Science.gov

Sample records for bromoform

  1. Bromoform

    Integrated Risk Information System (IRIS)

    Bromoform ; CASRN 75 - 25 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  2. Bromoform in the tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Quack, B.; Wallace, D.

    2003-04-01

    Sea-to-air emissions of reactive, brominated halocarbons, of which bromoform (CHBr3) is the major organic source for atmospheric reactive bromine, are controlled by biotic and abiotic production and consumption processes in the water. These compounds affect the 'oxidising capacity' of the lower atmosphere, primarily as a result of their influence on the ozone concentration. Besides a large macroalgal source in coastal regions, oversaturation in the worlds open oceans contributes significantly to the global emissions, suggesting an yet unknown open ocean source. Atmospheric studies in the Pacific and Atlantic have revealed maxima of tropospheric bromoform concentrations in equatorial regions, suggesting enhanced surface sources in these waters. The responsible processes and fluxes in the open ocean are generally poorly characterised. A west to east transect along 10°N including a short meridional transect into the equatorial upwelling was conducted in the tropical Atlantic Ocean from Curacao to Doualla with R/V Meteor in October /November 2002 (ME55). Surface samples and samples from shallow hydro casts (<500 m) were analysed on board for the brominated compounds dibromomethane (CH2Br2), dibromochloromethane (CHBr2Cl), dichlorobromomethane (CHBrCl2) and bromoform (CHBr3), using purge-and-trap gas chromatography with mass spectrometry. Preliminary results for bromoform show background concentrations of 2-4 pmol/L in the surface ocean and 1-2 pmol/L in deeper layers. Elevated concentrations of 8 to 14 pmol/L bromoform were observed in the area of equatorial upwelling. Maxima up to 30 pmol/L bromoform were always found underneath the mixed layer and seem to be associated with the chlorophyll maximum in 40 to 70 m depth. The highest concentrations of CHBr3 (2nmol/L) as well as of CHBr2Cl, CHBrCl2 and CHCl3 were discovered in the Amazone river plume at the boundary between the river and ocean waters around 40 m depth. Ancillary profile data such as productivity

  3. Measurements of atmospheric methyl bromide and bromoform

    SciTech Connect

    Cicerone, R.J.; Heidt, L.E.; Pollock, W.H.

    1988-04-20

    We have measured gaseous methyl bromide (CH/sub 3/Br) and bromoform (CHBr/sub 3/) in air samples that were gathered approximately weekly from five ground-level sites: Point Barrow, Alaska; Mauna Loa Observatory and Cape Kumukahi, Hawaii; Matatula, Samoa; and Kaitorete Spit, New Zealand. Approximately 750 samples have been analyzed for CH/sub 3/Br between January 1985 and October 1987 and 990 samples have been analyzed for CHBr/sub 3/ between early 1984 and September 1987, all by gas chromatography/mass spectroscopy. Methyl bromide concentrations are typically 10--11 parts per trillion (ppt) by volume; there are no clear indications of temporal increases. Bromoform concentrations are typically 2--3 ppt, but large seasonal variations are seen at Point Barrow. copyright American Geophysical Union 1988

  4. Reductive dehalogenation of bromoform in aqueous solution.

    PubMed Central

    Betterton, E A; Arnold, R G; Kuhler, R J; Santo, G A

    1995-01-01

    The hybrid semiconducter-macrocycle catalyst TiO2-cobalt phthalocyanine promotes the solar photolysis of aqueous bromoform under anaerobic conditions. The major decomposition products are dibromoethane and HBr. Bromomethane and methane were produced only after prolonged photolysis (30 hr). Acetone, derived from added 2-propanol, was the only observed oxidation product. Preliminary experiments showed that electrolytic reduction of aqueous carbon tetrachloride at a vitamin B12-modified silver electrode produced the expected lower homologues but with surprisingly high yields of methane. PMID:8565919

  5. Bromoform production in tropical open-ocean waters: OTEC chlorination

    SciTech Connect

    Hartwig, E.O.; Valentine, R.

    1981-09-01

    The bromoform, and other volatile organics produced while chlorinating both the evaporator and condenser seawater during operation of the one megawatt (1 MW) OTEC-1 test facility are reported. Although many halogenated compounds might be produced as a result of chlorination, the quantitative analyses in this study focused on volatile EPA priority pollutants. Bromoform is the compound specifically recognized as a potential pollutant. Its concentration may be indicative of other halogenated species.

  6. Toxicity, Bioaccumulation and Depuration of Bromoform in Five Marine Species

    SciTech Connect

    Gibson, C. I.; Tone, F. C.; Wilkinson, P.; Blaylock, J. W.; Schirmer, R. E.

    1981-01-01

    Bromoform has been identified as the single most abundant halogenated organic compound produced by the chlorination of marine waters. To determine the potential biological effects of its release into marine waters, short-term toxicity bioassays and 28-day uptake/28-day depuration studies were conducted with five marine species: Protothaca staminea, Mercenaria mercenaria, Crassostrea virginica, Penaeus aztecus, and Brevoortia tyrannus. The bioassay studies indicate that 96-hr LC50s ranged from approximately 7 ppm for B. tyrannus to greater than 40 ppm for P. staminea. Behavioral changes were noted in P. aztecus and B. tyrannus exposed to sublethal concentrations of bromoform. In all species tested, the uptake and depuration of bromoform was rapid. Bromoform was present in all exposed animal tissues within 24 hours and was depurated within 48 hours. In the mollusk species, there was bioaccumulation above water concentrations in the first week of exposure, and then the tissue concentrations fell to levels approximately equal to the water concentrations. The shrimp and menhaden also bioaccumulated bromoform above water concentrations in the first week of exposure, but then the tissue concentrations fell to approximately 0.4 {micro}g/g and remained at this level independent of water concentrations.

  7. Bromoform formation in ozonated groundwater containing bromide and humic substances

    SciTech Connect

    Cooper, W.J.; Amy, G.L.; Moore, C.A.; Zika, R.G.

    1986-01-01

    The effect of bromide ion, organic carbon concentration (natural aquatic humic substances), pH, and solar irradiation on the formation of bromoform in ozonated groundwater has been studied. The studies were conducted on four unique samples of groundwater taken from different regions of the Biscayne Aquifer in southern Florida. All other conditions being equal, increases in bromide ion concentrations resulted in increases in CHBr/sub 3/ formation. In three of the four samples, CHBr/sub 3/ formation decreased as the pH level increased from 5 to 9. The fourth sample exhibited an opposite trend whereby the CHBr/sub 3/ concentration increased with increasing pH. Bromoform concentration increased with increased O/sub 3/ concentration over an ozone dosage range of 3.4 to 6.7 mg/L. Ozonated samples placed in sunlight immediately after ozone addition showed a decrease in the formation of CHBr/sub 3/ presumably due to the photodecomposition of HOBr/OBr.

  8. Marine sources of bromoform in the global open ocean - global patterns and emissions

    NASA Astrophysics Data System (ADS)

    Stemmler, I.; Hense, I.; Quack, B.

    2014-11-01

    Bromoform (CHBr3) is one important precursor of atmospheric reactive bromine species that are involved in ozone depletion in the troposphere and stratosphere. In the open ocean bromoform production is linked to phytoplankton that contains the enzyme bromoperoxidase. Coastal sources of bromoform are higher than open ocean sources. However, open ocean emissions are important, because the transfer of tracers into higher altitude in the air, i.e. into the ozone layer, strongly depends on the location of emissions. For example, emissions in the tropics are more rapidly transported into the upper atmosphere than emissions from higher latitudes. Global spatio-temporal features of bromoform emissions are poorly constrained. Here, a global three-dimensional ocean biogeochemistry model (MPIOM-HAMOCC) is used to simulate bromoform cycling in the ocean and emissions into the atmosphere using recently published data of global atmospheric concentrations (Ziska et al., 2013) as upper boundary conditions. In general, simulated surface concentrations of CHBr3 match the observations well. Simulated global annual emissions based on monthly mean model output are lower than previous estimates, including the estimate by Ziska et al. (2013), because the gas-exchange reverses when less bromoform is produced in non-blooming seasons. This is the case for higher latitudes, i.e. the polar regions and northern North Atlantic. Further model experiments show that future model studies may need to distinguish different bromoform producing phytoplankton species and reveal that the transport of CHBr3 from the coast considerably alters open ocean bromoform concentrations, in particular in the northern sub-polar and polar regions.

  9. Marine sources of bromoform in the global open ocean - global patterns and emissions

    NASA Astrophysics Data System (ADS)

    Stemmler, I.; Hense, I.; Quack, B.

    2015-03-01

    Bromoform (CHBr3) is one important precursor of atmospheric reactive bromine species that are involved in ozone depletion in the troposphere and stratosphere. In the open ocean bromoform production is linked to phytoplankton that contains the enzyme bromoperoxidase. Coastal sources of bromoform are higher than open ocean sources. However, open ocean emissions are important because the transfer of tracers into higher altitude in the air, i.e. into the ozone layer, strongly depends on the location of emissions. For example, emissions in the tropics are more rapidly transported into the upper atmosphere than emissions from higher latitudes. Global spatio-temporal features of bromoform emissions are poorly constrained. Here, a global three-dimensional ocean biogeochemistry model (MPIOM-HAMOCC) is used to simulate bromoform cycling in the ocean and emissions into the atmosphere using recently published data of global atmospheric concentrations (Ziska et al., 2013) as upper boundary conditions. Our simulated surface concentrations of CHBr3 match the observations well. Simulated global annual emissions based on monthly mean model output are lower than previous estimates, including the estimate by Ziska et al. (2013), because the gas exchange reverses when less bromoform is produced in non-blooming seasons. This is the case for higher latitudes, i.e. the polar regions and northern North Atlantic. Further model experiments show that future model studies may need to distinguish different bromoform-producing phytoplankton species and reveal that the transport of CHBr3 from the coast considerably alters open ocean bromoform concentrations, in particular in the northern sub-polar and polar regions.

  10. Estimates of tropical bromoform emissions using an inversion method

    NASA Astrophysics Data System (ADS)

    Ashfold, M. J.; Harris, N. R. P.; Manning, A. J.; Robinson, A. D.; Warwick, N. J.; Pyle, J. A.

    2013-08-01

    Bromine plays an important role in ozone chemistry in both the troposphere and stratosphere. When measured by mass, bromoform (CHBr3) is thought to be the largest organic source of bromine to the atmosphere. While seaweed and phytoplankton are known to be dominant sources, the size and the geographical distribution of CHBr3 emissions remains uncertain. Particularly little is known about emissions from the Maritime Continent, which have usually been assumed to be large, and which appear to be especially likely to reach the stratosphere. In this study we aim to use the first multi-annual set of CHBr3 measurements from this region, and an inversion method, to reduce this uncertainty. We find that local measurements of a short-lived gas like CHBr3 can only be used to constrain emissions from a relatively small, sub-regional domain. We then obtain detailed estimates of both the distribution and magnitude of CHBr3 emissions within this area. Our estimates appear to be relatively insensitive to the assumptions inherent in the inversion process. We extrapolate this information to produce estimated emissions for the entire tropics (defined as 20° S-20° N) of 225 GgCHBr3 y-1. This estimate is consistent with other recent studies, and suggests that CHBr3 emissions in the coastline-rich Maritime Continent may not be stronger than emissions in other parts of the tropics.

  11. Estimates of tropical bromoform emissions using an inversion method

    NASA Astrophysics Data System (ADS)

    Ashfold, M. J.; Harris, N. R. P.; Manning, A. J.; Robinson, A. D.; Warwick, N. J.; Pyle, J. A.

    2014-01-01

    Bromine plays an important role in ozone chemistry in both the troposphere and stratosphere. When measured by mass, bromoform (CHBr3) is thought to be the largest organic source of bromine to the atmosphere. While seaweed and phytoplankton are known to be dominant sources, the size and the geographical distribution of CHBr3 emissions remains uncertain. Particularly little is known about emissions from the Maritime Continent, which have usually been assumed to be large, and which appear to be especially likely to reach the stratosphere. In this study we aim to reduce this uncertainty by combining the first multi-annual set of CHBr3 measurements from this region, and an inversion process, to investigate systematically the distribution and magnitude of CHBr3 emissions. The novelty of our approach lies in the application of the inversion method to CHBr3. We find that local measurements of a short-lived gas like CHBr3 can be used to constrain emissions from only a relatively small, sub-regional domain. We then obtain detailed estimates of CHBr3 emissions within this area, which appear to be relatively insensitive to the assumptions inherent in the inversion process. We extrapolate this information to produce estimated emissions for the entire tropics (defined as 20° S-20° N) of 225 Gg CHBr3 yr-1. The ocean in the area we base our extrapolations upon is typically somewhat shallower, and more biologically productive, than the tropical average. Despite this, our tropical estimate is lower than most other recent studies, and suggests that CHBr3 emissions in the coastline-rich Maritime Continent may not be stronger than emissions in other parts of the tropics.

  12. Evolution of Bromoform in a Global Chemistry and Transport Model

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Pierson, J. M.; Douglass, Anne R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    It is well known that many chlorine and bromine compounds that are inert in the troposphere are destroyed in the stratosphere and contribute to the stratospheric burden of reactive chlorine and bromine species. But the contribution from those chlorine and bromine compounds which are reactive in the troposphere is less certain because it is not known whether convection can transport these gases to the upper troposphere rapidly enough to overcome their short tropospheric lifetimes. We examine this issue using a three-dimensional chemistry and transport model to simulate the evolution of three gases which have surface sources, bromoform (CHBr3), methyl chloroform (CH3CCl3), and carbon dioxide (CO2). Our objective is to determine if CHBr3 might enhance the lower stratospheric burden of reactive bromine. The other two gases provide tests of the quality of the simulation. Both CHBr3 and CH3CCl3 are destroyed in the troposphere by reaction with hydroxyl (OH), whose latitudinal and monthly variation is provided by a two-dimensional model and upon which a diurnal variation is imposed. Comparison of the lifetime of CH3CCl3 computed from observations (5 years) with the lifetime computed from the simulation provides an integrated test of the model's transport and photochemistry. Observations also show that CO2 exhibits a strong seasonal cycle in the northern hemisphere troposphere that is not propagated directly across the tropopause into the lower stratosphere. Thus, maintenance of the observed troposphere-stratosphere distinctness of CO2 in the presence of convection is a critical benchmark for meeting our objective.

  13. Modeling the interaction of ozone with chloroform and bromoform under conditions close to stratospheric

    NASA Astrophysics Data System (ADS)

    Strokova, N. E.; Yagodovskaya, T. V.; Savilov, S. V.; Lukhovitskaya, E. E.; Vasil'ev, E. S.; Morozov, I. I.; Lunin, V. V.

    2013-02-01

    The reactions of ozone with chloroform and bromoform are studied using a flow gas discharge vacuum unit under conditions close to stratospheric (temperature range, 77-250 K; pressure, 10-3-0.1 Torr in the presence of nitrate ice). It is shown that the reaction with bromoform begins at 160 K; the reaction with chloroform, at 190 K. The reaction products are chlorine and bromine oxides of different composition, identified by low-temperature FTIR spectroscopy. The presence of nitrate ice raises the temperature of reaction onset to 210 K.

  14. Bromoform (CHBr sub 3 ) -- A very high-pressure shock-wave analyzer

    SciTech Connect

    McQueen, R.G.; Isaak, D.G.

    1989-01-01

    Bromoform, CHBr{sub 3}, appears to radiate like a black body. This means that the amount of radiation emitted from the shock front is extremely sensitive to temperature and hence even more sensitive to pressure. This feature has been exploited to locate overtake waves in impact experiments. Heretofore, Bromoform was used only for making timing measurements. However, if its P, V, E, and T EOS are known it could be used as high-pressure analyzer. Measurements to determine the Hugoniot, the Grueneisen parameter, {gamma}, and its optical radiation characterization are described, and preliminary data are presented. 8 refs., 7 figs., 1 tab.

  15. A Simulation of Bromoform's Contribution to Stratospheric Bromine

    NASA Technical Reports Server (NTRS)

    Nielsen, J. Eric; Douglass, Anne R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Many chlorinated and brominated compounds that are inert in the troposphere are destroyed in the stratosphere and act as an in-situ source of stratospheric reactive chlorine and bromine. Other halogenated compounds that are reactive in the troposphere might contribute to the stratosphere's halogen budget in two ways. First, like their unreactive companions, rapid convective transport might carry them to the upper troposphere and make them available for subsequent advection by the mean circulation into the stratosphere before they are oxidized or photolyzed. Second, it is more likely that they are destroyed in the troposphere, and the chlorine and bromine that is released might then be transported to the stratosphere. We evaluate the relative influence of these processes on stratospheric bromine in a three-dimensional chemistry and transport model which simulates the distribution of bromoform (CHBr3). CHBr3 is parameterized as a short-lived, ocean-surface source gas whose destruction by photolysis and reaction with hydroxyl (OH) in the troposphere and stratosphere yields inorganic bromine (Br(sub y)). Many of the observed features of CHBr3 are simulated well, and comparisons with observations are used to show that the model represents aspects of transport in the upper troposphere and lower stratosphere that are critical to the evaluation. In particular, the model maintains the observed troposphere-stratosphere distinctness in transport pathways and reproduces the observed seasonal dependence of the mixture of air in the middle- and high-latitude lowermost stratosphere. We estimate that adding CHBr3 to models which already include the long-lived organic brominated compounds (halons and methyl bromide) will increase the simulated stratospheric mass of Br(sub y) by about 15 percent. In-situ stratospheric destruction of CHBr3 produces Br(sub y) in amounts which are comparable to that transported into the stratosphere after photolysis and oxidation of CHBr3 in the

  16. On temperate sources of bromoform and other reactive organic bromine gases

    NASA Astrophysics Data System (ADS)

    Carpenter, L. J.; Liss, P. S.

    2000-08-01

    Current estimates of annual bromoform production by temperate marine algae underestimate, by at least an order of magnitude, the flux required to sustain atmospheric concentrations. In the light of recent evidence of the potential of bromoform to deplete upper-tropospheric/lower-stratospheric ozone, such a substantial discrepancy in global emission rates is of considerable concern. Here we present new information on air and seawater CHBr3, CH2Br2, and CHBr2Cl concentrations in the coastal east Atlantic and review previous data from widespread locations which suggest that concentrations and ratios of reactive organobromines are consistent with marine macroalgal emissions. Detailed reviews of algal halocarbon emissions and biomass estimates imply that macroalgae produce around 70% of the world's bromoform, rather than only ˜20% as previously thought, and that the underestimation was most likely caused by over conservative biomass estimates. Our total global source strength estimate of 2.2×1011 g CHBr3 yr-1 agrees well with recent calculations derived from atmospheric data. Given the dominant role of macroalgae in producing bromoform, the effect of changing climate and environment on seaweed populations and consequent effect on biogenic bromine emissions should be investigated.

  17. REDUCTIVE DEHALOGENATION OF HEXACHLOROETHANE, CARBON TETRACHLORIDE, AND BROMOFORM BY ANAHYDROQUINONE DISULFONATE AND HUMIC ACID

    EPA Science Inventory

    The reductive dehalogenation of hexachloroethane (C2CI6), carbon tetrachloride (CC14), and bromoform (CHBr3) was examined at 50 degrees C in aqueous solutions containing either (1) 500 uM of 2,6-anthrahydroquinone disulfonate (AHQDS), (2) 250 uM Fe2+, or (3) 250 uM HS. The pH ran...

  18. REDUCTIVE DEHALOGENATION OF HEXACHLOROETHANE, CARBON TETRACHLORIDE, AND BROMOFORM BY ANTHRAHYDROQUINONE DISULFONATE AND HUMIC ACID

    EPA Science Inventory

    The reductive dehalogenation of hexachloroethane (CzCLj), carbon tetrachloride (CC14), and bromoform (CHBr3) was examined at 50 “C in aqueous solutions containing ei- ther (1) 500 pM of 2,6-anthrahydroquinone disulfonate (AHQDS), (2) 250 pM Fe2+, or (3) 250 pM HS-. The pH ranged ...

  19. HEPATOTOXIC EVALUATION OF THE BINARY INTERACTIONS OF BROMODICHLOROMETHANE WITH CHLOROFORM, CHLORODIBROMOMETHANE AND BROMOFORM

    EPA Science Inventory

    HEPATOTOXIC EVALUATION OF THE BINARY INTERACTIONS OF BROMODICHLOROMETHANE (BDCM) WITH CHLOROFORM (CHC13), CHLORODIBROMOMETHANE (CDBM) AND BROMOFORM (CHBr3). Y M Se'', C Gennings2, A McDonald', L K Teuschler3, A Hamm2and J E Simmons .'NHEERL, ORD, U.S. EPA, RTP, NC; 2MCV, VCU, Ric...

  20. What do we learn about bromoform transport and chemistry in deep convection from fine scale modelling?

    NASA Astrophysics Data System (ADS)

    Marécal, V.; Pirre, M.; Krysztofiak, G.; Hamer, P. D.; Josse, B.

    2012-07-01

    Bromoform is one of the most abundant halogenated Very Short-Lived Substances (VSLS) that possibly contributes, when degradated, to the inorganic halogen loading in the stratosphere. In this paper we present a detailed modelling study of the transport and the photochemical degradation of bromoform and its product gases (PGs) in a tropical convective cloud. The aim was to explore the transport and chemistry of bromoform under idealised conditions at the cloud scale. We used a 3-D cloud-resolving model coupled with a chemistry model including gaseous and aqueous chemistry. In particular, our model features explicit partitioning of the PGs between the gas phase and the aqueous phase based on newly calculated Henry's law coefficients using theoretical methods. We ran idealised simulations for up to 10 days that were initialised using a tropical radiosounding of atmospheric conditions and using outputs from a global chemistry-transport model for chemical species. Two simulations were run with stable atmospheric conditions with a bromoform initial mixing ratio of 40 pptv (part per trillion by volume) and 1.6 pptv up to 1 km altitude. The first simulation corresponds to high bromoform mixing ratios that are representative of real values found near strong localised sources (e.g. tropical coastal margins) and the second to the global tropical mean mixing ratio from observations. Both of these simulations show that the sum of bromoform and its PGs significantly decreases with time because of dry deposition, and that PGs are mainly in the form of HBr after 2 days of simulation. Two further simulations are conducted; these are similar to the first two simulations but include perturbations of temperature and moisture leading to the development of a convective cloud reaching the tropical tropopause layer (TTL). Results of these simulations show an efficient vertical transport of the bromoform from the boundary layer to the upper troposphere and the TTL. The bromoform mixing

  1. Clathrate formation and phase equilibria in the thiourea-bromoform system

    NASA Astrophysics Data System (ADS)

    Chekhova, G. N.; Shubin, Yu. V.; Pinakov, D. V.; Alferova, N. I.

    2008-07-01

    Phase equilibria in the thiourea (host)-bromoform (guest) binary system were studied by physicochemical analysis methods over the temperature range 270 455 K. The stoichiometry and stability region were determined for the channel-type compound CHBr3 · 2.40(2)(NH2)2CS; the compound was observed for the first time. When heated, the clathrate incongruently decomposed at 424.0 ± 0.8 K to rhombic thiourea and the guest component. The solubility isotherm of the thiourea-bromoform-acetic acid system was studied to find that the compound was thermodynamically stable at 293 K over the range of guest component concentrations 100 35 wt %. A decrease in its content in an equilibrium mother liquor resulted in the appearance of X-ray diffraction reflections of the initial host α polymorph. Rhombohedral cell parameters were determined (space group R-3 c, a = 15.89(1) Å, c = 12.40(1) Å, V = 2711(6) Å3, d calcd = 2.000 g/cm3, and d expt = 1.98(2) g/cm3). The mode of packing of bromoform molecules was compared with the organization of the guest subsystem in inclusion compounds formed by the substances studied.

  2. Bromoform in the tropical boundary layer of the Maritime Continent during OP3

    NASA Astrophysics Data System (ADS)

    Pyle, J. A.; Ashfold, M. J.; Harris, N. R. P.; Robinson, A. D.; Warwick, N. J.; Carver, G. D.; Gostlow, B.; O'Brien, L. M.; Manning, A. J.; Phang, S. M.; Yong, S. E.; Leong, K. P.; Ung, E. H.; Ong, S.

    2011-01-01

    We report measurements of bromoform made by gas chromatography during the OP3 campaign in 2008. Measurements were made simultaneously for a few days at the World Meteorological Organization (WMO) Global Atmospheric Watch (GAW) site in the Danum Valley, a rainforest location in Sabah, Borneo, and at a nearby coastal site at Kunak. Background values at Kunak were higher than those measured in the rainforest (2-5 ppt compared with 1 ppt) and excursions away from the background were very much higher, reaching 10 s of ppt. Measurements of C2Cl4, an industrial tracer, showed no significant difference in background at the two sites. Modelling using two different models can reproduce a number of the observed features. The data are consistent with a strong, local coastal source of bromoform in eastern Sabah and can be used to infer the strength of the source of bromoform in South East Asia. However, they provide only a very weak constraint on global emissions. The global model results highlight the difficulty for short-lived species of extrapolating limited duration, local measurements to a global source.

  3. What do we learn on bromoform transport and chemistry in deep convection from fine scale modelling?

    NASA Astrophysics Data System (ADS)

    Marécal, V.; Pirre, M.; Krysztofiak, G.; Josse, B.

    2011-11-01

    Bromoform is one of the main sources of halogenated Very Short-Lived Species (VSLS) that possibly contributes when degradated to the inorganic halogen loading in the stratosphere. Because of its short lifetime of about four weeks, its pathway to the stratosphere is mainly the transport by convection up to the tropical tropopause layer (TTL) and then by radiative ascent in the low stratosphere. Some of its degradation product gases (PGs) that are soluble can be scavenged and not reach the TTL. In this paper we present a detailed modelling study of the transport and the degradation of bromoform and its PGs in convection. We use a 3-D-cloud resolving model coupled with a chemistry model including gaseous and aqueous chemistry. We run idealised simulations up to 10 days, initialised using a tropical radiosounding for atmospheric conditions and using outputs from a global chemistry-transport model for chemical species. Bromoform is initialised only in the low levels. The first simulation is run with stable atmospheric conditions. It shows that the sum of the bromoform and its PGs significantly decreases with time because of dry deposition and that PGs are mainly in the form of HBr after 2 days of simulation. The other simulation is similar to the first simulation but includes perturbations of temperature and of moisture leading to the development of a convective cloud reaching the TTL. Results of this simulation show an efficient vertical transport of the bromoform from the boundary layer in the upper troposphere and TTL (mixing ratio up to 45% of the initial boundary layer mixing ratio). The organic PGs, which are for the most abundant of them not very soluble, are also uplifted efficiently. For the inorganic PGs, which are more abundant than organic PGs, their mixing ratios in the upper troposphere and in the TTL depend on the partitioning between inorganic soluble and inorganic non soluble species in the convective cloud. Important soluble species such as HBr and

  4. Observations of shock-induced reaction in liquid bromoform up to 11 GPA

    SciTech Connect

    Sheffield, S.A.; Gustavsen, R.L.; Alcon, R.R.

    1995-09-01

    Shock measurements on bromoform (CHBr{sub 3}) over the past 33 years at Los Alamos have led to speculation that this material undergoes a shock-induced reaction. Ramsay observed that it became opaque after a 1 to 2 {micro}s induction time when shocked to pressures above 6 GPa. McQueen and Isaak observed that it is a strong light emitter above 25 GPa. Hugoniot data start to deviate from the anticipated liquid Hugoniot at pressures above 10 GPa. The authors have used electromagnetic particle velocity gauging to measure wave profiles in shocked liquid bromoform. At pressures below 9 GPa, there is no mechanical evidence of reaction. At a pressure slightly above 10 GPa, the observed wave profiles are similar to those observed in initiating liquid explosives such as nitromethane. Their characteristics are completely different from the two-wave structures observed in shocked liquids where the products are more dense than the reactants. As with explosives, a reaction producing products which are less dense than the reactants is indicated. BKW calculations also indicate that a detonation type reaction may be possible.

  5. Development of a simplified, cost effective GC-ECD methodology for the sensitive detection of bromoform in the troposphere.

    PubMed

    Kuyper, Brett; Labuschagne, Casper; Philibert, Raïssa; Moyo, Nicholas; Waldron, Howard; Reason, Chris; Palmer, Carl

    2012-01-01

    Wherever measurements have been made bromoform was found to be ubiquitous in the surface ocean in pmolar-nmolar concentrations. These measurements show concentrations in coastal regions orders of magnitude higher than in the pelagic oceans. Its atmospheric presence is primarily due to its release from algae and rapid transport to the marine boundary troposphere where it is known to participate in ozone chemistry via photochemical and catalytic pathways. Until quite recently, a limited number of studies existed (compared to other marine volatile organic compounds (VOCs)), mainly due to the analytical challenge(s) presented by the low environmental mixing ratios. In this work we detail the development of a simplified, cost effective method to detect and quantify bromoform in environmental air samples. Air samples (1.5 L) were preconcentrated onto a precooled adsorbent (Carbopack X/Carboxen 1016) trap. These samples were injected by means of rapid thermal desorption for separation and detection by GC-ECD. The system was calibrated by means of a custom-built permeation oven. A linear system response was achieved, having a detection limit of 0.73 ± 0.09 ppt. A range of environmental samples was analysed to demonstrate the ability of the technique to separate and identify bromoform from air samples. The results showed that bromoform concentrations typically averaged 24.7 ± 17.3 ppt in marine air samples, 68.5 ± 26.3 ppt in Cape Town urban air samples and 33.9 ± 40.5 ppt in simulated biomass burning plumes (SBBP). PMID:23202011

  6. Development of a Simplified, Cost Effective GC-ECD Methodology for the Sensitive Detection of Bromoform in the Troposphere

    PubMed Central

    Kuyper, Brett; Labuschagne, Casper; Philibert, Raïssa; Moyo, Nicholas; Waldron, Howard; Reason, Chris; Palmer, Carl

    2012-01-01

    Wherever measurements have been made bromoform was found to be ubiquitous in the surface ocean in pmolar-nmolar concentrations. These measurements show concentrations in coastal regions orders of magnitude higher than in the pelagic oceans. Its atmospheric presence is primarily due to its release from algae and rapid transport to the marine boundary troposphere where it is known to participate in ozone chemistry via photochemical and catalytic pathways. Until quite recently, a limited number of studies existed (compared to other marine volatile organic compounds (VOCs)), mainly due to the analytical challenge(s) presented by the low environmental mixing ratios. In this work we detail the development of a simplified, cost effective method to detect and quantify bromoform in environmental air samples. Air samples (1.5 L) were preconcentrated onto a precooled adsorbent (Carbopack X/Carboxen 1016) trap. These samples were injected by means of rapid thermal desorption for separation and detection by GC-ECD. The system was calibrated by means of a custom-built permeation oven. A linear system response was achieved, having a detection limit of 0.73 ± 0.09 ppt. A range of environmental samples was analysed to demonstrate the ability of the technique to separate and identify bromoform from air samples. The results showed that bromoform concentrations typically averaged 24.7 ± 17.3 ppt in marine air samples, 68.5 ± 26.3 ppt in Cape Town urban air samples and 33.9 ± 40.5 ppt in simulated biomass burning plumes (SBBP). PMID:23202011

  7. Bromoform in the tropical boundary layer of the Maritime Continent during OP3: the contrast between coast and rainforest

    NASA Astrophysics Data System (ADS)

    Pyle, J. A.; Harris, N. R. P.; Robinson, A. D.; Gostlow, B.; O'Brien, L. M.; Ashfold, M. J.; Carver, G. D.; Warwick, N. J.; Manning, A. J.; Yong, S. E.; Peng, L. K.; Ung, H. E.; Ong, S.

    2010-06-01

    We report measurements of bromoform made by gas chromatography during the OP3 campaign in 2008. Measurements were made simultaneously for a few days at the World Meteorological Organization (WMO) Global Atmospheric Watch (GAW) site in the Danum Valley, a rainforest location in Sabah, Borneo, and at a nearby coastal site at Kunak. Background values at Kunak were higher than those measured in the rainforest (2-5 ppt compared with 1 ppt) and excursions away from the background were very much higher, reaching 10s of ppt. Measurements of C2Cl4, an industrial tracer, showed no significant difference in background at the two sites. The data are consistent with a strong, local coastal source of bromoform in eastern Sabah. Modelling using two different models can reproduce many of the observed features. The bromoform data are consistent with a lower global source (190 Gg Br yr-1) than indicated by our recent measurements on Cape Verde (O'Brien et al., 2009) and point to the difficulty for short-lived species of extrapolating local measurements to a global source.

  8. On the emissions and transport of bromoform: sensitivity to model resolution and emission location

    NASA Astrophysics Data System (ADS)

    Russo, M. R.; Ashfold, M. J.; Harris, N. R. P.; Pyle, J. A.

    2015-12-01

    Bromoform (CHBr3) is a short-lived species with an important but poorly quantified ocean source. It can be transported to the Tropical Tropopause Layer (TTL), in part by rapid, deep convective lifting, from where it can influence the global stratospheric ozone budget. In a modelling study, we investigate the importance of the regional distribution of the emissions and of model resolution for the transport of bromoform to the TTL. We use two idealized CHBr3 emission fields (one coastal, one uniformly distributed across the oceans) implemented in high- and coarse-resolution (HR and CR) versions of the same global model and focus on February as the period of peak convection in the West Pacific. Using outgoing long-wave radiation and precipitation as metrics, the HR version of the model is found to represent convection better. In the more realistic HR model version, the coastal emission scenario leads to 15-20 % more CHBr3 in the global TTL, and up to three times more CHBr3 in the TTL over the Maritime Continent, than when uniform emissions of the same tropical magnitude are employed. Using the uniform emission scenario in both model versions, the distribution of CHBr3 at 15.7 km (approximately the level of zero net radiative heating) is qualitatively consistent with the differing geographic distributions of convection. However, averaged over the whole tropics, the amount of CHBr3 in the TTL in the two model versions is similar. Using the coastal scenario, in which emissions are particularly high in the Maritime Continent because of its long coastlines, the mixing ratio of CHBr3 in the TTL is enhanced over the Maritime Continent in both model versions. The enhancement is larger, and the peak in CHBr3 mixing ratio occurs at a higher altitude, in the HR model version. Our regional-scale results indicate that using aircraft measurements and coarse global models to infer CHBr3 emissions will be very difficult, particularly if (as is possible) emissions are distributed

  9. On the emissions and transport of bromoform: sensitivity to model resolution and emission location

    NASA Astrophysics Data System (ADS)

    Russo, M. R.; Ashfold, M. J.; Harris, N. R. P.; Pyle, J. A.

