Science.gov

Sample records for bronchial epithelial lining

  1. Continuous monitoring of the bronchial epithelial lining fluid by microdialysis

    PubMed Central

    Tyvold, Stig S; Solligård, Erik; Lyng, Oddveig; Steinshamn, Sigurd L; Gunnes, Sigurd; Aadahl, Petter

    2007-01-01

    Background Contents of the epithelial lining fluid (ELF) of the bronchi are of central interest in lung diseases, acute lung injury and pharmacology. The most commonly used technique broncheoalveolar lavage is invasive and may cause lung injury. Microdialysis (MD) is a method for continuous sampling of extracellular molecules in the immediate surroundings of the catheter. Urea is used as an endogenous marker of dilution in samples collected from the ELF. The aim of this study was to evaluate bronchial MD as a continuous monitor of the ELF. Methods Microdialysis catheters were introduced into the right main stem bronchus and into the right subclavian artery of five anesthetized and normoventilated pigs. The flowrate was 2 μl/min and the sampling interval was 60 minutes. Lactate and fluorescein-isothiocyanate-dextran 4 kDa (FD-4) infusions were performed to obtain two levels of steady-state concentrations in blood. Accuracy was defined as [bronchial-MD] divided by [arterial-MD] in percent. Data presented as mean ± 95 percent confidence interval. Results The accuracy of bronchial MD was calculated with and without correction by the arteriobronchial urea gradient. The arteriobronchial lactate gradient was 1.2 ± 0.1 and FD-4 gradient was 4.0 ± 1.2. Accuracy of bronchial MD with a continuous lactate infusion was mean 25.5% (range 5.7–59.6%) with a coefficient of variation (CV) of 62.6%. With correction by the arteriobronchial urea gradient accuracy was mean 79.0% (57.3–108.1%) with a CV of 17.0%. Conclusion Urea as a marker of catheter functioning enhances bronchial MD and makes it useful for monitoring substantial changes in the composition of the ELF. PMID:17976234

  2. Novel human bronchial epithelial cell lines for cystic fibrosis research

    PubMed Central

    Fulcher, M. L.; Gabriel, S. E.; Olsen, J. C.; Tatreau, J. R.; Gentzsch, M.; Livanos, E.; Saavedra, M. T.; Salmon, P.; Randell, S. H.

    2009-01-01

    Immortalization of human bronchial epithelial (hBE) cells often entails loss of differentiation. Bmi-1 is a protooncogene that maintains stem cells, and its expression creates cell lines that recapitulate normal cell structure and function. We introduced Bmi-1 and the catalytic subunit of telomerase (hTERT) into three non-cystic fibrosis (CF) and three ΔF508 homozygous CF primary bronchial cell preparations. This treatment extended cell life span, although not as profoundly as viral oncogenes, and at passages 14 and 15, the new cell lines had a diploid karyotype. Ussing chamber analysis revealed variable transepithelial resistances, ranging from 200 to 1,200 Ω·cm2. In the non-CF cell lines, short-circuit currents were stimulated by forskolin and inhibited by CFTR(inh)-172 at levels mostly comparable to early passage primary cells. CF cell lines exhibited no forskolin-stimulated current and minimal CFTR(inh)-172 response. Amiloride-inhibitable and UTP-stimulated currents were present, but at lower and higher amplitudes than in primary cells, respectively. The cells exhibited a pseudostratified morphology, with prominent apical membrane polarization, few apoptotic bodies, numerous mucous secretory cells, and occasional ciliated cells. CF and non-CF cell lines produced similar levels of IL-8 at baseline and equally increased IL-8 secretion in response to IL-1β, TNF-α, and the Toll-like receptor 2 agonist Pam3Cys. Although they have lower growth potential and more fastidious growth requirements than viral oncogene transformed cells, Bmi-1/hTERT airway epithelial cell lines will be useful for several avenues of investigation and will help fill gaps currently hindering CF research and therapeutic development. PMID:18978040

  3. Neutrophil elastase in respiratory epithelial lining fluid of individuals with cystic fibrosis induces interleukin-8 gene expression in a human bronchial epithelial cell line.

    PubMed Central

    Nakamura, H; Yoshimura, K; McElvaney, N G; Crystal, R G

    1992-01-01

    The respiratory manifestations of cystic fibrosis (CF) are characterized by neutrophil-dominated airway inflammation. Since a variety of inflammatory stimuli are capable of inducing bronchial epithelial cells to express the gene for IL-8, a cytokine that attracts and activates neutrophils, mediators in respiratory epithelial lining fluid (ELF) of CF individuals might induce IL-8 production by epithelial cells, thus recruiting neutrophils to the airways. BET-1A human bronchial epithelial cells at rest or incubated with normal ELF showed little IL-8 gene expression, but after incubation with CF ELF, a marked increase in IL-8 transcript levels was observed. CF ELF contained high levels of neutrophil elastase (NE) and various serine protease inhibitors prevented CF ELF from inducing IL-8 gene expression in BET-1A cells, suggesting that NE was the dominant inducer for IL-8 production in CF ELF. The addition of purified NE caused BET-1A cells to increase IL-8 gene transcription with accumulation of mRNA transcripts and to release IL-8-like neutrophil chemotactic activity. These observations suggest a self-perpetuating inflammatory process on the CF bronchial surface where NE released by neutrophils induced the bronchial epithelium to secrete IL-8, which in turn recruits additional neutrophils to the bronchial surface. Images PMID:1569186

  4. Enrichment of Oct3/4-positive cells from a human bronchial epithelial cell line.

    PubMed

    Li, Xin; Jia, Lanling; Jia, Xinshan; Shi, Mumu; Li, Xiaolei; Ye, Xulv; Wang, Ruiyue; Xiong, Yanlei; Wang, Enhua; Li, Fang

    2013-07-01

    Most adult stem cells are in the G0 phase of the cell cycle, accounting for only a small percentage of the cells in the tissue. Thus, isolation of stem cells from tissues for further study represents a major challenge. The anti-tumor drug 5-fluorouracil (5-FU) selectively kills proliferating cells, sparing cells in the G0 phase. Thus, the objective of this study was to determine whether 5-FU can be used to enrich stem cells in a human bronchial epithelial (HBE) cell population in vitro. Side population (SP) cells were isolated from untreated HBE cells or HBE cells treated with 5-FU, and the resulting cells were subjected to colony formation assays, culturing of cell spheres, and tumorigenicity assays. Expression of Oct3/4, Sox2, PCK, and β-catenin were examined by Western blot analysis and immunofluorescence. Treatment with 5-FU increased the percentage of SP cells from 0.3% to 1.5%, and the clonogenic ability of 5-FU-treated cells was more than twofold higher than that of HBE cells. Cells that survived after 5-FU treatment exhibited a higher capacity for sphere formation. Furthermore, spheres formed from 5-FU-treated cells possessed the capacity to generate differentiated progenies. Cells treated with 5-FU also exhibited tumorigenic potential, based on tumor formation assays in nude mice, and Oct3/4-positive cell aggregates were identified in the resulting tumors. In this study, we have shown that 5-FU treatment enriched the population of cells expressing the putative embryonic markers Oct3/4 and Sox2 and exhibiting nuclear accumulation of β-catenin. Furthermore, 5-FU-treated cells expressed low levels of the epithelial differentiation marker PCK. Analysis of epigenetic modifications suggested that Oct3/4-positive cells possessed characteristics of stem cells. These results demonstrate that treatment with 5-FU can enrich the stem cell population present in a human bronchial epithelial cell line, and implicate combined treatment with 5-FU and serum-free medium as

  5. Effect of ozone on platelet-activating factor production in phorbol-differentiated HL60 cells, a human bronchial epithelial cell line (BEAS S6), and primary human bronchial epithelial cells

    SciTech Connect

    Samet, J.M.; Noah, T.L.; Devlin, R.B.; Yankaskas, J.R.; McKinnon, K.; Dailey, L.A.; Friedman, M. )

    1992-11-01

    Platelet-activating factor (PAF) is a phospholipid with a wide spectrum of pro-inflammatory properties. In the lung, PAF induces airway hyperresponsiveness, neutrophil sequestration, and increased vascular permeability. The alveolar macrophage and the bronchial epithelium are tissues that are exposed to inhaled ozone (O3). We studied the effect of an in vitro O3 exposure on PAF production in a macrophage-like HL60 human cell line (dHL60), a human bronchial epithelial cell line (BEAS S6), and also in primary human bronchial epithelial cells. PAF was quantified by thin-layer chromatographic separation of lipid extracts from cells radiolabeled with [3H]lysoPAF and by radioimmunoassay. In vitro exposure of dHL60 cells to 0.05 to 1.0 ppm O3 for 15 to 120 min was found to significantly increase PAF levels above air control values at all exposure levels and time points (average increase of 92%). Similarly, BEAS S6 cells grown on collagen-coated filter supports and exposed to 0.05 to 1.0 ppm O3 for 60 min released an average increase in PAF of 626% above control values. Primary human bronchial epithelial cells also demonstrated significant increases in [3H]PAF release (average increase of 289% after exposure to 1.0 ppm O3 for 60 min) compared with paired air controls. These findings suggest that some of the effects of O3 inhalation may be mediated by PAF.

