radiotherapy: a dose comparison between a left and right breast setup.

    PubMed

    Quinn, Alexandra; Holloway, Lois; Begg, Jarrad; Nelson, Vinod; Metcalfe, Peter

    2014-01-01

    The purpose of this study was to investigate the delivered dose from a kilovoltage cone-beam computed tomography (kV-CBCT) acquired in breast treatment position for a left and right breast setup. The dose was measured with thermoluminescent dosimeters positioned within a female anthropomorphic phantom at organ locations. Imaging was performed on an Elekta Synergy XVI system with the phantom setup on a breast board. The image protocol involved 120kVp, 140mAs, and a 270° arc rotation clockwise 0° to 270° for the left breast setup and 270° to 180° for the right breast setup (maximum arc rotations possible). The dose delivered to the left breast, right breast, and heart was 5.1mGy, 3.9mGy, and 4.0mGy for the left breast setup kV-CBCT, and 6.4mGy, 6.0mGy, and 4.8mGy for the right breast setup kV-CBCT, respectively. The rotation arc of the kV-CBCT influenced the dose delivered, with the right breast setup kV-CBCT found to deliver a dose of up to 4mGy or 105% higher to the treated breast's surface in comparison with the left breast setup. This is attributed to the kV-CBCT source being more proximal to the anterior of the phantom for a right breast setup, whereas the source is more proximal to the posterior of the patient for a left-side scan. PMID:24630912

  15. Microwave imaging of the breast with incorporated structural information

    NASA Astrophysics Data System (ADS)

    Golnabi, Amir H.; Meaney, Paul M.; Geimer, Shireen D.; Paulsen, Keith D.

    2010-03-01

    Microwave imaging for biomedical applications, especially for early detection of breast cancer and effective treatment monitoring, has attracted increasing interest in last several decades. This fact is due to the high contrast between the dielectric properties of the normal and malignant breast tissues at microwave frequencies ranging from high megahertz to low gigahertz. The available range of dielectric properties for different soft tissue can provide considerable functional information about tissue health. Nonetheless, one of the limiting weaknesses of microwave imaging is, unlike that for conventional modalities such as X-ray CT or MRI, it cannot inherently provide high-resolution images. The conventional modalities can produce highly resolved anatomical information but often cannot provide the functional information required for diagnoses. We have developed a soft prior regularization strategy that can incorporate the prior anatomical information from X-ray CT, MR or other sources, and use it in a way to exploit the resolution of these images while also retaining the functional nature of the microwave images. The anatomical information is first used to create an imaging zone mesh, which segments separate internal substructures, and an associated weighting matrix that numerically groups the values of closely related nodes within the mesh. This information is subsequently used as a regularizing term for the Gauss-Newton reconstruction algorithm. This approach exploits existing technology in a systematic way without making potentially biased assumptions about the properties of visible structures. In this paper we continue our initial investigation on this matter with a series of breast-shaped simulation and phantom experiments.

  16. Breast ultrasound imaging phantom to mimic malign lesion characteristics

    NASA Astrophysics Data System (ADS)

    de Carvalho, I. M.; Basto, R. L. Q.; Infantosi, A. F. C.; von Krüger, M. A.; Pereira, W. C. A.

    2010-01-01

    Ultrasound (US) phantoms are used to simulate the main acoustic properties of human soft tissues and are usually applied in guided biopsy training and equipment calibration. In this work it is presented an ultrasound phantom that mimics breast lesions with irregular edge, which is a typical feature related to malignancy. The phantom matrix was made of a mixture of water, agar, glycerine and graphite and PVC powders and the lesions were of silicon and polyacrylamide. The mimicking properties were US attenuation, propagation speed and density. The images obtained were visually compatible to malignant and benign lesions and are meant to be used as references for evaluation of segmentation algorithms for image processing.

  17. Improved digital breast tomosynthesis images using automated ultrasound

    PubMed Central

    Zhang, Xing; Yuan, Jie; Du, Sidan; Kripfgans, Oliver D.; Wang, Xueding; Carson, Paul L.; Liu, Xiaojun

    2014-01-01

    Purpose: Digital breast tomosynthesis (DBT) offers poor image quality along the depth direction. This paper presents a new method that improves the image quality of DBT considerably through the a priori information from automated ultrasound (AUS) images. Methods: DBT and AUS images of a complex breast-mimicking phantom are acquired by a DBT/AUS dual-modality system. The AUS images are taken in the same geometry as the DBT images and the gradient information of the in-slice AUS images is adopted into the new loss functional during the DBT reconstruction process. The additional data allow for new iterative equations through solving the optimization problem utilizing the gradient descent method. Both visual comparison and quantitative analysis are employed to evaluate the improvement on DBT images. Normalized line profiles of lesions are obtained to compare the edges of the DBT and AUS-corrected DBT images. Additionally, image quality metrics such as signal difference to noise ratio (SDNR) and artifact spread function (ASF) are calculated to quantify the effectiveness of the proposed method. Results: In traditional DBT image reconstructions, serious artifacts can be found along the depth direction (Z direction), resulting in the blurring of lesion edges in the off-focus planes parallel to the detector. However, by applying the proposed method, the quality of the reconstructed DBT images is greatly improved. Visually, the AUS-corrected DBT images have much clearer borders in both in-focus and off-focus planes, fewer Z direction artifacts and reduced overlapping effect compared to the conventional DBT images. Quantitatively, the corrected DBT images have better ASF, indicating a great reduction in Z direction artifacts as well as better Z resolution. The sharper line profiles along the Y direction show enhancement on the edges. Besides, noise is also reduced, evidenced by the obviously improved SDNR values. Conclusions: The proposed method provides great improvement on

  18. Imaging of common breast implants and implant-related complications: A pictorial essay

    PubMed Central

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer. PMID:27413269

  19. A Dataset for Breast Cancer Histopathological Image Classification.

    PubMed

    Spanhol, Fabio A; Oliveira, Luiz S; Petitjean, Caroline; Heutte, Laurent

    2016-07-01

    Today, medical image analysis papers require solid experiments to prove the usefulness of proposed methods. However, experiments are often performed on data selected by the researchers, which may come from different institutions, scanners, and populations. Different evaluation measures may be used, making it difficult to compare the methods. In this paper, we introduce a dataset of 7909 breast cancer histopathology images acquired on 82 patients, which is now publicly available from http://web.inf.ufpr.br/vri/breast-cancer-database. The dataset includes both benign and malignant images. The task associated with this dataset is the automated classification of these images in two classes, which would be a valuable computer-aided diagnosis tool for the clinician. In order to assess the difficulty of this task, we show some preliminary results obtained with state-of-the-art image classification systems. The accuracy ranges from 80% to 85%, showing room for improvement is left. By providing this dataset and a standardized evaluation protocol to the scientific community, we hope to gather researchers in both the medical and the machine learning field to advance toward this clinical application. PMID:26540668

  20. Phase-contrast X-ray imaging of breast.

    PubMed

    Keyriläinen, Jani; Bravin, Alberto; Fernández, Manuel; Tenhunen, Mikko; Virkkunen, Pekka; Suortti, Pekka

    2010-10-01

    When an X-ray wave traverses an object, its amplitude and phase change, resulting in attenuation, interference, and refraction, and in phase-contrast X-ray imaging (PCI) these are converted to intensity changes. The relative change of the X-ray phase per unit path length is even orders of magnitude larger than that of the X-ray amplitude, so that the image contrast based on variation of the X-ray phase is potentially much stronger than the contrast based on X-ray amplitude (absorption contrast). An important medical application of PCI methods is soft-tissue imaging, where the absorption contrast is inherently weak. It is shown by in vitro examples that signs of malignant human breast tumor are enhanced in PCI images. Owing to the strong contrast, the radiation dose can be greatly reduced, so that a high-resolution phase-contrast X-ray tomography of the breast is possible with about 1 mGy mean glandular dose. Scattered radiation carries essential information on the atomic and molecular structure of the object, and particularly small-angle X-ray scattering can be used to trace cancer. The imaging methods developed at the synchrotron radiation facilities will become available in the clinical environment with the ongoing development of compact radiation sources, which produce intense X-ray beams of sufficient coherence. Several developments that are under way are described here. PMID:20799921

  1. Assessment of breast tumor margins via quantitative diffuse reflectance imaging

    NASA Astrophysics Data System (ADS)

    Brown, J. Quincy; Bydlon, Torre M.; Kennedy, Stephanie A.; Geradts, Joseph; Wilke, Lee G.; Barry, William; Richards, Lisa M.; Junker, Marlee K.; Gallagher, Jennifer; Ramanujam, Nimmi

    2010-02-01

    A particular application of interest for tissue reflectance spectroscopy in the UV-Visible is intraoperative detection of residual cancer at the margins of excised breast tumors, which could prevent costly and unnecessary repeat surgeries. Our multi-disciplinary group has developed an optical imaging device, which is capable of surveying the entire specimen surface down to a depth of 1-2mm, all within a short time as required for intraoperative use. In an IRB-approved study, reflectance spectral images were acquired from 54 margins in 48 patients. Conversion of the spectral images to quantitative tissue parameter maps was facilitated by a fast scalable inverse Monte-Carlo model. Data from margin parameter images were reduced to image-descriptive scalar values and compared to gold-standard margin pathology. The utility of the device for classification of margins was determined via the use of a conditional inference tree modeling approach, and was assessed both as a function of type of disease present at the margin, as well as a function of distance of disease from the issue surface. Additionally, the influence of breast density on the diagnostic parameters, as well as the accuracy of the device, was evaluated.

  2. Breast Imaging Utilizing Dedicated Gamma Camera and (99m)Tc-MIBI: Experience at the Tel Aviv Medical Center and Review of the Literature Breast Imaging.

    PubMed

    Even-Sapir, Einat; Golan, Orit; Menes, Tehillah; Weinstein, Yuliana; Lerman, Hedva

    2016-07-01

    The scope of the current article is the clinical role of gamma cameras dedicated for breast imaging and (99m)Tc-MIBI tumor-seeking tracer, as both a screening modality among a healthy population and as a diagnostic modality in patients with breast cancer. Such cameras are now commercially available. The technology utilizing a camera composed of a NaI (Tl) detector is termed breast-specific gamma imaging. The technology of dual-headed camera composed of semiconductor cadmium zinc telluride detectors that directly converts gamma-ray energy into electronic signals is termed molecular breast imaging. Molecular breast imaging system has been installed at the Department of Nuclear medicine at the Tel Aviv Sourasky Medical Center, Tel Aviv in 2009. The article reviews the literature well as our own experience. PMID:27237439

  3. Identification of breast calcification using magnetic resonance imaging

    SciTech Connect

    Fatemi-Ardekani, Ali; Boylan, Colm; Noseworthy, Michael D.

    2009-12-15

    MRI phase and magnitude images provide information about local magnetic field variation ({Delta}B{sub 0}), which can consequently be used to understand tissue properties. Often, phase information is discarded. However, corrected phase images are able to produce contrast as a result of magnetic susceptibility differences and local field inhomogeneities due to the presence of diamagnetic and paramagnetic substances. Three-dimensional (3D) susceptibility weighted imaging (SWI) can be used to probe changes in MRI phase evolution and, subsequently, result in an alternate form of contrast between tissues. For example, SWI has been useful in the assessment of negative phase induced {Delta}B{sub 0} modulation due to the presence of paramagnetic substances such as iron. Very little, however, has been done to assess positive phase induced contrast changes resulting from the presence of diamagnetic substances such as precipitated calcium. As ductal carcinoma in situ, which is the precursor of invasive ductal cancer, is often associated with breast microcalcification, the authors proposed using SWI as a possible visualization technique. In this study, breast phantoms containing calcifications (0.4-1.5 mm) were imaged using mammography, computed tomography (CT), and SWI. Corrected phase and magnitude images acquired using SWI allowed identification and correlation of all calcifications seen on CT. As the approach is a 3D technique, it could potentially allow for more accurate localization and biopsy and maybe even reduce the use of gadolinium contrast. Furthermore, the approach may be beneficial to women with dense breast tissue where the ability to detect microcalcification with mammography is reduced.

  4. Fluorescence goggle for intraoperative breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Bauer, Adam Q.; Akers, Walter; Sudlow, Gail; Liang, Kexian; Charanya, Tauseef; Mondal, Suman; Culver, Joseph P.; Achilefu, Samuel

    2012-03-01

    We have developed a fluorescence goggle device for intraoperative oncologic imaging. With our system design, the surgeon can directly visualize the fluorescence information from the eyepieces in real time without any additional monitor, which can improve one's coordination and surgical accuracy. In conjunction with targeting fluorescent dyes, the goggle device can successfully detect tumor margins and small nodules that are not obvious to naked eye. This can potentially decrease the incidence of incomplete resection.

  5. Roles of biologic breast tissue composition and quantitative image analysis of mammographic images in breast tumor characterization

    NASA Astrophysics Data System (ADS)

    Drukker, Karen; Giger, Maryellen L.; Duewer, Fred; Malkov, Serghei; Flowers, Christopher I.; Joe, Bonnie; Kerlikowske, Karla; Drukteinis, Jennifer S.; Shepherd, John

    2014-03-01

    Purpose. Investigate whether knowledge of the biologic image composition of mammographic lesions provides imagebased biomarkers above and beyond those obtainable from quantitative image analysis (QIA) of X-ray mammography. Methods. The dataset consisted of 45 in vivo breast lesions imaged with the novel 3-component breast (3CB) imaging technique based on dual-energy mammography (15 malignant, 30 benign diagnoses). The 3CB composition measures of water, lipid, and protein thicknesses were assessed and mathematical descriptors, `3CB features', were obtained for the lesions and their periphery. The raw low-energy mammographic images were analyzed with an established in-house QIA method obtaining `QIA features' describing morphology and texture. We investigated the correlation within the `3CB features', within the `QIA features', and between the two. In addition, the merit of individual features in the distinction between malignant and benign lesions was assessed. Results. Whereas many descriptors within the `3CB features' and `QIA features' were, often by design, highly correlated, correlation between descriptors of the two feature groups was much weaker (maximum absolute correlation coefficient 0.58, p<0.001) indicating that 3CB and QIA-based biomarkers provided potentially complementary information. Single descriptors from 3CB and QIA appeared equally well-suited for the distinction between malignant and benign lesions, with maximum area under the ROC curve 0.71 for a protein feature (3CB) and 0.71 for a texture feature (QIA). Conclusions. In this pilot study analyzing the new 3CB imaging modality, knowledge of breast tissue composition appeared additive in combination with existing mammographic QIA methods for the distinction between benign and malignant lesions.

  6. ROC analysis of lesion descriptors in breast ultrasound images

    NASA Astrophysics Data System (ADS)

    Andre, Michael P.; Galperin, Michael; Phan, Peter; Chiu, Peter

    2003-05-01

    Breast biopsy serves as the key diagnostic tool in the evaluation of breast masses for malignancy, yet the procedure affects patients physically and emotionally and may obscure results of future mammograms. Studies show that high quality ultrasound can distinguish a benign from malignant lesions with accuracy, however, it has proven difficult to teach and clinical results are highly variable. The purpose of this study is to develop a means to optimize an automated Computer Aided Imaging System (CAIS) to assess Level of Suspicion (LOS) of a breast mass. We examine the contribution of 15 object features to lesion classification by calculating the Wilcoxon area under the ROC curve, AW, for all combinations in a set of 146 masses with known findings. For each interval A, the frequency of appearance of each feature and its combinations with others was computed as a means to find an "optimum" feature vector. The original set of 15 was reduced to 6 (area, perimeter, diameter ferret Y, relief, homogeneity, average energy) with an improvement from Aw=0.82-/+0.04 for the original 15 to Aw=0.93-/+0.02 for the subset of 6, p=0.03. For comparison, two sub-specialty mammography radiologists also scored the images for LOS resulting in Az of 0.90 and 0.87. The CAIS performed significantly higher, p=0.02.

  7. Kilovoltage cone-beam CT imaging dose during breast radiotherapy: A dose comparison between a left and right breast setup

    SciTech Connect

    Quinn, Alexandra; Holloway, Lois; Begg, Jarrad; Nelson, Vinod; Metcalfe, Peter

    2014-07-01

    The purpose of this study was to investigate the delivered dose from a kilovoltage cone-beam computed tomography (kV-CBCT) acquired in breast treatment position for a left and right breast setup. The dose was measured with thermoluminescent dosimeters positioned within a female anthropomorphic phantom at organ locations. Imaging was performed on an Elekta Synergy XVI system with the phantom setup on a breast board. The image protocol involved 120 kVp, 140 mAs, and a 270° arc rotation clockwise 0° to 270° for the left breast setup and 270° to 180° for the right breast setup (maximum arc rotations possible). The dose delivered to the left breast, right breast, and heart was 5.1 mGy, 3.9 mGy, and 4.0 mGy for the left breast setup kV-CBCT, and 6.4 mGy, 6.0 mGy, and 4.8 mGy for the right breast setup kV-CBCT, respectively. The rotation arc of the kV-CBCT influenced the dose delivered, with the right breast setup kV-CBCT found to deliver a dose of up to 4 mGy or 105% higher to the treated breast′s surface in comparison with the left breast setup. This is attributed to the kV-CBCT source being more proximal to the anterior of the phantom for a right breast setup, whereas the source is more proximal to the posterior of the patient for a left-side scan.

  8. Image quality evaluation of breast tomosynthesis with synchrotron radiation

    SciTech Connect

    Malliori, A.; Bliznakova, K.; Speller, R. D.; Horrocks, J. A.; Rigon, L.; Tromba, G.; Pallikarakis, N.

    2012-09-15

    Purpose: This study investigates the image quality of tomosynthesis slices obtained from several acquisition sets with synchrotron radiation using a breast phantom incorporating details that mimic various breast lesions, in a heterogeneous background. Methods: A complex Breast phantom (MAMMAX) with a heterogeneous background and thickness that corresponds to 4.5 cm compressed breast with an average composition of 50% adipose and 50% glandular tissue was assembled using two commercial phantoms. Projection images using acquisition arcs of 24 Degree-Sign , 32 Degree-Sign , 40 Degree-Sign , 48 Degree-Sign , and 56 Degree-Sign at incident energy of 17 keV were obtained from the phantom with the synchrotron radiation for medical physics beamline at ELETTRA Synchrotron Light Laboratory. The total mean glandular dose was set equal to 2.5 mGy. Tomograms were reconstructed with simple multiple projection algorithm (MPA) and filtered MPA. In the latter case, a median filter, a sinc filter, and a combination of those two filters were applied on the experimental data prior to MPA reconstruction. Visual inspection, contrast to noise ratio, contrast, and artifact spread function were the figures of merit used in the evaluation of the visualisation and detection of low- and high-contrast breast features, as a function of the reconstruction algorithm and acquisition arc. To study the benefits of using monochromatic beams, single projection images at incident energies ranging from 14 to 27 keV were acquired with the same phantom and weighted to synthesize polychromatic images at a typical incident x-ray spectrum with W target. Results: Filters were optimised to reconstruct features with different attenuation characteristics and dimensions. In the case of 6 mm low-contrast details, improved visual appearance as well as higher contrast to noise ratio and contrast values were observed for the two filtered MPA algorithms that exploit the sinc filter. These features are better visualized

  9. Detecting breast microcalcifications using super-resolution ultrasound imaging: a clinical study

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Labyed, Yassin; Hanson, Kenneth; Sandoval, Daniel; Pohl, Jennifer; Williamson, Michael

    2013-03-01

    Imaging breast microcalcifications is crucial for early detection and diagnosis of breast cancer. It is challenging for current clinical ultrasound to image breast microcalcifications. However, new imaging techniques using data acquired with a synthetic-aperture ultrasound system have the potential to significantly improve ultrasound imaging. We recently developed a super-resolution ultrasound imaging method termed the phase-coherent multiple-signal classification (PC-MUSIC). This signal subspace method accounts for the phase response of transducer elements to improve image resolution. In this paper, we investigate the clinical feasibility of our super-resolution ultrasound imaging method for detecting breast microcalcifications. We use our custom-built, real-time synthetic-aperture ultrasound system to acquire breast ultrasound data for 40 patients whose mammograms show the presence of breast microcalcifications. We apply our super-resolution ultrasound imaging method to the patient data, and produce clear images of breast calcifications. Our super-resolution ultrasound PC-MUSIC imaging with synthetic-aperture ultrasound data can provide a new imaging modality for detecting breast microcalcifications in clinic without using ionizing radiation.

  10. Beamforming-Enhanced Inverse Scattering for Microwave Breast Imaging

    PubMed Central

    Burfeindt, Matthew J.; Shea, Jacob D.; Van Veen, Barry D.; Hagness, Susan C.

    2015-01-01

    We present a focal-beamforming-enhanced formulation of the distorted Born iterative method (DBIM) for microwave breast imaging. Incorporating beamforming into the imaging algorithm has the potential to mitigate the effect of noise on the image reconstruction. We apply the focal-beamforming-enhanced DBIM algorithm to simulated array measurements from two MRI-derived, anatomically realistic numerical breast phantoms and compare its performance to that of the DBIM formulated with two non-focal schemes. The first scheme simply averages scattered field data from reciprocal antenna pairs while the second scheme discards reciprocal pairs. Images of the dielectric properties are reconstructed for signal-to-noise ratios (SNR) ranging from 35 dB down to 0 dB. We show that, for low SNR, the focal beamforming algorithm creates reconstructions that are of higher fidelity with respect to the exact dielectric profiles of the phantoms as compared to reconstructions created using the non-focal schemes. At high SNR, the focal and non-focal reconstructions are of comparable quality. PMID:26663930

  11. Bioluminescence imaging of estrogen receptor activity during breast cancer progression

    PubMed Central

    Vantaggiato, Cristina; Dell’Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation. PMID:27069764

  12. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    PubMed

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation. PMID:27069764

  13. Automated planning of breast radiotherapy using cone beam CT imaging

    SciTech Connect

    Amit, Guy; Purdie, Thomas G.

    2015-02-15

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation.

  14. Clinical breast imaging using sound-speed reconstructions of ultrasound tomography data

    NASA Astrophysics Data System (ADS)

    Li, Cuiping; Duric, Neb; Huang, Lianjie

    2008-03-01

    To improve clinical breast imaging, a new ultrasound tomography imaging device (CURE) has been built at the Karmanos Cancer Institute. The ring array of the CURE device records ultrasound transmitted and reflected ultrasound signals simultaneously. We develop a bent-ray tomography algorithm for reconstructing the sound-speed distribution of the breast using time-of-flights of transmitted signals. We study the capability of the algorithm using a breast phantom dataset and over 190 patients' data. Examples are presented to demonstrate the sound-speed reconstructions for different breast types from fatty to dense on the BI-RADS categories 1-4. Our reconstructions show that the mean sound-speed value increases from fatty to dense breasts: 1440.8 m/ s (fatty), 1451.9 m/ s (scattered), 1473.2 m/ s(heterogeneous), and 1505.25 m/ s (dense). This is an important clinical implication of our reconstruction. The mean sound speed can be used for breast density analysis. In addition, the sound-speed reconstruction, in combination with attenuation and reflectivity images, has the potential to improve breast-cancer diagnostic imaging. The breast is not compressed and does not move during the ultrasound scan using the CURE device, stacking 2D slices of ultrasound sound-speed tomography images forms a 3D volumetric view of the whole breast. The 3D image can also be projected into a 2-D "ultrasound mammogram" to visually mimic X-ray mammogram without breast compression and ionizing radiation.

  15. Classification System for Identifying Women at Risk for Altered Partial Breast Irradiation Recommendations After Breast Magnetic Resonance Imaging

    SciTech Connect

    Kowalchik, Kristin V.; Vallow, Laura A.; McDonough, Michelle; Thomas, Colleen S.; Heckman, Michael G.; Peterson, Jennifer L.; Adkisson, Cameron D.; Serago, Christopher; McLaughlin, Sarah A.

    2013-09-01

    Purpose: To study the utility of preoperative breast MRI for partial breast irradiation (PBI) patient selection, using multivariable analysis of significant risk factors to create a classification rule. Methods and Materials: Between 2002 and 2009, 712 women with newly diagnosed breast cancer underwent preoperative bilateral breast MRI at Mayo Clinic Florida. Of this cohort, 566 were retrospectively deemed eligible for PBI according to the National Surgical Adjuvant Breast and Bowel Project Protocol B-39 inclusion criteria using physical examination, mammogram, and/or ultrasound. Magnetic resonance images were then reviewed to determine their impact on patient eligibility. The patient and tumor characteristics were evaluated to determine risk factors for altered PBI eligibility after MRI and to create a classification rule. Results: Of the 566 patients initially eligible for PBI, 141 (25%) were found ineligible because of pathologically proven MRI findings. Magnetic resonance imaging detected additional ipsilateral breast cancer in 118 (21%). Of these, 62 (11%) had more extensive disease than originally noted before MRI, and 64 (11%) had multicentric disease. Contralateral breast cancer was detected in 28 (5%). Four characteristics were found to be significantly associated with PBI ineligibility after MRI on multivariable analysis: premenopausal status (P=.021), detection by palpation (P<.001), first-degree relative with a history of breast cancer (P=.033), and lobular histology (P=.002). Risk factors were assigned a score of 0-2. The risk of altered PBI eligibility from MRI based on number of risk factors was 0:18%; 1:22%; 2:42%; 3:65%. Conclusions: Preoperative bilateral breast MRI altered the PBI recommendations for 25% of women. Women who may undergo PBI should be considered for breast MRI, especially those with lobular histology or with 2 or more of the following risk factors: premenopausal, detection by palpation, and first-degree relative with a history of

  16. The Image of Career and Technical Education. Practice Application Brief.

    ERIC Educational Resources Information Center

    Brown, Bettina Lankard

    Career and technical education (CTE) instructors can use four strategies to present a new image of CTE as a viable strategy for education and work. Strategy 1 is to give students something to brag about. Three ways to help students see their vocational studies as unique and special opportunities for satisfying and rich experiences are to provide…

  17. Design of optimal collimation for dedicated molecular breast imaging systems

    PubMed Central

    Weinmann, Amanda L.; Hruska, Carrie B.; O’Connor, Michael K.

    2009-01-01

    Molecular breast imaging (MBI) is a functional imaging technique that uses specialized small field-of-view gamma cameras to detect the preferential uptake of a radiotracer in breast lesions. MBI has potential to be a useful adjunct method to screening mammography for the detection of occult breast cancer. However, a current limitation of MBI is the high radiation dose (a factor of 7–10 times that of screening mammography) associated with current technology. The purpose of this study was to optimize the gamma camera collimation with the aim of improving sensitivity while retaining adequate resolution for the detection of sub-10-mm lesions. Square-hole collimators with holes matched to the pixilated cadmium zinc telluride detector elements of the MBI system were designed. Data from MBI patient studies and parameters of existing dual-head MBI systems were used to guide the range of desired collimator resolutions, source-to-collimator distances, pixel sizes, and collimator materials that were examined. General equations describing collimator performance for a conventional gamma camera were used in the design process along with several important adjustments to account for the specialized imaging geometry of the MBI system. Both theoretical calculations and a Monte Carlo model were used to measure the geometric efficiency (or sensitivity) and resolution of each designed collimator. Results showed that through optimal collimation, collimator sensitivity could be improved by factors of 1.5–3.2, while maintaining a collimator resolution of either ≤5 or ≤7.5 mm at a distance of 3 cm from the collimator face. These gains in collimator sensitivity permit an inversely proportional drop in the required dose to perform MBI. PMID:19378745

  18. Design of optimal collimation for dedicated molecular breast imaging systems

    SciTech Connect

    Weinmann, Amanda L.; Hruska, Carrie B.; O'Connor, Michael K.

    2009-03-15

    Molecular breast imaging (MBI) is a functional imaging technique that uses specialized small field-of-view gamma cameras to detect the preferential uptake of a radiotracer in breast lesions. MBI has potential to be a useful adjunct method to screening mammography for the detection of occult breast cancer. However, a current limitation of MBI is the high radiation dose (a factor of 7-10 times that of screening mammography) associated with current technology. The purpose of this study was to optimize the gamma camera collimation with the aim of improving sensitivity while retaining adequate resolution for the detection of sub-10-mm lesions. Square-hole collimators with holes matched to the pixilated cadmium zinc telluride detector elements of the MBI system were designed. Data from MBI patient studies and parameters of existing dual-head MBI systems were used to guide the range of desired collimator resolutions, source-to-collimator distances, pixel sizes, and collimator materials that were examined. General equations describing collimator performance for a conventional gamma camera were used in the design process along with several important adjustments to account for the specialized imaging geometry of the MBI system. Both theoretical calculations and a Monte Carlo model were used to measure the geometric efficiency (or sensitivity) and resolution of each designed collimator. Results showed that through optimal collimation, collimator sensitivity could be improved by factors of 1.5-3.2, while maintaining a collimator resolution of either {<=}5 or {<=}7.5 mm at a distance of 3 cm from the collimator face. These gains in collimator sensitivity permit an inversely proportional drop in the required dose to perform MBI.

  19. Design considerations for ultrasound detectors in photoacoustic breast imaging

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; Piras, Daniele; Singh, Mithun K. A.; van Hespen, Johan C. G.; van Veldhoven, Spiridon; Prins, Christian; van Leeuwen, Ton G.; Steenbergen, Wiendelft; Manohar, Srirang

    2013-03-01

    The ultrasound detector is the heart of a photoacoustic imaging system. In photoacoustic imaging of the breast there is a requirement to detect tumors located a few centimeters deep in tissue, where the light is heavily attenuated. Thus a sensitive ultrasound transducer is of crucial importance. As the frequency content of photoacoustic waves are inversely proportional to the dimensions of the absorbing structures, and in tissue can range from hundreds of kHz to tens of MHz, a broadband ultrasound transducer is required centered on an optimum frequency. A single element piezoelectric transducer structurally consists of the active piezoelectric material, front- and back-matching layers and a backing layer. To have both high sensitivity and broad bandwidth, the materials, their acoustic characteristics and their dimensions should be carefully chosen. In this paper, we present design considerations of an ultrasound transducer for imaging the breast such as the detector sensitivity and frequency response, which guides the selection of active material, matching layers and their geometries. We iterate between simulation of detector performance and experimental characterization of functional models to arrive at an optimized implementation. For computer simulation, we use 1D KLM and 3D finite-element based models. The optimized detector has a large-aperture possessing a center frequency of 1 MHz with fractional bandwidth of more than 80%. The measured minimum detectable pressure is 0.5 Pa, which is two orders of magnitude lower than the detector used in the Twente photoacoustic mammoscope.

  20. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast

    NASA Astrophysics Data System (ADS)

    Sztrókay, A.; Diemoz, P. C.; Schlossbauer, T.; Brun, E.; Bamberg, F.; Mayr, D.; Reiser, M. F.; Bravin, A.; Coan, P.

    2012-05-01

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm2 pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation.

  1. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast.

    PubMed

    Sztrókay, A; Diemoz, P C; Schlossbauer, T; Brun, E; Bamberg, F; Mayr, D; Reiser, M F; Bravin, A; Coan, P

    2012-05-21

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm² pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation. PMID:22516937

  2. A review of breast tomosynthesis. Part I. The image acquisition process

    PubMed Central

    Sechopoulos, Ioannis

    2013-01-01

    Mammography is a very well-established imaging modality for the early detection and diagnosis of breast cancer. However, since the introduction of digital imaging to the realm of radiology, more advanced, and especially tomographic imaging methods have been made possible. One of these methods, breast tomosynthesis, has finally been introduced to the clinic for routine everyday use, with potential to in the future replace mammography for screening for breast cancer. In this two part paper, the extensive research performed during the development of breast tomosynthesis is reviewed, with a focus on the research addressing the medical physics aspects of this imaging modality. This first paper will review the research performed on the issues relevant to the image acquisition process, including system design, optimization of geometry and technique, x-ray scatter, and radiation dose. The companion to this paper will review all other aspects of breast tomosynthesis imaging, including the reconstruction process. PMID:23298126

  3. A review of breast tomosynthesis. Part I. The image acquisition process

    SciTech Connect

    Sechopoulos, Ioannis

    2013-01-15

    Mammography is a very well-established imaging modality for the early detection and diagnosis of breast cancer. However, since the introduction of digital imaging to the realm of radiology, more advanced, and especially tomographic imaging methods have been made possible. One of these methods, breast tomosynthesis, has finally been introduced to the clinic for routine everyday use, with potential to in the future replace mammography for screening for breast cancer. In this two part paper, the extensive research performed during the development of breast tomosynthesis is reviewed, with a focus on the research addressing the medical physics aspects of this imaging modality. This first paper will review the research performed on the issues relevant to the image acquisition process, including system design, optimization of geometry and technique, x-ray scatter, and radiation dose. The companion to this paper will review all other aspects of breast tomosynthesis imaging, including the reconstruction process.

  4. A review of breast tomosynthesis. Part I. The image acquisition process.

    PubMed

    Sechopoulos, Ioannis

    2013-01-01

    Mammography is a very well-established imaging modality for the early detection and diagnosis of breast cancer. However, since the introduction of digital imaging to the realm of radiology, more advanced, and especially tomographic imaging methods have been made possible. One of these methods, breast tomosynthesis, has finally been introduced to the clinic for routine everyday use, with potential to in the future replace mammography for screening for breast cancer. In this two part paper, the extensive research performed during the development of breast tomosynthesis is reviewed, with a focus on the research addressing the medical physics aspects of this imaging modality. This first paper will review the research performed on the issues relevant to the image acquisition process, including system design, optimization of geometry and technique, x-ray scatter, and radiation dose. The companion to this paper will review all other aspects of breast tomosynthesis imaging, including the reconstruction process. PMID:23298126

  5. Monte Carlo simulation of breast imaging using synchrotron radiation

    SciTech Connect

    Fitousi, N. T.; Delis, H.; Panayiotakis, G.

    2012-04-15

    Purpose: Synchrotron radiation (SR), being the brightest artificial source of x-rays with a very promising geometry, has raised the scientific expectations that it could be used for breast imaging with optimized results. The ''in situ'' evaluation of this technique is difficult to perform, mostly due to the limited available SR facilities worldwide. In this study, a simulation model for SR breast imaging was developed, based on Monte Carlo simulation techniques, and validated using data acquired in the SYRMEP beamline of the Elettra facility in Trieste, Italy. Furthermore, primary results concerning the performance of SR were derived. Methods: The developed model includes the exact setup of the SR beamline, considering that the x-ray source is located at almost 23 m from the slit, while the photon energy was considered to originate from a very narrow Gaussian spectrum. Breast phantoms, made of Perspex and filled with air cavities, were irradiated with energies in the range of 16-28 keV. The model included a Gd{sub 2}O{sub 2}S detector with the same characteristics as the one available in the SYRMEP beamline. Following the development and validation of the model, experiments were performed in order to evaluate the contrast resolution of SR. A phantom made of adipose tissue and filled with inhomogeneities of several compositions and sizes was designed and utilized to simulate the irradiation under conventional mammography and SR conditions. Results: The validation results of the model showed an excellent agreement with the experimental data, with the correlation for contrast being 0.996. Significant differences only appeared at the edges of the phantom, where phase effects occur. The initial evaluation experiments revealed that SR shows very good performance in terms of the image quality indices utilized, namely subject contrast and contrast to noise ratio. The response of subject contrast to energy is monotonic; however, this does not stand for contrast to noise

  6. Breast Imaging in the Era of Big Data: Structured Reporting and Data Mining

    PubMed Central

    Margolies, Laurie R.; Pandey, Gaurav; Horowitz, Eliot R.; Mendelson, David S.

    2016-01-01

    OBJECTIVE The purpose of this article is to describe structured reporting and the development of large databases for use in data mining in breast imaging. CONCLUSION The results of millions of breast imaging examinations are reported with structured tools based on the BI-RADS lexicon. Much of these data are stored in accessible media. Robust computing power creates great opportunity for data scientists and breast imagers to collaborate to improve breast cancer detection and optimize screening algorithms. Data mining can create knowledge, but the questions asked and their complexity require extremely powerful and agile databases. New data technologies can facilitate outcomes research and precision medicine. PMID:26587797

  7. Three-dimensional photoacoustic imaging system in line confocal mode for breast cancer detection

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Yang, Sihua; Xing, Da

    2010-11-01

    We present a three-dimensional (3-D) photoacoustic imaging system (PAIS) in line confocal mode for breast cancer detection. With the line confocal mode, the spatial resolution of the PAIS was tested to be improved about three times compared with the nonconfocal mode PAIS. Furthermore, with a flexible scanning system and no compression on the breast, the PAIS could supply a comfortable and safe diagnosis process for the patient. An ex vivo breast tumor imaging experiment was performed and the tumor was visualized by the 3-D photoacoustic image. The experimental result demonstrated that the system had great potential of application in breast cancer detection.

  8. Breast Magnetic Resonance Imaging for Assessment of Internal Mammary Lymph Node Status in Breast Cancer

    PubMed Central

    Lee, Hyung Won

    2016-01-01

    Purpose The purpose of this study was to assess magnetic resonance imaging (MRI) features of malignant internal mammary lymph nodes (IMLNs) and benign IMLNs in breast cancer patients. Methods From 2009 to 2014, the records of 85 patients with IMLNs were archived using MRI report data; 26 patients with small size (long axis diameter <5 mm) nodes were subsequently excluded. The current study evaluated internal mammary lymph nodes in 59 patients who underwent breast MRI for breast cancer staging and for posttherapy follow-up. All MRI findings were retrospectively evaluated. Malignancy was determined based on pathologic examination and positron emission tomography computed tomography findings. Independent t-tests, Mann-Whitney U tests, chi-square tests, and receiver operating characteristics (ROC) curve analysis were used. Results Among MRI features, there were statistically significant differences between benign and malignant IMLN groups, in short axis length (3.6±1.3 vs. 8.2±2.9 mm, respectively), long axis length (8.1±2.4 vs. 14.5±4.8 mm, respectively), short/long axis ratio (0.45±0.10 vs. 0.59±0.17, respectively), absent fatty hilum (mean, 0% vs. 95%, respectively), and restricted diffusion (15.8% vs. 85.0%, respectively) (p<0.050). Multiplicity and location of intercostal spaces was not different between the two groups. Short axis length was the most discriminative variable for predicting metastatic nodes (area under the ROC curve, 0.951; threshold, 4 mm; sensitivity, 92.5%; specificity, 84.2%). Conclusion Conventional MRI and diffusion-weighted MRI are helpful to detect metastasis of internal mammary lymph nodes in breast cancer. PMID:27382396

  9. Characterization of Breast Tumors Using Diffusion Kurtosis Imaging (DKI)

    PubMed Central

    Zhang, Junxiang; Chang, Shixing; Hu, Jiani; Dai, Yongming

    2014-01-01

    Aim The aim of this study was to investigate and evaluate the role of magnetic resonance (MR) diffusion kurtosis imaging (DKI) in characterizing breast lesions. Materials and Methods One hundred and twenty-four lesions in 103 patients (mean age: 57±14 years) were evaluated by MR DKI performed with 7 b-values of 0, 250, 500, 750, 1,000, 1,500, 2,000 s/mm2 and dynamic contrast-enhanced (DCE) MR imaging. Breast lesions were histologically characterized and DKI related parameters—mean diffusivity (MD) and mean kurtosis (MK)—were measured. The MD and MK in normal fibroglandular breast tissue, benign and malignant lesions were compared by One-way analysis of variance (ANOVA) with Tukey's multiple comparison test. Receiver operating characteristic (ROC) analysis was performed to assess the sensitivity and specificity of MD and MK in the diagnosis of breast lesions. Results The benign lesions (n = 42) and malignant lesions (n = 82) had mean diameters of 11.4±3.4 mm and 35.8±20.1 mm, respectively. The MK for malignant lesions (0.88±0.17) was significantly higher than that for benign lesions (0.47±0.14) (P<0.001), and, in contrast, MD for benign lesions (1.97±0.35 (10−3 mm2/s)) was higher than that for malignant lesions (1.20±0.31 (10−3 mm2/s)) (P<0.001). At a cutoff MD/MK 1.58 (10−3 mm2/s)/0.69, sensitivity and specificity of MD/MK for the diagnosis of malignant were 79.3%/84.2% and 92.9%/92.9%, respectively. The area under the curve (AUC) is 0.86/0.92 for MD/MK. Conclusions DKI could provide valuable information on the diffusion properties related to tumor microenvironment and increase diagnostic confidence of breast tumors. PMID:25406010

  10. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging

    SciTech Connect

    Gong Xing; Glick, Stephen J.; Liu, Bob; Vedula, Aruna A.; Thacker, Samta

    2006-04-15

    Although conventional mammography is currently the best modality to detect early breast cancer, it is limited in that the recorded image represents the superposition of a three-dimensional (3D) object onto a 2D plane. Recently, two promising approaches for 3D volumetric breast imaging have been proposed, breast tomosynthesis (BT) and CT breast imaging (CTBI). To investigate possible improvements in lesion detection accuracy with either breast tomosynthesis or CT breast imaging as compared to digital mammography (DM), a computer simulation study was conducted using simulated lesions embedded into a structured 3D breast model. The computer simulation realistically modeled x-ray transport through a breast model, as well as the signal and noise propagation through a CsI based flat-panel imager. Polyenergetic x-ray spectra of Mo/Mo 28 kVp for digital mammography, Mo/Rh 28 kVp for BT, and W/Ce 50 kVp for CTBI were modeled. For the CTBI simulation, the intensity of the x-ray spectra for each projection view was determined so as to provide a total average glandular dose of 4 mGy, which is approximately equivalent to that given in conventional two-view screening mammography. The same total dose was modeled for both the DM and BT simulations. Irregular lesions were simulated by using a stochastic growth algorithm providing lesions with an effective diameter of 5 mm. Breast tissue was simulated by generating an ensemble of backgrounds with a power law spectrum, with the composition of 50% fibroglandular and 50% adipose tissue. To evaluate lesion detection accuracy, a receiver operating characteristic (ROC) study was performed with five observers reading an ensemble of images for each case. The average area under the ROC curves (A{sub z}) was 0.76 for DM, 0.93 for BT, and 0.94 for CTBI. Results indicated that for the same dose, a 5 mm lesion embedded in a structured breast phantom was detected by the two volumetric breast imaging systems, BT and CTBI, with statistically

  11. Ultrashort Microwave-Pumped Real-Time Thermoacoustic Breast Tumor Imaging System.

    PubMed

    Ye, Fanghao; Ji, Zhong; Ding, Wenzheng; Lou, Cunguang; Yang, Sihua; Xing, Da

    2016-03-01

    We report the design of a real-time thermoacoustic (TA) scanner dedicated to imaging deep breast tumors and investigate its imaging performance. The TA imaging system is composed of an ultrashort microwave pulse generator and a ring transducer array with 384 elements. By vertically scanning the transducer array that encircles the breast phantom, we achieve real-time, 3D thermoacoustic imaging (TAI) with an imaging speed of 16.7 frames per second. The stability of the microwave energy and its distribution in the cling-skin acoustic coupling cup are measured. The results indicate that there is a nearly uniform electromagnetic field in each XY-imaging plane. Three plastic tubes filled with salt water are imaged dynamically to evaluate the real-time performance of our system, followed by 3D imaging of an excised breast tumor embedded in a breast phantom. Finally, to demonstrate the potential for clinical applications, the excised breast of a ewe embedded with an ex vivo human breast tumor is imaged clearly with a contrast of about 1:2.8. The high imaging speed, large field of view, and 3D imaging performance of our dedicated TAI system provide the potential for clinical routine breast screening. PMID:26552081

  12. Online image corrections applied to a dedicated breast PET

    NASA Astrophysics Data System (ADS)

    Moliner, L.; González, A. J.; Correcher, C.; Benlloch, J. M.