    2015-07-01

    Bromoform (CHBr3) is a short-lived species with an important but poorly quantified ocean source. It can be transported to the Tropical Tropopause Layer (TTL), in part by rapid, deep convective lifting, from where it can influence the global stratospheric ozone budget. In a modelling study, we investigate the importance of the regional distribution of the emissions and of model resolution for the transport of bromoform to the TTL. We use two idealised CHBr3 emission fields (one coastal, one uniformly distributed across the oceans) implemented in high and coarse resolution (HR and CR) versions of the same global model and focus on February as the period of peak convection in the West Pacific. Using outgoing long-wave radiation and precipitation as metrics, the HR version of the model is found to represent convection better. In the more realistic HR model version, the coastal emission scenario leads to 15-20 % more CHBr3 in the global TTL, and up to three times more CHBr3 in the TTL over the Maritime Continent, than when uniform emissions of the same tropical magnitude are employed. Using the uniform emission scenario in both model versions, the distribution of CHBr3 at 15.7 km (approximately the level of zero net radiative heating) is qualitatively consistent with the differing geographic distributions of convection. However, averaged over the whole tropics, the amount of CHBr3 in the TTL in the two model versions is similar. Using the coastal scenario, in which emissions are particularly high in the Maritime Continent because of its long coastlines, the mixing ratio of CHBr3 in the TTL is enhanced over the Maritime Continent in both model versions. The enhancement is larger, and the peak in CHBr3 mixing ratio occurs at a higher altitude, in the HR model version. Our regional-scale results indicate that using aircraft measurements and coarse global models to infer CHBr3 emissions will be very difficult, particularly if (as is possible) emissions are distributed

  10. Bromoform and Dibromomethane Emission During the SHIVA Western Pacific 2011 Field Campaign: A 3-D Model Case Study

    NASA Astrophysics Data System (ADS)

    Mantle, Hannah; Hossaini, Ryan; Chipperfield, Martyn

    2013-04-01

    Halogenated very short-lived species (VSLS) with atmospheric lifetimes of <6 months can be transported to the stratosphere, particularly in regions experiencing rapid vertical transport due to deep convection. Once in the stratosphere bromine released from VSLS contributes to ozone depletion. While the Montreal Protocol has controlled the emission of longer-lived anthropogenic halogenated species, the quantitative impact of naturally sourced VSLS remains unclear and requires further investigation. We have used the TOMCAT offline global 3-D chemical transport model (CTM) to test different VSLS emission scenarios. In this study, TOMCAT is forced using 6-hourly European Centre for Medium-Range Weather Forecasts analyses, has 60 vertical levels from the surface to ~60 km and a horizontal resolution of 2.8°x2.8°. Previous work using TOMCAT into halogenated VSLS emission and transport has involved the use of fixed surface mixing ratios of 1.2 pptv bromoform and dibromomethane in the bottom two layers of the model surface in the Tropics (Hossaini et al., 2010). Although an accurate representation of surface mixing ratios of these VSLS, the use of spatially varying emission fluxes should allow for improved accuracy in model predictions. The EU-funded SHIVA Malaysia 2011 field campaign provided a comprehensive VSLS dataset obtained in a region where these source gases have the potential to reach the stratosphere and deplete ozone. Observations of VSLS were collected during November and December 2011 on board the DLR Falcon aircraft during sixteen local flights. Fourteen of these flights have been used in this study due to technical difficulties experienced on the remaining two flights. Four emission scenarios, including both top-down and bottom-up approaches derived from airborne measurements and ocean fluxes of VSLS, were used in TOMCAT and each scenario was compared to observations of bromoform and dibromomethane collected during the SHIVA campaign. The mean bias of

  11. Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic acid

    USGS Publications Warehouse

    Curtis, G.P.; Reinhard, M.

    1994-01-01

    The reductive dehalogenation of hexachloroethane (C2Cl6), carbon tetrachloride (CCl4), and bromoform (CHBr3) was examined at 50??C in aqueous solutions containing either (1) 500 ??M of 2,6-anthrahydroquinone disulfonate (AHQDS), (2) 250 ??M Fe2+, or (3) 250 ??M HS-. The pH ranged from 4.5 to 11.5 for AHQDS solutions and was 7.2 in the Fe2+ solutions and 7.8 in the HS- solutions. The observed disappearance of C2Cl6 in the presence of AHQDS was pseudo-first-order and fit k??ccl4 = k0[A(OH)2] + k1[A(OH)O-] + k2[A(O)22-] where A(OH)2, A(OH)O-, and A(O)22- represent the concentrations of the three forms of the AHQDS in solution. The values of k0, k1, and k2 were ???0,0.031, and 0.24 M-1 s-1, respectively. The addition of 25 mg of C/L of humic acid or organic matter extracted from Borden aquifer solids to aqueous solutions containing 250 ??M HS- or Fe2+ increased the reduction rate by factors of up to 10. The logarithms of the rate constants for the disappearance of C2Cl6 and CCl4 in seven different experimental systems were significantly correlated; log k???ccl4 = 0-64 log k??? c2cl6 - 0.83 with r2 = 0.80. The observed trend in reaction rates of C2Cl6 > CCl4 > CHBr3 is consistent with a decreasing trend in one-electron reduction potentials. ?? 1994 American Chemical Society.

  12. Modelling the chemistry and transport of bromoform within a sea breeze driven convective system during the SHIVA Campaign

    NASA Astrophysics Data System (ADS)

    Hamer, P. D.; Marécal, V.; Hossaini, R.; Pirre, M.; Warwick, N.; Chipperfield, M.; Samah, A. A.; Harris, N.; Robinson, A.; Quack, B.; Engel, A.; Krüger, K.; Atlas, E.; Subramaniam, K.; Oram, D.; Leedham, E.; Mills, G.; Pfeilsticker, K.; Sala, S.; Keber, T.; Bönisch, H.; Peng, L. K.; Nadzir, M. S. M.; Lim, P. T.; Mujahid, A.; Anton, A.; Schlager, H.; Catoire, V.; Krysztofiak, G.; Fühlbrügge, S.; Dorf, M.; Sturges, W. T.

    2013-08-01

    We carry out a case study of the transport and chemistry of bromoform and its product gases (PGs) in a sea breeze driven convective episode on 19 November 2011 along the North West coast of Borneo during the "Stratospheric ozone: Halogen Impacts in a Varying Atmosphere" (SHIVA) campaign. We use ground based, ship, aircraft and balloon sonde observations made during the campaign, and a 3-D regional online transport and chemistry model capable of resolving clouds and convection explicitly that includes detailed bromine chemistry. The model simulates the temperature, wind speed, wind direction fairly well for the most part, and adequately captures the convection location, timing, and intensity. The simulated transport of bromoform from the boundary layer up to 12 km compares well to aircraft observations to support our conclusions. The model makes several predictions regarding bromine transport from the boundary layer to the level of convective detrainment (11 to 12 km). First, the majority of bromine undergoes this transport as bromoform. Second, insoluble organic bromine carbonyl species are transported to between 11 and 12 km, but only form a small proportion of the transported bromine. Third, soluble bromine species, which include bromine organic peroxides, hydrobromic acid (HBr), and hypobromous acid (HOBr), are washed out efficiently within the core of the convective column. Fourth, insoluble inorganic bromine species (principally Br2) are not washed out of the convective column, but are also not transported to the altitude of detrainment in large quantities. We expect that Br2 will make a larger relative contribution to the total vertical transport of bromine atoms in scenarios with higher CHBr3 mixing ratios in the boundary layer, which have been observed in other regions. Finally, given the highly detailed description of the chemistry, transport and washout of bromine compounds within our simulations, we make a series of recommendations about the physical and

  13. Global sampling of the photochemical reaction paths of bromoform by ultrafast deep-UV through near-IR transient absorption and ab initio multiconfigurational calculations.

    PubMed

    Pal, S K; Mereshchenko, A S; Butaeva, E V; El-Khoury, P Z; Tarnovsky, A N

    2013-03-28

    Ultrafast deep-ultraviolet through near infrared (210-950 nm) transient absorption spectroscopy complemented by ab initio multiconfigurational calculations offers a global description of the photochemical reaction pathways of bromoform following 255-nm excitation in methylcyclohexane and acetonitrile solutions. Photoexcitation of CHBr3 leads to the ground-state iso-CHBr3 product in a large quantum yield (∼35%), formed through two different mechanisms: concerted excited-state isomerization and cage-induced isomerization through the recombination of the nascent radical pair. These two processes take place on different time scales of tens of femtoseconds and several picoseconds, respectively. The novel ultrafast direct isomerization pathway proposed herein is consistent with the occurrence of a conical intersection between the first excited singlet state of CHBr3 and the ground electronic state of iso-CHBr3. Complete active space self-consistent field calculations characterize this singularity in the vicinity of a second order saddle point on the ground state which connects the two isomer forms. For cage-induced isomerization, both the formation of the nascent radical pair and its subsequent collapse into ground-state iso-CHBr3 are directly monitored through the deep-ultraviolet absorption signatures of the radical species. In both mechanisms, the optically active (i.e., those with largest Franck-Condon factors) C-Br-Br bending and Br-Br stretching modes of ground-state iso-CHBr3 have the largest projection on the reaction coordinate, enabling us to trace the structural changes accompanying vibrational relaxation of the non-equilibrated isomers through transient absorption dynamics. The iso-CHBr3 photoproduct is stable in methylcyclohexane, but undergoes either facile thermal isomerization to the parent CHBr3 structure through a cyclic transition state stabilized by the polar acetonitrile medium (∼300-ps lifetime), and hydrolysis in the presence of water. PMID

  14. Spectroscopic and computational studies of matrix-isolated iso-CHBr{sub 3}: Structure, properties, and photochemistry of iso-bromoform

    SciTech Connect

    George, Lisa; Kalume, Aimable; Wagner, James; Reid, Scott A.; Esselman, Brian J.; McMahon, Robert J.

    2011-09-28

    Iso-polyhalomethanes are known reactive intermediates that play a pivotal role in the photochemistry of halomethanes in condensed phases. In this work, iso-bromoform (iso-CHBr{sub 3}) and its deuterated isotopomer were characterized by matrix isolation infrared and UV/visible spectroscopy, supported by ab initio and density functional theory calculations, to further probe the structure, spectroscopy, and photochemistry of this important intermediate. Selected wavelength laser irradiation of CHBr{sub 3} isolated in Ar or Ne matrices at {approx}5 K yielded iso-CHBr{sub 3}; the observed infrared and UV/visible absorptions are in excellent agreement with computational predictions, and the energies of various stationary points on the CHBr{sub 3} potential energy surface were characterized computationally using high-level methods in combination with correlation consistent basis sets. These calculations show that, while the corresponding minima lie {approx}200 kJ/mol above the global CHBr{sub 3} minimum, the isomer is bound by some 60 kJ/mol in the gas phase with respect to the CHBr{sub 2}+ Br asymptote. The photochemistry of iso-CHBr{sub 3} was investigated by selected wavelength laser irradiation into the intense S{sub 0}{yields} S{sub 3} transition, which resulted in back photoisomerization to CHBr{sub 3}. Intrinsic reaction coordinate calculations confirmed the existence of a first-order saddle point connecting the two isomers, which lies energetically below the threshold of the radical channel. Subsequently, natural bond orbital analysis and natural resonance theory were used to characterize the important resonance structures of the isomer and related stationary points, which demonstrate that the isomerization transition state represents a crossover from dominantly covalent to dominantly ionic bonding. In condensed phases, the ion-pair dominated isomerization transition state structure is preferentially stabilized, so that the barrier to isomerization is lowered.

  15. Oceanic bromoform emissions weighted by their ozone depletion potential

    NASA Astrophysics Data System (ADS)

    Tegtmeier, S.; Ziska, F.; Pisso, I.; Quack, B.; Velders, G. J. M.; Yang, X.; Krüger, K.

    2015-12-01

    At present, anthropogenic halogens and oceanic emissions of very short-lived substances (VSLSs) both contribute to the observed stratospheric ozone depletion. Emissions of the long-lived anthropogenic halogens have been reduced and are currently declining, whereas emissions of the biogenic VSLSs are expected to increase in future climate due to anthropogenic activities affecting oceanic production and emissions. Here, we introduce a new approach for assessing the impact of oceanic halocarbons on stratospheric ozone by calculating their ozone depletion potential (ODP)-weighted emissions. Seasonally and spatially dependent, global distributions are derived within a case-study framework for CHBr3 for the period 1999-2006. At present, ODP-weighted emissions of CHBr3 amount up to 50 % of ODP-weighted anthropogenic emissions of CFC-11 and to 9 % of all long-lived ozone depleting halogens. The ODP-weighted emissions are large where strong oceanic emissions coincide with high-reaching convective activity and show pronounced peaks at the Equator and the coasts with largest contributions from the Maritime Continent and western Pacific Ocean. Variations of tropical convective activity lead to seasonal shifts in the spatial distribution of the trajectory-derived ODP with the updraught mass flux, used as a proxy for trajectory-derived ODP, explaining 71 % of the variance of the ODP distribution. Future climate projections based on the RCP 8.5 scenario suggest a 31 % increase of the ODP-weighted CHBr3 emissions by 2100 compared to present values. This increase is related to a larger convective updraught mass flux in the upper troposphere and increasing emissions in a future climate. However, at the same time, it is reduced by less effective bromine-related ozone depletion due to declining stratospheric chlorine concentrations. The comparison of the ODP-weighted emissions of short- and long-lived halocarbons provides a new concept for assessing the overall impact of oceanic halocarbon emissions on stratospheric ozone depletion for current conditions and future projections.

  16. Production of bromoform and dibromomethane by Giant Kelp: Factors affecting release and comparison to anthropogenic bromine sources

    USGS Publications Warehouse

    Goodwin, K.D.; North, W.J.; Lidstrom, M.E.

    1998-01-01

    Macrocystis pyrifera (Giant Kelp), a dominant macroalgal species in southern California, produced 171 ng per g fresh wt (gfwt) per day of CHBr3 and 48 ng gfwt-1 d-1 of CH2Br2 during laboratory incubations of whole blades. Comparable rates were measured during in situ incubations of intact fronds. Release of CHBr3 and CH2Br2 by M. pyrifera was affected by light and algal photosynthetic activity, suggesting that environmental factors influencing kelp physiology can affect halomethane release to the atmosphere. Data from H2O2 additions suggest that brominated methane production during darkness is limited by bromide oxidant supply. A bromine budget constructed for a region of southern California indicated that bromine emitted from the use of CH3Br as a fumigant (1 x 108 g Br yr-1) dominates macroalgal sources (3 x 106 g Br yr-1). Global projections, however, suggest that combined emissions of marine algae (including microalgae) contribute substantial amounts of bromine to the global cycle, perhaps on the same order of magnitude as anthropogenic sources.

  17. 40 CFR 401.15 - Toxic pollutants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .../Dieldrin 1 1 Effluent standard promulgated (40 CFR part 129). 5. Antimony and compounds 2 2 The term..., methylchloride, methylbromide, bromoform, dichlorobromomethane 39. Heptachlor and metabolites...

  18. 40 CFR 401.15 - Toxic pollutants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../Dieldrin 1 1 Effluent standard promulgated (40 CFR part 129). 5. Antimony and compounds 2 2 The term..., methylchloride, methylbromide, bromoform, dichlorobromomethane 39. Heptachlor and metabolites...

  19. 40 CFR 401.15 - Toxic pollutants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .../Dieldrin 1 1 Effluent standard promulgated (40 CFR part 129). 5. Antimony and compounds 2 2 The term..., methylchloride, methylbromide, bromoform, dichlorobromomethane 39. Heptachlor and metabolites...

  20. 40 CFR 401.15 - Toxic pollutants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .../Dieldrin 1 1 Effluent standard promulgated (40 CFR part 129). 5. Antimony and compounds 2 2 The term..., methylchloride, methylbromide, bromoform, dichlorobromomethane 39. Heptachlor and metabolites...

  1. 40 CFR 401.15 - Toxic pollutants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .../Dieldrin 1 1 Effluent standard promulgated (40 CFR part 129). 5. Antimony and compounds 2 2 The term..., methylchloride, methylbromide, bromoform, dichlorobromomethane 39. Heptachlor and metabolites...

  2. REMOVING TRIHALOMETHANES FROM DRINKING WATER - AN OVERVIEW OF TREATMENT TECHNIQUES

    EPA Science Inventory

    In 1974 trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) were discovered to be formed during the disinfection step of drinking water if free chlorine was the disinfectant. This, coupled with the perceived hazard to the consumer's health, led...

  3. Pregnancy loss and eye malformations in offspring of F344 rats following gestational exposure to mixtures of regulated trihalomethanes and haloacetic acids

    EPA Science Inventory

    Chlorination of drinking water results in the formation of hundreds of disinfection byproducts (DBPs), the most prevalent are trihalomethanes (THMs) and haloacetic acids (HAAs). Four THMs (chloroform, bromodichloromethane, chlorodibromomethane, bromoform) and five HAAs (chloroac...

  4. The Impact of Mixture Composition, Mixing Ratio and Dose on the Interactions among the Four Trihalomethanes (THMs) Regulated in Drinking Water

    EPA Science Inventory

    Oxidizing disinfectants reduce microbial contamination but react with inorganic and organic materials in water forming disinfection byproducts (DBPs). The U.S. EPA regulates 4 THM DBPs (chloroform, CHCI3; bromodichloromethane, BDCM; chlorodibromomethane, CDBM; bromoform, CHBr3) a...

  5. STUDIES OF DBP INTERACTIONS

    EPA Science Inventory

    The trihalomethanes (THMs), chloroform, bromodichloromethane (BDCM), chlorodibromomethane and bromoform, were selected as the first class of chemicals for investigation. We examined in the male F-344 rat the assumption of additivity for acute exposure to mixtures of BDCM and chlo...

  6. 40 CFR 433.11 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Specialized definitions. The definitions set forth in 40 CFR part 401 and the chemical analysis methods set forth in 40 CFR part 136 are both incorporated here by reference. In addition, the following definitions... (chloromethane) Methyl bromide (bromomethane) Bromoform (tribromomethane)...

  7. 40 CFR 433.11 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Specialized definitions. The definitions set forth in 40 CFR part 401 and the chemical analysis methods set forth in 40 CFR part 136 are both incorporated here by reference. In addition, the following definitions... (chloromethane) Methyl bromide (bromomethane) Bromoform (tribromomethane)...

  8. Bromoalkane production by Antarctic ice algae

    NASA Technical Reports Server (NTRS)

    Sturges, W. T.; Sullivan, C. W.; Schnell, R. C.; Heidt, L. E.; Pollock, W. H.

    1993-01-01

    Ice microalgae, collected from the underside of annual sea ice in McMurdo Sound, Antarctica, were found to contain and release to seawater a number of brominated hydrocarbons. These included bromoform, dibromomethane, mixed bromochloromethanes, and methyl bromide. Atmospheric measurements in the McMurdo Sound vicinity revealed the presence of bromoform and methyl bromide in the lower atmosphere, with lowest concentrations inland, further indicating that biogenic activity in the Sound is a source of organic bromine gases to the Antarctic atmosphere. This may have important implications for boundary layer chemistry in Antarctica. In the Arctic, the presence of bromoform has been linked to loss of surface ozone in the spring. We report here preliminary evidence for similar surface ozone loss at McMurdo Station.

  9. 29 CFR 1926.55 - Gases, vapors, fumes, dusts, and mists.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 7789-30-2 0.1 0.7 — Bromoform 75-25-2 0.5 5 X Butadiene (1,3-Butadiene); see 29 CFR 1910.1051; 29 CFR... Mn) 7439-96-5 — (C)5 — Marble 1317-65-3 Total dust — — Respirable fraction — — Mercury (aryl...

  10. 29 CFR 1926.55 - Gases, vapors, fumes, dusts, and mists.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 7789-30-2 0.1 0.7 — Bromoform 75-25-2 0.5 5 X Butadiene (1,3-Butadiene); see 29 CFR 1910.1051; 29 CFR... Mn) 7439-96-5 — (C)5 — Marble 1317-65-3 Total dust — — Respirable fraction — — Mercury (aryl...

  11. 29 CFR 1926.55 - Gases, vapors, fumes, dusts, and mists.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 7789-30-2 0.1 0.7 — Bromoform 75-25-2 0.5 5 X Butadiene (1,3-Butadiene); see 29 CFR 1910.1051; 29 CFR... Mn) 7439-96-5 — (C)5 — Marble 1317-65-3 Total dust — — Respirable fraction — — Mercury (aryl...

  12. 29 CFR 1926.55 - Gases, vapors, fumes, dusts, and mists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 7789-30-2 0.1 0.7 — Bromoform 75-25-2 0.5 5 X Butadiene (1,3-Butadiene); see 29 CFR 1910.1051; 29 CFR... Mn) 7439-96-5 — (C)5 — Marble 1317-65-3 Total dust — — Respirable fraction — — Mercury (aryl...

  13. 29 CFR 1926.55 - Gases, vapors, fumes, dusts, and mists.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 7789-30-2 0.1 0.7 — Bromoform 75-25-2 0.5 5 X Butadiene (1,3-Butadiene); see 29 CFR 1910.1051; 29 CFR... Mn) 7439-96-5 — (C)5 — Marble 1317-65-3 Total dust — — Respirable fraction — — Mercury (aryl...

  14. THE INDUCTION OF ABERRANT CRYPT FOCI (ACF) IN THE COLONS OF RATS BY TRIHALOMETHANES ADMINISTERED IN THE DRINKING WATER

    EPA Science Inventory

    Bromodichloromethane (BDCM) and bromoform (TBM) had been demonstrated to be colon carcinogens in male and female F344/N rats following administration by corn oil gavage. Our chronic bioassay of BDCM administered in the drinking water failed to demonstrate an enhanced colon cance...

  15. 40 CFR 413.02 - General definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to the definitions set forth in 40 CFR part 401 and the chemical analysis methods set forth in 40 CFR... part: (a) The term CN,A shall mean cyanide amenable to chlorination as defined by 40 CFR 136. (b) The... (dichloromethane) Methyl chloride (chloromethane) Methyl bromide (bromomethane) Bromoform...

  16. 40 CFR 413.02 - General definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to the definitions set forth in 40 CFR part 401 and the chemical analysis methods set forth in 40 CFR... part: (a) The term CN,A shall mean cyanide amenable to chlorination as defined by 40 CFR 136. (b) The... (dichloromethane) Methyl chloride (chloromethane) Methyl bromide (bromomethane) Bromoform...

  17. 40 CFR 413.02 - General definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to the definitions set forth in 40 CFR part 401 and the chemical analysis methods set forth in 40 CFR... part: (a) The term CN,A shall mean cyanide amenable to chlorination as defined by 40 CFR 136. (b) The... (dichloromethane) Methyl chloride (chloromethane) Methyl bromide (bromomethane) Bromoform...

  18. 40 CFR 433.11 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... definitions. The definitions set forth in 40 CFR part 401 and the chemical analysis methods set forth in 40 CFR part 136 are both incorporated here by reference. In addition, the following definitions apply to... (chloromethane) Methyl bromide (bromomethane) Bromoform (tribromomethane)...

  19. THE INDUCTION OF ABERRANT CRYPT FOCI IN THE COLONS OF MALE F344/N RATS EXPOSED TO THIHALOMETHANE MIXTURES IN THE DRINKING WATER

    EPA Science Inventory


    THE INDUCTION OF ABERRANT CRYPT FOCI IN THE COLONS OF MALE F344/N
    RATS EXPOSED TO TRIHALOMETHANE MIXTURES IN THE DRINKING WATER

    The trihalomethanes (THM), bromoform (TBM) and bromodichloromethane (BDCM), administered by corn oil gavage were found to increase large...

  20. HEMOGLOBIN BINDING AS A DOSE MONITOR FOR CHEMICAL CARCINOGENS

    EPA Science Inventory

    The covalent binding of chemical carcinogens and mutagens to hemoglobin has been proposed as a dose monitor for environmental exposure. The binding of chloroform and bromoform to hemoglobin in rats was demonstrated to result from the formation of adducts to amino acids in the glo...

  1. Distribution of natural halocarbons in marine boundary air over the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Yokouchi, Yoko; Inoue, Jun; Toom-Sauntry, Desiree

    2013-08-01

    Ongoing environmental changes in the Arctic will affect the exchange of natural volatile organic compounds between the atmosphere and the Arctic Ocean. Among these compounds, natural halocarbons play an important role in atmospheric ozone chemistry. We measured the distribution of five major natural halocarbons (methyl iodide, bromoform, dibromomethane, methyl chloride, and methyl bromide) together with dimethyl sulfide and tetrachloroethylene in the atmosphere over the Arctic Ocean (from the Bering Strait to 79°N) and along the cruise path to and from Japan. Methyl iodide, bromoform, and dibromomethane were most abundant near perennial sea ice in air masses derived from coastal regions and least abundant in the northernmost Arctic, where the air masses had passed over the ice pack, whereas methyl chloride and methyl bromide showed the opposite distribution pattern. Factors controlling those distributions and future prospects for natural halocarbons in the Arctic are discussed.

  2. The use of thymol as a biocide in rainwater samples

    NASA Astrophysics Data System (ADS)

    Gillett, R. W.; Ayers, G. P.

    An essential requirement for any rainwater composition study based on sampling periods longer than that of individual events, is the selection of a biocide which prevents the biological degradation of rainwater organic acids, such as formic and acetic acid. In this report data are presented from a series of tests of biocidal activity of several compounds. Chloroform was confirmed as an effective rainwater biocide which quantitatively preserves formic acid from biological degradation in rainwater. Of the compounds tested, only bromoform and thymol (2-isopropyl-5-methyl phenol) were as effective as chloroform in preventing biological degradation of formic acid in rainwater. However, since bromoform produced an acid on standing, probably hydrobromic acid, it was unsuitable for use as a biocide. Therefore only thymol was found to be suitable as a biocide in rainwater collected in south-eastern Australia. As thymol is a solid, and hence non-volatile, it offers some advantage over the traditional use of chloroform.

  3. The Evaluation of Spatial Fluctuations and Temporal Variability in Estimated Levels of THMs in Drinking Water

    NASA Astrophysics Data System (ADS)

    Ristoiu, D.; Haiduc, I.; Culea, M.; Mocan, A.; Chira, R.; Vancea, S.

    2007-04-01

    Chlorine, used by municipal water treatment facilities to disinfect water, reacts with naturally occurring organic matter to produce a host of compounds known as disinfection by-products. In addition to chloroform, brominated species such as bromodichloromethane, dibromochloromethane, and bromoform may also be formed if bromide is present in the source water. Together, these volatile compounds comprise the trihalomethanes (THMs). The results presented in this paper shown that the THM levels were higher in the summer relative to other seasons.

  4. Transport of very short-lived halocarbons from the Indian Ocean to the stratosphere through the Asian monsoon circulation

    NASA Astrophysics Data System (ADS)

    Fiehn, Alina; Hepach, Helmke; Atlas, Elliot; Quack, Birgit; Tegtmeier, Susann; Krüger, Kirstin

    2016-04-01

    Halogenated organic compounds are naturally produced in the ocean and emitted to the atmosphere. The halogenated very short-lived substances (VSLS), such as bromoform, have atmospheric lifetimes of less than half a year. When VSLS reach the stratosphere, they enhance ozone depletion and thus impact the climate. During boreal summer, the Asian monsoon circulation transfers air masses from the Asian troposphere to the global stratosphere. Still, the extent to which VSLS from the Indian Ocean contribute to the stratospheric halogen burden and their exact origin is unclear. Here we show that the monsoon circulation transports VSLS from the Indian Ocean to the stratosphere. During the research cruises SO234-2 and SO235 in July-August 2014 onboard RV SONNE, we measured oceanic and atmospheric concentrations of bromoform (tropical lifetime at 10 km = 17 days), dibromomethane (150 days) and methyl iodide (3.5 days) in the subtropical and tropical West Indian Ocean and calculated their emission strengths. We use the Langrangian transport model FLEXPART driven by ERA-Interim meteorological fields to investigate the transport of oceanic emissions in the atmosphere. We analyze the direct contribution of observed bromoform emissions to the stratospheric halogen budget with forward trajectories. Furthermore, we investigate the connection between the Asian monsoon anticyclone and the oceanic source regions using backward trajectories. The West Indian Ocean is a strong source region of VSLS to the atmosphere and the monsoon transport is fast enough for bromoform to reach the stratosphere. However, the main source regions for the entrainment of oceanic air masses through the Asian monsoon anticyclone are the West Pacific and Bay of Bengal as well as the Arabian Sea. Our findings indicate that changes in emission or circulation in this area due to climate change can directly affect the stratospheric halogen burden and thus the ozone layer.

  5. The contribution of oceanic halocarbons to marine and free tropospheric air over the tropical West Pacific

    NASA Astrophysics Data System (ADS)

    Fuhlbrügge, Steffen; Quack, Birgit; Tegtmeier, Susann; Atlas, Elliot; Hepach, Helmke; Shi, Qiang; Raimund, Stefan; Krüger, Kirstin

    2016-06-01

    Emissions of halogenated very-short-lived substances (VSLSs) from the oceans contribute to the atmospheric halogen budget and affect tropospheric and stratospheric ozone. Here, we investigate the contribution of natural oceanic VSLS emissions to the marine atmospheric boundary layer (MABL) and their transport into the free troposphere (FT) over the tropical West Pacific. The study concentrates on bromoform, dibromomethane and methyl iodide measured on ship and aircraft during the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in the South China and Sulu seas in November 2011. Elevated oceanic concentrations for bromoform, dibromomethane and methyl iodide of on average 19.9, 5.0 and 3.8 pmol L-1, in particular close to Singapore and to the coast of Borneo, with high corresponding oceanic emissions of 1486, 405 and 433 pmol m-2 h-1 respectively, characterise this tropical region as a strong source of these compounds. Atmospheric mixing ratios in the MABL were unexpectedly relatively low with 2.08, 1.17 and 0.39 ppt for bromoform, dibromomethane and methyl iodide. We use meteorological and chemical ship and aircraft observations, FLEXPART trajectory calculations and source-loss estimates to identify the oceanic VSLS contribution to the MABL and to the FT. Our results show that the well-ventilated MABL and intense convection led to the low atmospheric mixing ratios in the MABL despite the high oceanic emissions. Up to 45 % of the accumulated bromoform in the FT above the region originates from the local South China Sea area, while dibromomethane is largely advected from distant source regions and the local ocean only contributes 20 %. The accumulated methyl iodide in the FT is higher than can be explained with local contributions. Possible reasons, uncertainties and consequences of our observations and model estimates are discussed.

  6. Reaction by-products from high energy electron irradiation of aqueous solutions of trihalomethanes

    SciTech Connect

    Cadavid, E.M.; Cooper, W.J.; Nickelsen, M.G. ); Kurucz, C.N.; Waite, T.D. )

    1990-01-01

    Trihalomethanes (THMs) are formed in water when chlorine is used for disinfection. The THMs of interest are chloroform, bromodichloromethane, chlorodibromomethane and bromoform. This study was undertaken to study the removal of the trihalomethanes using an innovative treatment technique, high energy electrons, for drinking water treatment. In addition to removal studies experiments were undertaken at low radiation doses to determine whether other chlorinated compounds are formed as reaction by-products.

  7. The role of vanadium haloperoxidases in the formation of volatile brominated compounds and their impact on the environment.

    PubMed

    Wever, Ron; van der Horst, Michael A

    2013-09-01

    Vanadium haloperoxidases differ strongly from heme peroxidases in substrate specificity and stability and in contrast to a heme group they contain the bare metal oxide vanadate as a prosthetic group. These enzymes specifically oxidize halides in the presence of hydrogen peroxide into hypohalous acids. These reactive halogen intermediates will react rapidly and aspecifically with many organic molecules. Marine algae and diatoms containing these iodo- and bromoperoxidases produce short-lived brominated methanes (bromoform, CHBr3 and dibromomethane CH2Br2) or iodinated compounds. Some seas and oceans are supersaturated with these compounds and they form an important source of bromine to the troposphere and lower stratosphere and contribute significantly to the global budget of halogenated hydrocarbons. This perspective focuses, in particular, on the biosynthesis of these volatile compounds and the direct or indirect involvement of vanadium haloperoxidases in the production of huge amounts of bromoform and dibromomethane. Some of the global sources are discussed and from the literature a picture emerges in which oxidized brominated species generated by phytoplankton, seaweeds and cyanobacteria react with dissolved organic matter in seawater, resulting in the formation of intermediate brominated compounds. These compounds are unstable and decay via a haloform reaction to form an array of volatile brominated compounds of which bromoform is the major component followed by dibromomethane. PMID:23657250

  8. The contribution of oceanic halocarbons to marine and free troposphere air over the tropical West Pacific

    NASA Astrophysics Data System (ADS)

    Fuhlbrügge, S.; Quack, B.; Tegtmeier, S.; Atlas, E.; Hepach, H.; Shi, Q.; Raimund, S.; Krüger, K.

    2015-07-01

    Emissions of halogenated very short lived substances (VSLS) from the tropical oceans contribute to the atmospheric halogen budget and affect tropospheric and stratospheric ozone. Here we investigate the contribution of natural oceanic VSLS emissions to the Marine Atmospheric Boundary Layer (MABL) and their transport into the Free Troposphere (FT) over the tropical West Pacific. The study concentrates in particular on ship and aircraft measurements of the VSLS bromoform, dibromomethane and methyl iodide and meteorological parameters during the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in the South China and Sulu Seas in November 2011. Elevated oceanic concentrations of 19.9 (2.80-136.91) pmol L-1 for bromoform, 5.0 (2.43-21.82) pmol L-1 for dibromomethane and 3.8 (0.55-18.83) pmol L-1 for methyl iodide in particular close to Singapore and at the coast of Borneo with high corresponding oceanic emissions of 1486 ± 1718 pmol m-2 h-1 for bromoform, 405 ± 349 pmol m-2 h-1 for dibromomethane and 433 ± 482 pmol m-2 h-1 for methyl iodide characterize this tropical region as a strong source of these compounds. Unexpectedly atmospheric mixing ratios in the MABL were relatively low with 2.08 ± 2.08 ppt for bromoform, 1.17 ± 1.17 ppt for dibromomethane and 0.39 ± 0.09 ppt for methyl iodide. We use meteorological and chemical ship and aircraft observations, FLEXPART trajectory calculations and source-loss estimates to identify the oceanic VSLS contribution to the MABL and to the FT. Our results show that a convective, well-ventilated MABL and intense convection led to the low atmospheric mixing ratios in the MABL despite the high oceanic emissions in coastal areas of the South-China and Sulu Seas. While the accumulated bromoform in the FT above the region origins almost entirely from the local South China Sea area, dibromomethane is largely advected from distant source regions. The accumulated FT mixing ratio of methyl iodide is higher

  9. Assessing exposure to disinfection by-products in women of reproductive age living in Corpus Christi, Texas, and Cobb county, Georgia: descriptive results and methods.

    PubMed Central

    Lynberg, M; Nuckols, J R; Langlois, P; Ashley, D; Singer, P; Mendola, P; Wilkes, C; Krapfl, H; Miles, E; Speight, V; Lin, B; Small, L; Miles, A; Bonin, M; Zeitz, P; Tadkod, A; Henry, J; Forrester, M B

    2001-01-01

    We conducted a field study in Corpus Christi, Texas, and Cobb County, Georgia, to evaluate exposure measures for disinfection by-products, with special emphasis on trihalomethanes (THMs). Participants were mothers living in either geographic area who had given birth to healthy infants from June 1998 through May 1999. We assessed exposure by sampling blood and water and obtaining information about water use habits and tap water characteristics. Two 10-mL whole blood samples were collected from each participant before and immediately after her shower. Levels of individual THM species (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) were measured in whole blood [parts per trillion (pptr)] and in water samples (parts per billion). In the Corpus Christi water samples, brominated compounds accounted for 71% of the total THM concentration by weight; in Cobb County, chloroform accounted for 88%. Significant differences in blood THM levels were observed between study locations. For example, the median baseline blood level of bromoform was 0.3 pptr and 3.5 pptr for participants in Cobb County and Corpus Christi, respectively (p = 0.0001). Differences were most striking in blood obtained after showering. For bromoform, the median blood levels were 0.5 pptr and 17 pptr for participants in Cobb County and Corpus Christi, respectively (p = 0.0001). These results suggest that blood levels of THM species vary substantially across populations, depending on both water quality characteristics and water use activities. Such variation has important implications for epidemiologic studies of the potential health effects of disinfection by-products. PMID:11445514

  10. Sensitivity and variability of Presage dosimeter formulations in sheet form with application to SBRT and SRS QA

    SciTech Connect

    Dumas, Michael; Rakowski, Joseph T.