  6. The response of a human bronchial epithelial cell line to histamine: Intracellular calcium changes and extracellular release of inflammatory mediators

    SciTech Connect

    Noah, T.L.; Paradiso, A.M.; Madden, M.C.; McKinnon, K.P.; Devlin, R.B. )

    1991-11-01

    Epithelial cells are likely to modulate inflammation and tissue repair in the airways, but the factors responsible for these processes remain unclear. Because human airway epithelia are infrequently available for in vitro studies, transformed epithelial cell lines are of interest as models. The authors therefore investigated the response of an SV-40/adenovirus-transformed human bronchial epithelial cell line (BEAS-2B) to histamine, a mediator with relevance for airway diseases. The intracellular calcium response to histamine (10(-4) M) was measured, using Fura-2 and microspectrofluorimetry. Histamine induced a transient increase in intracellular calcium that originated from intracellular sources; this effect was inhibited by the H1 receptor antagonist diphenhydramine, suggesting that BEAS cells retain functioning histamine receptors. BEAS cells were grown to confluence on microporous, collagen-coated filters, allowing measurement of vectorial release of soluble mediators. Monolayers exposed to histamine for 30 min released interleukin-6 and fibronectin in the apical direction, in a dose-dependent manner. Little eicosanoid production was induced by histamine, either in the apical or the basolateral direction, although BEAS cells constitutively produced small amounts of prostaglandin E2 and 15-HETE. However, these cells formed large amounts of eicosanoids in response to ozone exposure as a positive control. Comparison of their data with published reports for human airway epithelia in primary culture suggests that the BEAS cell line is, in a number of respects, a relevant model for the study of airway epithelial responses to a variety of stimuli.

  7. In vitro ozone exposure increases release of arachidonic acid products from a human bronchial epithelial cell line

    SciTech Connect

    McKinnon, K.P.; Madden, M.C.; Noah, T.L.; Devlin, R.B. )

    1993-02-01

    Eicosanoids released after ozone exposure of a human bronchial epithelial cell line, BEAS-S6, were analyzed by high-pressure liquid chromatography (HPLC) of supernatants from exposed cells prelabeled with [3H]arachidonic acid. BEAS cells released thromboxane B2 (TxB2), prostaglandin E2 (PGE2), leukotriene C4 (LTC4), LTD4, LTE4, and 12-hydroxyheptadecatrienoic acid (HHT) after exposure to ozone at concentrations of 0.1, 0.25, 0.5, and 1.0 ppm. The eicosanoids were identified by coelution with authentic standards. The largest product from ozone-exposed BEAS cells was the most polar peak, designated Peak 1. Release of cyclooxygenase products such as TxB2, PGE2, and HHT was inhibited by acetylsalicylic acid. Peaks that migrated with authentic standards for LTB4, LTC4, and LTD4 were inhibited by the lipoxygenase inhibitor nordihydroguaiaretic acid. The leukotrienes LTB4 and LTC4/D4 could also be detected by immunoassay of concentrated peak fractions. Thus BEAS cells released eicosanoids from cyclooxygenase and lipoxygenase pathways of arachidonic acid metabolism following exposure to ozone. Airway epithelial cells may be an important source of eicosanoids following ozone stimulation in humans.

  8. Evaluations of thyme extract effects in human normal bronchial and tracheal epithelial cell lines and in human lung cancer cell line.

    PubMed

    Oliviero, Marinelli; Romilde, Iannarelli; Beatrice, Morelli Maria; Matteo, Valisi; Giovanna, Nicotra; Consuelo, Amantini; Claudio, Cardinali; Giorgio, Santoni; Filippo, Maggi; Massimo, Nabissi

    2016-08-25

    Thyme (Thymus vulgaris) is used traditionally to prepare herbal remedies possessing expectorant, mucolytic, antitussive and antispasmodic properties. The aim of the present study was to investigate the effects of a standardized hydroalcoholic extract of thyme on primary human airway (bronchial/tracheal) epithelial cell lines in a model of lung inflammation induced by LPS. In addition, the effects of thyme extract on human lung cancer cell line (H460) were analysed. Thyme extract showed significant anti-inflammatory properties by reducing the NF-κB p65 and NF-κB p52 transcription factors protein levels followed by the decrease of pro-inflammatory cytokines (IL-1 beta and IL-8), and Muc5ac secretion in human normal bronchial and tracheal epithelial cells. Moreover, the extract showed cytotoxic effects on H460 cancer cells, modulated the release of IL-1 beta, IL-8 and down-regulated NF-κB p65 and NF-κB p52 proteins. Taken together, these results substantiated the traditional uses of thyme in the treatment of respiratory diseases. Thyme extract might be an effective treatment of chronic diseases based on inflammatory processes when hypersecretion of mucus overwhelms the ciliary clearance and obstructs airways, causing morbidity and mortality. Moreover thyme extract, evaluated in H460 lung cancer cell line, demonstrated to induce cell cytotoxicity in addition to reduce inflammatory cell signals. PMID:27369807

  9. Paracellular Transport through Healthy and Cystic Fibrosis Bronchial Epithelial Cell Lines – Do We Have a Proper Model?

    PubMed Central

    Weiser, Nelly; Kusche-Vihrog, Kristina; Günzel, Dorothee; Schillers, Hermann

    2014-01-01

    It has been reported recently that the cystic fibrosis transmembrane conductance regulator (CFTR) besides transcellular chloride transport, also controls the paracellular permeability of bronchial epithelium. The aim of this study was to test whether overexpressing wtCFTR solely regulates paracellular permeability of cell monolayers. To answer this question we used a CFBE41o– cell line transfected with wtCFTR or mutant F508del-CFTR and compered them with parental line and healthy 16HBE14o– cells. Transepithelial electrical resistance (TER) and paracellular fluorescein flux were measured under control and CFTR-stimulating conditions. CFTR stimulation significant decreased TER in 16HBE14o– and also in CFBE41o– cells transfected with wtCFTR. In contrast, TER increased upon stimulation in CFBE41o– cells and CFBE41o– cells transfected with F508del-CFTR. Under non-stimulated conditions, all four cell lines had similar paracellular fluorescein flux. Stimulation increased only the paracellular permeability of the 16HBE14o– cell monolayers. We observed that 16HBE14o– cells were significantly smaller and showed a different structure of cell-cell contacts than CFBE41o– and its overexpressing clones. Consequently, 16HBE14o– cells have about 80% more cell-cell contacts through which electrical current and solutes can leak. Also tight junction protein composition is different in ‘healthy’ 16HBE14o– cells compared to ‘cystic fibrosis’ CFBE41o– cells. We found that claudin-3 expression was considerably stronger in 16HBE14o– cells than in the three CFBE41o– cell clones and thus independent of the presence of functional CFTR. Together, CFBE41o– cell line transfection with wtCFTR modifies transcellular conductance, but not the paracellular permeability. We conclude that CFTR overexpression is not sufficient to fully reconstitute transport in CF bronchial epithelium. Hence, it is not recommended to use those cell lines to study CFTR

  10. Comparison of the Pharmacodynamics of Biapenem in Bronchial Epithelial Lining Fluid in Healthy Volunteers Given Half-Hour and Three-Hour Intravenous Infusions▿

    PubMed Central

    Kikuchi, Eiki; Kikuchi, Junko; Nasuhara, Yasuyuki; Oizumi, Satoshi; Ishizaka, Akitoshi; Nishimura, Masaharu

    2009-01-01

    The time above the MIC (T>MIC) is the pharmacokinetic/pharmacodynamic (PK/PD) parameter that correlates with the therapeutic efficacy of beta-lactam antibiotics. A prolonged infusion can provide plasma drug concentrations that remain above the MIC for a long period. The objective of this study was to compare the PK/PD parameters in bronchial epithelial lining fluid (ELF) of biapenem given as 0.5-h and 3-h infusions by using bronchoscopic microsampling (BMS). Six healthy adult volunteers received 0.5-h and 3-h infusions of 0.3 g of biapenem with a washout interval. BMS was performed repeatedly from 0.5 to 24 h after biapenem administration in order to determine the pharmacokinetics in bronchial ELF. The subjects received intravenous biapenem with the same regimens again and then underwent bronchoalveolar lavage (BAL) at the end of infusion in order to determine the concentration of the drug in alveolar ELF. The percentages (means ± standard deviations) of T>MIC in bronchial ELF at MICs from 0.25 to 4 μg/ml ranged from zero to 34.6% ± 5.2% after the 0.5-h infusion and from 5.1% ± 5.6% to 52.2% ± 17.0% after the 3-h infusion. The percentage of T>MIC in bronchial ELF after the 3-h infusion tended to be higher than that after the 0.5-h infusion. The concentrations of the drug in alveolar ELF after 0.5-h and 3-h infusions were 3.5 ± 1.2 μg/ml and 1.3 ± 0.3 μg/ml, respectively. The present results support the use of prolonged infusions of beta-lactam antibiotics and may provide critical information for successful treatment of lower respiratory tract infections based on PK/PD parameters in bronchial ELF. PMID:19380601

  11. Comparison of the pharmacodynamics of biapenem in bronchial epithelial lining fluid in healthy volunteers given half-hour and three-hour intravenous infusions.