    2016-03-01

    In this work, we present the online implementation of attenuation, scatter and random corrections using the LMEM algorithm for the dedicated breast PET named MAMMI. The attenuation correction is based on image segmentation, the random correction is derived from the rate estimation of single photon events and the scatter correction is determined by the dual energy window method. These three corrections are estimated and implemented in the reconstruction process without almost increasing the reconstruction time. The image quality is evaluated in terms of image uniformity and contrast using the reconstructed images of two custom-designed phantoms. When we apply the three corrections, the measured uniformity in the whole field of view is (10± 1)% compared to (17± 1)% without corrections. The adapted recovery contrast coefficients (normalized to 1) are approximately (0.80± 0.02) in hot areas, improving the value of (0.66± 0.07) obtained without corrections. The reconstruction processing time is also studied, finding an increment of around 7% when the three corrections are simultaneously included. Finally, 25 breast image datasets are also analyzed. The average acquisition time per patient is around 1200 seconds and the reconstruction times with corrections vary from 100 to 400 seconds using (1× 1× 1) mm3 voxel size and from 300 to 1800 seconds using (0.5× 0.5× 0.5) mm3 voxel size. These reconstructions are performed with a virtual pixel size of (1.6× 1.6) mm2 and twelve iterations.

  13. Clinical Outcome of Magnetic Resonance Imaging-Detected Additional Lesions in Breast Cancer Patients

    PubMed Central

    Ha, Gi-Won; Yi, Mi Suk; Lee, Byoung Kil; Jung, Sung Hoo

    2011-01-01

    Purpose The aim of this study was to investigate the clinical outcome of additional breast lesions identified with breast magnetic resonance imaging (MRI) in breast cancer patients. Methods A total of 153 patients who underwent breast MRI between July 2006 and March 2008 were retrospectively reviewed. Thirty-three patients (21.6&) were recommended for second-look ultrasound (US) for further characterization of additional lesions detected on breast MRI and these patients constituted our study population. Results Assessment for lesions detected on breast MRI consisted of the following: 25 benign lesions (73.5&), two indeterminate (5.9%), and seven malignant (20.6%) in 33 patients. Second-look US identified 12 additional lesions in 34 lesions (35.3%) and these lesions were confirmed by histological examination. Of the 12 lesions found in the 11 patients, six (50.0%) including one contralateral breast cancer were malignant. The surgical plan was altered in 18.2% (six of 33) of the patients. The use of breast MRI justified a change in treatment for four patients (66.7%) and caused two patients (33.3&) to undergo unwarranted additional surgical procedures. Conclusion Breast MRI identified additional multifocal or contralateral cancer which was not detected initially on conventional imaging in breast cancer patients. Breast MRI has become an indispensable modality in conjunction with conventional modalities for preoperative evaluation of patients with operable breast cancer. PMID:22031803

  14. Combined photoacoustic and ultrasound imaging of human breast in vivo in the mammographic geometry

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Lee, Won-Mean; Hooi, Fong Ming; Fowlkes, J. Brian; Pinsky, Renee W.; Mueller, Dean; Wang, Xueding; Carson, Paul L.

    2013-03-01

    This photoacoustic volume imaging (PAVI) system is designed to study breast cancer detection and diagnosis in the mammographic geometry in combination with automated 3D ultrasound (AUS). The good penetration of near-infrared (NIR) light and high receiving sensitivity of a broad bandwidth, 572 element, 2D PVDF array at a low center-frequency of 1MHz were utilized with 20 channel simultaneous acquisition. The feasibility of this system in imaging optically absorbing objects in deep breast tissues was assessed first through experiments on ex vivo whole breasts. The blood filled pseudo lesions were imaged at depths up to 49 mm in the specimens. In vivo imaging of human breasts has been conducted. 3D PAVI image stacks of human breasts were coregistered and compared with 3D ultrasound image stacks of the same breasts. Using the designed system, PAVI shows satisfactory imaging depth and sensitivity for coverage of the entire breast when imaged from both sides with mild compression in the mammographic geometry. With its unique soft tissue contrast and excellent sensitivity to the tissue hemodynamic properties of fractional blood volume and blood oxygenation, PAVI, as a complement to 3D ultrasound and digital tomosynthesis mammography, might well contribute to detection, diagnosis and prognosis for breast cancer.

  15. Differentiating cancerous from normal breast tissue by redox imaging

    NASA Astrophysics Data System (ADS)

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2015-02-01

    Abnormal metabolism can be a hallmark of cancer occurring early before detectable histological changes and may serve as an early detection biomarker. The current gold standard to establish breast cancer (BC) diagnosis is histological examination of biopsy. Previously we have found that pre-cancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. Our technique of quantitatively measuring the mitochondrial redox state has the potential to be implemented as an early detection tool for cancer and may provide prognostic value. We therefore in this present study, investigated the feasibility of quantifying the redox state of tumor samples from 16 BC patients. Tumor tissue aliquots were collected from both normal and cancerous tissue from the affected cancer-bearing breasts of 16 female patients (5 TNBC, 9 ER+, 2 ER+/Her2+) shortly after surgical resection. All specimens were snap-frozen with liquid nitrogen on site and scanned later with the Chance redox scanner, i.e., the 3D cryogenic NADH/oxidized flavoprotein (Fp) fluorescence imager. Our preliminary results showed that both NADH and Fp (including FAD, i.e., flavin adenine dinucleotide) signals in the cancerous tissues roughly tripled to quadrupled those in the normal tissues (p<0.05) and the redox ratio Fp/(NADH+Fp) was about 27% higher in the cancerous tissues than in the normal ones (p<0.05). Our findings suggest that the redox state could differentiate between cancer and non-cancer breast tissues in human patients and this novel redox scanning procedure may assist in tissue diagnosis in freshly procured biopsy samples prior to tissue fixation. We are in the process of evaluating the prognostic value of the redox imaging indices for BC.

  16. Microwave Radar Imaging of Heterogeneous Breast Tissue Integrating A Priori Information

    PubMed Central

    Kelly, Thomas N.; Sarafianou, Mantalena; Craddock, Ian J.

    2014-01-01

    Conventional radar-based image reconstruction techniques fail when they are applied to heterogeneous breast tissue, since the underlying in-breast relative permittivity is unknown or assumed to be constant. This results in a systematic error during the process of image formation. A recent trend in microwave biomedical imaging is to extract the relative permittivity from the object under test to improve the image reconstruction quality and thereby to enhance the diagnostic assessment. In this paper, we present a novel radar-based methodology for microwave breast cancer detection in heterogeneous breast tissue integrating a 3D map of relative permittivity as a priori information. This leads to a novel image reconstruction formulation where the delay-and-sum focusing takes place in time rather than range domain. Results are shown for a heterogeneous dense (class-4) and a scattered fibroglandular (class-2) numerical breast phantom using Bristol's 31-element array configuration. PMID:25435861

  17. Breast cancer targeting novel microRNA-nanoparticles for imaging

    NASA Astrophysics Data System (ADS)

    Natarajan, Arutselvan; Venugopal, Senthil K.; DeNardo, Sally J.; Zern, Mark A.

    2009-02-01

    MicroRNAs (miRNAs) are one of the most prevalent small (~22 nucleotide) regulatory RNA classes in animals. These miRNAs constitute nearly one percent of genes in the human genome, making miRNA genes one of the more abundant types of regulatory molecules. MiRNAs have been shown to play important roles in cell development, apoptosis, and other fundamental biological processes. MiRNAs exert their influence through complementary base-pairing with specific target mRNAs, leading to degradation or translational repression of the targeted mRNA. We have identified and tested a novel microRNA (miR-491) and demonstrated increased apoptosis in hepatocellular carcinoma cells (HepG2) and in human breast cancer cells (HBT3477) in vitro. We prepared a novel cancer targeting assembly of gold nanoparticles (GNP) with Quantum dots, miR-491, and MAb-ChL6 coupled through streptavidin/biotin for effective transfection, and to induce apoptosis in specific cancer cells for imaging and targeted therapy. The targeting and apoptosis inducing ability was tested by confocal and electron microscopy. The MAb-GNP-miR491-Qdot construct effectively transfected into the HBT3477 cells and induced apoptosis the confirmation of these results would suggest a new class of molecules for the imaging and therapy of breast cancer.

  18. Dual Energy Method for Breast Imaging: A Simulation Study

    PubMed Central

    Koukou, V.; Martini, N.; Michail, C.; Sotiropoulou, P.; Fountzoula, C.; Kalyvas, N.; Kandarakis, I.; Nikiforidis, G.; Fountos, G.

    2015-01-01

    Dual energy methods can suppress the contrast between adipose and glandular tissues in the breast and therefore enhance the visibility of calcifications. In this study, a dual energy method based on analytical modeling was developed for the detection of minimum microcalcification thickness. To this aim, a modified radiographic X-ray unit was considered, in order to overcome the limited kVp range of mammographic units used in previous DE studies, combined with a high resolution CMOS sensor (pixel size of 22.5 μm) for improved resolution. Various filter materials were examined based on their K-absorption edge. Hydroxyapatite (HAp) was used to simulate microcalcifications. The contrast to noise ratio (CNRtc) of the subtracted images was calculated for both monoenergetic and polyenergetic X-ray beams. The optimum monoenergetic pair was 23/58 keV for the low and high energy, respectively, resulting in a minimum detectable microcalcification thickness of 100 μm. In the polyenergetic X-ray study, the optimal spectral combination was 40/70 kVp filtered with 100 μm cadmium and 1000 μm copper, respectively. In this case, the minimum detectable microcalcification thickness was 150 μm. The proposed dual energy method provides improved microcalcification detectability in breast imaging with mean glandular dose values within acceptable levels. PMID:26246848

  19. A comparative study in ultrasound breast imaging classification

    NASA Astrophysics Data System (ADS)

    Yap, Moi Hoon; Edirisinghe, Eran A.; Bez, Helmut E.

    2009-02-01

    American College of Radiology introduces a standard in classification, the breast imaging reporting and data system (BIRADS), standardize the reporting of ultrasound findings, clarify its interpretation, and facilitate communication between clinicians. The effective use of new technologies to support healthcare initiatives is important and current research is moving towards implementing computer tools in the diagnostics process. Initially a detailed study was carried out to evaluate the performance of two commonly used appearance based classification algorithms, based on the use of Principal Component Analysis (PCA), and two dimensional linear discriminant analysis (2D-LDA). The study showed that these two appearance based classification approaches are not capable of handling the classification of ultrasound breast image lesions. Therefore further investigations in the use of a popular feature based classifier - Support Vector Machine (SVM) was conducted. A pre-processing step before feature based classification is feature extraction, which involve shape, texture and edge descriptors for the Region of Interest (ROI). The input dataset to SVM classification is from a fully automated ROI detection. We achieve the success rate of 0.550 in PCA, 0.500 in LDA, and 0.931 in SVM. The best combination of features in SVM classification is to combine the shape, texture and edge descriptors, with sensitivity 0.840 and specificity 0.968. This paper briefly reviews the background to the project and then details the ongoing research. In conclusion, we discuss the contributions, limitations, and future plans of our work.

  20. Dual Energy Method for Breast Imaging: A Simulation Study.

    PubMed

    Koukou, V; Martini, N; Michail, C; Sotiropoulou, P; Fountzoula, C; Kalyvas, N; Kandarakis, I; Nikiforidis, G; Fountos, G

    2015-01-01

    Dual energy methods can suppress the contrast between adipose and glandular tissues in the breast and therefore enhance the visibility of calcifications. In this study, a dual energy method based on analytical modeling was developed for the detection of minimum microcalcification thickness. To this aim, a modified radiographic X-ray unit was considered, in order to overcome the limited kVp range of mammographic units used in previous DE studies, combined with a high resolution CMOS sensor (pixel size of 22.5 μm) for improved resolution. Various filter materials were examined based on their K-absorption edge. Hydroxyapatite (HAp) was used to simulate microcalcifications. The contrast to noise ratio (CNR tc ) of the subtracted images was calculated for both monoenergetic and polyenergetic X-ray beams. The optimum monoenergetic pair was 23/58 keV for the low and high energy, respectively, resulting in a minimum detectable microcalcification thickness of 100 μm. In the polyenergetic X-ray study, the optimal spectral combination was 40/70 kVp filtered with 100 μm cadmium and 1000 μm copper, respectively. In this case, the minimum detectable microcalcification thickness was 150 μm. The proposed dual energy method provides improved microcalcification detectability in breast imaging with mean glandular dose values within acceptable levels. PMID:26246848

  1. Multiplexed ion beam imaging (MIBI) of human breast tumors

    PubMed Central

    Angelo, Michael; Bendall, Sean C.; Finck, Rachel; Hale, Matthew B.; Hitzman, Chuck; Borowsky, Alexander D.; Levenson, Richard M.; Lowe, John B.; Liu, Scot D.; Zhao, Shuchun; Natkunam, Yasodha; Nolan, Garry P.

    2014-01-01

    Immunohistochemistry (IHC) is a tool for visualizing protein expression employed as part of the diagnostic work-up for the majority of solid tissue malignancies. Existing IHC methods use antibodies tagged with fluorophores or enzyme reporters that generate colored pigments. Because these reporters exhibit spectral and spatial overlap when used simultaneously, multiplexed IHC is not routinely used in clinical settings. We have developed a method that uses secondary ion mass spectrometry to image antibodies tagged with isotopically pure elemental metal reporters. Multiplexed ion beam imaging (MIBI) is capable of analyzing up to 100 targets simultaneously over a five-log dynamic range. Here, we used MIBI to analyze formalin-fixed, paraffin-embedded (FFPE) human breast tumor tissue sections stained with ten labels simultaneously. The resulting data suggest that MIBI will provide new insights by integrating tissue microarchitecture with highly multiplexed protein expression patterns, and will be valuable for basic research, drug discovery and clinical diagnostics. PMID:24584119

  2. DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold.

    PubMed

    Tomita, Koichi; Yano, Kenji; Hata, Yuki; Nishibayashi, Akimitsu; Hosokawa, Ko

    2015-03-01

    Recent advances in 3-dimensional (3D) surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP) flaps (5 immediate, 6 delayed) using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast. PMID:25878927

  3. DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold

    PubMed Central

    Yano, Kenji; Hata, Yuki; Nishibayashi, Akimitsu; Hosokawa, Ko

    2015-01-01

    Summary: Recent advances in 3-dimensional (3D) surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP) flaps (5 immediate, 6 delayed) using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast. PMID:25878927

  4. Breast density mapping based upon system calibration, x-ray techniques, and FFDM images

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Smith, Andrew P.; Jing, Zhenxue; Wu, Tao

    2007-03-01

    Clinical studies have correlated a high breast density to a women's risk of breast cancer. A breast density measurement that can quantitatively depict the volume distribution and percentage of dense tissues in breasts would be very useful for risk factor assessment of breast cancer, and might be more predictive of risks than the common but subjective and coarse 4-point BIRADS scale. This paper proposes to use a neural-network mapping to compute the breast density information based upon system calibration data, x-ray techniques, and Full Field Digital Mammography (FFDM) images. The mapping consists of four modules, namely, system calibration, generator of beam quality, generator of normalized absorption, and a multi-layer feed-forward neural network. As the core of breast density mapping, the network accepts x-ray target/filter combination, normalized x-ray absorption, pixel-wise breast thickness map, and x-ray beam quality during image acquisition as input elements, and exports a pixel-wise breast density distribution and a single breast density percentage for the imaged breast. Training and testing data sets for the design and verification of the network were formulated from calibrated x-ray beam quality, imaging data with a step wedge phantom under a variety x-ray imaging techniques, and nominal breast densities of tissue equivalent materials. The network was trained using a Levenberg-Marquardt algorithm based back-propagation learning method. Various thickness and glandular density phantom studies were performed with clinical x-ray techniques. Preliminary results showed that the neural network mapping is promising in accurately computing glandular density distribution and breast density percentage.

  5. Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging.

    PubMed

    van de Ven, Stephanie M W Y; Elias, Sjoerd G; Wiethoff, Andrea J; van der Voort, Marjolein; Nielsen, Tim; Brendel, Bernhard; Bontus, Claas; Uhlemann, Falk; Nachabe, Rami; Harbers, Rik; van Beek, Michiel; Bakker, Leon; van der Mark, Martin B; Luijten, Peter; Mali, Willem P Th M

    2009-05-01

    This paper presents an evaluation of a prototype diffuse optical tomography (DOT) system. Seventeen women with 18 breast lesions (10 invasive carcinomas, 2 fibroadenomas, and 6 benign cysts; diameters 13-54 mm) were evaluated with DOT and magnetic resonance imaging (MRI). A substantial fraction of the original 36 recruited patients could not be examined using this prototype due to technical problems. A region of interest (ROI) was drawn at the lesion position as derived from MRI and at the mirror image site in the contralateral healthy breast. ROIs were assessed quantitatively and qualitatively by two observers independently in two separate readings. Intra- and interobserver agreements were calculated using kappa statistics (k) and intraclass correlation coefficients (ICCs). Discriminatory values for presence of malignancy were determined by receiver operating characteristic (ROC) analyses. Intraobserver agreements were excellent (k 0.88 and 0.88; ICC 0.978 and 0.987), interobserver agreements were good to excellent (k 0.77-0.95; ICC 0.96-0.98). Discriminatory values for presence of malignancy were 0.92-0.93 and 0.97-0.99 for quantitative and qualitative ROC analysis, respectively. This DOT system has the potential to discriminate malignant from benign breast tissue in a reproducible qualitative and quantitative manner. Important technical improvements are required before this technique is ready for clinical application. PMID:19137304

  6. Surface impedance based microwave imaging method for breast cancer screening: contrast-enhanced scenario

    NASA Astrophysics Data System (ADS)

    Güren, Onan; Çayören, Mehmet; Tükenmez Ergene, Lale; Akduman, Ibrahim

    2014-10-01

    A new microwave imaging method that uses microwave contrast agents is presented for the detection and localization of breast tumours. The method is based on the reconstruction of breast surface impedance through a measured scattered field. The surface impedance modelling allows for representing the electrical properties of the breasts in terms of impedance boundary conditions, which enable us to map the inner structure of the breasts into surface impedance functions. Later a simple quantitative method is proposed to screen breasts against malignant tumours where the detection procedure is based on weighted cross correlations among impedance functions. Numerical results demonstrate that the method is capable of detecting small malignancies and provides reasonable localization.

  7. Hybrid PET/MR imaging: physics and technical considerations.

    PubMed

    Shah, Shetal N; Huang, Steve S

    2015-08-01

    In just over a decade, hybrid imaging with FDG PET/CT has become a standard bearer in the management of cancer patients. An exquisitely sensitive whole-body imaging modality, it combines the ability to detect subtle biologic changes with FDG PET and the anatomic information offered by CT scans. With advances in MR technology and advent of novel targeted PET radiotracers, hybrid PET/MRI is an evolutionary technique that is poised to revolutionize hybrid imaging. It offers unparalleled spatial resolution and functional multi-parametric data combined with biologic information in the non-invasive detection and characterization of diseases, without the deleterious effects of ionizing radiation. This article reviews the basic principles of FDG PET and MR imaging, discusses the salient technical developments of hybrid PET/MR systems, and provides an introduction to FDG PET/MR image acquisition. PMID:25985965

  8. Observer detection limits for a dedicated SPECT breast imaging system

    NASA Astrophysics Data System (ADS)

    Cutler, S. J.; Perez, K. L.; Barnhart, H. X.; Tornai, M. P.

    2010-04-01

    An observer-based contrast-detail study is performed in an effort to evaluate the limits of object detectability using a dedicated CZT-based breast SPECT imaging system under various imaging conditions. A custom geometric contrast-resolution phantom was developed that can be used for both positive ('hot') and negative contrasts ('cold'). The 3 cm long fillable tubes are arranged in six sectors having equal inner diameters ranging from 1 mm to 6 mm with plastic wall thicknesses of <0.25 mm, on a pitch of twice their inner diameters. Scans of the activity filled tubes using simple circular trajectories are obtained in a 215 mL uniform water filled cylinder, varying the rod:background concentration ratios from 10:1 to 1:10 simulating a large range of biological uptake ratios. The rod phantom is then placed inside a non-uniformly shaped 500 mL breast phantom and scans are again acquired using both simple and complex 3D trajectories for similarly varying contrasts. Summed slice and contiguous multi-slice images are evaluated by five independent readers, identifying the smallest distinguishable rod for each concentration and experimental setup. Linear and quadratic regression is used to compare the resulting contrast-detail curves. Results indicate that in a moderately low-noise 500 mL background, using the SPECT camera having 2.5 mm intrinsic pixels, the mean detectable rod was ~3.4 mm at a 10:1 ratio, degrading to ~5.2 mm with the 2.5:1 concentration ratio. The smallest object detail was observed using a 45° tilted trajectory acquisition. The complex 3D projected sine wave acquisition, however, had the most consistent combined intra- and inter-observer results, making it potentially the best imaging approach for consistent results.

  9. Automatic tissue segmentation of breast biopsies imaged by QPI

    NASA Astrophysics Data System (ADS)

    Majeed, Hassaan; Nguyen, Tan; Kandel, Mikhail; Marcias, Virgilia; Do, Minh; Tangella, Krishnarao; Balla, Andre; Popescu, Gabriel

    2016-03-01

    The current tissue evaluation method for breast cancer would greatly benefit from higher throughput and less inter-observer variation. Since quantitative phase imaging (QPI) measures physical parameters of tissue, it can be used to find quantitative markers, eliminating observer subjectivity. Furthermore, since the pixel values in QPI remain the same regardless of the instrument used, classifiers can be built to segment various tissue components without need for color calibration. In this work we use a texton-based approach to segment QPI images of breast tissue into various tissue components (epithelium, stroma or lumen). A tissue microarray comprising of 900 unstained cores from 400 different patients was imaged using Spatial Light Interference Microscopy. The training data were generated by manually segmenting the images for 36 cores and labelling each pixel (epithelium, stroma or lumen.). For each pixel in the data, a response vector was generated by the Leung-Malik (LM) filter bank and these responses were clustered using the k-means algorithm to find the centers (called textons). A random forest classifier was then trained to find the relationship between a pixel's label and the histogram of these textons in that pixel's neighborhood. The segmentation was carried out on the validation set by calculating the texton histogram in a pixel's neighborhood and generating a label based on the model learnt during training. Segmentation of the tissue into various components is an important step toward efficiently computing parameters that are markers of disease. Automated segmentation, followed by diagnosis, can improve the accuracy and speed of analysis leading to better health outcomes.

  10. Ultrasound breast imaging using frequency domain reverse time migration

    NASA Astrophysics Data System (ADS)

    Roy, O.; Zuberi, M. A. H.; Pratt, R. G.; Duric, N.

    2016-04-01

    Conventional ultrasonography reconstruction techniques, such as B-mode, are based on a simple wave propagation model derived from a high frequency approximation. Therefore, to minimize model mismatch, the central frequency of the input pulse is typically chosen between 3 and 15 megahertz. Despite the increase in theoretical resolution, operating at higher frequencies comes at the cost of lower signal-to-noise ratio. This ultimately degrades the image contrast and overall quality at higher imaging depths. To address this issue, we investigate a reflection imaging technique, known as reverse time migration, which uses a more accurate propagation model for reconstruction. We present preliminary simulation results as well as physical phantom image reconstructions obtained using data acquired with a breast imaging ultrasound tomography prototype. The original reconstructions are filtered to remove low-wavenumber artifacts that arise due to the inclusion of the direct arrivals. We demonstrate the advantage of using an accurate sound speed model in the reverse time migration process. We also explain how the increase in computational complexity can be mitigated using a frequency domain approach and a parallel computing platform.

  11. Task-based optimization of image reconstruction in breast CT

    NASA Astrophysics Data System (ADS)

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2014-03-01

    We demonstrate a task-based assessment of image quality in dedicated breast CT in order to optimize the number of projection views acquired. The methodology we employ is based on the Hotelling Observer (HO) and its associated metrics. We consider two tasks: the Rayleigh task of discerning between two resolvable objects and a single larger object, and the signal detection task of classifying an image as belonging to either a signalpresent or signal-absent hypothesis. HO SNR values are computed for 50, 100, 200, 500, and 1000 projection view images, with the total imaging radiation dose held constant. We use the conventional fan-beam FBP algorithm and investigate the effect of varying the width of a Hanning window used in the reconstruction, since this affects both the noise properties of the image and the under-sampling artifacts which can arise in the case of sparse-view acquisitions. Our results demonstrate that fewer projection views should be used in order to increase HO performance, which in this case constitutes an upper-bound on human observer performance. However, the impact on HO SNR of using fewer projection views, each with a higher dose, is not as significant as the impact of employing regularization in the FBP reconstruction through a Hanning filter.

  12. Development of anatomically and dielectrically accurate breast phantoms for microwave imaging applications

    NASA Astrophysics Data System (ADS)

    O'Halloran, M.; Lohfeld, S.; Ruvio, G.; Browne, J.; Krewer, F.; Ribeiro, C. O.; Inacio Pita, V. C.; Conceicao, R. C.; Jones, E.; Glavin, M.

    2014-05-01

    Breast cancer is one of the most common cancers in women. In the United States alone, it accounts for 31% of new cancer cases, and is second only to lung cancer as the leading cause of deaths in American women. More than 184,000 new cases of breast cancer are diagnosed each year resulting in approximately 41,000 deaths. Early detection and intervention is one of the most significant factors in improving the survival rates and quality of life experienced by breast cancer sufferers, since this is the time when treatment is most effective. One of the most promising breast imaging modalities is microwave imaging. The physical basis of active microwave imaging is the dielectric contrast between normal and malignant breast tissue that exists at microwave frequencies. The dielectric contrast is mainly due to the increased water content present in the cancerous tissue. Microwave imaging is non-ionizing, does not require breast compression, is less invasive than X-ray mammography, and is potentially low cost. While several prototype microwave breast imaging systems are currently in various stages of development, the design and fabrication of anatomically and dielectrically representative breast phantoms to evaluate these systems is often problematic. While some existing phantoms are composed of dielectrically representative materials, they rarely accurately represent the shape and size of a typical breast. Conversely, several phantoms have been developed to accurately model the shape of the human breast, but have inappropriate dielectric properties. This study will brie y review existing phantoms before describing the development of a more accurate and practical breast phantom for the evaluation of microwave breast imaging systems.

  13. Prone breast tumor imaging using vertical axis-of-rotation (VAOR) SPECT systems: An initial study

    SciTech Connect

    Wang, Huili; Scarfone, C.; Greer, K.L.; Coleman, R.E.

    1996-12-31

    We propose the use of a single photon emission computed tomography (SPECT) system equipped with multiple cameras revolving around a vertical axis-of-rotation (VAOR) to image tumors in a prone-dependent breast. This innovative breast imaging approach has the advantages of a small attenuation volume between breast lesions and gamma detector as well as a minimal radius-of-rotation compared to conventional (horizontal axis-of-rotation) breast SPECT. Small attenuation volume results in improved detected counts and minimal radius-of-rotation leads to increased collimator resolution. Because of no VAOR SPECT system currently available, we conducted our experiments on a conventional SPECT system using an isolated breast phantom to investigate the proposed VAOR breast SPECT. Our experimental setup simulated a VAOR SPECT study with a prone-dependent breast in the camera`s field-of-view. The results of our experiment indicate that VAOR breast SPECT with Trionix LESR parallel hole collimator is capable of detecting a breast lesion with a diameter of 10 mm and a lesion-to-background concentration ratio of 6 to 1. The results also demonstrate that VAOR breast SPECT provides improved lesion visualization over planar scintimammography and conventional breast SPECT.

  14. Advancements in Imaging Technology for Detection and Diagnosis of Palpable Breast Masses.

    PubMed

    Jaeger, Barbara M; Hong, Andrea S; Letter, Haley; Odell, Matthew C

    2016-06-01

    Breast cancer is the most commonly diagnosed cancer among women worldwide and the most common cause of cancer death in women. The most common presentation of breast cancer is the presence of a palpable mass, whether noted by the patient during breast self-examination or noted during clinical breast examination. There are a variety of imaging modalities now available for the evaluation of a palpable abnormality. A thorough understanding of the indications, risks, and benefits can help the clinician guide the patient through an appropriate, comprehensive imaging work up. PMID:27101239

  15. A minimum spanning forest based classification method for dedicated breast CT images

    SciTech Connect

    Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei

    2015-11-15

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting model used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging.

  16. TH-A-18A-01: Innovation in Clinical Breast Imaging

    SciTech Connect

    Liu, B; Yang, K; Yaffe, M; Chen, J

    2014-06-15

    Several novel modalities have been or are on the verge of being introduced into the breast imaging clinic. These include tomosynthesis imaging, dedicated breast CT, contrast-enhanced digital mammography, and automated breast ultrasound, all of which are covered in this course. Tomosynthesis and dedicated breast CT address the problem of tissue superimposition that limits mammography screening performance, by improved or full resolution of the 3D breast morphology. Contrast-enhanced digital mammography provides functional information that allows for visualization of tumor angiogenesis. 3D breast ultrasound has high sensitivity for tumor detection in dense breasts, but the imaging exam was traditionally performed by radiologists. In automated breast ultrasound, the scan is performed in an automated fashion, making for a more practical imaging tool, that is now used as an adjunct to digital mammography in breast cancer screening. This course will provide medical physicists with an in-depth understanding of the imaging physics of each of these four novel imaging techniques, as well as the rationale and implementation of QC procedures. Further, basic clinical applications and work flow issues will be discussed. Learning Objectives: To be able to describe the underlying physical and physiological principles of each imaging technique, and to understand the corresponding imaging acquisition process. To be able to describe the critical system components and their performance requirements. To understand the rationale and implementation of quality control procedures, as well as regulatory requirements for systems with FDA approval. To learn about clinical applications and understand risks and benefits/strength and weakness of each modality in terms of clinical breast imaging.

  17. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    SciTech Connect

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco

    2012-07-31

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  18. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco

    2012-07-01

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  19. Assessment of patient dose and image quality for cardiac CT with breast shields.

    PubMed

    Midgley, S M; Einsiedel, P F; Langenberg, F; Lui, E H; Heinze, S B

    2012-09-01

    Breast shielding can reduce dose to the female breast, a radiosensitive organ receiving significant radiation during computed tomography (CT) chest examinations, particularly in cardiac CT, where Electrocardiogram dose modulation currently precludes the use of radial dose modulation to reduce breast dose. However, breast shields may produce artefacts affecting interpretation of coronary arteries. This study explores the dose savings and the effect of breast shields on image quality with torso and CT dose index body phantoms and an organ dose calculator. Change in dose calculated: 53-63 % (female breast), 82-85 % (lung), 79-84 % (oesophagus) and 76-80 % (effective dose) with larger dose reductions at lower kVp. Image quality is preserved when breast shields are placed after the scout no closer than 10 mm from the skin. Therefore, breast shields can be used in cardiac CT to reduce breast dose without compromising image quality. Revised conversion factors for dose length product to effective dose are suggested for cardiac CT without and with breast shields. PMID:22492837

  20. Mammographic quantitative image analysis and biologic image composition for breast lesion characterization and classification

    SciTech Connect

    Drukker, Karen Giger, Maryellen L.; Li, Hui; Duewer, Fred; Malkov, Serghei; Joe, Bonnie; Kerlikowske, Karla; Shepherd, John A.; Flowers, Chris I.; Drukteinis, Jennifer S.

    2014-03-15

    Purpose: To investigate whether biologic image composition of mammographic lesions can improve upon existing mammographic quantitative image analysis (QIA) in estimating the probability of malignancy. Methods: The study population consisted of 45 breast lesions imaged with dual-energy mammography prior to breast biopsy with final diagnosis resulting in 10 invasive ductal carcinomas, 5 ductal carcinomain situ, 11 fibroadenomas, and 19 other benign diagnoses. Analysis was threefold: (1) The raw low-energy mammographic images were analyzed with an established in-house QIA method, “QIA alone,” (2) the three-compartment breast (3CB) composition measure—derived from the dual-energy mammography—of water, lipid, and protein thickness were assessed, “3CB alone”, and (3) information from QIA and 3CB was combined, “QIA + 3CB.” Analysis was initiated from radiologist-indicated lesion centers and was otherwise fully automated. Steps of the QIA and 3CB methods were lesion segmentation, characterization, and subsequent classification for malignancy in leave-one-case-out cross-validation. Performance assessment included box plots, Bland–Altman plots, and Receiver Operating Characteristic (ROC) analysis. Results: The area under the ROC curve (AUC) for distinguishing between benign and malignant lesions (invasive and DCIS) was 0.81 (standard error 0.07) for the “QIA alone” method, 0.72 (0.07) for “3CB alone” method, and 0.86 (0.04) for “QIA+3CB” combined. The difference in AUC was 0.043 between “QIA + 3CB” and “QIA alone” but failed to reach statistical significance (95% confidence interval [–0.17 to + 0.26]). Conclusions: In this pilot study analyzing the new 3CB imaging modality, knowledge of the composition of breast lesions and their periphery appeared additive in combination with existing mammographic QIA methods for the distinction between different benign and malignant lesion types.

  1. Rapid imaging of surgical breast excisions using direct temporal sampling two photon fluorescent lifetime imaging

    PubMed Central

    Giacomelli, Michael G.; Sheikine, Yuri; Vardeh, Hilde; Connolly, James L.; Fujimoto, James G.

    2015-01-01

    Two photon fluorescent lifetime imaging is a modality that enables depth-sectioned, molecularly-specific imaging of cells and tissue using intrinsic contrast. However, clinical applications have not been well explored due to low imaging speed and limited field of view, which make evaluating large pathology samples extremely challenging. To address these limitations, we have developed direct temporal sampling two photon fluorescent lifetime imaging (DTS-FLIM), a method which enables a several order of magnitude increase in imaging speed by capturing an entire lifetime decay in a single fluorescent excitation. We use this greatly increased speed to perform a preliminary study using gigapixel-scale imaging of human breast pathology surgical specimens. PMID:26600997

  2. Using X-Ray Mammograms to Assist in Microwave Breast Image Interpretation

    PubMed Central

    Curtis, Charlotte; Frayne, Richard; Fear, Elise

    2012-01-01

    Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR) imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential as a complementary imaging technique. As an emerging modality, interpretation of 3D microwave images poses a significant challenge. MR images are often used to assist in this task, and X-ray mammograms are readily available. However, X-ray mammograms provide 2D images of a breast under compression, resulting in significant geometric distortion. This paper presents a method to estimate the 3D shape of the breast and locations of regions of interest from standard clinical mammograms. The technique was developed using MR images as the reference 3D shape with the future intention of using microwave images. Twelve breast shapes were estimated and compared to ground truth MR images, resulting in a skin surface estimation accurate to within an average Euclidean distance of 10 mm. The 3D locations of regions of interest were estimated to be within the same clinical area of the breast as corresponding regions seen on MR imaging. These results encourage investigation into the use of mammography as a source of information to assist with microwave image interpretation as well as validation of microwave imaging techniques. PMID:22536208

  3. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    SciTech Connect

    Sidky, Emil Y.; Pan Xiaochuan; Reiser, Ingrid S.; Nishikawa, Robert M.; Moore, Richard H.; Kopans, Daniel B.

    2009-11-15

    Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). Methods: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p=1.0 or the image roughness when p=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. Conclusions: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.

  4. Three-dimensional finite element model for lesion correspondence in breast imaging

    NASA Astrophysics Data System (ADS)

    Qiu, Yan; Li, Lihua; Goldgof, Dmitry; Sarkar, Sudeep; Anton, Sorin; Clark, Robert A.

    2004-05-01

    Predicting breast tissue deformation is of great significance in several medical applications such as biopsy, diagnosis, and surgery. In breast surgery, surgeons are often concerned with a specific portion of the breast, e.g., tumor, which must be located accurately beforehand. Also clinically it is important for combining the information provided by images from several modalities or at different times, for the detection/diagnosis, treatment planning and guidance of interventions. Multi-modality imaging of the breast obtained by X-ray mammography, MRI is thought to be best achieved through some form of data fusion technique. However, images taken by these various techniques are often obtained under entirely different tissue configurations, compression, orientation or body position. In these cases some form of spatial transformation of image data from one geometry to another is required such that the tissues are represented in an equivalent configuration. We propose to use a 3D finite element model for lesion correspondence in breast imaging. The novelty of the approach lies in the following facts: (1) Finite element is the most accurate technique for modeling deformable objects such as breast. The physical soundness and mathematical rigor of finite element method ensure the accuracy and reliability of breast modeling that is essential for lesion correspondence. (2) When both MR and mammographic images are available, a subject-specific 3D breast model will be built from MRIs. If only mammography is available, a generic breast model will be used for two-view mammography reading. (3) Incremental contact simulation of breast compression allows accurate capture of breast deformation and ensures the quality of lesion correspondence. (4) Balance between efficiency and accuracy is achieved through adaptive meshing. We have done intensive research based on phantom and patient data.

  5. Digital Image Processing Technique for Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Guzmán-Cabrera, R.; Guzmán-Sepúlveda, J. R.; Torres-Cisneros, M.; May-Arrioja, D. A.; Ruiz-Pinales, J.; Ibarra-Manzano, O. G.; Aviña-Cervantes, G.; Parada, A. González

    2013-09-01

    Breast cancer is the most common cause of death in women and the second leading cause of cancer deaths worldwide. Primary prevention in the early stages of the disease becomes complex as the causes remain almost unknown. However, some typical signatures of this disease, such as masses and microcalcifications appearing on mammograms, can be used to improve early diagnostic techniques, which is critical for women’s quality of life. X-ray mammography is the main test used for screening and early diagnosis, and its analysis and processing are the keys to improving breast cancer prognosis. As masses and benign glandular tissue typically appear with low contrast and often very blurred, several computer-aided diagnosis schemes have been developed to support radiologists and internists in their diagnosis. In this article, an approach is proposed to effectively analyze digital mammograms based on texture segmentation for the detection of early stage tumors. The proposed algorithm was tested over several images taken from the digital database for screening mammography for cancer research and diagnosis, and it was found to be absolutely suitable to distinguish masses and microcalcifications from the background tissue using morphological operators and then extract them through machine learning techniques and a clustering algorithm for intensity-based segmentation.

  6. Image cytometry of estrogen receptors in breast carcinomas.

    PubMed

    Cohen, O; Brugal, G; Seigneurin, D; Demongeot, J

    1988-11-01

    A significant level of estrogen receptors (ER) in breast cancer cells is an indication of tumor differentiation and suggests that a homeostatic control of cell growth may persist in these cancers. In medical practice, the Dextran-coated charcoal assays (DCCA) are still the most frequently used test to characterize patients having ER-positive malignant breast tumors and for whom hormonal therapy is justified. Nevertheless, this routine biochemical technique is not satisfactory because it is a broad method unsuitable for revealing receptor tissue heterogeneity. However, immunocytochemical labeling, such as the ER-ICA method, which involves a monoclonal antibody linked to peroxidase, is a specific reaction for this purpose but which until now was not quantitative. The present study uses an original cell preparation technique combining the PAP reaction with toluidine blue counterstain for image analysis on the SAMBA system. Special software has been developed for the quantitative analysis of immunocytochemistry in cancers. Results obtained showed a high correlation between the DCCA values and the score derived from the mean ER concentration per positive tumor cell and the labeling index. In addition, intracell and intratumor heterogeneity can be displayed according to several parameters and were shown to vary according to tumor and to antiestrogen (Tamoxifen) presurgical therapy. PMID:2463134

  7. Fully Automated Quantitative Estimation of Volumetric Breast Density from Digital Breast Tomosynthesis Images: Preliminary Results and Comparison with Digital Mammography and MR Imaging.

    PubMed

    Pertuz, Said; McDonald, Elizabeth S; Weinstein, Susan P; Conant, Emily F; Kontos, Despina

    2016-04-01

    Purpose To assess a fully automated method for volumetric breast density (VBD) estimation in digital breast tomosynthesis (DBT) and to compare the findings with those of full-field digital mammography (FFDM) and magnetic resonance (MR) imaging. Materials and Methods Bilateral DBT images, FFDM images, and sagittal breast MR images were retrospectively collected from 68 women who underwent breast cancer screening from October 2011 to September 2012 with institutional review board-approved, HIPAA-compliant protocols. A fully automated computer algorithm was developed for quantitative estimation of VBD from DBT images. FFDM images were processed with U.S. Food and Drug Administration-cleared software, and the MR images were processed with a previously validated automated algorithm to obtain corresponding VBD estimates. Pearson correlation and analysis of variance with Tukey-Kramer post hoc correction were used to compare the multimodality VBD estimates. Results Estimates of VBD from DBT were significantly correlated with FFDM-based and MR imaging-based estimates with r = 0.83 (95% confidence interval [CI]: 0.74, 0.90) and r = 0.88 (95% CI: 0.82, 0.93), respectively (P < .001). The corresponding correlation between FFDM and MR imaging was r = 0.84 (95% CI: 0.76, 0.90). However, statistically significant differences after post hoc correction (α = 0.05) were found among VBD estimates from FFDM (mean ± standard deviation, 11.1% ± 7.0) relative to MR imaging (16.6% ± 11.2) and DBT (19.8% ± 16.2). Differences between VDB estimates from DBT and MR imaging were not significant (P = .26). Conclusion Fully automated VBD estimates from DBT, FFDM, and MR imaging are strongly correlated but show statistically significant differences. Therefore, absolute differences in VBD between FFDM, DBT, and MR imaging should be considered in breast cancer risk assessment. (©) RSNA, 2015 Online supplemental material is available for this article. PMID:26491909

  8. Journal club: molecular breast imaging at reduced radiation dose for supplemental screening in mammographically dense breasts.