    2015-12-15

    Purpose: To measure sensitivity and stability of the Presage dosimeter in sheet form for various chemical concentrations over a range of clinical photon energies and examine its use for stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) QA. Methods: Presage polymer dosimeters were formulated to investigate and optimize their sensitivity and stability. The dosimeter is composed of clear polyurethane base, leucomalachite green (LMG) reporting dye, and bromoform radical initiator in 0.9–1.0 mm thick sheets. The chemicals are mixed together for 2 min, cast in an aluminum mold, and left to cure at 60 psi for a minimum of two days. Dosimeter response was characterized at energies Co-60, 6 MV, 10 MV flattening-filter free, 15 MV, 50 kVp (mean 19.2 keV), and Ir-192. The dosimeters were scanned by a Microtek Scanmaker i800 at 300 dpi, 2{sup 16} bit depth per color channel. Red component images were analyzed with ImageJ and RIT. SBRT QA was done with gamma analysis tolerances of 2% and 2 mm DTA. Results: The sensitivity of the Presage dosimeter increased with increasing concentration of bromoform. Addition of tin catalyst decreased curing time and had negligible effect on sensitivity. LMG concentration should be at least as high as the bromoform, with ideal concentration being 2% wt. Gamma Knife SRS QA measurements of relative output and profile widths were within 2% of manufacturer’s values validated at commissioning, except the 4 mm collimator relative output which was within 3%. The gamma pass rate of Presage with SBRT was 73.7%, compared to 93.1% for EBT2 Gafchromic film. Conclusions: The Presage dosimeter in sheet form was capable of detecting radiation over all tested photon energies and chemical concentrations. The best sensitivity and photostability of the dosimeter were achieved with 2.5% wt. LMG and 8.2% wt. bromoform. Scanner used should not emit any UV radiation as it will expose the dosimeter, as with the Epson 10000 XL scanner

  11. METHOD AND MEANS FOR RADIATION DOSIMETRY

    DOEpatents

    Shulte, J.W.; Suttle, J.F.

    1958-02-18

    This patent relates to a method and device for determining quantities of gamma radiation and x radiation by exposing to such radiation a mature of a purified halogenated hydrocarbon chosen from the class consisting of chloroform, bromoform, tetrachloroethane and 1,1,2trichloroethane, and a minor quantity of a sensitizer chosen from the class consisting of oxygen, benzoyl peroxide, sodium peroxide, and nitrobenzene, the proportion of the sensitizer being at least about 10/sup -5/ moles per cubic centimeter of halogenated hydrocarbon, the total amount of sensitizer depending upon the range of radiation to be measured, and chemically measuring the amount of decomposition generated by the irradiation of the sensitized halogenated hydrocarbon.

  12. Isolation and microscopic characterization of nuclear fuel particles from contaminated soil of ChernobylSéparation et caractérisation microscopique des particules de combustible nucléaire présentes dans les sols contaminés de Tchernobyl

    NASA Astrophysics Data System (ADS)

    Ahamdach, Noureddine; Stammose, Denise

    2000-03-01

    Nuclear fuel particles were separated from Chernobyl contaminated soil sample by sedimentation in bromoform. Their physicochemical characteristics were studied using the scanning electron microscope. One part of the particles contained U and O and the other part contained U, Zr and O. The size of the particles containing Zr was greater than that of the pure fuel particles. The structure and the surface morphology of the studied particles were variable and characterized the conditions of their formation. Thus, the source term is heterogeneous. This heterogeneity has direct consequences on the dissolution of the fuel particles.

  13. SU-E-T-265: Presage Thin Sheet Dosimeter Characterization

    SciTech Connect

    Dumas, M; Rakowski, J

    2014-06-01

    Purpose: To quantify the sensitivity and stability of the Presage dosimeter in sheet form for different concentrations of chemicals and for a diverse range of clinical photon energies. Methods: Presage polymer dosimeters are formulated to investigate and optimize their sensitivity and stability. The dosimeter is composed of clear polyurethane base, leucomalachite green reporting dye, and bromoform radical initiator in 1mm thick sheets. The chemicals are well mixed together, cast in an aluminum mold, and left to cure at 60 psi for a minimum of 2 days. Dosimeter response will be characterized at multiple energies including Co-60, 6 MV, 15 MV, 50 kVp, and 250 kVp. The dosimeters are read by an Epson 10000 XL scanner at 800 dpi, 2{sup 16} bit depth. Red component images are analyzed with ImageJ. Results: Analysis of optical density verse dose for Co-60 energies indicates that the bromoform containing Presage was able to quantify dose from 0 to 300 Gy, with saturation beyond 300 Gy. Initial results show two regions of linear response, 0–100 Gy and 150–300 Gy. The 150–300 Gy region has a sensitivity of 0.0024 net OD/Gy. Further results on other energies are still in progress. Conclusions: This work shows the potential for use of thin sheets of Presage dosimeter as a dosimeter capable of being analyzed with a flatbed scanner.

  14. Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

    DOE PAGESBeta

    Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; Gallis, Dorina F. S.

    2015-03-07

    We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs,more » we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.« less

  15. Occurrence of Selected Pharmaceutical and Organic Wastewater Compounds in Effluent and Water Samples from Municipal Wastewater and Drinking-Water Treatment Facilities in the Tar and Cape Fear River Basins, North Carolina, 2003-2005

    USGS Publications Warehouse

    Ferrell, G.M.

    2009-01-01

    Samples of treated effluent and treated and untreated water were collected at 20 municipal wastewater and drinkingwater treatment facilities in the Tar and Cape Fear River basins of North Carolina during 2003 and 2005. The samples were analyzed for a variety of prescription and nonprescription pharmaceutical compounds and a suite of organic compounds considered indicative of wastewater. Concentrations of these compounds generally were less than or near the detection limits of the analytical methods used during this investigation. None of these compounds were detected at concentrations that exceeded drinking-water standards established by the U.S. Environmental Protection Agency. Bromoform, a disinfection byproduct, was the only compound detected at a concentration that exceeded regulatory guidelines. The concentration of bromoform in one finished drinking-water sample, 26 micrograms per liter, exceeded North Carolina water-quality criteria. Drinking-water treatment practices were effective at removing many of the compounds detected in untreated water. Disinfection processes used in wastewater treatment - chlorination or irradiation with ultraviolet light - did not seem to substantially degrade the organic compounds evaluated during this study.

  16. [Formation of Halogenated By-products in Co²⁺ Activated Peroxymonosulfate Oxidation Process].

    PubMed

    Liu, Kuo; Jin, Hao; Dong, Wei; Ji, Yue-fei; Lu, Jun-he

    2016-05-15

    Sulfate radicals (SO₄·⁻) generated by Co²⁺ catalyzed activation of peroxymonosulfate (PMS) are highly oxidative and can be applied to degrade various organic pollutants. It was revealed in this research that bromide could be transformed in this process to reactive bromine species which reacted with phenol subsequently, leading to the formation of bromophenols and brominated by-products such as bromoform and dibromoacetic acid. The formation of the brominated by-products first increased and then decreased. The maximum yields of bromoform (10.3 µmol · L⁻¹) and dibromoacetic acid (14.6 µmol · L⁻¹) occurred at approximately 8 h with initial phenol, PMS, Br⁻, Co²⁺, concentrations of 0.05, 1.0, 0.2, and 5 µmol · L⁻¹, respectively. Formation of the brominated by-products decreased with increasing pH. With constant total halides, increasing Cl⁻/Br⁻ ratio decreased the total formation of halogenated by- products but generated more chlorinated byproducts. The findings of this research can provide valuable information in assessing the feasibility of SO₄·⁻ based oxidation technologies in real practice. PMID:27506036

  17. Reaction products from the chlorination of seawater. Final report 15 Jul 75-14 Jul 80

    SciTech Connect

    Carpenter, J.H.; Smith, C.A.; Zika, R.G.

    1981-03-01

    Chemical treatment of natural waters, in particular the use of chlorine as a biocide, modifies the chemistry of these waters in ways that are not fully understood. The research described in this report examined both inorganic and organic reaction products from the chlorination of seawater using a variety of analytical approaches. Some analytical methods in widespread current use underestimate the residual oxidants in chlorinated seawater by as much as 70% depending upon the detail of the procedures. The chlorination of seawater in the presence of light produces substantial quantities of bromate ions which can influence standard analytical procedures and represents an unknown factor in estuarine and coastal waters. The copper complexing capacity of Biscayne Bay, Florida water was found to be substantially reduced with the addition of chlorine. Analysis was made by anodic stripping voltammetry on water samples after successive additions of copper sulfate solution. Laboratory chlorination of water from the intake of the Port Everglades, Florida power plant produces bromoform levels comparable to that found in the plant discharge. These results are in contrast to results reported in the literature for a power plant on the Patuxent estuary in Maryland, so that bromoform production appears to be site-specific. Chloroform extracts of chlorinated Biscayne Bay water are found to contain halogenated compounds which are new and different, and which pose unusual analytical problems. Studies using GC/ECD, GC/MS, HPLC, H NMR, differential pulsed polarography and other techniques on natural extracts and synthesized compounds are reported.

  18. Oceanic distributions and air-sea fluxes of biogenic halocarbons in the open ocean

    NASA Astrophysics Data System (ADS)

    Chuck, Adele L.; Turner, Suzanne M.; Liss, Peter S.

    2005-10-01

    Surface seawater and atmospheric concentrations of methyl iodide, chloroiodomethane, bromoform, dichlorobromomethane, and chlorodibromethane were measured during three open ocean cruises in the Atlantic and Southern oceans. The measurements spanned a longitudinal range of 115°, between 50°N and 65°S. The saturation anomalies and the instantaneous air-sea fluxes of the gases during one of these cruises (ANT XVIII/1) are presented and discussed. Methyl iodide and chloroiodomethane were highly supersaturated (>1000%) throughout the temperate and tropical regions, with calculated mean fluxes of 15 and 5.5 nmol m-2 d-1, respectively. The oceanic emissions of the brominated compounds were less substantial, and a significant area of the temperate Atlantic Ocean was found to be a sink for bromoform. Correlation analyses have been used to investigate possible controls on the concentrations of these gases. In particular, the relationship of CH3I with sea surface temperature and light is discussed, with the tentative conclusion that this compound may be formed abiotically.

  19. Bromocarbons in the tropical marine boundary layer at the Cape Verde Observatory - measurements and modelling

    NASA Astrophysics Data System (ADS)

    O'Brien, L. M.; Harris, N. R. P.; Robinson, A. D.; Gostlow, B.; Warwick, N.; Yang, X.; Pyle, J. A.

    2009-11-01

    A new gas chromatograph was used to make measurements of halocarbons at the Cape Verde observatory during late May and early June 2007. The instrument demonstrated its potential for long-term autonomous measurements. Bromoform (CHBr3) exhibits the most variability of all the halocarbons observed, ranging from a background concentration of about 4 ppt to a maximum of >40 ppt during the course of the measurement period. CH2Br2 correlates well with bromoform, suggesting a common regional source. Methyl iodide does not correlate with these bromocarbons, with base levels of around 1-2 ppt and some periods of much higher mixing ratios. Using published bromocarbon emission rates, our chemical transport model studies, presented here, do not reproduce the observations. Local emission magnitudes and CHBr3:CH2Br2 ratios must be increased more in line with the recent observations of Yokouchi et al. (2005) to improve the model to measurement comparison. Even when the model reproduces the observed bromocarbons, modelled BrO is much less than recent tropical observations (Read et al., 2008). A sea salt source seems the likely explanation. When high BrO is reproduced, the model agrees much better with the observed ozone changes, including diurnal variation, during the measurement period but it is suggested that a representation of iodine chemistry in the model is also required.

  20. Degradation Products of Benzophenone-3 in Chlorinated Seawater Swimming Pools.

    PubMed

    Manasfi, Tarek; Storck, Veronika; Ravier, Sylvain; Demelas, Carine; Coulomb, Bruno; Boudenne, Jean-Luc

    2015-08-01

    Oxybenzone (2-hydroxy-4-methoxyphenone, benzophenone-3) is one of the UV filters commonly found in sunscreens. Its presence in swimming pools and its reactivity with chlorine has already been demonstrated but never in seawater swimming pools. In these pools, chlorine added for disinfection results in the formation of bromine, due to the high levels of bromide in seawater, and leads to the formation of brominated disinfection byproducts, known to be more toxic than chlorinated ones. Therefore, it seems important to determine the transformation products of oxybenzone in chlorinated seawater swimming pools; especially that users of seawater swimming pools may apply sunscreens and other personal-care products containing oxybenzone before going to pools. This leads to the introduction of oxybenzone to pools, where it reacts with bromine. For this purpose, the reactivity of oxybenzone has been examined as a function of chlorine dose and temperature in artificial seawater to assess its potential to produce trihalomethanes and to determine the byproducts generated following chlorination. Increasing doses of chlorine and increasing temperatures enhanced the formation of bromoform. Experiments carried out with excess doses of chlorine resulted in the degradation of oxybenzone and allowed the determination of the degradation mechanisms leading to the formation of bromoform. In total, ten transformation products were identified, based on which the transformation pathway was proposed. PMID:26167727

  1. Formation and speciation characteristics of brominated trihalomethanes in seawater chlorination.

    PubMed

    Padhi, R K; Sowmya, M; Mohanty, A K; Bramha, S N; Satpathy, K K

    2012-11-01

    Formation character of brominated-trihalomethanes (Br-THMs) in chlorinated seawater and its dependence on applied chlorine dose, reaction time, and temperature were investigated in the laboratory. Seawater was collected from the east coast of India and a chlorine dose of 1, 3, 5, and 10 ppm was each applied at a temperature of 20, 30, and 40 degrees C to investigate the yield and kinetics of Br-THMs formation. Qualitative and quantitative estimation of THM formation at various intervals of time ranging from 5 min to 168 h was determined by a gas chromatograph equipped with an electron capture detector (GC-ECD). Chlorine dose, chlorine contact time, and reaction temperature positively affected the load of THMs. The ratio of chlorine dose to halogen incorporation decreased from 12% to 5% with increasing applied chlorine dose from 1 to 10 ppm. Significant levels of THMs were found to be formed within 0.5 h of reaction, followed by a very slow rate of formation. Elevated temperature favored both increased rate of formation and overall THM yield. The formation order of different trihalomethane species at all studied temperatures was observed to be bromodichloromethane (CHCl2Br) < dibromochloromethane (CHClBr2) < bromoform (CHBr3). Formation of chloroform was not observed, and bromoform was the dominant (96% to 98%) among the three THM species formed. PMID:23356015

  2. Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

    SciTech Connect

    Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; Gallis, Dorina F. S.

    2015-03-07

    We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs, we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.

  3. Influence of Natural Organic Matter (NOM) Character on the Distribution of Chlorinated and Chloraminated Disinfection By-Products (DBPs) at Rand Water

    NASA Astrophysics Data System (ADS)

    Marais, Savia S.; Ncube, Esper J.; Haarhoff, Johannes; Msagati, Titus AM; Mamba, Bhekie B.; Nkambule, Thabo I.

    2016-04-01

    Certain disinfection by-products (DBPs) are likely human carcinogens or present mutagenic effects while many DBPs are unidentified. Considering the possibility of DBPs being harmful to human health and the fact that trihalomethanes (THMs) are the only regulated DBP in the South African National Standard (SANS:241) for drinking water, special interest in the precursors to these DBPs' formation is created. It is essential to understand the reactivity and character of the precursors responsible for the formation of DBPs in order to enhance precursor removal strategies during the treatment of drinking water. In this study the character of NOM within surface water and the subsequent distribution of THMs formed in the drinking water from Rand Waters' full scale treatment plant were investigated. Molecular size distribution (MSD) of NOM within the surface water was determined by high performance size exclusion chromatography (HPSEC). Specific ultraviolet absorbance (SUVA) and UV254 measurements formed part of the NOM character study as they provide an indication of the aromaticity of organic matter. The four THMs; bromoform, chloroform, dibromochloromethane (DBCM) and bromodichloromethane (BDCM)were measured by gas chromatography. The sum of these four THMs was expressed as total trihalomethane (TTHM). On average the chloroform constituted 76.2% of the total TTHM, BDCM 22.5% while DBCM and bromoform measured below the detection limit. THM speciation after chlorination and chloramination concentrations increased in the sequence bromoform < DBCM < BDCM < chloroform. Results of the MSD showed a significant correlation between NOM of high molecular size (peak I) and TTHM formation specifically during the summer months (R2= 0.971, p < 0.05). High molecular weight (HMW) NOM also related well to chloroform formation (R2 = 0.963, p < 0.05) however, the formation of BDCM was not due to HWM fraction as indicated by weak regression coefficient. A positive correlation existed between

  4. Predictors of Blood Trihalomethane Concentrations in NHANES 1999–2006

    PubMed Central

    Dhingra, Radhika; Blount, Benjamin C.; Steenland, Kyle

    2014-01-01

    Background: Trihalomethanes (THMs) are water disinfection by-products that have been associated with bladder cancer and adverse birth outcomes. Four THMs (bromoform, chloroform, bromodichloromethane, dibromochloromethane) were measured in blood and tap water of U.S. adults in the National Health and Nutrition Examination Survey (NHANES) 1999–2006. THMs are metabolized to potentially toxic/mutagenic intermediates by cytochrome p450 (CYP) 2D6 and CYP2E1 enzymes. Objectives: We conducted exploratory analyses of blood THMs, including factors affecting CYP2D6 and CYP2E1 activity. Methods: We used weighted multivariable regressions to evaluate associations between blood THMs and water concentrations, survey year, and other factors potentially affecting THM exposure or metabolism (e.g., prescription medications, cruciferous vegetables, diabetes, fasting, pregnancy, swimming). Results: From 1999 to 2006, geometric mean blood and water THM levels dropped in parallel, with decreases of 32%–76% in blood and 38%–52% in water, likely resulting, in part, from the lowering of the total THM drinking water standard in 2002–2004. The strongest predictors of blood THM levels were survey year and water concentration (n = 4,232 total THM; n = 4,080 bromoform; n = 4,582 chloroform; n = 4,374 bromodichloromethane; n = 4,464 dibromochloromethane). We detected statistically significant inverse associations with diabetes and eating cruciferous vegetables in all but the bromoform model. Medications did not consistently predict blood levels. Afternoon/evening blood samples had lower THM concentrations than morning samples. In a subsample (n = 230), air chloroform better predicted blood chloroform than water chloroform, suggesting showering/bathing was a more important source than drinking. Conclusions: We identified several factors associated with blood THMs that may affect their metabolism. The potential health implications require further study. Citation: Riederer AM, Dhingra R

  5. Covalent Carbene Functionalization of Graphene: Toward Chemical Band-Gap Manipulation.

    PubMed

    Sainsbury, Toby; Passarelli, Melissa; Naftaly, Mira; Gnaniah, Sam; Spencer, Steve J; Pollard, Andrew J

    2016-02-01

    In this work, we employ dibromocarbene (DBC) radicals to covalently functionalize solution exfoliated graphene via the formation of dibromocyclopropyl adducts. This is achieved using a basic aqueous/organic biphasic reaction mixture to decompose the DBC precursor, bromoform, in conjunction with a phase-transfer catalyst to facilitate ylide formation and carbene migration to graphene substrates. DBC-functionalized graphene (DBC-graphene) was characterized using a range of spectroscopic and analytical techniques to confirm the covalent nature of functionalization. Modified optical and electronic properties of DBC-graphene were investigated using UV-vis spectroscopy, analysis of electrical I-V transport properties, and noncontact terahertz time-domain spectroscopy. The implications of carbene functionalization of graphene are considered in the context of scalable radical functionalization methodologies for bulk-scale graphene processing and controlled band-gap manipulation of graphene. PMID:26824127

  6. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy.

    PubMed

    Finneran, Ian A; Welsch, Ralph; Allodi, Marco A; Miller, Thomas F; Blake, Geoffrey A

    2016-06-21

    We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes. PMID:27274067

  7. Laser-sheet imaging of HE-driven interfaces

    SciTech Connect

    Benjamin, R.F.; Rightley, P.M.; Kinkead, S.; Martin, R.A.; Critchfield, R.; Sandoval, D.L.; Holmes, R.; Gorman, T.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors made substantial progress in developing the MILSI (Multiple Imaging of Laser-Sheet Illumination) technique for high explosive (HE)-driven fluid interfaces. They observed the instability, but have not yet measured the instability growth rate. They developed suitable sample containers and optical systems for studying the Rightmyer-Meshkov instability of perturbed water/bromoform interfaces and they successfully fielded the new MILSI diagnostic at two firing-site facilities. The problem continues to be of central importance to the inertial confinement fusion (ICF) and weapons physics communities.

  8. Detection of Brominated By-Products Using a Sensor Array Based on Nanostructured Thin Films of Conducting Polymers

    PubMed Central

    Carvalho, Eduarda Regina; Filho, Nelson Consolin; Venancio, Everaldo Carlos; Osvaldo, N. O.; Mattoso, Luiz H. C.; Martin-Neto, Ladislau

    2007-01-01

    The detection of the carcinogenic trihalomethanes (THM) in public water supply systems using low-cost equipment has become an essential feature, since these compounds may be generated as by-products of water-treatment processes. Here we report on a sensor array that extends the concept of an “electronic tongue” to detect small amounts of bromoform, bromodichloromethane and dibromochloromethane, with detection limits as low as 0.02 mg L-1. The sensor array was made up of 10 sensing units, in which nanostructured films of conducting and natural polymers were deposited onto gold interdigitated electrodes. The principle of detection was impedance spectroscopy, with measurements carried out in the range between 1 Hz to 1 MHz. Using data at 1 kHz, at which the electrical response varied considerably by changing the analyte, we demonstrated with principal component analysis (PCA) that samples with the 3 brominated trihalomethanes can be distinguished from each other and for various concentrations.

  9. The handling, hazards, and maintenance of heavy liquids in the geologic laboratory

    USGS Publications Warehouse

    Hauff, Phoebe L.; Airey, Joseph

    1980-01-01

    In geologic laboratories the organic heavy liquids bromoform, methylene iodide, tetrabromoethane, and clerici compounds have been used for years in mineral separation processes. Because the volume of use of these compounds is low, insufficient data is available on their toxic properties. This report is an attempt to summarize the known data from published and industry sources. The physical properties, hazards of handling,proper storage facilities, and adequate protective Clothing are discussed for each compound as well as for their common and less-common solvents. Toxicity data for these materials is listed along with exposure symptoms and suggested first aid treatments. Safety for the worker is emphasized. Three reclamation methods which recover the solvent used as a dilutant and purify the heavy liquid are discussed and illustrated. These include: the water cascade, re fluxing-distillation-condensation, and flash evaporation methods. Various techniques for restoration and stabilization of these heavy liquids are also included.

  10. Towards an automated and efficient calculation of resonating vibrational states based on state-averaged multiconfigurational approaches

    SciTech Connect

    Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian; Rauhut, Guntram

    2015-12-28

    Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.

  11. Analysis of alkyl nitrates and selected halocarbons in the ambient atmosphere using a charcoal preconcentration technique

    SciTech Connect

    Atlas, E.; Schauffler, S. )

    1991-01-01

    A method has been developed to measure {ge}C{sub 3} alkyl nitrates and C{sub 1}-C{sub 2} halocarbons, such as perchloroethylene and bromoform, in ambient air. The method preconcentrates analytes on a 5-mg charcoal trap from multiliter volumes of air. Analytes are desorbed from the charcoal with a small volume of solvent and are analyzed by high-resolution gas chromatography with electron capture detection. Laboratory and field tests have been performed to evaluate method precision, analyte breakthrough, and compound recovery from the charcoal. Tests verified that the sampling/analytical system is free from artifact formation under clean to moderately polluted conditions, but further tests are required for areas of high concentrations of hydrocarbons, NO{sub x}, and oxidants. The method allows measurement of halocarbons and {ge}C{sub 3} alkyl nitrates at concentrations in the pptv range.

  12. Multipathway risk assessment of trihalomethane exposure in drinking water of Lebanon.

    PubMed

    Semerjian, Lucy; Dennis, John

    2007-12-01

    The toxicological risks and lifetime cancer risks of trihalomethanes through oral ingestion, dermal absorption, and inhalation exposure from tap water in selected regions in Lebanon are estimated. Existing trihalomethane concentrations do not pose any non-carcinogenic and developmental risks in the exposed population via oral ingestion. Among the three pathways, residents have a higher risk of cancer through oral ingestion than through the other two pathways. The lifetime cancer risk through oral ingestion for dibromochloromethane makes the highest contribution to total risks, followed by bromodichloromethane, bromoform, and chloroform. The total multipathway cancer risk analysis suggests that no cancer risks exist during the summer and winter seasons; however, in the spring the total cancer risks exceeds the USEPA acceptable level of 10(-6) by a factor of 10.7. PMID:17878564

  13. Disinfection by-products in ballast water treatment: an evaluation of regulatory data.

    PubMed

    Werschkun, Barbara; Sommer, Yasmin; Banerji, Sangeeta

    2012-10-15

    To reduce the global spread of invasive aquatic species, international regulations will soon require reductions of the number of organisms in ballast water discharged by ships. For this purpose, ballast water treatment systems were developed and approved by an international procedure. These systems rely on established water treatment principles which, to different degrees, have been proven to generate disinfection by-products with hazardous properties but have only scarcely been investigated in marine environments. Our study evaluates the publicly available documentation about approved ballast water treatment systems with regard to by-product formation. The most commonly employed methods are chlorination, ozonation, and ultraviolet (UV) irradiation. Chlorination systems generate trihalomethanes, halogenated acetic acids, and bromate in substantially larger quantities than reported for other areas of application. Levels are highest in brackish water, and brominated species predominate, in particular bromoform and dibromoacetic acid. Ozonation, which is less frequently utilized, produces bromoform in lower concentrations but forms higher levels of bromate, both of which were effectively reduced by active carbon treatment. In systems based on UV radiation, medium pressure lamps are employed as well as UV-induced advanced oxidation. For all UV systems, by-product formation is reported only occasionally. The most notable observations were small increases in nitrite, hydrogen peroxide, halogenated methanes and acetic acids. The assessment of by-product formation during ballast water treatment is limited by the lacking completeness and quality of available information. This concerns the extent and statistical characterisation of chemical analysis as well as the documentation of the test water parameters. PMID:22818950

  14. Long term puzzles of the CH and CD energetics and related phenomena revisited; solutions sought through REMPI-photofragmentations of bromomethanes.

    PubMed

    Hafliðason, Arnar; Wang, Huasheng; Kvaran, Ágúst

    2016-01-21

    Ever since the pioneering work by Herzberg and Johns in 1969 (The Astrophysical Journal, 1969, 158, 399) the spectral assignment and the energetics of the fundamental molecular fragment CH, in the region of 63 000-65 000 cm(-1) (7.81-8.06 eV), have remained a puzzle to a large extent. The dissociation of bromoform and deuterated bromoform following two-photon resonance excitations to molecular Rydberg states forms the fragment species CH* and CD* in the excited state A(2)Δ(v' =0) as well as carbon and bromine atoms in the ground and first excited states, C/C* and Br/Br*. Further (1r + 1i)REMPI of CH* and CD* resonance excites the fragments to the energy region of concern, whereas the atom fragments were identified by further (2r + 1i)REMPI. Analysis based on spectral simulations, isotope shifts and comparison with other data allowed spectral identifications, assignments and partial characterization of four highly excited bound states for each of the molecular fragments (CH**/CD**); including the (3)(2)Π valence state and the (4)(2)Π Rydberg state, for the first time. Perturbations, shown as line-shifts, line-intensity and/or line-width alterations, due to the level-to-level state interactions between the bound states and predissociations by a repulsive state are recognized. Recording of C(+) signals in REMPI of several bromomethanes for a one-photon energy of about 40 333 cm(-1) allows the clarification of a mystery concerning a broad C(+) band frequently observed. This work, presented, demonstrates the usefulness of molecular REMPI for fragment analysis. PMID:26674135

  15. Genotoxic Effects in Swimmers Exposed to Disinfection By-products in Indoor Swimming Pools

    PubMed Central

    Kogevinas, Manolis; Villanueva, Cristina M.; Font-Ribera, Laia; Liviac, Danae; Bustamante, Mariona; Espinoza, Felicidad; Nieuwenhuijsen, Mark J.; Espinosa, Aina; Fernandez, Pilar; DeMarini, David M.; Grimalt, Joan O.; Grummt, Tamara; Marcos, Ricard

    2010-01-01

    Background Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk. A recent study (Villanueva et al. 2007; Am J Epidemiol 165:148–156) found an increased bladder cancer risk among subjects attending swimming pools relative to those not attending. Objectives We evaluated adults who swam in chlorinated pools to determine whether exposure to DBPs in pool water is associated with biomarkers of genotoxicity. Methods We collected blood, urine, and exhaled air samples from 49 nonsmoking adult volunteers before and after they swam for 40 min in an indoor chlorinated pool. We estimated associations between the concentrations of four trihalomethanes (THMs) in exhaled breath and changes in micronuclei (MN) and DNA damage (comet assay) in peripheral blood lymphocytes before and 1 hr after swimming; urine mutagenicity (Ames assay) before and 2 hr after swimming; and MN in exfoliated urothelial cells before and 2 weeks after swimming. We also estimated associations and interactions with polymorphisms in genes related to DNA repair or to DBP metabolism. Results After swimming, the total concentration of the four THMs in exhaled breath was seven times higher than before swimming. The change in the frequency of micronucleated lymphocytes after swimming increased in association with higher exhaled concentrations of the brominated THMs (p = 0.03 for bromodichloromethane, p = 0.05 for chlorodibromomethane, p = 0.01 for bromoform) but not chloroform. Swimming was not associated with DNA damage detectable by the comet assay. Urine mutagenicity increased significantly after swimming, in association with the higher concentration of exhaled bromoform (p = 0.004). We found no significant associations with changes in micronucleated urothelial cells. Conclusions Our findings support potential genotoxic effects of exposure to DBPs from swimming pools. The positive health effects gained by swimming could be increased by reducing the potential health

  16. Hydrogeology and selected water-quality aspects of the Hueco Bolson Aquifer at the Hueco Bolson Recharge Project area, El Paso, Texas

    USGS Publications Warehouse

    Buszka, P.M.; Hooper, R.P.; Brock, R.D.

    1994-01-01

    Samples of ground water and tertiary-treated water were evaluated to determine the distribution of injected water and trihalomethane compounds in the Hueco bolson aquifer near El Paso, Texas. Chloride and nitrate concentrations and oxygen-18/oxygen-16 (beta180) values were used with end-member mixing analysis to estimate the fractional contributions of injected water, irrigation-affected water, saline ground water, and freshwater to ground-water chemistry. Several laterally continuous sand and gravel layers are the principal water-yielding lithologies in the aquifer. The potentiometric surface sloped toward the south and southwest during January 1990. Average linear ground-water velocities were as large as 1.4 feet per day near the zone of largest hydraulic conductivity, and were substantially smaller farther south and east. Ground-water samples from as far as 2,900 feet from an injection well contained injected-water tracers and trihalomethane compounds. Ground-water samples with injected-water tracers and no trihalomethane compounds may indicate infiltration from septic systems or oxidation ponds. Apparent breakthrough velocities of injected water in the aquifer ranged from 0.13 to 1.3 feet per day. Irrigation-affected water and saline water also were identified in water from several wells. Ground-water transport of bromoform and dibromochloromethane was attenuated relative to injected water, chloroform, and dibromochloromethane. Microbial transformation of bromoform and dibromochloromethane probably was responsible for their disappearance from ground water. Chloroform and dichlorobromomethane concentrations were affected principally by advective and dispersive transport of injected water.

  17. In-Situ Investigation of Tomato Plants as Methyl Halide Sources

    NASA Astrophysics Data System (ADS)

    King, D. B.; Butler, J. H.; Mondeel, D. J.

    2002-05-01

    Natural halocarbons contribute significantly to the destruction of stratospheric ozone. Methyl bromide and methyl chloride, both of which come primarily from natural sources, supply about one-quarter of the equivalent chlorine to the stratosphere. Other halogenated compounds, such as dibromomethane, bromoform, and methyl iodide, might be significant halogen sources to the stratosphere as well. The budgets of these compounds, and the mechanisms responsible for their production and destruction, generally are poorly understood. For example, known sources of both methyl bromide and methyl chloride outweigh their known sinks by 50-100%, making it difficult to predict future atmospheric concentrations of these compounds. As the global climate changes, atmospheric halocarbon concentrations are likely to respond to changes in sea surface temperature, biological productivity on land and in water, and global wind patterns. Terrestrial plants are a potentially significant source of many light halocarbons. As a first cut to assess this potential, we measured the production of about 20 halocarbons by tomato plants in a hydroponic greenhouse in Northern California. This enabled us to investigate production directly from the plants, without the interference of soils, which have been shown to remove some of these compounds from the atmosphere. Results differed for the methyl halides and the polyhalogenated compounds. Methyl halide production was small or zero during initial experiments. However, the addition of a halide ion solution (KBr, KCl, and KI) to the plants' nutrient mixture appeared to increase production of methyl bromide (by a factor of three) and methyl iodide (by a factor of seven) significantly. In contrast, several polyhalogenated compounds (e.g., bromoform and bromochloromethane) were produced during all experiments, with increases on the order of 50% to 600%. The addition of the halide solution did not affect the production of these compounds. The results from

  18. Detailed modeling of the atmospheric degradation mechanism of very-short lived brominated species

    NASA Astrophysics Data System (ADS)

    Krysztofiak, G.; Catoire, V.; Poulet, G.; Marécal, V.; Pirre, M.; Louis, F.; Canneaux, S.; Josse, B.

    2012-11-01

    Detailed chemical reaction schemes for the atmospheric degradations of the very short-lived species (VSLS) bromoform (CHBr3) and dibromomethane (CH2Br2) have been established. These degradation schemes have been implemented in the meteorological/tracer transport model CATT-BRAMS used in the present case as pseudo one-dimensional model with chemistry of CH4, CO, HOx, NOx, NOy and Ox. They include the main possible reactions of the intermediate brominated peroxy radicals RO2 (with R = CH2Br, CHBr2 and CBr3) for which the most likely reaction pathways with HO2 have been found using ab initio computational calculations. The full degradation schemes have been run for two well-defined realistic scenarios, “clean” atmosphere and “moderately” NOy-polluted atmosphere, as representative of a tropical coastal region where these VSLS natural emissions are expected to be important. The Henry's law constants of the brominated organics products have been estimated by using the Bond Contribution Method (BCM; Meylan and Howard, 1991) or the Molecular Connectivity Index (MCI; Nirmalakhandan and Speece, 1988). Using these constants, the least soluble species formed from the VSLS degradation are found to be CBr2O, CHBrO, CBr3O2NO2, CHBr2O2NO2, BrO, BrONO2 and HOBr, which leads those to be potentially transported into the tropical tropopause layer (TTL) in case of deep convection and contribute to stratospheric bromine additionally to the original substances. For bromoform and dibromomethane degradation, the moderate NOy pollution increases the production of the least soluble species and thus approximately doubles the bromine quantity potentially able to reach the TTL (from 22.5% to 43% for CHBr3 and from 8.8% to 20.2% for CH2Br2). The influence of the reactions of the RO2 radicals with HO2, CH3O2 and NO2 on the nature and abundance of the stable intermediate and end-products has been tested for CHBr3 degradation. As a result, the reactions of the RO2 radicals with NO2 have no

  19. Brominating activity of the seaweed Ascophyllum nodosum: Impact on the biosphere

    SciTech Connect

    Wever, R.; Tromp, M.G.M.; Krenn, B.E.; Marjani, A.; Van Tol, M. )

    1991-03-01

    Macroalgae are an important source of volatile halogenated organic compounds, such as bromoform and dibromomethane. The mechanism by which these compounds are formed is still elusive. The authors report that the brown seaweeds Laminaria saccharina, Laminaria digitata, Fucus vesiculosis, Pelvetia canaliculata, and Ascophyllum nodosum and the red seaweeds Chondrus crispus and Plocamium hamatum contain bromoperoxidases. The intact plants are able to brominate exogeneous organic compounds when H{sub 2}O{sub 2} and Br{sup {minus}} are added to seawater. Further, the authors show that the brominating activity of the brown macroalga A. nodosum, which contains a vanadium bromoperoxidase located on the thallus surface, occurs when the plant is exposed to light and not in the dark. The rate of bromination of exogenous organic compounds in seawater by this plant is 68 nmol (g of wet alga){sup {minus}1} h{sup {minus}1}. HOBr is a strong biocidal agent and the authors propose that the formation of HOBr by this seaweed is part of a host defense system.