    PubMed

    Kikuchi, Eiki; Kikuchi, Junko; Nasuhara, Yasuyuki; Oizumi, Satoshi; Ishizaka, Akitoshi; Nishimura, Masaharu

    2009-07-01

    The time above the MIC (T>MIC) is the pharmacokinetic/pharmacodynamic (PK/PD) parameter that correlates with the therapeutic efficacy of beta-lactam antibiotics. A prolonged infusion can provide plasma drug concentrations that remain above the MIC for a long period. The objective of this study was to compare the PK/PD parameters in bronchial epithelial lining fluid (ELF) of biapenem given as 0.5-h and 3-h infusions by using bronchoscopic microsampling (BMS). Six healthy adult volunteers received 0.5-h and 3-h infusions of 0.3 g of biapenem with a washout interval. BMS was performed repeatedly from 0.5 to 24 h after biapenem administration in order to determine the pharmacokinetics in bronchial ELF. The subjects received intravenous biapenem with the same regimens again and then underwent bronchoalveolar lavage (BAL) at the end of infusion in order to determine the concentration of the drug in alveolar ELF. The percentages (means +/- standard deviations) of T>MIC in bronchial ELF at MICs from 0.25 to 4 microg/ml ranged from zero to 34.6% +/- 5.2% after the 0.5-h infusion and from 5.1% +/- 5.6% to 52.2% +/- 17.0% after the 3-h infusion. The percentage of T>MIC in bronchial ELF after the 3-h infusion tended to be higher than that after the 0.5-h infusion. The concentrations of the drug in alveolar ELF after 0.5-h and 3-h infusions were 3.5 +/- 1.2 microg/ml and 1.3 +/- 0.3 microg/ml, respectively. The present results support the use of prolonged infusions of beta-lactam antibiotics and may provide critical information for successful treatment of lower respiratory tract infections based on PK/PD parameters in bronchial ELF. PMID:19380601

  12. THE RESPONSE OF A HUMAN BRONCHIAL EPITHELIAL CELL LINE TO HISTAMINE: INTRACELLULAR CALCIUM CHANGES AND EXTRACELLULAR RELEASE OF INFLAMMATORY

    EPA Science Inventory

    The contribution of airway epithelium-derived factors to inflammation and tissue repair is unclear. ecause human airway epithelia are infrequently available for in vitro studies, transformed epithelial cell lines are of interest as models. e therefore investigated the response of...

  13. Promotion of a cancer-like phenotype, through chronic exposure to inflammatory cytokines and hypoxia in a bronchial epithelial cell line model

    PubMed Central

    Baird, Anne-Marie; Gray, Steven G.; Richard, Derek J.; O’Byrne, Kenneth J.

    2016-01-01

    Globally, lung cancer accounts for approximately 20% of all cancer related deaths. Five-year survival is poor and rates have remained unchanged for the past four decades. There is an urgent need to identify markers of lung carcinogenesis and new targets for therapy. Given the recent successes of immune modulators in cancer therapy and the improved understanding of immune evasion by tumours, we sought to determine the carcinogenic impact of chronic TNF-α and IL-1β exposure in a normal bronchial epithelial cell line model. Following three months of culture in a chronic inflammatory environment under conditions of normoxia and hypoxia (0.5% oxygen), normal cells developed a number of key genotypic and phenotypic alterations. Important cellular features such as the proliferative, adhesive and invasive capacity of the normal cells were significantly amplified. In addition, gene expression profiles were altered in pathways associated with apoptosis, angiogenesis and invasion. The data generated in this study provides support that TNF-α, IL-1β and hypoxia promotes a neoplastic phenotype in normal bronchial epithelial cells. In turn these mediators may be of benefit for biomarker and/or immune-therapy target studies. This project provides an important inflammatory in vitro model for further immuno-oncology studies in the lung cancer setting. PMID:26759080

  14. Anoctamin 1 dysregulation alters bronchial epithelial repair in cystic fibrosis.

    PubMed

    Ruffin, Manon; Voland, Mélanie; Marie, Solenne; Bonora, Monique; Blanchard, Elise; Blouquit-Laye, Sabine; Naline, Emmanuel; Puyo, Philippe; Le Rouzic, Philippe; Guillot, Loic; Corvol, Harriet; Clement, Annick; Tabary, Olivier

    2013-12-01

    Cystic fibrosis (CF) airway epithelium is constantly subjected to injury events due to chronic infection and inflammation. Moreover, abnormalities in CF airway epithelium repair have been described and contribute to the lung function decline seen in CF patients. In the last past years, it has been proposed that anoctamin 1 (ANO1), a Ca(2+)-activated Cl(-) channel, might offset the CFTR deficiency but this protein has not been characterized in CF airways. Interestingly, recent evidence indicates a role for ANO1 in cell proliferation and tumor growth. Our aims were to study non-CF and CF bronchial epithelial repair and to determine whether ANO1 is involved in airway epithelial repair. Here, we showed, with human bronchial epithelial cell lines and primary cells, that both cell proliferation and migration during epithelial repair are delayed in CF compared to non-CF cells. We then demonstrated that ANO1 Cl(-) channel activity was significantly decreased in CF versus non-CF cells. To explain this decreased Cl(-) channel activity in CF context, we compared ANO1 expression in non-CF vs. CF bronchial epithelial cell lines and primary cells, in lung explants from wild-type vs. F508del mice and non-CF vs. CF patients. In all these models, ANO1 expression was markedly lower in CF compared to non-CF. Finally, we established that ANO1 inhibition or overexpression was associated respectively with decreases and increases in cell proliferation and migration. In summary, our study demonstrates involvement of ANO1 decreased activity and expression in abnormal CF airway epithelial repair and suggests that ANO1 correction may improve this process. PMID:24080196

  15. Glucocorticoid dexamethasone down-regulates basal and vitamin D3 induced cathelicidin expression in human monocytes and bronchial epithelial cell line.

    PubMed

    Kulkarni, Nikhil Nitin; Gunnarsson, Hörður Ingi; Yi, Zhiqian; Gudmundsdottir, Steinunn; Sigurjonsson, Olafur E; Agerberth, Birgitta; Gudmundsson, Gudmundur H

    2016-02-01

    Glucocorticoids (GCs) have been extensively used as the mainstream treatment for chronic inflammatory disorders. The persistent use of steroids in the past decades and the association with secondary infections warrants for detailed investigation into their effects on the innate immune system and the therapeutic outcome. In this study, we analyse the effect of GCs on antimicrobial polypeptide (AMP) expression. We hypothesize that GC related side effects, including secondary infections are a result of compromised innate immune responses. Here, we show that treatment with dexamethasone (Dex) inhibits basal mRNA expression of the following AMPs; human cathelicidin, human beta defensin 1, lysozyme and secretory leukocyte peptidase 1 in the THP-1 monocytic cell-line (THP-1 monocytes). Furthermore, pre-treatment with Dex inhibits vitamin D3 induced cathelicidin expression in THP-1 monocytes, primary monocytes and in the human bronchial epithelial cell line BCi NS 1.1. We also demonstrate that treatment with the glucocorticoid receptor (GR) inhibitor RU486 counteracts Dex mediated down-regulation of basal and vitamin D3 induced cathelicidin expression in THP-1 monocytes. Moreover, we confirmed the anti-inflammatory effect of Dex. Pre-treatment with Dex inhibits dsRNA mimic poly IC induction of the inflammatory chemokine IP10 (CXCL10) and cytokine IL1B mRNA expression in THP-1 monocytes. These results suggest that GCs inhibit innate immune responses, in addition to exerting beneficial anti-inflammatory effects. PMID:26358366

  16. Tungsten-induced carcinogenesis in human bronchial epithelial cells.

    PubMed

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong; Oksuz, Betul Akgol; Shen, Steven; Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta; Costa, Max

    2015-10-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. PMID:26164860

  17. Gene expression analysis uncovers novel Hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells

    PubMed Central

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J. Fah.; Cho, Michael H.; Mancini, John D.; Lao, Taotao; Thibault, Derek M.; Litonjua, Gus; Bakke, Per S.; Gulsvik, Amund; Lomas, David A.; Beaty, Terri H.; Hersh, Craig P.; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A.; Rennard, Stephen I.; Perrella, Mark A.; Choi, Augustine M.K.; Quackenbush, John; Silverman, Edwin K.