    PubMed

    Rhodes, Deborah J; Hruska, Carrie B; Conners, Amy Lynn; Tortorelli, Cindy L; Maxwell, Robert W; Jones, Katie N; Toledano, Alicia Y; O'Connor, Michael K

    2015-02-01

    OBJECTIVE. The purpose of this study was to assess the diagnostic performance of supplemental screening molecular breast imaging (MBI) in women with mammographically dense breasts after system modifications to permit radiation dose reduction. SUBJECTS AND METHODS. A total of 1651 asymptomatic women with mammographically dense breasts on prior mammography underwent screening mammography and adjunct MBI performed with 300-MBq (99m)Tc-sestamibi and a direct-conversion (cadmium zinc telluride) gamma camera, both interpreted independently. The cancer detection rate, sensitivity, specificity, and positive predictive value of biopsies performed (PPV3) were determined. RESULTS. In 1585 participants with a complete reference standard, 21 were diagnosed with cancer: two detected by mammography only, 14 by MBI only, three by both modalities, and two by neither. Of 14 participants with cancers detected only by MBI, 11 had invasive disease (median size, 0.9 cm; range, 0.5-4.1 cm). Nine of 11 (82%) were node negative, and two had bilateral cancers. With the addition of MBI to mammography, the overall cancer detection rate (per 1000 screened) increased from 3.2 to 12.0 (p < 0.001) (supplemental yield 8.8). The invasive cancer detection rate increased from 1.9 to 8.8 (p < 0.001) (supplemental yield 6.9), a relative increase of 363%, while the change in DCIS detection was not statistically significant (from 1.3 to 3.2, p =0.250). For mammography alone, sensitivity was 24%; specificity, 89%; and PPV3, 25%. For the combination, sensitivity was 91% (p < 0.001); specificity, 83% (p < 0.001); and PPV3, 28% (p = 0.70). The recall rate increased from 11.0% with mammography alone to 17.6% (p < 0.001) for the combination; the biopsy rate increased from 1.3% for mammography alone to 4.2% (p < 0.001). CONCLUSION. When added to screening mammography, MBI performed using a radiopharmaceutical activity acceptable for screening (effective dose 2.4 mSv) yielded a supplemental cancer detection rate

  9. Molecular Breast Imaging at Reduced Radiation Dose for Supplemental Screening in Mammographically Dense Breasts

    PubMed Central

    Rhodes, Deborah J.; Hruska, Carrie B.; Conners, Amy Lynn; Tortorelli, Cindy L.; Maxwell, Robert W.; Jones, Katie N.; Toledano, Alicia Y.; O’Connor, Michael K.

    2015-01-01

    OBJECTIVE The purpose of this study was to assess the diagnostic performance of supplemental screening molecular breast imaging (MBI) in women with mammographically dense breasts after system modifications to permit radiation dose reduction. SUBJECTS AND METHODS A total of 1651 asymptomatic women with mammographically dense breasts on prior mammography underwent screening mammography and adjunct MBI performed with 300-MBq 99mTc-sestamibi and a direct-conversion (cadmium zinc telluride) gamma camera, both interpreted independently. The cancer detection rate, sensitivity, specificity, and positive predictive value of biopsies performed (PPV3) were determined. RESULTS In 1585 participants with a complete reference standard, 21 were diagnosed with cancer: two detected by mammography only, 14 by MBI only, three by both modalities, and two by neither. Of 14 participants with cancers detected only by MBI, 11 had invasive disease (median size, 0.9 cm; range, 0.5–4.1 cm). Nine of 11 (82%) were node negative, and two had bilateral cancers. With the addition of MBI to mammography, the overall cancer detection rate (per 1000 screened) increased from 3.2 to 12.0 (p < 0.001) (supplemental yield 8.8). The invasive cancer detection rate increased from 1.9 to 8.8 (p < 0.001) (supplemental yield 6.9), a relative increase of 363%, while the change in DCIS detection was not statistically significant (from 1.3 to 3.2, p =0.250). For mammography alone, sensitivity was 24%; specificity, 89%; and PPV3, 25%. For the combination, sensitivity was 91% (p < 0.001); specificity, 83% (p < 0.001); and PPV3, 28% (p = 0.70). The recall rate increased from 11.0% with mammography alone to 17.6% (p < 0.001) for the combination; the biopsy rate increased from 1.3% for mammography alone to 4.2% (p < 0.001). CONCLUSION When added to screening mammography, MBI performed using a radiopharmaceutical activity acceptable for screening (effective dose 2.4 mSv) yielded a supplemental cancer detection rate of

  10. Nonlinear dual-spectral image fusion for improving cone-beam-CT-based breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Ning, Ruola; Conover, David; Willison, Kathleen

    2006-03-01

    Cone-beam breast computed tomography (CB Breast CT) can easily detect micro-calcifications and distinguish fat and glandular tissues from normal breast tissue. However, it may be a challenging task for CB Breast CT to distinguish benign from malignant tumors because of the subtle difference in x-ray attenuation. Due to the use of polyenergetic x-ray source, the x-ray and tissue interaction exhibits energy-dependent attenuation behavior, a phenomenon that, to date, has not been used for breast tissue characterization. We will exploit this spectral nature by equipping our CB Breast CT with dual-spectral imaging. The dual-spectral cone-beam scanning produces two spectral image datasets, from which we propose a nonlinear dual-spectral image fusion scheme to combine them into a single dataset, thereby incorporating the spectral information. In implementation, we will perform dual-spectral image fusion through a bi-variable polynomial that can be established by applying dual-spectral imaging to a reference material (with eight different thicknesses). From the fused dataset, we can reconstruct a volume, called a reference-equivalent volume or a fusion volume. By selecting the benign tissue as a reference material, we obtain a benign-equivalent volume. Likewise, we obtain a malignant-equivalent volume as well. In the pursuit of the discrimination of benign versus malignant tissues in a breast image, we perform intra-image as well as inter-image processing. The intra-image processing is an intensity transformation imposed only to a tomographic breast image itself, while the inter-image processing is exerted on two tomographic images extracted from two volumes. The nonlinear fusion scheme possesses these properties: 1) no noise magnification; 2) no feature dimensionality problem, and 3) drastic enhancement among specific features offered by nonlinear mapping. Its disadvantage lies in the possible misinterpretation resulting from nonlinear mapping.

  11. Image guidance during breast radiotherapy: a phantom dosimetry and radiation-induced second cancer risk study

    NASA Astrophysics Data System (ADS)

    Quinn, A.; Holloway, L.; Metcalfe, P.

    2013-06-01

    Imaging procedures utilised for patient position verification during breast radiotherapy can add a considerable dose to organs surrounding the target volume on top of therapeutic scatter dose. This study investigated the dose from a breast kilovoltage cone-beam CT (kV-CBCT), a breast megavoltage fan-beam CT (MV-FBCT), and a TomoDirectTM breast treatment. Thermoluminescent dosimeters placed within a female anthropomorphic phantom were utilised to measure the dose to various organs and tissues. The contralateral breast, lungs and heart received 0.40 cGy, 0.45 cGy and 0.40 cGy from the kV-CBCT and 1.74 cGy, 1.39 cGy and 1.73 cGy from the MV-FBCT. In comparison to treatment alone, daily imaging would increase the contralateral breast, contralateral lung and heart dose by a relative 12%, 24% and 13% for the kV-CBCT, and 52%, 101% and 58% for the MV-FBCT. The impact of the imaging dose relative to the treatment dose was assessed with linear and linear-quadratic radiation-induced secondary cancer risk models for the contralateral breast. The additional imaging dose and risk estimates presented in this study should be taken into account when considering an image modality and frequency for patient position verification protocols in breast radiotherapy.

  12. Imaging Diagnostic and Therapeutic Targets - Steroid Receptors in Breast Cancer

    PubMed Central

    Fowler, Amy M.; Clark, Amy S.; Katzenellenbogen, John A; Linden, Hannah M.; Dehdashti, Farrokh

    2016-01-01

    Estrogen receptor-alpha (ERα) and progesterone receptor (PR) are important steroid hormone receptor biomarkers used to determine prognosis and predict benefit from endocrine therapies for breast cancer patients. Receptor expression is routinely measured in biopsy specimens using immunohistochemistry, although such testing can be challenging particularly in the setting of metastatic disease. ERα and PR can be quantitatively assayed non-invasively with positron emission tomography (PET). This approach provides the opportunity to assess receptor expression and function in “real-time”, within the entire tumor, and across distant sites of metastatic disease. This article reviews the current evidence of ERα and PR PET imaging as predictive and early response biomarkers for endocrine therapy. PMID:26834106

  13. Microwave Imaging for Breast Cancer Detection: Advances in Three–Dimensional Image Reconstruction

    PubMed Central

    Golnabi, Amir H.; Meaney, Paul M.; Epstein, Neil R.; Paulsen, Keith D.

    2013-01-01

    Microwave imaging is based on the electrical property (permittivity and conductivity) differences in materials. Microwave imaging for biomedical applications is particularly interesting, mainly due to the fact that available range of dielectric properties for different tissues can provide important functional information about their health. Under the assumption that a 3D scattering problem can be reasonably represented as a simplified 2D model, one can take advantage of the simplicity and lower computational cost of 2D models to characterize such 3D phenomenon. Nonetheless, by eliminating excessive model simplifications, 3D microwave imaging provides potentially more valuable information over 2Dtechniques, and as a result, more accurate dielectric property maps may be obtained. In this paper, we present some advances we have made in three–dimensional image reconstruction, and show the results from a 3D breast phantom experiment using our clinical microwave imaging system at Dartmouth Hitchcock Medical Center (DHMC), NH. PMID:22255641

  14. Development of laser optoacoustic and ultrasonic imaging system for breast cancer utilizing handheld array probes

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Fronheiser, Matthew P.; Brecht, Hans-Peter; Su, Richard; Conjusteau, André; Mehta, Ketan; Otto, Pamela; Oraevsky, Alexander A.

    2009-02-01

    We describe two laser optoacoustic imaging systems for breast cancer detection based on arrays of acoustic detectors operated manually in a way similar to standard ultrasonic breast imaging. The systems have the advantages of standard light illumination (regardless of the interrogated part of the breast), the ability to visualize any part of the breast, and convenience in operation. The first system could work in both ultrasonic and optoacoustic mode, and was developed based on a linear ultrasonic breast imaging probe with two parallel rectangular optical bundles. We used it in a pilot clinical study to provide for the first time demonstration that the boundaries of the tumors visualized on the optoacoustic and ultrasonic images matched. Such correlation of coregistered images proves that the objects on both images represented indeed the same tumor. In the optoacoustic mode we were also able to visualize blood vessels located in the neighborhood of the tumor. The second system was proposed as a circular array of acoustic transducers with an axisymmetric laser beam in the center. It was capable of 3D optoacoustic imaging with minimized optoacoustic artifacts caused by the distribution of the absorbed optical energy within the breast tissue. The distribution of optical energy absorbed in the bulk tissue of the breast was removed from the image by implementing the principal component analysis on the measured signals. The computer models for optoacoustic imaging using these two handheld probes were developed. The models included three steps: (1) Monte Carlo simulations of the light distribution within the breast tissue, (2) generation of optoacoustic signals by convolving N-shaped pressure signals from spherical voxels with the shape of individual transducers, and (3) back-projecting processed optoacoustic signals onto spherical surfaces for image reconstruction. Using the developed models we demonstrated the importance of the included spatial impulse response of the

  15. An Interactive Method Based on the Live Wire for Segmentation of the Breast in Mammography Images

    PubMed Central

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps. PMID:25024740

  16. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications.

    PubMed

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  17. Computer-Aided Assessment of Tumor Grade for Breast Cancer in Ultrasound Images

    PubMed Central

    2015-01-01

    This study involved developing a computer-aided diagnosis (CAD) system for discriminating the grades of breast cancer tumors in ultrasound (US) images. Histological tumor grades of breast cancer lesions are standard prognostic indicators. Tumor grade information enables physicians to determine appropriate treatments for their patients. US imaging is a noninvasive approach to breast cancer examination. In this study, 148 3-dimensional US images of malignant breast tumors were obtained. Textural, morphological, ellipsoid fitting, and posterior acoustic features were quantified to characterize the tumor masses. A support vector machine was developed to classify breast tumor grades as either low or high. The proposed CAD system achieved an accuracy of 85.14% (126/148), a sensitivity of 79.31% (23/29), a specificity of 86.55% (103/119), and an AZ of 0.7940. PMID:25810750

  18. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications

    PubMed Central

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  19. How Can Advanced Imaging Be Used to Mitigate Potential Breast Cancer Overdiagnosis?

    PubMed

    Rahbar, Habib; McDonald, Elizabeth S; Lee, Janie M; Partridge, Savannah C; Lee, Christoph I

    2016-06-01

    Radiologists, as administrators and interpreters of screening mammography, are considered by some to be major contributors to the potential harms of screening, including overdiagnosis and overtreatment. In this article, we outline current efforts within the breast imaging community toward mitigating screening harms, including the widespread adoption of tomosynthesis and potentially adjusting screening frequency and thresholds for image-guided breast biopsy. However, the emerging field of breast radiomics may offer the greatest promise for reducing overdiagnosis by identifying imaging-based biomarkers strongly associated with tumor biology, and therefore helping prevent the harms of unnecessary treatment for indolent cancers. PMID:27017136

  20. Breast tumor detection using UWB circular-SAR tomographic microwave imaging.

    PubMed

    Oloumi, Daniel; Boulanger, Pierre; Kordzadeh, Atefeh; Rambabu, Karumudi

    2015-08-01

    This paper describes the possibility of detecting tumors in human breast using ultra-wideband (UWB) circular synthetic aperture radar (CSAR). CSAR is a subset of SAR which is a radar imaging technique using a circular data acquisition pattern. Tomographic image reconstruction is done using a time domain global back projection technique adapted to CSAR. Experiments are conducted on a breast phantoms made of pork fat emulating normal and cancerous conditions. Preliminary experimental results show that microwave imaging of a breast phantom using UWB-CSAR is a simple and low-cost method, efficiently capable of detecting the presence of tumors. PMID:26737919

  1. Potential Impact of Preoperative Magnetic Resonance Imaging of the Breast on Patient Selection for Accelerated Partial Breast Irradiation

    SciTech Connect

    Kuehr, Marietta; Wolfgarten, Matthias; Stoelzle, Marco; Leutner, Claudia; Hoeller, Tobias; Schrading, Simone; Kuhl, Christiane; Schild, Hans; Kuhn, Walther; Braun, Michael

    2011-11-15

    Purpose: Accelerated partial breast irradiation (APBI) after breast-conserving therapy is currently under investigation in prospective randomized studies. Multifocality and multicentricity are exclusion criteria for APBI. Preoperative breast magnetic resonance imaging (MRI) can detect ipsilateral and contralateral invasive tumor foci or ductal carcinoma in situ in addition to conventional diagnostic methods (clinical examination, mammography, and ultrasonography). The objective of this retrospective study was to evaluate the impact of preoperative MRI on patient selection for APBI. Methods and Materials: From 2002 to 2007, a total of 579 consecutive, nonselected patients with newly diagnosed early-stage breast cancer received preoperative breast MRI in addition to conventional imaging studies at the Bonn University Breast Cancer Center. In retrospect, 113 patients would have met the criteria for APBI using conventional imaging workup (clinical tumor size {<=}3 cm; negative axillary lymph node status; unifocal disease; no evidence of distant metastases; no invasive lobular carcinoma, ductal and lobular carcinoma in situ, or Paget's disease). We analyzed the amount of additional ipsilateral and contralateral tumor foci detected by MRI. Results: MRI detected additional tumor foci in 8.8% of patients eligible for APBI (11 tumor foci in 10 of 113 patients), either ipsilateral (n = 7, 6.2%) or contralateral (n = 4, 3.5%). In 1 patient, MRI helped detect additional tumor focus both ipsilaterally and contralaterally. Conclusions: Preoperative breast MRI is able to identify additional tumor foci in a clinically relevant number of cases in this highly selected group of patients with low-risk disease and may be useful in selecting patients for APBI.

  2. Nuclear imaging of the breast: Translating achievements in instrumentation into clinical use

    PubMed Central

    Hruska, Carrie B.; O'Connor, Michael K.

    2013-01-01

    Approaches to imaging the breast with nuclear medicine and/or molecular imaging methods have been under investigation since the late 1980s when a technique called scintimammography was first introduced. This review charts the progress of nuclear imaging of the breast over the last 20 years, covering the development of newer techniques such as breast specific gamma imaging, molecular breast imaging, and positron emission mammography. Key issues critical to the adoption of these technologies in the clinical environment are discussed, including the current status of clinical studies, the efforts at reducing the radiation dose from procedures associated with these technologies, and the relevant radiopharmaceuticals that are available or under development. The necessary steps required to move these technologies from bench to bedside are also discussed. PMID:23635248

  3. Nuclear imaging of the breast: Translating achievements in instrumentation into clinical use

    SciTech Connect

    Hruska, Carrie B.; O'Connor, Michael K.

    2013-05-15

    Approaches to imaging the breast with nuclear medicine and/or molecular imaging methods have been under investigation since the late 1980s when a technique called scintimammography was first introduced. This review charts the progress of nuclear imaging of the breast over the last 20 years, covering the development of newer techniques such as breast specific gamma imaging, molecular breast imaging, and positron emission mammography. Key issues critical to the adoption of these technologies in the clinical environment are discussed, including the current status of clinical studies, the efforts at reducing the radiation dose from procedures associated with these technologies, and the relevant radiopharmaceuticals that are available or under development. The necessary steps required to move these technologies from bench to bedside are also discussed.

  4. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.

    PubMed

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L

    2016-02-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer. PMID:26547117

  5. Does Breast Magnetic Resonance Imaging Combined With Conventional Imaging Modalities Decrease the Rates of Surgical Margin Involvement and Reoperation?

    PubMed Central

    Lai, Hung-Wen; Chen, Chih-Jung; Lin, Ying-Jen; Chen, Shu-Ling; Wu, Hwa-Koon; Wu, Yu-Ting; Kuo, Shou-Jen; Chen, Shou-Tung; Chen, Dar-Ren

    2016-01-01

    Abstract The objective of this study was to assess whether preoperative breast magnetic resonance imaging (MRI) combined with conventional breast imaging techniques decreases the rates of margin involvement and reexcision. Data on patients who underwent surgery for primary operable breast cancer were obtained from the Changhua Christian Hospital (CCH) breast cancer database. The rate of surgical margin involvement and the rate of reoperation were compared between patients who underwent conventional breast imaging modalities (Group A: mammography and sonography) and those who received breast MRI in addition to conventional imaging (Group B: mammography, sonography, and MRI). A total of 1468 patients were enrolled in this study. Among the 733 patients in Group A, 377 (51.4%) received breast-conserving surgery (BCS) and 356 (48.6%) received mastectomy. Among the 735 patients in Group B, 348 (47.3%) received BCS and 387 (52.7%) received mastectomy. There were no significant differences in operative method between patients who received conventional imaging alone and those that received MRI and conventional imaging (P = 0.13). The rate of detection of pathological multifocal/multicentric breast cancer was markedly higher in patients who received preoperative MRI than in those who underwent conventional imaging alone (14.3% vs 8.6%, P < 0.01). The overall rate of surgical margin involvement was significantly lower in patients who received MRI (5.0%) than in those who received conventional imaging alone (9.0%) (P < 0.01). However, a significant reduction in rate of surgical margin positivity was only observed in patients who received BCS (Group A, 14.6%; Group B, 6.6%, P < 0.01). The overall BCS reoperation rates were 11.7% in the conventional imaging group and 3.2% in the combined MRI group (P < 0.01). There were no significant differences in rate of residual cancer in specimens obtained during reoperation between the 2 preoperative imaging groups

  6. Evaluation of the possibility to use thick slabs of reconstructed outer breast tomosynthesis slice images

    NASA Astrophysics Data System (ADS)

    Petersson, Hannie; Dustler, Magnus; Tingberg, Anders; Timberg, Pontus

    2016-03-01

    The large image volumes in breast tomosynthesis (BT) have led to large amounts of data and a heavy workload for breast radiologists. The number of slice images can be decreased by combining adjacent image planes (slabbing) but the decrease in depth resolution can considerably affect the detection of lesions. The aim of this work was to assess if thicker slabbing of the outer slice images (where lesions seldom are present) could be a viable alternative in order to reduce the number of slice images in BT image volumes. The suggested slabbing (an image volume with thick outer slabs and thin slices between) were evaluated in two steps. Firstly, a survey of the depth of 65 cancer lesions within the breast was performed to estimate how many lesions would be affected by outer slabs of different thicknesses. Secondly, a selection of 24 lesions was reconstructed with 2, 6 and 10 mm slab thickness to evaluate how the appearance of lesions located in the thicker slabs would be affected. The results show that few malignant breast lesions are located at a depth less than 10 mm from the surface (especially for breast thicknesses of 50 mm and above). Reconstruction of BT volumes with 6 mm slab thickness yields an image quality that is sufficient for lesion detection for a majority of the investigated cases. Together, this indicates that thicker slabbing of the outer slice images is a promising option in order to reduce the number of slice images in BT image volumes.

  7. Application of image processing techniques for contrast enhancement in dense breast digital mammograms

    NASA Astrophysics Data System (ADS)

    Nunes, Fatima d. L. d. S.; Schiabel, Homero; Benatti, Rodrigo H.

    1999-05-01

    Dense breasts, that usually are characteristic of women less than 40 years old, difficult many times early detection of breast cancer. In this work we present the application of some image processing techniques intended to enhance the contrast in dense breast images, regarding the detection of clustered microcalcifications. The procedure was, firstly, determining in the literature the main techniques used for mammographic images contrast enhancement. The results indicate that, in general: (1) as expected, the overall performance of the CAD scheme for clusters detection decreased when applied exclusively to dense breast images, compared to the application to a set of images without this characteristic; (2) most of the techniques for contrast enhancement used successfully in generic mammography images databases are not able to enhance structures of athirst in databases formed only by dense breasts images, due to the very poor contrast between microcalcifications, for example, and other tissues. These features should stress, therefore, the need of developing a methodology specifically for this type of images in order to provide better conditions to the detection of breast suspicious structures in these group of women.

  8. Magnetoacoustic tomography with magnetic induction (MAT-MI) for breast tumor imaging: numerical modeling and simulation

    NASA Astrophysics Data System (ADS)

    Zhou, Lian; Li, Xu; Zhu, Shanan; He, Bin

    2011-04-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) was recently introduced as a noninvasive electrical conductivity imaging approach with high spatial resolution close to ultrasound imaging. In this study, we test the feasibility of the MAT-MI method for breast tumor imaging using numerical modeling and computer simulation. Using the finite element method, we have built three-dimensional numerical breast models with varieties of embedded tumors for this simulation study. In order to obtain an accurate and stable forward solution that does not have numerical errors caused by singular MAT-MI acoustic sources at conductivity boundaries, we first derive an integral forward method for calculating MAT-MI acoustic sources over the entire imaging volume. An inverse algorithm for reconstructing the MAT-MI acoustic source is also derived with spherical measurement aperture, which simulates a practical setup for breast imaging. With the numerical breast models, we have conducted computer simulations under different imaging parameter setups and all the results suggest that breast tumors that have large conductivity in contrast to the surrounding tissue as reported in the literature may be readily detected in the reconstructed MAT-MI images. In addition, our simulations also suggest that the sensitivity of imaging breast tumors using the presented MAT-MI setup depends more on the tumor location and the conductivity contrast between the tumor and its surrounding tissue than on the tumor size.

  9. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468

  10. Characterization of the homogeneous tissue mixture approximation in breast imaging dosimetry

    SciTech Connect

    Sechopoulos, Ioannis; Bliznakova, Kristina; Qin Xulei; Fei Baowei; Feng, Steve Si Jia

    2012-08-15

    Purpose: To compare the estimate of normalized glandular dose in mammography and breast CT imaging obtained using the actual glandular tissue distribution in the breast to that obtained using the homogeneous tissue mixture approximation. Methods: Twenty volumetric images of patient breasts were acquired with a dedicated breast CT prototype system and the voxels in the breast CT images were automatically classified into skin, adipose, and glandular tissue. The breasts in the classified images underwent simulated mechanical compression to mimic the conditions present during mammographic acquisition. The compressed thickness for each breast was set to that achieved during each patient's last screening cranio-caudal (CC) acquisition. The volumetric glandular density of each breast was computed using both the compressed and uncompressed classified images, and additional images were created in which all voxels representing adipose and glandular tissue were replaced by a homogeneous mixture of these two tissues in a proportion corresponding to each breast's volumetric glandular density. All four breast images (compressed and uncompressed; heterogeneous and homogeneous tissue) were input into Monte Carlo simulations to estimate the normalized glandular dose during mammography (compressed breasts) and dedicated breast CT (uncompressed breasts). For the mammography simulations the x-ray spectra used was that used during each patient's last screening CC acquisition. For the breast CT simulations, two x-ray spectra were used, corresponding to the x-ray spectra with the lowest and highest energies currently being used in dedicated breast CT prototype systems under clinical investigation. The resulting normalized glandular dose for the heterogeneous and homogeneous versions of each breast for each modality was compared. Results: For mammography, the normalized glandular dose based on the homogeneous tissue approximation was, on average, 27% higher than that estimated using the

  11. Technical Note: Skin thickness measurements using high-resolution flat-panel cone-beam dedicated breast CT

    SciTech Connect

    Shi Linxi; Vedantham, Srinivasan; Karellas, Andrew; O'Connell, Avice M.

    2013-03-15

    Purpose: To determine the mean and range of location-averaged breast skin thickness using high-resolution dedicated breast CT for use in Monte Carlo-based estimation of normalized glandular dose coefficients. Methods: This study retrospectively analyzed image data from a clinical study investigating dedicated breast CT. An algorithm similar to that described by Huang et al.['The effect of skin thickness determined using breast CT on mammographic dosimetry,' Med. Phys. 35(4), 1199-1206 (2008)] was used to determine the skin thickness in 137 dedicated breast CT volumes from 136 women. The location-averaged mean breast skin thickness for each breast was estimated and the study population mean and range were determined. Pathology results were available for 132 women, and were used to investigate if the distribution of location-averaged mean breast skin thickness varied with pathology. The effect of surface fitting to account for breast curvature was also studied. Results: The study mean ({+-} interbreast SD) for breast skin thickness was 1.44 {+-} 0.25 mm (range: 0.87-2.34 mm), which was in excellent agreement with Huang et al. Based on pathology, pair-wise statistical analysis (Mann-Whitney test) indicated that at the 0.05 significance level, there were no significant difference in the location-averaged mean breast skin thickness distributions between the groups: benign vs malignant (p= 0.223), benign vs hyperplasia (p= 0.651), hyperplasia vs malignant (p= 0.229), and malignant vs nonmalignant (p= 0.172). Conclusions: Considering this study used a different clinical prototype system, and the study participants were from a different geographical location, the observed agreement between the two studies suggests that the choice of 1.45 mm thick skin layer comprising the epidermis and the dermis for breast dosimetry is appropriate. While some benign and malignant conditions could cause skin thickening, in this study cohort the location-averaged mean breast skin thickness

  12. Features of Undiagnosed Breast Cancers at Screening Breast MR Imaging and Potential Utility of Computer-Aided Evaluation

    PubMed Central

    Seo, Mirinae; Bae, Min Sun; Koo, Hye Ryoung; Kim, Won Hwa; Lee, Su Hyun; Chu, Ajung

    2016-01-01

    Objective To retrospectively evaluate the features of undiagnosed breast cancers on prior screening breast magnetic resonance (MR) images in patients who were subsequently diagnosed with breast cancer, as well as the potential utility of MR-computer-aided evaluation (CAE). Materials and Methods Between March 2004 and May 2013, of the 72 consecutive pairs of prior negative MR images and subsequent MR images with diagnosed cancers (median interval, 32.8 months; range, 5.4-104.6 months), 36 (50%) had visible findings (mean size, 1.0 cm; range, 0.3-5.2 cm). The visible findings were divided into either actionable or underthreshold groups by the blinded review by 5 radiologists. MR imaging features, reasons for missed cancer, and MR-CAE features according to actionability were evaluated. Results Of the 36 visible findings on prior MR images, 33.3% (12 of 36) of the lesions were determined to be actionable and 66.7% (24 of 36) were underthreshold; 85.7% (6 of 7) of masses and 31.6% (6 of 19) of non-mass enhancements were classified as actionable lesions. Mimicking physiologic enhancements (27.8%, 10 of 36) and small lesion size (27.8%, 10 of 36) were the most common reasons for missed cancer. Actionable findings tended to show more washout or plateau kinetic patterns on MR-CAE than underthreshold findings, as the 100% of actionable findings and 46.7% of underthreshold findings showed washout or plateau (p = 0.008). Conclusion MR-CAE has the potential for reducing the number of undiagnosed breast cancers on screening breast MR images, the majority of which are caused by mimicking physiologic enhancements or small lesion size. PMID:26798217

  13. Balancing dose and image registration accuracy for cone beam tomosynthesis (CBTS) for breast patient setup

    SciTech Connect

    Winey, B. A.; Zygmanski, P.; Cormack, R. A.; Lyatskaya, Y.

    2010-08-15

    Purpose: To balance dose reduction and image registration accuracy in breast setup imaging. In particular, the authors demonstrate the relationship between scan angle and dose delivery for cone beam tomosynthesis (CBTS) when employed for setup verification of breast cancer patients with surgical clips. Methods: The dose measurements were performed in a female torso phantom for varying scan angles of CBTS. Setup accuracy was measured using three registration methods: Clip centroid localization accuracy and the accuracy of two semiautomatic registration algorithms. The dose to the organs outside of the ipsilateral breast and registration accuracy information were compared to determine the optimal scan angle for CBTS for breast patient setup verification. Isocenter positions at the center of the patient and at the breast-chest wall interface were considered. Results: Image registration accuracy was within 1 mm for the CBTS scan angles {theta} above 20 deg. for some scenarios and as large as 80 deg. for the worst case, depending on the imaged breast and registration algorithm. Registration accuracy was highest based on clip centroid localization. For left and right breast imaging with the isocenter at the chest wall, the dose to the contralateral side of the patient was very low (<0.5 cGy) for all scan angles considered. For central isocenter location, the optimal scan angles were 30 deg. - 50 deg. for the left breast imaging and 40 deg. - 50 deg. for the right breast imaging, with the difference due to the geometric asymmetry of the current clinical imaging system. Conclusions: The optimal scan angles for CBTS imaging were found to be between 10 deg. and 50 deg., depending on the isocenter location and ipsilateral breast. Use of the isocenter at the breast-chest wall locations always resulted in greater accuracy of image registration (<1 mm) at smaller angles (10 deg. - 20 deg.) and at lower doses (<0.1 cGy) to the contralateral organs. For chest wall isocenters

  14. PLSA-based pathological image retrieval for breast cancer with color deconvolution

    NASA Astrophysics Data System (ADS)

    Ma, Yibing; Shi, Jun; Jiang, Zhiguo; Feng, Hao

    2013-10-01

    Digital pathological image retrieval plays an important role in computer-aided diagnosis for breast cancer. The retrieval results of an unknown pathological image, which are generally previous cases with diagnostic information, can provide doctors with assistance and reference. In this paper, we develop a novel pathological image retrieval method for breast cancer, which is based on stain component and probabilistic latent semantic analysis (pLSA) model. Specifically, the method firstly utilizes color deconvolution to gain the representation of different stain components for cell nuclei and cytoplasm, and then block Gabor features are conducted on cell nuclei, which is used to construct the codebook. Furthermore, the connection between the words of the codebook and the latent topics among images are modeled by pLSA. Therefore, each image can be represented by the topics and also the high-level semantic concepts of image can be described. Experiments on the pathological image database for breast cancer demonstrate the effectiveness of our method.

  15. SU-E-I-53: Variation in Measurements of Breast Skin Thickness Obtained Using Different Imaging Modalities

    SciTech Connect

    Nguyen, U; Kumaraswamy, N; Markey, M

    2014-06-01

    Purpose: To investigate variation in measurements of breast skin thickness obtained using different imaging modalities, including mammography, computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI). Methods: Breast skin thicknesses as measured by mammography, CT, ultrasound, and MRI were compared. Mammographic measurements of skin thickness were obtained from published studies that utilized standard positioning (upright) and compression. CT measurements of skin thickness were obtained from a published study of a prototype breast CT scanner in which the women were in the prone position and the breast was uncompressed. Dermatological ultrasound exams of the breast skin were conducted at our institution, with the subjects in the upright position and the breast uncompressed. Breast skin thickness was calculated from breast MRI exams at our institution, with the patient in the prone position and the breast uncompressed. Results: T tests for independent samples demonstrated significant differences in the mean breast skin thickness as measured by different imaging modalities. Repeated measures ANOVA revealed significant differences in breast skin thickness across different quadrants of the breast for some modalities. Conclusion: The measurement of breast skin thickness is significantly different across different imaging modalities. Differences in the amount of compression and differences in patient positioning are possible reasons why measurements of breast skin thickness vary by modality.

  16. Breast histopathology image segmentation using spatio-colour-texture based graph partition method.

    PubMed

    Belsare, A D; Mushrif, M M; Pangarkar, M A; Meshram, N

    2016-06-01

    This paper proposes a novel integrated spatio-colour-texture based graph partitioning method for segmentation of nuclear arrangement in tubules with a lumen or in solid islands without a lumen from digitized Hematoxylin-Eosin stained breast histology images, in order to automate the process of histology breast image analysis to assist the pathologists. We propose a new similarity based super pixel generation method and integrate it with texton representation to form spatio-colour-texture map of Breast Histology Image. Then a new weighted distance based similarity measure is used for generation of graph and final segmentation using normalized cuts method is obtained. The extensive experiments carried shows that the proposed algorithm can segment nuclear arrangement in normal as well as malignant duct in breast histology tissue image. For evaluation of the proposed method the ground-truth image database of 100 malignant and nonmalignant breast histology images is created with the help of two expert pathologists and the quantitative evaluation of proposed breast histology image segmentation has been performed. It shows that the proposed method outperforms over other methods. PMID:26708167

  17. Photoacoustic imaging for deep targets in the breast using a multichannel 2D array transducer

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Wang, Xueding; Morris, Richard F.; Padilla, Frederic R.; Lecarpentier, Gerald L.; Carson, Paul L.

    2011-03-01

    A photoacoustic (PA) imaging system was developed to achieve high sensitivity for the detection and characterization of vascular anomalies in the breast in the mammographic geometry. Signal detection from deep in the breast was achieved by a broadband 2D PVDF planar array that has a round shape with one side trimmed straight to improve fit near the chest wall. This array has 572 active elements and a -6dB bandwidth of 0.6-1.7 MHz. The low frequency enhances imaging depth and increases the size of vascular collections displayed without edge enhancement. The PA signals from all the elements go through low noise preamplifiers in the probe that are very close to the array elements for optimized noise control. Driven by 20 independent on-probe signal processing channels, imaging with both high sensitivity and good speed was achieved. To evaluate the imaging depth and the spatial resolution of this system,2.38mm I.D. artificial vessels embedded deeply in ex vivo breasts harvested from fresh cadavers and a 3mm I.D. tube in breast mimicking phantoms made of pork loin and fat tissues were imaged. Using near-infrared laser light with incident energy density within the ANSI safety limit, imaging depths of up to 49 mm in human breasts and 52 mm in phantoms were achieved. With a high power tunable laser working on multiple wavelengths, this system might contribute to 3D noninvasive imaging of morphological and physiological tissue features throughout the breast.

  18. Near-infrared laser speckle imaging of human breast tissue

    NASA Astrophysics Data System (ADS)

    Bean, Robert Speer

    Current methods of breast cancer diagnostics (self-exam, clinical exam, x-ray mammography) fail to diagnose a significant number of cases while still in readily operable stages. This is especially true in younger women, where fibrotic tissue reduces the efficacy of x-ray mammography. Near infrared (NIR) laser photons pass diffusively through human tissue, creating a speckle pattern in a detector after transmission. The high and low intensity variations of the speckle have the appearance of random noise, but are not. The speckle pattern will have an intensity distribution that is informative about the scattering and absorption properties of the tissue that is imaged. Adaptations to the Los Alamos National Laboratory MCNP code are described that allow simulation of NIR laser transport through human tissue. A HeNe laser was used to create laser intensity patterns via transmission through homogeneous and non-homogeneous tissue phantoms. The Kolmogorov-Smirnov test was used to compare the cumulative distribution functions of the laser intensity patterns, and identify the presence of a non-homogeneity. Laser speckle techniques offer the ability to image tumors with few (<3) millimeter resolution without ionizing radiation dose.

  19. Digital image analysis outperforms manual biomarker assessment in breast cancer.

    PubMed

    Stålhammar, Gustav; Fuentes Martinez, Nelson; Lippert, Michael; Tobin, Nicholas P; Mølholm, Ida; Kis, Lorand; Rosin, Gustaf; Rantalainen, Mattias; Pedersen, Lars; Bergh, Jonas; Grunkin, Michael; Hartman, Johan

    2016-04-01

    In the spectrum of breast cancers, categorization according to the four gene expression-based subtypes 'Luminal A,' 'Luminal B,' 'HER2-enriched,' and 'Basal-like' is the method of choice for prognostic and predictive value. As gene expression assays are not yet universally available, routine immunohistochemical stains act as surrogate markers for these subtypes. Thus, congruence of surrogate markers and gene expression tests is of utmost importance. In this study, 3 cohorts of primary breast cancer specimens (total n=436) with up to 28 years of survival data were scored for Ki67, ER, PR, and HER2 status manually and by digital image analysis (DIA). The results were then compared for sensitivity and specificity for the Luminal B subtype, concordance to PAM50 assays in subtype classification and prognostic power. The DIA system used was the Visiopharm Integrator System. DIA outperformed manual scoring in terms of sensitivity and specificity for the Luminal B subtype, widely considered the most challenging distinction in surrogate subclassification, and produced slightly better concordance and Cohen's κ agreement with PAM50 gene expression assays. Manual biomarker scores and DIA essentially matched each other for Cox regression hazard ratios for all-cause mortality. When the Nottingham combined histologic grade (Elston-Ellis) was used as a prognostic surrogate, stronger Spearman's rank-order correlations were produced by DIA. Prognostic value of Ki67 scores in terms of likelihood ratio χ(2) (LR χ(2)) was higher for DIA that also added significantly more prognostic information to the manual scores (LR-Δχ(2)). In conclusion, the system for DIA evaluated here was in most aspects a superior alternative to manual biomarker scoring. It also has the potential to reduce time consumption for pathologists, as many of the steps in the workflow are either automatic or feasible to manage without pathological expertise. PMID:26916072

  20. Factors Associated with Preoperative Magnetic Resonance Imaging Use among Medicare Beneficiaries with Nonmetastatic Breast Cancer.

    PubMed

    Henderson, Louise M; Weiss, Julie; Hubbard, Rebecca A; O'Donoghue, Cristina; DeMartini, Wendy B; Buist, Diana S M; Kerlikowske, Karla; Goodrich, Martha; Virnig, Beth; Tosteson, Anna N A; Lehman, Constance D; Onega, Tracy

    2016-01-01

    Preoperative breast magnetic resonance imaging (MRI) use among Medicare beneficiaries with breast cancer has substantially increased from 2005 to 2009. We sought to identify factors associated with preoperative breast MRI use among women diagnosed with ductal carcinoma in situ (DCIS) or stage I-III invasive breast cancer (IBC). Using Surveillance, Epidemiology, and End Results and Medicare data from 2005 to 2009 we identified women ages 66 and older with DCIS or stage I-III IBC who underwent breast-conserving surgery or mastectomy. We compared preoperative breast MRI use by patient, tumor and hospital characteristics stratified by DCIS and IBC using multivariable logistic regression. From 2005 to 2009, preoperative breast MRI use increased from 5.9% to 22.4% of women diagnosed with DCIS and 7.0% to 24.3% of women diagnosed with IBC. Preoperative breast MRI use was more common among women who were younger, married, lived in higher median income zip codes and had no comorbidities. Among women with IBC, those with lobular disease, smaller tumors (<1 cm) and those with estrogen receptor negative tumors were more likely to receive preoperative breast MRI. Women with DCIS were more likely to receive preoperative MRI if tumors were larger (>2 cm). The likelihood of receiving preoperative breast MRI is similar for women diagnosed with DCIS and IBC. Use of MRI is more common in women with IBC for tumors that are lobular and smaller while for DCIS MRI is used for evaluation of larger lesions. PMID:26511204

  1. Segmentation of the whole breast from low-dose chest CT images

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Salvatore, Mary; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2015-03-01

    The segmentation of whole breast serves as the first step towards automated breast lesion detection. It is also necessary for automatically assessing the breast density, which is considered to be an important risk factor for breast cancer. In this paper we present a fully automated algorithm to segment the whole breast in low-dose chest CT images (LDCT), which has been recommended as an annual lung cancer screening test. The automated whole breast segmentation and potential breast density readings as well as lesion detection in LDCT will provide useful information for women who have received LDCT screening, especially the ones who have not undergone mammographic screening, by providing them additional risk indicators for breast cancer with no additional radiation exposure. The two main challenges to be addressed are significant range of variations in terms of the shape and location of the breast in LDCT and the separation of pectoral muscles from the glandular tissues. The presented algorithm achieves robust whole breast segmentation using an anatomy directed rule-based method. The evaluation is performed on 20 LDCT scans by comparing the segmentation with ground truth manually annotated by a radiologist on one axial slice and two sagittal slices for each scan. The resulting average Dice coefficient is 0.880 with a standard deviation of 0.058, demonstrating that the automated segmentation algorithm achieves results consistent with manual annotations of a radiologist.

  2. An X-ray Computed Tomography/Positron Emission Tomography System Designed Specifically for Breast Imaging

    PubMed Central

    Boone, John M.; Yang, Kai; Burkett, George W.; Packard, Nathan J.; Huang, Shih-ying; Bowen, Spencer; Badawi, Ramsey D.; Lindfors, Karen K.

    2011-01-01

    Mammography has served the population of women who are at-risk for breast cancer well over the past 30 years. While mammography has undergone a number of changes as digital detector technology has advanced, other modalities such as computed tomography have experienced technological sophistication over this same time frame as well. The advent of large field of view flat panel detector systems enable the development of breast CT and several other niche CT applications, which rely on cone beam geometry. The breast, it turns out, is well suited to cone beam CT imaging because the lack of bones reduces artifacts, and the natural tapering of the breast anteriorly reduces the x-ray path lengths through the breast at large cone angle, reducing cone beam artifacts as well. We are in the process of designing a third prototype system which will enable the use of breast CT for image guided interventional procedures. This system will have several copies fabricated so that several breast CT scanners can be used in a multi-institutional clinical trial to better understand the role that this technology can bring to breast imaging. PMID:20082528

  3. Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors: Automated measurement development for full field digital mammography

    SciTech Connect

    Fowler, E. E.; Sellers, T. A.; Lu, B.; Heine, J. J.