  20. Halocarbon distributions and emissions in the western tropical Pacific during the SHIVA SONNE expedition in November 2011

    NASA Astrophysics Data System (ADS)

    Quack, B.; Atlas, E.; Shi, Q.; Hepach, H.; Raimund, S.; Kinzel, J.; Leedham, E.; Fuhlbrügge, S.; Wiegmann, S.; Chea, W.; Wittke, F.; Robinson, A.; Harris, N.; Kreher, K.; Sturges, B.; Bracher, A.; Wallace, D.; Krüger, K.

    2012-04-01

    Marine brominated and iodinated halocarbons participate in catalytic ozone destruction and aerosol formation in the troposphere and they also have a significant impact on stratospheric ozone. While the tropical oceans are a known source of these very short lived substances (VSLS), including e.g. bromoform (CHBr3) and methyliodide (CH3I), the tropical Western Pacific waters are largely uncharacterized for these compounds. Coastal macro algae, regionally enhanced phytoplankton abundance, photochemical reactions and local anthropogenic sources are expected to contribute to strong marine emissions. As high convective activity with fast efficient uplift takes place throughout the year, the western Pacific is projected to be a hot spot for oceanic VSLS supply to the stratosphere. In this study, we present first results from the SHIVA Sonne expedition to the South China Sea during November 2011. The research cruise was embedded within the framework of the EU-project SHIVA (Stratospheric ozone: Halogen Impacts in a Varying Atmosphere). During the cruise we investigated the large variability of the VSLS concentrations in both ocean and atmosphere using several methods, including in-situ atmospheric measurements, air canister sampling, purge and trap gas chromatography with electron capture and mass spectrometric detection. We will intercompare the results from various methods and present highlights from the expedition including atmospheric and oceanic VSLS data, as well as first estimates of emissions.

  1. Plasma bromination of HOPG surfaces: A NEXAFS and synchrotron XPS study

    NASA Astrophysics Data System (ADS)

    Lippitz, Andreas; Friedrich, Jörg F.; Unger, Wolfgang E. S.

    2013-05-01

    Br bonding on plasma brominated graphite surfaces has been studied by using Near Edge X-ray Absorption Fine Structure (NEXAFS) and X-ray Photoelectron Spectroscopy (XPS). Br2 and bromoform were used as plasma gases in an r.f. cw low pressure plasma process. Kr plasma had been used to study separately the physical and chemical plasma etching effects. At early steps of plasma bromination which lead to only small XPS Br surface concentration values a quick decay of aromaticity has been observed. At low Br surface concentration radical or even electrophilic addition of bromine onto sp2 carbon atoms is discussed as the dominating reaction pathway. At higher Br surface concentrations the inherent formation of sp3 defects in the graphene network by chemical etching processes promotes nucleophilic substitution of bromine at sp3 carbons as a competing reaction pathway. Both reaction pathways lead to C-Br species characterized by the same Br 3d XPS binding energy. However more than one Br 3d component in XP spectra has been found at lower Br2 plasma induced Br surface concentrations and complexation of bromine at HOPG is assumed as a third way of interaction with Br2 plasma.

  2. Cometabolism of trihalomethanes by mixed culture nitrifiers.

    PubMed

    Wahman, David G; Henry, Andrea E; Katz, Lynn E; Speitel, Gerald E

    2006-10-01

    Three mixed-culture nitrifier sources degraded low concentrations (25-450 microg/L) of four trihalomethanes (THMs) (trichloromethane (TCM) or chloroform, bromodichloromethane (BDCM), dibromochloromethane (DBCM), tribromomethane (TBM) or bromoform) commonly found in treated drinking water. Individual THM rate constants (k1THM) increased with increasing THM bromine-substitution with TBM>DBCM>BDCM>TCM and were comparable to previous studies with the pure culture nitrifier, Nitrosomonas europaea. A decrease in temperature resulted in a decrease in both ammonia and THM degradation rates with ammonia rates affected to a greater extent than THM degradation rates. The significant effect of temperature indicates that seasonal variations in water temperature should be a consideration for technology implementation. Product toxicity, measured by transformation capacity (T(c)), was similar to that observed with N. europaea. Because both rate constants and product toxicities increase with increasing THM bromine-substitution, a water's THM speciation is an important consideration for process implementation during drinking water treatment. Even though a given water is kinetically favored, the resulting THM product toxicity may not allow stable treatment process performance. PMID:16970971

  3. Bacterial Cellular Materials as Precursors of Chloroform

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ng, T.; Zhang, Q.; Chow, A. T.; Wong, P.

    2011-12-01

    The environmental sources of chloroform and other halocarbons have been intensively investigated because their effects of stratospheric ozone destruction and environmental toxicity. It has been demonstrated that microorganisms could facilitate the biotic generation of chloroform from natural organic matters in soil, but whether the cellular materials itself also serves as an important precursor due to photo-disinfection is poorly known. Herein, seven common pure bacterial cultures (Acinetobacter junii, Aeromonas hydrophila, Bacillus cereus, Bacillus substilis, Escherichia coli, Shigella sonnei, Staphylococcus sciuri) were chlorinated to evaluate the yields of chloroform, dibromochloromethane, dichlorobromomethane, and bromoform. The effects of bromide on these chemical productions and speciations were also investigated. Results showed that, on average, 5.64-36.42 μg-chloroform /mg-C were generated during the bacterial chlorination, in similar order of magnitude to that generated by humic acid (previously reported as 78 μg-chloroform/mg-C). However, unlike humic acid in water chlorination, chloroform concentration did not simply increase with the total organic carbon in water mixture. In the presence of bromide, the yield of brominated species responded linearly to the bromide concentration. This study provides useful information to understand the contributions of chloroform from photodisinfection processes in coastal environments.

  4. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water

    USGS Publications Warehouse

    Carter, Janet M.; Moran, Michael J.; Zogorski, John S.; Price, Curtis V.

    2012-01-01

    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  5. Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity.

    PubMed

    Manasfi, Tarek; De Méo, Michel; Coulomb, Bruno; Di Giorgio, Carole; Boudenne, Jean-Luc

    2016-03-01

    Exposure to disinfection byproducts (DBPs) in swimming pools has been linked to adverse health effects. Numerous DBPs that occur in swimming pools are genotoxic and carcinogenic. This toxicity is of a greater concern in the case of brominated DBPs that have been shown to have substantially greater toxicities than their chlorinated analogs. In chlorinated seawater swimming pools, brominated DBPs are formed due to the high content of bromide. Nevertheless, very little data is reported about DBP occurrence and mutagenicity of water in these pools. In the present study, three seawater and one freshwater swimming pools located in Southeastern France were investigated to determine qualitatively and quantitatively their DBP contents. An evaluation of the genotoxic properties of water samples of the freshwater pool and a seawater pool was conducted through the Salmonella assay (Ames test). The predominant DBPs identified in the freshwater pool were chlorinated species and included trichloroacetic acid, chloral hydrate, dichloroacetonitrile, 1,1,1-trichloropropanone and chloroform. In the seawater pools, brominated DBPs were the predominant species and included dibromoacetic acid, bromoform and dibromoacetonitile. Bromal hydrate levels were also reported. In both types of pools, haloacetic acids were the most prevalent chemical class among the analyzed DBP classes. The distribution of other DBP classes varied depending on the type of pool. As to genotoxicity, the results of Ames test showed higher mutagenicity in the freshwater pool as a consequence of its considerably higher DBP contents in comparison to the tested seawater pool. PMID:26735347

  6. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products.

    PubMed

    Ji, Yuefei; Kong, Deyang; Lu, Junhe; Jin, Hao; Kang, Fuxing; Yin, Xiaoming; Zhou, Quansuo

    2016-08-01

    Degradation of tetrabromobisphenol A (TBBPA), a flame retardant widely spread in the environment, in Co(II) catalyzed peroxymonosulfate (PMS) oxidation process was systematically explored. The second-order-rate constant for reaction of sulfate radical (SO4(-)) with TBBPA was determined to be 5.27×10(10)M(-1)s(-1). Apparently, degradation of TBBPA showed first-order kinetics to the concentrations of both Co(II) and PMS. The presence of humic acid (HA) and bicarbonate inhibited TBBPA degradation, most likely due to their competition for SO4(-). Degradation of TBBPA was initiated by an electron abstraction from one of the phenolic rings. Detailed transformation pathways were proposed, including β-scission of isopropyl bridge, phenolic ring oxidation, debromination and coupling reactions. Further oxidative degradation of intermediates in Co(II)/PMS process yielded brominated disinfection by-products (Br-DBPs) such as bromoform and brominated acetic acids. Evolution profile of Br-DBPs showed an initially increasing and then decreasing pattern with maximum concentrations occurring around 6-10h. The presence of HA enhanced the formation of Br-DBPs significantly. These findings reveal potentially important, but previously unrecognized, formation of Br-DBPs during sulfate radical-based oxidation of bromide-containing organic compounds that may pose toxicological risks to human health. PMID:27107323

  7. The advanced EctoSys electrolysis as an integral part of a ballast water treatment system.

    PubMed

    Echardt, J; Kornmueller, A

    2009-01-01

    A full-scale 500 m(3)/h ballast water treatment system was tested according to the landbased type approval procedure of the International Maritime Organization (IMO). The system consists of disc filters followed by the advanced EctoSys electrolysis as an integral part for disinfection. The test water quality exceeded by far the minimum requirements for type approval testing. Due to the properties of the special electrodes used together with the striking disinfection effect, the disinfectants assumed to be produced inline by the EctoSys cell in river water were hydroxyl radicals, while in brackish water additionally chlorine and consequently the more stable bromine were formed. In river water, no residual oxidants could be detected in accordance with the assumed production of not responding, highly-reactive and short-living hydroxyl radicals. Accordingly, disinfection byproduct (DBP) formation was very low and close to the limit of quantification in river water. While in brackish water, initial residual oxidant concentrations were maximum 2 mg/L as chlorine and mostly brominated DBP (especially bromoform and bromate) were found. Overall considering this worst case test approach, the DBP concentrations of the treated effluents were below or in the range of the WHO Drinking Water Guideline values and therefore evaluated as acceptable for discharge to the environment. The stringent discharge standard by IMO concerning viable organisms was fully met in river and brackish water, proving the disinfection efficiency of the EctoSys electrolysis against smaller plankton and bacteria. PMID:19901453

  8. Modeling of trihalomethane cometabolism in nitrifying biofilters.

    PubMed

    Wahman, David G; Katz, Lynn E; Speitel, Gerald E

    2007-01-01

    The computer program AQUASIM was used to model biofilter experiments seeded with Lake Austin, Texas mixed-culture nitrifiers. These biofilters degraded four trihalomethanes (THMs) (trichloromethane (TCM) or chloroform, bromodichloromethane (BDCM), dibromochloromethane (DBCM), tribromomethane (TBM) or bromoform) commonly found in treated drinking water. Apparent steady-state data from the biofilter experiments and supporting batch experiments were used to estimate kinetic parameters for TCM, DBCM and ammonia degradation. Subsequently, the model was verified against other experimental biofilter data. To allow for full-scale simulations, BDCM and TBM rate constants were estimated using data from batch kinetic studies. Finally, the model was used to simulate full-scale filter performance under different filter surface loading rates and THM speciation seen in practice. Overall, total THM removals ranged from 16% to 54% in these simulations with influent total THM concentrations of 75-82microg/L, which illustrates the potential of THM cometabolism to have a significant impact on treated water quality. PMID:17129595

  9. Bromocarbons in the tropical marine boundary layer at the Cape Verde Observatory - measurements and modelling

    NASA Astrophysics Data System (ADS)

    O'Brien, L. M.; Harris, N. R. P.; Robinson, A. D.; Gostlow, B.; Warwick, N.; Yang, X.; Pyle, J. A.

    2009-02-01

    A new gas chromatograph was used to make measurements of halocarbons at the Cape Verde observatory during late May and early June 2007. The instrument demonstrated its potential for long-term autonomous measurements. Bromoform (CHBr3) exhibits the most variability of all the halocarbons observed, ranging from a background concentration of about 4 ppt to a maximum of >40 ppt during the course of the measurement period. Dibromomethane (CH2Br2) correlates well with CHBr3, suggesting a common regional source. Methyl iodide (CH3I) does not correlate with these bromocarbons, with base levels of around 1-2 ppt and some periods of much higher mixing ratios. Model studies with published bromocarbon emission rates do not reproduce the observations. Local emission magnitudes and CHBr3:CH2Br2 ratios must be increased more in line with the recent observations of Yokouchi et al. (2005) to improve the model to measurement comparison. Even when the model reproduces the observed bromocarbons, modelled BrO is much less than recent tropical observations (Read et al., 2008). A sea salt source seems the likely explanation. When high BrO is reproduced, the model agrees much better with the observed ozone changes, including diurnal variation, during the measurement period but it is suggested that a representation of iodine chemistry in the model is also required.

  10. Review of fundamentals and specific aspects of oxidation technologies in marine waters.

    PubMed

    Kornmueller, A

    2007-01-01

    This review is based on the existing literature and on our experiences in the application of different oxidation processes in brackish water and seawater. The oxidation reactions of advanced oxidation processes (AOPs) and the formation of disinfection byproducts (DBPs) are considerably different in marine waters from well-known drinking, process and wastewater applications. In contrast, the major secondary oxidants are bromine species in marine waters, which might form the DBPs of concern bromate and bromoform. An efficient AOP application needs knowledge of the source water constitutions and the oxidant demand. Besides changes in the oxidants chemistry compared to fresh water, the great and seasonal variation of marine waters has to be considered in the process design. The complexity of oxidant reactions and formation of byproducts are only partially researched and known as yet. Hence, it is advisable to determine the characteristic and variation of the water source as well as its influence on each AOP in experiments prior to the process design. PMID:17674819

  11. Ozone Destruction in the Upper Troposphere/Lower Stratosphere from Short-Lived Halogens and Climate Impacts

    NASA Astrophysics Data System (ADS)

    Hossaini, Ryan; Chipperfield, Martyn; Montzka, Stephen; Rap, Alex; Dhomse, Sandip; Feng, Wuhu

    2014-05-01

    Halogens released from very short-lived substances (VSLS) can deplete ozone in the upper-troposphere and lower stratosphere where the perturbation can exert a large climate impact. In addition to the known ozone loss from natural biogenic bromine VSLS, such as bromoform (CHBr3), using a global atmospheric model we show that anthropogenic chlorine VSLS such as dichloromethane (CH2Cl2) - not regulated by the Montreal Protocol - also contribute. Although this impact is small compared to bromine VSLS at present, CH2Cl2 has industrial sources and observations show its atmospheric loading is increasing rapidly. We estimate a significant radiative effect of the bromine and chlorine VSLS-driven lower stratospheric ozone destruction of -0.11 Wm-2. The largest impact comes from ozone loss at high latitudes, where column ozone decreases due to VSLS are up to 6%. The trend in anthropogenic chlorine VSLS could cause a significant radiative forcing, especially if augmented by any trend in natural bromine VSLS. We also used the model to study the impact of iodine-containing VSLS such as methyl iodide (CH3I). Of the three halogens iodine has the largest leverage to destroy lower stratospheric ozone, but current limits based on IO observations indicate only a minor impact at present.

  12. Photolytic removal of DBPs by medium pressure UV in swimming pool water.

    PubMed

    Hansen, Kamilla M S; Zortea, Raissa; Piketty, Aurelia; Vega, Sergio Rodriguez; Andersen, Henrik Rasmus

    2013-01-15

    Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trichloronitromethane, dichloropropanone, trichloropropanone, and chloral hydrate. First order photolysis constants ranged 26-fold from 0.020 min(-1) for chloroform to 0.523 min(-1) for trichloronitromethane. The rate constants generally increased with bromine substitution. Using the UV removal of combined chlorine as an actinometer, the rate constants were recalculated to actual treatment doses of UV applied in a swimming pool. In an investigated public pool the UV dose was equivalent to an applied electrical energy of 1.34 kWh m(-3) d(-1) and the UV dose required to removed 90% of trichloronitromethane was 0.4 kWh m(-3) d(-1), while 2.6 kWh m(-3) d(-1) was required for chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes ranged from 0.6 to 3.1 kWh m(-3) d(-1). It was predicted thus that a beneficial side-effect of applying UV for removing combined chlorine from the pool water could be a significant removal of trichloronitromethane, chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes. PMID:23247288

  13. Heavy mineral distribution in stream sediment of Tapah area, Perak, Malaysia

    SciTech Connect

    Sibon, Mahat Hj; Jamil, Habibah; Umor, Mohd Rozi; Hassan, Wan Fuad Wan

    2013-11-27

    This paper aims to provide the overview of occurrence, distribution and origin of the heavy minerals in the study area. A total of 45 selected stream sediment heavy mineral concentrate samples were panned using standard dulangs, dried and separated from other light minerals using bromoform. The heavy minerals were separated into different fractions at different amperes using Frantz Isodynamic magnetic separator. Mineral identification was done using binocular microscope augmented by X-ray diffraction analyses. Mineral abundance data were analysed graphically using triangular diagrams to show their origin. Dominant minerals present in the heavy mineral samples collected are ilmenite, cassiterite, tourmaline, zircon, topaz, and magnetite. The less common minerals, present in trace amounts are hematite, xenotime, allanite, monazite, rutile, anatase, leucoxene, chromite, garnet and olivine. Examination of the heavy mineral assemblage shows that they originated from granite batholiths of the Main Range, Changkat Rembian as well as from the metasedimentary rock in the area. The gold flakes present are found together with cassiterite and topaz indicating that gold originates from the mineralized veins contact-metamorphosed metasedimentary rocks. Almost all samples collected contain cassiterite grains in various amounts. From the mineral assemblage, the source of cassiterite originates from the mineralized quartz veins that cut granitic rocks of Main Range, Changkat Rembian as well as the metasedimentary rock in the area. Greisenized veins containing quartz, mica and tourmaline with the presence of wolframite and arsenopyrite also contribute to the presence of cassiterite in this study area.

  14. Dissolved organic matter composition drives the marine production of brominated very short-lived substances.

    PubMed

    Liu, Yina; Thornton, Daniel C O; Bianchi, Thomas S; Arnold, William A; Shields, Michael R; Chen, Jie; Yvon-Lewis, Shari A

    2015-03-17

    Brominated very short-lived substances (BrVSLS), such as bromoform, are important trace gases for stratospheric ozone chemistry. These naturally derived trace gases are formed via bromoperoxidase-mediated halogenation of dissolved organic matter (DOM) in seawater. Information on DOM type in relation to the observed BrVSLS concentrations in seawater, however, is scarce. We examined the sensitivity of BrVSLS production in relation to the presence of specific DOM moieties. A total of 28 model DOM compounds in artificial seawater were treated with vanadium bromoperoxidase (V-BrPO). Our results show a clear dependence of BrVSLS production on DOM type. In general, molecules that comprise a large fraction of the bulk DOM pool did not noticeably affect BrVSLS production. Only specific cell metabolites and humic acid appeared to significantly enhance BrVSLS production. Amino acids and lignin phenols suppressed enzyme-mediated BrVSLS production and may instead have formed halogenated nonvolatile molecules. Dibromomethane production was not observed in any experiments, suggesting it is not produced by the same pathway as the other BrVSLS. Our results suggest that regional differences in DOM composition may explain the observed BrVSLS concentration variability in the global ocean. Ultimately, BrVSLS production and concentrations are likely affected by DOM composition, reactivity, and cycling in the ocean. PMID:25723123

  15. Predictors of Third Trimester Blood Trihalomethanes and Urinary Trichloroacetic Acid Concentrations among Pregnant Women.

    PubMed

    Zeng, Qiang; Cao, Wen-Cheng; Zhou, Bin; Yang, Pan; Wang, Yi-Xin; Huang, Zhen; Li, Jin; Lu, Wen-Qing

    2016-05-17

    Prenatal exposure to disinfection byproducts (DBPs) has been associated with a variety of adverse birth outcomes. However, little is known about predictors of prenatal biomarkers of exposure to DBPs among pregnant women. We aimed to identify predictors of third trimester blood trihalomethanes (THMs) and urinary trichloroacetic acid (TCAA) concentrations, two biomarkers of exposure to DBPs, among pregnant women. Blood samples, urine samples, and questionnaires on individual characteristics and water-use activities were collected from 893 pregnant women in a Chinese cohort study. Maternal blood THM [chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)] and urinary TCAA concentrations were measured. We used multivariable linear regression to identify the predictors of third trimester blood THM and creatinine-adjusted urinary TCAA concentrations. The geometric mean of blood TTHM (sum of TCM, BDCM, DBCM, and TBM) and creatinine-adjusted urinary TCAA concentrations were 51.90 ng/L and 9.66 μg/g creatinine, respectively. Study city was the strongest significant predictors of blood THM and creatinine-adjusted urinary TCAA concentrations. Prenatal body mass index (BMI) was associated with decreased blood THM and decreased creatinine-adjusted urinary TCAA concentrations. Age was associated with increased blood Br-THM (sum of BDCM, DBCM, and TBM) concentrations. Intake of boiled water and passive smoking were associated with lower blood THM concentrations. The predictors of blood THM and urinary TCAA concentrations identified in this study provide potential health implications on how to reduce DBP exposure during pregnancy. PMID:27095243

  16. VOCs in fixed film processes. I: Pilot studies

    SciTech Connect

    Parker, W.J.; Monteith, H.D.; Melcer, H.

    1996-07-01

    Stripping of volatile organic contaminants (VOCs) during wastewater treatment is of concern due to the potential of these compounds to contribute to stratospheric ozone depletion, ground-level smog formation, chronic toxicity to exposed workers, and odors. A study of the fate of volatile organic contaminants (VOCs) in trickling filters (TF) and rotating biological contactors (RBC) was performed. Of the target compounds investigated, tetrachloroethylene was volatilized to the greatest extent, while 1,1,2,2-tetrachloroethane was the least volatilized in the TF and bromoform was least volatilized in the RBC. Toulene, o-xylene and 1,3,5-trimethylbenzene were biodegraded to the greatest extent and 1,1,2,2-tetrachloroethane was least biodegraded. Increasing the hydraulic loading tended to increase the proportion of influent VOCs found in the TF effluent. Imposing effluent recycle on the TF increased the fraction of influent VOCs found in the effluent, but also decreased the fraction stripped and increased the fraction that was biodegraded. Increasing hydraulic loading to the RBC tended to increase the proportion of influent VOCs found in the effluent and off-gas. Increasing the RBC disc rotational speed increased the fraction that was biodegraded and decreased the fraction of VOCs found in the effluent and off-gas streams. The TF tended to have greater losses to volatilization than the RBC while the RBC maintained a greater fraction of the candidate VOCs in the process effluent than the TF. Differences between the processes with respect to biodegradation could not be inferred.

  17. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network.

    PubMed

    Calderón-Preciado, Diana; Matamoros, Víctor; Bayona, Josep M

    2011-12-15

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L(-1) and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (>200 ng L(-1), on average). The estimated concentration of micropollutants in crops ranged from <1 to 7677 ng kg(-1), with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 μg per person and week (Σ 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers. PMID:22030249

  18. Impact of biogas digesters on cookhouse volatile organic compound exposure for rural Kenyan farmwomen.

    PubMed

    Dohoo, Carolyn; Read Guernsey, Judith; Gibson, Mark D; VanLeeuwen, John

    2015-01-01

    Women living on rural Kenyan smallholder dairy farms burn wood as biofuel in family cookhouses. Unventilated biofuel combustion produces harmful levels of respirable particles and volatile organic compound (VOC) emissions in indoor environments. Biogas digesters, which can generate high methane-content biogas from livestock manure composting were recently installed on 31 farms. The study objectives were to compare VOC exposure profiles for women cooking on farms with and without biogas digesters, and to compare seasonal variations in VOC exposures for those women cooking with biogas. Participants (n=31 biogas farms, n=31 referent farms) wore passive thermal desorption VOC sampling tubes and recorded cookhouse fuel use on time activity sheets for 7 days. Women using biogas spent significantly less time (mean=509 min/week) exposed to cookhouse wood smoke compared with the referent group (mean=1122 min/week) (P<0.01). Total VOC exposure did not differ between farm groups (P=0.14), though concentrations of trans-1,3-dichloropropene, bromoform, and 1,4-dichlorobenzene in biogas cookhouses were significantly lower than in referent cookhouses, even after Bonferroni correction. The composition of VOC species was also significantly different, reflecting the different fuel sources. Biogas digester technologies have great potential for reducing exposure to wood smoke VOCs in low-income countries. PMID:23899962

  19. The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalgae

    NASA Astrophysics Data System (ADS)

    Leedham Elvidge, E. C.; Phang, S.-M.; Sturges, W. T.; Malin, G.

    2015-01-01

    Exposure of intertidal macroalgae during low tide has been linked to the emission of a variety of atmospherically-important trace gases into the coastal atmosphere. In recent years, several studies have investigated the role of inorganic iodine and organoiodides as antioxidants and their emission during exposure to combat oxidative stress, yet the role of organic bromine species during desiccation is less well understood. In this study the emission of dibromomethane (CH2Br2) and bromoform (CHBr3) during exposure and desiccation of two common temperate macroalgae, Fucus vesiculosus and Ulva intestinalis, is reported. Determination of the impact exposure may have on algal physiological processes is difficult as intertidal species are adapted to desiccation and may undergo varying degrees of desiccation before their physiology is affected. For this reason we include comparisons between photosynthetic capacity (Fv/Fm) and halocarbon emissions during a desiccation time series. In addition, the role of rewetting with freshwater to simulate exposure to rain was also investigated. Our results show that an immediate flux of bromocarbons occurs upon exposure, followed by a decline in bromocarbon emissions. We suggest that this immediate bromocarbon pulse may be linked to volatilisation or emissions of existing bromocarbon stores from the algal surface rather than the production of bromocarbons as an antioxidant response.

  20. The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalgae

    NASA Astrophysics Data System (ADS)

    Leedham Elvidge, E. C.; Phang, S.-M.; Sturges, W. T.; Malin, G.

    2014-07-01

    Exposure of intertidal macroalgae during low tide has been linked to the emission of a variety of atmospherically-important trace gases into the coastal atmosphere. In recent years, several studies have investigated the role of inorganic iodine and organoiodides as antioxidants and their emission during exposure to combat oxidative stress, yet the role of organic bromine species during desiccation is less well understood. In this study the emission of dibromomethane (CH2Br2) and bromoform (CHBr3) during exposure and desiccation of two common temperate macroalgae, Fucus vesiculosus and Ulva intestinalis, is reported. Determination of the impact exposure may have on algal physiological processes is difficult as intertidal species are adapted to desiccation and may undergo varying degrees of desiccation before their physiology is affected. For this reason we include comparisons between photosynthetic capacity (Fv / Fm) and halocarbon emissions during a desiccation time series. In addition, the role of rewetting with freshwater to simulate exposure to rain was also investigated. Our results show that an immediate flux of bromocarbons occurs upon exposure, followed by a decline in bromocarbon emissions. We suggest that this immediate bromocarbon pulse may be linked to volatilisation or emissions of existing bromocarbon stores from the algal surface rather than the production of bromocarbons as an antioxidant response.

  1. Photolytic dehalogenation of disinfection byproducts in water by natural sunlight irradiation.

    PubMed

    Abusallout, Ibrahim; Hua, Guanghui

    2016-09-01

    The aqueous photolysis of halogenated disinfection byproducts (DBPs) by natural sunlight irradiation was studied to determine their photolytic dehalogenation kinetics. Total organic halogen analysis was used to quantify the dehalogenation extents of DBPs during outdoor photolysis experiments. Dichloroacetamide, chloral hydrate, chloroform, dichloroacetonitrile, monochloro-, monobromo-, dichloro-, dibromo-, and trichloroacetic acids were generally resistant to photolytic dehalogenation and showed less than 10% reduction after 6 h sunlight irradiation. Monoiodoacetic acid, tribromoacetic acid, bromoform, dibromoacetonitrile, and trichloronitromethane showed moderate to high dehalogenation degrees with half-lives of 4.0-19.3 h. Diiodoacetic acid, triiodoacetic acid, and iodoform degraded rapidly under the sunlight irradiation and exhibited half-lives of 5.3-10.2 min. In general, the photosensitive cleavage of carbon-halogen bonds of DBPs increased with increasing number of halogens (tri- > di- > mono-halogenated) and size of the substituted halogens (I > Br > Cl). Nitrate, nitrite, and pH had little impact on the photodehalogenation of DBPs under typical levels in surface waters. The presence of natural organic matter (NOM) inhibited the photodehalogenation of DBPs by light screening. The NOM inhibiting effects were more pronounced for the fast degrading iodinated DBPs. The results of this study improve our understanding about the photolytic dehalogenation of wastewater-derived DBPs in surface waters during water reuse. PMID:27289205

  2. Removal of trihalomethane from chlorinated seawater using gamma radiation.

    PubMed

    Rajamohan, R; Natesan, Usha; Venugopalan, V P; Rajesh, Puspalata; Rangarajan, S

    2015-12-01

    Chlorine addition as a biocide in seawater results in the formation of chlorination by-products such as trihalomethanes (THMs). Removal of THMs is of importance as they are potential mutagenic and carcinogenic agents. In this context, a study was conducted that used ionizing radiation to remove THMs from chlorinated (1, 3, and 5 mg/L) seawater by applying various dosages (0.4-5.0 kGy) of gamma radiation. Bromoform (BF) showed a faster rate of degradation as compared to other halocarbons such as bromodichloromethane (BDCM) and dibromochloromethane (DBCM). In chlorine-dosed seawater, total irradiation dose of 0.4 to 5 kGy caused percentage reduction in the range of 6.9 to 76.7%, 2.3 to 99.6%, and 45.7 to 98.3% for BDCM, DBCM, and BF, respectively. During the irradiation process, pH of the chlorinated seawater decreased with increase in the absorbed dose; however, no change in total organic carbon (TOC) was observed. The results show that gamma dose of 2.5 kGy was adequate for maximum degradation of THM; but for complete mineralization, higher dose would be required. PMID:26199004

  3. Heated indoor swimming pools, infants, and the pathogenesis of adolescent idiopathic scoliosis: a neurogenic hypothesis

    PubMed Central

    2011-01-01

    Background In a case-control study a statistically significant association was recorded between the introduction of infants to heated indoor swimming pools and the development of adolescent idiopathic scoliosis (AIS). In this paper, a neurogenic hypothesis is formulated to explain how toxins produced by chlorine in such pools may act deleteriously on the infant's immature central nervous system, comprising brain and spinal cord, to produce the deformity of AIS. Presentation of the hypothesis Through vulnerability of the developing central nervous system to circulating toxins, and because of delayed epigenetic effects, the trunk deformity of AIS does not become evident until adolescence. In mature healthy swimmers using such pools, the circulating neurotoxins detected are chloroform, bromodichloromethane, dibromochloromethane, and bromoform. Cyanogen chloride and dichloroacetonitrile have also been detected. Testing the hypothesis In infants, the putative portals of entry to the blood could be dermal, oral, or respiratory; and entry of such circulating small molecules to the brain are via the blood-brain barrier, blood-cerebrospinal fluid barrier, and circumventricular organs. Barrier mechanisms of the developing brain differ from those of adult brain and have been linked to brain development. During the first 6 months of life cerebrospinal fluid contains higher concentrations of specific proteins relative to plasma, attributed to mechanisms continued from fetal brain development rather than immaturity. Implications of the hypothesis The hypothesis can be tested. If confirmed, there is potential to prevent some children from developing AIS. PMID:21975145

  4. Springtime surface ozone fluctuations at high Arctic latitudes and their possible relationship to atmospheric bromine

    NASA Technical Reports Server (NTRS)

    Oltmans, Samuel J.; Sheridan, Patrick J.; Schnell, Russell C.; Winchester, John W.

    1988-01-01

    At high Arctic stations such as Barrow, Alaska, springtime near-surface ozone amounts fluctuate between the highest and lowest values seen during the course of the year. Episodes when the surface ozone concentration is essentially zero last up to several days during this time of year. In the Arctic Gas and Aerosol Sampling Program (AGASP-I and AGASP-II) in 1983 and 1986, it was found that ozone concentrations often showed a very steep gradient in altitude with very low values near the surface. The cold temperatures, and snow-covered ground make it unlikely that the surface itself would rapidly destroy significant amounts of ozone. The AGASP aircraft measurements that found low ozone concentrations in the lowest layers of the troposphere also found that filterable excess bromine (the amount of bromine in excess of the sea salt component) in samples collected wholly or partially beneath the temperature inversion had higher bromine concentrations than other tropospheric samples. Of the four lowest ozone minimum concentrations, three of them were associated with the highest bromine enrichments. Surface measurements of excess filterable bromine at Barrow show a strong seasonal dependence with values rising dramatically early in March, then declining in May. The concentration of organic bromine gases such as bromoform rise sharply during the winter and then begin to decline after March with winter and early spring values at least three times greater than the summer minimum.

  5. Nanodetection of the disinfection by-products on GC-MS techniques

    NASA Astrophysics Data System (ADS)

    Ristoiu, Dumitru; Haydee, Melinda; Ristoiu, Tania

    2009-01-01

    Exposures to disinfection by-products (DBPs) in residential drinking water occur through multiple routes and vary across the population because of differences in the amount and ways people use water. Municipal water in the Romania is disinfected, with chlorine being the most common disinfectant agent. Disinfection of water, in additional to having the benefit of destroying microbes that can transmit diseases, has the drawback of producing a series of compounds known as disinfection by-products (DBPs). Chlorination produces many compounds containing chlorine and/or bromine, some of which have been shown to be carcinogenic, mutagenic, and/or teratogenic in animal studies. The most abundant class of DBPs that result from chlorination of drinking water are trihalomethanes (THMs) - chloroform (CHCl3), dichlorobromomethane (CHCl2Br), dibromochloromethane (CHBr2Cl) and bromoform (CHBr3). The most predominant THM species was CHCl3 and it highest concentration was 85•106 ng/m3. The others THMs compounds concentration were lower, between 65•104 ng/m3 and 12•106 ng/m3. THMs compounds were analyzed on gas chromatography coupled with mass spectrometer detector (GC-MS) and head space technique (HS) was used for all analysis.

  6. Source regions of stratospheric VSLS in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Quack, Birgit; Hepach, Helmke; Atlas, Elliot; Bracher, Astrid; Endres, Sonja; Arevalo-Martinez, Damian; Bange, Hermann; Lennartz, Sinikka; Steinhoff, Tobias; Booge, Dennis; Zarvasky, Alexander; Marandino, Christa; Patey, Matt; Achterberg, Eric; Dengler, Markus; Fiehn, Alina; Tegtmeier, Susann; Krüger, Kirstin

    2016-04-01

    Halogenated very-short-lived substances (VSLS), which are naturally produced in the ocean, play a significant role in present day ozone depletion, in particular in combination with enhanced stratospheric sulfate aerosol, which is also partly derived from oceanic VSLS. The decline of anthropogenic chlorine in the stratosphere within the 21st century will increase the relative importance of the natural emissions on stratospheric ozone destruction. Especially, oceanic sources and source regions of the compounds need to be better constrained, in order to improve the future prediction. During boreal summer the Asian monsoon circulation transports air masses from the Indian Ocean to the stratosphere, while the contribution of VSLS from this ocean to stratospheric halogen and sulfur is unknown. During the research cruises SO 234/2 and SO 235 in July-August 2014 onboard RV SONNE oceanic and atmospheric halogenated VSLS such as bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I) were measured in the subtropical and tropical West Indian Ocean for the first time. Here we present the oceanic sources of the halogenated compounds and their relation to other biogeochemical parameters (short- and longlived trace gases, phytoplankton and nutrients) along the cruise track, which covered coastal, upwelling and open ocean regimes and the Seychelles-Chagos thermocline ridge as important source region for stratospheric bromine.