    2013-01-01

    Hedgehog Interacting Protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. PMID:23459001

  18. Bronchial epithelial spheroids: an alternative culture model to investigate epithelium inflammation-mediated COPD

    PubMed Central

    Deslee, Gaetan; Dury, Sandra; Perotin, Jeanne M; Al Alam, Denise; Vitry, Fabien; Boxio, Rachel; Gangloff, Sophie C; Guenounou, Moncef; Lebargy, François; Belaaouaj, Abderrazzaq

    2007-01-01

    Background Chronic obstructive pulmonary disease (COPD) is characterized by abnormal lung inflammation that exceeds the protective response. Various culture models using epithelial cell lines or primary cells have been used to investigate the contribution of bronchial epithelium in the exaggerated inflammation of COPD. However, these models do not mimic in vivo situations for several reasons (e.g, transformed epithelial cells, protease-mediated dissociation of primary cells, etc.). To circumvent these concerns, we developed a new epithelial cell culture model. Methods Using non transformed non dissociated bronchial epithelium obtained by bronchial brushings from COPD and non-COPD smokers, we developed a 3-dimensional culture model, bronchial epithelial spheroids (BES). BES were analyzed by videomicroscopy, light microscopy, immunofluorescence, and transmission electron microscopy. We also compared the inflammatory responses of COPD and non-COPD BES. In our study, we chose to stimulate BES with lipopolycaccharide (LPS) and measured the release of the pro-inflammatory mediators interleukin-8 (IL-8) and leukotriene B4 (LTB4) and the anti-inflammatory mediator prostaglandin E2 (PGE2). Results BES obtained from both COPD and non-COPD patients were characterized by a polarized bronchial epithelium with tight junctions and ciliary beating, composed of basal cells, secretory cells and ciliated cells. The ciliary beat frequency of ciliated cells was not significantly different between the two groups. Of interest, BES retained their characteristic features in culture up to 8 days. BES released the inflammatory mediators IL-8, PGE2 and LTB4 constitutively and following exposure to LPS. Interestingly, LPS induced a higher release of IL-8, but not PGE2 and LTB4 in COPD BES (p < 0.001) which correlated with lung function changes. Conclusion This study provides for the first time a compelling evidence that the BES model provides an unaltered bronchial surface epithelium. More

  19. Endocytosis of Multiwalled Carbon Nanotubes in Bronchial Epithelial and Mesothelial Cells

    PubMed Central

    Maruyama, Kayo; Matsuda, Yoshikazu; Kobayashi, Shinsuke; Tanaka, Manabu; Aoki, Kaoru; Takanashi, Seiji; Okamoto, Masanori; Kato, Hiroyuki

    2015-01-01

    Bronchial epithelial cells and mesothelial cells are crucial targets for the safety assessment of inhalation of carbon nanotubes (CNTs), which resemble asbestos particles in shape. Intrinsic properties of multiwalled CNTs (MWCNTs) are known to cause potentially hazardous effects on intracellular and extracellular pathways. These interactions alter cellular signaling and affect major cell functions, resulting in cell death, lysosome injury, reactive oxygen species production, apoptosis, and cytokine release. Furthermore, CNTs are emerging as a novel class of autophagy inducers. Thus, in this study, we focused on the mechanisms of MWCNT uptake into the human bronchial epithelial cells (HBECs) and human mesothelial cells (HMCs). We verified that MWCNTs are actively internalized into HBECs and HMCs and were accumulated in the lysosomes of the cells after 24-hour treatment. Next, we determined which endocytosis pathways (clathrin-mediated, caveolae-mediated, and macropinocytosis) were associated with MWCNT internalization by using corresponding endocytosis inhibitors, in two nonphagocytic cell lines derived from bronchial epithelial cells and mesothelioma cells. Clathrin-mediated endocytosis inhibitors significantly suppressed MWCNT uptake, whereas caveolae-mediated endocytosis and macropinocytosis were also found to be involved in MWCNT uptake. Thus, MWCNTs were positively taken up by nonphagocytic cells, and their cytotoxicity was closely related to these three endocytosis pathways. PMID:26090445

  20. CYTOTOXICITY OF CHEMICAL CARCINOGENS TOWARDS HUMAN BRONCHIAL EPITHELIAL CELLS EVALUATED IN A CLONAL ASSAY

    EPA Science Inventory

    Survival of human bronchial epithelial cells after administration of four chemical carcinogens was measured in a clonal assay. Human bronchial epithelial cells were obtained from outgrowths of explanted tissue pieces. Serum-free medium was used for both explant culture and clonal...

  1. Lipoxin A4 prevents tight junction disruption and delays the colonization of cystic fibrosis bronchial epithelial cells by Pseudomonas aeruginosa.

    PubMed

    Higgins, Gerard; Fustero Torre, Coral; Tyrrell, Jean; McNally, Paul; Harvey, Brian J; Urbach, Valerie

    2016-06-01

    The specialized proresolution lipid mediator lipoxin A4 (LXA4) is abnormally produced in cystic fibrosis (CF) airways. LXA4 increases the CF airway surface liquid height and stimulates airway epithelial repair and tight junction formation. We report here a protective effect of LXA4 (1 nM) against tight junction disruption caused by Pseudomonas aeruginosa bacterial challenge together with a delaying action against bacterial invasion in CF airway epithelial cells from patients with CF and immortalized cell lines. Bacterial invasion and tight junction integrity were measured by gentamicin exclusion assays and confocal fluorescence microscopy in non-CF (NuLi-1) and CF (CuFi-1) bronchial epithelial cell lines and in primary CF cultures, grown under an air/liquid interface, exposed to either a clinical or laboratory strains of P. aeruginosa LXA4 delayed P. aeruginosa invasion and transepithelial migration in CF and normal bronchial epithelial cell cultures. These protective effects of LXA4 were inhibited by the ALX/FPR2 lipoxin receptor antagonist BOC-2. LXA4 prevented the reduction in mRNA biosynthesis and protein abundance of the tight junction protein ZO-1 and reduced tight junction disruption induced by P. aeruginsosa inoculation. In conclusion, LXA4 plays a protective role in bronchial epithelium by stimulating tight junction repair and by delaying and reducing the invasion of CF bronchial epithelial cells by P. aeruginsosa. PMID:27084849

  2. Development of an in vitro model of human bronchial epithelial barrier to study nanoparticle translocation.

    PubMed

    George, Isabelle; Vranic, Sandra; Boland, Sonja; Courtois, Arnaud; Baeza-Squiban, Armelle

    2015-02-01

    Inhalation is the most frequent route of unintentional exposure to nanoparticles (NPs). Our aim was to compare different in vitro models of human lung epithelial monolayers for their suitability to assess the translocation of 50 nm fluorescently labelled silica NPs (50 nm-SiO(2)-FITC-NPs). Human bronchial epithelial cell lines NCI-H292 and Calu-3 as well as human alveolar cell line A549 were seeded onto Transwell filters (TF) separating the well into an apical and a basal compartment. Measurements of the transepithelial electric resistance and monitoring the paracellular transport of a fluorescent marker (Lucifer Yellow) have shown that only Calu-3 cells formed a tight epithelium. In the absence of cells 4% of the initially applied NP concentration was found to cross the TF but the majority remained trapped inside the filter. After 24 h of treatment, 50 nm-SiO(2)-FITC-NPs were taken up by all cell types but their translocation was inversely correlated to the efficiency to prevent LY passage: translocation represented 3% of the initially apically applied NP concentration for Calu-3 cells, 9% for NCI-H292 cells and 35% for A549 cells. In conclusion, 50 nm-SiO(2)-FITC-NPs can cross different bronchial epithelial barriers, but the Calu-3 cell line appears to be the most relevant model for studying NP translocation. PMID:25197033

  3. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB

  4. Human bronchial epithelial cells injury and cytokine production induced by Tityus serrulatus scorpion venom: An in vitro study.

    PubMed

    Rigoni, Vera Lucia Silva; Kwasniewski, Fabio H; Vieira, Rodolfo Paula; Linhares, Ingrid Sestrem; da Silva, Joelmir Lucena Veiga; Nogueira-Pedro, Amanda; Zamuner, Stella Regina

    2016-09-15

    Tityus serrulatus is the scorpion specie responsible for the majority of scorpion sting accidents in Brazil. Symptoms of envenomation by Tityus serrulatus range from local pain to severe systemic reactions such as cardiac dysfunction and pulmonary edema. Thus, this study has evaluated the participation of bronchial epithelial cells in the pulmonary effects of Tityus serrulatus scorpion venom (Tsv). Human bronchial epithelial cell line BEAS-2B were utilized as a model target and were incubated with Tsv (10 or 50 μg/mL) for 1, 3, 6 and 24 h. Effects on cellular response of venom-induce cytotoxicity were examined including cell viability, cell integrity, cell morphology, apoptosis/necrosis as well as cell activation through the release of pro-inflammatory cytokines IL-1β, IL-6 and IL-8. Tsv caused a decrease in cell viability at 10 and 50 μg/mL, which was confirmed by lactate dehydrogenase (LDH) measurement. Flow cytometry analyses revealed necrosis as the main cell death pathway caused by Tsv. Furthermore, Tsv induced the release of IL-1β, IL-6 and IL-8. Altogether, these results demonstrate that Tsv induces cytotoxic effects on bronchial epithelial cells, involving necrosis and release of pro-inflammatory cytokines, suggesting that bronchial epithelial cells may play a role in the pulmonary injury caused by Tsv. PMID:27452928

  5. Alterations of p53 in tumorigenic human bronchial epithelial cells correlate with metastatic potential

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Willey, J. C.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    1999-01-01

    The cellular and molecular mechanisms of radiation-induced lung cancer are not known. In the present study, alterations of p53 in tumorigenic human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells induced by a single low dose of either alpha-particles or 1 GeV/nucleon (56)Fe were analyzed by PCR-single-stranded conformation polymorphism (SSCP) coupled with sequencing analysis and immunoprecipitation assay. A total of nine primary and four secondary tumor cell lines, three of which were metastatic, together with the parental BEP2D and primary human bronchial epithelial (NHBE) cells were studied. The immunoprecipitation assay showed overexpression of mutant p53 proteins in all the tumor lines but not in NHBE and BEP2D cells. PCR-SSCP and sequencing analysis found band shifts and gene mutations in all four of the secondary tumors. A G-->T transversion in codon 139 in exon 5 that replaced Lys with Asn was detected in two tumor lines. One mutation each, involving a G-->T transversion in codon 215 in exon 6 (Ser-->lle) and a G-->A transition in codon 373 in exon 8 (Arg-->His), was identified in the remaining two secondary tumors. These results suggest that p53 alterations correlate with tumorigenesis in the BEP2D cell model and that mutations in the p53 gene may be indicative of metastatic potential.