    2013-11-15

    Purpose: The Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors are used for standardized mammographic reporting and are assessed visually. This reporting is clinically relevant because breast composition can impact mammographic sensitivity and is a breast cancer risk factor. New techniques are presented and evaluated for generating automated BI-RADS breast composition descriptors using both raw and calibrated full field digital mammography (FFDM) image data.Methods: A matched case-control dataset with FFDM images was used to develop three automated measures for the BI-RADS breast composition descriptors. Histograms of each calibrated mammogram in the percent glandular (pg) representation were processed to create the new BR{sub pg} measure. Two previously validated measures of breast density derived from calibrated and raw mammograms were converted to the new BR{sub vc} and BR{sub vr} measures, respectively. These three measures were compared with the radiologist-reported BI-RADS compositions assessments from the patient records. The authors used two optimization strategies with differential evolution to create these measures: method-1 used breast cancer status; and method-2 matched the reported BI-RADS descriptors. Weighted kappa (κ) analysis was used to assess the agreement between the new measures and the reported measures. Each measure's association with breast cancer was evaluated with odds ratios (ORs) adjusted for body mass index, breast area, and menopausal status. ORs were estimated as per unit increase with 95% confidence intervals.Results: The three BI-RADS measures generated by method-1 had κ between 0.25–0.34. These measures were significantly associated with breast cancer status in the adjusted models: (a) OR = 1.87 (1.34, 2.59) for BR{sub pg}; (b) OR = 1.93 (1.36, 2.74) for BR{sub vc}; and (c) OR = 1.37 (1.05, 1.80) for BR{sub vr}. The measures generated by method-2 had κ between 0.42–0.45. Two of these measures

  4. Image guided versus palpation guided core needle biopsy of palpable breast masses: a prospective study

    PubMed Central

    Hari, Smriti; Kumari, Swati; Srivastava, Anurag; Thulkar, Sanjay; Mathur, Sandeep; Veedu, Prasad Thotton

    2016-01-01

    Background & objectives: Biopsy of palpable breast masses can be performed manually by palpation guidance or under imaging guidance. Based on retrospective studies, image guided biopsy is considered more accurate than palpation guided breast biopsy; however, these techniques have not been compared prospectively. We conducted this prospective study to verify the superiority and determine the size of beneficial effect of image guided biopsy over palpation guided biopsy. Methods: Over a period of 18 months, 36 patients each with palpable breast masses were randomized into palpation guided and image guided breast biopsy arms. Ultrasound was used for image guidance in 33 patients and mammographic (stereotactic) guidance in three patients. All biopsies were performed using 14 gauge automated core biopsy needles. Inconclusive, suspicious or imaging-histologic discordant biopsies were repeated. Results: Malignancy was found in 30 of 36 women in palpation guided biopsy arm and 27 of 36 women in image guided biopsy arm. Palpation guided biopsy had sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 46.7, 100, 100, 27.3 per cent, respectively, for diagnosing breast cancer. Nineteen of 36 women (52.8%) required repeat biopsy because of inadequate samples (7 of 19), suspicious findings (2 of 19) or imaging-histologic discordance (10 of 19). On repeat biopsy, malignancy was found in all cases of imaging-histologic discordance. Image guided biopsy had 96.3 per cent sensitivity and 100 per cent specificity. There was no case of inadequate sample or imaging-histologic discordance with image guided biopsy. Interpretation & conclusions: Our results showed that in palpable breast masses, image guided biopsy was superior to palpation guided biopsy in terms of sensitivity, false negative rate and repeat biopsy rates. PMID:27488003

  5. Bone Fragment Detection in Chicken Breast Fillets using Transmittance Image Enhancement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper is concerned with the detection of bone fragments embedded in de-boned skinless chicken breast fillets by modeling optical images generated by back-lighting. Imaging of chicken fillets is often dominated by multiple scattering properties of the fillets. Thus, resulting images from multi...

  6. Automated Breast Ultrasound: Dual-Sided Compared with Single-Sided Imaging.

    PubMed

    Larson, Eric D; Lee, Won-Mean; Roubidoux, Marilyn A; Goodsitt, Mitchel M; Lashbrook, Chris; Zafar, Fouzaan; Kripfgans, Oliver D; Thomenius, Kai; Carson, Paul L

    2016-09-01

    The design and performance of a mammographically configured, dual-sided, automated breast ultrasound (ABUS) 3-D imaging system are described. Dual-sided imaging (superior and inferior) is compared with single-sided imaging to aid decisions on clinical implementation of the more complex, but potentially higher-quality dual-sided imaging. Marked improvement in image quality and coverage of the breast is obtained in dual-sided ultrasound over single-sided ultrasound. Among hypo-echoic masses imaged, there are increases in the mean contrast-to-noise ratio of 57% and 79%, respectively, for spliced dual-sided versus superior or inferior single-sided imaging. The fractional breast volume coverage, defined as the percentage volume in the transducer field of view that is imaged with clinically acceptable quality, is improved from 59% in both superior and inferior single-sided imaging to 89% in dual-sided imaging. Applying acoustic coupling to the breast requires more effort or sophisticated methods in dual-sided imaging than in single-sided imaging. PMID:27264914

  7. Molecular Imaging-Guided Interventional Hyperthermia in Treatment of Breast Cancer

    PubMed Central

    Zhou, Yurong; Sun, Jihong; Yang, Xiaoming

    2015-01-01

    Breast cancer is the most frequent malignancy in women worldwide. Although it is commonly treated via chemotherapy, responses vary among its subtypes, some of which are relatively insensitive to chemotherapeutic drugs. Recent studies have shown that hyperthermia can enhance the effects of chemotherapy in patients with refractory breast cancer or without surgical indications. Recent advances in molecular imaging may not only improve early diagnosis but may also facilitate the development and response assessment of targeted therapies. Combining advanced techniques such as molecular imaging and hyperthermia-integrated chemotherapy should open new avenues for effective management of breast cancer. PMID:26491673

  8. Breast imaging using the Twente photoacoustic mammoscope (PAM): new clinical measurements

    NASA Astrophysics Data System (ADS)

    Heijblom, Michelle; Piras, Daniele; Ten Tije, Ellen; Xia, Wenfeng; van Hespen, Johan; Klaase, Joost; van den Engh, Frank; van Leeuwen, Ton; Steenbergen, Wiendelt; Manohar, Srirang

    2011-07-01

    Worldwide, yearly about 450,000 women die from the consequences of breast cancer. Current imaging modalities are not optimal in discriminating benign from malignant tissue. Visualizing the malignancy-associated increased hemoglobin concentration might significantly improve early diagnosis of breast cancer. Since photoacoustic imaging can visualize hemoglobin in tissue with optical contrast and ultrasound-like resolution, it is potentially an ideal method for early breast cancer imaging. The Twente Photoacoustic Mammoscope (PAM) has been developed specifically for breast imaging. Recently, a large clinical study has been started in the Medisch Spectrum Twente in Oldenzaal using PAM. In PAM, the breast is slightly compressed between a window for laser light illumination and a flat array ultrasound detector. The measurements are performed using a Q-switched Nd:YAG laser, pulsed at 1064 nm and a 1 MHz unfocused ultrasound detector array. Three-dimensional data are reconstructed using a delay and sum reconstruction algorithm. Those reconstructed images are compared with conventional imaging and histopathology. In the first phase of the study 12 patients with a malignant lesion and 2 patients with a benign cyst have been measured. The results are used to guide developments in photoacoustic mammography in order to pave the way towards an optimal technique for early diagnosis of breast cancer.

  9. Carbon nanotube electron field emitters for X-ray imaging of human breast cancer

    PubMed Central

    Gidcumb, Emily; Gao, Bo; Shan, Jing; Inscoe, Christy; Lu, Jianping; Zhou, Otto

    2014-01-01

    For imaging human breast cancer, digital breast tomosynthesis (DBT) has been shown to improve image quality and breast cancer detection in comparison to 2D mammography. Current DBT systems have limited spatial resolution and lengthy scan times. Stationary digital breast tomosynthesis (s-DBT), utilizing an array of carbon nanotube (CNT) field emission X-ray sources, provides increased spatial resolution and potentially faster imaging than current DBT systems. This study presents the results of detailed evaluations of CNT cathodes for X-ray breast imaging tasks. The following were investigated: high current, long-term stability of CNT cathodes for DBT; feasibility of using CNT cathodes to perform a 2D radiograph function; and cathode performance through several years of imaging. Results show that a breast tomosynthesis system using CNT cathodes could run far beyond the experimentally tested lifetime of one to two years. CNT cathodes were found capable of producing higher currents than typical DBT would require, indicating that the s-DBT imaging time can be further reduced. The feasibility of using a single cathode of the s-DBT tube to perform 2D mammography in 4 seconds, was demonstrated. Over the lifetime of the prototype s-DBT system, it was found that both cathode performance and transmission rate were stable and consistent. PMID:24869902

  10. Image reconstruction for a Positron Emission Tomograph optimized for breast cancer imaging

    SciTech Connect

    Virador, Patrick R.G.

    2000-04-01

    The author performs image reconstruction for a novel Positron Emission Tomography camera that is optimized for breast cancer imaging. This work addresses for the first time, the problem of fully-3D, tomographic reconstruction using a septa-less, stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field of View (FOV) encompasses the entire volume enclosed by detector modules capable of measuring Depth of Interaction (DOI) information. The camera is rectangular in shape in order to accommodate breasts of varying sizes while allowing for soft compression of the breast during the scan. This non-standard geometry of the camera exacerbates two problems: (a) radial elongation due to crystal penetration and (b) reconstructing images from irregularly sampled data. Packing considerations also give rise to regions in projection space that are not sampled which lead to missing information. The author presents new Fourier Methods based image reconstruction algorithms that incorporate DOI information and accommodate the irregular sampling of the camera in a consistent manner by defining lines of responses (LORs) between the measured interaction points instead of rebinning the events into predefined crystal face LORs which is the only other method to handle DOI information proposed thus far. The new procedures maximize the use of the increased sampling provided by the DOI while minimizing interpolation in the data. The new algorithms use fixed-width evenly spaced radial bins in order to take advantage of the speed of the Fast Fourier Transform (FFT), which necessitates the use of irregular angular sampling in order to minimize the number of unnormalizable Zero-Efficiency Bins (ZEBs). In order to address the persisting ZEBs and the issue of missing information originating from packing considerations, the algorithms (a) perform nearest neighbor smoothing in 2D in the radial bins (b) employ a semi-iterative procedure in order to estimate the unsampled data

  11. Diffusion Weighted MR Imaging of Breast and Correlation of Prognostic Factors in Breast Cancer

    PubMed Central

    Kızıldağ Yırgın, İnci; Arslan, Gözde; Öztürk, Enis; Yırgın, Hakan; Taşdemir, Nihat; Gemici, Ayşegül Akdoğan; Kabul, Fatma Çelik; Kaya, Eyüp

    2016-01-01

    Background: Through Diffusion Weighted Imaging (DWI), information related to early molecular changes, changes in the permeability of cell membranes, and early morphologic and physiologic changes such as cell swelling can be obtained. Aims: We investigated the correlation between the prognostic factors of breast cancer and apparent diffusion coefficient (ADC) in DWI sequences of malignant lesions. Study Design: Retrospective cross-sectional study. Methods: Patients who were referred to our clinic between September 2012 and September 2013, who underwent dynamic breast MRI before or after biopsy and whose biopsy results were determined as malignant, were included in our study. Before the dynamic analysis, DWI sequences were taken. ADC relationship with all prognostic factors was investigated. Pearson correlation test was used to compare the numerical data, while Spearman correlation and Fisher exact tests were used to compare the categorical data. The advanced relationships were evaluated with linear regression analysis and univariate analysis. The efficiency of the parameters was evaluated using ROC analysis. The significance level (P) was accepted as 0.05. Results: In total, 41 female patients with an average age of 49.4 years (age interval 21–77) and 44 lesions were included into the study. In the Pearson correlation test, no statistically significant difference was determined between ADC and the patient’s age and tumor size. In the Spearman correlation test, a statistically significant difference was determined between nuclear grade (NG) and ADC (r=−0.424, p=0.04); no statistically significant correlation was observed between the other prognostic factors with each other and ADC values. In the linear regression analysis, the relationship of NG with ADC was found to be more significant alone than when comparing all parameters (corrected r2=0.196, p=0.005). Further evaluations between the NG and ADC correlation were carried out with ROC analysis. A

  12. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    SciTech Connect

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-12-15

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson'sr, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson'sr increased from 0.86 to 0.92 with the bias field correction

  13. Effect of Breast Compression on Lesion Characteristic Visibility with Diffraction-Enhanced Imaging

    SciTech Connect

    Faulconer, L.; Parham, C; Connor, D; Kuzmiak, C; Koomen, M; Lee, Y; Cho, K; Rafoth, J; Livasy, C; et al.

    2010-01-01

    Conventional mammography can not distinguish between transmitted, scattered, or refracted x-rays, thus requiring breast compression to decrease tissue depth and separate overlapping structures. Diffraction-enhanced imaging (DEI) uses monochromatic x-rays and perfect crystal diffraction to generate images with contrast based on absorption, refraction, or scatter. Because DEI possesses inherently superior contrast mechanisms, the current study assesses the effect of breast compression on lesion characteristic visibility with DEI imaging of breast specimens. Eleven breast tissue specimens, containing a total of 21 regions of interest, were imaged by DEI uncompressed, half-compressed, or fully compressed. A fully compressed DEI image was displayed on a soft-copy mammography review workstation, next to a DEI image acquired with reduced compression, maintaining all other imaging parameters. Five breast imaging radiologists scored image quality metrics considering known lesion pathology, ranking their findings on a 7-point Likert scale. When fully compressed DEI images were compared to those acquired with approximately a 25% difference in tissue thickness, there was no difference in scoring of lesion feature visibility. For fully compressed DEI images compared to those acquired with approximately a 50% difference in tissue thickness, across the five readers, there was a difference in scoring of lesion feature visibility. The scores for this difference in tissue thickness were significantly different at one rocking curve position and for benign lesion characterizations. These results should be verified in a larger study because when evaluating the radiologist scores overall, we detected a significant difference between the scores reported by the five radiologists. Reducing the need for breast compression might increase patient comfort during mammography. Our results suggest that DEI may allow a reduction in compression without substantially compromising clinical image

  14. Experimental implementation of coded aperture coherent scatter spectral imaging of cancerous and healthy breast tissue samples

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Manu N.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.

    2015-03-01

    A fast and accurate scatter imaging technique to differentiate cancerous and healthy breast tissue is introduced in this work. Such a technique would have wide-ranging clinical applications from intra-operative margin assessment to breast cancer screening. Coherent Scatter Computed Tomography (CSCT) has been shown to differentiate cancerous from healthy tissue, but the need to raster scan a pencil beam at a series of angles and slices in order to reconstruct 3D images makes it prohibitively time consuming. In this work we apply the coded aperture coherent scatter spectral imaging technique to reconstruct 3D images of breast tissue samples from experimental data taken without the rotation usually required in CSCT. We present our experimental implementation of coded aperture scatter imaging, the reconstructed images of the breast tissue samples and segmentations of the 3D images in order to identify the cancerous and healthy tissue inside of the samples. We find that coded aperture scatter imaging is able to reconstruct images of the samples and identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) inside of them. Coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue inside of ex vivo samples within a time on the order of a minute.

  15. Image cytometry of duct cells from benign and malignant breast disease

    SciTech Connect

    Mayall, B.H.; Gadenne, C.; King, E.B.; Chew, K.L.; Duarte, L.A.; Petrakis, N.L.

    1987-01-22

    We used image cytometry to classify benign and malignant breast lesions, to identify parameters that classify premalignant lesions, and to assess these parameters for a biological association that may be linked with malignancy. Results suggest that quantitative image analysis is able to discriminate ''normal'' from ''abnormal'' breast lesions. Thus image cytometry may provide an objective approach for early detection of malignant changes in the breast. The parameters selected by stepwise discriminant and regression analyses as being most useful for discriminating among breast lesions relate to nuclear size, shape and DNA content. These parameters are robust and easily measured and are similar to those used by others for discriminating benign from malignant lesions. Significantly, no parameter based on nuclear chromatin distribution ranked as highly in this study, unlike our experience with studies of other premalignant lesions. 9 refs., 1 fig., 3 tabs.

  16. Region-of-interest breast images with the Twente Photoacoustic Mammoscope (PAM)

    NASA Astrophysics Data System (ADS)

    Manohar, Srirang; Vaartjes, Sanne E.; van Hespen, Johan G. C.; Klaase, Joost M.; van den Engh, Frank M.; The, Andy K. H.; Steenbergen, Wiendelt; van Leeuwen, Ton G.

    2007-02-01

    The Twente Photoacoustic Mammoscope (PAM) is based on generating laser-induced ultrasound from absorbing structures in the breast. The heart of the instrument is a flat PVDF based detector matrix comprising 590 active elements. The exciting source is an Nd:YAG laser operating at 1064 nm with 5 ns pulses. The instrument is built around a hospital bed. A study protocol was designed to explore the feasibility of using the photoacoustic technique as embodied in PAM to detect cancer in the breasts of patients with suspect/symptomatic breasts. The protocol was approved by a Medical Ethics testing committee and the instrument approved for laser and electrical safety. The protocol was executed at the Medisch Spectrum Twente by using the mammoscope to obtain photoacoustic region-of-interest (ROI) images of the suspect/symptomatic breasts. We report on one case and compare the photoacoustic images obtained with x-ray mammograms and ultrasound images.

  17. Microwave-induced thermoacoustic imaging model for potential breast cancer detection.

    PubMed

    Wang, Xiong; Bauer, Daniel R; Witte, Russell; Xin, Hao

    2012-10-01

    In this study, we develop a complete microwave-induced thermoacoustic imaging (TAI) model for potential breast cancer imaging application. Acoustic pressures generated by different breast tissue targets are investigated by finite-difference time-domain simulations of the entire TAI process including the feeding antenna, matching mechanism, fluidic environment, 3-D breast model, and acoustic transducer. Simulation results achieve quantitative relationships between the input microwave peak power and the resulting specific absorption rate as well as the output acoustic pressure. Microwave frequency dependence of the acoustic signals due to different breast tissues is established across a broadband frequency range (2.3-12 GHz), suggesting key advantages of spectroscopic TAI compare to TAI at a single frequency. Reconstructed thermoacoustic images are consistent with the modeling results. This model will contribute to design, optimization, and safety evaluation of microwave-induced TAI and spectroscopy. PMID:22851231

  18. Ultrashort microwave pulsed thermoacoustic imaging for tumor localization over whole breast

    NASA Astrophysics Data System (ADS)

    Ji, Zhong; Fu, Yong; Lou, Cunguang

    2014-09-01

    Microwave-induced thermoacoustic imaging (TAI) has attracted considerable interest as a promising imaging modality. Previous studies show that TAI has great potential for use in breast tumor detection with high contrast and high spatial resolution, nevertheless it requires high energy density and possesses small field of view (FOV). In this paper, a ultrashort microwave pulse (USMP) TAI system was employed for quality imaging with much less energy density required , and simultaneously, large enough FOV was obtained to cover the whole breast. The experimental results clearly demonstrate that the new USMP TAI system can be used for three-dimensional (3-D) localization of deep breast tumors with low microwave radiation dose over the whole breast.

  19. Accuracy of a new paired imaging technique for position correction in whole breast radiotherapy.

    PubMed

    Petillion, Saskia; Verhoeven, Karolien; Weltens, Caroline; Van den Heuvel, Frank

    2015-01-01

    Image-guided position verification in breast radiotherapy is accurately performed with kilovoltage cone beam CT (kV-CBCT). The technique is, however, time-consuming and there is a risk for patient collision. Online position verification performed with orthogonal-angled mixed modality paired imaging is less time-consuming at the expense of inferior accuracy compared to kV-CBCT. We therefore investigated whether a new tangential-angled single modality paired imaging technique can reduce the residual error (RE) of orthogonal-angled mixed modality paired imaging. The latter was applied to 20 breast cancer patients. Tangential-angled single modality paired imaging was investigated in 20 breast and 20 breast cancer patients with locoregional lymph node irradiation. The central lung distance (CLD) residual error and the longitudinal residual error were determined during the first 5 treatment fractions. Off-line matching of the tangential breast field images, acquired after online position correction, was used. The mean, systematic, and random REs of each patient group were calculated. The systematic REs were checked for significant differences using the F-test. Tangential-angled single modality paired imaging significantly reduced the systematic CLD residual error of orthogonal-angled mixed modality paired imaging for the breast cancer patients, from 2.3 mm to 1.0 mm, and also significantly decreased the systematic longitudinal RE from 2.4 mm to 1.3 mm. PTV margins, which account for the residual error (PTVRE), were also calculated. The PTVRE margin needed to account for the RE of orthogonal-angled mixed modality paired imaging (i.e., 8 mm) was halved by tangential-angled single modality paired imaging. The differences between the systematic REs of tangential-angled single modality paired imaging of the breast cancer patients and the breast cancer patients with locoregional lymph node irradiation were not significant, yielding comparable PTVRE margins. In this study, we

  20. Effect of Bismuth Breast Shielding on Radiation Dose and Image Quality in Coronary CT Angiography

    PubMed Central

    Einstein, Andrew J.; Elliston, Carl D.; Groves, Daniel W.; Cheng, Bin; Wolff, Steven D.; Pearson, Gregory D. N.; Peters, M. Robert; Johnson, Lynne L.; Bokhari, Sabahat; Johnson, Gary W.; Bhatia, Ketan; Pozniakoff, Theodore; Brenner, David J.

    2011-01-01

    Background Coronary computed tomographic angiography (CCTA) is associated with high radiation dose to the female breasts. Bismuth breast shielding offers the potential to significantly reduce dose to the breasts and nearby organs, but the magnitude of this reduction and its impact on image quality and radiation dose have not been evaluated. Methods Radiation doses from CCTA to critical organs were determined using metal-oxide-semiconductor field-effect transistors positioned in a customized anthropomorphic whole-body dosimetry verification phantom. Image noise and signal were measured in regions of interest (ROIs) including the coronary arteries. Results With bismuth shielding, breast radiation dose was reduced 46–57% depending on breast size and scanning technique, with more moderate dose reduction to the heart, lungs, and esophagus. However, shielding significantly decreased image signal (by 14.6 HU) and contrast (by 28.4 HU), modestly but significantly increased image noise in ROIs in locations of coronary arteries, and decreased contrast-to-noise ratio by 20.9%.. Conclusions While bismuth breast shielding can significantly decrease radiation dose to critical organs, it is associated with an increase in image noise, decrease in contrast-to-noise, and changes tissue attenuation characteristics in the location of the coronary arteries. PMID:22068687

  1. Energy dispersive photon counting detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.

    2013-09-01

    We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.

  2. Breast Cancer Detection by B7-H3 Targeted Ultrasound Molecular Imaging

    PubMed Central

    Bachawal, Sunitha V.; Jensen, Kristin C.; Wilson, Katheryne E.; Tian, Lu; Lutz, Amelie M.; Willmann, Jürgen K.

    2015-01-01

    Ultrasound complements mammography as an imaging modality for breast cancer detection, especially in patients with dense breast tissue, but its utility is limited by low diagnostic accuracy. One emerging molecular tool to address this limitation involves contrast-enhanced ultrasound using microbubbles targeted to molecular signatures on tumor neovasculature. In this study, we illustrate how tumor vascular expression of B7-H3 (CD276), a member of the B7 family of ligands for T cell co-regulatory receptors, can be incorporated into an ultrasound method that can distinguish normal, benign, precursor and malignant breast pathologies for diagnostic purposes. Through an immunohistochemical analysis of 248 human breast specimens, we found that vascular expression of B7-H3 was selectively and significantly higher in breast cancer tissues. B7-H3 immunostaining on blood vessels distinguished benign/precursors from malignant lesions with high diagnostic accuracy in human specimens. In a transgenic mouse model of cancer, the B7-H3-targeted ultrasound imaging signal was increased significantly in breast cancer tissues and highly correlated with ex vivo expression levels of B7-H3 on quantitative immunofluorescence. Our findings offer a preclinical proof of concept for the use of B7-H3-targeted ultrasound molecular imaging as a tool to improve the diagnostic accuracy of breast cancer detection in patients. PMID:25899053

  3. Molecular Imaging Probes for Diagnosis and Therapy Evaluation of Breast Cancer

    PubMed Central

    Meng, Qingqing; Li, Zheng

    2013-01-01

    Breast cancer is a major cause of cancer death in women where early detection and accurate assessment of therapy response can improve clinical outcomes. Molecular imaging, which includes PET, SPECT, MRI, and optical modalities, provides noninvasive means of detecting biological processes and molecular events in vivo. Molecular imaging has the potential to enhance our understanding of breast cancer biology and effects of drug action during both preclinical and clinical phases of drug development. This has led to the identification of many molecular imaging probes for key processes in breast cancer. Hormone receptors, growth factor receptor, and angiogenic factors, such as ER, PR, HER2, and VEGFR, have been adopted as imaging targets to detect and stage the breast cancer and to monitor the treatment efficacy. Receptor imaging probes are usually composed of targeting moiety attached to a signaling component such as a radionuclide that can be detected using dedicated instruments. Current molecular imaging probes involved in breast cancer diagnosis and therapy evaluation are reviewed, and future of molecular imaging for the preclinical and clinical is explained. PMID:23533377

  4. Cerenkov luminescence imaging of human breast cancer: a Monte Carlo simulations study

    NASA Astrophysics Data System (ADS)

    Boschi, F.; Pagliazzi, M.; Spinelli, A. E.

    2016-03-01

    Cerenkov luminescence imaging (CLI) is a novel molecular imaging technique based on the detection of Cerenkov light produced by beta particles traveling through biological tissues. In this paper we simulated using 18F and 90Y the possibility of detecting Cerenkov luminescence in human breast tissues, in order to evaluate the potential of the CLI technique in a clinical setting. A human breast digital phantom was obtained from an 18F-FDG CT-PET scan. The spectral features of the breast surface emission were obtained as well as the simulated images obtainable by a cooled CCD detector. The simulated images revealed a signal to noise ratio equal to 6 for a 300 s of acquisition time. We concluded that a dedicated human Cerenkov imaging detector can be designed in order to offer a valid low cost alternative to diagnostic techniques in nuclear medicine, in particular allowing the detection of beta-minus emitters used in radiotherapy.

  5. Comparative effectiveness of imaging modalities to determine metastatic breast cancer treatment response.

    PubMed

    Lee, Christoph I; Gold, Laura S; Nelson, Heidi D; Chou, Roger; Ramsey, Scott D; Sullivan, Sean D

    2015-02-01

    We performed a systematic review to address the comparative effectiveness of different imaging modalities in evaluating treatment response among metastatic breast cancer patients. We searched seven multidisciplinary electronic databases for relevant publications (January 2003-December 2013) and performed dual abstraction of details and results for all clinical studies that involved stage IV breast cancer patients and evaluated imaging for detecting treatment response. Among 159 citations reviewed, 17 single-institution, non-randomized, observational studies met our inclusion criteria. Several studies demonstrate that changes in PET/CT standard uptake values are associated with changes in tumor volume as determined by bone scan, MRI, and/or CT. However, no studies evaluated comparative test performance between modalities or determined relationships between imaging findings and subsequent clinical decisions. Evidence for imaging's effectiveness in determining treatment response among metastatic breast cancer patients is limited. More rigorous research is needed to address imaging's value in this patient population. PMID:25479913

  6. Planet formation imager (PFI): introduction and technical considerations

    NASA Astrophysics Data System (ADS)

    Monnier, John D.; Kraus, Stefan; Buscher, David; Berger, J.-P.; Haniff, Christopher; Ireland, Michael; Labadie, Lucas; Lacour, Sylvestre; Le Coroller, Herve; Petrov, Romain G.; Pott, JoÌrg-Uwe; Ridgway, Stephen; Surdej, Jean; ten Brummelaar, Theo; Tuthill, Peter; van Belle, Gerard

    2014-07-01

    Complex non-linear and dynamic processes lie at the heart of the planet formation process. Through numerical simulation and basic observational constraints, the basics of planet formation are now coming into focus. High resolution imaging at a range of wavelengths will give us a glimpse into the past of our own solar system and enable a robust theoretical framework for predicting planetary system architectures around a range of stars surrounded by disks with a diversity of initial conditions. Only long-baseline interferometry can provide the needed angular resolution and wavelength coverage to reach these goals and from here we launch our planning efforts. The aim of the Planet Formation Imager" (PFI) project is to develop the roadmap for the construction of a new near-/mid-infrared interferometric facility that will be optimized to unmask all the major stages of planet formation, from initial dust coagulation, gap formation, evolution of transition disks, mass accretion onto planetary embryos, and eventual disk dispersal. PFI will be able to detect the emission of the cooling, newlyformed planets themselves over the first 100 Myrs, opening up both spectral investigations and also providing a vibrant look into the early dynamical histories of planetary architectures. Here we introduce the Planet Formation Imager (PFI) Project (www.planetformationimager.org) and give initial thoughts on possible facility architectures and technical advances that will be needed to meet the challenging top-level science requirements.

  7. Diffuse Optical Imaging and Spectroscopy of the Human Breast for Quantitative Oximetry with Depth Resolution

    NASA Astrophysics Data System (ADS)

    Yu, Yang

    Near-infrared spectral imaging for breast cancer diagnostics and monitoring has been a hot research topic for the past decade. Here we present instrumentation for diffuse optical imaging of breast tissue with tandem scan of a single source-detector pair with broadband light in transmission geometry for tissue oximetry. The efforts to develop the continuous-wave (CW) domain instrument have been described, and a frequency-domain (FD) system is also used to measure the bulk tissue optical properties and the breast thickness distribution. We also describe the efforts to improve the data processing codes in the 2D spatial domain for better noise suppression, contrast enhancement, and spectral analysis. We developed a paired-wavelength approach, which is based on finding pairs of wavelength that feature the same optical contrast, to quantify the tissue oxygenation for the absorption structures detected in the 2D structural image. A total of eighteen subjects, two of whom were bearing breast cancer on their right breasts, were measured with this hybrid CW/FD instrument and processed with the improved algorithms. We obtained an average tissue oxygenation value of 87% +/- 6% from the healthy breasts, significantly higher than that measured in the diseased breasts (69% +/- 14%) (p < 0.01). For the two diseased breasts, the tumor areas bear hypoxia signatures versus the remainder of the breast, with oxygenation values of 49 +/- 11% (diseased region) vs. 61 +/- 16% (healthy regions) for the breast with invasive ductal carcinoma, and 58 +/- 8% (diseased region) vs 77 +/- 11% (healthy regions) for ductal carcinoma in situ. Our subjects came from various ethnical/racial backgrounds, and two-thirds of our subjects were less than thirty years old, indicating a potential to apply the optical mammography to a broad population. The second part of this thesis covers the topic of depth discrimination, which is lacking with our single source-detector scan system. Based on an off

  8. Mouse Models of Breast Cancer: Platforms for Discovering Precision Imaging Diagnostics and Future Cancer Medicine.

    PubMed

    Manning, H Charles; Buck, Jason R; Cook, Rebecca S

    2016-02-01

    Representing an enormous health care and socioeconomic challenge, breast cancer is the second most common cancer in the world and the second most common cause of cancer-related death. Although many of the challenges associated with preventing, treating, and ultimately curing breast cancer are addressable in the laboratory, successful translation of groundbreaking research to clinical populations remains an important barrier. Particularly when compared with research on other types of solid tumors, breast cancer research is hampered by a lack of tractable in vivo model systems that accurately recapitulate the relevant clinical features of the disease. A primary objective of this article was to provide a generalizable overview of the types of in vivo model systems, with an emphasis primarily on murine models, that are widely deployed in preclinical breast cancer research. Major opportunities to advance precision cancer medicine facilitated by molecular imaging of preclinical breast cancer models are discussed. PMID:26834104

  9. A nonlinear biomechanical model based registration method for aligning prone and supine MR breast images.

    PubMed

    Han, Lianghao; Hipwell, John H; Eiben, Björn; Barratt, Dean; Modat, Marc; Ourselin, Sebastien; Hawkes, David J

    2014-03-01

    Preoperative diagnostic magnetic resonance (MR) breast images can provide good contrast between different tissues and 3-D information about suspicious tissues. Aligning preoperative diagnostic MR images with a patient in the theatre during breast conserving surgery could assist surgeons in achieving the complete excision of cancer with sufficient margins. Typically, preoperative diagnostic MR breast images of a patient are obtained in the prone position, while surgery is performed in the supine position. The significant shape change of breasts between these two positions due to gravity loading, external forces and related constraints makes the alignment task extremely difficult. Our previous studies have shown that either nonrigid intensity-based image registration or biomechanical modelling alone are limited in their ability to capture such a large deformation. To tackle this problem, we proposed in this paper a nonlinear biomechanical model-based image registration method with a simultaneous optimization procedure for both the material parameters of breast tissues and the direction of the gravitational force. First, finite element (FE) based biomechanical modelling is used to estimate a physically plausible deformation of the pectoral muscle and the major deformation of breast tissues due to gravity loading. Then, nonrigid intensity-based image registration is employed to recover the remaining deformation that FE analyses do not capture due to the simplifications and approximations of biomechanical models and the uncertainties of external forces and constraints. We assess the registration performance of the proposed method using the target registration error of skin fiducial markers and the Dice similarity coefficient (DSC) of fibroglandular tissues. The registration results on prone and supine MR image pairs are compared with those from two alternative nonrigid registration methods for five breasts. Overall, the proposed algorithm achieved the best registration

  10. Three-dimensional Imaging and Simulation in Breast Augmentation: What Is the Current State of the Art?

    PubMed

    Epstein, Mark D; Scheflan, Michael

    2015-10-01

    This article discusses perception of three-dimensional objects and binocular vision. High-resolution three-dimensional images of the breast can be captured using a camera system consisting of 3 separate stereoscopic pairs of digital cameras. The images (surfaces) are then joined to form a 220° surface of the torso, including the breasts. The images can be rotated freely in space. Simulation of augmentation with or without mastopexy is presented. Three-dimensional imaging and computer simulation of breast augmentation has become an emerging technology in many breast augmentation practices. This technology can be integrated in different ways into the consultation and informed consent process. PMID:26408435

  11. Breast tissue classification in digital tomosynthesis images based on global gradient minimization and texture features

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Lu, Guolan; Sechopoulos, Ioannis; Fei, Baowei

    2014-03-01

    Digital breast tomosynthesis (DBT) is a pseudo-three-dimensional x-ray imaging modality proposed to decrease the effect of tissue superposition present in mammography, potentially resulting in an increase in clinical performance for the detection and diagnosis of breast cancer. Tissue classification in DBT images can be useful in risk assessment, computer-aided detection and radiation dosimetry, among other aspects. However, classifying breast tissue in DBT is a challenging problem because DBT images include complicated structures, image noise, and out-of-plane artifacts due to limited angular tomographic sampling. In this project, we propose an automatic method to classify fatty and glandular tissue in DBT images. First, the DBT images are pre-processed to enhance the tissue structures and to decrease image noise and artifacts. Second, a global smooth filter based on L0 gradient minimization is applied to eliminate detailed structures and enhance large-scale ones. Third, the similar structure regions are extracted and labeled by fuzzy C-means (FCM) classification. At the same time, the texture features are also calculated. Finally, each region is classified into different tissue types based on both intensity and texture features. The proposed method is validated using five patient DBT images using manual segmentation as the gold standard. The Dice scores and the confusion matrix are utilized to evaluate the classified results. The evaluation results demonstrated the feasibility of the proposed method for classifying breast glandular and fat tissue on DBT images.

  12. Effect of the glandular composition on digital breast tomosynthesis image quality and dose optimisation.

    PubMed

    Marques, T; Ribeiro, A; Di Maria, S; Belchior, A; Cardoso, J; Matela, N; Oliveira, N; Janeiro, L; Almeida, P; Vaz, P

    2015-07-01

    In the image quality assessment for digital breast tomosynthesis (DBT), a breast phantom with an average percentage of 50 % glandular tissue is seldom used, which may not be representative of the breast tissue composition of the women undergoing such examination. This work aims at studying the effect of the glandular composition of the breast on the image quality taking into consideration different sizes of lesions. Monte Carlo simulations were performed using the state-of-the-art computer program PENELOPE to validate the image acquisition system of the DBT equipment as well as to calculate the mean glandular dose for each projection image and for different breast compositions. The integrated PENELOPE imaging tool (PenEasy) was used to calculate, in mammography, for each clinical detection task the X-ray energy that maximises the figure of merit. All the 2D cranial-caudal projections for DBT were simulated and then underwent the reconstruction process applying the Simultaneous Algebraic Reconstruction Technique. Finally, through signal-to-noise ratio analysis, the image quality in DBT was assessed. PMID:25836692

  13. Carbon nanotube electron field emitters for x-ray imaging of human breast cancer.

    PubMed

    Gidcumb, Emily; Gao, Bo; Shan, Jing; Inscoe, Christy; Lu, Jianping; Zhou, Otto

    2014-06-20

    For imaging human breast cancer, digital breast tomosynthesis (DBT) has been shown to improve image quality and breast cancer detection in comparison to two-dimensional (2D) mammography. Current DBT systems have limited spatial resolution and lengthy scan times. Stationary DBT (s-DBT), utilizing an array of carbon nanotube (CNT) field emission x-ray sources, provides increased spatial resolution and potentially faster imaging than current DBT systems. This study presents the results of detailed evaluations of CNT cathodes for x-ray breast imaging tasks. The following were investigated: high current, long-term stability of CNT cathodes for DBT; feasibility of using CNT cathodes to perform a 2D radiograph function; and cathode performance through several years of imaging. Results show that a breast tomosynthesis system using CNT cathodes could run far beyond the experimentally tested lifetime of one to two years. CNT cathodes were found capable of producing higher currents than typical DBT would require, indicating that the s-DBT imaging time can be further reduced. The feasibility of using a single cathode of the s-DBT tube to perform 2D mammography in 4 s was demonstrated. Over the lifetime of the prototype s-DBT system, it was found that both cathode performance and transmission rate were stable and consistent. PMID:24869902

  14. Carbon nanotube electron field emitters for x-ray imaging of human breast cancer

    NASA Astrophysics Data System (ADS)

    Gidcumb, Emily; Gao, Bo; Shan, Jing; Inscoe, Christy; Lu, Jianping; Zhou, Otto

    2014-06-01

    For imaging human breast cancer, digital breast tomosynthesis (DBT) has been shown to improve image quality and breast cancer detection in comparison to two-dimensional (2D) mammography. Current DBT systems have limited spatial resolution and lengthy scan times. Stationary DBT (s-DBT), utilizing an array of carbon nanotube (CNT) field emission x-ray sources, provides increased spatial resolution and potentially faster imaging than current DBT systems. This study presents the results of detailed evaluations of CNT cathodes for x-ray breast imaging tasks. The following were investigated: high current, long-term stability of CNT cathodes for DBT; feasibility of using CNT cathodes to perform a 2D radiograph function; and cathode performance through several years of imaging. Results show that a breast tomosynthesis system using CNT cathodes could run far beyond the experimentally tested lifetime of one to two years. CNT cathodes were found capable of producing higher currents than typical DBT would require, indicating that the s-DBT imaging time can be further reduced. The feasibility of using a single cathode of the s-DBT tube to perform 2D mammography in 4 s was demonstrated. Over the lifetime of the prototype s-DBT system, it was found that both cathode performance and transmission rate were stable and consistent.

  15. Anatomical background noise power spectrum in differential phase contrast breast images

    NASA Astrophysics Data System (ADS)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-03-01

    In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.

  16. A stationary digital breast tomosynthesis system: Design simulation, characterization and image reconstruction

    NASA Astrophysics Data System (ADS)

    Rajaram, Ramya

    Conventional screen-film and/or digital mammography, despite being the most popular breast imaging modalities, suffer from certain limitations, most important of which is tissue overlap and false diagnoses arising thereof. A new three-dimensional alternative for breast cancer screening and diagnosis is tomosynthesis in which a limited number of low-dose two-dimensional projection images of a patient are used to reconstruct the three-dimensional tissue information. The tomosynthesis systems currently under development all incorporate an x-ray source that moves over a certain angle to acquire images. This tube motion is a major limitation because it degrades image quality, increases the scan time and causes prolonged patient discomfort. The availability of independently controllable carbon nanotube cathodes enabled us to explore the possibility of setting up a stationary multi-beam imaging system. In this dissertation we have proposed a stationary digital breast tomosynthesis scanner using spatially distributed carbon nanotube based field emission x-ray sources. We have presented details about the design, set-up, characterization and image reconstruction of the completely stationary digital breast tomosynthesis system. This system has the potential to reduce the total scan time and improve the image quality in breast imaging. Extensive design simulation results have been used to decide on the final system set-up. The fully assembled actual experimental system is capable of acquiring all the images in as little as eight seconds and yield superior image quality as well. The system has been completely characterized in terms of focal spot size, system resolution and geometric calibration. Certain important results have been obtained during the process that we hope will set the standard for the characterization of the future systems. A novel iterative reconstruction algorithm has been tried on the projection images obtained from the tomosynthesis system. Our algorithm has

  17. Multiparametric and Multimodality Functional Radiological Imaging for Breast Cancer Diagnosis and Early Treatment Response Assessment

    PubMed Central

    Wolff, Antonio C.; Macura, Katarzyna J.; Stearns, Vered; Ouwerkerk, Ronald; El Khouli, Riham; Bluemke, David A.; Wahl, Richard

    2015-01-01

    Breast cancer is the second leading cause of cancer death among US women, and the chance of a woman developing breast cancer sometime during her lifetime is one in eight. Early detection and diagnosis to allow appropriate locoregional and systemic treatment are key to improve the odds of surviving its diagnosis. Emerging data also suggest that different breast cancer subtypes (phenotypes) may respond differently to available adjuvant therapies. There is a growing understanding that not all patients benefit equally from systemic therapies, and therapeutic approaches are being increasingly personalized based on predictive biomarkers of clinical benefit. Optimal use of established and novel radiological imaging methods, such as magnetic resonance imaging and positron emission tomography, which have different biophysical mechanisms can simultaneously identify key functional parameters. These methods provide unique multiparametric radiological signatures of breast cancer, that will improve the accuracy of early diagnosis, help select appropriate therapies for early stage disease, and allow early assessment of therapeutic benefit. PMID:26063885

  18. Regional spectroscopy of paraffin-embedded breast cancer tissue using pulsed terahertz transmission imaging

    NASA Astrophysics Data System (ADS)

    Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas

    2016-03-01

    This work seeks to obtain the properties of paraffin-embedded breast cancer tumor tissues using transmission imaging and spectroscopy. Formalin-fixed and paraffin-embedded breast tumors are first sectioned into slices of 20 μm and 30 μm and placed between two tsurupica slides. The slides are then scanned in a pulsed terahertz system using transmission imaging. The tissue regions in adjacent pathology section are compared to the transmission imaging scan in order to define a region of points over which to average the electrical properties results from the scan.

  19. Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging

    PubMed Central

    2013-01-01

    Introduction Nationally, 25% to 50% of patients undergoing lumpectomy for local management of breast cancer require a secondary excision because of the persistence of residual tumor. Intraoperative assessment of specimen margins by frozen-section analysis is not widely adopted in breast-conserving surgery. Here, a new approach to wide-field optical imaging of breast pathology in situ was tested to determine whether the system could accurately discriminate cancer from benign tissues before routine pathological processing. Methods Spatial frequency domain imaging (SFDI) was used to quantify near-infrared (NIR) optical parameters at the surface of 47 lumpectomy tissue specimens. Spatial frequency and wavelength-dependent reflectance spectra were parameterized with matched simulations of light transport. Spectral images were co-registered to histopathology in adjacent, stained sections of the tissue, cut in the geometry imaged in situ. A supervised classifier and feature-selection algorithm were implemented to automate discrimination of breast pathologies and to rank the contribution of each parameter to a diagnosis. Results Spectral parameters distinguished all pathology subtypes with 82% accuracy and benign (fibrocystic disease, fibroadenoma) from malignant (DCIS, invasive cancer, and partially treated invasive cancer after neoadjuvant chemotherapy) pathologies with 88% accuracy, high specificity (93%), and reasonable sensitivity (79%). Although spectral absorption and scattering features were essential components of the discriminant classifier, scattering exhibited lower variance and contributed most to tissue-type separation. The scattering slope was sensitive to stromal and epithelial distributions measured with quantitative immunohistochemistry. Conclusions SFDI is a new quantitative imaging technique that renders a specific tissue-type diagnosis. Its combination of planar sampling and frequency-dependent depth sensing is clinically pragmatic and appropriate for

  20. Local binary pattern texture-based classification of solid masses in ultrasound breast images

    NASA Astrophysics Data System (ADS)

    Matsumoto, Monica M. S.; Sehgal, Chandra M.; Udupa, Jayaram K.