  7. Microextraction of priority pollutants

    SciTech Connect

    Leepipatriboon, S.

    1984-01-01

    Some of the priority pollutants, e.g., aromatic hydrocarbons, halogenated aromatic hydrocarbons and halogenated alkanes and alkenes have been studied by a microextraction technique. The compounds studied were benzene, toluene, and ethylbenzene for aromatic hydrocarbons; chlorobenzene, m-dichlorobenzene, p-dichlorobenzene, and o-dichlorobenzene for halogenated aromatic hydrocarbons; and trans-1,2-dichloroethylene, 1,1-dichloroethane, 1,1,2,2-tetrachloroethane, choloroform, ethylene chloride, 1,1,1-trichloroethane, carbon tetrachloride, methylene chloride, bromodichloromethane, 1,2-dichloropropane, trichloroethylene and bromoform for halogenated alkanes and alkenes. The organic solvent-to-water sample ratios of study were 1:9, 5:5 and 8:2, respectively. Solvent extractability effect of carbon disulfide, methylene chloride and hexane or iso-octane and the effect of salts, e.g., saturated sodium chloride solution, saturated sodium sulfate solution, 2.00 g of sodium chloride and 2.00 g of sodium sulfate on the percent recovery were investigated in this study. This technique is based on the extraction into an organic solvent phase followed by the measurement of the peak area by a flame ionization detector. Gas chromatography and the internal standard technique were used throughout the stud. The gas chromatographic conditions for each system of study were reported. The standard deviation of this study ranged from 1-16%. The distribution constant, K{sub D}, and the results of percent recovery for each compound are discussed.

  8. Correlated physiochemical and age changes in embryonic bovine enamel.

    PubMed

    Landis, W J; Navarro, M

    1983-01-01

    Whole enamel scrapings from unerupted teeth of embryonic calves have been separated into fractions of varying density by stepwise centrifugation in bromoform-toluene mixtures of increasing specific gravity. Partition of enamel in this manner yields individual fractions of increasing mineral phase age and maturation. Whole scrapings and isolated fractions of the fetal bovine enamel were examined by X-ray powder diffraction, scanning electron microscopy, and atomic absorption and infrared spectroscopy to determine time-related changes in the physiochemical nature of the constituent mineral phase particles. These analyses showed poorly crystalline hydroxyapatite (HA) as the only detectable solid phase of calcium phosphate present in all fractions, its degree of crystallinity increasing with increasing density. Molar Ca/P ratios and magnesium content were highest in lowest density fractions. Carbonate vibration bands at 875 and 1420-1450 cm-1, common to mineralized tissue, were observed in intermediate and higher density fractions and in whole unfractionated enamel. Another carbonate band at approximately 705 cm-1, unusual to vertebrate calcified tissue, was detected in low density fractions and disappeared rapidly with increasing enamel maturation. Its precise relation with the enamel mineral phase has not been determined. PMID:6839190

  9. Heavy mineral distribution in stream sediment of Tapah area, Perak, Malaysia

    NASA Astrophysics Data System (ADS)

    Sibon, Mahat Hj; Jamil, Habibah; Umor, Mohd Rozi; Hassan, Wan Fuad Wan

    2013-11-01

    This paper aims to provide the overview of occurrence, distribution and origin of the heavy minerals in the study area. A total of 45 selected stream sediment heavy mineral concentrate samples were panned using standard dulangs, dried and separated from other light minerals using bromoform. The heavy minerals were separated into different fractions at different amperes using Frantz Isodynamic magnetic separator. Mineral identification was done using binocular microscope augmented by X-ray diffraction analyses. Mineral abundance data were analysed graphically using triangular diagrams to show their origin. Dominant minerals present in the heavy mineral samples collected are ilmenite, cassiterite, tourmaline, zircon, topaz, and magnetite. The less common minerals, present in trace amounts are hematite, xenotime, allanite, monazite, rutile, anatase, leucoxene, chromite, garnet and olivine. Examination of the heavy mineral assemblage shows that they originated from granite batholiths of the Main Range, Changkat Rembian as well as from the metasedimentary rock in the area. The gold flakes present are found together with cassiterite and topaz indicating that gold originates from the mineralized veins contact-metamorphosed metasedimentary rocks. Almost all samples collected contain cassiterite grains in various amounts. From the mineral assemblage, the source of cassiterite originates from the mineralized quartz veins that cut granitic rocks of Main Range, Changkat Rembian as well as the metasedimentary rock in the area. Greisenized veins containing quartz, mica and tourmaline with the presence of wolframite and arsenopyrite also contribute to the presence of cassiterite in this study area.

  10. Membrane inlet mass spectrometry of volatile organohalogen compounds in drinking water.

    PubMed

    Bocchini, P; Pozzi, R; Andalò, C; Galletti, G C

    1999-01-01

    The analysis of organic pollutants in drinking water is a topic of wide interest, reflecting on public health and life quality. Many different methodologies have been developed and are currently employed in this context, but they often require a time-consuming sample pre-treatment. This step affects the recovery of the highly volatile compounds. Trace analysis of volatile organic pollutants in water can be performed 'on-line' by membrane inlet mass spectrometry (MIMS). In MIMS, the sample is separated from the vacuum of the mass spectrometer by a thin polymeric hollow-fibre membrane. Gases and organic volatile compounds diffuse and concentrate from the sample into the hollow-fibre membrane, and from there into the mass spectrometer. The main advantages of the technique are that no pre-treatment of samples before analysis is needed and that it has fast response times and on-line monitoring capabilities. This paper reports the set-up of the analytical conditions for the analysis of volatile organohalogen compounds (chloroform, bromoform, bromodichloromethane, chlorodibromomethane, tetrachloroethylene, trichloroethylene, 1,1,1-trichloroethane, and carbon tetrachloride). Linearity of response, repeatability, detection limits, and spectra quality are evaluated. PMID:10510419

  11. A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil

    PubMed Central

    Weigold, Pascal; El-Hadidi, Mohamed; Ruecker, Alexander; Huson, Daniel H.; Scholten, Thomas; Jochmann, Maik; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications. PMID:27353292

  12. A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil.

    PubMed

    Weigold, Pascal; El-Hadidi, Mohamed; Ruecker, Alexander; Huson, Daniel H; Scholten, Thomas; Jochmann, Maik; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications. PMID:27353292

  13. The effect of different boiling and filtering devices on the concentration of disinfection by-products in tap water.

    PubMed

    Carrasco-Turigas, Glòria; Villanueva, Cristina M; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies. PMID:23476675

  14. Dehydration in the tropical tropopause layer: A possible sink of inorganic bromine?

    NASA Astrophysics Data System (ADS)

    Aschmann, J.; Sinnhuber, B.-M.

    2012-04-01

    Recent studies have shown the importance of bromine very short-lived substances (VSLS) for the stratospheric bromine budget and their potential impact on ozone depletion. In this study, bromine loading in the tropical upper troposphere/lower stratosphere (UTLS) due to VSLS is investigated with a 3D chemical transport model with a detailed chemistry scheme, including parametrizations of particle adsorption and scavenging as well as heterogeneous reactions on corresponding surfaces. On the source gas side, the long-lived halons and methyl bromide and the two most important bromine short-lived substances, bromoform and dibromomethane, are included. On the other hand, the partitioning of inorganic bromine product gases (Bry) is also explicitly calculated. Our results suggest that loss of soluble inorganic bromine in the tropical UTLS due to dehydration is negligible, in contrast to most earlier studies. The main reasons can be summarized as follows: The majority of bromine short-lived source gases is still intact at the UTLS and is therefore not susceptible to dehydration. Furthermore, the fraction of inorganic bromine which is actually adsorbed on ice particles is generally lower than 25%. Finally, the model shows that the small amount of adsorbed bromine that could be scavenged is released efficiently into gas phase by heterogeneous reactions.

  15. Brominated organic species in the arctic atmosphere

    NASA Technical Reports Server (NTRS)

    Berg, W. W.; Heidt, L. E.; Pollock, W.; Sperry, P. D.; Cicerone, R. J.; Gladney, E. S.

    1984-01-01

    Measurements are reported of four gas-phase, brominated organic species found in the Arctic atmosphere during March and April 1983. Volume mixing ratios for CH3Br, CH2BrCH2Br, CHBr3, and CH2Br2 were determined by gas chromatography/mass spectrometry analysis from samples taken Arctic wide, including at the geographic North Pole and during a tropopause folding event over Baffin Bay near Thule, Greenland. Methyl bromide mixing ratios were reasonably constant at 11 plus or minus 4 pptv, while the other three brominated organics showed a high degree of variability. Bromoform (2 to 46 pptv) was found to be the dominant contributor to gaseous organic bromine to the Arctic troposphere at 38 plus or minus 10 percent followed by CH2Br2 (3 to 60 pptv) at 29 plus or minus 6 percent. Both CH3Br and CH2BrCH2Br (1 to 37 pptv) reservoirs contained less than 20 percent of the organically bound bromine. Stratospheric samples, taken during a tropopause folding event, showed mixing ratios for all four species at levels high enough to support a stratospheric total volume mixing ratio of 249 pptv Br (888 ngBr/SCM).

  16. Fibre selection based on an overall analytical feature comparison for the solid-phase microextraction of trihalomethanes from drinking water.

    PubMed

    San Juan, Pedro Manuel; Carrillo, José David; Tena, María Teresa

    2007-01-12

    This paper describes the optimization of solid-phase microextraction (SPME) conditions for three different fibres (Carboxen-polydimethylsiloxane (CAR-PDMS), divinylbenzene-Carboxen-polydimethylsiloxane (DVB-CAR-PDMS) and polydimethylsiloxane-divinylbenzene (PDMS-DVB)) used to determine trihalomethanes (THMs) in water by headspace solid-phase microextraction and gas chromatography (HS-SPME-GC). The influence of temperature and salting-out effect was examined using a central composite design for each fibre. Extraction time was studied separately at the optimum values found for temperature and sodium chloride concentration (40 degrees C and 0.36g mL-1). The HS-SPME-GC-MS method for each fibre was characterised in terms of linearity, detection (LOD) and quantification (LOQ) limits and repeatability. The fibre PDMS-DVB was selected as it provided a broader linear range, better repeatability and lower detection and quantification limits than the others, particularly CAR-PDMS fibre. The accuracy of the proposed method using the PDMS-DVB fibre was checked by a recovery study in both ultrapure and tap water. A blank analysis study showed the absence of memory effects for this fibre. The reproducibility (expressed as a percentage of relative standard deviation) was 6-11% and the detection limits were between 0.078 and 0.52microgL-1 for bromoform and chloroform, respectively. Finally, the method was applied to determine THM concentration in two drinking water samples. PMID:17109874

  17. Occurrence of Organic Compounds in Source and Finished Samples from Seven Drinking-Water Treatment Facilities in Miami-Dade County, Florida, 2008

    USGS Publications Warehouse

    Foster, Adam L.; Katz, Brian G.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department, conducted a reconnaissance study in 2008 to determine the occurrence of 228 organic compounds in raw, source (untreated) and finished (treated) drinking water at seven municipal water-treatment facilities in Miami-Dade County. Results of this sampling study showed that 25 (about 11 percent) of the 228 organic compounds were detected in at least one source water sample and 22 (about 10 percent) were detected in at least one finished water sample. The concentrations of organic compounds in source water samples were less than or equal to 0.2 (u or mu)g/L (micrograms per liter). The concentrations of organic compounds in finished water samples were generally less than or equal to 0.5 (u or mu)g/L, with the exception of bromoform (a possible disinfection byproduct) at estimated concentrations ranging from 0.7 to 2.8 (u or mu)g/L and diethyl phthalate (a plasticizer compound) at 2 (u or mu)g/L.

  18. In vitro mutagenicity of water contaminants in complex mixtures.

    PubMed

    Varma, M M; Ampy, F R; Verma, K; Talbot, W W

    1988-08-01

    Trihalomethanes, Carbon tetrachloride and trichloroethylene were tested in single, binary and multi-complex mixtures using standard tester strains TA1535, TA1537, TA98 and TA100 of Salmonella typhimurium with and without addition of an in vitro metabolizing fraction S-9. Chloroform (CHCl3) was found to be mutagenic in all strains without S-9 activation. However, when tested with Bromoform (15%), which was nonmutagenic singly, the combined effect of the mixture was nonmutagenic. CCl4 was a direct mutagen (without S-9) in all strains except TA 1535. When combined with 85% CHCl3, only strains TA1535 and TA1537 were mutagenic. When tested with mammalian activation (S-9), CCl4 was mutagenic in all strains. However, when tested with CHCl3 (CHCl3 and CCl4-85:15), the mutagenic capability was lost. With or without S-9 Activation multi-complex mixture of CHCl3, CCl4 and TCE (85:8:7) was mutagenic for a narrow range of doses in all strains. PMID:3183290

  19. Characterization of dissolved organic matter for prediction of trihalomethane formation potential in surface and sub-surface waters.

    PubMed

    Awad, John; van Leeuwen, John; Chow, Christopher; Drikas, Mary; Smernik, Ronald J; Chittleborough, David J; Bestland, Erick

    2016-05-01

    Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character dependent on their sources within catchments. The character of DOM further influences the formation of disinfection by products when precursor DOM present in drinking water reacts with chlorine during disinfection. Here we report the development of models that describe the formation potential of trihalomethanes (THMFP) dependent on the character of DOM in waters from discrete catchments with specific land-use and soil textures. DOM was characterized based on UV absorbance at 254 nm, apparent molecular weight and relative abundances of protein-like and humic-like compounds. DOM character and Br concentration (up to 0.5 mg/L) were used as variables in models (R(2)>0.93) of THMFP, which ranged from 19 to 649 μg/L. Chloroform concentration (12-594 μg/L) and relative abundance (27-99%) were first modeled (R(2)>0.85) and from these, the abundances of bromodichloromethane and chlorodibromomethane estimated using power and exponential functions, respectively (R(2)>0.98). From these, the abundance of bromoform is calculated. The proposed model may be used in risk assessment of catchment factors on formation of trihalomethanes in drinking water, in context of treatment efficiency for removal of organic matter. PMID:26874432

  20. Monitoring of chlorination disinfection by-products and their associated health risks in drinking water of Pakistan.

    PubMed

    Abbas, Sidra; Hashmi, Imran; Rehman, Muhammad Saif Ur; Qazi, Ishtiaq A; Awan, Mohammad A; Nasir, Habib

    2015-03-01

    This study reports the baseline data of chlorination disinfection by-products such as trihalomethanes (THMs) and their associated health risks in the water distribution network of Islamabad and Rawalpindi, Pakistan. THM monitoring was carried out at 30 different sampling sites across the twin cities for 6 months. The average concentration of total trihalomethanes (TTHMs) and chloroform ranged between 575 and 595 μg/L which exceeded the permissible US (80 μg/L) and EU (100 μg/L) limits. Chloroform was one of the major contributors to the TTHMs concentration (>85%). The occurrence of THMs was found in the following order: chloroform, bromodichloromethane > dibromochloromethane > bromoform. Lifetime cancer risk assessment of THMs for both males and females was carried out using prediction models via different exposure routes (ingestion, inhalation, and dermal). Total lifetime cancer risk assessment for different exposure routes (ingestion, inhalation, and skin) was carried out. The highest cancer risk expected from THMs seems to be from the inhalation route followed by ingestion and dermal contacts. The average lifetime cancer risk for males and females was found to be 0.51 × 10⁻³ and 1.22 × 10⁻³, respectively. The expected number of cancer risks per year could reach two to three cases for each city. PMID:25719485

  1. Krypton-79m: a new radionuclide for applications in nuclear medicine

    SciTech Connect

    Myers, W.G.; Dahl, J.R.; Graham, M.C.

    1986-09-01

    Krypton-79m emits 130-keV gamma rays in 27 +/- 1% of its disintegrations and decays with a half-life of 50 +/- 3 sec. It is generated readily by bombarding nearly saturated aqueous solutions of bromide salts, or bromoform, with 14-MeV protons. The 79mKr is swept out continuously as it is produced by bubbling helium upward through the liquids. Up to 200 mCi per I are obtained of the resulting mixture of gases. The 79mKr + helium is mixed with about five volumes of air and then driven continuously through a small-bore tube to an Anger scintillation camera located approximately 200 yards away. The rate of flow is adjusted so that the amounts of 13-sec 81mKr and of 35-hr 79Kr are inconsequential at the time and point of use. When the gases are inhaled, good images of the lungs are obtained with an Anger scintillation camera. The trachea and bronchi commonly are revealed also.

  2. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    PubMed Central

    Carrasco-Turigas, Glòria; Villanueva, Cristina M.; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J.

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies. PMID:23476675

  3. The risks of drinking water

    NASA Astrophysics Data System (ADS)

    Reichhardt, Tony

    1984-04-01

    Three researchers from the Energy and Environmental Policy Center at Harvard University have come up with a new method of calculating the risk from contaminants in drinking water, one that they believe takes into account some of the uncertainties in pronouncing water safe or dangerous to drink. The new method concentrates on the risk of cancer, which authors Edmund Crouch, Richard Wilson, and Lauren Zeise believe has not been properly considered in establishing drinking water standards.Writing in the December 1983 issue of Water Resources Research, the authors state that “current [drinking water] standards for a given chemical or class of chemicals do not account for the presence of other pollutants” that could combine to create dangerous substances. According to Wilson, “Over a hundred industrial pollutants and chlorination byproducts have been found in various samples of drinking water, some of which are known carcinogens, others suspected carcinogens.” The same chlorine that solves one major health problem—the threat of bacterial disease—can thus contribute to another, according to the authors, by increasing the long-term risk of cancer. The largest risks are due to halomethanes such as chloroform and bromoform, produced as chlorine reacts with organic matter in drinking water.

  4. Estimating surface fluxes of very short-lived halogens from aircraft measurements over the tropical Western Pacific

    NASA Astrophysics Data System (ADS)

    Feng, Liang; Palmer, Paul I.; Butler, Robyn; Harris, Neil; Carpenter, Lucy; Andrews, Steve; Atlas, Elliot; Pan, Laura; Salawitch, Ross; Donets, Valeria; Schauffler, Sue

    2016-04-01

    We use an inverse model approach to quantitatively understand the ocean flux and atmospheric transport of very short-lived halogenated species (VSLS) measured during the coordinated NERC CAST and NCAR CONTRAST aircraft campaigns over the Western Pacific during January/February 2014. To achieve this we have developed a nested GEOS-Chem chemistry transport model simulation of bromoform (CHBr3) and dibromomethane (CH2Br2), which has a spatial resolution of 0.25° (latitude) × 0.3125° (longitude) over the tropical Western Pacific region, and fed by boundary conditions from a coarser version of the model. We use archived 3-hourly 3-D fields of OH and j-values for CHBr3 photolysis, allowing us to linearly decompose these gases into tagged contributions from different geographical regions. Using these tagged tracers, we are able to use the maximum a posteriori probability (MAP) approach to estimate the VSLS sources by fitting the model to observations. We find that the resulting VSLS fluxes are significantly different from some previous studies. To interpret the results, we describe several observation system simulation experiments to understand the sensitivity of these flux estimates to observation errors as well as to the uncertainty in the boundary condition imposed around the nested grid.

  5. Sources and occurrence of chloroform and other trihalomethanes in drinking-water supply wells in the United States, 1986-2001

    USGS Publications Warehouse

    Ivahnenko, Tamara; Zogorski, J.S.

    2006-01-01

    Chloroform and three other trihalomethanes (THMs)--bromodichloromethane, dibromochloromethane, and bromoform--are disinfection by-products commonly produced during the chlorination of water and wastewater. Samples of untreated ground water from drinking-water supply wells (1,096 public and 2,400 domestic wells) were analyzed for THMs and other volatile organic compounds (VOCs) during 1986-2001, or compiled, as part of the U.S. Geological Survey's National Water-Quality Assessment Program. This report provides a summary of potential sources of THMs and of the occurrence and geographical distribution of THMs in samples from public and domestic wells. Evidence for an anthropogenic source of THMs and implications for future research also are presented. Potential sources of THMs to both public and domestic wells include the discharge of chlorinated drinking water and wastewater that may be intentional or inadvertent. Intentional discharge includes the use of municipally supplied chlorinated water to irrigate lawns, golf courses, parks, gardens, and other areas; the use of septic systems; or the regulated discharge of chlorinated wastewater to surface waters or ground-water recharge facilities. Inadvertent discharge includes leakage of chlorinated water from swimming pools, spas, or distribution systems for drinking water or wastewater sewers. Statistical analyses indicate that population density, the percentage of urban land, and the number of Resource Conservation and Recovery Act hazardous-waste facilities near sampled wells are significantly associated with the probability of detection of chloroform, especially for public wells. Domestic wells may have several other sources of THMs, including the practice of well disinfection through shock chlorination, laundry wastewater containing bleach, and septic system effluent. Chloroform was the most frequently detected VOC in samples from drinking-water supply wells (public and domestic wells) in the United States. Although

  6. Oceanic contributions from tropical upwelling systems to atmospheric halogens

    NASA Astrophysics Data System (ADS)

    Ziska, Franziska; Hepach, Helmke; Stemmler, Irene; Quack, Birgit; Atlas, Elliot; Fuhlbrügge, Steffen; Bracher, Astrid; Tegtmeier, Susann; Krüger, Kirstin

    2014-05-01

    Short lived halogenated substances (halocarbons) from the oceans contribute to atmospheric halogens, where they are involved in ozone depletion and aerosol formation. Oceanic regions that are characterized by high biological activity are often associated with increased halocarbon abundance of e.g. bromoform (CHBr3) and dibromomethane (CH2Br2), representing the main contributors to atmospheric organic bromine. Apart from biological production, photochemical pathways play an important role in the formation of methyl iodide (CH3I), the most abundant organoiodine in the marine atmosphere. Recently, the contribution of biogenic diiodomethane (CH2I2) and chloroiodomethane (CH2ClI) to atmospheric organic iodine has been estimated to be similarly significant as CH3I. In the tropics, rapid uplift of surface air can transport these short-lived compounds into the upper troposphere and into the stratosphere. Oceanic upwelling systems off Mauritania, Peru and in the equatorial Atlantic might therefore potentially contribute large amounts of halocarbons to the stratosphere. Concentrations and emissions of iodo- and bromocarbons from several SOPRAN campaigns in different tropical upwelling systems, the Mauritanian and the equatorial upwelling in the Atlantic, as well as the Peruvian upwelling in the Pacific, will be presented. Processes contributing to halocarbon occurrence in the water column, as well as biological and physical factors influencing their emission into the atmosphere are investigated (Fuhlbrügge, et al. 2013; Hepach et al., 2013). We will present the relative contribution of the upwelling systems to global air-sea fluxes from different modelling studies. The data based bottom-up emissions from Ziska et al. (2013) will be compared to model simulated halocarbons. The model is a global three-dimensional ocean general circulation model with an ecosystem model and halocarbon module embedded (MPIOM/HAMOCC). It resolves CH3I and CHBr3 production, degradation, and

  7. Convective transport of very-short-lived bromocarbons to the stratosphere

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Atlas, E.; Blake, D.; Dorf, M.; Pfeilsticker, K.; Schauffler, S.

    2014-01-01

    We use the NASA GEOS Chemistry Climate Model (GEOSCCM) to quantify the contribution of two most important brominated very short-lived substances (VSLS), bromoform (CHBr3) and dibromomethane (CH2Br2), to stratospheric bromine and its sensitivity to convection strength. Model simulations suggest that the most active transport of VSLS from the marine boundary layer through the tropopause occurs over the tropical Indian Ocean, the Western Pacific warm pool, and off the Pacific coast of Mexico. Together, convective lofting of CHBr3 and CH2Br2 and their degradation products supplies ∼8 ppt total bromine to the base of the Tropical Tropopause Layer (TTL, ∼150 hPa), similar to the amount of VSLS organic bromine available in the marine boundary layer (∼7.8-8.4 ppt) in the above active convective lofting regions. Of the total ∼8 ppt VSLS-originated bromine that enters the base of TTL at ∼150 hPa, half is in the form of source gas injection (SGI) and half as product gas injection (PGI). Only a small portion (< 10%) the VSLS-originated bromine is removed via wet scavenging in the TTL before reaching the lower stratosphere. On global and annual average, CHBr3 and CH2Br2, together, contribute ∼7.7 pptv to the present-day inorganic bromine in the stratosphere. However, varying model deep convection strength between maximum and minimum convection conditions can introduce a ∼2.6 pptv uncertainty in the contribution of VSLS to inorganic bromine in the stratosphere (BryVSLS). Contrary to the conventional wisdom, minimum convection condition leads to a larger BryVSLS as the reduced scavenging in soluble product gases, thus a significant increase in PGI (2-3 ppt), greatly exceeds the relative minor decrease in SGI (a few 10ths ppt).

  8. Convective transport of very short lived bromocarbons to the stratosphere

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Atlas, E.; Blake, D.; Dorf, M.; Pfeilsticker, K.; Schauffler, S.

    2014-06-01

    We use the NASA Goddard Earth Observing System (GEOS) Chemistry Climate Model (GEOSCCM) to quantify the contribution of the two most important brominated very short lived substances (VSLSs), bromoform (CHBr3) and dibromomethane (CH2Br2), to stratospheric bromine and its sensitivity to convection strength. Model simulations suggest that the most active transport of VSLSs from the marine boundary layer through the tropopause occurs over the tropical Indian Ocean, the tropical western Pacific, and off the Pacific coast of Mexico. Together, convective lofting of CHBr3 and CH2Br2 and their degradation products supplies ~8 ppt total bromine to the base of the tropical tropopause layer (TTL, ~150 hPa), similar to the amount of VSLS organic bromine available in the marine boundary layer (~7.8-8.4 ppt) in the active convective lofting regions mentioned above. Of the total ~8 ppt VSLS bromine that enters the base of the TTL at ~150 hPa, half is in the form of organic source gases and half in the form of inorganic product gases. Only a small portion (<10%) of the VSLS-originated bromine is removed via wet scavenging in the TTL before reaching the lower stratosphere. On average, globally, CHBr3 and CH2Br2 together contribute ~7.7 pptv to the present-day inorganic bromine in the stratosphere. However, varying model deep-convection strength between maximum (strongest) and minimum (weakest) convection conditions can introduce a ~2.6 pptv uncertainty in the contribution of VSLSs to inorganic bromine in the stratosphere (BryVSLS). Contrary to conventional wisdom, the minimum convection condition leads to a larger BryVSLS as the reduced scavenging in soluble product gases, and thus a significant increase in product gas injection (2-3 ppt), greatly exceeds the relatively minor decrease in source gas injection (a few 10ths ppt).

  9. Abundances and variability of tropospheric volatile organic compounds at the South Pole and other Antarctic locations

    NASA Astrophysics Data System (ADS)

    Beyersdorf, Andreas J.; Blake, Donald R.; Swanson, Aaron; Meinardi, Simone; Rowland, F. S.; Davis, Douglas

    2010-11-01

    Multiyear (2000-2006) seasonal measurements of carbon monoxide, hydrocarbons, halogenated species, dimethyl sulfide, carbonyl sulfide and C 1-C 4 alkyl nitrates at the South Pole are presented for the first time. At the South Pole, short-lived species (such as the alkenes) typically were not observed above their limits of detection because of long transit times from source regions. Peak mixing ratios of the longer lived species with anthropogenic sources were measured in late winter (August and September) with decreasing mixing ratios throughout the spring. In comparison, compounds with a strong oceanic source, such as bromoform and methyl iodide, had peak mixing ratios earlier in the winter (June and July) because of decreased oceanic production during the winter months. Dimethyl sulfide (DMS), which is also oceanically emitted but has a short lifetime, was rarely measured above 5 pptv. This is in contrast to high DMS mixing ratios at coastal locations and shows the importance of photochemical removal during transport to the pole. Alkyl nitrate mixing ratios peaked during April and then decreased throughout the winter. The dominant source of the alkyl nitrates in the region is believed to be oceanic emissions rather than photochemical production due to low alkane levels. Sampling of other tropospheric environments via a Twin Otter aircraft included the west coast of the Ross Sea and large stretches of the Antarctic Plateau. In the coastal atmosphere, a vertical gradient was found with the highest mixing ratios of marine emitted compounds at low altitudes. Conversely, for anthropogenically produced species the highest mixing ratios were measured at the highest altitudes, suggesting long-range transport to the continent. Flights flown through the plume of Mount Erebus, an active volcano, revealed that both carbon monoxide and carbonyl sulfide are emitted with an OCS/CO molar ratio of 3.3 × 10 -3 consistent with direct observations by other investigators within the

  10. Intercalation of Lithium in Pitch-Based Graphitized Carbon Fibers Chemically Modified by Fluorine: Soft Carbon With or Without an Oxide Surface

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen; Prisko, Aniko

    1999-01-01

    The effects of carbon structure and surface oxygen on the carbon's performance as the anode in lithium-ion battery were studied. Two carbon materials were used for the electrochemical tests: soft carbon made from defluorination of graphite fluoride, and the carbon precursor from which the graphite fluoride was made. In this research the precursor was graphitized carbon fiber P-100. It was first fluorinated to form CF(0.68), then defluorinated slowly at 350 to 450 C in bromoform, and finally heated in 1000 C nitrogen before exposed to room temperature air, producing disordered soft carbon having basic surface oxides. This process caused very little carbon loss. The electrochemical test involved cycles of lithium intercalation and deintercalation using C/saturated LiI-50/50 (vol %) EC and DMC/Li half cell. The cycling test had four major results. (1) The presence of a basic oxide surface may prevent solvent from entering the carbon structure and therefore prolong the carbon's cycle life for lithium intercalation-deintercalation. (2) The disordered soft carbon can store lithium through two different mechanisms. One of them is lithium intercalation. which gives the disordered carbon an electrochemical behavior similar to its more ordered graphitic precursor. The other is unknown in its chemistry, but is responsible for the high-N,oltage portion (less than 0.3V) of the charge-discharge curve. (3) Under certain conditions, the disordered carbon can store more lithium than its precursor. (4) These sample and its precursor can intercalate at 200 mA/g. and deintercalate at a rate of 2000 mA/g without significant capacity loss.

  11. Biogenic halocarbons from coastal oceanic upwelling regions as tropospheric halogen source

    NASA Astrophysics Data System (ADS)

    Krüger, Kirstin; Fuhlbrügge, Steffen; Hepach, Helmke; Fiehn, Alina; Atlas, Elliot; Quack, Birgit

    2016-04-01

    Halogenated very short lived substances (VSLS) are naturally produced in the ocean and emitted to the atmosphere. Recently, oceanic upwelling regions in the tropical East Atlantic were identified as strong sources of brominated halocarbons to the troposphere. During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian Upwelling for the first time. This study presents novel observations of the three VSLS bromoform, dibromomethane and methyl iodide together with high resolution meteorological measurements and Lagrangian transport modelling. Although relatively low oceanic emissions were observed, except for methyl iodide, surface atmospheric abundances were elevated. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting both as strong barriers for convection and trace gas transport in this region. Significant correlations between observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height were found. We used a simple source-loss estimate to identify the contribution of oceanic emissions to observed atmospheric concentrations which revealed that the observed marine VSLS abundances were dominated by horizontal advection below the trade inversion. The observed VSLS variations can be explained by the low emissions and their accumulation under different MABL and trade inversion conditions. Finally, observations from a second Peruvian Upwelling cruise with R/V SONNE during El Nino in October 2015 will be compared to highlight the role of different El Nino Southern Oscillation conditions. This study confirms the importance of coastal oceanic upwelling and trade wind systems on creating effective transport barriers in the lowermost atmosphere controlling the distribution of VSLS abundances above coastal ocean upwelling

  12. [Formation and Variation of Brominated Disinfection By-products in A Combined Ultrafiltration and Reverse Osmosis Process for Seawater Desalination].

    PubMed

    Yang, Zhe; Sun, Ying-xue; Shi, Na; Hu, Hong-ying

    2015-10-01

    The characteristics of dissolved organic matter (DOM) and brominated disinfection by-products ( Br-DBPs ) during a seawater desalination ultrafiltration (UF) combined reverse osmosis (RO) process were studied. The seawater contained high level of bromide ion (45.6-50.9 mg x L(-1)) and aromatic compounds with specific ultraviolet absorbance ( SUVA) of 3.6-6.0 L x (mg x m)(-1). The tryptophan-like aromatic protein, fulvic acid-like and soluble microbial by-product-like were the main fluorescent DOM in the seawater. After pre-chlorination of the seawater, the concentrations of DBPs was significantly increased in the influent of UF, which was dominantly the Br-DBPs. Bromoform (CHBr3) accounted for 70.48% - 91.50% of total trihalomethanes (THMs), dibromoacetic acid (Br2CHCO2H) occupied 81.14% - 100% of total haloacetic acids (HAAs) and dibromoacetonitrile (C2HBr2N) occupied 83.77% - 87.45% of total haloacetonitriles ( HANs). The removal efficiency of THMs, HAAs and HANs by the UF membrane was 36.63% - 40.39%, 73.83% - 95.38% and 100%, respectively. The RO membrane could completely remove the HAAs, while a little of the THMs was penetrated. The antiestrogenic activity in the seawater was 0.35 - 0.44 mg x L(-1), which was increased 32% - 69% after the pre-chlorination. The DBPs and other bio-toxic organics which formed during the UF-RO process were finally concentrated in the UF concentrate and RO concentrate. PMID:26841602

  13. Interactions between CYP2E1, GSTZ1 and GSTT1 polymorphisms and exposure to drinking water trihalomethanes and their association with semen quality.

    PubMed

    Yang, Pan; Zeng, Qiang; Cao, Wen-Cheng; Wang, Yi-Xin; Huang, Zhen; Li, Jin; Liu, Chong; Lu, Wen-Qing

    2016-05-01

    Trihalomethanes (THMs) have been reported to be associated with altered semen quality, and this association may be modified by inherited differences in cytochrome P450 (CYP2E1) and glutathione S-transferase (GSTZ1 and GSTT1), which metabolize THMs. We conducted a cross-sectional study to examine the interactions between CYP2E1, GSTZ1 and GSTT1 polymorphisms and exposure to THMs on semen quality among 401 men from the Reproductive Center of Tongji Hospital in Wuhan China. The baseline blood concentrations of four individual THMs, chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform (TBM), were measured as biomarkers of exposure to drinking water THMs. Genotypes were determined by real-time PCR, and semen-quality parameters were evaluated according to the World Health Organization guidelines. GSTT1 genotype significantly modified the association between exposure to Br-THMs (sum of BDCM, DBCM and TBM) and below-reference sperm motility (Pint=0.02). Men with above-median blood Br-THM levels had an increased odds ratio (OR) of below-reference sperm compared to men with below-median blood Br-THM levels (OR=2.15, 95% CI: 1.11, 4.19) in the GSTT1 null genotype only. In addition, we found that men with a TT of CYP2E1 rs 915,906 had higher blood TCM and TTHM (sum of TCM, BDCM, DBCM and TBM) concentrations than men with a CT/CC of CYP2E1 rs 915,906. Our results suggest that GSTT1 polymorphisms modify Br-THM exposure relation with semen quality, and CYP2E1 polymorphisms are associated with internal levels of exposure to THMs. PMID:26970898

  14. Formation of halogenated disinfection by-products in cobalt-catalyzed peroxymonosulfate oxidation processes in the presence of halides.