  6. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    SciTech Connect

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J.

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  7. Control of growth and squamous differentiation in normal human bronchial epithelial cells by chemical and biological modifiers and transferred genes

    SciTech Connect

    Pfeifer, A.M.; Lechner, J.F.; Masui, T.; Reddel, R.R.; Mark, G.E.; Harris, C.C.

    1989-03-01

    The majority of human lung cancers arise from bronchial epithelial cells. The normal pseudostratified bronchial epithelium is composed of basal, mucous, and ciliated cells. This multi-differentiated epithelium usually responds to xenobiotics and physical injury by undergoing basal cell hyperplasia, mucous cell hyperplasia, and squamous metaplasia. One step of the multistage process of carcinogenesis is thought to involve aberrations in control of the squamous metaplastic processes. Decreased responsiveness to regulators of terminal squamous differentiation may confer a selective clonal expansion advantage to an initiated cell. We studied the effects of endogenous (e.g., transforming growth factor beta 1 (TGF-beta 1) and serum) and exogenous (e.g., 12-O-tetradecanoyl-13-phorbol-acetate (TPA), tobacco smoke condensate, and aldehydes) modifiers of normal human bronchial epithelial (NHBE) cell in a serum-free culture system. NHBE cells are growth inhibited by all of these compounds and induced to undergo squamous differentiation by TGF-beta 1 or TPA. In contrast, lung carcinoma cell lines are relatively resistant to inducers of terminal squamous differentiation which may provide them with a selective growth advantage. Chemical agents and activated protooncogenes (ras,raf,myc) altered the response to endogenous and exogenous inducers of squamous differentiation and caused extended cellular lifespan, aneuploidy, and/or tumorigenicity. The data suggest a close relationship between dysregulation of terminal differentiation pathways and neoplastic transformation of human bronchial epithelial cells.

  8. Antiproteases modulate bronchial epithelial cell responses to endotoxin.

    PubMed Central

    Koyama, S.; Rennard, S. I.; Claassen, L.; Robbins, R. A.

    1995-01-01

    Escherichia coli endotoxin (0.1 to 1000 micrograms/ml) stimulated the release of neutrophil chemotactic activity (P < 0.001) and induced bronchial epithelial cell (BEC) cytotoxicity assessed by lactate dehydrogenase release (P < 0.001). Endotoxin (100 micrograms/ml) inhibited BEC accumulation (P < 0.001). In the present study, we investigated the role of proteolytic activity of BECs per se in response to endotoxin. Several structurally and functionally different antiproteases, alpha 1 protease inhibitor, soybean trypsin inhibitor, two chloromethyl ketone derivatives (N-tosyl-L-lysine chloromethyl ketone and methoxysuccinyl-Ala-Ala-Pro-Val chloromethyl ketone), and L-658,758, a neutrophil elastase inhibitor, attenuated the release of neutrophil chemotactic activity and lactate dehydrogenase (P < 0.01). alpha 1-Protease inhibitor and N-tosyl-L-lysine chloromethyl ketone attenuated the inhibition of BEC accumulation by endotoxin (P < 0.001). The proteolytic enzyme activity measured by synthetic substrates revealed that endotoxin significantly augmented the serine proteolytic activity in the cell layers. Culture supernatant fluids and cell lysates of BECs in the presence of endotoxin solubilized 14C-labeled casein. These data suggest that responses of BECs to endotoxin may involve activation of cellular proteolytic activity. PMID:7747815

  9. Differential deposition of fibronectin by asthmatic bronchial epithelial cells.

    PubMed

    Ge, Qi; Zeng, Qingxiang; Tjin, Gavin; Lau, Edmund; Black, Judith L; Oliver, Brian G G; Burgess, Janette K

    2015-11-15

    Altered ECM protein deposition is a feature in asthmatic airways. Fibronectin (Fn), an ECM protein produced by human bronchial epithelial cells (HBECs), is increased in asthmatic airways. This study investigated the regulation of Fn production in asthmatic or nonasthmatic HBECs and whether Fn modulated HBEC proliferation and inflammatory mediator secretion. The signaling pathways underlying transforming growth factor (TGF)-β1-regulated Fn production were examined using specific inhibitors for ERK, JNK, p38 MAPK, phosphatidylinositol 3 kinase, and activin-like kinase 5 (ALK5). Asthmatic HBECs deposited higher levels of Fn in the ECM than nonasthmatic cells under basal conditions, whereas cells from the two groups had similar levels of Fn mRNA and soluble Fn. TGF-β1 increased mRNA levels and ECM and soluble forms of Fn but decreased cell proliferation in both cells. The rate of increase in Fn mRNA was higher in nonasthmatic cells. However, the excessive amounts of ECM Fn deposited by asthmatic cells after TGF-β1 stimulation persisted compared with nonasthmatic cells. Inhibition of ALK5 completely prevented TGF-β1-induced Fn deposition. Importantly, ECM Fn increased HBEC proliferation and IL-6 release, decreased PGE2 secretion, but had no effect on VEGF release. Soluble Fn had no effect on cell proliferation and inflammatory mediator release. Asthmatic HBECs are intrinsically primed to produce more ECM Fn, which when deposited into the ECM, is capable of driving remodeling and inflammation. The increased airway Fn may be one of the key driving factors in the persistence of asthma and represents a novel, therapeutic target. PMID:26342086

  10. Epithelial-mesenchymal transition and FOXA genes during tobacco smoke carcinogen induced transformation of human bronchial epithelial cells.

    PubMed

    Bersaas, Audun; Arnoldussen, Yke Jildouw; Sjøberg, Mari; Haugen, Aage; Mollerup, Steen

    2016-09-01

    Lung cancer is largely an environmentally caused disease with poor prognosis. An in vitro transformation model of human bronchial epithelial cells (HBEC) was used to study long-term effects of tobacco smoke carcinogens on epithelial-mesenchymal transition (EMT) and the forkhead box transcription factors FOXA1 and FOXA2. CDK4 and hTERT immortalized HBEC2 and HBEC12 cell lines were exposed weekly to either cigarette smoke condensate (CSC), benzo[a]pyrene, or methylnitrosourea. Transformed cell lines were established from soft-agar colonies after 12weeks of exposure. HBEC12 was transformed by all exposures while HBEC2 was only transformed by CSC. Untransformed HBEC2 showed little invasive capacity, whereas transformed cell lines completely closed the gap in a matrigel scratch wound assay. CDH1 was down-regulated in all of the transformed cell lines. In contrast, CDH2 was up-regulated in both HBEC2 and one of the HBEC12 transformed cell lines. Furthermore, transformed cells showed activation of EMT markers including SNAI1, ZEB1, VIM, and MMP2. All transformed cell lines had significant down-regulation of FOXA1 and FOXA2, indicating a possible role in cell transformation and EMT. ChIP analysis showed increased binding of Histone-H3 and macroH2A in FOXA1 and FOXA2 in the transformed HBEC2 cell lines, indicating a compact chromatin. In conclusion, long-term carcinogen exposure lead to down-regulation of FOXA1 and FOXA2 concomitantly with the occurrence of EMT and in vitro transformation in HBEC cells. PMID:27221058

  11. Bronchial brush biopsies for studies of epithelial inflammation in stable asthma and nonobstructive chronic bronchitis.

    PubMed

    Riise, G C; Andersson, B; Ahlstedt, S; Enander, I; Söderberg, M; Löwhagen, O; Larsson, S

    1996-08-01

    Recently, bronchial brush biopsy (BBB) has been introduced as a complimentary method to bronchial forceps biopsy for the study of bronchial epithelial cells. We wanted to determine whether epithelial inflammatory cells in bronchial brush biopsies can reflect mucosal inflammation assessed indirectly by levels of cellular activation markers in bronchial lavage fluid. We studied 15 healthy controls, 11 asthmatics with regular steroid inhalation therapy, 13 asthmatics without steroids, and 10 smokers with nonobstructive chronic bronchitis. Differential counts of epithelial and inflammatory cells were made from the BBB material. Bronchial lavage levels of eosinophil cationic protein (ECP), myeloperoxidase (MPO), tryptase, hyaluronan and interleukin-8 (IL-8) were measured as indirect markers for inflammatory cell activation. We found an increased percentage of eosinophil granulocytes in the BBB from the steroid-untreated asthmatic patients (1.16%) in comparison to the other groups (0.11%, 0.09% and 0.02%, respectively; p<0.01). In the steroid-untreated asthmatic patients, the percentage of eosinophils correlated with ECP in bronchial lavage fluid (r=0.73; p<0.01), indicating that the BBB method can reflect the degree of eosinophilic activation. A negative correlation was found for the percentage of eosinophils in BBB with levels of provocative concentration of methacholine causing a 20% fall in forced expiratory volume in one second (PC20) for the asthmatic patients in the study (r= -0.67; p<0.003). The bronchial brush biopsy method appears to give information on the changes present in superficial bronchial epithelium in inflammatory airways disease. These changes appear to relate to the degree of inflammatory activity and disease severity in asthma. PMID:8866592

  12. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  13. Role of mesothelin in carbon nanotube-induced carcinogenic transformation of human bronchial epithelial cells.