    2012-03-01

    Breast cancer is one of the leading causes of cancer mortality among women. Ultrasound examination can be used to assess breast masses, complementarily to mammography. Ultrasound images reveal tissue information in its echoic patterns. Therefore, pattern recognition techniques can facilitate classification of lesions and thereby reduce the number of unnecessary biopsies. Our hypothesis was that image texture features on the boundary of a lesion and its vicinity can be used to classify masses. We have used intensity-independent and rotation-invariant texture features, known as Local Binary Patterns (LBP). The classifier selected was K-nearest neighbors. Our breast ultrasound image database consisted of 100 patient images (50 benign and 50 malignant cases). The determination of whether the mass was benign or malignant was done through biopsy and pathology assessment. The training set consisted of sixty images, randomly chosen from the database of 100 patients. The testing set consisted of forty images to be classified. The results with a multi-fold cross validation of 100 iterations produced a robust evaluation. The highest performance was observed for feature LBP with 24 symmetrically distributed neighbors over a circle of radius 3 (LBP24,3) with an accuracy rate of 81.0%. We also investigated an approach with a score of malignancy assigned to the images in the test set. This approach provided an ROC curve with Az of 0.803. The analysis of texture features over the boundary of solid masses showed promise for malignancy classification in ultrasound breast images.

  1. Real-time optoacoustic imaging of breast cancer using an interleaved two laser imaging system coregistered with ultrasound

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Fronheiser, Matthew P.; Nadvoretsky, Vyacheslav; Brecht, Hans-Peter; Su, Richard; Conjusteau, André; Mehta, Ketan; Otto, Pamela; Oraevsky, Alexander A.

    2010-02-01

    We present results from a clinical case study on imaging breast cancer using a real-time interleaved two laser optoacoustic imaging system co-registered with ultrasound. The present version of Laser Optoacoustic Ultrasonic Imaging System (LOUIS) utilizes a commercial linear ultrasonic transducer array, which has been modified to include two parallel rectangular optical bundles, to operate in both ultrasonic (US) and optoacoustic (OA) modes. In OA mode, the images from two optical wavelengths (755 nm and 1064 nm) that provide opposite contrasts for optical absorption of oxygenated vs deoxygenated blood can be displayed simultaneously at a maximum rate of 20 Hz. The real-time aspect of the system permits probe manipulations that can assist in the detection of the lesion. The results show the ability of LOUIS to co-register regions of high absorption seen in OA images with US images collected at the same location with the dual modality probe. The dual wavelength results demonstrate that LOUIS can potentially provide breast cancer diagnostics based on different intensities of OA images of the lesion obtained at 755 nm and 1064 nm. We also present new data processing based on deconvolution of the LOUIS impulse response that helps recover original optoacoustic pressure profiles. Finally, we demonstrate the image analysis tool that provides automatic detection of the tumor boundary and quantitative metrics of the optoacoustic image quality. Using a blood vessel phantom submerged in a tissue-like milky background solution we show that the image contrast is minimally affected by the phantom distance from the LOUIS probe until about 60-65 mm. We suggest using the image contrast for quantitative assessment of an OA image of a breast lesion, as a part of the breast cancer diagnostics procedure.

  2. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array

    PubMed Central

    Aguilar, Suzette M.; Al-Joumayly, Mudar A.; Burfeindt, Matthew J.; Behdad, Nader; Hagness, Susan C.

    2014-01-01

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems. PMID:25392561

  3. Near-infrared spectral imaging of the female breast for quantitative oximetry in optical mammography

    SciTech Connect

    Yu Yang; Liu Ning; Sassaroli, Angelo; Fantini, Sergio

    2009-04-01

    We present a hybrid continuous-wave, frequency-domain instrument for near-infrared spectral imaging of the female breast based on a tandem, planar scanning of one illumination optical fiber and one collection optical fiber configured in a transmission geometry. The spatial sampling rate of 25 points/cm{sup 2} is increased to 400 points/cm{sup 2} by postprocessing the data with a 2D cubic spline interpolation. We then apply a previously developed spatial second-derivative algorithm to an edge-corrected intensity image (N-image) to enhance the visibility and resolution of optical inhomogeneities in breast tissue such as blood vessels and tumors. The spectral data at each image pixel consist of 515-point spectra over the 650-900 nm wavelength range, thus featuring a spectral density of two data points per nanometer. We process the measured spectra with a paired-wavelength spectral analysis method to quantify the oxygen saturation of detected optical inhomogeneities, under the assumption that they feature a locally higher hemoglobin concentration. Our initial measurements on two healthy human subjects have generated high-resolution optical mammograms displaying a network of blood vessels with values of hemoglobin saturation typically falling within the 60%-95% range, which is physiologically reasonable. This approach to spectral imaging and oximetry of the breast has the potential to efficiently exploit the high intrinsic contrast provided by hemoglobin in breast tissue and to contribute a useful tool in the detection, diagnosis, and monitoring of breast pathologies.

  4. Multifrequency microwave-induced thermal acoustic imaging for breast cancer detection.

    PubMed

    Guo, Bin; Li, Jian; Zmuda, Henry; Sheplak, Mark

    2007-11-01

    Microwave-induced thermal acoustic imaging (TAI) is a promising early breast cancer detection technique, which combines the advantages of microwave stimulation and ultrasound imaging and offers a high imaging contrast, as well as high spatial resolution at the same time. A new multifrequency microwave-induced thermal acoustic imaging scheme for early breast cancer detection is proposed in this paper. Significantly more information about the human breast can be gathered using multiple frequency microwave stimulation. A multifrequency adaptive and robust technique (MART) is presented for image formation. Due to its data-adaptive nature, MART can achieve better resolution and better interference rejection capability than its data-independent counterparts, such as the delay-and-sum method. The effectiveness of this procedure is shown by several numerical examples based on 2-D breast models. The finite-difference time-domain method is used to simulate the electromagnetic field distribution, the absorbed microwave energy density, and the thermal acoustic field in the breast model. PMID:18018695

  5. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.

    PubMed

    Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C

    2013-12-18

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems. PMID:25392561

  6. Image quality and dose assessment in digital breast tomosynthesis: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Baptista, M.; Di Maria, S.; Oliveira, N.; Matela, N.; Janeiro, L.; Almeida, P.; Vaz, P.

    2014-11-01

    Mammography is considered a standard technique for the early detection of breast cancer. However, its sensitivity is limited essentially due to the issue of the overlapping breast tissue. This limitation can be partially overcome, with a relatively new technique, called digital breast tomosynthesis (DBT). For this technique, optimization of acquisition parameters which maximize image quality, whilst complying with the ALARA principle, continues to be an area of considerable research. The aim of this work was to study the best quantum energies that optimize the image quality with the lowest achievable dose in DBT and compare these results with the digital mammography (DM) ones. Monte Carlo simulations were performed using the state-of-the-art computer program MCNPX 2.7.0 in order to generate several 2D cranio-caudal (CC) projections obtained during an acquisition of a standard DBT examination. Moreover, glandular absorbed doses and photon flux calculations, for each projection image, were performed. A homogeneous breast computational phantom with 50%/50% glandular/adipose tissue composition was used and two compressed breast thicknesses were evaluated: 4 cm and 8 cm. The simulated projection images were afterwards reconstructed with an algebraic reconstruction tool and the signal difference to noise ratio (SDNR) was calculated in order to evaluate the image quality in DBT and DM. Finally, a thorough comparison between the results obtained in terms of SDNR and dose assessment in DBT and DM was performed.

  7. A hypothesis testing approach for microwave breast imaging in conjunction with CT

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Kelly, Patrick A.; Siqueira, Paul; Das, Mini

    2010-04-01

    The recent findings of high heterogeneity of human breast tissue and much lower than predicted dielectric contrast between tumors and their host tissue have raised questions about the potential utility of stand-alone microwave breast imaging techniques. Multimodal approaches that employ microwaves together with other imaging techniques seem more promising. This study investigates a CT-microwave combination in which microwave detection makes use of prior information obtained from volumetric CT scans and knowledge of tissue dielectric properties. In particular, a detailed patient-specific tissue distribution is first obtained from a 3D-CT scan of the breast under exam. It is assumed that from this scan a limited suspect region is identified. Then from recent research results on the dielectric properties of breast tissue, complex permittivity (dielectric constant and conductivity) maps of the breast can be constructed under the hypotheses of normal and cancerous tissue in the suspect region. These in turn can be used with electromagnetic (EM) simulation software to generate empirical distributions for the microwave system observations under each hypothesis. Microwave detection is then performed. Instead of trying to recover a complete dielectric image of the breast from the microwave scan, the question of interest in this approach is simply which hypothesis is more consistent with the observed electromagnetic response of the microwave system. A hypothesis testing method based on the likelihood ratio for the empirical distributions and Receiver Operating Characteristic (ROC) optimization is proposed. The results from a simple idealized test case show good potential and invite further study.

  8. Using a priori information for regularization in breast microwave image reconstruction.

    PubMed

    Ashtari, Ali; Noghanian, Sima; Sabouni, Abas; Aronsson, Jonatan; Thomas, Gabriel; Pistorius, Stephen

    2010-09-01

    Regularization methods are used in microwave image reconstruction problems, which are ill-posed. Traditional regularization methods are usually problem-independent and do not take advantage of a priori information specific to any particular imaging application. In this paper, a novel problem-dependent regularization approach is introduced for the application of breast imaging. A real genetic algorithm (RGA) minimizes a cost function that is the error between the recorded and the simulated data. At each iteration of the RGA, a priori information about the shape of the breast profiles is used by a neural network classifier to reject the solutions that cannot be a map of the dielectric properties of a breast profile. The algorithm was tested against four realistic numerical breast phantoms including a mostly fatty, a scattered fibroglandular, a heterogeneously dense, and a very dense sample. The tests were also repeated where a 4 mm x 4 mm tumor was inserted in the fibroglandular tissue in each of the four breast types. The results show the effectiveness of the proposed approach, which to the best of our knowledge has the highest resolution amongst the evolutionary algorithms used for the inversion of realistic numerical breast phantoms. PMID:20562033

  9. Automatic nipple detection on 3D images of an automated breast ultrasound system (ABUS)

    NASA Astrophysics Data System (ADS)

    Javanshir Moghaddam, Mandana; Tan, Tao; Karssemeijer, Nico; Platel, Bram

    2014-03-01

    Recent studies have demonstrated that applying Automated Breast Ultrasound in addition to mammography in women with dense breasts can lead to additional detection of small, early stage breast cancers which are occult in corresponding mammograms. In this paper, we proposed a fully automatic method for detecting the nipple location in 3D ultrasound breast images acquired from Automated Breast Ultrasound Systems. The nipple location is a valuable landmark to report the position of possible abnormalities in a breast or to guide image registration. To detect the nipple location, all images were normalized. Subsequently, features have been extracted in a multi scale approach and classification experiments were performed using a gentle boost classifier to identify the nipple location. The method was applied on a dataset of 100 patients with 294 different 3D ultrasound views from Siemens and U-systems acquisition systems. Our database is a representative sample of cases obtained in clinical practice by four medical centers. The automatic method could accurately locate the nipple in 90% of AP (Anterior-Posterior) views and in 79% of the other views.

  10. Full Intelligent Cancer Classification of Thermal Breast Images to Assist Physician in Clinical Diagnostic Applications.

    PubMed

    Lashkari, AmirEhsan; Pak, Fatemeh; Firouzmand, Mohammad

    2016-01-01

    Breast cancer is the most common type of cancer among women. The important key to treat the breast cancer is early detection of it because according to many pathological studies more than 75% - 80% of all abnormalities are still benign at primary stages; so in recent years, many studies and extensive research done to early detection of breast cancer with higher precision and accuracy. Infra-red breast thermography is an imaging technique based on recording temperature distribution patterns of breast tissue. Compared with breast mammography technique, thermography is more suitable technique because it is noninvasive, non-contact, passive and free ionizing radiation. In this paper, a full automatic high accuracy technique for classification of suspicious areas in thermogram images with the aim of assisting physicians in early detection of breast cancer has been presented. Proposed algorithm consists of four main steps: pre-processing & segmentation, feature extraction, feature selection and classification. At the first step, using full automatic operation, region of interest (ROI) determined and the quality of image improved. Using thresholding and edge detection techniques, both right and left breasts separated from each other. Then relative suspected areas become segmented and image matrix normalized due to the uniqueness of each person's body temperature. At feature extraction stage, 23 features, including statistical, morphological, frequency domain, histogram and Gray Level Co-occurrence Matrix (GLCM) based features are extracted from segmented right and left breast obtained from step 1. To achieve the best features, feature selection methods such as minimum Redundancy and Maximum Relevance (mRMR), Sequential Forward Selection (SFS), Sequential Backward Selection (SBS), Sequential Floating Forward Selection (SFFS), Sequential Floating Backward Selection (SFBS) and Genetic Algorithm (GA) have been used at step 3. Finally to classify and TH labeling procedures

  11. Full Intelligent Cancer Classification of Thermal Breast Images to Assist Physician in Clinical Diagnostic Applications

    PubMed Central

    Lashkari, AmirEhsan; Pak, Fatemeh; Firouzmand, Mohammad

    2016-01-01

    Breast cancer is the most common type of cancer among women. The important key to treat the breast cancer is early detection of it because according to many pathological studies more than 75% – 80% of all abnormalities are still benign at primary stages; so in recent years, many studies and extensive research done to early detection of breast cancer with higher precision and accuracy. Infra-red breast thermography is an imaging technique based on recording temperature distribution patterns of breast tissue. Compared with breast mammography technique, thermography is more suitable technique because it is noninvasive, non-contact, passive and free ionizing radiation. In this paper, a full automatic high accuracy technique for classification of suspicious areas in thermogram images with the aim of assisting physicians in early detection of breast cancer has been presented. Proposed algorithm consists of four main steps: pre-processing & segmentation, feature extraction, feature selection and classification. At the first step, using full automatic operation, region of interest (ROI) determined and the quality of image improved. Using thresholding and edge detection techniques, both right and left breasts separated from each other. Then relative suspected areas become segmented and image matrix normalized due to the uniqueness of each person's body temperature. At feature extraction stage, 23 features, including statistical, morphological, frequency domain, histogram and Gray Level Co-occurrence Matrix (GLCM) based features are extracted from segmented right and left breast obtained from step 1. To achieve the best features, feature selection methods such as minimum Redundancy and Maximum Relevance (mRMR), Sequential Forward Selection (SFS), Sequential Backward Selection (SBS), Sequential Floating Forward Selection (SFFS), Sequential Floating Backward Selection (SFBS) and Genetic Algorithm (GA) have been used at step 3. Finally to classify and TH labeling procedures

  12. Misclassification of Breast Imaging Reporting and Data System (BI-RADS) Mammographic Density and Implications for Breast Density Reporting Legislation.

    PubMed

    Gard, Charlotte C; Aiello Bowles, Erin J; Miglioretti, Diana L; Taplin, Stephen H; Rutter, Carolyn M

    2015-01-01

    USA states have begun legislating mammographic breast density reporting to women, requiring that women undergoing screening mammography who have dense breast tissue (Breast Imaging Reporting and Data System [BI-RADS] density c or d) receive written notification of their breast density; however, the impact that misclassification of breast density will have on this reporting remains unclear. The aim of this study was to assess reproducibility of the four-category BI-RADS density measure and examine its relationship with a continuous measure of percent density. We enrolled 19 radiologists, experienced in breast imaging, from a single integrated health care system. Radiologists interpreted 341 screening mammograms at two points in time 6 months apart. We assessed intra- and interobserver agreement in radiologists'; interpretations of BI-RADS density and explored whether agreement depended upon radiologist characteristics. We examined the relationship between BI-RADS density and percent density in a subset of 282 examinations. Intraradiologist agreement was moderate to substantial, with kappa varying across radiologists from 0.50 to 0.81 (mean = 0.69, 95% CI [0.63, 0.73]). Intraradiologist agreement was higher for radiologists with ≥10 years experience interpreting mammograms (difference in mean kappa = 0.10, 95% CI [0.01, 0.24]). Interradiologist agreement varied widely across radiologist pairs from slight to substantial, with kappa ranging from 0.02 to 0.72 (mean = 0.46, 95% CI [0.36, 0.55]). Of 145 examinations interpreted as "nondense" (BI-RADS density a or b) by the majority of radiologists, 82.8% were interpreted as "dense" (BI-RADS density c or d) by at least one radiologist. Of 187 examinations interpreted as "dense" by the majority of radiologists, 47.1% were interpreted as "nondense" by at least one radiologist. While the examinations of almost half of the women in our study were interpreted clinically as having BI-RADS density c or d, only about 10% of

  13. Combined magnetic resonance, fluorescence, and histology imaging strategy in a human breast tumor xenograft model

    PubMed Central

    Jiang, Lu; Greenwood, Tiffany R.; Amstalden van Hove, Erika R.; Chughtai, Kamila; Raman, Venu; Winnard, Paul T.; Heeren, Ron; Artemov, Dmitri; Glunde, Kristine

    2014-01-01

    Applications of molecular imaging in cancer and other diseases frequently require combining in vivo imaging modalities, such as magnetic resonance and optical imaging, with ex vivo optical, fluorescence, histology, and immunohistochemical (IHC) imaging, to investigate and relate molecular and biological processes to imaging parameters within the same region of interest. We have developed a multimodal image reconstruction and fusion framework that accurately combines in vivo magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI), ex vivo brightfield and fluorescence microscopic imaging, and ex vivo histology imaging. Ex vivo brightfield microscopic imaging was used as an intermediate modality to facilitate the ultimate link between ex vivo histology and in vivo MRI/MRSI. Tissue sectioning necessary for optical and histology imaging required generation of a three-dimensional (3D) reconstruction module for 2D ex vivo optical and histology imaging data. We developed an external fiducial marker based 3D reconstruction method, which was able to fuse optical brightfield and fluorescence with histology imaging data. Registration of 3D tumor shape was pursued to combine in vivo MRI/MRSI and ex vivo optical brightfield and fluorescence imaging data. This registration strategy was applied to in vivo MRI/MRSI, ex vivo optical brightfield/fluorescence, as well as histology imaging data sets obtained from human breast tumor models. 3D human breast tumor data sets were successfully reconstructed and fused with this platform. PMID:22945331

  14. Feeling like me again: a grounded theory of the role of breast reconstruction surgery in self-image.

    PubMed

    McKean, L N; Newman, E F; Adair, P

    2013-07-01

    The present study aimed to develop a theoretical understanding of the role of breast reconstruction in women's self-image. Semi-structured interviews were conducted with 10 women from breast cancer support groups who had undergone breast reconstruction surgery. A grounded theory methodology was used to explore their experiences. The study generated a model of 'breast cancer, breast reconstruction and self-image', with a core category entitled 'feeling like me again' and two principal categories of 'normal appearance' and 'normal life'. A further two main categories, 'moving on' and 'image of sick person' were generated. The results indicated a role of breast reconstruction in several aspects of self-image including the restoration of pre-surgery persona, which further promoted adjustment. PMID:23730890

  15. Toward a practical ultrasound waveform tomography algorithm for improving breast imaging

    NASA Astrophysics Data System (ADS)

    Li, Cuiping; Sandhu, Gursharan S.; Roy, Olivier; Duric, Neb; Allada, Veerendra; Schmidt, Steven

    2014-03-01

    Ultrasound tomography is an emerging modality for breast imaging. However, most current ultrasonic tomography imaging algorithms, historically hindered by the limited memory and processor speed of computers, are based on ray theory and assume a homogeneous background which is inaccurate for complex heterogeneous regions. Therefore, wave theory, which accounts for diffraction effects, must be used in ultrasonic imaging algorithms to properly handle the heterogeneous nature of breast tissue in order to accurately image small lesions. However, application of waveform tomography to medical imaging has been limited by extreme computational cost and convergence. By taking advantage of the computational architecture of Graphic Processing Units (GPUs), the intensive processing burden of waveform tomography can be greatly alleviated. In this study, using breast imaging methods, we implement a frequency domain waveform tomography algorithm on GPUs with the goal of producing high-accuracy and high-resolution breast images on clinically relevant time scales. We present some simulation results and assess the resolution and accuracy of our waveform tomography algorithms based on the simulation data.

  16. Automatic segmentation of breast tumor in ultrasound image with simplified PCNN and improved fuzzy mutual information

    NASA Astrophysics Data System (ADS)

    Shi, Jun; Xiao, Zhiheng; Zhou, Shichong

    2010-07-01

    Image segmentation is very important in the field of image processing. The pulse coupled neural network (PCNN) has been efficiently applied to image processing, especially for image segmentation. In this study, a simplified PCNN (S-PCNN) model is proposed, the fuzzy mutual information (FMI) is improved as optimization criterion for S-PCNN, and then the S-PCNN and improved FMI (IFMI) based segmentation algorithm is proposed and applied for the segmentation of breast tumor in ultrasound image. To validate the proposed algorithm, a comparative experiment is implemented to segment breast images not only by our proposed algorithm, but also by the improved C-V algorithm, the max-entropy-based PCNN algorithm, the MI-based PCNN algorithm, and the IFMI-based PCNN algorithm. The results show that the breast lesions are well segmented by the proposed algorithm without image preprocessing, with the mean Hausdorff of distance of 5.631+/-0.822, mean average minimum Euclidean distance of 0.554+/-0.049, mean Tanimoto coefficient of 0.961+/-0.019, and mean misclassified error of 0.038+/-0.004. These values of evaluation indices are better than those of other segmentation algorithms. The results indicate that the proposed algorithm has excellent segmentation accuracy and strong robustness against noise, and it has the potential for breast ultrasound computer-aided diagnosis (CAD).

  17. Methods for mitigating the effect of noise, interference, and model error on microwave breast imaging

    NASA Astrophysics Data System (ADS)

    Burfeindt, Matthew J.

    Microwave inverse scattering shows promise for meeting important clinical needs in breast imaging that arise due to drawbacks in traditional imaging technologies. The dielectric contrast between different breast tissue types, the 3-D nature of various inverse scattering algorithms, as well as microwave technology's relative safety and low cost motivate a microwave-based approach. However, challenges remain for this type of imaging technique, as it requires solving a linear system that is ill-posed and underdetermined, thus making it sensitive to noise, interference, and mismatch between the assumed and actual properties of the propagation environment. In this document, we report a series of studies performed with the goal of mitigating the effect of these types of signal errors on the imaging results. We conduct a numerical feasibility study to demonstrate the efficacy of microwave breast imaging using an enclosed array of miniaturized, multi-band patch antennas designed to account for the ill-posed nature of the imaging problem. We then conduct several experimental studies with an array prototype, wherein we characterize the sensitivity of the array to model error as well as create experimental reconstructions of both geometrically-simple objects and an MRI-derived 3-D-printed breast phantom. Lastly, we incorporate a beamforming-enhancement into the imaging algorithm with the goal of making it less sensitive to signal error.

  18. Validity of breast-specific gamma imaging for Breast Imaging Reporting and Data System 4 lesions on mammography and/or ultrasound

    PubMed Central

    Cho, Min Jeng; Yu, Yeong Beom; Park, Kyoung Sik; Chung, Hyun Woo; So, Young; Choi, Nami; Kim, Mi Young

    2016-01-01

    Purpose The purpose of this study was to assess the breast-specific gamma imaging (BSGI) in Breast Imaging Reporting and Data System (BI-RADS) 4 lesions on mammography and/or ultrasound. Methods We performed a retrospective review of 162 patients who underwent BSGI in BI-RADS 4 lesions on mammography and/or ultrasound. Results Of the 162 breast lesions, 66 were malignant tumors and 96 were benign tumors. Sensitivity and specificity of BSGI were 90.9% and 78.1%, and positive predictive value and negative predictive value were 74.1% and 92.6%. The sensitivity or specificity of mammography and ultrasound were 74.2% and 56.3% and 87.9% and 19.8%, respectively. The sensitivity and specificity of BSGI for breast lesions ≤1 cm were 88.0% and 86.8%, while the values of beast lesions >1 cm were 92.7% and 61.5%. The sensitivity or specificity of BSGI and mammography for patients with dense breasts were 92.0% and 81.3% and 72.0% and 50.0%, respectively. 26 patients showed neither a nodule nor microcalcification on ultrasound, but showed suspicious calcification on mammography. The sensitivity and specificity of BSGI with microcalcification only lesion were 75.0% and 94.4%. Conclusion This study demonstrated that BSGI had shown high sensitivity and specificity, as well as positive and negative predictive values in BI-RADS 4 lesions on ultrasound and/or mammography. BSGI showed excellent results in dense breasts, in lesions that are less than 1 cm in size and lesions with suspicious microcalcification only. PMID:27073789

  19. The effects of gantry tilt on breast dose and image noise in cardiac CT

    SciTech Connect

    Hoppe, Michael E.; Gandhi, Diksha; Schmidt, Taly Gilat; Stevens, Grant M.; Foley, W. Dennis

    2013-12-15

    Purpose: This study investigated the effects of tilted-gantry acquisition on image noise and glandular breast dose in females during cardiac computed tomography (CT) scans. Reducing the dose to glandular breast tissue is important due to its high radiosensitivity and limited diagnostic significance in cardiac CT scans.Methods: Tilted-gantry acquisition was investigated through computer simulations and experimental measurements. Upon IRB approval, eight voxelized phantoms were constructed from previously acquired cardiac CT datasets. Monte Carlo simulations quantified the dose deposited in glandular breast tissue over a range of tilt angles. The effects of tilted-gantry acquisition on breast dose were measured on a clinical CT scanner (CT750HD, GE Healthcare) using an anthropomorphic phantom with MOSFET dosimeters in the breast regions. In both simulations and experiments, scans were performed at gantry tilt angles of 0°–30°, in 5° increments. The percent change in breast dose was calculated relative to the nontilted scan for all tilt angles. The percent change in noise standard deviation due to gantry tilt was calculated in all reconstructed simulated and experimental images.Results: Tilting the gantry reduced the breast dose in all simulated and experimental phantoms, with generally greater dose reduction at increased gantry tilts. For example, at 30° gantry tilt, the dosimeters located in the superior, middle, and inferior breast regions measured dose reductions of 74%, 61%, and 9%, respectively. The simulations estimated 0%–30% total breast dose reduction across the eight phantoms and range of tilt angles. However, tilted-gantry acquisition also increased the noise standard deviation in the simulated phantoms by 2%–50% due to increased pathlength through the iodine-filled heart. The experimental phantom, which did not contain iodine in the blood, demonstrated decreased breast dose and decreased noise at all gantry tilt angles.Conclusions: Tilting the

  20. Evaluation of real-time acoustical holography for breast imaging and biopsy guidance

    NASA Astrophysics Data System (ADS)

    Lehman, Constance D.; Andre, Michael P.; Fecht, Barbara A.; Johansen, Jennifer M.; Shelby, Ronald L.; Shelby, Jerod O.

    1999-05-01

    Ultrasound is an attractive modality for adjunctive characterization of certain breast lesions, but it is not considered specific for cancer and it is not recommended for screening. An imaging technique remarkably different from pulse-echo ultrasound, termed Optical SonographyTM (Advanced Diagnostics, Inc.), uses the through-transmission signal. The method was applied to breast examinations in 41 asymptomatic and symptomatic women ranging in age from 18 to 83 years to evaluate this imaging modality for detection and characterization of breast disease and normal tissue. This approach uses coherent sound and coherent light to produce real-time, large field-of-view images with pronounced edge definition in soft tissues of the body. The system patient interface was modified to improve coupling to the breast and bring the chest wall to within 3 cm of the sound beam. System resolution (full width half maximum of the line-spread function) was 0.5 mm for a swept-frequency beam centered at 2.7 MHz. Resolution degrades slightly in the periphery of the very large 15.2-cm field of view. Dynamic range of the reconstructed 'raw' images (no post processing) was 3000:1. Included in the study population were women with dense parenchyma, palpable ductal carcinoma in situ with negative mammography, superficial and deep fibroadenomas, and calcifications. Successful breast imaging was performed in 40 of 41 women. These images were then compared with images generated using conventional X-ray mammography and pulse-echo ultrasound. Margins of lesions and internal textures were particularly well defined and provided substantial contrast to fatty and dense parenchyma. In two malignant lesions, Optical SonographyTM appeared to approximate more closely tumor extent compared to mammography than pulse-echo sonography. These preliminary studies indicate the method has unique potential for detecting, differentiating, and guiding the biopsy of breast lesions using real-time acoustical holography.

  1. Coded aperture coherent scatter imaging for breast cancer detection: a Monte Carlo evaluation

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Manu N.; Morris, Robert E.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.

    2016-03-01

    It is known that conventional x-ray imaging provides a maximum contrast between cancerous and healthy fibroglandular breast tissues of 3% based on their linear x-ray attenuation coefficients at 17.5 keV, whereas coherent scatter signal provides a maximum contrast of 19% based on their differential coherent scatter cross sections. Therefore in order to exploit this potential contrast, we seek to evaluate the performance of a coded- aperture coherent scatter imaging system for breast cancer detection and investigate its accuracy using Monte Carlo simulations. In the simulations we modeled our experimental system, which consists of a raster-scanned pencil beam of x-rays, a bismuth-tin coded aperture mask comprised of a repeating slit pattern with 2-mm periodicity, and a linear-array of 128 detector pixels with 6.5-keV energy resolution. The breast tissue that was scanned comprised a 3-cm sample taken from a patient-based XCAT breast phantom containing a tomosynthesis- based realistic simulated lesion. The differential coherent scatter cross section was reconstructed at each pixel in the image using an iterative reconstruction algorithm. Each pixel in the reconstructed image was then classified as being either air or the type of breast tissue with which its normalized reconstructed differential coherent scatter cross section had the highest correlation coefficient. Comparison of the final tissue classification results with the ground truth image showed that the coded aperture imaging technique has a cancerous pixel detection sensitivity (correct identification of cancerous pixels), specificity (correctly ruling out healthy pixels as not being cancer) and accuracy of 92.4%, 91.9% and 92.0%, respectively. Our Monte Carlo evaluation of our experimental coded aperture coherent scatter imaging system shows that it is able to exploit the greater contrast available from coherently scattered x-rays to increase the accuracy of detecting cancerous regions within the breast.

  2. Computerized mass detection for digital breast tomosynthesis directly from the projection images

    SciTech Connect

    Reiser, I.; Nishikawa, R.M.; Giger, M.L.; Wu, T.; Rafferty, E.A.; Moore, R.; Kopans, D.B.

    2006-02-15

    Digital breast tomosynthesis (DBT) has recently emerged as a new and promising three-dimensional modality in breast imaging. In DBT, the breast volume is reconstructed from 11 projection images, taken at source angles equally spaced over an arc of 50 degrees. Reconstruction algorithms for this modality are not fully optimized yet. Because computerized lesion detection in the reconstructed breast volume will be affected by the reconstruction technique, we are developing a novel mass detection algorithm that operates instead on the set of raw projection images. Mass detection is done in three stages. First, lesion candidates are obtained for each projection image separately, using a mass detection algorithm that was initially developed for screen-film mammography. Second, the locations of a lesion candidate are backprojected into the breast volume. In this feature volume, voxel intensities are a combined measure of detection frequency (e.g., the number of projections in which a given lesion candidate was detected), and a measure of the angular range over which a given lesion was detected. Third, features are extracted after reprojecting the three-dimensional (3-D) locations of lesion candidates into projection images. Features are combined using linear discriminant analysis. The database used to test the algorithm consisted of 21 mass cases (13 malignant, 8 benign) and 15 cases without mass lesions. Based on this database, the algorithm yielded a sensitivity of 90% at 1.5 false positives per breast volume. Algorithm performance is positively biased because this dataset was used for development, training, and testing, and because the number of algorithm parameters was approximately the same as the number of patient cases. Our results indicate that computerized mass detection in the sequence of projection images for DBT may be effective despite the higher noise level in those images.

  3. 47 CFR 15.510 - Technical requirements for through D-wall imaging systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for through D-wall... FREQUENCY DEVICES Ultra-Wideband Operation § 15.510 Technical requirements for through D-wall imaging... section is limited to through-wall imaging systems operated by law enforcement, emergency rescue...

  4. 47 CFR 15.510 - Technical requirements for through D-wall imaging systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for through D-wall... FREQUENCY DEVICES Ultra-Wideband Operation § 15.510 Technical requirements for through D-wall imaging... section is limited to through-wall imaging systems operated by law enforcement, emergency rescue...

  5. 47 CFR 15.510 - Technical requirements for through D-wall imaging systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for through D-wall... FREQUENCY DEVICES Ultra-Wideband Operation § 15.510 Technical requirements for through D-wall imaging... section is limited to through-wall imaging systems operated by law enforcement, emergency rescue...

  6. 47 CFR 15.510 - Technical requirements for through D-wall imaging systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for through D-wall... FREQUENCY DEVICES Ultra-Wideband Operation § 15.510 Technical requirements for through D-wall imaging... section is limited to through-wall imaging systems operated by law enforcement, emergency rescue...

  7. Epicutaneous breast forms. A new system promises to improve body image after mastectomy.

    PubMed

    Münstedt, K; Schüttler, B; Milch, W; Sachsse, S; Zygmunt, M; Kullmer, U; Vahrson, H

    1998-05-01

    Mastectomies will remain a treatment alternative for breast cancer in spite of efforts to perform more breast-conserving treatment. Restoration of body symmetry may then be an important issue, which can be achieved by surgical breast reconstruction or with an epicutaneous breast prosthesis. A new improved system has recently been developed, which is self-adhesive to the thorax wall. In this study we investigated the advantages and disadvantages of the new system. The body image of 55 patients after unilateral mastectomy was assessed before they entered the study and after approximately 6 months of experience with the system. The "Frankfurter Körperkonzeptskalen" plus additional questions concerning problems after mastectomy and the handling of the new breast form were used for the assessment. About 50% of the patients had problems with the adhesiveness of the breast form, which remains a problem to be solved. Patients who suffered badly from mastectomy, have a smooth and plane mastectomy scar, and who were not suffering from hot flushes, which can impair the adhesiveness of the prosthesis, were more likely to profit from the new self-supporting breast forms. Significant differences were observed in the scales "self-acceptance of the body", acceptance of the body by others" for the subsets of patients mentioned above. The differences were less pronounced in patients who were already familiar with another type of epicutaneous breast form, which is attached to an adhesive plate on the thorax wall by nylon touch and close fasteners. Most (90.7%) of the patients would recommend this new type of breast prosthesis for other patients with mastectomy. The concept of self-supporting breast forms is an improvement with respect to social and psychological rehabilitation. According to the manufacturer, the problem with adhesion has meanwhile been solved. PMID:9629886

  8. Model-based estimation of breast percent density in raw and processed full-field digital mammography images from image-acquisition physics and patient-image characteristics

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Nathan, Diane L.; Conant, Emily F.; Kontos, Despina

    2012-03-01

    Breast percent density (PD%), as measured mammographically, is one of the strongest known risk factors for breast cancer. While the majority of studies to date have focused on PD% assessment from digitized film mammograms, digital mammography (DM) is becoming increasingly common, and allows for direct PD% assessment at the time of imaging. This work investigates the accuracy of a generalized linear model-based (GLM) estimation of PD% from raw and postprocessed digital mammograms, utilizing image acquisition physics, patient characteristics and gray-level intensity features of the specific image. The model is trained in a leave-one-woman-out fashion on a series of 81 cases for which bilateral, mediolateral-oblique DM images were available in both raw and post-processed format. Baseline continuous and categorical density estimates were provided by a trained breast-imaging radiologist. Regression analysis is performed and Pearson's correlation, r, and Cohen's kappa, κ, are computed. The GLM PD% estimation model performed well on both processed (r=0.89, p<0.001) and raw (r=0.75, p<0.001) images. Model agreement with radiologist assigned density categories was also high for processed (κ=0.79, p<0.001) and raw (κ=0.76, p<0.001) images. Model-based prediction of breast PD% could allow for a reproducible estimation of breast density, providing a rapid risk assessment tool for clinical practice.

  9. Clinician's Guide to Imaging and Pathologic Findings in Benign Breast Disease

    PubMed Central

    Neal, Lonzetta; Tortorelli, Cindy L.; Nassar, Aziza

    2010-01-01

    The discussion of abnormal results of breast imaging and abnormal pathologic findings can be challenging for health care professionals and often is stressful for patients. Although most imaging findings and biopsy results are negative and do not infer a substantial increase in breast cancer risk, the subsequent conversation between the patient and her practitioner is more effective and informative with a thorough review of the pathologic results and an appreciation of the importance of radiologic-histologic concordance. This article provides insight into and understanding of breast imaging and biopsy techniques and of histologic findings as a means to timely and appropriate decision making and action by the patient and her health care professional. PMID:20194153

  10. Clinician's guide to imaging and pathologic findings in benign breast disease.

    PubMed

    Neal, Lonzetta; Tortorelli, Cindy L; Nassar, Aziza

    2010-03-01

    The discussion of abnormal results of breast imaging and abnormal pathologic findings can be challenging for health care professionals and often is stressful for patients. Although most imaging findings and biopsy results are negative and do not infer a substantial increase in breast cancer risk, the subsequent conversation between the patient and her practitioner is more effective and informative with a thorough review of the pathologic results and an appreciation of the importance of radiologic-histologic concordance. This article provides insight into and understanding of breast imaging and biopsy techniques and of histologic findings as a means to timely and appropriate decision making and action by the patient and her health care professional. PMID:20194153

  11. Investigation of near infrared autofluorescence imaging for the detection of breast cancer

    SciTech Connect

    Demos, S G; Bold, R; White, R d; Ramsamooj, R

    2005-08-19

    Detection of breast cancer in fresh tissue obtained from surgery is investigated using Near-infrared autofluorescence imaging under laser excitation at 532-nm and 632.8-nm. The differences in intensity between the three main components of breast tissue (cancer, fibrous and adipose) are estimated and compared to those obtained from cross-polarized light scattering images recorded under polarized illumination at 700-nm. The optical spectroscopic images for each tissue sample were subsequently compared with the histopathology slides. The experimental results indicate that the intensity of the near-infrared emission is considerably different in breast cancer compared to that of the adjacent non-neoplastic tissues (adipose and fibrous tissue). The experimental results suggest that 632.8-nm excitation offers key advantages compared to 532-nm excitation.

  12. Evaluation of a hemi-spherical wideband antenna array for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Klemm, M.; Craddock, I. J.; Preece, A.; Leendertz, J.; Benjamin, R.

    2008-12-01

    Using similar techniques to ground penetrating radars, microwave detection of breast tumors is a potential nonionizing and noninvasive alternative to traditional body-imaging techniques. In order to develop an imaging system, the team at Bristol have been working on a number of antenna array prototypes, based around a stacked-patch element, starting with simple pairs of elements and progressing to fully populated planar arrays. As the system commences human subject trials, a curved breast phantom has been developed along with an approximately hemi-spherical conformal array. This contribution will present details of the conformal array design and initial results from this unique experimental imaging system as applied to an anatomically shaped breast phantom.

  13. Free-form deformation based non-rigid registration on breast cancer MR imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Liangbin; Suo, Shiteng; Lu, Xuesong; Li, Yuehua; Chen, Li; Zhang, Su

    2013-07-01

    High-Intensity Focused Ultrasound treatment combined with magnetic resonance technology (MRI-guided HIFU, MRgHIFU) can protect the thermal ablation without harming the surrounding tissue by using MRI for target positioning, where image registration plays an important role in the implementation of precise treatment. In this paper, we apply three-dimension free-form deformation non-rigid registration on treatment plan amendments and tracking of breast cancer. Free-form deformation based and demons based non-rigid registration are respectively employed on breast cancer MR imaging required at different times before and after for comparison. The results of the experiments show that the registration performed on the breast tumor image data with slight and larger deformation is effective, and the mutual information of the ROI increased from 1.49 before registration to 1.53.

  14. Automatic tissue classification for high-resolution breast CT images based on bilateral filtering

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Sechopoulos, Ioannis; Fei, Baowei

    2011-03-01

    Breast tissue classification can provide quantitative measurements of breast composition, density and tissue distribution for diagnosis and identification of high-risk patients. In this study, we present an automatic classification method to classify high-resolution dedicated breast CT images. The breast is classified into skin, fat and glandular tissue. First, we use a multiscale bilateral filter to reduce noise and at the same time keep edges on the images. As skin and glandular tissue have similar CT values in breast CT images, we use morphologic operations to get the mask of the skin based on information of its position. Second, we use a modified fuzzy C-mean classification method twice, one for the skin and the other for the fatty and glandular tissue. We compared our classified results with manually segmentation results and used Dice overlap ratios to evaluate our classification method. We also tested our method using added noise in the images. The overlap ratios for glandular tissue were above 94.7% for data from five patients. Evaluation results showed that our method is robust and accurate.

  15. Clinical benefits of combined diagnostic three-dimensional digital breast tomosynthesis and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varjonen, Mari; Pamilo, Martti; Raulisto, Leena

    2005-04-01

    Our goal is to evaluate diagnostic digital breast tomosynthesis and ultrasound imaging clinical value in detecting and diagnosing early stage breast cancers. Determine if fusion imaging would decrease the number of biopsies and reduce further patient workup otherwise required to establish a definitive diagnosis. This paper presents the clinical results based on the study conducted at Helsinki University Central Hospital. Presentation demonstrates clinical dual modality images and results. Tomosynthesis of amorphous selenium based full field digital mammography system will be also presented. Forty asymptomatic women enrolled in the study based on prior identification of suspicious findings on screening mammograms where the possibility of breast cancer could not be excluded. Abnormal screening mammogram findings included tumor-like densities, parenchymal asymmetries and architectural distortions. Eight women were operated and 32 were not referred for surgery. Those cases, which were operated, three lesions represented ductal carcinoma in situ, two ductal carcinomas, one atypical ductal hyperplasia, one fibroadenoma and one radial scar. The 32 not operated cases revealed to be benign or superimposition of normal parenchymal breast tissue. The cases were returned to biennial screening. Ultrasound did not show clearly any lesions, but using tomosynthesis and ultrasound together we were able to analyze and locate the lesions exactly. Special tomosynthesis improves overall lesion detection and analysis. The value of tomosynthesis and ultrasound fusion imaging will be to provide additional clinical information in order to improve decision making accuracy to either confirm or exclude a suspected abnormality and in particular detect small breast cancers.

  16. Comparison of optoacoustic tomography with ultrasound and x-ray imaging for breast cancer detection

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Hartrumpf, O.; Larina, Irina V.; Esenaliev, Rinat O.

    2001-06-01

    This paper is devoted to comparison new optoacoustic tomography with conventional breast tumors diagnostic techniques such as ultrasonography and X-ray radiography. Experiments were performed in phantoms simulating breast with tumors. The fundamental harmonic of Q-switched Nd:YAG laser (λ = 1064 nm) was used to generate optoacoustic pressure waves. Laser induced pressure waves were detected by a wide-band acoustic transducer. Digital oscilloscope controlled by PC was used to store and process optoacoustic signals. Gelatin phantoms with controlled optical parameters were prepared to simulate breast with tumors. Absorbing volumes colored with naphthol green and hemoglobin were embedded in the gelatin phantoms to model the breast tumors with increased optical absorption. Optoacoustic pressure waves form the phantoms were detected at different angles and 2D images were reconstructed. Comparison of optoacoustic images with images obtained with ultrasound and X-ray techniques proved that optoacoustic method has substantially higher contrast and resolution. Obtained results confirm that laser optoacoustic imaging technique can be an important tool for early breast cancer detection with tumors less than 5 mm in diameter.