    PubMed

    Xie, Weiping; Dong, Wei; Kong, Deyang; Ji, Yuefei; Lu, Junhe; Yin, Xiaoming

    2016-07-01

    Sulfate radicals (SO4(-)) generated by activation of peroxymonosulfate (PMS) and persulfate (PS) are highly oxidative and applied to degrade various organic pollutants. This research was designed to investigate formation of halogenated by-products in Co(2+) activated PMS process in the presence of halides and natural organic matter (NOM). It was revealed that no halogenated by-products were detected in the presence of Cl(-) while 189 μg/L bromoform and 100.7 μg/L dibromoacetic acid (DBAA) were found after 120 h when 2 mg/L NOM, 0.1 mM Br(-), 1.0 mM PMS, and 5 μL Co(2+) were present initially. These products are known as disinfection by-products (DBPs) since they are formed in water disinfection processes. Formation of DBPs was even more significant in the absence of Co(2+). The data indicate that both PMS and SO4(-) can transform Br(-) to reactive bromine species which react with NOM to form halogenated by-products. Less DBP formation in Co(2+)-PMS systems was due to the further destruction of DBPs by SO4(-). More DBPs species including chlorinated ones were detected in the presence of both Cl(-) and Br(-). However, more brominated species produced than chlorinate ones generally. The total DBP yield decreased with the increase of Cl(-) content when total halides kept constant. This is one of the few studies that demonstrate the formation of halogenated DBPs in Co(2+)/PMS reaction systems, which should be taken into consideration in the application of SO4(-) based oxidation technologies. PMID:27093695

  15. Multi-route trihalomethane exposure in households using municipal tap water treated with chlorine or ozone-chlorine.

    PubMed

    Jo, Wan-Kuen; Kwon, Ki-Dong; Dong, Jong-In; Chung, Yong

    2005-03-01

    In Korea, data for multi-route trihalomethane (THM) exposure in households using municipal tap water treated with ozone-chlorine or chlorine are unavailable or very limited. Accordingly, the present study was designed to obtain those data by measurements of the THM concentrations in the tap water and indoor and outdoor air in the two types of households, along with an estimation of THM exposure from water ingestion, showering, and the inhalation of indoor air. Chloroform was the most abundant THM in all three media, yet no bromoform was detected in any sample. Similar to previous findings, the winter chloroform concentration in tap water treated with chlorine (22.1 microg/l, median) was significantly higher than that in the tap water treated with ozone-chlorine (16.8 microg/l, median). However, the summer water chloroform concentrations and summer and winter water concentrations of the other two THMs (bromodichloromethane and dibromochloromethane) exhibited no significant difference between the chlorine and ozone-chlorine-treated water. It was suggested that the effects of the water parameters including biochemical oxygen demand of raw water entering water treatment plants should be considered when evaluating the advantage of ozone-chlorine disinfection for THM formation over chlorine disinfection. The indoor air THM concentration trend was also consistent with the water concentration trend. The indoor to outdoor air concentration ratios were comparable with previous studies. The THM exposure estimates from water ingestion, showering, and the inhalation of apartment indoor air when not in the shower suggested that, for residents living in the surveyed households, their exposure to THMs in the home was mostly associated with their household water uses. The THM exposure estimates from tap water ingestion were similar to those from showering. PMID:15740765

  16. The influence of physicochemical properties on the internal dose of trihalomethanes in humans following a controlled showering exposure.

    PubMed

    Silva, Lalith K; Backer, Lorraine C; Ashley, David L; Gordon, Sydney M; Brinkman, Marielle C; Nuckols, John R; Wilkes, Charles R; Blount, Benjamin C

    2013-01-01

    Although disinfection of domestic water supply is crucial for protecting public health from waterborne diseases, this process forms potentially harmful by-products, such as trihalomethanes (THMs). We evaluated the influence of physicochemical properties of four THMs (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) on the internal dose after showering. One hundred volunteers showered for 10 min in a controlled setting with fixed water flow, air flow, and temperature. We measured THMs in shower water, shower air, bathroom air, and blood samples collected at various time intervals. The geometric mean (GM) for total THM concentration in shower water was 96.2 μg/l. The GM of total THM in air increased from 5.8 μg/m(3) pre shower to 351 μg/m(3) during showering. Similarly, the GM of total-blood THM concentration increased from 16.5 ng/l pre shower to 299 ng/l at 10 min post shower. THM levels were significantly correlated between different matrices (e.g. dibromochloromethane levels) in water and air (r=0.941); blood and water (r=0.845); and blood and air (r=0.831). The slopes of best-fit lines for THM levels in water vs air and blood vs air increased with increasing partition coefficient of water/air and blood/air. The slope of the correlation plot of THM levels in water vs air decreased in a linear (r=0.995) fashion with increasing Henry's law constant. The physicochemical properties (volatility, partition coefficients, and Henry's law constant) are useful parameters for predicting THM movement between matrices and understanding THM exposure during showering. PMID:22829048

  17. Convective Transport of Very-short-lived Bromocarbons to the Stratosphere

    NASA Technical Reports Server (NTRS)

    Liang, Qing; Atlas, Elliot Leonard; Blake, Donald Ray; Dorf, Marcel; Pfeilsticker, Klaus August; Schauffler, Sue Myhre

    2014-01-01

    We use the NASA GEOS Chemistry Climate Model (GEOSCCM) to quantify the contribution of two most important brominated very short-lived substances (VSLS), bromoform (CHBr3) and dibromomethane (CH2Br2), to stratospheric bromine and its sensitivity to convection strength. Model simulations suggest that the most active transport of VSLS from the marine boundary layer through the tropopause occurs over the tropical Indian Ocean, the Western Pacific warm pool, and off the Pacific coast of Mexico. Together, convective lofting of CHBr3 and CH2Br2 and their degradation products supplies 8 ppt total bromine to the base of the Tropical Tropopause Layer (TTL, 150 hPa), similar to the amount of VSLS organic bromine available in the marine boundary layer (7.8-8.4 ppt) in the above active convective lofting regions. Of the total 8 ppt VSLS-originated bromine that enters the base of TTL at 150 hPa, half is in the form of source gas injection (SGI) and half as product gas injection (PGI). Only a small portion (< 10%) the VSLS-originated bromine is removed via wet scavenging in the TTL before reaching the lower stratosphere. On global and annual average, CHBr3 and CH2Br2, together, contribute 7.7 pptv to the present-day inorganic bromine in the stratosphere. However, varying model deep convection strength between maximum and minimum convection conditions can introduce a 2.6 pptv uncertainty in the contribution of VSLS to inorganic bromine in the stratosphere (BryVSLS). Contrary to the conventional wisdom, minimum convection condition leads to a larger BryVSLS as the reduced scavenging in soluble product gases, thus a significant increase in PGI (2-3 ppt), greatly exceeds the relative minor decrease in SGI (a few 10ths ppt.

  18. Exposure to inhaled THM: comparison of continuous and event-specific exposure assessment for epidemiologic purposes.

    PubMed

    Thiriat, N; Paulus, H; Le Bot, B; Glorennec, P

    2009-10-01

    Trihalomethanes (THMs) (chloroform, bromoform, dibromochloromethane, and bromodichloromethane) are the most abundant by-products of chlorination. People are exposed to THMs through ingestion, dermal contact and inhalation. The objective of this study was to compare two methods for assessing THM inhalation: a direct method with personal monitors assessing continuous exposure and an indirect one with microenvironmental sampling and collection of time-activity data during the main event exposures: bathing, showering and swimming. This comparison was conducted to help plan a future epidemiologic study of the effects of THMs on the upper airways of children. 30 children aged from 4 to 10 years were included. They wore a 3M 3520 organic vapor monitor for 7 days. We sampled air in their bathrooms (during baths or showers) and in the indoor swimming pools they visited and recorded their time-activity patterns. We used stainless steel tubes full of Tenax to collect air samples. All analyses were performed with Gas Chromatography and Mass Spectrometry (GC-MS). Chloroform was the THM with the highest concentrations in the air of both bathrooms and indoor swimming pools. Its continuous and event exposure measurements were significantly correlated (r(s)=0.69 p<0.001). Continuous exposures were higher than event exposures, suggesting that the event exposure method does not take into account some influential microenvironments. In an epidemiologic study, this might lead to random exposure misclassification, thus underestimation of the risk, and reduced statistical power. The continuous exposure method was difficult to implement because of its poor acceptability and the fragility of the personal monitors. These two points may also reduce the statistical power of an epidemiologic study. It would be useful to test the advantages and disadvantages of a second sample in the home or of modeling the baseline concentration of THM in the home to improve the event exposure method. PMID

  19. Joint effects of trihalomethanes and trichloroacetic acid on semen quality: A population-based cross-sectional study in China.

    PubMed

    Zeng, Qiang; Zhou, Bin; He, Dong-Liang; Wang, Yi-Xin; Wang, Mu; Yang, Pan; Huang, Zhen; Li, Jin; Lu, Wen-Qing

    2016-05-01

    Exposure to trihalomethanes (THMs) and haloacetic acids (HAAs) has been individually associated with adverse male reproductive effects; however, their joint male reproductive toxicity is largely unknown. This study aimed to explore the joint effects of THMs and trichloroacetic acid (TCAA) on semen quality in a Chinese population. A total of 337 men presenting to the Reproductive Center of Tongjing Hospital, in Wuhan, China to seek semen analysis were included this study. Baseline blood THMs [chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)] and urinary TCAA were analyzed and dichotomized at their median levels. The joint effects of THMs and TCAA on below-reference semen quality parameters were evaluated by calculating the relative excess risk due to interaction (RERI). After adjusting for potential confounders, we found a suggestive synergistic effect between Br-THMs (sum of BDCM, DBCM, and TBM) and TCAA for below-reference sperm count (RERI = 2.14, 95% CI: -0.37, 4.91) (P = 0.076); men with high Br-THMs and TCAA levels (above the median) had 3.31 times (95% CI: 1.21, 9.07) elevated risk of having below-reference sperm count than men with low Br-THMs and TCAA levels (below the median). No apparent joint effects were observed between THMs and TCAA for other semen quality parameters. Our results suggest that co-exposure to Br-THMs and TCAA is associated with additive effects on decreased semen quality. However, further studies in a larger sample size and mechanistic studies are needed to confirm the findings. PMID:26975004

  20. Peracetic acid oxidation of saline waters in the absence and presence of H ₂O ₂: secondary oxidant and disinfection byproduct formation.

    PubMed

    Shah, Amisha D; Liu, Zheng-Qian; Salhi, Elisabeth; Höfer, Thomas; von Gunten, Urs

    2015-02-01

    Peracetic acid (PAA) is a disinfectant considered for use in ballast water treatment, but its chemical behavior in such systems (i.e., saline waters) is largely unknown. In this study, the reactivity of PAA with halide ions (chloride and bromide) to form secondary oxidants (HOCl, HOBr) was investigated. For the PAA-chloride and PAA-bromide reactions, second-order rate constants of (1.47 ± 0.58) × 10(-5) and 0.24 ± 0.02 M(-1) s(-1) were determined for the formation of HOCl or HOBr, respectively. Hydrogen peroxide (H2O2), which is always present in PAA solutions, reduced HOCl or HOBr to chloride or bromide, respectively. As a consequence, in PAA-treated solutions with [H2O2] > [PAA], the HOBr (HOCl) steady-state concentrations were low with a limited formation of brominated (chlorinated) disinfection byproducts (DBPs). HOI (formed from the PAA-iodide reaction) affected this process because it can react with H2O2 back to iodide. H2O2 is thus consumed in a catalytic cycle and leads to less efficient HOBr scavenging at even low iodide concentrations (<1 μM). In PAA-treated solutions with [H2O2] < [PAA] and high bromide levels, mostly brominated DBPs are formed. In synthetic water, bromate was formed from the oxidation of bromide. In natural brackish waters, bromoform (CHBr3), bromoacetic acid (MBAA), dibromoacetic acid (DBAA), and tribromoacetic acid (TBAA) formed at up to 260, 106, 230, and 89 μg/L, respectively for doses of 2 mM (ca. 150 mg/L) PAA and [H2O2] < [PAA]. The same brackish waters, treated with PAA with [H2O2] ≫ [PAA], similar to conditions found in commercial PAA solutions, resulted in no trihalomethanes and only low haloacetic acid concentrations. PMID:25611970

  1. NAME modelling activities for the CAST-CONTRAST-ATTREX VSLS measurements

    NASA Astrophysics Data System (ADS)

    Filus, Michal; Harris, Neil; Pyle, John; Ashfold, Matt; Atlas, Eliott; Navarro, Maria; Meneguz, Elena; Manning, Alistair

    2015-04-01

    The Numerical Atmospheric dispersion Modeling Environment (NAME) model is used to assess the spatial and temporal variability of transport of very short-lived halogenated organic species (VSLS), in particular bromoform, dibromomethane and methyl iodide, within the West Pacific tropical region. The NAME modelling results are compared with airborne measurements of VSLS taken during NASA ATTREX, NCAR CONTRAST and NERC CAST campaigns in January-March, 2014. NAME model aims to link the aircraft measurements to examine the vertical distribution of VSLS in the West Pacific troposphere. The major focus will be on assessing vertical transport in deep convection which is one of the crucial factors in redistributing chemicals within the tropical troposphere. The work presented shows the analysis of NAME runs made from the ATTREX flights over the East Pacific in January-February, 2013 and the ATTREX and CONTRAST flight tracks over the West Pacific in January-March, 2014. Each ATTREX 2013 and 2014 flight track is divided into segments, from which particles are released and followed backward to identify the low-level sources of air. Particles (15,000 per single point along the flight track) are released from the flight altitudes tracks and followed 12-days backwards. Fractions of trajectories are calculated according to particles which crossed below 5 and 1 km (corresponding to low troposphere and oceanic boundary layer, respectively). Then, initial concentrations for VSLS are assigned to particles which originated from below 5/1 km and final concentrations at flight altitudes are determined. NAME modeled results are compared with ATTREX VSLS flight measurements. Interannual variability of atmospheric transport of VSLS in the Tropics is studied by performing mock ATTREX-flight NAME runs for years: 2005-2014, with emphasis put on strong ENSO phase years.

  2. Vibrationally Driven Hydrogen Abstraction Reaction by Bromine Radical in Solution

    NASA Astrophysics Data System (ADS)

    Shin, Jae Yoon; Shalowski, Michael A.; Crim, F. Fleming

    2013-06-01

    Previously, we have shown that preparing reactants in specific vibrational states can affect the product state distribution and branching ratios in gas phase reactions. In the solution phase, however, no vibrational mediation study has been reported to date. In this work, we present our first attempt of vibrationally mediated bimolecular reaction in solution. Hydrogen abstraction from a solvent by a bromine radical can be a good candidate to test the effect of vibrational excitation on reaction dynamics because this reaction is highly endothermic and thus we can suppress any thermally initiated reaction in our experiment. Br radical quickly forms CT (charge transfer) complex with solvent molecule once it is generated from photolysis of a bromine source. The CT complex strongly absorbs visible light, which allows us to use electronic transient absorption for tracking Br radical population. For this experiment, we photolyze bromoform solution in dimethyl sulfoxide (DMSO) solvent with 267 nm to generate Br radical and excite the C-H stretch overtone of DMSO with 1700 nm a few hundred femtoseconds after the photolysis. Then, we monitor the population of Br-DMSO complex with 400 nm as a function of delay time between two pump beams and probe beam. As a preliminary result, we observed the enhancement of loss of Br-DMSO complex population due to the vibrational excitation. We think that increased loss of Br-DMSO complex is attributed to more loss of Br radical that abstracts hydrogen from DMSO and it is the vibrational excitation that promotes the reaction. To make a clear conclusion, we will next utilize infrared probing to directly detect HBr product formation.

  3. Influence of physical activity in the intake of trihalomethanes in indoor swimming pools.

    PubMed

    Marco, Esther; Lourencetti, Carolina; Grimalt, Joan O; Gari, Mercè; Fernández, Pilar; Font-Ribera, Laia; Villanueva, Cristina M; Kogevinas, Manolis

    2015-07-01

    This study describes the relationship between physical activity and intake of trihalomethanes (THMs), namely chloroform (CHCl3), bromodichloromethane (CHCl2Br), dibromochloromethane (CHClBr2) and bromoform (CHBr3), in individuals exposed in two indoor swimming pools which used different disinfection agents, chlorine (Cl-SP) and bromine (Br-SP). CHCl3 and CHBr3 were the dominant compounds in air and water of the Cl-SP and Br-SP, respectively. Physical exercise was assessed from distance swum and energy expenditure. The changes in exhaled breath concentrations of these compounds were measured from the differences after and before physical activity. A clear dependence between distance swum or energy expenditure and exhaled breath THM concentrations was observed. The statistically significant relationships involved higher THM concentrations at higher distances swum. However, air concentration was the major factor determining the CHCl3 and CHCl2Br intake in swimmers whereas distance swum was the main factor for CHBr3 intake. These two causes of THM incorporation into swimmers concurrently intensify the concentrations of these compounds into exhaled breath and pointed to inhalation as primary mechanism for THM uptake. Furthermore, the rates of THM incorporation were proportionally higher as higher was the degree of bromination of the THM species. This trend suggested that air-water partition mechanisms in the pulmonary system determined higher retention of the THM compounds with lower Henry's Law volatility constants than those of higher constant values. Inhalation is therefore the primary mechanisms for THM exposure of swimmers in indoor buildings. PMID:25885117

  4. Formation of Bromate and Halogenated Disinfection Byproducts during Chlorination of Bromide-Containing Waters in the Presence of Dissolved Organic Matter and CuO.

    PubMed

    Liu, Chao; Croué, Jean-Philippe

    2016-01-01

    Previous studies showed that significant bromate (BrO3(-)) can be formed via the CuO-catalyzed disproportionation of hypobromous acid (HOBr) pathway. In this study, the influence of CuO on the formation of BrO3(-) and halogenated disinfection byproducts (DBPs) (e.g., trihalomethanes, THMs and haloacetic acids, HAAs) during chlorination of six dissolved organic matter (DOM) isolates was investigated. Only in the presence of slow reacting DOM (from treated Colorado River water, i.e., CRW-BF-HPO), significant BrO3(-) formation is observed, which competes with bromination of DOM (i.e., THM and HAA formation). Reactions between HOBr and 12 model compounds in the presence of CuO indicates that CuO-catalyzed HOBr disproportionation is completely inhibited by fast reacting phenols, while it predominates in the presence of practically unreactive compounds (acetone, butanol, propionic, and butyric acids). In the presence of slow reacting di- and tricarboxylic acids (oxalic, malonic, succinic, and citric acids), BrO3(-) formation varies, depending on its competition with bromoform and dibromoacetic acid formation (i.e., bromination pathway). The latter pathway can be enhanced by CuO due to the activation of HOBr. Therefore, increasing CuO dose (0-0.2 g L(-1)) in a reaction system containing chlorine, bromide, and CRW-BF-HPO enhances the formation of BrO3(-), total THMs and HAAs. Factors including pH and initial reactant concentrations influence the DBP formation. These novel findings have implications for elevated DBP formation during transportation of chlorinated waters in copper-containing distribution systems. PMID:26630351

  5. Groundwater contamination by microbiological and chemical substances released from hospital wastewater: health risk assessment for drinking water consumers.

    PubMed

    Emmanuel, Evens; Pierre, Marie Gisèle; Perrodin, Yves

    2009-05-01

    Contamination of natural aquatic ecosystems by hospital wastewater is a major environmental and human health issue. Disinfectants, pharmaceuticals, radionuclides and solvents are widely used in hospitals for medical purposes and research. After application, some of these substances combine with hospital effluents and, in industrialised countries, reach the municipal sewer network. In certain developing countries, hospitals usually discharge their wastewater into septic tanks equipped with diffusion wells. The discharge of chemical compounds from hospital activities into the natural environment can lead to the pollution of water resources and risks for human health. The aim of this article is to present: (i) the steps of a procedure intended to evaluate risks to human health linked to hospital effluents discharged into a septic tank equipped with a diffusion well; and (ii) the results of its application on the effluents of a hospital in Port-au-Prince. The procedure is based on a scenario that describes the discharge of hospital effluents, via septic tanks, into a karstic formation where water resources are used for human consumption. COD, Chloroform, dichlomethane, dibromochloromethane, dichlorobromomethane and bromoform contents were measured. Furthermore, the presence of heavy metals (chrome, nickel and lead) and faecal coliforms were studied. Maximum concentrations were 700 NPP/100 ml for faecal coliforms and 112 mg/L for COD. A risk of infection of 10(-5) infection per year was calculated. Major chemical risks, particularly for children, relating to Pb(II), Cr(III), Cr(VI) and Ni(II) contained in the ground water were also characterised. Certain aspects of the scenario studied require improvement, especially those relating to the characterisation of drugs in groundwater and the detection of other microbiological indicators such as protozoa, enterococcus and viruses. PMID:19269687

  6. Chlorination by-product concentration levels in seawater and fish of an industrialised bay (Gulf of Fos, France) exposed to multiple chlorinated effluents.

    PubMed

    Boudjellaba, D; Dron, J; Revenko, G; Démelas, C; Boudenne, J-L

    2016-01-15

    Chlorination is one of the most widely used techniques for biofouling control in large industrial units, leading to the formation of halogenated chlorination by-products (CBPs). This study was carried out to evaluate the distribution and the dispersion of these compounds within an industrialised bay hosting multiple chlorination discharges issued from various industrial processes. The water column was sampled at the surface and at 7 m depth (or bottom) in 24 stations for the analysis of CBPs, and muscle samples from 15 conger eel (Conger conger) were also investigated. Temperature and salinity profiles supported the identification of the chlorination releases, with potentially complex patterns. Chemical analyses showed that bromoform was the most abundant CBP, ranging from 0.5 to 2.2 μg L(-1) away from outlets (up to 10 km distance), and up to 18.6 μg L(-1) in a liquefied natural gas (LNG) regasification plume. However, CBP distributions were not homogeneous, halophenols being prominent in a power station outlet and dibromoacetonitrile in more remote stations. A seasonal effect was identified as fewer stations revealed CBPs in summer, probably due to the air and water temperatures increases favouring volatilisation and reactivity. A simple risk assessment of the 11 identified CBPs showed that 7 compounds concentrations were above the potential risk levels to the local marine environment. Finally, conger eel muscles presented relatively high levels of 2,4,6-tribromophenol, traducing a generalised impregnation of the Gulf of Fos to CBPs and a global bioconcentration factor of 25 was determined for this compound. PMID:26410714

  7. Trihalomethanes in Lisbon indoor swimming pools: occurrence, determining factors, and health risk classification.

    PubMed

    Silva, Zelinda Isabel; Rebelo, Maria Helena; Silva, Manuela Manso; Alves, Ana Martins; Cabral, Maria da Conceição; Almeida, Ana Cristina; Aguiar, Fátima Rôxo; de Oliveira, Anabela Lopes; Nogueira, Ana Cruz; Pinhal, Hermínia Rodrigues; Aguiar, Pedro Manuel; Cardoso, Ana Sofia

    2012-01-01

    Characterization of water quality from indoor swimming pools, using chorine-based disinfection techniques, was performed during a 6-mo period to study the occurrence, distribution, and concentration factors of trihalomethanes (THM). Several parameters such as levels of water THM, water and air chloroform, water bromodichloromethane (BDCM), water dibromochloromethane (DBCM), water bromoform (BF), free residual chlorine (FrCl), pH, water and air temperature, and permanganate water oxidizability (PWO) were determined in each pool during that period. Chloroform (CF(W)) was the THM detected at higher concentrations in all pools, followed by BDCM, DBCM, and BF detected at 99, 34, and 6% of the samples, respectively. Water THM concentrations ranged from 10.1 to 155 μg/L, with 6.5% of the samples presenting values above 100 μg/L (parametric value established in Portuguese law DL 306/2007). In this study, air chloroform (CF(Air)) concentrations ranged from 45 to 373 μg/m³ with 24% of the samples presenting values above 136 μg/m³ (considered high exposure value). Several significant correlations were observed between total THM and other parameters, namely, CF(W), CF(Air), FrCl, water temperature (T(W)), and PWO. These correlations indicate that FrCl, T(W) and PWO are parameters that influence THM formation. The exposure criterion established for water THM enabled the inclusion of 67% of Lisbon pools in the high exposure group, which reinforces the need for an improvement in pool water quality. PMID:22788374

  8. Direct detection of pyridine formation by the reaction of CH (CD) with pyrrole: a ring expansion reaction

    SciTech Connect

    Soorkia, Satchin; Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.; Trevitt, Adam J.; Wilson, Kevin R.; Leone, Stephen R.

    2010-03-16

    The reaction of the ground state methylidyne radical CH (X2Pi) with pyrrole (C4H5N) has been studied in a slow flow tube reactor using Multiplexed Photoionization Mass Spectrometry coupled to quasi-continuous tunable VUV synchrotron radiation at room temperature (295 K) and 90 oC (363 K), at 4 Torr (533 Pa). Laser photolysis of bromoform (CHBr3) at 248 nm (KrF excimer laser) is used to produce CH radicals that are free to react with pyrrole molecules in the gaseous mixture. A signal at m/z = 79 (C5H5N) is identified as the product of the reaction and resolved from 79Br atoms, and the result is consistent with CH addition to pyrrole followed by Helimination. The Photoionization Efficiency curve unambiguously identifies m/z = 79 as pyridine. With deuterated methylidyne radicals (CD), the product mass peak is shifted by +1 mass unit, consistent with the formation of C5H4DN and identified as deuterated pyridine (dpyridine). Within detection limits, there is no evidence that the addition intermediate complex undergoes hydrogen scrambling. The results are consistent with a reaction mechanism that proceeds via the direct CH (CD) cycloaddition or insertion into the five-member pyrrole ring, giving rise to ring expansion, followed by H atom elimination from the nitrogen atom in the intermediate to form the resonance stabilized pyridine (d-pyridine) molecule. Implications to interstellar chemistry and planetary atmospheres, in particular Titan, as well as in gas-phase combustion processes, are discussed.

  9. Characterization of HOCl using atmospheric pressure ionization mass spectrometry

    SciTech Connect

    Caldwell, T.E.; Foster, K.L.; Benter, T.; Langer, S.; Hemminger, J.C.; Finlayson-Pitts, B.J.

    1999-10-14

    HOCl is an important intermediate in stratospheric and tropospheric chemistry. Although it can be readily measured in laboratory systems at low pressures ({le}20 Torr) using conventional electron impact ionization mass spectrometry, there is a need for a measurement technique that can operate at higher pressures, up to 1 atm in air. One such technique seeing increasing use is atmospheric pressure ionization mass spectrometry (API-MS). The authors report here studies of the API-MS of {approximately}0.5--50 ppm HOCl at a total pressure of 1 atm and room temperature. Major peaks from the ion-adducts with Cl{sup {minus}} and OCI{sup {minus}} were observed. The Br{sup {minus}} adduct of HOCl can also be generated using bromoform in the discharge region of the ion source. At the lower range of HOCl concentrations studied in air, the O{sub 2}{sup {minus}} adduct and small parent peaks assigned to HOCl{sup {minus}} were observed. The species present as minor impurities in the HOCl source (Cl{sub 2}, Cl{sub 2}O and HCl) can be readily distinguished through identification of the parent ion for Cl{sub 2}, or as their adducts with Cl{sup {minus}} and Br{sup {minus}} for Cl{sub 2}O and HCI. The identification of HOCl was confirmed using electron impact ionization time-of-flight mass spectrometry (El-MS). HOCl was quantified using EI-MS to measure the Cl{sub 2} generated when the HOCl reacted heterogeneously on a water-ice/HCl surface and independently by photolysis of the HOCl to generate atomic chlorine, which was trapped using propene and measured as chloroacetone. The implications for the use of API-MS for measuring HOCl in laboratory systems and in ambient air are discussed.

  10. What’s in the Pool? A Comprehensive Identification of Disinfection By-products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water

    PubMed Central

    Richardson, Susan D.; DeMarini, David M.; Kogevinas, Manolis; Fernandez, Pilar; Marco, Esther; Lourencetti, Carolina; Ballesté, Clara; Heederik, Dick; Meliefste, Kees; McKague, A. Bruce; Marcos, Ricard; Font-Ribera, Laia; Grimalt, Joan O.; Villanueva, Cristina M.

    2010-01-01

    Background Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in the water and related that to mutagenicity. Objectives We performed a comprehensive identification of DBPs and disinfectant species in waters from public swimming pools in Barcelona, Catalonia, Spain, that disinfect with either chlorine or bromine and we determined the mutagenicity of the waters to compare with the analytical results. Methods We used gas chromatography/mass spectrometry (GC/MS) to measure trihalomethanes in water, GC with electron capture detection for air, low- and high-resolution GC/MS to comprehensively identify DBPs, photometry to measure disinfectant species (free chlorine, monochloroamine, dichloramine, and trichloramine) in the waters, and an ion chromatography method to measure trichloramine in air. We assessed mutagenicity with the Salmonella mutagenicity assay. Results We identified > 100 DBPs, including many nitrogen-containing DBPs that were likely formed from nitrogen-containing precursors from human inputs, such as urine, sweat, and skin cells. Many DBPs were new and have not been reported previously in either swimming pool or drinking waters. Bromoform levels were greater in brominated than in chlorinated pool waters, but we also identified many brominated DBPs in the chlorinated waters. The pool waters were mutagenic at levels similar to that of drinking water (~ 1,200 revertants/L-equivalents in strain TA100–S9 mix). Conclusions This study identified many new DBPs not identified previously in swimming pool or drinking water and found that swimming pool waters are as mutagenic as typical drinking waters. PMID:20833605

  11. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control.

    PubMed

    Chiang, Hung-Lung; Lin, Kuo-Hsiung

    2014-01-15

    The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H2, CH4, CO2, and NOx, were 60-115, 0.4-4.0, 1.1-10, 30-95, and 0-0.7mg/g, corresponding to temperatures ranging from 200 to 500°C. When the pyrolysis temperature was lower than 300°C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400°C. When VOC exhaust was flowed through the bed of Fe-impregnated Al2O3, the emission of ozone precursor VOCs could be reduced by 70-80%. PMID:24239260

  12. Formation and chemical reactivity of carbon fibers prepared by defluorination of graphite fluoride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1994-01-01

    Defluorination of graphite fluoride (CFX) by heating to temperatures of 250 to 450 C in chemically reactive environments was studied. This is a new and possibly inexpensive process to produce new carbon-based materials. For example, CF 0.68 fibers, made from P-100 carbon fibers, can be defluorinated in BrH2C-CH = CH-CH2Br (1,4-dibromo-2butene) heated to 370 C, and graphitized to produce fibers with an unusually high modulus and a graphite layer structure that is healed and cross-linked. Conversely, a sulfur-doped, visibly soft carbon fiber was produced by defluorinating CF 0.9 fibers, made from P-25, in sulfur (S) vapor at 370 C and then heating to 660 C in nitrogen (N2). Furthermore, defluorination of the CF 0.68 fibers in bromine (Br2) produced fragile, structurally damaged carbon fibers. Heating these fragile fibers to 1100 C in N2 caused further structural damage, whereas heating to 150 C in bromoform (CHBr3) and then to 1100 C in N2 healed the structural defects. The defluorination product of CFX, tentatively called activated graphite, has the composition and molecular structure of graphite, but is chemically more reactive. Activated graphite is a scavenger of manganese (Mn), and can be intercalated with magnesium (Mg). Also, it can easily collect large amounts of an alloy made from copper (Cu) and type 304 stainless steel to form a composite. Finally, there are indications that activated graphite can wet metals or ceramics, thereby forming stronger composites with them than the pristine carbon fibers can form.

  13. Ozonation of iodide-containing waters: selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs.

    PubMed

    Allard, S; Nottle, C E; Chan, A; Joll, C; von Gunten, U

    2013-04-15

    The presence of iodinated disinfection by-products (I-DBPs) in drinking water poses a potential health concern since it has been shown that I-DBPs are generally more genotoxic and cytotoxic than their chlorinated and brominated analogs. I-DBPs are formed during oxidation/disinfection of iodide-containing waters by reaction of the transient hypoiodous acid (HOI) with natural organic matter (NOM). In this study, we demonstrate that ozone pre-treatment selectively oxidizes iodide to iodate and avoids the formation of I-DBPs. Iodate is non-toxic and is therefore a desired sink of iodine in drinking water. Complete conversion of iodide to iodate while minimizing the bromate formation to below the guideline value of 10 μg L⁻¹ was achieved for a wide range of ozone doses in five raw waters with DOC and bromide concentrations of 1.1-20 mg L⁻¹ and 170-940 μg L⁻¹, respectively. Lowering the pH effectively further reduced bromate formation but had no impact on the extent of iodate and bromoform formation (the main trihalomethane (THM) formed during ozonation). Experiments carried out with pre-chlorinated/post-clarified samples already containing I-DBPs, showed that ozonation effectively oxidized I-THMs. Therefore, in iodide-containing waters, in which I-DBPs can be produced upon chlorination or especially chloramination, a pre-ozonation step to oxidize iodide to iodate is an efficient process to mitigate I-DBP formation. PMID:23351431

  14. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii.

    PubMed

    Yang, Mengting; Zhang, Xiangru

    2013-10-01

    Using seawater for toilet flushing may introduce high levels of bromide and iodide into a city's sewage treatment works, and result in the formation of brominated and iodinated disinfection byproducts (DBPs) during chlorination to disinfect sewage effluents. In a previous study, the authors' group has detected the presence of many brominated DBPs and identified five new aromatic brominated DBPs in chlorinated saline sewage effluents. The presence of brominated DBPs in chlorinated saline effluents may pose adverse implications for marine ecology. In this study, besides the detection and identification of another seven new aromatic halogenated DBPs in a chlorinated saline sewage effluent, their developmental toxicity was evaluated using the marine polychaete Platynereis dumerilii. For comparison, the developmental toxicity of some commonly known halogenated DBPs was also examined. The rank order of the developmental toxicity of 20 halogenated DBPs was 2,5-dibromohydroquinone > 2,6-diiodo-4-nitrophenol ≥ 2,4,6-triiodophenol > 4-bromo-2-chlorophenol ≥ 4-bromophenol > 2,4-dibromophenol ≥ 2,6-dibromo-4-nitrophenol > 2-bromo-4-chlorophenol > 2,6-dichloro-4-nitrophenol > 2,4-dichlorophenol > 2,4,6-tribromophenol > 3,5-dibromo-4-hydroxybenzaldehyde > bromoform ≥ 2,4,6-trichlorophenol > 2,6-dibromophenol > 2,6-dichlorophenol > iodoacetic acid ≥ tribromoacetic acid > bromoacetic acid > chloroacetic acid. On the basis of developmental toxicity data, a quantitative structure-activity relationship (QSAR) was established. The QSAR involved two physical-chemical property descriptors (log P and pKa) and two electronic descriptors (the lowest unoccupied molecular orbital energy and the highest occupied molecular orbital energy) to indicate the transport, biouptake, and biointeraction of these DBPs. It can well predict the developmental toxicity of most of the DBPs tested. PMID:24024886

  15. Identifying emission source regions and transport pathways of very short-lived halogens over the Western Pacific

    NASA Astrophysics Data System (ADS)

    Butler, Robyn; Palmer, Paul; Feng, Liang; Harris, Neil; Carpenter, Lucy; Andrews, Steve; Atlas, Elliot; Salawitch, Ross; Pan, Laura; Donets, Valeria; Schauffler, Sue

    2016-04-01

    Deep, tropical convective systems lead to the rapid transport of very short-lived halogenated substances (VSLS) to the tropical tropopause layer (TTL). They are then subsequently transported to the lower stratosphere and chemically broken down to release the constituent halogens that catalytically destroy ozone. Although the oceans are known to represent the largest VSLS source, the relative contribution of geographical regions through emission and transport is poorly understood. We present a study on the origin and variability of VSLS over the Western Pacific using data collected during the CAST and CONTRAST measurement campaigns, January/February 2014. We have developed a version of the GEOS-Chem atmospheric chemistry transport model that tags emissions of bromoform (CHBr3) and dibromomethane (CH2Br2) from different geographical regions. We focus the source regions on land and (coastal and open) oceanic emissions. We have also developed a similar tagged method to calculate the physical age of air parcels from these source regions to quantify the speed of vertical transport. Using this approach we have quantified relative contributions of source regions and show that open oceanic emission regions are the dominant source of VSLS gases during the measurement campaigns. By looking at variability over the region, we see that this is caused by direct convection of marine emissions over the open ocean leading to increased contribution to CHBr3 and CH2Br2 mixing ratios from this source region. Open oceanic emissions are transported to the TTL within the average atmospheric lifetime of CHBr3, the shorter lived species, whereas emissions from coastal ocean and land source regions have an older physical age at the TTL. The relative contribution from island land masses in the campaign region have no impact over the vertical profile but does impact local mixing ratios.