    PubMed

    He, Xiaoqing; Despeaux, Emily; Stueckle, Todd A; Chi, Alexander; Castranova, Vincent; Dinu, Cerasela Zoica; Wang, Liying; Rojanasakul, Yon

    2016-09-01

    Carbon nanotubes (CNTs) have been likened to asbestos in terms of morphology and toxicity. CNT exposure can lead to pulmonary fibrosis and promotion of tumorigenesis. However, the mechanisms underlying CNT-induced carcinogenesis are not well defined. Mesothelin (MSLN) is overexpressed in many human tumors, including mesotheliomas and pancreatic and ovarian carcinomas. In this study, the role of MSLN in the carcinogenic transformation of human bronchial epithelial cells chronically exposed to single-walled CNT (BSW) was investigated. MSLN overexpression was found in human lung tumors, lung cancer cell lines, and BSW cells. The functional role of MSLN in the BSW cells was then investigated by using stably transfected MSLN knockdown (BSW shMSLN) cells. MSLN knockdown resulted in significantly decreased invasion, migration, colonies on soft agar, and tumor sphere formation. In vivo, BSW shMSLN cells formed smaller primary tumors and less metastases. The mechanism by which MSLN contributes to these more aggressive behaviors was investigated by using ingenuity pathway analysis, which predicted that increased MSLN could induce cyclin E expression. We found that BSW shMSLN cells had decreased cyclin E, and their proliferation rate was reverted to nearly that of untransformed cells. Cell cycle analysis showed that the BSW shMSLN cells had an increased G2 population and a decreased S phase population, which is consistent with the decreased rate of proliferation. Together, our results indicate a novel role of MSLN in the malignant transformation of bronchial epithelial cells following CNT exposure, suggesting its utility as a potential biomarker and drug target for CNT-induced malignancies. PMID:27422997

  14. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells

    SciTech Connect

    Hirano, Seishiro; Fujitani, Yuji; Furuyama, Akiko; Kanno, Sanae

    2010-11-15

    Carbon nanotubes (CNT) are cytotoxic to several cell types. However, the mechanism of CNT toxicity has not been fully studied, and dosimetric analyses of CNT in the cell culture system are lacking. Here, we describe a novel, high throughput method to measure cellular uptake of CNT using turbimetry. BEAS-2B, a human bronchial epithelial cell line, was used to investigate cellular uptake, cytotoxicity, and inflammatory effects of multi-walled CNT (MWCNT). The cytotoxicity of MWCNT was higher than that of crocidolite asbestos in BEAS-2B cells. The IC{sub 50} of MWCNT was 12 {mu}g/ml, whereas that of asbestos (crocidolite) was 678 {mu}g/ml. Over the course of 5 to 8 h, BEAS-2B cells took up 17-18% of the MWCNT when they were added to the culture medium at a concentration of 10 {mu}g/ml. BEAS-2B cells were exposed to 2, 5, or 10 {mu}g/ml of MWCNT, and total RNA was extracted for cytokine cDNA primer array assays. The culture supernatant was collected for cytokine antibody array assays. Cytokines IL-6 and IL-8 increased in a dose dependent manner at both the mRNA and protein levels. Migration inhibitory factor (MIF) also increased in the culture supernatant in response to MWCNT. A phosphokinase array study using lysates from BEAS-2B cells exposed to MWCNT indicated that phosphorylation of p38, ERK1, and HSP27 increased significantly in response to MWCNT. Results from a reporter gene assays using the NF-{kappa}B or AP-1 promoter linked to the luciferase gene in transiently transfected CHO-KI cells revealed that NF-{kappa}B was activated following MWCNT exposure, while AP-1 was not changed. Collectively, MWCNT activated NF-{kappa}B, enhanced phosphorylation of MAP kinase pathway components, and increased production of proinflammatory cytokines in human bronchial epithelial cells.

  15. Modulation of bronchial epithelial cell barrier function by in vitro ozone exposure.

    PubMed Central

    Yu, X Y; Takahashi, N; Croxton, T L; Spannhake, E W

    1994-01-01

    The epithelial cells lining the small, peripheral airways function as important targets for the action of inspired ozone. Loss of epithelial barrier integrity in these regions is a common element in ozone-induced airway inflammation. To investigate the direct effect of ozone on epithelial barrier function, canine bronchial epithelial (CBE) cells grown with an air interface were exposed for 3 hr to 0.2, 0.5, or 0.8 ppm ozone or to air. Mannitol flux, used as an index of paracellular permeability, increased above air controls by 461%, 774%, and 1172% at the three ozone concentrations, respectively. Transcellular electrical resistance exhibited a dose-related decrease. The immediate effect of 0.8 ppm ozone on permeability was significantly inhibited by preincubation for 48 hr in the presence of 1 ng/ml vitamin E (33%) or 1 microM vitamin A (34%). Responses to 0.5 ppm or 0.8 ppm were inhibited by pretreatment of the cells with 0.1 microM of the actin polymerizing agent phalloidin (34% and 25% inhibition, respectively). The increases in permeability induced by 0.2 and 0.5 ppm ozone were attenuated by 54% and 22%, respectively, at 18 hr after exposure, whereas that to 0.8 ppm was further enhanced by 42% at this time. The effects of ozone are modulated by the availability of antioxidants to the cells and appear to be associated with cytoskeletal dysfunction in CBE cells. The data are consistent with a loss of barrier function linked to a direct oxidative effect of ozone on individual CBE cells and indicate that the reversible or progressive nature of this effect is dose dependent. Images Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. PMID:7713019

  16. GENE EXPRESSION PROFILING OF NORMAL HUMAN BRONCHIAL EPITHELIAL CELLS EXPOSED TO TRIVALENT ARSENICALS AND DIMETHYLTHIOARSINIC ACID

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans. However, the carcinogenic mode of action of arsenicals is unknown. We investigated, in human bronchial epithelial (BEAS2B) cells, the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsi...

  17. ASBESTOS-INDUCED ACTIVATION OF SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Title: Asbestos-Induced Activation of Signaling Pathways in Human
    Bronchial Epithelial Cells

    X. Wang, MD 1, J. M. Samet, PhD 2 and A. J. Ghio, MD 2. 1 Center for
    Environmental Medicine, Asthma and Lung Biology, University of North
    Carolina, Chapel Hill, NC, Uni...

  18. CHANGES IN GENE EXPRESSION DURING DIFFERENTIATION OF CULTURED HUMAN PRIMARY BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Primary airway epithelial cell cultures are a useful tool for the in vitro study of normal bronchial cell differentiation and function, airway disease mechanisms, and pathogens and toxin response. Growth of these cells at an air-liquid interface for several days results in the f...

  19. Effect of Elevated Carbon Dioxide on Bronchial Epithelial Innate Immune Receptor Response to Organic Dust from Swine Confinement Barns

    PubMed Central

    Schneberger, D.; Cloonan, D.; DeVasure, J. M.; Bailey, K. L.; Romberger, D. J.; Wyatt, T. A.

    2015-01-01

    Hypercapnia is known to have immunoregulatory effects within the lung. Cell culture systems demonstrate this in both macrophages and alveolar cell lines, suggesting that alveoli are affected by changes in CO2 levels. We hypothesized that hypercapnia would also modulate human bronchial epithelial cell immune responses. Innate immune responses to Pam3CSK4 (TLR2 ligand), LPS (TLR4 ligand) and a complex innate immune stimulus, an extract from the organic dust of swine confinement barns (barn dust extract or BDE), were tested in a human bronchial epithelial cell line, BEAS-2B. Both TLR ligands showed a decrease in IL-6 and IL-8 production, and an increase in MCP-1 in response to elevated CO2 indicating an enhancement in cytokine production to hypercapnia. This change was not reflected in expression levels of TLR receptor RNA which remained unchanged in response to elevated CO2. Interestingly, barn dust showed an increase in IL-6, IL-8 and MCP-1 response at 9% CO2, suggesting that elevated CO2 exerts different effects on different stimuli. Our results show that airway epithelial cell immune responses to barn dust respond differently to hypercapnic conditions than individual TLR ligands. PMID:25921030

  20. Elastic properties of the bronchial mucosa: epithelial unfolding and stretch in response to airway inflation.

    PubMed

    Noble, P B; Sharma, A; McFawn, P K; Mitchell, H W

    2005-12-01

    The bronchial mucosa contributes to elastic properties of the airway wall and may influence the degree of airway expansion during lung inflation. In the deflated lung, folds in the epithelium and associated basement membrane progressively unfold on inflation. Whether the epithelium and basement membrane also distend on lung inflation at physiological pressures is uncertain. We assessed mucosal distensibility from strain-stress curves in mucosal strips and related this to epithelial length and folding. Mucosal strips were prepared from pig bronchi and cycled stepwise from a strain of 0 (their in situ length at 0 transmural pressure) to a strain of 0.5 (50% increase in length). Mucosal stress and epithelial length in situ were calculated from morphometric data in bronchial segments fixed at 5 and 25 cmH(2)O luminal pressure. Mucosal strips showed nonlinear strain-stress properties, but regions at high and low stress were close to linear. Stresses calculated in bronchial segments at 5 and 25 cmH(2)O fell in the low-stress region of the strain-stress curve. The epithelium of mucosal strips was deeply folded at low strains (0-0.15), which in bronchial segments equated to < or =10 cmH(2)O transmural pressure. Morphometric measurements in mucosal strips at greater strains (0.3-0.4) indicated that epithelial length increased by approximately 10%. Measurements in bronchial segments indicated that epithelial length increased approximately 25% between 5 and 25 cmH(2)O. Our findings suggest that, at airway pressures <10 cmH(2)O, airway expansion is due primarily to epithelial unfolding but at higher pressures the epithelium also distends. PMID:16024520

  1. Effects of ceftaroline on the innate immune and on the inflammatory responses of bronchial epithelial cells exposed to cigarette smoke.