  17. Image quality and breast dose of 24 screen-film combinations for mammography.

    PubMed

    Dimakopoulou, A D; Tsalafoutas, I A; Georgiou, E K; Yakoumakis, E N

    2006-02-01

    In this study the effect of different mammographic screen-film combinations on image quality and breast dose, and the correlation between the various image quality parameters, breast dose and the sensitometric parameters of a film were investigated. Three Agfa (MR5-II, HDR, HT), two Kodak (Min-R M, Min-R 2000), one Fuji (AD-M), one Konica (CM-H) and one Ferrania (HM plus) single emulsion mammographic films were combined with three intensifying screens (Agfa HDS, Kodak Min-R 2190 and Fuji AD-MA). The film characteristics were determined by sensitometry, while the image quality and the dose to the breast of the resulting 24 screen-film combinations were assessed using a mammography quality control phantom. For each combination, three images of the phantom were acquired with optical density within three different ranges. Two observers assessed the quality of the 72 phantom images obtained, while the breast dose was calculated from the exposure data required for each image. Large differences among screen-film combinations in terms of image quality and breast dose were identified however, that, could not be correlated with the film's sensitometric characteristics. All films presented the best resolution when combined with the HDS screen at the expense of speed, and the largest speed when combined with the AD-MA screen, without degradation of the overall image quality. However, an ideal screen-film combination presenting the best image quality with the least dose was not identified. It is also worth mentioning that the best performance for a film was not necessarily obtained when this was combined with the screen provided by the same manufacturer. The results of this study clearly demonstrate that comparison of films based on their sensitometric characteristics are of limited value for clinical practice, as their performance is strongly affected by the screens with which they are combined. PMID:16489193

  18. The Use of Molecular Breast Imaging to Assess Response in Women Undergoing Neoadjuvant Therapy for Breast Cancer: A Pilot Study

    PubMed Central

    Wahner-Roedler, Dietlind L.; Boughey, Judy C.; Hruska, Carrie B.; Chen, Beiyun; Rhodes, Deborah J.; Tortorelli, Cindy L.; Maxwell, Robert W.; Cha, Stephen S.; O’Connor, Michael K.

    2012-01-01

    Purpose of the Report To report our findings from a prospective pilot study evaluating the accuracy of molecular breast imaging (MBI) in assessing tumor response to neoadjuvant therapy (NT) for breast cancer. Materials and Methods Twenty patients with newly diagnosed invasive breast cancer who were scheduled to receive NT underwent MBI before beginning and after completing NT prior to surgery. MBI was performed using a dual-detector cadmium-zinc-telluride gamma camera system mounted on a modified mammography gantry after patients had received an intravenous injection of 20 mCi of technetium-99m (Tc-99m) sestamibi. Tumor extent was measured on MBI, and tumor-to-background (T/B) ratios of radiotracer uptake were determined through region-of-interest (ROI) analysis. Pathologic measurement of tumor size was used as a standard and compared to post-NT tumor size derived from MBI. Results Three patients in whom post-NT MBI could not be performed because of scheduling problems were excluded from analysis. Eighteen cancers were diagnosed in 17 patients. A correlation coefficient of r=0.681 (P=.002) was found between MBI and residual tumor size. The average T/B ratio on MBI decreased from a pretreatment value of 3.0 to a posttreatment value of 1.4. The relative decrease in T/B ratio did not appear to be predictive of response. Conclusions Measurements of tumor size by MBI and T/B ratios are limited in their predictive value regarding the pathologic extent of residual disease in women treated with NT for breast cancer. Alternate tumor-specific radiopharmaceuticals should be evaluated to provide information to improve planning and monitoring of breast cancer treatment. PMID:22391702

  19. Assessing the future of diffuse optical imaging technologies for breast cancer management

    SciTech Connect

    Tromberg, Bruce J.; Pogue, Brian W.; Paulsen, Keith D.; Yodh, Arjun G.; Boas, David A.; Cerussi, Albert E.

    2008-06-15

    Diffuse optical imaging (DOI) is a noninvasive optical technique that employs near-infrared (NIR) light to quantitatively characterize the optical properties of thick tissues. Although NIR methods were first applied to breast transillumination (also called diaphanography) nearly 80 years ago, quantitative DOI methods employing time- or frequency-domain photon migration technologies have only recently been used for breast imaging (i.e., since the mid-1990s). In this review, the state of the art in DOI for breast cancer is outlined and a multi-institutional Network for Translational Research in Optical Imaging (NTROI) is described, which has been formed by the National Cancer Institute to advance diffuse optical spectroscopy and imaging (DOSI) for the purpose of improving breast cancer detection and clinical management. DOSI employs broadband technology both in near-infrared spectral and temporal signal domains in order to separate absorption from scattering and quantify uptake of multiple molecular probes based on absorption or fluorescence contrast. Additional dimensionality in the data is provided by integrating and co-registering the functional information of DOSI with x-ray mammography and magnetic resonance imaging (MRI), which provide structural information or vascular flow information, respectively. Factors affecting DOSI performance, such as intrinsic and extrinsic contrast mechanisms, quantitation of biochemical components, image formation/visualization, and multimodality co-registration are under investigation in the ongoing research NTROI sites. One of the goals is to develop standardized DOSI platforms that can be used as stand-alone devices or in conjunction with MRI, mammography, or ultrasound. This broad-based, multidisciplinary effort is expected to provide new insight regarding the origins of breast disease and practical approaches for addressing several key challenges in breast cancer, including: Detecting disease in mammographically dense tissue

  20. Folate Receptor-Beta Has Limited Value for Fluorescent Imaging in Ovarian, Breast and Colorectal Cancer

    PubMed Central

    de Boer, Esther; van der Vegt, Bert; van der Sluis, Tineke; Kooijman, Paulien; Low, Philip S.; van der Zee, Ate G. J.; Arts, Henriette J. G.; van Dam, Gooitzen M.; Bart, Joost

    2015-01-01

    Aims Tumor-specific targeted imaging is rapidly evolving in cancer diagnosis. The folate receptor alpha (FR-α) has already been identified as a suitable target for cancer therapy and imaging. FR-α is present on ~40% of human cancers. FR-β is known to be expressed on several hematologic malignancies and on activated macrophages, but little is known about FR-β expression in solid tumors. Additional or simultaneous expression of FR-β could help extend the indications for folate-based drugs and imaging agents. In this study, the expression pattern of FR-β is evaluated in ovarian, breast and colorectal cancer. Methods FR-β expression was analyzed by semi-quantitative scoring of immunohistochemical staining on tissue microarrays (TMAs) of 339 ovarian cancer patients, 418 breast cancer patients, on 20 slides of colorectal cancer samples and on 25 samples of diverticulitis. Results FR-β expression was seen in 21% of ovarian cancer samples, 9% of breast cancer samples, and 55% of colorectal cancer samples. Expression was weak or moderate. Of the diverticulitis samples, 80% were positive for FR-β expression in macrophages. FR-β status neither correlated to known disease-related variables, nor showed association with overall survival and progression free survival in ovarian and breast cancer. In breast cancer, negative axillary status was significantly correlated to FR-β expression (p=0.022). Conclusions FR-β expression was low or absent in the majority of ovarian, breast and colorectal tumor samples. From the present study we conclude that the low FR-β expression in ovarian and breast tumor tissue indicates limited practical use of this receptor in diagnostic imaging and therapeutic purposes. Due to weak expression, FR-β is not regarded as a suitable target in colorectal cancer. PMID:26248049

  1. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer.

    PubMed

    Bredfeldt, Jeremy S; Liu, Yuming; Pehlke, Carolyn A; Conklin, Matthew W; Szulczewski, Joseph M; Inman, David R; Keely, Patricia J; Nowak, Robert D; Mackie, Thomas R; Eliceiri, Kevin W

    2014-01-01

    Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of collagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by comparing length, angle and position of the automatically extracted fibers with those of manually extracted fibers in twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer. PMID:24407500

  2. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer

    NASA Astrophysics Data System (ADS)

    Bredfeldt, Jeremy S.; Liu, Yuming; Pehlke, Carolyn A.; Conklin, Matthew W.; Szulczewski, Joseph M.; Inman, David R.; Keely, Patricia J.; Nowak, Robert D.; Mackie, Thomas R.; Eliceiri, Kevin W.

    2014-01-01

    Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of collagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by comparing length, angle and position of the automatically extracted fibers with those of manually extracted fibers in twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer.

  3. Frequency-domain ultrasound waveform tomography breast attenuation imaging

    NASA Astrophysics Data System (ADS)

    Sandhu, Gursharan Yash Singh; Li, Cuiping; Roy, Olivier; West, Erik; Montgomery, Katelyn; Boone, Michael; Duric, Neb

    2016-04-01

    Ultrasound waveform tomography techniques have shown promising results for the visualization and characterization of breast disease. By using frequency-domain waveform tomography techniques and a gradient descent algorithm, we have previously reconstructed the sound speed distributions of breasts of varying densities with different types of breast disease including benign and malignant lesions. By allowing the sound speed to have an imaginary component, we can model the intrinsic attenuation of a medium. We can similarly recover the imaginary component of the velocity and thus the attenuation. In this paper, we will briefly review ultrasound waveform tomography techniques, discuss attenuation and its relations to the imaginary component of the sound speed, and provide both numerical and ex vivo examples of waveform tomography attenuation reconstructions.

  4. Robust Automatic Breast Cancer Staging Using A Combination of Functional Genomics and Image-Omics

    PubMed Central

    Su, Hai; Shen, Yong; Xing, Fuyong; Qi, Xin; Hirshfield, Kim M.; Yang, Lin; Foran, David J.

    2016-01-01

    Breast cancer is one of the leading cancers worldwide. Precision medicine is a new trend that systematically examines molecular and functional genomic information within each patient's cancer to identify the patterns that may affect treatment decisions and potential outcomes. As a part of precision medicine, computer-aided diagnosis enables joint analysis of functional genomic information and image from pathological images. In this paper we propose an integrated framework for breast cancer staging using image-omics and functional genomic information. The entire biomedical imaging informatics framework consists of image-omics extraction, feature combination, and classification. First, a robust automatic nuclei detection and segmentation is presented to identify tumor regions, delineate nuclei boundaries and calculate a set of image-based morphological features; next, the low dimensional image-omics is obtained through principal component analysis and is concatenated with the functional genomic features identified by a linear model. A support vector machine for differentiating stage I breast cancer from other stages are learned. We experimentally demonstrate that compared with a single type of representation (image-omics), the combination of image-omics and functional genomic feature can improve the classification accuracy by 3%. PMID:26737959

  5. Patient-blaming and representation of risk factors in breast cancer images.

    PubMed

    Andsager, J L; Hust, S J; Powers, A

    2000-01-01

    Media coverage of some cancers in the past often equated cancer with a death sentence. Breast cancer coverage in 1990s magazines, however, has become less fatalistic, more frequent, and discusses a broader range of issues than before. This study examined whether the visual images accompanying magazine articles about breast cancer have also evolved. We used Goffman's (1976) rituals of subordination to measure patient-blaming and subordinating, disempowering images. We also analyzed race/ethnicity, body type, and age of females in the images to gauge whether these demographic risk factors were represented in a random sample of images from nine magazines over a 30-year period. Magazines analyzed represented three genres-women's magazines, fashion/beauty, and general news. Findings suggest that patient-blaming images have decreased in some categories and women portrayed are slightly more representative of risk factors of age and race/ethnicity. Magazine images tended to reinforce stereotyped portrayals of femininity to the detriment of cancer patients. Fashion/beauty magazines, aimed at younger women, were most likely to portray breast cancer images in stereotyped, patient-blaming ways, with the least representative images of risk factors. The social construction of feminine beauty seems to overpower accuracy in creating these images. PMID:11289686

  6. Development and Testing of a Single Frequency Terahertz Imaging System for Breast Cancer Detection

    PubMed Central

    St. Peter, Benjamin; Yngvesson, Sigfrid; Siqueira, Paul; Kelly, Patrick; Khan, Ashraf; Glick, Stephen; Karellas, Andrew

    2013-01-01

    The ability to discern malignant from benign tissue in excised human breast specimens in Breast Conservation Surgery (BCS) was evaluated using single frequency terahertz radiation. Terahertz (THz) images of the specimens in reflection mode were obtained by employing a gas laser source and mechanical scanning. The images were correlated with optical histological micrographs of the same specimens, and a mean discrimination of 73% was found for five out of six samples using Receiver Operating Characteristic (ROC) analysis. The system design and characterization is discussed in detail. The initial results are encouraging but further development of the technology and clinical evaluation is needed to evaluate its feasibility in the clinical environment. PMID:25055306

  7. Medical image segmentation to estimate HER2 gene status in breast cancer

    NASA Astrophysics Data System (ADS)

    Palacios-Navarro, Guillermo; Acirón-Pomar, José Manuel; Vilchez-Sorribas, Enrique; Zambrano, Eddie Galarza

    2016-02-01

    This work deals with the estimation of HER2 Gene status in breast tumour images treated with in situ hybridization techniques (ISH). We propose a simple algorithm to obtain the amplification factor of HER2 gene. The obtained results are very close to those obtained by specialists in a manual way. The developed algorithm is based on colour image segmentation and has been included in a software application tool for breast tumour analysis. The developed tool focus on the estimation of the seriousness of tumours, facilitating the work of pathologists and contributing to a better diagnosis.

  8. Breast cancer detection among young survivors of pediatric Hodgkin lymphoma with screening magnetic resonance imaging

    PubMed Central

    Tieu, Minh Thi; Cigsar, Candemir; Ahmed, Sameera; Ng, Andrea; Diller, Lisa; Millar, B-A; Crystal, Pavel; Hodgson, David C

    2014-01-01

    BACKGROUND Female survivors of pediatric Hodgkin lymphoma (HL) who have received chest radiotherapy are at increased risk of breast cancer. Guidelines for early breast cancer screening among these survivors are based on little data regarding clinical outcomes. This study reports outcomes of breast cancer screening with MRI and mammography (MMG) after childhood HL. METHODS We evaluated the results of breast MRI and MMG screening among 96 female survivors of childhood HL treated with chest radiotherapy. Outcomes measured included imaging sensitivity and specificity, breast cancer characteristics, and incidence of additional imaging and breast biopsy. RESULTS Median age at first screening was 30 years, and the median number of MRI screening rounds was 3. Ten breast cancers were detected in 9 women at a median age of 39 years (range, 24-43 years). Half were invasive and half were preinvasive. The median size of invasive tumors was 8 mm (range, 3-15 mm), and none had lymph node involvement. Sensitivity and specificity of the screening modalities were as follows: for MRI alone, 80% and 93.5%, respectively; MMG alone, 70% and 95%, respectively; both modalities combined, 100% and 88.6%, respectively. All invasive tumors were detected by MRI. Additional investigations were required in 52 patients, (54%), and 26 patients (27%) required breast biopsy, with 10 patients requiring more than 1 biopsy. CONCLUSIONS Screening including breast MRI with MMG has high sensitivity and specificity in pediatric HL survivors, with breast cancers detected at an early stage, although it is associated with a substantial rate of additional investigations. Cancer 2014;120:2507–2513. © 2014 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. Screening female survivors of pediatric Hodgkin Lymphoma for breast cancer with MRI and mammography detected tumors at an earlier stage than prior studies of mammography alone, although a substantial proportion of

  9. Development of radiation dose reduction techniques for cadmium zinc telluride detectors in molecular breast imaging

    NASA Astrophysics Data System (ADS)

    O'Connor, Michael K.; Hruska, Carrie B.; Weinmann, Amanda; Manduca, Armando; Rhodes, Deborah J.

    2010-08-01

    Background: Molecular breast imaging (MBI) is a novel breast imaging technique that uses Cadmium Zinc Telluride (CZT) gamma cameras to detect the uptake of Tc-99m sestamibi in breast tumors. Current techniques employ an administered dose of 20-30 mCi Tc-99m, delivering an effective dose of 6.5-10 mSv to the body. This is ~ 5-10 times that of mammography. The goal of this study was to reduce the radiation dose by a factor of 5-10, while maintaining image quality. Methods: A total of 4 dose reduction schemes were evaluated - a) optimized collimation, b) improved utilization of the energy spectrum below the photopeak, c) adaptive geometric mean algorithm developed for combination of images from opposing detectors, and d) non local means filtering (NLMF) for noise reduction and image enhancement. Validation of the various schemes was performed using a breast phantom containing a variety of tumors and containing activity matched to that observed in clinical studies. Results: Development of tungsten collimators with holes matched to the CZT pixels yielded a 2.1-2.9 gain in system sensitivity. Improved utilization of the energy spectra yielded a 1.5-2.0 gain in sensitivity. Development of a modified geometric mean algorithm yielded a 1.4 reduction in image noise, while retaining contrast. Images of the breast phantom demonstrated that a factor of 5 reduction in dose was achieved. Additional refinements to the NLMF should enable an additional factor of 2 reduction in dose. Conclusion: Significant dose reduction in MBI to levels comparable to mammography can be achieved while maintaining image quality.

  10. Breast imaging after dark: patient outcomes following evaluation for breast abscess in the emergency department after hours.

    PubMed

    Bosma, Melissa S; Morden, Kasey L; Klein, Katherine A; Neal, Colleen H; Knoepp, Ursula S; Patterson, Stephanie K

    2016-02-01

    In our study, we sought to report the management, clinical outcomes, and follow-up rates of patients who presented for evaluation of breast abscess in the Emergency Department (ED) after hours. A retrospective search of ultrasound reports at our institution identified all patients from January 1, 2009 to June 30, 2013 who were scanned in the ED after hours to evaluate for breast abscess. Patient demographics, clinical information, imaging findings, follow-up rates, and outcomes were reviewed. One hundred eighty-five patients were included in the study. Forty-four percent (86/185) of the patients were diagnosed with abscess based on ultrasound findings in the ED. Twenty-seven percent (23/86) were recently post-operative, and 12 % (10/86) were postpartum/breastfeeding. Mastitis was the diagnosis in the remaining 54 % (99/185). Only 1/86 cases were associated with breast cancer. Seventy-seven percent (66/86) of patients were treated with an invasive procedure; 39 % (26/66) had surgical evacuation, 30 % (20/66) image-guided drainage, 23 % (15/66) bedside or clinic incision and drainage, and 8 % (5/66) palpation-guided fine needle aspiration (FNA). Seventy-seven percent (143/185) of patients had clinical and/or imaging follow-up. Forty-four percent (63/143) had long-term follow-up (≥ 3 months). Almost 50 % of the patients who presented to the ED for evaluation of abscess were diagnosed with abscess while the remaining patients were diagnosed with mastitis. Appropriate clinical and/or imaging follow-up occurred in 77 %. Long-term follow-up (≥ 3 months) occurred more frequently in patients older than 30 years of age. Appropriate follow-up does not occur in approximately one fourth of cases, suggesting that additional clinician and patient education is warranted. PMID:26433916

  11. Hypofractionated Image Guided Radiation Therapy in Treating Patients With Stage IV Breast Cancer

    ClinicalTrials.gov

    2016-06-24

    Central Nervous System Metastases; Invasive Ductal Breast Carcinoma; Invasive Ductal Breast Carcinoma With Predominant Intraductal Component; Invasive Lobular Breast Carcinoma; Invasive Lobular Breast Carcinoma With Predominant in Situ Component; Liver Metastases; Lobular Breast Carcinoma in Situ; Lung Metastases; Male Breast Cancer; Medullary Ductal Breast Carcinoma With Lymphocytic Infiltrate; Mucinous Ductal Breast Carcinoma; Papillary Ductal Breast Carcinoma; Recurrent Breast Cancer; Stage IV Breast Cancer; Tubular Ductal Breast Carcinoma; Tumors Metastatic to Brain

  12. Detecting breast microcalcifications using super-resolution and wave-equation ultrasound imaging: a numerical phantom study

    SciTech Connect

    Huang, Lianjie; Simonetti, Francesco; Huthwaite, Peter; Rosenberg, Robert; Williamson, Michael

    2010-01-01

    Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and form images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.

  13. Adaptive enhancement and visualization techniques for 3D THz images of breast cancer tumors

    NASA Astrophysics Data System (ADS)

    Wu, Yuhao; Bowman, Tyler; Gauch, John; El-Shenawee, Magda

    2016-03-01

    This paper evaluates image enhancement and visualization techniques for pulsed terahertz (THz) images of tissue samples. Specifically, our research objective is to effectively differentiate between heterogeneous regions of breast tissues that contain tumors diagnosed as triple negative infiltrating ductal carcinoma (IDC). Tissue slices and blocks of varying thicknesses were prepared and scanned using our lab's THz pulsed imaging system. One of the challenges we have encountered in visualizing the obtained images and differentiating between healthy and cancerous regions of the tissues is that most THz images have a low level of details and narrow contrast, making it difficult to accurately identify and visualize the margins around the IDC. To overcome this problem, we have applied and evaluated a number of image processing techniques to the scanned 3D THz images. In particular, we employed various spatial filtering and intensity transformation techniques to emphasize the small details in the images and adjust the image contrast. For each of these methods, we investigated how varying filter sizes and parameters affect the amount of enhancement applied to the images. Our experimentation shows that several image processing techniques are effective in producing THz images of breast tissue samples that contain distinguishable details, making further segmentation of the different image regions promising.

  14. Design of a portable wide field of view GPU-accelerated multiphoton imaging system for real-time imaging of breast surgical specimens

    NASA Astrophysics Data System (ADS)

    Giacomelli, Michael G.; Yoshitake, Tadayuki; Husvogt, Lennart; Cahill, Lucas; Ahsen, Osman; Vardeh, Hilde; Sheykin, Yury; Faulkner-Jones, Beverly E.; Hornegger, Joachim; Brooker, Jeff; Cable, Alex; Connolly, James L.; Fujimoto, James G.

    2016-03-01

    We present a portable multiphoton system designed for evaluating centimeter-scale surgical margins on surgical breast specimens in a clinical setting. The system is designed to produce large field of view images at a high frame rate, while using GPU processing to render low latency, video-rate virtual H&E images for real-time assessment. The imaging system and virtual H&E rendering algorithm are demonstrated by imaging unfixed human breast tissue in a clinical setting.

  15. Imaging the urokinase plasminongen activator receptor in preclinical breast cancer models of acquired drug resistance.

    PubMed

    LeBeau, Aaron M; Sevillano, Natalia; King, Mandy L; Duriseti, Sai; Murphy, Stephanie T; Craik, Charles S; Murphy, Laura L; VanBrocklin, Henry F

    2014-01-01

    Subtype-targeted therapies can have a dramatic impact on improving the quality and quantity of life for women suffering from breast cancer. Despite an initial therapeutic response, cancer recurrence and acquired drug-resistance are commonplace. Non-invasive imaging probes that identify drug-resistant lesions are urgently needed to aid in the development of novel drugs and the effective utilization of established therapies for breast cancer. The protease receptor urokinase plasminogen activator receptor (uPAR) is a target that can be exploited for non-invasive imaging. The expression of uPAR has been associated with phenotypically aggressive breast cancer and acquired drug-resistance. Acquired drug-resistance was modeled in cell lines from two different breast cancer subtypes, the uPAR negative luminal A subtype and the uPAR positive triple negative subtype cell line MDA-MB-231. MCF-7 cells, cultured to be resistant to tamoxifen (MCF-7 TamR), were found to significantly over-express uPAR compared to the parental cell line. uPAR expression was maintained when resistance was modeled in triple-negative breast cancer by generating doxorubicin and paclitaxel resistant MDA-MB-231 cells (MDA-MB-231 DoxR and MDA-MB-231 TaxR). Using the antagonistic uPAR antibody 2G10, uPAR was imaged in vivo by near-infrared (NIR) optical imaging and (111)In-single photon emission computed tomography (SPECT). Tumor uptake of the (111)In-SPECT probe was high in the three drug-resistant xenografts (> 46 %ID/g) and minimal in uPAR negative xenografts at 72 hours post-injection. This preclinical study demonstrates that uPAR can be targeted for imaging breast cancer models of acquired resistance leading to potential clinical applications. PMID:24505235

  16. Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Leproux, Anaïs; Kim, You Me; Min, Jun Won; McLaren, Christine E.; Chen, Wen-Pin; O'Sullivan, Thomas D.; Lee, Seung-ha; Chung, Phil-Sang; Tromberg, Bruce J.

    2016-07-01

    Young patients with dense breasts have a relatively low-positive biopsy rate for breast cancer (˜1 in 7). South Korean women have higher breast density than Westerners. We investigated the benefit of using a functional and metabolic imaging technique, diffuse optical spectroscopic imaging (DOSI), to help the standard of care imaging tools to distinguish benign from malignant lesions in premenopausal Korean women. DOSI uses near-infrared light to measure breast tissue composition by quantifying tissue concentrations of water (ctH2O), bulk lipid (ctLipid), deoxygenated (ctHHb), and oxygenated (ctHbO2) hemoglobin. DOSI spectral signatures specific to abnormal tissue and absent in healthy tissue were also used to form a malignancy index. This study included 19 premenopausal subjects (average age 41±9), corresponding to 11 benign and 10 malignant lesions. Elevated lesion to normal ratio of ctH2O, ctHHb, ctHbO2, total hemoglobin (THb=ctHHb+ctHbO2), and tissue optical index (ctHHb×ctH2O/ctLipid) were observed in the malignant lesions compared to the benign lesions (p<0.02). THb and malignancy index were the two best single predictors of malignancy, with >90% sensitivity and specificity. Malignant lesions showed significantly higher metabolism and perfusion than benign lesions. DOSI spectral features showed high discriminatory power for distinguishing malignant and benign lesions in dense breasts of the Korean population.

  17. Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images.

    PubMed

    Kowal, Marek; Filipczuk, Paweł; Obuchowicz, Andrzej; Korbicz, Józef; Monczak, Roman

    2013-10-01

    Prompt and widely available diagnostics of breast cancer is crucial for the prognosis of patients. One of the diagnostic methods is the analysis of cytological material from the breast. This examination requires extensive knowledge and experience of the cytologist. Computer-aided diagnosis can speed up the diagnostic process and allow for large-scale screening. One of the largest challenges in the automatic analysis of cytological images is the segmentation of nuclei. In this study, four different clustering algorithms are tested and compared in the task of fast nuclei segmentation. K-means, fuzzy C-means, competitive learning neural networks and Gaussian mixture models were incorporated for clustering in the color space along with adaptive thresholding in grayscale. These methods were applied in a medical decision support system for breast cancer diagnosis, where the cases were classified as either benign or malignant. In the segmented nuclei, 42 morphological, topological and texture features were extracted. Then, these features were used in a classification procedure with three different classifiers. The system was tested for classification accuracy by means of microscopic images of fine needle breast biopsies. In cooperation with the Regional Hospital in Zielona Góra, 500 real case medical images from 50 patients were collected. The acquired classification accuracy was approximately 96-100%, which is very promising and shows that the presented method ensures accurate and objective data acquisition that could be used to facilitate breast cancer diagnosis. PMID:24034748

  18. Reproducing 2D breast mammography images with 3D printed phantoms

    NASA Astrophysics Data System (ADS)

    Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu

    2016-03-01

    Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.

  19. Establishing daily quality control (QC) in screen-film mammography using leeds tor (max) phantom at the breast imaging unit of USTH-Benavides Cancer Institute

    NASA Astrophysics Data System (ADS)

    Acaba, K. J. C.; Cinco, L. D.; Melchor, J. N.

    2016-03-01

    Daily QC tests performed on screen film mammography (SFM) equipment are essential to ensure that both SFM unit and film processor are working in a consistent manner. The Breast Imaging Unit of USTH-Benavides Cancer Institute has been conducting QC following the test protocols in the IAEA Human Health Series No.2 manual. However, the availability of Leeds breast phantom (CRP E13039) in the facility made the task easier. Instead of carrying out separate tests on AEC constancy and light sensitometry, only one exposure of the phantom is done to accomplish the two tests. It was observed that measurements made on mAs output and optical densities (ODs) using the Leeds TOR (MAX) phantom are comparable with that obtained from the usual conduct of tests, taking into account the attenuation characteristic of the phantom. Image quality parameters such as low contrast and high contrast details were also evaluated from the phantom image. The authors recognize the usefulness of the phantom in determining technical factors that will help improve detection of smallest pathological details on breast images. The phantom is also convenient for daily QC monitoring and economical since less number of films is expended.

  20. Imaging features of HER2 overexpression in breast cancer: a systematic review and meta-analysis.

    PubMed

    Elias, Sjoerd G; Adams, Arthur; Wisner, Dorota J; Esserman, Laura J; van't Veer, Laura J; Mali, Willem P Th M; Gilhuijs, Kenneth G A; Hylton, Nola M

    2014-08-01

    Breast cancer imaging phenotype is diverse and may relate to molecular alterations driving cancer behavior. We systematically reviewed and meta-analyzed relations between breast cancer imaging features and human epidermal growth factor receptor type 2 (HER2) overexpression as a marker of breast cancer aggressiveness. MEDLINE and EMBASE were searched for mammography, breast ultrasound, magnetic resonance imaging (MRI), and/or [(18)F]fluorodeoxyglucose positron emission tomography studies through February 2013. Of 68 imaging features that could be pooled (85 articles, 23,255 cancers; random-effects meta-analysis), 11 significantly related to HER2 overexpression. Results based on five or more studies and robustness in subgroup analyses were as follows: the presence of microcalcifications on mammography [pooled odds ratio (pOR), 3.14; 95% confidence interval (CI), 2.46-4.00] or ultrasound (mass-associated pOR, 2.95; 95% CI, 2.34-3.71), branching or fine linear microcalcifications (pOR, 2.11; 95% CI, 1.07-4.14) or extremely dense breasts on mammography (pOR, 1.37; 95% CI, 1.07-1.76), and washout (pOR, 1.57; 95% CI, 1.11-2.21) or fast initial kinetics (pOR, 2.60; 95% CI, 1.43-4.73) on MRI all increased the chance of HER2 overexpression. Maximum [(18)F]fluorodeoxyglucose standardized uptake value (SUVmax) was higher upon HER2 overexpression (pooled mean difference, +0.76; 95% CI, 0.10-1.42). These results show that several imaging features relate to HER2 overexpression, lending credibility to the hypothesis that imaging phenotype reflects cancer behavior. This implies prognostic relevance, which is especially relevant as imaging is readily available during diagnostic work-up. PMID:24807204

  1. Improving PET imaging for breast cancer using virtual pinhole PET half-ring insert

    NASA Astrophysics Data System (ADS)

    Mathews, Aswin John; Komarov, Sergey; Wu, Heyu; O'Sullivan, Joseph A.; Tai, Yuan-Chuan

    2013-09-01

    A PET insert with detector having smaller crystals and placed near a region of interest in a conventional PET scanner can improve image resolution locally due to the virtual-pinhole PET (VP-PET) effect. This improvement is from the higher spatial sampling of the imaging area near the detector. We have built a prototype half-ring PET insert for head-and-neck cancer imaging applications. In this paper, we extend the use of the insert to breast imaging and show that such a system provides high resolution images of breast and axillary lymph nodes while maintaining the full imaging field of view capability of a clinical PET scanner. We characterize the resolution and contrast recovery for tumors across the imaging field of view. First, we model the system using Monte Carlo methods to determine its theoretical limit of improvement. Simulations were conducted with hot spherical tumors embedded in background activity at tumor-to-background contrast ranging from 3:1 to 12:1. Tumors are arranged in a Derenzo-like pattern with their diameters ranging from 2 to 12 mm. Experimental studies were performed using a chest phantom with cylindrical breast attachment. Tumors of different sizes arranged in a Derenzo-like pattern with tumor-to-background ratio of 6:1 are inserted into the breast phantom. Imaging capability of mediastinum and axillary lymph nodes is explored. Both Monte Carlo simulations and experiment show clear improvement in image resolution and contrast recovery with VP-PET half-ring insert. The degree of improvement in resolution and contrast recovery depends on location of the tumor. The full field of view imaging capability is shown to be maintained. Minor artifacts are introduced in certain regions.

  2. Identification of Intrinsic Imaging Phenotypes for Breast Cancer Tumors: Preliminary Associations with Gene Expression Profiles1

    PubMed Central

    Ashraf, Ahmed Bilal; Daye, Dania; Gavenonis, Sara; Mies, Carolyn; Feldman, Michael; Rosen, Mark; Kontos, Despina

    2015-01-01

    Purpose To present a method for identifying intrinsic imaging phenotypes in breast cancer tumors and to investigate their association with prognostic gene expression profiles. Materials and Methods The authors retrospectively analyzed dynamic contrast material–enhanced (DCE) magnetic resonance (MR) images of the breast in 56 women (mean age, 55.6 years; age range, 37–74 years) diagnosed with estrogen receptor–positive breast cancer between 2005 and 2010. The study was approved by the institutional review board and compliant with HIPAA. The requirement to obtain informed consent was waived. Primary tumors were assayed with a validated gene expression assay that provides a score for the likelihood of recurrence. A multiparametric imaging phenotype vector was extracted for each tumor by using quantitative morphologic, kinetic, and spatial heterogeneity features. Multivariate linear regression was performed to test associations between DCE MR imaging features and recurrence likelihood. To identify intrinsic imaging phenotypes, hierarchical clustering was performed on the extracted feature vectors. Multivariate logistic regression was used to classify tumors at high versus low or medium risk of recurrence. To determine the additional value of intrinsic phenotypes, the phenotype category was tested as an additional variable. Receiver operating characteristic analysis and the area under the receiver operating characteristic curve (Az) were used to assess classification performance. Results There was a moderate correlation (r = 0.71, R2 = 0.50, P < .001) between DCE MR imaging features and the recurrence score. DCE MR imaging features were predictive of recurrence risk as determined by the surrogate assay, with an Az of 0.77 (P < .01). Four dominant imaging phenotypes were detected, with two including only low- and medium-risk tumors. When the phenotype category was used as an additional variable, the Az increased to 0.82 (P < .01). Conclusion Intrinsic imaging

  3. Cone-beam CT breast imaging with a flat panel detector: a simulation study

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Tu, Shu-Ju; Altunbas, Mustafa C.; Wang, Tianpeng; Lai, Chao-Jen; Liu, Xinming; Kappadath, S. C.

    2005-04-01

    This paper investigates the feasibility of using a flat panel based cone-beam computer tomography (CT) system for 3-D breast imaging with computer simulation and imaging experiments. In our simulation study, 3-D phantoms were analytically modeled to simulate a breast loosely compressed into cylindrical shape with embedded soft tissue masses and calcifications. Attenuation coefficients were estimated to represent various types of breast tissue, soft tissue masses and calcifications to generate realistic image signal and contrast. Projection images were computed to incorporate x-ray attenuation, geometric magnification, x-ray detection, detector blurring, image pixelization and digitization. Based on the two-views mammography comparable dose level on the central axis of the phantom (also the rotation axis), x-ray kVp/filtration, transmittance through the phantom, detected quantum efficiency (DQE), exposure level, and imaging geometry, the photon fluence was estimated and used to estimate the phantom noise level on a pixel-by-pixel basis. This estimated noise level was then used with the random number generator to produce and add a fluctuation component to the noiseless transmitted image signal. The noise carrying projection images were then convolved with a Gaussian-like kernel, computed from measured 1-D line spread function (LSF) to simulated detector blurring. Additional 2-D Gaussian-like kernel is designed to suppress the noise fluctuation that inherently originates from projection images so that the reconstructed image detectability of low contrast masses phantom can be improved. Image reconstruction was performed using the Feldkamp algorithm. All simulations were performed on a 24 PC (2.4 GHz Dual-Xeon CPU) cluster with MPI parallel programming. With 600 mrads mean glandular dose (MGD) at the phantom center, soft tissue masses as small as 1 mm in diameter can be detected in a 10 cm diameter 50% glandular 50% adipose or fatter breast tissue, and 2 mm or larger

  4. VALIDATION OF A SIMULATION PROCEDURE FOR GENERATING BREAST TOMOSYNTHESIS PROJECTION IMAGES.

    PubMed

    Petersson, Hannie; Warren, Lucy M; Tingberg, Anders; Dustler, Magnus; Timberg, Pontus

    2016-06-01

    In order to achieve optimal diagnostic performance in breast tomosynthesis (BT) imaging, the parameters of the imaging chain should be evaluated. For the purpose of such evaluations, a simulation procedure based on the Monte Carlo code system Penelope and the geometry of a Siemens BT system has been developed to generate BT projection images. In this work, the simulation procedure is validated by comparing contrast and sharpness in simulated images with contrast and sharpness in real images acquired with the BT system. The results of the study showed a good agreement of sharpness in real and simulated reconstructed image planes, but the contrast was shown to be higher in the simulated compared with the real projection images. The developed simulation procedure could be used to generate BT images, but it is of interest to further investigate how the procedure could be modified to generate more realistic image noise and contrast. PMID:26842713

  5. Full Angle Spatial Compound of ARFI images for breast cancer detection.

    PubMed

    González-Salido, Nuria; Medina, Luis; Camacho, Jorge

    2016-09-01

    Automated ultrasound breast imaging would overcome most of the limitations that precludes conventional hand-held echography to be an effective screening method for breast cancer diagnosis. If a three dimensional (3D) ultrasound dataset is acquired without manual intervention of the technician, repeatability and patient follow-up could be improved. Furthermore, depending on the system configuration, resolution and contrast could be enhanced with regard to conventional echography, improving lesion detectability and evaluation. Having multiple modalities is another major advantage of these automated systems, currently under development by several research groups. Because of their circular structure, some of them include through-transmission measurements that allow constructing speed of sound and attenuation maps, which adds complementary information to the conventional reflectivity B-Mode image. This work addresses the implementation of the Acoustic Radiation Force Impulse (ARFI) imaging technique in a Full Angle Spatial Compound (FASC) automated breast imaging system. It is of particular interest because of the high specificity of ARFI for breast cancer diagnosis, by representing tissue elasticity differences rather than acoustic reflectivity. First, the image formation process is analyzed and a compounding strategy is proposed for ARFI-FASC. Then, experimental results with a prototype system and two gelatin phantoms are presented: Phantom A with a hard inclusion in a soft background, and phantom B with three soft inclusions in a hard background and with three steel needles. It is demonstrated that the full angle composition of ARFI images improves image quality, enhancing Contrast to Noise Ratio (CNR) from 4.9 to 20.6 and 3.6 to 13.5 in phantoms A and B respectively. Furthermore, this CNR increase improved detectability of small structures (needles) with regard to images obtained from a single location, in which image texture masked their presence. PMID:27362998

  6. Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging

    NASA Astrophysics Data System (ADS)

    Haynes, Mark Spencer

    Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self

  7. Hot spot detection for breast cancer in Ki-67 stained slides: image dependent filtering approach

    NASA Astrophysics Data System (ADS)

    Niazi, M. Khalid Khan; Downs-Kelly, Erinn; Gurcan, Metin N.

    2014-03-01

    We present a new method to detect hot spots from breast cancer slides stained for Ki67 expression. It is common practice to use centroid of a nucleus as a surrogate representation of a cell. This often requires the detection of individual nuclei. Once all the nuclei are detected, the hot spots are detected by clustering the centroids. For large size images, nuclei detection is computationally demanding. Instead of detecting the individual nuclei and treating hot spot detection as a clustering problem, we considered hot spot detection as an image filtering problem where positively stained pixels are used to detect hot spots in breast cancer images. The method first segments the Ki-67 positive pixels using the visually meaningful segmentation (VMS) method that we developed earlier. Then, it automatically generates an image dependent filter to generate a density map from the segmented image. The smoothness of the density image simplifies the detection of local maxima. The number of local maxima directly corresponds to the number of hot spots in the breast cancer image. The method was tested on 23 different regions of interest images extracted from 10 different breast cancer slides stained with Ki67. To determine the intra-reader variability, each image was annotated twice for hot spots by a boardcertified pathologist with a two-week interval in between her two readings. A computer-generated hot spot region was considered a true-positive if it agrees with either one of the two annotation sets provided by the pathologist. While the intra-reader variability was 57%, our proposed method can correctly detect hot spots with 81% precision.

  8. Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique

    PubMed Central

    Shea, Jacob D.; Kosmas, Panagiotis; Hagness, Susan C.; Van Veen, Barry D.

    2010-01-01

    Purpose: Breast density measurement has the potential to play an important role in individualized breast cancer risk assessment and prevention decisions. Routine evaluation of breast density will require the availability of a low-cost, nonionizing, three-dimensional (3-D) tomographic imaging modality that exploits a strong properties contrast between dense fibroglandular tissue and less dense adipose tissue. The purpose of this computational study is to investigate the performance of 3-D tomography using low-power microwaves to reconstruct the spatial distribution of breast tissue dielectric properties and to evaluate the modality for application to breast density characterization. Methods: State-of-the-art 3-D numerical breast phantoms that are realistic in both structural and dielectric properties are employed. The test phantoms include one sample from each of four classes of mammographic breast density. Since the properties of these phantoms are known exactly, these testbeds serve as a rigorous benchmark for the imaging results. The distorted Born iterative imaging method is applied to simulated array measurements of the numerical phantoms. The forward solver in the imaging algorithm employs the finite-difference time-domain method of solving the time-domain Maxwell’s equations, and the dielectric profiles are estimated using an integral equation form of the Helmholtz wave equation. A multiple-frequency, bound-constrained, vector field inverse scattering solution is implemented that enables practical inversion of the large-scale 3-D problem. Knowledge of the frequency-dependent characteristic of breast tissues at microwave frequencies is exploited to obtain a parametric reconstruction of the dispersive dielectric profile of the interior of the breast. Imaging is performed on a high-resolution voxel basis and the solution is bounded by a known range of dielectric properties of the constituent breast tissues. The imaging method is validated using a breast

  9. Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models.

    PubMed

    Chughtai, Kamila; Jiang, Lu; Greenwood, Tiffany R; Glunde, Kristine; Heeren, Ron M A

    2013-02-01

    The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models. PMID:22930811

  10. Quantitative evaluation of automatic methods for lesions detection in breast ultrasound images

    NASA Astrophysics Data System (ADS)

    Marcomini, Karem D.; Schiabel, Homero; Carneiro, Antonio Adilton O.

    2013-02-01

    Ultrasound (US) is a useful diagnostic tool to distinguish benign from malignant breast masses, providing more detailed evaluation in dense breasts. Due to the subjectivity in the images interpretation, computer-aid diagnosis (CAD) schemes have been developed, increasing the mammography analysis process to include ultrasound images as complementary exams. As one of most important task in the evaluation of this kind of images is the mass detection and its contours interpretation, automated segmentation techniques have been investigated in order to determine a quite suitable procedure to perform such an analysis. Thus, the main goal in this work is investigating the effect of some processing techniques used to provide information on the determination of suspicious breast lesions as well as their accurate boundaries in ultrasound images. In tests, 80 phantom and 50 clinical ultrasound images were preprocessed, and 5 segmentation techniques were tested. By using quantitative evaluation metrics the results were compared to a reference image delineated by an experienced radiologist. A self-organizing map artificial neural network has provided the most relevant results, demonstrating high accuracy and low error rate in the lesions representation, corresponding hence to the segmentation process for US images in our CAD scheme under tests.