  16. Airborne measurements of tropospheric ozone destruction and particulate bromide formation in the Arctic

    NASA Technical Reports Server (NTRS)

    Schnell, Russell C.; Sheridan, Patrick J.; Peterson, Richard E.; Oltmans, S. J.

    1988-01-01

    Aircraft profiles of O3 concentrations over the Arctic ice pack in spring exhibit a depletion of O3 beneath the surface temperature inversion. One such profile from the NOAA WP-3D Arctic Gas and Aerosol Sampling Program (AGASP) flights in April, 1986 north of Alert, NWT (YLT, 82.5 N) is shown. The gradient of O3 across the temperature inversion, which is essentially a step function from tropospheric values (35 to 40 ppbv) to 0, is somewhat masked by a 1-min running mean applied to the data. Evidence is presented that O3 destruction beneath the Arctic temperature inversion is the result of a photochemical reaction between gaseous Br compounds and O3 to produce particulate Br aerosol. It is noted that in springtime, O3 at the Alert Baseline Station regularly decreases from 30 to 40 ppbv to near 0 over the period of a few hours to a day. At the same time, there is a production of particulate Br with a near 1.0 anti-correlation to O3 concentration. Surface concentrations of bromoform in the Arctic exhibit a rapid decrease following polar sunrise. AGASP aircraft measurements of filterable bromine particulates in the Arctic (March-April, 1983 and 1986) are shown. The greatest concentrations of Br aerosol (shown as enrichment factors relative to to Na in seawater, EFBR (Na)) were observed in samples collected beneath the surface temperature inversion over ice. Samples collected at the same altitude over open ocean (off Spitzbergen) labeled Marine did not exhibit similar Br enrichments. A second region of particulate Br enrichment was observed in the lower stratosphere, which regularly descends to below 500 mb (5.5 km) in the high Arctic. The NOAA WP-3D flew in the stratosphere on all AGASP flights and occasionally measured O3 concentrations in excess of 300 ppbv.

  17. Modelling future changes to the stratospheric source gas injection of biogenic bromocarbons

    NASA Astrophysics Data System (ADS)

    Hossaini, R.; Chipperfield, M.; Dhomse, S.; Ordoñez, C.; Saiz-Lopez, A.; Abraham, L.; Archibald, A. T.; Braesicke, P.; Warwick, N.; Yang, X.; Pyle, J. A.

    2012-12-01

    The importance of active bromine radicals (Brx = Br + BrO) in the catalytic destruction of ozone (O3) is fairly well established. In recent years it has become clear that biogenic gases such as bromoform (CHBr3) and dibromomethane (CH2Br2) are a significant source of bromine (Br) in the tropical marine boundary layer. Emissions of these so-called very short-lived species (VSLS) are poorly constrained and observations are relatively sparse. Furthermore, there remains significant uncertainty regarding their transport to, and through, the tropical tropopause layer (TTL). Their contribution to stratospheric inorganic bromine (Bry) is still under debate with a best estimate in the region of ~3-8 parts per trillion. As long-lived brominated source gases (e.g. halons, methyl bromide) are phased out under the terms of the Montreal Protocol, the relative importance of VSLS will increase. Here we present results from global model simulations using the TOMCAT/SLIMCAT chemical transport model (CTM) and also the UKCA chemistry-climate model (CCM). The CTM has been used to study the present day tropospheric transport and chemistry of VSLS and to quantify the relative importance of the source gas injection (SGI) and product gas injection (PGI) pathways. CCM simulations have been performed in order to diagnose how the stratospheric SGI of VSLS may respond to climate change under two Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCPs, 4.5 and 8.5). Our results show a significant increase in the stratospheric SGI of VSLS by 2100, particularly under RCP 8.5 - a high greenhouse gas scenario. The competing chemical and dynamical processes responsible are discussed.

  18. Optical properties of flyash. Quarterly report, 1 April--30 June 1989

    SciTech Connect

    Self, S.A.

    1989-07-01

    The purpose of this task is to validate the whole approach adopted in this program. Specifically, this bench-scale experiment is intended to compare the measured optical/radiative properties of a dispersion of well characterized ash with those calculated on the basis of the known size/composition distribution using the correlation formulae relating the composition and complex refractive index resulting from measurements on bulk samples of synthetic slag. Considerable thought has been given to the various possible approaches to satisfying the objectives of this task. Several experiments were done to guide our design of an apparatus for measuring the scattering and absorption properties of dispersions of flyash. As a result of these experiments, and from extensive prior experience in connection with research on electrostatic precipitation, it has been determined that there is no satisfactory way to satisfy the aims of this task using a gaseous dispersion of flyash because it is not possible to adequately disperse and deagglomerate flyash into a gas stream. Unless the ash is adequately dispersed, as it exists in the radiant boiler of a pulverized coal-fired combustion system, one cannot expect calculations, based on Mie calculations for a dispersion of spheres to properly agree with laboratory measurements. For these reasons, our design efforts are based on making measurements on a dispersion of flyash in liquid, for which our experience shows we can obtain stable, well-deagglomerated dispersions of ash. Because there is not single liquid which is adequately transparent over the wavelength range 1--12 {mu}m, we plan to use a combination of three liquids, C Cl{sub 4}, C S{sub 2} and bromoform to cover the full range. Windows of BaF{sub 2} will be used to contain the liquid suspension in an absorption/scattering cell.

  19. Optical properties of flyash

    SciTech Connect

    Self, S.A.

    1989-07-01

    The purpose of this task is to validate the whole approach adopted in this program. Specifically, this bench-scale experiment is intended to compare the measured optical/radiative properties of a dispersion of well characterized ash with those calculated on the basis of the known size/composition distribution using the correlation formulae relating the composition and complex refractive index resulting from measurements on bulk samples of synthetic slag. Considerable thought has been given to the various possible approaches to satisfying the objectives of this task. Several experiments were done to guide our design of an apparatus for measuring the scattering and absorption properties of dispersions of flyash. As a result of these experiments, and from extensive prior experience in connection with research on electrostatic precipitation, it has been determined that there is no satisfactory way to satisfy the aims of this task using a gaseous dispersion of flyash because it is not possible to adequately disperse and deagglomerate flyash into a gas stream. Unless the ash is adequately dispersed, as it exists in the radiant boiler of a pulverized coal-fired combustion system, one cannot expect calculations, based on Mie calculations for a dispersion of spheres to properly agree with laboratory measurements. For these reasons, our design efforts are based on making measurements on a dispersion of flyash in liquid, for which our experience shows we can obtain stable, well-deagglomerated dispersions of ash. Because there is not single liquid which is adequately transparent over the wavelength range 1--12 {mu}m, we plan to use a combination of three liquids, C Cl{sub 4}, C S{sub 2} and bromoform to cover the full range. Windows of BaF{sub 2} will be used to contain the liquid suspension in an absorption/scattering cell.

  20. ICON-ART 1.0 - a new online-coupled model system from the global to regional scale

    NASA Astrophysics Data System (ADS)

    Rieger, D.; Bangert, M.; Bischoff-Gauss, I.; Förstner, J.; Lundgren, K.; Reinert, D.; Schröter, J.; Vogel, H.; Zängl, G.; Ruhnke, R.; Vogel, B.

    2015-01-01

    We present the first stage of a new online-coupled global to regional scale modelling framework for the simulation of the spatiotemporal evolution of aerosols and trace gases. The underlying meteorological model is the new nonhydrostatic model system ICON (ICOsahedral Nonhydrostatic) which allows a local grid refinement with two-way interactions between the grids. We develop the extension ART (Aerosol and Reactive Trace gases) with the goal to simulate interactions between trace substances and the state of the atmosphere. Within this paper, we present the basic equations and give an overview of the physical parameterizations as well as numerical methods we use. First applications of the new model system for trace gases, monodisperse particles and polydisperse particles are shown. The simulated distribution of two very short-lived substances, Bromoform (CHBr3) and Dibrommethane (CH2Br2) reflecting the fast upward transport shows a good agreement with observations and previous model studies. Also, the shape of the simulated tropical profiles is well reproduced. As an example for the treatment of monodisperse particles we present the simulated ash plume of the Eyjafjallajökull eruption in April 2010. Here, a novel approach for the source function is applied. The pattern of the simulated distribution of volcanic ash particles shows an agreement with previous studies. As an example for the treatment of a polydisperse aerosol, where number densities and mass concentrations are accounted for, we simulated the annual emissions of sea salt. We obtain a total emission flux of 26.0 Pg yr-1 and an emission flux of particles with diameter less than 10 μm of 7.36 Pg yr-1.

  1. ICON-ART 1.0 - a new online-coupled model system from the global to regional scale

    NASA Astrophysics Data System (ADS)

    Rieger, D.; Bangert, M.; Bischoff-Gauss, I.; Förstner, J.; Lundgren, K.; Reinert, D.; Schröter, J.; Vogel, H.; Zängl, G.; Ruhnke, R.; Vogel, B.

    2015-06-01

    We present the first stage of a new online-coupled global to regional-scale modeling framework for the simulation of the spatiotemporal evolution of aerosols and trace gases. The underlying meteorological model is the new nonhydrostatic model system ICON (ICOsahedral Nonhydrostatic) which allows a local grid refinement with two-way interactions between the grids. We develop the extension ART (Aerosol and Reactive Trace gases) with the goal of simulating interactions between trace substances and the state of the atmosphere. Within this paper, we present the basic equations and give an overview of the physical parameterizations as well as numerical methods we use. First applications of the new model system for trace gases, monodisperse particles and polydisperse particles are shown. The simulated distribution of two very short-lived substances (VSLS), bromoform (CHBr3) and dibromomethane (CH2Br2) reflecting the fast upward transport shows a good agreement with observations and previous model studies. Also, the shape of the simulated tropical profiles is well reproduced. As an example for the treatment of monodisperse particles we present the simulated ash plume of the Eyjafjallajökull eruption in April 2010. Here, a novel approach for the source function is applied. The pattern of the simulated distribution of volcanic ash particles shows a good agreement with previous studies. As an example for the treatment of a polydisperse aerosol, where number densities and mass concentrations are accounted for, we simulated the annual emissions of sea salt. We obtain a total emission flux of 26.0 Pg yr-1 and an emission flux of particles with diameter less than 10 μm of 7.36 Pg yr-1.

  2. The physiological and ecological roles of volatile halogen production by marine diatoms

    NASA Astrophysics Data System (ADS)

    Hughes, Claire; Sun, Shuo

    2015-04-01

    Sea-to-air halogen flux is known to have a major impact on catalytic ozone cycling and aerosol formation in the troposphere. The biological production of volatile organic (e.g. bromoform, diiodomethane) and reactive inorganic halogens (e.g. molecular iodine) is believed to play an important role in mediating halogen emissions from the marine environment. Marine diatoms in particular are known to produce the organic and inorganic volatile halogens at high rates in pelagic waters and sea-ice systems. The climate-induced changes in diatom communities that have already been observed and are expected to occur throughout the world's oceans as warming progresses are likely to alter sea-to-air halogen flux. However, we currently have insufficient understanding of the physiological and ecological functions of volatile halogen production to develop modelling tools that can predict the nature and magnitude of the impact. The results of a series of laboratory studies aimed at establishing the physiological and ecological role of volatile halogen production in two marine polar diatoms (Thalassiosira antarctica and Porosira glacialis) will be described in this presentation. We will focus on our work investigating how the activity of the haloperoxidases, a group of enzymes known to be involved in halogenation reactions in marine organisms, is altered by environmental conditions. This will involve exploring the antioxidative defence role proposed for marine haloperoxidases by showing specifically how halogenating activity varies with photosynthetic rate and changes in the ambient light conditions in the two model marine diatoms. We will also present results from our experiments designed to investigate how volatile halogen production is impacted by and influences diatom-bacterial interactions. We will discuss how improved mechanistic understanding like this could pave the way for future volatile halogen-ecosystem model development.

  3. A halocarbon survey from a seagrass dominated subtropical lagoon, Ria Formosa (Portugal): flux pattern and isotopic composition

    NASA Astrophysics Data System (ADS)

    Weinberg, I.; Bahlmann, E.; Eckhardt, T.; Michaelis, W.; Seifert, R.

    2014-07-01

    Here we report fluxes of chloromethane (CH3Cl), bromomethane (CH3Br), iodomethane (CH3Cl), and bromoform (CHBr3) from two sampling campaigns (summer and spring) in the seagrass dominated subtropical lagoon Ria Formosa, Portugal. Dynamic flux chamber measurements were performed when seagrass patches were air-exposed and submerged. Overall, we observed highly variable fluxes from the seagrass meadows and attributed them to diurnal cycles, tidal effects, and the variety of possible sources and sinks in the seagrass meadows. Highest emissions with up to 130 nmol m-2 h-1 for CH3Br were observed during tidal changes from air exposure to submergence and conversely. Furthermore, at least during the spring campaign, the emissions of halocarbons were significantly elevated during tidal inundation as compared to air exposure. Accompanying water sampling during both campaigns revealed elevated concentrations of CH3Cl and CH3Br indicating productive sources within the lagoon. Stable carbon isotopes of halocarbons from the air and water phase along with source signatures were used to allocate the distinctive sources and sinks in the lagoon. Results suggest CH3Cl rather originating from seagrass meadows and water column than from salt marshes. Aqueous and atmospheric CH3Br was substantially enriched in 13C in comparison to source signatures for seagrass meadows and salt marshes. This suggests a significant contribution of the water column to the atmospheric CH3Br in the lagoon. A rough global upscaling yields annual productions from seagrass meadows of 2.3-4.5 Gg yr-1, 0.5-1.0 Gg yr-1, 0.6-1.2 Gg yr-1, and 1.9-3.7 Gg yr-1 for CH3Cl, CH3Br, CH3I, and CHBr3 respectively. This suggests a minor contribution from seagrass meadows to the global production of these halocarbons with about 0.1% for CH3Cl and about 0.7% for CH3Br.

  4. Occurrence of trihalomethanes in the nation's ground water and drinking-water supply wells, 1985-2002

    USGS Publications Warehouse

    Schaap, Bryan D.; Zogorski, John S.

    2006-01-01

    This report describes the occurrence of trihalomethanes (THMs) in the Nation's ground water and drinking-water supply wells based on analysis of 5,642 samples of untreated ground water and source water collected or compiled during 1985-2002 by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. THMs are a group of volatile organic compounds (VOCs) with natural and anthropogenic sources that are of interest because they are associated with acute and chronic health problems in humans. THMs occur in water primarily from chlorination and are classified as disinfection by-products. In this report, the four THMs are discussed in the order of chloroform, bromodichloromethane, dibromochloromethane, and then bromoform; this sequence corresponds to largest to smallest chlorine content and smallest to largest bromine content. Four trihalomethanes were detected in less than 20 percent of samples from studies of (1) aquifers, (2) shallow ground water in agricultural areas, (3) shallow ground water in urban areas, (4) domestic wells, and (5) public wells. Detection frequencies for individual THMs in the five studies ranged from zero for shallow ground water in agricultural areas to 19.5 percent for shallow ground water in urban areas. None of the samples from aquifer studies, domestic wells, or public wells had total THM concentrations (the sum of the concentrations of chloroform, bromodichloromethane, dibromochloromethane, and bromoform) greater than or equal to the U.S. Environmental Protection Agency Maximum Contaminant Level of 80 micrograms per liter (?g/L). Comparisons of results among studies of aquifers, shallow ground water in agricultural areas, and shallow ground water in urban areas were used to describe the occurrence of the four THMs in ground water for three different land-use settings-mixed, agricultural, and urban, respectively. At the 0.2-?g/L assessment level, one or more of the four THMs were detected in 7.9 percent of the samples

  5. Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide.

    PubMed

    Richardson, Susan D; Thruston, Alfred D; Rav-Acha, Chaim; Groisman, Ludmila; Popilevsky, Inna; Juraev, Olga; Glezer, Victor; McKague, A Bruce; Plewa, Michael J; Wagner, Elizabeth D

    2003-09-01

    Using gas chromatography/mass spectrometry (GC/MS), we investigated the formation of disinfection byproducts (DBPs) from high bromide waters (2 mg/L) treated with chlorine or chlorine dioxide used in combination with chlorine and chloramines. This study represents the first comprehensive investigation of DBPs formed by chlorine dioxide under high bromide conditions. Drinking water from full-scale treatment plants in Israel was studied, along with source water (Sea of Galilee) treated under carefully controlled laboratory conditions. Select DBPs (trihalomethanes, haloacetic acids, aldehydes, chlorite, chlorate, and bromate) were quantified. Many of the DBPs identified have not been previously reported, and several of the identifications were confirmed through the analysis of authentic standards. Elevated bromide levels in the source water caused a significant shift in speciation to bromine-containing DBPs; bromoform and dibromoacetic acid were the dominant DBPs observed, with very few chlorine-containing compounds found. Iodo-trihalomethanes were also identified, as well as a number of new brominated carboxylic acids and 2,3,5-tribromopyrrole, which represents the first time a halogenated pyrrole has been reported as a DBP. Most of the bromine-containing DBPs were formed during pre-chlorination at the initial reservoir, and were not formed by chlorine dioxide itself. An exception wasthe iodo-THMs, which appeared to be formed by a combination of chlorine dioxide with chloramines or chlorine (either added deliberately or as an impurity in the chlorine dioxide). A separate laboratory study was also conducted to quantitatively determine the contribution of fulvic acids and humic acids (from isolated natural organic matter in the Sea of Galilee) as precursor material to several of the DBPs identified. Results showed that fulvic acid plays a greater role in the formation of THMs, haloacetic acids, and aldehydes, but 2,3,5-tribromopyrrole was produced primarily from humic

  6. Modelling marine emissions and atmospheric distributions of halocarbons and dimethyl sulfide: the influence of prescribed water concentration vs. prescribed emissions

    NASA Astrophysics Data System (ADS)

    Lennartz, S. T.; Krysztofiak, G.; Marandino, C. A.; Sinnhuber, B.-M.; Tegtmeier, S.; Ziska, F.; Hossaini, R.; Krüger, K.; Montzka, S. A.; Atlas, E.; Oram, D. E.; Keber, T.; Bönisch, H.; Quack, B.

    2015-10-01

    Marine-produced short-lived trace gases such as dibromomethane (CH2Br2), bromoform (CHBr3), methyliodide (CH3I) and dimethyl sulfide (DMS) significantly impact tropospheric and stratospheric chemistry. Describing their marine emissions in atmospheric chemistry models as accurately as possible is necessary to quantify their impact on ozone depletion and Earth's radiative budget. So far, marine emissions of trace gases have mainly been prescribed from emission climatologies, thus lacking the interaction between the actual state of the atmosphere and the ocean. Here we present simulations with the chemistry climate model EMAC (ECHAM5/MESSy Atmospheric Chemistry) with online calculation of emissions based on surface water concentrations, in contrast to directly prescribed emissions. Considering the actual state of the model atmosphere results in a concentration gradient consistent with model real-time conditions at the ocean surface and in the atmosphere, which determine the direction and magnitude of the computed flux. This method has a number of conceptual and practical benefits, as the modelled emission can respond consistently to changes in sea surface temperature, surface wind speed, sea ice cover and especially atmospheric mixing ratio. This online calculation could enhance, dampen or even invert the fluxes (i.e. deposition instead of emissions) of very short-lived substances (VSLS). We show that differences between prescribing emissions and prescribing concentrations (-28 % for CH2Br2 to +11 % for CHBr3) result mainly from consideration of the actual, time-varying state of the atmosphere. The absolute magnitude of the differences depends mainly on the surface ocean saturation of each particular gas. Comparison to observations from aircraft, ships and ground stations reveals that computing the air-sea flux interactively leads in most of the cases to more accurate atmospheric mixing ratios in the model compared to the computation from prescribed emissions

  7. Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region

    NASA Astrophysics Data System (ADS)

    Dumanoglu, Yetkin; Kara, Melik; Altiok, Hasan; Odabasi, Mustafa; Elbir, Tolga; Bayram, Abdurrahman

    2014-12-01

    were also estimated. Estimated risks were the highest for 1,2-dichloroethane, followed by benzene, chloroform, and carbon tetrachloride. Carcinogenic risks for trichloroethene, 1,1,2-trichloroethane, and bromoform were lower than the general acceptable risk level of 1.0 × 10-6. However, risks for 1,2-dichloroethane, benzene, chloroform, and carbon tetrachloride were substantially higher than the acceptable level. It was concluded that carcinogenic risks may reach considerably high levels for a significant portion of the population living in the study area.

  8. Contamination of sediments and water of a wet dune slack (SW Portugal)

    NASA Astrophysics Data System (ADS)

    Conceição Freitas, Maria; Rosário Carvalho, Maria; Andrade, César; Cruces, Aanabela; Moreira, Sandra

    2015-04-01

    Lagoa da Sancha (LS), located in the Portuguese SW coast, is a small (0.12km2) wet dune slack with a shallow (<1m) open-water body, which occasionally dries out in summer. This environment is part of a Natural Reserve since 2000. It collects inputs from a 35km2 watershed essentially draining Cenozoic sandy materials. The main anthropogenic activities in the catchment area are related to agriculture and hog raising; however, an industrial waste disposal located proximal to LS, infilling an abandoned quarry, has been recently discovered. Field surveys have been conducted in March 2014 in order to collect sediment and water samples in LS as well as in the industrial waste disposal (TW3); riverine water and sediments and underground water have also been collected. Sedimentological (texture, pH, calcium carbonate and organic matter content) and geochemical (major elements, metals and organic compounds) analysis have been performed. Results show that riverine and groundwater have neutral pH and low to medium mineralization of NaCl to CaHCO3 types. The only metal found in high concentrations is iron, with a maximum value of 1200 ug/L. The texture and composition of alluvial sediments are compatible with the geologic background. LS bottom sediments areCaCO3-free organic muds, hyperacid and low organic; they present high contents of heavy metals, organic compounds (101 to 102 mg/kg) and S (2700 mg/kg). Also, the LS hydrosome presents pH values < 3, electric conductivity up to ≈ 8 mS/cm and very high concentrations of dissolved metals (iron attains 20000 ug/L and the heavy metals content is up to 3 orders of magnitude higher than in both the surface and groundwater). Dissolved hydrocarbon species (fraction C4-C10) reach 11 ug/L and bromoform 17 ug/L. Chemical analysis to TW3 revealed the presence of a large diversity of organic compounds in concentrations of up to 105 mg/kg. Hydrocarbon species and very high S content were only found in the soil and water of the waste

  9. Transport of NMHCs and halocarbons observed by CARIBIC: A case study

    NASA Astrophysics Data System (ADS)

    Baker, A. K.; Brenninkmeijer, C. A. M.; Oram, D. E.; O'Sullivan, D. A.; Schuck, T. J.; Slemr, F.

    2009-04-01

    The CARIBIC project (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) involves the monthly deployment of an instrument container equipped to make atmospheric measurements from onboard a long-range commercial airliner. Since December 2004, flights for the second phase of CARIBIC have been aboard a Lufthansa Airbus A340-600 traveling between Frankfurt, Germany and destinations in Asia, North America and South America. The instrument package housed in the container is fully automated and during each flight carries out a variety of real-time trace gas and aerosol measurements, and also collects 28 air samples, which are analyzed upon return to the laboratory. Routine measurements made from the sampling flasks include greenhouse gases, nonmethane hydrocarbons (NMHCs), and halocarbons; results of air sample analysis form the basis for the data discussed here. While the majority of CARIBIC samples represent background free tropospheric air and air representative of the upper troposphere/lower stratosphere, the aircraft also, less frequently, encounters air parcels influenced by more recent emissions. Here we present a case study of a round-trip flight between Frankfurt and Toronto, Canada during September 2007. During this flight, different air masses of unique origin were encountered; a number of samples were influenced by transport from the Gulf of Mexico, while others had source regions in Central and Southeast Asia. Samples from the Gulf of Mexico exhibited enhancements in C3-C6 alkanes, as well as a number of halogenated compounds with oceanic sources, such as methyl iodide and bromoform, while Asian samples had enhanced levels of combustion products (CO, acetylene, benzene) and anthropogenic halocarbons (methlyene chloride, chloroform, perchloroethylene). Additionally, a number of samples also showed stratospheric influence, and these samples were characterized by relatively depleted levels of many of the compounds

  10. Sea Level Rise Enhanced Halocarbon Production in Low-lying Coastal Ecosystem in the Southeastern US

    NASA Astrophysics Data System (ADS)

    Chow, A. T.; Conner, W.; Williams, T.; Song, B.

    2010-12-01

    Saltwater tides bring high concentrations of chloride and bromide inland where it mixes with terrestrial humic substances from surrounding forested watersheds and ferric/ferrous ions from shallow groundwater. With all the essential precursors (i.e., chloride, bromide, and humic substances) and catalysts (ferric/ferrous ions with sunlight), low-lying coastal ecosystems could be a hotspot for halocarbon formation. Fluctuating water levels and salinity due to the tidal cycle alter both redox reactions and water chemistry, influencing the formation and fate of halocarbons. A controlled study was conducted to confirm the abiotic formation of trihalomethanes (THMs) by the photo-Fenton reaction and the effects of the precursors on their formation. Four THM species, including chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl), and bromoform (CHBr3), were examined. Sets of aqueous solutions were prepared using filtered Waccamaw River samples and synthesized NaCl / NaBr, and Fe2(SO4)3 and H2O2 solutions. Solutions were enclosed in quartz tubes and exposed for 7 days to natural sunlight. Although total THM formation increased with DOC concentration, the reactivity of C in forming THM was relatively consistent across DOC concentrations, with an average of 2.6 nmol-THM mmol-C-1. The reactivity in forming THMs through the photo-Fenton reaction was significantly lower than that in chlorinated water. Reactivity generally ranged from 3-20 mmol-THM mol-C-1. The differences in reactivity suggested that greater yield of THMs could be produced under the right reaction condition. In particular, the study showed that bromide increases the reactivity of DOC in forming THMs and enhances the formation of brominated THMs. The bromine substitution factor in the NaCl treatment ranged from 19 to 24% but increased to 43 and 46% when NaBr was added. Results suggest that increased salinity and bromide concentration in saltwater-impacted coastal ecosystems could

  11. Halocarbon emissions and sources in the equatorial Atlantic Cold Tongue

    NASA Astrophysics Data System (ADS)

    Hepach, H.; Quack, B.; Raimund, S.; Fischer, T.; Atlas, E. L.; Bracher, A.

    2015-11-01

    Halocarbons from oceanic sources contribute to halogens in the troposphere, and can be transported into the stratosphere where they take part in ozone depletion. This paper presents distribution and sources in the equatorial Atlantic from June and July 2011 of the four compounds bromoform (CHBr3), dibromomethane (CH2Br2), methyl iodide (CH3I) and diiodomethane (CH2I2). Enhanced biological production during the Atlantic Cold Tongue (ACT) season, indicated by phytoplankton pigment concentrations, led to elevated concentrations of CHBr3 of up to 44.7 and up to 9.2 pmol L-1 for CH2Br2 in surface water, which is comparable to other tropical upwelling systems. While both compounds correlated very well with each other in the surface water, CH2Br2 was often more elevated in greater depth than CHBr3, which showed maxima in the vicinity of the deep chlorophyll maximum. The deeper maximum of CH2Br2 indicates an additional source in comparison to CHBr3 or a slower degradation of CH2Br2. Concentrations of CH3I of up to 12.8 pmol L-1 in the surface water were measured. In contrary to expectations of a predominantly photochemical source in the tropical ocean, its distribution was mostly in agreement with biological parameters, indicating a biological source. CH2I2 was very low in the near surface water with maximum concentrations of only 3.7 pmol L-1. CH2I2 showed distinct maxima in deeper waters similar to CH2Br2. For the first time, diapycnal fluxes of the four halocarbons from the upper thermocline into and out of the mixed layer were determined. These fluxes were low in comparison to the halocarbon sea-to-air fluxes. This indicates that despite the observed maximum concentrations at depth, production in the surface mixed layer is the main oceanic source for all four compounds and one of the main driving factors of their emissions into the atmosphere in the ACT-region. The calculated production rates of the compounds in the mixed layer are 34 ± 65 pmol m-3 h-1 for CHBr3, 10

  12. Exchange of VSLS in the marine boundary layer with the free troposphere during SHIVA-SONNE

    NASA Astrophysics Data System (ADS)

    Fuhlbrügge, Steffen; Quack, Birgit; Tegtmeier, Susann; Atlas, Elliot; Sala, Stephan; Boenisch, Harald; Hepach, Helmke; Raimund, Stefan; Shi, Qiang; Krüger, Kirstin

    2013-04-01

    Significant contributions from short lived brominated and iodinated compounds to the stratospheric ozone budget are suspected especially from the tropical oceans particularly from coastal regions, where strong VSLS emissions are observed, caused by local biology (phytoplankton and macro algae). Due to the fast uplift of surface air by deep convection in the tropics, the ocean derived substances are expected to be transported to the stratosphere. Results from the SHIVA-SONNE ship campaign in the tropical West Pacific during 15 to 29 November 2011 revealed that the South China and Sulu seas comprise strong source regions of halocarbons for the atmosphere. Especially the bromoform fluxes were very high along the whole cruise and were in agreement with coastal fluxes from previous campaigns. Measurements of low air and high water concentrations of CH3I, CH2Br2, and CHBr3 support the derived air sea fluxes together with the high surface water temperatures and elevated wind speeds. The three airborne VSLS showed correlations and anti-correlations with some meteorological parameters (i.e. wind speed), while the mixing ratios of all compounds generally increased from the South China Sea towards the Sulu Sea region. A comparison of collocated VSLS measurements in the marine atmospheric boundary layer (MABL) between the research vessel SONNE and the aircraft FALCON revealed a good agreement. With a simple box-model we calculated the importance of the compounds sea-air flux related to their MABL-concentrations and lifetimes assuming a mean loss of 20% per day due to transport out of boundary layer into the free troposphere during the campaign. While the CH3I-flux approximately equaled its chemical loss, the fluxes of the brominated compounds were roughly ten times larger than needed to maintain the MABL mixing ratio, suggesting this region to be a very important oceanic source region for the atmosphere. Finally, we will compare the box-model loss from the MABL to the free

  13. Evaluating Global Emission Inventories of Biogenic Bromocarbons

    NASA Technical Reports Server (NTRS)

    Hossaini, Ryan; Mantle, H.; Chipperfield, M. P.; Montzka, S. A.; Hamer, P.; Ziska, F.; Quack, B.; Kruger, K.; Tegtmeier, S.; Atlas, E.; Sala, S.; Engel, A.; Bonisch, H.; Keber, T.; Oram, D.; Mills, G.; Ordonez, C.; Saiz-Lopez, A.; Warwick, N.; Liang, Q.; Feng, W.; Moore, F.; Miller, F.; Marecal, V.; Richards, N. A. D.; Dorf, M.; Pfeilsticker, K.

    2013-01-01

    Emissions of halogenated very short-lived substances (VSLS) are poorly constrained. However, their inclusion in global models is required to simulate a realistic inorganic bromine (Bry) loading in both the troposphere, where bromine chemistry perturbs global oxidizing capacity, and in the stratosphere, where it is a major sink for ozone (O3). We have performed simulations using a 3-D chemical transport model (CTM) including three top-down and a single bottom-up derived emission inventory of the major brominated VSLS bromoform (CHBr3) and dibromomethane (CH2Br2). We perform the first concerted evaluation of these inventories, comparing both the magnitude and spatial distribution of emissions. For a quantitative evaluation of each inventory, model output is compared with independent long-term observations at National Oceanic and Atmospheric Administration (NOAA) ground-based stations and with aircraft observations made during the NSF (National Science Foundation) HIAPER Pole-to-Pole Observations (HIPPO) project. For CHBr3, the mean absolute deviation between model and surface observation ranges from 0.22 (38 %) to 0.78 (115 %) parts per trillion (ppt) in the tropics, depending on emission inventory. For CH2Br2, the range is 0.17 (24 %) to 1.25 (167 %) ppt. We also use aircraft observations made during the 2011 Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere (SHIVA) campaign, in the tropical western Pacific. Here, the performance of the various inventories also varies significantly, but overall the CTM is able to reproduce observed CHBr3 well in the free troposphere using an inventory based on observed sea-to-air fluxes. Finally, we identify the range of uncertainty associated with these VSLS emission inventories on stratospheric bromine loading due to VSLS (Br(VSLS/y)). Our simulations show Br(VSLS/y) ranges from approximately 4.0 to 8.0 ppt depending on the inventory. We report an optimized estimate at the lower end of this range (approximately 4 ppt

  14. Molecular symmetry and isostructural relations in crystal phases of trihalomethanes CHCl3, CHBrCl2, CHBr2Cl, and CHBr3.

    PubMed

    Dziubek, Kamil; Podsiadło, Marcin; Katrusiak, Andrzej

    2009-10-01

    Bromodichloromethane (CHBrCl(2)), dibromochloromethane (CHBr(2)Cl), and their parent trihalomethanes, chloroform (CHCl(3)) and bromoform (CHBr(3)), form an intriguing series of isostructural crystal phases, the sequence of which depends on the Br/Cl substitution and thermodynamic conditions. The phase behavior of these compounds has been studied by isobaric calorimetry and isothermal compression, and the crystal structure of CHBrCl(2) has been determined at 0.10 MPa/200 K, 0.73, 1.26, 2.53 GPa (all at 295 K), and that of CHBr(2)Cl at 0.43, 1.24 GPa (all at 295 K). CHBrCl(2) frozen by isobaric cooling at 0.10 MPa crystallizes in space group P1 with Z = 2, while its high-pressure polymorph in space group Pnma (Z = 4) is stable at 295 K from its freezing pressure at 0.48 to at least 2.53 GPa. At the freezing pressure of 0.29 GPa, CHBr(2)Cl crystallizes in space group P6(3), with Z = 2, and at 1.27 GPa, it transforms to the orthorhombic structure, space group Pnma (Z = 4); CHCl(3) has the identical symmetries, but their reverse sequence was observed. A subtle isostructural phase transition has been observed at 0.10 MPa and 214.9 K in CHBr(2)Cl. The relations between isostructural phases, their symmetry, and site occupation factors of halogen atoms observed in the low-temperature and high-pressure phases of trihalomethanes (CHCl(3), CHBrCl(2), CHBr(2)Cl, and CHBr(3)) have been explained by the directional character of electrostatic interactions between the molecules. A gradual ordering of the disordered Br and Cl atoms has been achieved in the compressed crystals, where the narrower volume of the atomic sites correlates with the increased occupancy of the smaller atom (chlorine). The molecular symmetry has been shown to control the molecular aggregation in the crystalline state, consistent with the crystal site-symmetry and the balance of electrostatic matching and dispersion forces between molecules. PMID:19743834

  15. Modelling marine emissions and atmospheric distributions of halocarbons and DMS: the influence of prescribed water concentration vs. prescribed emissions

    NASA Astrophysics Data System (ADS)

    Lennartz, S. T.; Krysztofiak-Tong, G.; Marandino, C. A.; Sinnhuber, B.-M.; Tegtmeier, S.; Ziska, F.; Hossaini, R.; Krüger, K.; Montzka, S. A.; Atlas, E.; Oram, D.; Keber, T.; Bönisch, H.; Quack, B.