    PubMed

    Pace, E; Ferraro, M; Di Vincenzo, S; Siena, L; Gjomarkaj, M

    2016-09-01

    The tobacco smoking habit interferes with the innate host defence system against infections. Recurrent infections accelerated the functional respiratory decline. The present study assessed the effects of ceftaroline on TLR2 and TLR4 and on pro-inflammatory responses in airway epithelial cells (16HBE cell line and primary bronchial epithelial cells) with or without cigarette smoke extracts (CSE 10%). TLR2, TLR4, LPS binding and human beta defensin 2 (HBD2) were assessed by flow cytometry, NFkB nuclear translocation by western blot analysis, IL-8 and HBD2 mRNA by Real Time PCR; the localization of NFkB on the HBD2 and IL-8 promoters by ChiP Assay. CSE increased TLR4, TLR2 expression, LPS binding and IL-8 mRNA; CSE decreased HBD2 (protein and mRNA), activated NFkB and promoted the localization of NFkB on IL-8 promoter and not on HBD2 promoter. Ceftaroline counteracted the CSE effect on TLR2 expression, on LPS binding, on IL-8 mRNA, HBD2 and NFkB in 16HBE. The effects of ceftaroline on HBD2 protein and on IL-8 mRNA were confirmed in primary bronchial epithelial cells. In conclusion, ceftaroline is able to counteract the effects of CSE on the innate immunity and pro-inflammatory responses modulating TLR2, LPS binding, NFkB activation and activity, HBD2 and IL-8 expression in bronchial epithelial cells. PMID:27397760

  2. Transforming Growth Factor-β2 Induces Bronchial Epithelial Mucin Expression in Asthma

    PubMed Central

    Chu, Hong Wei; Balzar, Silvana; Seedorf, Gregory J.; Westcott, Jay Y.; Trudeau, John B.; Silkoff, Phil; Wenzel, Sally E.

    2004-01-01

    The transforming growth factor (TGF)-β family is important for tissue repair in pathological conditions including asthma. However, little is known about the impact of either TGF-β1 or TGF-β2 on asthmatic airway epithelial mucin expression. We evaluated bronchial epithelial TGF-β1 and TGF-β2 expression and their effects on mucin expression, and the role of TGF-β1 or TGF-β2 in interleukin (IL)-13-induced mucin expression. Epithelial TGF-β1, TGF-β2, and mucin expression were evaluated in endobronchial biopsies from asthmatics and normal subjects. The effects of TGF-β1 or TGF-β2 on mucin MUC5AC protein and mRNA expression, and the impact of IL-13 on epithelial TGF-β1, TGF-β2, and MUC5AC were determined in cultured bronchial epithelial cells from endobronchial brushings of both subject groups. In biopsy tissue, epithelial TGF-β2 expression levels were higher than TGF-β1 in both asthmatics and normals. TGF-β2, but not TGF-β1, was increased in asthmatics compared with normals, and significantly correlated with mucin expression. TGF-β2, but not TGF-β1, increased mucin expression in cultured epithelial cells from both subject groups. IL-13 increased the release of TGF-β2, but not TGF-β1, from epithelial cells. A neutralizing TGF-β2 antibody partially inhibited IL-13-induced mucin expression. These data suggest that TGF-β2 production by asthmatic bronchial epithelial cells may increase airway mucin expression. IL-13-induced mucin expression may occur in part through TGF-β2 up-regulation. PMID:15466377

  3. Transforming growth factor-beta2 induces bronchial epithelial mucin expression in asthma.

    PubMed

    Chu, Hong Wei; Balzar, Silvana; Seedorf, Gregory J; Westcott, Jay Y; Trudeau, John B; Silkoff, Phil; Wenzel, Sally E

    2004-10-01

    The transforming growth factor (TGF)-beta family is important for tissue repair in pathological conditions including asthma. However, little is known about the impact of either TGF-beta1 or TGF-beta2 on asthmatic airway epithelial mucin expression. We evaluated bronchial epithelial TGF-beta1 and TGF-beta2 expression and their effects on mucin expression, and the role of TGF-beta1 or TGF-beta2 in interleukin (IL)-13-induced mucin expression. Epithelial TGF-beta1, TGF-beta2, and mucin expression were evaluated in endobronchial biopsies from asthmatics and normal subjects. The effects of TGF-beta1 or TGF-beta2 on mucin MUC5AC protein and mRNA expression, and the impact of IL-13 on epithelial TGF-beta1, TGF-beta2, and MUC5AC were determined in cultured bronchial epithelial cells from endobronchial brushings of both subject groups. In biopsy tissue, epithelial TGF-beta2 expression levels were higher than TGF-beta1 in both asthmatics and normals. TGF-beta2, but not TGF-beta1, was increased in asthmatics compared with normals, and significantly correlated with mucin expression. TGF-beta2, but not TGF-beta1, increased mucin expression in cultured epithelial cells from both subject groups. IL-13 increased the release of TGF-beta2, but not TGF-beta1, from epithelial cells. A neutralizing TGF-beta2 antibody partially inhibited IL-13-induced mucin expression. These data suggest that TGF-beta2 production by asthmatic bronchial epithelial cells may increase airway mucin expression. IL-13-induced mucin expression may occur in part through TGF-beta2 up-regulation. PMID:15466377

  4. Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients

    PubMed Central

    Menzel, Mandy; Akbarshahi, Hamid; Bjermer, Leif; Uller, Lena

    2016-01-01

    Rhinovirus infection is a major cause of chronic obstructive pulmonary disease (COPD) exacerbations and may contribute to the development into severe stages of COPD. The macrolide antibiotic azithromycin may exert anti-viral actions and has been reported to reduce exacerbations in COPD. However, little is known about its anti-viral actions on bronchial epithelial cells at clinically relevant concentrations. Primary bronchial epithelial cells from COPD donors and healthy individuals were treated continuously with azithromycin starting 24 h before infection with rhinovirus RV16. Expression of interferons, RIG-I like helicases, pro-inflammatory cytokines and viral load were analysed. Azithromycin transiently increased expression of IFNβ and IFNλ1 and RIG-I like helicases in un-infected COPD cells. Further, azithromycin augmented RV16-induced expression of interferons and RIG-I like helicases in COPD cells but not in healthy epithelial cells. Azithromycin also decreased viral load. However, it only modestly altered RV16-induced pro-inflammatory cytokine expression. Adding budesonide did not reduce interferon-inducing effects of azithromycin. Possibly by inducing expression of RIG-I like helicases, azithromycin increased rhinovirus-induced expression of interferons in COPD but not in healthy bronchial epithelium. These effects would reduce bronchial viral load, supporting azithromycin’s emerging role in prevention of exacerbations of COPD. PMID:27350308

  5. Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients.

    PubMed

    Menzel, Mandy; Akbarshahi, Hamid; Bjermer, Leif; Uller, Lena

    2016-01-01

    Rhinovirus infection is a major cause of chronic obstructive pulmonary disease (COPD) exacerbations and may contribute to the development into severe stages of COPD. The macrolide antibiotic azithromycin may exert anti-viral actions and has been reported to reduce exacerbations in COPD. However, little is known about its anti-viral actions on bronchial epithelial cells at clinically relevant concentrations. Primary bronchial epithelial cells from COPD donors and healthy individuals were treated continuously with azithromycin starting 24 h before infection with rhinovirus RV16. Expression of interferons, RIG-I like helicases, pro-inflammatory cytokines and viral load were analysed. Azithromycin transiently increased expression of IFNβ and IFNλ1 and RIG-I like helicases in un-infected COPD cells. Further, azithromycin augmented RV16-induced expression of interferons and RIG-I like helicases in COPD cells but not in healthy epithelial cells. Azithromycin also decreased viral load. However, it only modestly altered RV16-induced pro-inflammatory cytokine expression. Adding budesonide did not reduce interferon-inducing effects of azithromycin. Possibly by inducing expression of RIG-I like helicases, azithromycin increased rhinovirus-induced expression of interferons in COPD but not in healthy bronchial epithelium. These effects would reduce bronchial viral load, supporting azithromycin's emerging role in prevention of exacerbations of COPD. PMID:27350308

  6. Genomic instability and tumorigenic induction in immortalized human bronchial epithelial cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Hei, T. K.; Piao, C. Q.; Wu, L. J.; Willey, J. C.; Hall, E. J.