  11. Intra- and Interfractional Variations for Prone Breast Irradiation: An Indication for Image-Guided Radiotherapy

    SciTech Connect

    Morrow, Natalya V.; Stepaniak, Christopher; White, Julia; Wilson, J. Frank; Li, X. Allen

    2007-11-01

    Purpose: Intra- and interfractional errors for breast cancer patients undergoing breast irradiation in the prone position were analyzed. Methods and Materials: To assess intrafractional error resulting from respiratory motion, four-dimensional computed tomography scans were acquired for 3 prone and 3 supine patients, and the respiratory motion was compared for the two positions. To assess the interfractional error caused by daily set-up variations, daily electronic portal images of one of the treatment beams were taken for 15 prone-positioned patients. Portal images were then overlaid with images from the planning system that included the breast contour and the isocenter, treatment beam portal, and isocenter. The shift between the planned and actual isocenter was recorded for each portal image, and descriptive statistics were collected for each patient. The margins were calculated using the 2{sigma}+0.7{sigma} recipe, as well as 95% confidence interval based on the pooled standard deviation of the datasets. Results: Respiratory motion of the chest wall is drastically reduced from 2.3 {+-} 0.9 mm in supine position to -0.1 {+-} 0.4 mm in prone position. The daily set-up errors vary in magnitude from 0.0 cm to 1.65 cm and are patient dependent. The margins were defined by considering only the standard deviation to be 1.1 cm, and 2.0 cm when the systematic errors were considered using the 2{sigma}+0.7{sigma} recipe. Conclusions: Prone positioning of patients for breast irradiation significantly reduces the uncertainty introduced by intrafractional respiratory motion. The presence of large systematic error in the interfractional variations necessitates a large clinical target volume-to-planning target volume margin and indicates the importance of image guidance for partial breast irradiation in the prone position, particularly using imaging modality capable of identifying the lumpectomy cavity.

  12. Coherent optical imaging and guided interventions in breast cancer: translating technology into clinical applications

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.; Nguyen, Freddy T.; Zysk, Adam M.; Chaney, Eric J.; Kotynek, Jan G.; Oliphant, Uretz J.; Bellafiore, Frank J.; Rowland, Kendrith M.; Johnson, Patricia A.

    2008-04-01

    Breast cancer continues to be one of the most widely diagnosed forms of cancer in women and the second leading type of cancer deaths for women. The metastatic spread and staging of breast cancer is typically evaluated through the nodal assessment of the regional lymphatic system, and often this is performed during the surgical resection of the tumor mass. The recurrence rate of breast cancer is highly dependent on several factors including the complete removal of the primary tumor during surgery, and the presence of cancer cells in involved lymph nodes. Hence, developing means to more accurately resect tumor cells, along with the tumor mass, and ensure negative surgical margins, offers the potential to impact outcomes of breast cancer. The use of diffuse optical tomography has been applied for screening optical mammography applications as an alternative to standard x-ray mammography. The use of coherence ranging and coherent optical imaging in breast tissue has also found numerous applications, including intra-operative assessment of tumor margin status during lumpectomy procedures, assessment of lymph node changes for staging metastatic spread, and for guiding needle-biopsy procedures. The development, pre-clinical testing, and translation of techniques such as low-coherence interferometry (LCI) and optical coherence tomography (OCT) into clinical applications in breast cancer is demonstrated in these feasibility studies.

  13. Application of imaging mass spectrometry for the molecular diagnosis of human breast tumors

    PubMed Central

    Mao, Xinxin; He, Jiuming; Li, Tiegang; Lu, Zhaohui; Sun, Jian; Meng, Yunxiao; Abliz, Zeper; Chen, Jie

    2016-01-01

    Distinguishing breast invasive ductal carcinoma (IDC) and breast ductal carcinoma in situ (DCIS) is a key step in breast surgery, especially to determine whether DCIS is associated with tumor cell micro-invasion. However, there is currently no reliable method to obtain molecular information for breast tumor analysis during surgery. Here, we present a novel air flow-assisted ionization (AFAI) mass spectrometry imaging method that can be used in ambient environments to differentiate breast cancer by analyzing lipids. In this study, we demonstrate that various subtypes and histological grades of IDC and DCIS can be discriminated using AFAI-MSI: phospholipids were more abundant in IDC than in DCIS, whereas fatty acids were more abundant in DCIS than in IDC. The classification of specimens in the subtype and grade validation sets showed 100% and 78.6% agreement with the histopathological diagnosis, respectively. Our work shows the rapid classification of breast cancer utilizing AFAI-MSI. This work suggests that this method could be developed to provide surgeons with nearly real-time information to guide surgical resections. PMID:26868906

  14. Application of imaging mass spectrometry for the molecular diagnosis of human breast tumors.

    PubMed

    Mao, Xinxin; He, Jiuming; Li, Tiegang; Lu, Zhaohui; Sun, Jian; Meng, Yunxiao; Abliz, Zeper; Chen, Jie

    2016-01-01

    Distinguishing breast invasive ductal carcinoma (IDC) and breast ductal carcinoma in situ (DCIS) is a key step in breast surgery, especially to determine whether DCIS is associated with tumor cell micro-invasion. However, there is currently no reliable method to obtain molecular information for breast tumor analysis during surgery. Here, we present a novel air flow-assisted ionization (AFAI) mass spectrometry imaging method that can be used in ambient environments to differentiate breast cancer by analyzing lipids. In this study, we demonstrate that various subtypes and histological grades of IDC and DCIS can be discriminated using AFAI-MSI: phospholipids were more abundant in IDC than in DCIS, whereas fatty acids were more abundant in DCIS than in IDC. The classification of specimens in the subtype and grade validation sets showed 100% and 78.6% agreement with the histopathological diagnosis, respectively. Our work shows the rapid classification of breast cancer utilizing AFAI-MSI. This work suggests that this method could be developed to provide surgeons with nearly real-time information to guide surgical resections. PMID:26868906

  15. Investigation of iterative image reconstruction in low-dose breast CT

    NASA Astrophysics Data System (ADS)

    Bian, Junguo; Yang, Kai; Boone, John M.; Han, Xiao; Sidky, Emil Y.; Pan, Xiaochuan

    2014-06-01

    There is interest in developing computed tomography (CT) dedicated to breast-cancer imaging. Because breast tissues are radiation-sensitive, the total radiation exposure in a breast-CT scan is kept low, often comparable to a typical two-view mammography exam, thus resulting in a challenging low-dose-data-reconstruction problem. In recent years, evidence has been found that suggests that iterative reconstruction may yield images of improved quality from low-dose data. In this work, based upon the constrained image total-variation minimization program and its numerical solver, i.e., the adaptive steepest descent-projection onto the convex set (ASD-POCS), we investigate and evaluate iterative image reconstructions from low-dose breast-CT data of patients, with a focus on identifying and determining key reconstruction parameters, devising surrogate utility metrics for characterizing reconstruction quality, and tailoring the program and ASD-POCS to the specific reconstruction task under consideration. The ASD-POCS reconstructions appear to outperform the corresponding clinical FDK reconstructions, in terms of subjective visualization and surrogate utility metrics.

  16. Towards Quantification of Functional Breast Images Using Dedicated SPECT With Non-Traditional Acquisition Trajectories

    PubMed Central

    Perez, Kristy L.; Cutler, Spencer J.; Madhav, Priti; Tornai, Martin P.

    2012-01-01

    Quantification of radiotracer uptake in breast lesions can provide valuable information to physicians in deciding patient care or determining treatment efficacy. Physical processes (e.g., scatter, attenuation), detector/collimator characteristics, sampling and acquisition trajectories, and reconstruction artifacts contribute to an incorrect measurement of absolute tracer activity and distribution. For these experiments, a cylinder with three syringes of varying radioactivity concentration, and a fillable 800 mL breast with two lesion phantoms containing aqueous 99mTc pertechnetate were imaged using the SPECT sub-system of the dual-modality SPECT-CT dedicated breast scanner. SPECT images were collected using a compact CZT camera with various 3D acquisitions including vertical axis of rotation, 30° tilted, and complex sinusoidal trajectories. Different energy windows around the photopeak were quantitatively compared, along with appropriate scatter energy windows, to determine the best quantification accuracy after attenuation and dual-window scatter correction. Measured activity concentrations in the reconstructed images for syringes with greater than 10 µCi /mL corresponded to within 10% of the actual dose calibrator measured activity concentration for ±4% and ±8% photopeak energy windows. The same energy windows yielded lesion quantification results within 10% in the breast phantom as well. Results for the more complete complex sinsusoidal trajectory are similar to the simple vertical axis acquisition, and additionally allows both anterior chest wall sampling, no image distortion, and reasonably accurate quantification. PMID:22262925

  17. Photoacoustic imaging of breast tumor vascularization: a comparison with MRI and histopathology

    NASA Astrophysics Data System (ADS)

    Heijblom, Michelle; Piras, Daniele; van den Engh, Frank M.; Klaase, Joost M.; Brinkhuis, Mariël.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-06-01

    Breast cancer is the most common form of cancer and the leading cause of cancer death among females. Early diagnosis improves the survival chances for the disease and that is why there is an ongoing search for improved methods for visualizing breast cancer. One of the hallmarks of breast cancer is the increase in tumor vascularization that is associated with angiogenesis: a crucial factor for survival of malignancies. Photoacoustic imaging can visualize the malignancyassociated increased hemoglobin concentration with optical contrast and ultrasound resolution, without the use of ionizing radiation or contrast agents and is therefore theoretically an ideal method for breast imaging. Previous clinical studies using the Twente Photoacoustic Mammoscope (PAM), which works in forward mode using a single wavelength (1064 nm), showed that malignancies can indeed be identified in the photoacoustic imaging volume as high contrast areas. However, the specific appearance of the malignancies led to questions about the contrast mechanism in relation to tumor vascularization. In this study, the photoacoustic lesion appearance obtained with an updated version of PAM is compared with the lesion appearance on Magnetic Resonance Imaging (MRI), both in general (19 patients) and on an individual basis (7 patients). Further, in 3 patients an extended histopathology protocol is being performed in which malignancies are stained for vascularity using an endothelial antibody: CD31. The correspondence between PAM and MRI and between PAM and histopathology makes it likely that the high photoacoustic contrast at 1064 nm is indeed largely the consequence of the increased tumor vascularization.

  18. Comparison of time-series registration methods in breast dynamic infrared imaging

    NASA Astrophysics Data System (ADS)

    Riyahi-Alam, S.; Agostini, V.; Molinari, F.; Knaflitz, M.

    2015-03-01

    Automated motion reduction in dynamic infrared imaging is on demand in clinical applications, since movement disarranges time-temperature series of each pixel, thus originating thermal artifacts that might bias the clinical decision. All previously proposed registration methods are feature based algorithms requiring manual intervention. The aim of this work is to optimize the registration strategy specifically for Breast Dynamic Infrared Imaging and to make it user-independent. We implemented and evaluated 3 different 3D time-series registration methods: 1. Linear affine, 2. Non-linear Bspline, 3. Demons applied to 12 datasets of healthy breast thermal images. The results are evaluated through normalized mutual information with average values of 0.70 ±0.03, 0.74 ±0.03 and 0.81 ±0.09 (out of 1) for Affine, Bspline and Demons registration, respectively, as well as breast boundary overlap and Jacobian determinant of the deformation field. The statistical analysis of the results showed that symmetric diffeomorphic Demons' registration method outperforms also with the best breast alignment and non-negative Jacobian values which guarantee image similarity and anatomical consistency of the transformation, due to homologous forces enforcing the pixel geometric disparities to be shortened on all the frames. We propose Demons' registration as an effective technique for time-series dynamic infrared registration, to stabilize the local temperature oscillation.

  19. Towards Quantification of Functional Breast Images Using Dedicated SPECT With Non-Traditional Acquisition Trajectories.

    PubMed

    Perez, Kristy L; Cutler, Spencer J; Madhav, Priti; Tornai, Martin P

    2011-10-01

    Quantification of radiotracer uptake in breast lesions can provide valuable information to physicians in deciding patient care or determining treatment efficacy. Physical processes (e.g., scatter, attenuation), detector/collimator characteristics, sampling and acquisition trajectories, and reconstruction artifacts contribute to an incorrect measurement of absolute tracer activity and distribution. For these experiments, a cylinder with three syringes of varying radioactivity concentration, and a fillable 800 mL breast with two lesion phantoms containing aqueous (99m)Tc pertechnetate were imaged using the SPECT sub-system of the dual-modality SPECT-CT dedicated breast scanner. SPECT images were collected using a compact CZT camera with various 3D acquisitions including vertical axis of rotation, 30° tilted, and complex sinusoidal trajectories. Different energy windows around the photopeak were quantitatively compared, along with appropriate scatter energy windows, to determine the best quantification accuracy after attenuation and dual-window scatter correction. Measured activity concentrations in the reconstructed images for syringes with greater than 10 µCi /mL corresponded to within 10% of the actual dose calibrator measured activity concentration for ±4% and ±8% photopeak energy windows. The same energy windows yielded lesion quantification results within 10% in the breast phantom as well. Results for the more complete complex sinsusoidal trajectory are similar to the simple vertical axis acquisition, and additionally allows both anterior chest wall sampling, no image distortion, and reasonably accurate quantification. PMID:22262925

  20. Real-time 3D surface-image-guided beam setup in radiotherapy of breast cancer

    SciTech Connect

    Djajaputra, David; Li Shidong

    2005-01-01

    We describe an approach for external beam radiotherapy of breast cancer that utilizes the three-dimensional (3D) surface information of the breast. The surface data of the breast are obtained from a 3D optical camera that is rigidly mounted on the ceiling of the treatment vault. This 3D camera utilizes light in the visible range therefore it introduces no ionization radiation to the patient. In addition to the surface topographical information of the treated area, the camera also captures gray-scale information that is overlaid on the 3D surface image. This allows us to visualize the skin markers and automatically determine the isocenter position and the beam angles in the breast tangential fields. The field sizes and shapes of the tangential, supraclavicular, and internal mammary gland fields can all be determined according to the 3D surface image of the target. A least-squares method is first introduced for the tangential-field setup that is useful for compensation of the target shape changes. The entire process of capturing the 3D surface data and subsequent calculation of beam parameters typically requires less than 1 min. Our tests on phantom experiments and patient images have achieved the accuracy of 1 mm in shift and 0.5 deg. in rotation. Importantly, the target shape and position changes in each treatment session can both be corrected through this real-time image-guided system.

  1. In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography

    PubMed Central

    Wang, Jia; Jiang, Shudong; Li, Zhongze; diFlorio-Alexander, Roberta M.; Barth, Richard J.; Kaufman, Peter A.; Pogue, Brian W.; Paulsen, Keith D.

    2010-01-01

    Purpose: A NIR tomography system that combines frequency domain (FD) and continuous wave (CW) measurements was used to image normal and malignant breast tissues. Methods: FD acquisitions were confined to wavelengths less than 850 nm because of detector limitations, whereas light from longer wavelengths (up to 948 nm) was measured in CW mode with CCD-coupled spectrometer detection. The two data sets were combined and processed in a single spectrally constrained reconstruction to map concentrations of hemoglobin, water, and lipid, as well as scattering parameters in the breast. Results: Chromophore concentrations were imaged in the breasts of nine asymptomatic volunteers to evaluate their intrasubject and intersubject variability. Normal subject data showed physiologically expected trends. Images from three cancer patients indicate that the added CW data is critical to recovering the expected increases in water and decreases in lipid content within malignancies. Contrasts of 1.5 to twofold in hemoglobin and water values were found in cancers. Conclusions:In vivo breast imaging with instrumentation that combines FD and CW NIR data acquisition in a single spectral reconstruction produces more accurate hemoglobin, water, and lipid results relative to FD data alone. PMID:20831079

  2. The use of breast imaging to screen women at high risk for cancer.

    PubMed

    Sickles, Edward A

    2010-09-01

    Although there currently is no evidence of reduced breast cancer mortality for screening women at high risk with mammography, magnetic resonance (MR) imaging, or ultrasonography (US), the presumptive evidence of early cancer detection provided by numerous observational studies has led to the publication of guidelines and recommendations for the selective use of these imaging modalities. In general, annual screening mammography is recommended for women of appropriately high risk beginning at age 30 years, supplemental screening with MR imaging is recommended for a subset of women at very high risk, and screening US is suggested for women for whom MR imaging is appropriate but unavailable, impractical, or poorly tolerated. The use of screening US remains controversial among women who have no substantial risk factors other than dense breasts. PMID:20868890

  3. Interferogram-based breast tumor classification using microwave-induced thermoacoustic imaging.

    PubMed

    Hao Nan; Haghi, Benyamin Allahgholizadeh; Arbabian, Amin

    2015-08-01

    Microwave-induced thermoacoustic (TA) imaging combines the dielectric/conductivity contrast in the microwave range with the high resolution of ultrasound imaging. Lack of ionizing radiation exposure in TA imaging makes this technique suitable for frequent screening applications, as with breast cancer screening. In this paper we demonstrate breast tumor classification based on TA imaging. The sensitivity of the signal-based classification algorithm to errors in the estimation of tumor locations is investigated. To reduce this sensitivity, we propose to use the interferogram of received pressure waves as the feature basis used for classification, and demonstrate the robustness based on a finite-difference time-domain (FDTD) simulation framework. PMID:26736853

  4. Semi-automated segmentation and classification of digital breast tomosynthesis reconstructed images.

    PubMed

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew; Michaelsen, Kelly E; Krishnaswamy, Venkataramanan; Pogue, Brian W; Paulsen, Keith D

    2011-01-01

    Digital breast tomosynthesis (DBT) is a limited-angle tomographic x-ray imaging technique that reduces the effect of tissue superposition observed in planar mammography. An integrated imaging platform that combines DBT with near infrared spectroscopy (NIRS) to provide co-registered anatomical and functional imaging is under development. Incorporation of anatomic priors can benefit NIRS reconstruction. In this work, we provide a segmentation and classification method to extract potential lesions, as well as adipose, fibroglandular, muscle and skin tissue in reconstructed DBT images that serve as anatomic priors during NIRS reconstruction. The method may also be adaptable for estimating tumor volume, breast glandular content, and for extracting lesion features for potential application to computer aided detection and diagnosis. PMID:22255752

  5. Technical prerequisites and imaging protocols for CT perfusion imaging in oncology.

    PubMed

    Klotz, Ernst; Haberland, Ulrike; Glatting, Gerhard; Schoenberg, Stefan O; Fink, Christian; Attenberger, Ulrike; Henzler, Thomas

    2015-12-01

    The aim of this review article is to define the technical prerequisites of modern state-of-the-art CT perfusion imaging in oncology at reasonable dose levels. The focus is mainly on abdominal and thoracic tumor imaging, as they pose the largest challenges with respect to attenuation and patient motion. We will show that low kV dynamic scanning in conjunction with detection technology optimized for low photon fluxes has the highest impact on reducing dose independently of other choices made in the protocol selection. We discuss, derived from relatively simple first principles, on what appropriate temporal sampling and total scan duration depend on and why optimized contrast medium injection protocols are also essential in limiting dose. Finally we will examine the possibility of simultaneously extracting standard morphological and functional information from one single 4D examination as a potential enabler for a more widespread use of dynamic contrast enhanced CT in oncology. PMID:26137905

  6. Performance simulation of a compact PET insert for simultaneous PET/MR breast imaging

    NASA Astrophysics Data System (ADS)

    Liang, Yicheng; Peng, Hao

    2014-07-01

    We studied performance metrics of a small PET ring designed to be integrated with a breast MRI coil. Its performance was characterized using a Monte Carlo simulation of a system with the best possible design features we believe are technically available, with respect to system geometry, spatial resolution, shielding, and lesion detectability. The results indicate that the proposed system is able to achieve about 6.2% photon detection sensitivity at the center of field-of-view (FOV) (crystal design: 2.2×2.2×20 mm3, height: 3.4 cm). The peak noise equivalent count rate (NECR) is found to be 7886 cps with a time resolution of 250 ps (time window: 500 ps). With the presence of lead shielding, the NECR increases by a factor of 1.7 for high activity concentrations within the breast (>0.9 μCi/mL), while no noticeable benefit is observed in the range of activities currently being used in the clinical setting. In addition, the system is able to achieve spatial resolution of ~1.6 mm (2.2×2.2×20 mm3 crystal) and ~0.77 mm (1×1×20 mm3 crystal) at the center of FOV, respectively. The incorporation of 10 mm DOI resolution can help mitigate parallax error towards the edge of FOV. For both 2.2 mm and 1 mm crystal designs, the spatial resolution is around 3.2-3.5 mm at 5 cm away from the center. Finally, time-of-flight (TOF) helps in improving image quality, reduces the required number of iteration numbers and the scan time. The TOF effect was studied with 3 different time resolution settings (1 ns, 500 ps and 250 ps). With a TOF of 500 ps time resolution, we expect 3 mm diameter spheres where 5:1 activity concentration ratio will be detectable within 5 min achieving contrast to noise ratio (CNR) above 4.

  7. Statistical fractal border features for MRI breast mass images

    NASA Astrophysics Data System (ADS)

    Penn, Alan I.; Bolinger, Lizann; Loew, Murray H.

    1998-06-01

    MRI has been proposed as an alternative method to mammography for detecting and staging breast cancer. Recent studies have shown that architectural features of breast masses may be useful in improving specificity. Since fractal dimension (fd) has been correlated with roughness, and border roughness is an indicator of malignancy, the fd of the mass border is a promising architectural feature for achieving improved specificity. Previous methods of estimating the fd of the mass border have been unreliable because of limited data or overlay restrictive assumptions of the fractal model. We present preliminary results of a statistical approach in which a sample space of fd estimates is generated from a family of self-affine fractal models. The fd of the mass border is then estimated from the statistics of the sample space.

  8. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  9. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  10. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  11. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  12. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  13. Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis

    PubMed Central

    Calligaris, David; Caragacianu, Diana; Liu, Xiaohui; Norton, Isaiah; Thompson, Christopher J.; Richardson, Andrea L.; Golshan, Mehra; Easterling, Michael L.; Santagata, Sandro; Dillon, Deborah A.; Jolesz, Ferenc A.; Agar, Nathalie Y. R.

    2014-01-01

    Distinguishing tumor from normal glandular breast tissue is an important step in breast-conserving surgery. Because this distinction can be challenging in the operative setting, up to 40% of patients require an additional operation when traditional approaches are used. Here, we present a proof-of-concept study to determine the feasibility of using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) for identifying and differentiating tumor from normal breast tissue. We show that tumor margins can be identified using the spatial distributions and varying intensities of different lipids. Several fatty acids, including oleic acid, were more abundant in the cancerous tissue than in normal tissues. The cancer margins delineated by the molecular images from DESI-MSI were consistent with those margins obtained from histological staining. Our findings prove the feasibility of classifying cancerous and normal breast tissues using ambient ionization MSI. The results suggest that an MS-based method could be developed for the rapid intraoperative detection of residual cancer tissue during breast-conserving surgery. PMID:25246570

  14. Background Parenchymal Uptake During Molecular Breast Imaging and Associated Clinical Factors

    PubMed Central

    Hruska, Carrie B.; Rhodes, Deborah J.; Conners, Amy Lynn; Jones, Katie N.; Carter, Rickey E.; Lingineni, Ravi K.; Vachon, Celine M.

    2015-01-01

    OBJECTIVE The purposes of this study were to describe the prevalence of background parenchymal uptake categories observed at screening molecular breast imaging (MBI) and to examine the association of background parenchymal uptake with mammographic density and other clinical factors. MATERIALS AND METHODS Adjunct MBI screening was performed for women with dense breasts on previous mammograms. Two radiologists reviewed images from the MBI examinations and subjectively categorized background parenchymal uptake into four groups: photopenic, minimal-mild, moderate, or marked. Women with breast implants or a personal history of breast cancer were excluded. The association between background parenchymal uptake categories and patient characteristics was examined with Kruskal-Wallis and chi-square tests as appropriate. RESULTS In 1149 eligible participants, background parenchymal uptake was photopenic in 252 (22%), minimal-mild in 728 (63%), and moderate or marked in 169 (15%). The distribution of categories differed across BI-RADS density categories (p < 0.0001). In 164 participants with extremely dense breasts, background parenchymal uptake was photopenic in 72 (44%), minimal-mild in 55 (34%), and moderate or marked in 37 (22%). The moderate-marked group was younger on average, more likely to be premenopausal or perimenopausal, and more likely to be using postmenopausal hormone therapy than the photopenic or minimal-mild groups (p < 0.0001). CONCLUSION Among women with similar-appearing mammographic density, background parenchymal uptake ranged from photopenic to marked. Background parenchymal uptake was associated with menopausal status and postmenopausal hormone therapy but not with premenopausal hormonal contraceptives, phase of menstrual cycle, or Gail model 5-year risk of breast cancer. Additional work is necessary to fully characterize the underlying cause of background parenchymal uptake and determine its utility in predicting subsequent risk of breast cancer. PMID

  15. Half-time Tc-99m sestamibi imaging with a direct conversion molecular breast imaging system

    PubMed Central

    2014-01-01

    Background In an effort to reduce necessary acquisition time to perform molecular breast imaging (MBI), we compared diagnostic performance of MBI performed with standard 10-min-per-view acquisitions and half-time 5-min-per-view acquisitions, with and without wide beam reconstruction (WBR) processing. Methods Eighty-two bilateral, two-view MBI studies were reviewed. Studies were performed with 300 MBq Tc-99 m sestamibi and a direct conversion molecular breast imaging (DC-MBI) system. Acquisitions were 10 min-per-view; the first half of each was extracted to create 5-min-per-view datasets, and WBR processing was applied. The 10-min-, 5-min-, and 5-min-per-view WBR studies were independently interpreted in a randomized, blinded fashion by two radiologists. Assessments of 1 to 5 were assigned; 4 and 5 were considered test positive. Background parenchymal uptake, lesion type, distribution of non-mass lesions, lesion intensity, and image quality were described. Results Considering detection of all malignant and benign lesions, 5 min-per-view MBI had lower sensitivity (mean of 70% vs. 85% (p ≤ 0.04) for two readers) and lower area under curve (AUC) (mean of 92.7 vs. 99.6, p ≤ 0.01) but had similar specificity (p = 1.0). WBR processing did not alter sensitivity, specificity, or AUC obtained at 5 min-per-view. Overall agreement in final assessment between 5-min-per-view and 10-min-per-view acquisition types was near perfect (κ = 0.82 to 0.89); however, fair to moderate agreement was observed for assessment category 3 (probably benign) (κ = 0.24 to 0.48). Of 33 malignant lesions, 6 (18%) were changed from assessment of 4 or 5 with 10-min-per-view MBI to assessment of 3 with 5-min-per-view MBI. Image quality of 5-min-per-view studies was reduced compared to 10-min-per-view studies for both readers (3.24 vs. 3.98, p < 0.0001 and 3.60 vs. 3.91, p < 0.0001). WBR processing improved image quality for one reader (3.85 vs. 3.24, p < 0

  16. Fluorescent Fructose Derivatives for Imaging Breast Cancer Cells

    PubMed Central

    Levi, Jelena; Cheng, Zhen; Gheysens, Olivier; Patel, Manish; Chan, Carmel T.; Wang, Yingbing; Namavari, Mohammad; Gambhir, Sanjiv Sam

    2014-01-01

    Breast cancer cells are known to overexpress Glut5, a sugar transporter responsible for the transfer of fructose across the cell membrane. Since Glut5 transporter is not significantly expressed in normal breast cells, fructose uptake can potentially be used to differentiate between normal and cancerous cells. Fructose was labeled with two fluorophores at the C-1 position: 7-nitro-1,2,3-benzadiazole (NBD) and Cy5.5. The labeling site was chosen on the basis of the presence and substrate specificity of the key proteins involved in the first steps of fructose metabolism. Using fluorescence microscopy, the uptake of the probes was studied in three breast cancer cell lines: MCF 7, MDA-MB-435, and MDA-MB-231. Both fluorescent fructose derivatives showed a very good uptake in all tested cell lines. The level of uptake was comparable to that of the corresponding glucose analogs, 2-NBDG and Cy5.5-DG. Significant uptake of 1-NBDF derivative was not observed in cells lacking Glut5 transporter, while the uptake of the 1-Cy5.5-DF derivative was independent of the presence of a fructose-specific transporter. While 1-NBDF showed Glut5-specific accumulation, the coupling of a large fluorophore such as Cy5.5 likely introduces big structural and electronic changes, leading to a fructose derivative that does not accurately describe the uptake of fructose in cells. PMID:17444608

  17. Stereotactic (Mammographically Guided) Breast Biopsy

    MedlinePlus

    ... Z Stereotactic Breast Biopsy Stereotactic breast biopsy uses mammography – a specific type of breast imaging that uses ... the breast are often detected by physical examination, mammography, or other imaging studies. However, it is not ...

  18. Segmentation of solid nodules in ultrasonographic breast image based on wavelet transform.

    PubMed

    Park, Sangyun; Kong, Hyoun-Joong; Moon, Woo Kyoung; Kim, Hee Chan

    2007-01-01

    An accurate segmentation of solid nodules in ultrasonographic (US) breast image is presented. 1-level 2-dimensional Discrete Wavelet Transform (DWT) is used to create features reflecting the texture information of the original image. Using these features, the texture classification is achieved. Finally, solid nodule region is segmented from the classified texture region. Proper threshold for texture classification is automatically decided. Empirically acquired information about the relationship between the texture characteristic of the original image and the optimal threshold is examined and used. Presented algorithm is applied to 284 malignant solid nodules and 300 benign solid nodules and the resulting images are presented. PMID:18003294

  19. Tomographic images of breast tissues obtained by Compton scattering: An analytical computational study

    NASA Astrophysics Data System (ADS)

    Antoniassi, M.; Poletti, M. E.; Brunetti, A.

    2015-11-01

    In this work, we studied by analytical simulation the potential of a Compton scatter technique for breast imaging application. A Compton scattering tomography system was computationally simulated in order to provide the projection data (scattering signal) for the image reconstructions. The simulated projections generated by the analytical proposed method were validated through comparison with those obtained by Monte Carlo simulation. Electron density images were obtained from the scattering signal using a reconstruction algorithm implemented for the system geometry. Finally, the quality of the reconstructed images was evaluated for different sample sizes, beam energies, and tissue compositions (glandularities).

  20. 3.0 Tesla vs 1.5 Tesla breast magnetic resonance imaging in newly diagnosed breast cancer patients

    PubMed Central

    Butler, Reni S; Chen, Christine; Vashi, Reena; Hooley, Regina J; Philpotts, Liane E

    2013-01-01

    AIM: To compare 3.0 Tesla (T) vs 1.5T magnetic resonance (MR) imaging systems in newly diagnosed breast cancer patients. METHODS: Upon Institutional Review Board approval, a Health Insurance Portability and Accountability Act-compliant retrospective review of 147 consecutive 3.0T MR examinations and 98 consecutive 1.5T MR examinations in patients with newly diagnosed breast cancer between 7/2009 and 5/2010 was performed. Eleven patients who underwent neoadjuvant chemotherapy in the 3.0T group were excluded. Mammographically occult suspicious lesions (BIRADS Code 4 and 5) additional to the index cancer in the ipsilateral and contralateral breast were identified. Lesion characteristics and pathologic diagnoses were recorded, and results achieved with both systems compared. Statistical significance was analyzed using Fisher’s exact test. RESULTS: In the 3.0T group, 206 suspicious lesions were identified in 55% (75/136) of patients and 96% (198/206) of these lesions were biopsied. In the 1.5T group, 98 suspicious lesions were identified in 53% (52/98) of patients and 90% (88/98) of these lesions were biopsied. Biopsy results yielded additional malignancies in 24% of patients in the 3.0T group vs 14% of patients in the 1.5T group (33/136 vs 14/98, P = 0.07). Average size and histology of the additional cancers was comparable. Of patients who had a suspicious MR imaging study, additional cancers were found in 44% of patients in the 3.0T group vs 27% in the 1.5T group (33/75 vs 14/52, P = 0.06), yielding a higher positive predictive value (PPV) for biopsies performed with the 3.0T system. CONCLUSION: 3.0T MR imaging detected more additional malignancies in patients with newly diagnosed breast cancer and yielded a higher PPV for biopsies performed with the 3.0T system. PMID:24003354

  1. Prognosis of invasive breast cancer after adjuvant therapy evaluated with VEGF microvessel density and microvascular imaging.

    PubMed

    Li, Ying; Wei, Xi; Zhang, Sheng; Zhang, Jin

    2015-11-01

    The aim of this study was to investigate the role of ultrasonographic microvascular imaging in the evaluation of prognosis of patients with invasive breast cancer treated by adjuvant therapies. A total of 121 patients with invasive breast cancer underwent ultrasonographic contrast-enhanced imaging, vascular endothelial growth factor (VEGF) staining, and microvessel density (MVD) counts. The parameters of microvascular imaging and the expression of VEGF and MVD in primary breast cancer were calculated. The correlation between these factors and the overall and progression-free survival rate were analyzed using the Kaplan-Meier method. Among 121 cases, the positive VEGF cases were 75 and negative ones were 46. The cut point of 52.3 was calculated by the regressive curve for MVD counts. The data showed the mean intensity (MI) was positively associated with both the MVD counts (r = .51, p < .001) and VEGF expression (r = .35, p < .001). For the prognosis of patients, high VEGF expression and MVD counts were associated with reduced progressive and survival times (PFS, p = .032 and p = .034; OS, p = .041 and p = .038, respectively). The correlation between parameters of microvascular imaging, VEGF expressive status, and the MVD counts were established. The cut point of mean intensity (MI = 40) was used to investigate as an independent predictor for PFS (p = .021) and OS (p = .025), respectively, due to a strong correlation between MVD counts and VEGF expression in patients with invasive breast cancer. The microvascular imaging could be a visual and helpful tool to predict the prognosis of patients with invasive breast cancer treated by adjuvant therapies. PMID:26052072

  2. Automated segmentation of breast in 3-D MR images using a robust atlas.

    PubMed

    Khalvati, Farzad; Gallego-Ortiz, Cristina; Balasingham, Sharmila; Martel, Anne L

    2015-01-01

    This paper presents a robust atlas-based segmentation (ABS) algorithm for segmentation of the breast boundary in 3-D MR images. The proposed algorithm combines the well-known methodologies of ABS namely probabilistic atlas and atlas selection approaches into a single framework where two configurations are realized. The algorithm uses phase congruency maps to create an atlas which is robust to intensity variations. This allows an atlas derived from images acquired with one MR imaging sequence to be used to segment images acquired with a different MR imaging sequence and eliminates the need for intensity-based registration. Images acquired using a Dixon sequence were used to create an atlas which was used to segment both Dixon images (intra-sequence) and T1-weighted images (inter-sequence). In both cases, highly accurate results were achieved with the median Dice similarity coefficient values of 94% ±4% and 87 ±6.5%, respectively. PMID:25137725

  3. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status.

    PubMed

    Pais, Adi; Degani, Hadassa

    2016-01-01

    The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors' ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this

  4. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status

    PubMed Central

    Pais, Adi; Degani, Hadassa

    2016-01-01

    The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors’ ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this

  5. Contrast-enhanced ultrasound improved performance of breast imaging reporting and data system evaluation of critical breast lesions

    PubMed Central

    Luo, Jun; Chen, Ji-Dong; Chen, Qing; Yue, Lin-Xian; Zhou, Guo; Lan, Cheng; Li, Yi; Wu, Chi-Hua; Lu, Jing-Qiao

    2016-01-01

    AIM: To determine whether contrast-enhanced ultrasound (CEUS) can improve the precision of breast imaging reporting and data system (BI-RADS) categorization. METHODS: A total of 230 patients with 235 solid breast lesions classified as BI-RADS 4 on conventional ultrasound were evaluated. CEUS was performed within one week before core needle biopsy or surgical resection and a revised BI-RADS classification was assigned based on 10 CEUS imaging characteristics. Receiver operating characteristic curve analysis was then conducted to evaluate the diagnostic performance of CEUS-based BI-RADS assignment with pathological examination as reference criteria. RESULTS: The CEUS-based BI-RADS evaluation classified 116/235 (49.36%) lesions into category 3, 20 (8.51%), 13 (5.53%) and 12 (5.11%) lesions into categories 4A, 4B and 4C, respectively, and 74 (31.49%) into category 5. Selecting CEUS-based BI-RADS category 4A as an appropriate cut-off gave sensitivity and specificity values of 85.4% and 87.8%, respectively, for the diagnosis of malignant disease. The cancer-to-biopsy yield was 73.11% with CEUS-based BI-RADS 4A selected as the biopsy threshold compared with 40.85% otherwise, while the biopsy rate was only 42.13% compared with 100% otherwise. Overall, only 4.68% of invasive cancers were misdiagnosed. CONCLUSION: This pilot study suggests that evaluation of BI-RADS 4 breast lesions with CEUS results in reduced biopsy rates and increased cancer-to-biopsy yields. PMID:27358689

  6. Fusion of digital breast tomosynthesis images via wavelet synthesis for improved lesion conspicuity

    NASA Astrophysics Data System (ADS)

    Hariharan, Harishwaran; Pomponiu, Victor; Zheng, Bin; Whiting, Bruce; Gur, David

    2014-03-01

    Full-field digital mammography (FFDM) is the most common screening procedure for detecting early breast cancer. However, due to complications such as overlapping breast tissue in projection images, the efficacy of FFDM reading is reduced. Recent studies have shown that digital breast tomosynthesis (DBT), in combination with FFDM, increases detection sensitivity considerably while decreasing false-positive, recall rates. There is a huge interest in creating diagnostically accurate 2-D interpretations from the DBT slices. Most of the 2-D syntheses rely on visualizing the maximum intensities (brightness) from each slice through different methods. We propose a wavelet based fusion method, where we focus on preserving holistic information from larger structures such as masses while adding high frequency information that is relevant and helpful for diagnosis. This method enables the spatial generation of a 2D image from a series of DBT images, each of which contains both smooth and coarse structures distributed in the wavelet domain. We believe that the wavelet-synthesized images, generated from their DBT image datasets, provide radiologists with improved lesion and micro-calcification conspicuity as compared with FFDM images. The potential impact of this fusion method is (1) Conception of a device-independent, data-driven modality that increases the conspicuity of lesions, thereby facilitating early detection and potentially reducing recall rates; (2) Reduction of the accompanying radiation dose to the patient.

  7. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    PubMed Central

    Campbell, DL; Peterson, TE

    2014-01-01

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140-keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a −5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time. PMID:25360792

  8. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Campbell, D. L.; Peterson, T. E.

    2014-11-01

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140 keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a -5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time.

  9. Detection of breast surgical margins with optical coherence tomography imaging: a concept evaluation study

    NASA Astrophysics Data System (ADS)

    Savastru, Dan; Chang, Ernest W.; Miclos, Sorin; Pitman, Martha B.; Patel, Ankit; Iftimia, Nicusor

    2014-05-01

    This study aimed to evaluate the concept of using high-resolution optical coherence tomography (OCT) imaging to rapidly assess surgical specimens and determine if cancer positive margins were left behind in the surgical bed. A mouse model of breast cancer was used in this study. Surgical specimens from 30 animals were investigated with OCT and automated interpretation of the OCT images was performed and tested against histopathology findings. Specimens from 10 animals were used to build a training set of OCT images, while the remaining 20 specimens were used for a validation set of images. The validation study showed that automated interpretation of OCT images can differentiate tissue types and detect cancer positive margins with at least 81% sensitivity and 89% specificity. The findings of this pilot study suggest that OCT imaging of surgical specimens and automated interpretation of OCT data may enable in the future real-time feedback to the surgeon about margin status in patients with breast cancer, and potentially with other types of cancers. Currently, such feedback is not provided and if positive margins are left behind, patients have to undergo another surgical procedure. Therefore, this approach can have a potentially high impact on breast surgery outcome.

  10. Development of a hand-held 3D photoacoustic imaging system for breast cancer detection

    NASA Astrophysics Data System (ADS)

    Al-Aabed, Hazem; Roumeliotis, Michael; Carson, Jeffrey J. L.

    2010-06-01

    Photoacoustic (PA) imaging is a non-invasive imaging modality that employs non-ionizing near infrared (NIR) laser light to obtain optical images of tissues with depth penetration and resolution comparable to ultrasound imaging. PA images are created by illuminating tissues with a short laser pulse (~10 ns), which causes optically absorbing structures to heat up slightly, but so rapidly that conditions of thermal and stress confinement are met and the structure emits a pressure wave at ultrasonic frequencies. Detection of the pressure waves at the tissue surface with an ultrasound transducer array provides the data needed to reconstruct the distribution of light-absorbing structures within the tissue. Since it is recognized that cancerous breast lesions absorb light to a greater degree than surrounding normal tissue, PA imaging is a viable candidate for detection of lesions within the intact human breast. Therefore, we have constructed a transportable PA imaging system suitable for breast imaging. The system incorporates a hand-held transducer array with 30 detector elements arranged on a ring. Laser light is delivered coaxially in relation to the ring using a fiber optic light guide. The supporting hardware includes a NIR tuneable laser, transducer cabling, 30 preamplifiers, 30 independent data acquisition channels with onboard memory, and a computer with control and image reconstruction software. Initial tests with the transducer array suggest that it has sufficient sensitivity to detect optically absorbent objects on the order of 1- mm at a depth of 2 cm. It is anticipated that a small hand-held PA imaging unit will be amenable to patient work-up and would complement standard ultrasound imaging.

  11. An image, looking east into Room 112A, filled with technical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    An image, looking east into Room 112A, filled with technical equipment pertinent to the building's recent use - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH

  12. A mathematical model platform for optimizing a multiprojection breast imaging system

    SciTech Connect

    Chawla, Amarpreet S.; Samei, Ehsan; Saunders, Robert S.; Lo, Joseph Y.; Baker, Jay A.