    2015-06-01

    Marine produced short-lived trace gases such as dibromomethane (CH2Br2), bromoform (CHBr3), methyliodide (CH3I) and dimethylsulfide (DMS) significantly impact tropospheric and stratospheric chemistry. Describing their marine emissions in atmospheric chemistry models as accurately as possible is necessary to quantify their impact on ozone depletion and the Earth's radiative budget. So far, marine emissions of trace gases have mainly been prescribed from emission climatologies, thus lacking the interaction between the actual state of the atmosphere and the ocean. Here we present simulations with the chemistry climate model EMAC with online calculation of emissions based on surface water concentrations, in contrast to directly prescribed emissions. Considering the actual state of the model atmosphere results in a concentration gradient consistent with model real-time conditions at ocean surface and atmosphere, which determine the direction and magnitude of the computed flux. This method has a number of conceptual and practical benefits, as the modelled emission can respond consistently to changes in sea surface temperature, surface wind speed, sea ice cover and especially atmospheric mixing ratio. This online calculation could enhance, dampen or even invert the fluxes (i.e. deposition instead of emissions) of VSLS. We show that differences between prescribing emissions and prescribing concentrations (-28 % for CH2Br2 to +11 % for CHBr3) result mainly from consideration of the actual, time-varying state of the atmosphere. The absolute magnitude of the differences depends mainly on the surface ocean saturation of each particular gas. Comparison to observations from aircraft, ships and ground stations reveals that computing the air-sea flux interactively leads in most of the cases to more accurate atmospheric mixing ratios in the model compared to the computation from prescribed emissions. Calculating emissions online also enables effective testing of different air

  16. Halocarbon emissions and sources in the equatorial Atlantic Cold Tongue

    NASA Astrophysics Data System (ADS)

    Hepach, H.; Quack, B.; Raimund, S.; Fischer, T.; Atlas, E. L.; Bracher, A.

    2015-04-01

    Halocarbons from oceanic sources contribute to halogens in the troposphere, and can be transported into the stratosphere where they take part in ozone depletion. This paper presents distribution and sources in the equatorial Atlantic from June and July 2011 of the four compounds bromoform (CHBr3), dibromomethane (CH2Br2), methyl iodide (CH3I) and diiodomethane (CH2I2). Enhanced biological production during the Atlantic Cold Tongue (ACT) season, indicated by phytoplankton pigment concentrations, led to elevated concentrations of CHBr3 of up to 44.7 pmol L-1 and up to 9.2 pmol L-1 for CH2Br2 in surface water, which is comparable to other tropical upwelling systems. While both compounds correlated very well with each other in the surface water,CH2Br2 was often more elevated in greater depth than CHBr3, which showed maxima in the vicinity of the deep chlorophyll maximum. The deeper maximum of CH2Br2 indicates an additional source in comparison to CHBr3 or a slower degradation of CH2Br2. Concentrations of CH3I of up to 12.8 pmol L-1 in the surface water were measured. In contrary to expectations of a predominantly photochemical source in the tropical ocean, its distribution was mostly in agreement with biological parameters, indicating a~biological source. CH2I2 was very low in the near surface water with maximum concentrations of only 3.7 pmol L-1, and the observed anticorrelation with global radiation was likely due to its strong photolysis. CH2I2 showed distinct maxima in deeper waters similar to CH2Br2. For the first time, diapycnal fluxes of the four halocarbons from the upper thermocline into and out of the mixed layer were determined. These fluxes were low in comparison to the halocarbon sea-to-air fluxes. This indicates that despite the observed maximum concentrations at depth, production in the surface mixed layer is the main oceanic source for all four compounds and has an influence on emissions into the atmosphere. The calculated production rates of the

  17. Finding the Missing Stratospheric Br(sub y): A Global Modeling Study of CHBr3 and CH2Br2

    NASA Technical Reports Server (NTRS)

    Liang, Q.; Stolarski, R. S.; Kawa, S. R.; Nielsen, J. E.; Douglass, A. R.; Rodriguez, J. M.; Blake, D. R.; Atlas, E. L.; Ott, L. E.

    2010-01-01

    Recent in situ and satellite measurements suggest a contribution of 5 pptv to stratospheric inorganic bromine from short-lived bromocarbons. We conduct a modeling study of the two most important short-lived bromocarbons, bromoform (CHBr3) and dibromomethane (CH2Br2), with the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to account for this missing stratospheric bromine. We derive a "top-down" emission estimate of CHBr3 and CH2Br2 using airborne measurements in the Pacific and North American troposphere and lower stratosphere obtained during previous NASA aircraft campaigns. Our emission estimate suggests that to reproduce the observed concentrations in the free troposphere, a global oceanic emission of 425 Gg Br yr(exp -1) for CHBr3 and 57 Gg Br yr(exp -l) for CH2Br2 is needed, with 60% of emissions from open ocean and 40% from coastal regions. Although our simple emission scheme assumes no seasonal variations, the model reproduces the observed seasonal variations of the short-lived bromocarbons with high concentrations in winter and low concentrations in summer. This indicates that the seasonality of short-lived bromocarbons is largely due to seasonality in their chemical loss and transport. The inclusion of CHBr3 and CH2Br2 contributes 5 pptv bromine throughout the stratosphere. Both the source gases and inorganic bromine produced from source gas degradation (BrSLS) in the troposphere are transported into the stratosphere, and are equally important. Inorganic bromine accounts for half (2.5 pptv) of the bromine from the inclusion of CHBr3 and CHzBr2 near the tropical tropopause and its contribution rapidly increases to 100% as altitude increases. More than 85% of the wet scavenging of Br(sub y)(sup VSLS) occurs in large-scale precipitation below 500 hPa. Our sensitivity study with wet scavenging in convective updrafts switched off suggests that Br(sub y)(sup SLS) in the stratosphere is not sensitive to convection. Convective scavenging only

  18. Measurement of unscheduled DNA synthesis and S-phase synthesis in rodent hepatocytes following in vivo treatment: testing of 24 compounds.

    PubMed

    Mirsalis, J C; Tyson, C K; Steinmetz, K L; Loh, E K; Hamilton, C M; Bakke, J P; Spalding, J W

    1989-01-01

    The in vivo-in vitro hepatocyte DNA repair assay has been shown to be useful for studying genotoxic hepatocarcinogens. In addition, measurement of S-phase synthesis (SPS) provides an indirect indicator of hepatocellular proliferation, which may be an important mechanism in rodent carcinogenesis. This assay was used to examine 24 chemicals for their ability to induce unscheduled DNA synthesis (UDS) or SPS in Fischer-344 rats or B6C3F1 mice following in vivo treatment. Hepatocytes were isolated by liver perfusion and incubated with 3H-thymidine following in vivo treatment by gavage. UDS was measured by quantitative autoradiography as net grains/nucleus (NG). Controls from both sexes of both species yielded less than 0.0 NG. Chemicals chosen for testing were from the National Toxicology Program (NTP) genetic toxicology testing program and most were also evaluated in long-term animal studies conducted by the NTP. 11-Aminoundecanoic acid, benzyl acetate, bis(2-chloro-1-methylethyl)ether (BCMEE), C.I. Solvent Yellow 14, cinnamaldehyde, cinnamyl anthranilate, dichloromethane, dichlorvos, glutaraldehyde, 4,4'-methylenedianiline (MDA), 4-nitrotoluene, 4,4'-oxydianiline, a polybrominated biphenyl mixture (PBB), reserpine, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, trichloroethylene, and 2,6-xylidine all failed to induce UDS in rats and/or mice. Dinitrotoluene and Michler's Ketone induced positive UDS response in rat, while N-nitrosodiethanolamine and selenium sulfide induced equivocal UDS results in mouse and rat, respectively. BCMEE, bromoform, chloroform, PBB, 1,1,2-trichloroethane, and trichloroethylene were all potent inducers of SPS in mouse liver, while C.I. Solvent Yellow 14, and 1,1,2,2-tetrachloroethane yielded equivocal SPS results in rat and mouse, respectively. These results indicate that most of the test compounds do not induce UDS in the liver; however, the significant S-phase responses induced by many of these compounds, especially the halogenated

  19. Blood Biomarkers of Late Pregnancy Exposure to Trihalomethanes in Drinking Water and Fetal Growth Measures and Gestational Age in a Chinese Cohort

    PubMed Central

    Cao, Wen-Cheng; Zeng, Qiang; Luo, Yan; Chen, Hai-Xia; Miao, Dong-Yue; Li, Li; Cheng, Ying-Hui; Li, Min; Wang, Fan; You, Ling; Wang, Yi-Xin; Yang, Pan; Lu, Wen-Qing

    2015-01-01

    Background: Previous studies have suggested that elevated exposure to disinfection by-products (DBPs) in drinking water during gestation may result in adverse birth outcomes. However, the findings of these studies remain inconclusive. Objective: The purpose of our study was to examine the association between blood biomarkers of late pregnancy exposure to trihalomethanes (THMs) in drinking water and fetal growth and gestational age. Methods: We recruited 1,184 pregnant women between 2011 and 2013 in Wuhan and Xiaogan City, Hubei, China. Maternal blood THM concentrations, including chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM), were measured as exposure biomarkers during late pregnancy. We estimated associations with gestational age and fetal growth indicators [birth weight, birth length, and small for gestational age (SGA)]. Results: Total THMs (TTHMs; sum of TCM, BDCM, DBCM, and TBM) were associated with lower mean birth weight (–60.9 g; 95% CI: –116.2, –5.6 for the highest vs. lowest tertile; p for trend = 0.03), and BDCM and DBCM exposures were associated with smaller birth length (e.g., –0.20 cm; 95% CI: –0.37, –0.04 for the highest vs. lowest tertile of DBCM; p for trend = 0.02). SGA was increased in association with the second and third tertiles of TTHMs (OR = 2.91; 95% CI: 1.32, 6.42 and OR = 2.25; 95% CI: 1.01, 5.03; p for trend = 0.08). Conclusions: Our results suggested that elevated maternal THM exposure may adversely affect fetal growth. Citation: Cao WC, Zeng Q, Luo Y, Chen HX, Miao DY, Li L, Cheng YH, Li M, Wang F, You L, Wang YX, Yang P, Lu WQ. 2016. Blood biomarkers of late pregnancy exposure to trihalomethanes in drinking water and fetal growth measures and gestational age in a Chinese cohort. Environ Health Perspect 124:536–541; http://dx.doi.org/10.1289/ehp.1409234 PMID:26340795

  20. Online calculation of global marine halocarbon emissions in the chemistry climate model EMAC

    NASA Astrophysics Data System (ADS)

    Lennartz, Sinikka T.; Krysztofiak-Tong, Gisèle; Sinnhuber, Björn-Martin; Marandino, Christa A.; Tegtmeier, Susann; Krüger, Kirstin; Ziska, Franziska; Quack, Birgit

    2015-04-01

    Marine produced trace gases such as dibromomethane (CH2Br2), bromoform (CHBr3) and methyl iodide (CH3I) significantly impact tropospheric and stratospheric chemistry. Marine emissions are the dominant source of halocarbons to the atmosphere, and therefore, it is crucial to represent them accurately in order to model their impact on atmospheric chemistry. Chemistry climate models are a frequently used tool for quantifying the influence of halocarbons on ozone depletion. In these model simulations, marine emissions of halocarbons have mainly been prescribed from established emission climatologies, thus neglecting the interaction with the actual state of the atmosphere in the model. Here, we calculate halocarbon marine emissions for the first time online by coupling the submodel AIRSEA to the chemical climate model EMAC. Our method combines prescribed water concentrations and varying atmospheric concentrations derived from the model instead of using fixed emission climatologies. This method has a number of conceptual and practical advantages, as the modelled emissions can respond consistently to changes in temperature, wind speed, possible sea ice cover and atmospheric concentration in the model. Differences between the climatology-based and the new approach (2-18%) result from consideration of the actual, time-varying state of the atmosphere and the consideration of air-side transfer velocities. Extensive comparison to observations from aircraft, ships and ground stations reveal that interactively computing the air-sea flux from prescribed water concentrations leads to equally or more accurate atmospheric concentrations in the model compared to using constant emission climatologies. The effect of considering the actual state of the atmosphere is largest for gases with concentrations close to equilibrium in the surface ocean, such as CH2Br2. Halocarbons with comparably long atmospheric lifetimes, e.g. CH2Br2, are reflected more accurately in EMAC when compared to time

  1. A halocarbon survey from a seagrass dominated subtropical lagoon, Ria Formosa (Portugal): flux pattern and isotopic composition

    NASA Astrophysics Data System (ADS)

    Weinberg, I.; Bahlmann, E.; Eckhardt, T.; Michaelis, W.; Seifert, R.

    2015-03-01

    In this study we report fluxes of chloromethane (CH3Cl), bromomethane (CH3Br), iodomethane (CH3I), and bromoform (CHBr3) from two sampling campaigns (summer and spring) in the seagrass dominated subtropical lagoon Ria Formosa, Portugal. Dynamic flux chamber measurements were performed when seagrass patches were either air-exposed or submerged. Overall, we observed highly variable fluxes from the seagrass meadows and attributed them to diurnal cycles, tidal effects, and the variety of possible sources and sinks in the seagrass meadows. The highest emissions with up to 130 nmol m-2 h-1 for CH3Br were observed during tidal changes, from air exposure to submergence and conversely. Furthermore, during the spring campaign, the emissions of halocarbons were significantly elevated during tidal inundation as compared to air exposure. Accompanying water sampling performed during both campaigns revealed elevated concentrations of CH3Cl and CH3Br, indicating productive sources within the lagoon. Stable carbon isotopes of halocarbons from the air and water phase along with source signatures were used to allocate the distinctive sources and sinks in the lagoon. Results suggest that CH3Cl was rather originating from seagrass meadows and water column than from salt marshes. Aqueous and atmospheric CH3Br was substantially enriched in 13C in comparison to source signatures for seagrass meadows and salt marshes. This suggests a significant contribution from the water phase on the atmospheric CH3Br in the lagoon. A rough global upscaling yields annual productions from seagrass meadows of 2.3-4.5 Gg yr-1, 0.5-1.0 Gg yr-1, 0.6-1.2 Gg yr-1, and 1.9-3.7 Gg yr-1 for CH3Cl, CH3Br, CH3I, and CHBr3 respectively. This suggests a minor contribution from seagrass meadows to the global production of CH3Cl and CH3Br with about 0.1 and 0.7%, respectively. In comparison to the known marine sources for CH3I and CHBr3, seagrass meadows are rather small sources.

  2. Chloroform in the hydrologic system--sources, transport, fate, occurrence, and effects on human health and aquatic organisms

    USGS Publications Warehouse

    Ivahnenko, Tamara; Barbash, Jack E.

    2004-01-01

    Chloroform is one of the volatile organic compounds (VOCs) detected most frequently in both ground and surface water. Because it is also one of the four trihalomethanes (THMs) produced in the highest concentrations during the chlorination of drinking water and wastewater, the frequent detection of this compound in ground and surface water of the United States is presumed to be caused primarily by the input of chlorinated water to the hydrologic system. Although anthropogenic sources of the compound are substantial, they are currently estimated to constitute only 10 percent of the total global input to the hydrologic system. Natural sources of the compound include volcanic gases, biomass burning, marine algae, and soil microorganisms. Under most conditions (except in the presence of unusually high bromide concentrations), chloroform is the THM produced in the highest concentrations during chlorination. Furthermore, in most cases where more than one THM is produced from chlorination, the relative concentrations among the different compounds usually decrease with increasing bromination (chloroform > dichlorobromomethane > chlorodibromomethane > bromoform). This phenomenon is presumed to be responsible for the common observation that when more than one THM is detected during investigations of the occurrence of these compounds in the hydrologic system, this same trend is typically observed among their relative concentrations or, for a uniform reporting limit, their relative frequencies of detection. This pattern could provide a valuable means for distinguishing between chlorinated water and other potential sources of chloroform in the environment. Chloroform has been widely detected in national, regional, and local studies of VOCs in ground, surface, source, and drinking waters. Total THM (TTHM) concentrations of the compound, however, were typically less than the Maximum Contaminant Level (MCL) of 80 ?g/L (micrograms per liter) established by the U.S. Environmental

  3. Levels and pattern of alkyl nitrates, multifunctional alkyl nitrates, and halocarbons in the air over the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Fischer, Ralf G.; Kastler, Jürgen; Ballschmiter, Karlheinz

    2000-06-01

    The Albatross Campaign was a research cruise of the German research vessel RV Polarstern (cruise ANT XFV/1) in October and November 1996 across the Atlantic Ocean. The cruise started in Bremerhaven, Germany, reached the polar region at 67°N, followed the 30°W meridian longitude, crossed the equatorial region, and ended at 50°S at Punta Quilla, Argentina. A second cruise leg closer to the African continent started from Capetown, South Africa, passed the Canary Island, and ended through the English Channel at Bremerhaven, Germany, in May/June 1998. Measurements of atmospheric levels of C1-C13 alkyl mononitrates, 24 alkyl dinitrates (C3-C6), 19 hydroxy alkyl nitrates (C2-C6), and benzyl nitrate, as well as the halocarbons tetrachloroethene, hexachloroethane, and bromoform are presented in this work. The halocarbons are used to assess the origin of the air parcels analyzed. Levels and patterns of multifunctional alkyl nitrates in the marine air are described here for the first time. The air masses include polluted air from the northern Europe, as well as highly degraded air masses of the South Atlantic trade wind region that represent global baseline levels. Two independent analytical methods were used in combination to cover the whole range of organic nitrates. First, the low-volume adsorptive enrichment of organic traces on Tenax, followed by thermodesorption cold trap HRGC-ECD and thermodesorption cold trap HRGC-(EI)MSD was used. Second, high-volume adsorptive enrichment of organic traces on silica gel was applied followed by solvent desorption, NP-HPLC group separation, and HRGC-(EI)-MSD. Short-chain alkyl nitrates (C4-C6) showed mixing ratios in the range of 0.2-2.5 parts per trillion by volume (pptv), with a local minimum for the tropical regions and significantly lower ratios for the Southern Hemisphere. The mixing ratio of the sum of 36 long-chain alkyl mononitrates (C7-C13) ranged from 0.02-0.43 pptv, the mixing ratio of the sum of 23 alkyl dinitrates (C3-C

  4. Occurrence of selected pharmaceutical and non-pharmaceutical compounds, and stable hydrogen and oxygen isotope ratios, in a riverbank filtration study, Platte River, Nebraska, 2001 to 2003, Volume 1

    USGS Publications Warehouse

    Vogel, J.R.; Verstraeten, Ingrid M.; Coplen, T.B.; Furlong, E.T.; Meyer, M.T.; Barber, L.B.

    2005-01-01

    caffeine. Antibiotics were found in some of the wastewater samples and twice in Salt Creek. Antibiotics were not detected in any samples from the Platte River or the well field. Surface-water samples were analyzed for total organic carbon and ground-water samples were analyzed for dissolved organic carbon. Samples from all sites were analyzed for major ions. Herbicides commonly detected in surface, ground, and drinking water included acetachlor, alachlor, atrazine, and metolachlor as well as degradates of these compounds. Most of the samples from wastewater sites were found to contain predominantly acetamide degradates. High concentrations of several organic wastewater indicator compounds were detected at the wastewater sites and in Salt Creek. Several organic wastewater indicator compounds were detected multiple times in samples from the Platte River. Bromoform, a by-product of disinfection in the treatment plant, was found in samples from the finished drinking water. Stable hydrogen isotope ratios show a range in seasonal variation of -73.6 per mill to -38.1 per mill relative to Vienna Standard Mean Ocean Water (VSMOW) reference water and -69.2 per mill to -46.5 per mill for surface water and ground water, respectively. Oxygen isotope ratios for surface-water samples varied between -9.86 per mill and -5.05 per mill. Stable oxygen isotope ratios of ground waters varied between -9.62 per mill and -5.81 per mill.

  5. Development of an analytical technique for the detection of alteration minerals formed in bentonite by reaction with alkaline solutions

    NASA Astrophysics Data System (ADS)

    Sakamoto, H.; Shibata, M.; Owada, H.; Kaneko, M.; Kuno, Y.; Asano, H.

    A multibarrier system consisting of cement-based backfill, structures and support materials, and a bentonite-based buffer material has been studied for the TRU waste disposal concept being developed in Japan, the aim being to restrict the migration of radionuclides. Concern regarding bentonite-based materials in this disposal environment relates to long-term alteration under hyper-alkaline conditions due to the presence of cementitious materials. In tests simulating the interaction between bentonite and cement, formation of secondary minerals due to alteration reactions under the conditions expected for geological disposal of TRU waste (equilibrated water with cement at low liquid/solid ratio) has not been observed, although alteration was observed under extremely hyper-alkaline conditions with high temperatures. This was considered to be due to the fact that analysis of C-S-H gel formed at the interface as a secondary mineral was difficult using XRD, because of its low crystallinity and low content. This paper describes an analytical technique for the characterization of C-S-H gel using a heavy liquid separation method which separates C-S-H gel from Kunigel V1 bentonite (bentonite produced in Japan) based on the difference in specific gravity between the crystalline minerals constituting Kunigel V1 and the secondary C-S-H gel. For development of C-S-H gel separation methods, simulated alteration samples were prepared by mixing 990 mg of unaltered Kunigel V1 and 10 mg of C-S-H gel synthesized using pure chemicals at a ratio of Ca/Si = 1.2. The simulated alteration samples were dispersed in bromoform-methanol mixtures with specific gravities ranging from 2.00 to 2.57 g/cm 3 and subjected to centrifuge separation to recover the light density fraction. Subsequent XRD analysis to identify the minerals was complemented by dissolution in 0.6 N hydrochloric acid to measure the Ca and Si contents. The primary peak (2 θ = 29.4°, Cu Kα) and secondary peaks (2 θ = 32.1

  6. Processes Affecting the Trihalomethane Concentrations Associated with the Third Injection, Storage, and Recovery Test at Lancaster, Antelope Valley, California, March 1998 through April 1999

    USGS Publications Warehouse

    Fram, Miranda S.; Bergamaschi, Brian A.; Goodwin, Kelly D.; Fujii, Roger; Clark, Jordan F.

    2003-01-01

    The formation and fate of trihalomethanes (THM) during the third injection, storage, and recovery test at Lancaster, Antelope Valley, California, were investigated as part of a program to assess the long-term feasibility of using injection, storage, and recovery as a water-supply method and as a way to reduce water-level declines and land-subsidence in the Antelope Valley. The program was conducted by the U.S. Geological Survey in cooperation with the Los Angeles County Department of Public Works and the Antelope Valley-East Kern Water Agency. The water used for injection, storage, and recovery must be disinfected before injection and thus contains THMs and other disinfection by-products. THMs (chloroform, CHCl3, bromodichloromethane, CHCl2Br, dibromochloromethane, CHClBr2, and bromoform, CHBr3) are formed by reaction between natural dissolved organic carbon that is present in water and chlorine that is added during the disinfection step of the drinking water treatment process. THMs are carcinogenic compounds, and their concentrations in drinking water are regulated by the U.S. Environmental Protection Agency. During previous cycles of the Lancaster program, extracted water still contained measurable concentrations of THMs long after continuous pumping had extracted a greater volume of water than had been injected. This raised concerns about the potential long-term effect of injection, storage, and recovery cycles on ground-water quality in Antelope Valley aquifers. The primary objectives of this investigation were to determine (1) what controlled continued THM formation in the aquifer after injection, (2) what caused of the persistence of THMs in the extracted water, even after long periods of pumping, (3) what controlled the decrease of THM concentrations during the extraction period, and (4) the potential for natural attenuation of THMs in the aquifer. Laboratory experiments on biodegradation of THMs in microcosms of aquifer materials indicate that aquifer

  7. Seasonal Trends in Boundary Layer Concentrations of Halocarbons at Coastal and Forest Sites in Borneo

    NASA Astrophysics Data System (ADS)

    Robinson, Andrew; Harris, Neil; Gostlow, Bryan; O'Brien, Louise; Hawkes, Jeff; Ashfold, Matt; Yang, Xin; Warwick, Nicola; Pyle, John; Nadzir, Shahrul

    2010-05-01

    local marine production of CHBr3 (and similarly behaving species such as CH2Br2 and CHBr2Cl). In contrast to bromoform, the anthropogenic tracer C2Cl4 shows much less variability with background values no higher than 3 pptv except for occasional spikes at the Tawau site (where local urban air has likely been sampled). C2Cl4 does however show a marked seasonality at both sites with a maximum in December to February (~3 pptv) and a minimum from May through to August (<1 pptv). This seasonality is shown to be largely due to the incursion of higher latitude northern hemisphere air (more polluted) in December to February. There could also be some seasonal influence on the C2Cl4 concentrations from the seasonal cycle in OH (reaction with OH being the primary loss mechanism).

  8. Occurrence of Selected Organic Compounds in Groundwater Used for Public Supply in the Plio-Pleistocene Deposits in East-Central Nebraska and the Dawson and Denver Aquifers near Denver, Colorado, 2002-2004

    USGS Publications Warehouse

    Bails, Jeffrey B.; Dietsch, Benjamin J.; Landon, Matthew K.; Paschke, Suzanne S.

    2009-01-01

    ), which were detected in 9 of the 15 wells (60 percent of the samples). The second most frequently detected organic compound was tetrachloroethylene, detected in 4 of the 15 wells (27 percent of the samples), followed by chloroform, trichloroethylene, and 2-hydroxyatrazine (2-hydroxy-4-isopropylamino-6-ethylamino-s-triazine, or OIET), present in 3 of the 15 wells (20 percent of the samples). The pesticide compounds deisopropylatrazine (2-chloro-6-ethylamino-4-amino-s-triazine, or CEAT), metolachlor, and simazine and the volatile organic compound cis-1,2-dichloroethylene were detected in 2 of the 15 wells, and the compounds diuron and 1,2-dichloroethane were detected in only 1 of the 15 wells during the first-year sampling. Most detections of these compounds were at or near the minimum reporting levels, and none were greater than their regulatory maximum contaminant level. There were few detections of organic compounds during the first year of sampling groundwater wells in the South Platte study area. The compounds atrazine, deethylatrazine, picloram, tetrachloroethylene, methyl-tert-butyl-ether (MTBE), tris(2-butoxyethyl)phosphate, and bromoform were detected only once in all the samples from the 12 wells. Most detections of these compounds were at or near the minimum reporting levels, and none were greater than their regulatory maximum contaminant level. Second-year sampling, which included the addition of paired source- and finished-water samples, was completed at two sites in the High Plains study area. Source-water samples from the second-year sampling had detections of atrazine and deethylatrazine; at one site deisopropylatrazine and chloroform also were detected. The finished-water samples, which represent the source water after blending with water from other wells and treatment, indicated a decrease in the concentrations of the pesticides at one site, whereas concentrations remained nearly constant at a second site. The trihalomethanes (THMs or disinfec

  9. Understanding the Mechanism of Solvent-Mediated Adhesion of Vacuum Deposited Au and Pt Thin Films onto PMMA Substrates

    SciTech Connect

    Mo, Alan K; Brown, Victoria L.; Rugg, Brandon K.; Devore, Prof. Thomas C.; Meyer III, Harry M; Hu, Dr. Xiaofeng; Hughes, Prof. W. Christopher; Augustine, Prof. Brian H.

    2012-01-01

    The adhesion of 100 nm thick electron-beam deposited Au and Pt and magnetron sputtered Au thin films onto poly(methyl methacrylate) (PMMA) substrates can be significantly enhanced to over 90% adhesion by either spin-casting or vapor-exposure to hydrohalocarbon solvents prior to metal deposition compared to samples that are either cleaned in isopropyl alcohol or pre-treated with a remote O2 plasma. X-ray photoelectron spectroscopy (XPS) and evolved gas Fourier transform infrared spectroscopy (EGA-FTIR) reveal the presence of residual halogenated solvent molecules at the PMMA surface which chemically activates the surface to produce a stable chemical interaction between the noble metal film and the PMMA. Density functional theory (DFT) calculations show that the halogenated solvent molecules preferentially form a Lewis acid-base adduct with the oxygen atoms in the ester group in PMMA which is consistent with the measured enthalpy of desorption of chloroform (CHCl3) on PMMA determined by EGA-FTIR to be 36 kJ mol-1. The DFT model also supports the experimentally observed change in the high resolution XPS O 1s peak at 533.77 eV after metallization attributed to a change in the local bonding environment of the bridging O in the PMMA ester group. DFT also predicts that the deposited metal atom (M) inserts into the C-X bond where X is the halogen atom on either CHCl3 or bromoform (CHBr3) to form a O M X interaction that is observed by a M-X bond in the high resolution XPS Cl 2p3/2 peak at 198.03 eV and Br 3p3/2 peak at 182.06 eV. A range of solvents with differing polarities for PMMA pre-treatment have been used and it is proposed that non-complexing solvents result in significant metal adhesion improvement. The Gutmann acceptor number can be used to predict the effectiveness of solvent treatment for noble metal adhesion. A model is proposed in which the bond energy of the C-X bond of the solvent must be sufficiently low so that the C-X bond can be cleaved to form the M

  10. A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS): linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine

    NASA Astrophysics Data System (ADS)

    Hossaini, R.; Patra, P. K.; Leeson, A. A.; Krysztofiak, G.; Abraham, N. L.; Andrews, S. J.; Archibald, A. T.; Aschmann, J.; Atlas, E. L.; Belikov, D. A.; Bönisch, H.; Carpenter, L. J.; Dhomse, S.; Dorf, M.; Engel, A.; Feng, W.; Fuhlbrügge, S.; Griffiths, P. T.; Harris, N. R. P.; Hommel, R.; Keber, T.; Krüger, K.; Lennartz, S. T.; Maksyutov, S.; Mantle, H.; Mills, G. P.; Miller, B.; Montzka, S. A.; Moore, F.; Navarro, M. A.; Oram, D. E.; Pfeilsticker, K.; Pyle, J. A.; Quack, B.; Robinson, A. D.; Saikawa, E.; Saiz-Lopez, A.; Sala, S.; Sinnhuber, B.-M.; Taguchi, S.; Tegtmeier, S.; Lidster, R. T.; Wilson, C.; Ziska, F.

    2016-07-01

    The first concerted multi-model intercomparison of halogenated very short-lived substances (VSLS) has been performed, within the framework of the ongoing Atmospheric Tracer Transport Model Intercomparison Project (TransCom). Eleven global models or model variants participated (nine chemical transport models and two chemistry-climate models) by simulating the major natural bromine VSLS, bromoform (CHBr3) and dibromomethane (CH2Br2), over a 20-year period (1993-2012). Except for three model simulations, all others were driven offline by (or nudged to) reanalysed meteorology. The overarching goal of TransCom-VSLS was to provide a reconciled model estimate of the stratospheric source gas injection (SGI) of bromine from these gases, to constrain the current measurement-derived range, and to investigate inter-model differences due to emissions and transport processes. Models ran with standardised idealised chemistry, to isolate differences due to transport, and we investigated the sensitivity of results to a range of VSLS emission inventories. Models were tested in their ability to reproduce the observed seasonal and spatial distribution of VSLS at the surface, using measurements from NOAA's long-term global monitoring network, and in the tropical troposphere, using recent aircraft measurements - including high-altitude observations from the NASA Global Hawk platform. The models generally capture the observed seasonal cycle of surface CHBr3 and CH2Br2 well, with a strong model-measurement correlation (r ≥ 0.7) at most sites. In a given model, the absolute model-measurement agreement at the surface is highly sensitive to the choice of emissions. Large inter-model differences are apparent when using the same emission inventory, highlighting the challenges faced in evaluating such inventories at the global scale. Across the ensemble, most consistency is found within the tropics where most of the models (8 out of 11) achieve best agreement to surface CHBr3 observations

  11. Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton community

    NASA Astrophysics Data System (ADS)

    Webb, Alison L.; Leedham-Elvidge, Emma; Hughes, Claire; Hopkins, Frances E.; Malin, Gill; Bach, Lennart T.; Schulz, Kai; Crawfurd, Kate; Brussaard, Corina P. D.; Stuhr, Annegret; Riebesell, Ulf; Liss, Peter S.

    2016-08-01

    The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland, in summer 2012. During the second half of the experiment, dimethylsulfide (DMS) concentrations in the highest-fCO2 mesocosms (1075-1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However, the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks' exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 increasing to 4.3 ± 0.4 pmol L-1 and 87.4 ± 14.9 increasing to 134.4 ± 24.1 pmol L-1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl a concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (±0.9) pmol L-1 and iodoethane (C2H5I) at 0.5 (±0.1) pmol L-1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L-1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L-1), and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L-1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high-CO2, low-pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies that the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After

  12. Assessing the vulnerability of public-supply wells to contamination—Edwards aquifer near San Antonio, Texas

    USGS Publications Warehouse

    Jagucki, Martha L.; Musgrove, MaryLynn; Lindgren, Richard J.; Fahlquist, Lynne; Eberts, Sandra M.

    2011-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well field in San Antonio, Texas. The well field consists of six production wells that tap the Edwards aquifer. Typically, one or two wells are pumped at a time, yielding an average total of 20-21 million gallons per day. Water samples were collected from public-supply wells in the well field and from monitoring wells installed along general directions of flow to the well field. Samples from the well field contained some constituents of concern for drinking-water quality, including nitrate; the pesticide compounds atrazine, deethylatrazine, and simazine; and the volatile organic compounds tetrachloroethene (also called perchloroethene, or PCE), chloroform, bromoform, and dibromochloromethane. These constituents were detected in untreated water at concentrations much less than established drinking-water standards, where such standards exist. Overall, the study findings point to four primary factors that affect the movement and fate of contaminants and the vulnerability of the public-supply well field in San Antonio, Texas: (1) groundwater age (how long ago water entered, or recharged, the aquifer), (2) fast pathways for flow of groundwater through features formed or enlarged by dissolution of bedrock, (3) recharge characteristics of the aquifer, and (4) natural geochemical processes within the aquifer. A computer-model simulation of groundwater flow and transport was used to estimate the traveltime (or age) of water particles entering public-supply well W4 in the well field. Modeled findings show that almost half of the water reaching the public-supply well is less than 2 years old. Such a large percentage of very young water indicates that (1) contaminants entering the aquifer may be transported rapidly to the well, (2) there is limited time for chemical reactions to occur in the aquifer that may attenuate contaminants, and (3) should recharge water become contaminated with

  13. Chernozem aggregate waterstability loss investigation in a long-term bare fallow experiment

    NASA Astrophysics Data System (ADS)

    Vasilyeva, N. A.; Milanovskiy, E. Y.

    2009-04-01

    The research is focused on mechanisms of aggregate waterstability controlled by soil organic matter (SOM). The objects of the research are two contrast variants of typical chernozem - under native grassland and under a 60-year bare fallow experimental plot (100 m2) on the territory of Central Chernozem Biosphere Reserve, Russia. Seasonal plowing and deficiency of fresh plant residues (due to weeding out) resulted in a rapid mineralization of SOM. The Corg content in the 0-20 cm topsoil under native grassland is 6-4.5 %. For the last two decades Corg content under bare fallow has stabilized on the 2.6% level and is therefore assumed to represent stable SOM pool. However excellent aggregate waterstability of chernozem is completely lost under bare fallow. Therefore the aim of our study is to reveal the role of different SOM pools spatial and functional organization in aggregate waterstability formation. Bulk soil samples were collected from 2 m grassland profile and 1.5 m bare fallow profile with 10 cm interval and simultaneous measurements of soil field density and moisture. Following samples were analysed: bulk samples, dry and wet-sieving aggregates, undisturbed and pulverized aggregates, granule-densimetric fractions obtained by sedimentation of bulk samples (clay 5 mkm) with following densimetric fractionation in bromoform (light ? 2.4 g/cm3), and above mentioned samples after removal of SOM by hydrogen peroxide. Isolation of aggregates and granule-densimetric fractionation were carried out for bulk soils at 0-20, 40-50 and 80-90 cm depth. We use elemental analysis (C, H, N), size exclusion and hydrophobic interaction chromatography of humic substances (HS), laser diffraction particle size analysis, specific surface area (SSA) measurements by nitrogen adsorption and micromorphological examination of thin sections. Detailed characteristics obtained for aggregates and granule-densimetric fractions from a typical chernozem soil under native grassland and under 60