    2008-04-15

    Multiprojection imaging is a technique in which a plurality of digital radiographic images of the same patient are acquired within a short interval of time from slightly different angles. Information from each image is combined to determine the final diagnosis. Projection data are either reconstructed into slices as in the case of tomosynthesis or analyzed directly as in the case of multiprojection correlation imaging technique, thereby avoiding reconstruction artifacts. In this study, the authors investigated the optimum geometry of acquisitions of a multiprojection breast correlation imaging system in terms of the number of projections and their total angular span that yield maximum performance in a task that models clinical decision. Twenty-five angular projections of each breast from 82 human subjects in our breast tomosynthesis database were each supplemented with a simulated 3 mm mass. An approach based on Laguerre-Gauss channelized Hotelling observer was developed to assess the detectability of the mass in terms of receiver operating characteristic (ROC) curves. Two methodologies were developed to integrate results from individual projections into one combined ROC curve as the overall figure of merit. To optimize the acquisition geometry, different components of acquisitions were changed to investigate which one of the many possible configurations maximized the area under the combined ROC curve. Optimization was investigated under two acquisition dose conditions corresponding to a fixed total dose delivered to the patient and a variable dose condition, based on the number of projections used. In either case, the detectability was dependent on the number of projections used, the total angular span of those projections, and the acquisition dose level. In the first case, the detectability approximately followed a bell curve as a function of the number of projections with the maximum between 8 and 16 projections spanning angular arcs of about 23 deg. - 45 deg

  13. A case of a giant pseudoangiomatous stromal hyperplasia of the breast: magnetic resonance imaging findings.

    PubMed

    Solomou, Ekaterini; Kraniotis, Pantelis; Patriarcheas, Georgios

    2012-04-12

    Pseudoangiomatous stromal hyperplasia (PASH) of the breast is a benign myofibroblastic process. We present the case of a 17-year-old girl who underwent diagnostic work-up due to an enlargement of her left breast. She was submitted to ultrasounds and magnetic resonance imaging (MRI) which depicted a 14 cm lesion in her left breast. The patient was later operated and histology revealed PASH. Although PASH may range from 0.6-12 cm, a few lesions over 12 cm have been described, the largest being 20 cm. Large series present mammographic and ultrasonographic features of PASH in the literature, but little has been reported on the MR characteristics of PASH up to today. Signal on the T1-weighted image (T1WI) and T2-weighted image (T2WI) may vary. Curves generated from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies are mainly type I or less frequently type II. There are no reports about diffusion-weighted imaging and corresponding apparent diffusion coefficient (ADC) values for PASH in the literature. ADC values in our case lie within the range of values reported for other benign breast lesions. The presence of slit-like spaces within the lesion on MR imaging along with DCE-MRI type I curve and ADC values consistent with a benign lesion may favour the diagnosis of PASH. Tissue biopsy is necessary, however for the final diagnosis. This case report will further contribute to the understanding of MR imaging features of PASH, especially in cases where mammography is not indicated. PMID:22826780

  14. [Use of imaging methods in the current screening, diagnostics and treatment of breast cancer - Professional guidelines. 3rd Breast Cancer Consensus Meeting].

    PubMed

    Forrai, Gábor; Ambrózay, Éva; Bidlek, Mária; Borbély, Katalin; Kovács, Eszter; Lengyel, Zsolt; Ormándi, Katalin; Péntek, Zoltán; Riedl, Erika; Sebõ, Éva; Szabó, Éva

    2016-09-01

    Breast radiologists and nuclear medical specialists have refreshed their previous statement text during the 3rd Hungarian Breast Cancer Consensus Meeting. They suggest taking into consideration this actual protocol for the screening, diagnostics and treatment of breast tumors, from now on. This recommendation includes the description of the newest technologies, the recent results of scientific research, as well as the role of imaging methods in the therapeutic processes and the follow-up. Suggestions for improvement of the Hungarian current practice and other related issues as forensic medicine, media connections, regulations, and reimbursement are also detailed. The statement text has been cross-checked with the related medical disciplines. PMID:27579719

  15. Three-Dimensional Microwave Breast Imaging: Dispersive Dielectric Properties Estimation using Patient-Specific Basis Functions

    PubMed Central

    Winters, David W.; Shea, Jacob D.; Kosmas, Panagiotis; Van Veen, Barry D.; Hagness, Susan C.

    2009-01-01

    Breast imaging via microwave tomography involves estimating the distribution of dielectric properties within the patient's breast on a discrete mesh. The number of unknowns in the discrete mesh can be very large for three-dimensional imaging, and this results in computational challenges. We propose a new approach where the discrete mesh is replaced with a relatively small number of smooth basis functions. The dimension of the tomography problem is reduced by estimating the coefficients of the basis functions instead of the dielectric properties at each element in the discrete mesh. The basis functions are constructed using knowledge of the location of the breast surface. The number of functions used in the basis can be varied to balance resolution and computational complexity. The reduced dimension of the inverse problem enables application of a computationally efficient, multiple-frequency inverse scattering algorithm in 3-D. The efficacy of the proposed approach is verified using two 3-D anatomically realistic numerical breast phantoms. It is shown for the case of single-frequency microwave tomography that the imaging accuracy is comparable to that obtained when the original discrete mesh is used, despite the reduction of the dimension of the inverse problem. Results are also shown for a multiple-frequency algorithm where it is computationally challenging to use the original discrete mesh. PMID:19211350

  16. Classification of benign and malignant breast masses based on shape and texture features in sonography images.

    PubMed

    Zakeri, Fahimeh Sadat; Behnam, Hamid; Ahmadinejad, Nasrin

    2012-06-01

    The purpose of this research was evaluating novel shape and texture feature' efficiency in classification of benign and malignant breast masses in sonography images. First, mass regions were extracted from the region of interest (ROI) sub-image by implementing a new hybrid segmentation approach based on level set algorithms. Then two left and right side areas of the masses are elicited. After that, six features (Eccentricity_feature, Solidity_feature, DeferenceArea_Hull_Rectangular, DeferenceArea_Mass_Rectangular, Cross-correlation-left and Cross-correlation-right) based on shape, texture and region characteristics of the masses were extracted for further classification. Finally a support vector machine (SVM) classifier was utilized to classify breast masses. The leave-one-case-out protocol was utilized on a database of eighty pathologically-proven breast sonographic images of patients (forty-seven benign cases and thirty-three malignant cases) to evaluate our method. The classification results showed an overall accuracy of 95.00%, sensitivity of 90.91%, specificity of 97.87%, positive predictive value of 96.77%, negative predictive value of 93.88%, and Matthew's correlation coefficient of 89.71%. The experimental results declare that our proposed method is actually a beneficial tool for the diagnosis of the breast cancer and can provide a second opinion for a physician's decision or can be used for the medicine training especially when coupled with other modalities. PMID:21082222

  17. Three-dimensional Breast Imaging with Full Field Digital Mammography Tomosynthesis

    NASA Astrophysics Data System (ADS)

    Eberhard, Jeffrey W.

    2003-03-01

    Although conventional film-screen mammography is the clinical modality of choice for early detection of breast cancer, many cancers are missed because they are masked by radiographically dense fibroglandular breast tissue which may be overlying or surrounding the tumor. The superposition of 3D breast anatomy in a standard 2D x-ray projection is perhaps the most significant problem in mammography today. GE Global Research has developed a new 3D full field digital mammography tomosynthesis prototype system that directly addresses the superimposed tissue problem by enabling volumetric imaging of the breast. High performance digital detectors with low electronic noise and fast read-out times, new reconstruction algorithms customized for tomosynthesis acquisitions, and application of volume rendering methods to enable rapid, effective review of 3D data are among the key enabling technologies for tomosynthesis. Phantom studies have demonstrated significantly enhanced performance of tomosynthesis compared to standard digital mammography exams. Over 200 patients have been imaged with a prototype system. Typical patient images will be shown.

  18. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging.

    PubMed

    Willner, M; Herzen, J; Grandl, S; Auweter, S; Mayr, D; Hipp, A; Chabior, M; Sarapata, A; Achterhold, K; Zanette, I; Weitkamp, T; Sztrókay, A; Hellerhoff, K; Reiser, M; Pfeiffer, F

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method's prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography. PMID:24614413

  19. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  20. Quantum dots-based double-color imaging of HER2 positive breast cancer invasion

    SciTech Connect

    Liu, Xiu-Li; Peng, Chun-Wei; Chen, Chuang; Yang, Xue-Qin; Hu, Ming-Bai; Xia, He-Shun; Liu, Shao-Ping; and others

    2011-06-10

    Highlights: {yields} HER2 level is closely related to the biologic behaviors of breast cancer cells. {yields} A new method to simultaneously image HER2 and type IV collagen was established. {yields} HER2 status and type IV collagen degradation predict breast cancer invasion. {yields} The complex interactions between tumor and its environment were revealed. -- Abstract: It has been well recognized that human epidermal growth factor receptor 2 (HER2) level in breast cancer (BC) is closely related to the malignant biologic behaviors of the tumor, including invasion and metastasis. Yet, there has been a lack of directly observable evidence to support such notion. Here we report a quantum dots (QDs)-based double-color imaging technique to simultaneously show the HER2 level on BC cells and the type IV collagen in the tumor matrix. In benign breast tumor, the type IV collagen was intact. With the increasing of HER2 expression level, there has been a progressive decrease in type IV collagen around the cancer nest. At HER2 (3+) expression level, there has virtually been a total destruction of type IV collagen. Moreover, HER2 (3+) BC cells also show direct invasion into the blood vessels. This novel imaging method provides direct observable evidence to support the theory that the HER2 expression level is directly related to BC invasion.

  1. Development of a multi-spectral, multi-geometry computational model for X-ray breast imaging.

    PubMed

    Buls, N; Wathion, I; Mommaerts, L; Breucq, C; de Mey, J

    2010-01-01

    The introduction of novel applications in X-ray breast imaging warrants new research for image acquisition optimisation. A simulation model was developed to investigate the influence of different imaging techniques and acquisition parameters. It was modelled in Monte Carlo N-Particle Extended and contains an X-ray tube with photon production, a breast model and antiscatter grid model. This paper describes the simulation model, compares the results with experimental and literature data and presents the influence of breast and antiscatter grid parameters on scatter radiation. PMID:20159925

  2. Datamining approach for automation of diagnosis of breast cancer in immunohistochemically stained tissue microarray images.

    PubMed

    Prasad, Keerthana; Zimmermann, Bernhard; Prabhu, Gopalakrishna; Pai, Muktha

    2010-01-01

    Cancer of the breast is the second most common human neoplasm, accounting for approximately one quarter of all cancers in females after cervical carcinoma. Estrogen receptor (ER), Progesteron receptor and human epidermal growth factor receptor (HER-2/neu) expressions play an important role in diagnosis and prognosis of breast carcinoma. Tissue microarray (TMA) technique is a high throughput technique which provides a standardized set of images which are uniformly stained, facilitating effective automation of the evaluation of the specimen images. TMA technique is widely used to evaluate hormone expression for diagnosis of breast cancer. If one considers the time taken for each of the steps in the tissue microarray process workflow, it can be observed that the maximum amount of time is taken by the analysis step. Hence, automated analysis will significantly reduce the overall time required to complete the study. Many tools are available for automated digital acquisition of images of the spots from the microarray slide. Each of these images needs to be evaluated by a pathologist to assign a score based on the staining intensity to represent the hormone expression, to classify them into negative or positive cases. Our work aims to develop a system for automated evaluation of sets of images generated through tissue microarray technique, representing the ER expression images and HER-2/neu expression images. Our study is based on the Tissue Microarray Database portal of Stanford university at http://tma.stanford.edu/cgi-bin/cx?n=her1, which has made huge number of images available to researchers. We used 171 images corresponding to ER expression and 214 images corresponding to HER-2/neu expression of breast carcinoma. Out of the 171 images corresponding to ER expression, 104 were negative and 67 were representing positive cases. Out of the 214 images corresponding to HER-2/neu expression, 112 were negative and 102 were representing positive cases. Our method has 92

  3. An imaging evaluation of the simultaneously integrated boost breast radiotherapy technique

    SciTech Connect

    Turley, Jessica; Claridge Mackonis, Elizabeth

    2015-09-15

    To evaluate in-field megavoltage (MV) imaging of simultaneously integrated boost (SIB) breast fields to determine its feasibility in treatment verification for the SIB breast radiotherapy technique, and to assess whether the current-imaging protocol and treatment margins are sufficient. For nine patients undergoing SIB breast radiotherapy, in-field MV images of the SIB fields were acquired on days that regular treatment verification imaging was performed. The in-field images were matched offline according to the scar wire on digitally reconstructed radiographs. The offline image correction results were then applied to a margin recipe formula to calculate safe margins that account for random and systematic uncertainties in the position of the boost volume when an offline correction protocol has been applied. After offline assessment of the acquired images, 96% were within the tolerance set in the current department-imaging protocol. Retrospectively performing the maximum position deviations on the Eclipse™ treatment planning system demonstrated that the clinical target volume (CTV) boost received a minimum dose difference of 0.4% and a maximum dose difference of 1.4% less than planned. Furthermore, applying our results to the Van Herk margin formula to ensure that 90% of patients receive 95% of the prescribed dose, the calculated CTV margins were comparable to the current departmental procedure used. Based on the in-field boost images acquired and the feasible application of these results to the margin formula the current CTV-planning target volume margins used are appropriate for the accurate treatment of the SIB boost volume without additional imaging.

  4. Noninvasive enhanced mid-IR imaging of breast cancer development in vivo.

    PubMed

    Case, Jason R; Young, Madison A; Dréau, D; Trammell, Susan R

    2015-11-01

    Lumpectomy coupled with radiation therapy and/or chemotherapy is commonly used to treat breast cancer patients. We are developing an enhanced thermal IR imaging technique that has the potential to provide real-time imaging to guide tissue excision during a lumpectomy by delineating tumor margins. This enhanced thermal imaging method is a combination of IR imaging (8 to 10  μm ) and selective heating of blood (∼0.5°C ) relative to surrounding water-rich tissue using LED sources at low powers. Postacquisition processing of these images highlights temporal changes in temperature and the presence of vascular structures. In this study, fluorescent, standard thermal, and enhanced thermal imaging modalities, as well as physical caliper measurements, were used to monitor breast cancer tumor volumes over a 30-day study period in 19 mice implanted with 4T1-RFP tumor cells. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after day 22. The tumor volumes estimated from enhanced thermal imaging, standard thermal imaging, and caliper measurements all show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging, standard IR imaging, and caliper measurements with enhanced thermal imaging, indicating that enhanced thermal imaging monitors tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses associated with the tumor margin. In the future, this IR technique might be used to estimate tumor margins in real time during surgical procedures. PMID:26524680

  5. Noninvasive enhanced mid-IR imaging of breast cancer development in vivo

    NASA Astrophysics Data System (ADS)

    Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.

    2015-11-01

    Lumpectomy coupled with radiation therapy and/or chemotherapy is commonly used to treat breast cancer patients. We are developing an enhanced thermal IR imaging technique that has the potential to provide real-time imaging to guide tissue excision during a lumpectomy by delineating tumor margins. This enhanced thermal imaging method is a combination of IR imaging (8 to 10 μm) and selective heating of blood (˜0.5°C) relative to surrounding water-rich tissue using LED sources at low powers. Postacquisition processing of these images highlights temporal changes in temperature and the presence of vascular structures. In this study, fluorescent, standard thermal, and enhanced thermal imaging modalities, as well as physical caliper measurements, were used to monitor breast cancer tumor volumes over a 30-day study period in 19 mice implanted with 4T1-RFP tumor cells. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after day 22. The tumor volumes estimated from enhanced thermal imaging, standard thermal imaging, and caliper measurements all show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging, standard IR imaging, and caliper measurements with enhanced thermal imaging, indicating that enhanced thermal imaging monitors tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses associated with the tumor margin. In the future, this IR technique might be used to estimate tumor margins in real time during surgical procedures.

  6. Approach to MR Imaging of the Elbow and Wrist: Technical Aspects and Innovation.

    PubMed

    Johnson, Dustin; Stevens, Kathryn J; Riley, Geoffrey; Shapiro, Lauren; Yoshioka, Hiroshi; Gold, Garry E

    2015-08-01

    Wrist and elbow MR imaging technology is advancing at a dramatic rate. Wrist and elbow MR imaging is performed at medium and higher field strengths with more specialized surface coils and more variable pulse sequences and postprocessing techniques. High field imaging and improved coils lead to an increased signal-to-noise ratio and increased variety of soft tissue contrast options. Three-dimensional imaging is improving in terms of usability and artifacts. Some of these advances have challenges in wrist and elbow imaging, such as postoperative patient imaging, cartilage mapping, and molecular imaging. This review considers technical advances in hardware and software and their clinical applications. PMID:26216768

  7. A PC-controlled microwave tomographic scanner for breast imaging

    NASA Astrophysics Data System (ADS)

    Padhi, Shantanu; Howard, John; Fhager, A.; Bengtsson, Sebastian

    2011-01-01

    This article presents the design and development of a personal computer based controller for a microwave tomographic system for breast cancer detection. The system uses motorized, dual-polarized antennas and a custom-made GUI interface to control stepper motors, a wideband vector network analyzer (VNA) and to coordinate data acquisition and archival in a local MDSPlus database. Both copolar and cross-polar scattered field components can be measured directly. Experimental results are presented to validate the various functionalities of the scanner.

  8. Axial Shear Strain Imaging for Differentiating Benign and Malignant Breast Masses

    PubMed Central

    Xu, Haiyan; Rao, Min; Varghese, Tomy; Sommer, Amy; Baker, Sara; Hall, Timothy J; Sisney, Gale A; Burnside, Elizabeth S

    2010-01-01

    Axial strain imaging has been utilized for the characterization of breast masses for over a decade; however, another important feature namely the shear strain distribution around breast masses has only recently been used. In this paper, we examine the feasibility of utilizing in-vivo axial-shear strain imaging for differentiating benign from malignant breast masses. Radiofrequency data was acquired using a VFX 13-5 linear array transducer on 41 patients using a Siemens SONOLINE Antares real-time clinical scanner at the University of Wisconsin Breast Cancer Center. Free-hand palpation using deformations of up to 10% was utilized to generate axial strain and axial-shear strain images using a two-dimensional cross-correlation algorithm from the radiofrequency data loops. Axial-shear strain areas normalized to the lesion size, applied strain and lesion strain contrast was utilized as a feature for differentiating benign from malignant masses. The normalized axial-shear strain area feature estimated on 8 patients with malignant tumors and 33 patients with fibroadenomas was utilized to demonstrate its potential for lesion differentiation. Biopsy results were considered the diagnostic standard for comparison. Our results indicate that the normalized axial-shear strain area is significantly larger for malignant tumors when compared to benign masses such as fibroadenomas. Axial-shear strain pixel values greater than a specified threshold, including only those with correlation coefficient values greater than 0.75, were overlaid on the corresponding B-mode image to aid in diagnosis. A scatter plot of the normalized area feature demonstrates the feasibility of developing a linear classifier to differentiate benign from malignant masses. The area under the receiver operator characteristic curve utilizing the normalized axial-shear strain area feature was 0.996, demonstrating the potential of this feature to noninvasively differentiate between benign and malignant breast masses

  9. A multi-image approach to CADx of breast cancer with integration into PACS

    NASA Astrophysics Data System (ADS)

    Elter, Matthias; Wittenberg, Thomas; Schulz-Wendtland, Rüdiger; Deserno, Thomas M.

    2009-02-01

    While screening mammography is accepted as the most adequate technique for the early detection of breast cancer, its low positive predictive value leads to many breast biopsies performed on benign lesions. Therefore, we have previously developed a knowledge-based system for computer-aided diagnosis (CADx) of mammographic lesions. It supports the radiologist in the discrimination of benign and malignant lesions. So far, our approach operates on the lesion level and employs the paradigm of content-based image retrieval (CBIR). Similar lesions with known diagnosis are retrieved automatically from a library of references. However, radiologists base their diagnostic decisions on additional resources, such as related mammographic projections, other modalities (e.g. ultrasound, MRI), and clinical data. Nonetheless, most CADx systems disregard the relation between the craniocaudal (CC) and mediolateral-oblique (MLO) views of conventional mammography. Therefore, we extend our approach to the full case level: (i) Multi-frame features are developed that jointly describe a lesion in different views of mammography. Taking into account the geometric relation between different images, these features can also be extracted from multi-modal data; (ii) the CADx system architecture is extended appropriately; (iii) the CADx system is integrated into the radiology information system (RIS) and the picture archiving and communication system (PACS). Here, the framework for image retrieval in medical applications (IRMA) is used to support access to the patient's health care record. Of particular interest is the application of the proposed CADx system to digital breast tomosynthesis (DBT), which has the potential to succeed digital mammography as the standard technique for breast cancer screening. The proposed system is a natural extension of CADx approaches that integrate only two modalities. However, we are still collecting a large enough database of breast lesions with images from

  10. A Model for Diagnosing Breast Cancerous Tissue from Thermal Images Using Active Contour and Lyapunov Exponent

    PubMed Central

    GHAYOUMI ZADEH, Hossein; HADDADNIA, Javad; MONTAZERI, Alimohammad

    2016-01-01

    Background: The segmentation of cancerous areas in breast images is important for the early detection of disease. Thermal imaging has advantages, such as being non-invasive, non-radiation, passive, quick, painless, inexpensive, and non-contact. Imaging technique is the focus of this research. Methods: The proposed model in this paper is a combination of surf and corners that are very resistant. Obtained features are resistant to changes in rotation and revolution then with the help of active contours, this feature has been used for segmenting cancerous areas. Results: Comparing the obtained results from the proposed method and mammogram show that proposed method is Accurate and appropriate. Benign and malignance of segmented areas are detected by Lyapunov exponent. Values obtained include TP=91.31%, FN=8.69%, FP=7.26%. Conclusion: The proposed method can classify those abnormally segmented areas of the breast, to the Benign and malignant cancer. PMID:27398339

  11. Performance comparison of breast imaging modalities using a 4AFC human observer study

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Rashidnasab, Alaleh; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde; Segars, William P.; Wells, Kevin

    2015-03-01

    This work compares the visibility of spheres and simulated masses in 2D-mammography and tomosynthesis systems using human observer studies. Performing comparison studies between breast imaging systems poses a number of practical challenges within a clinical environment. We therefore adopted a simulation approach which included synthetic breast blocks, a validated lesion simulation model and a set of validated image modelling tools as a viable alternative to clinical trials. A series of 4-alternative forced choice (4AFC) human observer experiments has been conducted for signal detection tasks using masses and spheres as targets. Five physicists participated in the study viewing images with a 5mm target at a range of contrast levels and 60 trials per experimental condition. The results showed that tomosynthesis has a lower threshold contrast than 2D-mammography for masses and spheres, and that detection studies using spheres may produce overly-optimistic threshold contrast values.

  12. Imaging Findings of Plasmacytoma of Both Breasts as a Preceding Manifestation of Multiple Myeloma

    PubMed Central

    Park, Young Mi

    2016-01-01

    Breast plasmacytoma is an extremely rare tumor. It can occur as a primary isolated tumor or as an extramedullary manifestation in multiple myeloma. This report describes the unusual case of a primary extramedullary plasmacytoma that progressed to multiple myeloma within 15 months in a 35-year-old woman. The patient had been initially diagnosed with a primary extramedullary plasmacytoma of the epidural soft tissue at the cervical 6-thoracic 1 spine level and the stomach. The patient had received chemotherapy and the disease had been in remission. One year later, the disease recurred, affecting both breasts, right clavicle, and orbit. Three months later, the disease had progressed to multiple myeloma. I report this case, focusing on the findings of mammography, ultrasonography, magnetic resonance imaging, and positron emission tomography of bilateral breast plasmacytoma, and provide a review of the literature. PMID:26925106

  13. A new test phantom with different breast tissue compositions for image quality assessment in conventional and digital mammography

    NASA Astrophysics Data System (ADS)

    Pachoud, Marc; Lepori, D.; Valley, Jean-François; Verdun, Francis R.

    2004-12-01

    Our objective is to describe a new test phantom that permits the objective assessment of image quality in conventional and digital mammography for different types of breast tissue. A test phantom, designed to represent a compressed breast, was made from tissue equivalent materials. Three separate regions, with different breast tissue compositions, are used to evaluate low and high contrast resolution, spatial resolution and image noise. The phantom was imaged over a range of kV using a Contour 2000 (Bennett) mammography unit with a Kodak MinR 2190-MinR L screen film combination and a Senograph 2000D (General Electric) digital mammography unit. Objective image quality assessments for different breast tissue compositions were performed using the phantom for conventional and digital mammography. For a similar mean glandular dose (MGD), the digital system gives a significantly higher contrast-to-noise ratio (CNR) than the screen film system for 100% glandular tissue. In conclusion, in mammography, a range of exposure conditions is used for imaging because of the different breast tissue compositions encountered clinically. Ideally, the patient dose image quality relationship should be optimized over the range of exposure conditions. The test phantom presented in this work permits image quality parameters to be evaluated objectively for three different types of breast tissue. Thus, it is a useful tool for optimizing the patient dose image quality relationship.

  14. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy

    SciTech Connect

    Aghaei, Faranak; Tan, Maxine; Liu, Hong; Zheng, Bin; Hollingsworth, Alan B.; Qian, Wei

    2015-11-15

    Purpose: To identify a new clinical marker based on quantitative kinetic image features analysis and assess its feasibility to predict tumor response to neoadjuvant chemotherapy. Methods: The authors assembled a dataset involving breast MR images acquired from 68 cancer patients before undergoing neoadjuvant chemotherapy. Among them, 25 patients had complete response (CR) and 43 had partial and nonresponse (NR) to chemotherapy based on the response evaluation criteria in solid tumors. The authors developed a computer-aided detection scheme to segment breast areas and tumors depicted on the breast MR images and computed a total of 39 kinetic image features from both tumor and background parenchymal enhancement regions. The authors then applied and tested two approaches to classify between CR and NR cases. The first one analyzed each individual feature and applied a simple feature fusion method that combines classification results from multiple features. The second approach tested an attribute selected classifier that integrates an artificial neural network (ANN) with a wrapper subset evaluator, which was optimized using a leave-one-case-out validation method. Results: In the pool of 39 features, 10 yielded relatively higher classification performance with the areas under receiver operating characteristic curves (AUCs) ranging from 0.61 to 0.78 to classify between CR and NR cases. Using a feature fusion method, the maximum AUC = 0.85 ± 0.05. Using the ANN-based classifier, AUC value significantly increased to 0.96 ± 0.03 (p < 0.01). Conclusions: This study demonstrated that quantitative analysis of kinetic image features computed from breast MR images acquired prechemotherapy has potential to generate a useful clinical marker in predicting tumor response to chemotherapy.

  15. Comparison of breast tissue measurements using magnetic resonance imaging, digital mammography and a mathematical algorithm

    NASA Astrophysics Data System (ADS)

    Lu, Lee-Jane W.; Nishino, Thomas K.; Johnson, Raleigh F.; Nayeem, Fatima; Brunder, Donald G.; Ju, Hyunsu; Leonard, Morton H., Jr.; Grady, James J.; Khamapirad, Tuenchit

    2012-11-01

    Women with mostly mammographically dense fibroglandular tissue (breast density, BD) have a four- to six-fold increased risk for breast cancer compared to women with little BD. BD is most frequently estimated from two-dimensional (2D) views of mammograms by a histogram segmentation approach (HSM) and more recently by a mathematical algorithm consisting of mammographic imaging parameters (MATH). Two non-invasive clinical magnetic resonance imaging (MRI) protocols: 3D gradient-echo (3DGRE) and short tau inversion recovery (STIR) were modified for 3D volumetric reconstruction of the breast for measuring fatty and fibroglandular tissue volumes by a Gaussian-distribution curve-fitting algorithm. Replicate breast exams (N = 2 to 7 replicates in six women) by 3DGRE and STIR were highly reproducible for all tissue-volume estimates (coefficients of variation <5%). Reliability studies compared measurements from four methods, 3DGRE, STIR, HSM, and MATH (N = 95 women) by linear regression and intra-class correlation (ICC) analyses. Rsqr, regression slopes, and ICC, respectively, were (1) 0.76-0.86, 0.8-1.1, and 0.87-0.92 for %-gland tissue, (2) 0.72-0.82, 0.64-0.96, and 0.77-0.91, for glandular volume, (3) 0.87-0.98, 0.94-1.07, and 0.89-0.99, for fat volume, and (4) 0.89-0.98, 0.94-1.00, and 0.89-0.98, for total breast volume. For all values estimated, the correlation was stronger for comparisons between the two MRI than between each MRI versus mammography, and between each MRI versus MATH data than between each MRI versus HSM data. All ICC values were >0.75 indicating that all four methods were reliable for measuring BD and that the mathematical algorithm and the two complimentary non-invasive MRI protocols could objectively and reliably estimate different types of breast tissues.

  16. Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images.

    PubMed

    Xu, Jun; Xiang, Lei; Liu, Qingshan; Gilmore, Hannah; Wu, Jianzhong; Tang, Jinghai; Madabhushi, Anant

    2016-01-01

    Automated nuclear detection is a critical step for a number of computer assisted pathology related image analysis algorithms such as for automated grading of breast cancer tissue specimens. The Nottingham Histologic Score system is highly correlated with the shape and appearance of breast cancer nuclei in histopathological images. However, automated nucleus detection is complicated by 1) the large number of nuclei and the size of high resolution digitized pathology images, and 2) the variability in size, shape, appearance, and texture of the individual nuclei. Recently there has been interest in the application of "Deep Learning" strategies for classification and analysis of big image data. Histopathology, given its size and complexity, represents an excellent use case for application of deep learning strategies. In this paper, a Stacked Sparse Autoencoder (SSAE), an instance of a deep learning strategy, is presented for efficient nuclei detection on high-resolution histopathological images of breast cancer. The SSAE learns high-level features from just pixel intensities alone in order to identify distinguishing features of nuclei. A sliding window operation is applied to each image in order to represent image patches via high-level features obtained via the auto-encoder, which are then subsequently fed to a classifier which categorizes each image patch as nuclear or non-nuclear. Across a cohort of 500 histopathological images (2200 × 2200) and approximately 3500 manually segmented individual nuclei serving as the groundtruth, SSAE was shown to have an improved F-measure 84.49% and an average area under Precision-Recall curve (AveP) 78.83%. The SSAE approach also out-performed nine other state of the art nuclear detection strategies. PMID:26208307

  17. Identification of angiogenesis in primary breast carcinoma according to the image analysis.

    PubMed

    Kim, Sung-Won; Park, Sung-Shin; Ahn, Soo-Jung; Chung, Ki-Wook; Moon, Woo Kyung; Im, Jung-Gi; Yeo, Jeong Seok; Chung, June-Key; Noh, Dong-Young

    2002-07-01

    Tumor angiogenesis may be an independent prognostic factor for breast cancer survival. However, we can get the angiogenic property of the breast cancer only after the removal of breast tissue. To get this information before surgical resection of the tumor, we evaluated 29 breast carcinoma patients with Tc-99m MIBI scintimammography and power Doppler ultrasound (US) with a microbubble contrast agent preoperatively and compare their results with intratumoral microvessel density (IMD) and reverse transcriptase-polymerase chain reaction (RT-PCR) of VEGF mRNA. IMD was well correlated with VEGF121 (r = 0.220, P = 0.024) and VEGF165 (r = 0.419, P = 0.046) mRNA level of the tumor. Power Doppler US grading of the tumor is well correlated with IMD (r = 0.552, P = 0.033). However, early uptake and washout index calculated from Tc-99m MIBI scintimammography showed no correlation with IMD or VEGF mRNA level, while washout index was inversely correlated with power Doppler US grading (r = -0.945, P = 0.001). In conclusion, the preoperative evaluation of breast cancer with power Doppler US with a microbubble contrast agent could predict tumor angiogenesis. Tc-99m MIBI scintimammography needs further study to use it as an image analysis for angiogenesis. PMID:12186372

  18. In-vivo imaging of breast cancer with ultrasound tomography: probing the tumor environment

    NASA Astrophysics Data System (ADS)

    Duric, Nebojsa; Littrup, Peter; West, Erik; Ranger, Bryan; Li, Cuiping; Schmidt, Steven

    2011-03-01

    We report on the use of ultrasound tomography (UST) to characterize breast cancer and study the local and distant tumor environments. We have imaged the tumor and its environment in 3 cases of breast cancer using a UST prototype and its associated image reconstruction algorithms. After generating images of reflection, sound speed and attenuation, the images were fused in combinations that allowed visualization and characterization of the interior of the tumor as well as the tissue immediate to the tumor and beyond. The reflection UST images demonstrated the presence of spiculation, and architectural distortion, indicators of both local tumor invasion and distant involvement with surrounding tissues. Furthermore, the sound speed images showed halos of elevated sound speed surrounding the tumors, indicating a local environment characterized by stiff tissues. The combination of sound speed and attenuation images revealed that the tumor interiors were the stiffest tissues in the region studied. These features and characteristics are commensurate with the known biomechanical properties of cancer and may be manifestations of the desmoplastic process that is associated with tumor invasion. We propose that UST imaging may prove to be a valuable tool for characterizing cancers and studying the tumor invasion process.

  19. Coherent time-reversal microwave imaging for the detection and localization of breast tissue malignancies

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Delwar; Mohan, Ananda Sanagavarapu

    2015-02-01

    This paper deals with the coherent processing of time-reversal operator for microwave imaging in the frequency domain. In frequency domain time-reversal imaging approach, images obtained for different frequency bins over ultrawideband are incoherently processed. In highly dense and cluttered medium, the signal subspace over each narrow frequency bin varies from that obtained using the complete ultrawideband. As a result, the detection and localization from noncoherent imaging approach is often inconclusive. In order to improve the stability of time-reversal microwave imaging, we propose coherent processing using novel focusing matrix approach. The proposed focusing matrix makes possible the time-reversal imaging technique to coherently process each frequency bin to yield a consistent signal subspace. The performance of coherent focusing is investigated when combined with time-reversal robust Capon beamformer (TR-RCB). We have used numerical experiments on breast cancer detection using finite difference time domain employing anatomically realistic numerical breast phantoms that contain varying amounts of dense fibroglandular tissue content. The imaging results indicate that the proposed coherent-TR-RCB could overcome the limitations of time-reversal imaging in a highly heterogeneous and cluttered medium.

  20. Early detection of breast cancer: a molecular optical imaging approach using novel estrogen conjugate fluorescent dye

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Shubhadeep; Jose, Iven

    2011-02-01

    Estrogen induced proliferation of mutant cells is widely understood to be the one of major risk determining factor in the development of breast cancer. Hence determination of the Estrogen Receptor[ER] status is of paramount importance if cancer pathogenesis is to be detected and rectified at an early stage. Near Infrared Fluorescence [NIRf] Molecular Optical Imaging is emerging as a powerful tool to monitor bio-molecular changes in living subjects. We discuss pre-clinical results in our efforts to develop an optical imaging diagnostic modality for the early detection of breast cancer. We have successfully carried out the synthesis and characterization of a novel target-specific NIRf dye conjugate aimed at measuring Estrogen Receptor[ER] status. The conjugate was synthesized by ester formation between 17-β estradiol and a hydrophilic derivative of Indocyanine Green (ICG) cyanine dye, bis-1,1-(4-sulfobutyl) indotricarbocyanine-5-carboxylic acid, sodium salt. In-vitro studies regarding specific binding and endocytocis of the dye performed on ER+ve [MCF-7] and control [MDA-MB-231] adenocarcinoma breast cancer cell lines clearly indicated nuclear localization of the dye for MCF-7 as compared to plasma level staining for MDA-MB-231. Furthermore, MCF-7 cells showed ~4.5-fold increase in fluorescence signal intensity compared to MDA-MB-231. A 3-D mesh model mimicking the human breast placed in a parallel-plate DOT Scanner is created to examine the in-vivo efficacy of the dye before proceeding with clinical trials. Photon migration and florescence flux intensity is modeled using the finite-element method with the coefficients (quantum yield, molar extinction co-efficient etc.) pertaining to the dye as obtained from photo-physical and in-vitro studies. We conclude by stating that this lipophilic dye can be potentially used as a target specific exogenous contrast agent in molecular optical imaging for early detection of breast cancer.

  1. Joint analysis of non-concurrent magnetic resonance imaging and diffuse optical tomography of breast cancer

    NASA Astrophysics Data System (ADS)

    Azar, Fred S.; Lee, Kijoon; Choe, Regine; Corlu, Alper; Konecky, Soren D.; Yodh, Arjun G.

    2007-02-01

    We have developed a novel method for combining non-concurrent MR and DOT data, which integrates advanced multimodal registration and segmentation algorithms within a well-defined workflow. The method requires little user interaction, is computationally efficient for practical applications, and enables joint MR/DOT analysis. The method presents additional advantages: More flexibility than integrated MR/DOT imaging systems, The ability to independently develop a standalone DOT system without the stringent limitations imposed by the MRI device environment, Enhancement of sensitivity and specificity for breast tumor detection, Combined analysis of structural and functional data, Enhancement of DOT data reconstruction through the use of MR-derived a priori structural information. We have conducted an initial patient study which asks an important question: how can functional information on a tumor obtained from DOT data be combined with the anatomy of that tumor derived from MRI data? The study confirms that tumor areas in the patient breasts exhibit significantly higher total hemoglobin concentration (THC) than their surroundings. The results show significance in intra-patient THC variations, and justify the use of our normalized difference measure defined as the distance from the average THC inside the breast, to the average THC inside the tumor volume in terms of the THC standard deviation inside the breast. This method contributes to the long-term goal of enabling standardized direct comparison of MRI and DOT and facilitating validation of DOT imaging methods in clinical studies.

  2. Monte Carlo simulation of novel breast imaging modalities based on coherent x-ray scattering

    NASA Astrophysics Data System (ADS)

    Ghammraoui, Bahaa; Badal, Andreu

    2014-07-01

    We present upgraded versions of MC-GPU and penEasy_Imaging, two open-source Monte Carlo codes for the simulation of radiographic projections and CT, that have been extended and validated to account for the effect of molecular interference in the coherent x-ray scatter. The codes were first validation by comparison between simulated and measured energy dispersive x-ray diffraction (EDXRD) spectra. A second validation was by evaluation of the rejection factor of a focused anti-scatter grid. To exemplify the capabilities of the new codes, the modified MC-GPU code was used to examine the possibility of characterizing breast tissue composition and microcalcifications in a volume of interest inside a whole breast phantom using EDXRD and to simulate a coherent scatter computed tomography (CSCT) system based on first generation CT acquisition geometry. It was confirmed that EDXRD and CSCT have the potential to characterize tissue composition inside a whole breast. The GPU-accelerated code was able to simulate, in just a few hours, a complete CSCT acquisition composed of 9758 independent pencil-beam projections. In summary, it has been shown that the presented software can be used for fast and accurate simulation of novel breast imaging modalities relying on scattering measurements and therefore can assist in the characterization and optimization of promising modalities currently under development.

  3. Advanced Imaging and Receipt of Guideline Concordant Care in Women with Early Stage Breast Cancer.

    PubMed

    Loggers, Elizabeth Trice; Buist, Diana S M; Gold, Laura S; Zeliadt, Steven; Hunter Merrill, Rachel; Etzioni, Ruth; Ramsey, Scott D; Sullivan, Sean D; Kessler, Larry

    2016-01-01

    Objective. It is unknown whether advanced imaging (AI) is associated with higher quality breast cancer (BC) care. Materials and Methods. Claims and Surveillance Epidemiology and End Results data were linked for women diagnosed with incident stage I-III BC between 2002 and 2008 in western Washington State. We examined receipt of preoperative breast magnetic resonance imaging (MRI) or AI (defined as computed tomography [CT]/positron emission tomography [PET]/PET/CT) versus mammogram and/or ultrasound (M-US) alone and receipt of guideline concordant care (GCC) using multivariable logistic regression. Results. Of 5247 women, 67% received M-US, 23% MRI, 8% CT, and 3% PET/PET-CT. In 2002, 5% received MRI and 5% AI compared to 45% and 12%, respectively, in 2008. 79% received GCC, but GCC declined over time and was associated with younger age, urban residence, less comorbidity, shorter time from diagnosis to surgery, and earlier year of diagnosis. Breast MRI was associated with GCC for lumpectomy plus radiation therapy (RT) (OR 1.55, 95% CI 1.08-2.26, and p = 0.02) and AI was associated with GCC for adjuvant chemotherapy for estrogen-receptor positive (ER+) BC (OR 1.74, 95% CI 1.17-2.59, and p = 0.01). Conclusion. GCC was associated with prior receipt of breast MRI and AI for lumpectomy plus RT and adjuvant chemotherapy for ER+ BC, respectively. PMID:27525122

  4. High-Resolution CT Imaging of Single Breast Cancer Microcalcifications In Vivo

    PubMed Central

    Inoue, Kazumasa; Liu, Fangbing; Hoppin, Jack; Lunsford, Elaine P.; Lackas, Christian; Hesterman, Jacob; Lenkinski, Robert E.; Fujii, Hirofumi; Frangioni, John V.

    2010-01-01

    Microcalcification is a hallmark of breast cancer and a key diagnostic feature for mammography. We recently described the first robust animal model of breast cancer microcalcification. In this study, we hypothesized that high-resolution computed tomography (CT) could potentially detect the genesis of a single microcalcification in vivo and quantify its growth over time. Using a commercial CT scanner, we systematically optimized acquisition and reconstruction parameters. Two ray-tracing image reconstruction algorithms were tested, a voxel-driven “fast” cone beam algorithm (FCBA) and a detector-driven “exact” cone beam algorithm (ECBA). By optimizing acquisition and reconstruction parameters, we were able to achieve a resolution of 104 µm full-width at half maximum (FWHM). At an optimal detector sampling frequency, ECBA provided a 28 µm (21%) FWHM improvement in resolution over FCBA. In vitro, we were able to image a single 300 µm by 100 µm hydroxyapatite crystal. In a syngeneic rat model of breast cancer, we were able to detect the genesis of a single microcalcification in vivo and follow its growth longitudinally over weeks. Taken together, this study provides an in vivo “gold standard” for the development of calcification-specific contrast agents and a model system for studying the mechanism of breast cancer microcalcification. PMID:21504703

  5. Advanced Imaging and Receipt of Guideline Concordant Care in Women with Early Stage Breast Cancer

    PubMed Central

    Buist, Diana S. M.; Gold, Laura S.; Zeliadt, Steven; Hunter Merrill, Rachel; Etzioni, Ruth; Ramsey, Scott D.; Sullivan, Sean D.; Kessler, Larry

    2016-01-01

    Objective. It is unknown whether advanced imaging (AI) is associated with higher quality breast cancer (BC) care. Materials and Methods. Claims and Surveillance Epidemiology and End Results data were linked for women diagnosed with incident stage I-III BC between 2002 and 2008 in western Washington State. We examined receipt of preoperative breast magnetic resonance imaging (MRI) or AI (defined as computed tomography [CT]/positron emission tomography [PET]/PET/CT) versus mammogram and/or ultrasound (M-US) alone and receipt of guideline concordant care (GCC) using multivariable logistic regression. Results. Of 5247 women, 67% received M-US, 23% MRI, 8% CT, and 3% PET/PET-CT. In 2002, 5% received MRI and 5% AI compared to 45% and 12%, respectively, in 2008. 79% received GCC, but GCC declined over time and was associated with younger age, urban residence, less comorbidity, shorter time from diagnosis to surgery, and earlier year of diagnosis. Breast MRI was associated with GCC for lumpectomy plus radiation therapy (RT) (OR 1.55, 95% CI 1.08–2.26, and p = 0.02) and AI was associated with GCC for adjuvant chemotherapy for estrogen-receptor positive (ER+) BC (OR 1.74, 95% CI 1.17–2.59, and p = 0.01). Conclusion. GCC was associated with prior receipt of breast MRI and AI for lumpectomy plus RT and adjuvant chemotherapy for ER+ BC, respectively. PMID:27525122

  6. High-performance near-infrared imaging for breast cancer detection

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, Yasser H.; El-Sherif, Ashraf F.

    2014-01-01

    We present a method for the noninvasive determination of the size, position, and optical properties of tumors in the human breast. The tumor is first detected by photothermal imaging. It is then sized, located, and optically characterized