    1998-11-01

    Carcinogenesis is postulated to be a progressive multistage process characterized by an increase in genomic instability and clonal selection with each mutational event endowing a selective growth advantage. Genomic instability as manifested by the amplification of specific gene fragments is common among tumor and transformed cells. In the present study, immortalized human bronchial (BEP2D) cells were irradiated with graded doses of either 1GeV/nucleon 56Fe ions or 150 keV/μm alpha particles. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Tumorigenic cells showed neither ras mutations nor deletion in the p16 tumor suppressor gene. In contrast, they harbored mutations in the p53 gene and over-expressed cyclin D1. Genomic instability among transformed cells at various stage of the carcinogenic process was examined based on frequencies of PALA resistance. Incidence of genomic instability was highest among established tumor cell lines relative to transformed, non-tumorigenic and control cell lines. Treatment of BEP2D cells with a 4 mM dose of the aminothiol WR-1065 significantly reduced their neoplastic transforming response to 56Fe particles. This model provides an opportunity to study the cellular and molecular mechanisms involved in malignant transformation of human epithelial cells by heavy ions.

  7. Genomic instability and tumorigenic induction in immortalized human bronchial epithelial cells by heavy ions.

    PubMed

    Hei, T K; Piao, C Q; Wu, L J; Willey, J C; Hall, E J

    1998-01-01

    Carcinogenesis is postulated to be a progressive multistage process characterized by an increase in genomic instability and clonal selection with each mutational event endowing a selective growth advantage. Genomic instability as manifested by the amplification of specific gene fragments is common among tumor and transformed cells. In the present study, immortalized human bronchial (BEP2D) cells were irradiated with graded doses of either 1GeV/nucleon 56Fe ions or 150 keV/micrometer alpha particles. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Tumorigenic cells showed neither ras mutations nor deletion in the p16 tumor suppressor gene. In contrast, they harbored mutations in the p53 gene and over-expressed cyclin D1. Genomic instability among transformed cells at various stage of the carcinogenic process was examined based on frequencies of PALA resistance. Incidence of genomic instability was highest among established tumor cell lines relative to transformed, non-tumorigenic and control cell lines. Treatment of BEP2D cells with a 4 mM dose of the aminothiol WR-1065 significantly reduced their neoplastic transforming response to 56Fe particles. This model provides an opportunity to study the cellular and molecular mechanisms involved in malignant transformation of human epithelial cells by heavy ions. PMID:11542414

  8. Annexin A2 mediates secretion of collagen VI, pulmonary elasticity and apoptosis of bronchial epithelial cells

    PubMed Central

    Dassah, MaryAnn; Almeida, Dena; Hahn, Rebecca; Bonaldo, Paolo; Worgall, Stefan; Hajjar, Katherine A.

    2014-01-01

    ABSTRACT The annexins are an evolutionarily conserved family of phospholipid-binding proteins of largely unknown function. We observed that the AnxA2−/− lung basement membrane specifically lacks collagen VI (COL6), and postulated that ANXA2 directs bronchial epithelial cell secretion of COL6, an unusually large multimeric protein. COL6 serves to anchor cells to basement membranes and, unlike other collagens, undergoes multimerization prior to secretion. Here, we show that AnxA2−/− mice have reduced exercise tolerance with impaired lung tissue elasticity, which was phenocopied in Col6a1−/− mice. In vitro, AnxA2−/− fibroblasts retained COL6 within intracellular vesicles and adhered poorly to their matrix unless ANXA2 expression was restored. In vivo, AnxA2−/− bronchial epithelial cells underwent apoptosis and disadhesion. Immunoprecipitation and immunoelectron microscopy revealed that ANXA2 associates with COL6 and the SNARE proteins SNAP-23 and VAMP2 at secretory vesicle membranes of bronchial epithelial cells, and that absence of ANXA2 leads to retention of COL6 in a late-Golgi, VAMP2-positive compartment. These results define a new role for ANXA2 in the COL6 secretion pathway, and further show that this pathway establishes cell–matrix interactions that underlie normal pulmonary function and epithelial cell survival. PMID:24357721

  9. Smoking cessation and bronchial epithelial remodelling in COPD: a cross-sectional study

    PubMed Central

    Lapperre, Thérèse S; Sont, Jacob K; van Schadewijk, Annemarie; Gosman, Margot ME; Postma, Dirkje S; Bajema, Ingeborg M; Timens, Wim; Mauad, Thais; Hiemstra, Pieter S

    2007-01-01

    Background Chronic Obstructive Pulmonary Disease (COPD) is associated with bronchial epithelial changes, including squamous cell metaplasia and goblet cell hyperplasia. These features are partially attributed to activation of the epidermal growth factor receptor (EGFR). Whereas smoking cessation reduces respiratory symptoms and lung function decline in COPD, inflammation persists. We determined epithelial proliferation and composition in bronchial biopsies from current and ex-smokers with COPD, and its relation to duration of smoking cessation. Methods 114 COPD patients were studied cross-sectionally: 99 males/15 females, age 62 ± 8 years, median 42 pack-years, no corticosteroids, current (n = 72) or ex-smokers (n = 42, median cessation duration 3.5 years), postbronchodilator FEV1 63 ± 9% predicted. Squamous cell metaplasia (%), goblet cell (PAS/Alcian Blue+) area (%), proliferating (Ki-67+) cell numbers (/mm basement membrane), and EGFR expression (%) were measured in intact epithelium of bronchial biopsies. Results Ex-smokers with COPD had significantly less epithelial squamous cell metaplasia, proliferating cell numbers, and a trend towards reduced goblet cell area than current smokers with COPD (p = 0.025, p = 0.001, p = 0.081, respectively), but no significant difference in EGFR expression. Epithelial features were not different between short-term quitters (<3.5 years) and current smokers. Long-term quitters (≥3.5 years) had less goblet cell area than both current smokers and short-term quitters (medians: 7.9% vs. 14.4%, p = 0.005; 7.9% vs. 13.5%, p = 0.008; respectively), and less proliferating cell numbers than current smokers (2.8% vs. 18.6%, p < 0.001). Conclusion Ex-smokers with COPD had less bronchial epithelial remodelling than current smokers, which was only observed after long-term smoking cessation (>3.5 years). Trial registration NCT00158847 PMID:18039368

  10. Role Of Hif2α Oxygen Sensing Pathway In Bronchial Epithelial Club Cell Proliferation

    PubMed Central

    Torres-Capelli, Mar; Marsboom, Glenn; Li, Qilong Oscar Yang; Tello, Daniel; Rodriguez, Florinda Melendez; Alonso, Tamara; Sanchez-Madrid, Francisco; García-Rio, Francisco; Ancochea, Julio; Aragonés, Julián

    2016-01-01

    Oxygen-sensing pathways executed by the hypoxia-inducible factors (HIFs) induce a cellular adaptive program when oxygen supply becomes limited. However, the role of the HIF oxygen-sensing pathway in the airway response to hypoxic stress in adulthood remains poorly understood. Here we found that in vivo exposure to hypoxia led to a profound increase in bronchial epithelial cell proliferation mainly confined to Club (Clara) cells. Interestingly, this response was executed by hypoxia-inducible factor 2α (HIF2α), which controls the expression of FoxM1, a recognized proliferative factor of Club cells. Furthermore, HIF2α induced the expression of the resistin-like molecules α and β (RELMα and β), previously considered bronchial epithelial growth factors. Importantly, despite the central role of HIF2α, this proliferative response was not initiated by in vivo Vhl gene inactivation or pharmacological inhibition of prolyl hydroxylase oxygen sensors, indicating the molecular complexity of this response and the possible participation of other oxygen-sensing pathways. Club cells are principally involved in protection and maintenance of bronchial epithelium. Thus, our findings identify a novel molecular link between HIF2α and Club cell biology that can be regarded as a new HIF2α-dependent mechanism involved in bronchial epithelium adaptation to oxygen fluctuations. PMID:27150457

  11. A Cross-Study Biomarker Signature of Human Bronchial Epithelial Cells Infected with Respiratory Syncytial Virus

    PubMed Central

    Gardinassi, Luiz Gustavo

    2016-01-01

    Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children, elderly, and immunocompromised individuals. Despite of advances in diagnosis and treatment, biomarkers of RSV infection are still unclear. To understand the host response and propose signatures of RSV infection, previous studies evaluated the transcriptional profile of the human bronchial epithelial cell line—BEAS-2B—infected with different strains of this virus. However, the evolution of statistical methods and functional analysis together with the large amount of expression data provide opportunities to uncover novel biomarkers of inflammation and infections. In view of those facts publicly available microarray datasets from RSV-infected BEAS-2B cells were analyzed with linear model-based statistics and the platform for functional analysis InnateDB. The results from those analyses argue for the reevaluation of previously reported transcription patterns and biological pathways in BEAS-2B cell lines infected with RSV. Importantly, this study revealed a biosignature constituted by genes such as ABCC4, ARMC8, BCLAF1, EZH1, FAM118A, FAM208B, FUS, HSPH1, KAZN, MAP3K2, N6AMT1, PRMT2, S100PBP, SERPINA1, TLK2, ZNF322, and ZNF337 which should be considered in the development of new molecular diagnosis tools. PMID:27274726

  12. Activity and intracellular location of estrogen receptors α and β in human bronchial epithelial cells

    PubMed Central

    Ivanova, Margarita M.; Mazhawidza, Williard; Dougherty, Susan M.; Minna, John D.; Klinge, Carolyn M.

    2009-01-01

    Gender differences in lung disease and cancer are well-established. We reported estrogenic transcriptional responses in lung adenocarcinoma cells from females but not males despite similar estrogen receptor (ER) expression. Here we tested the hypothesis that normal human bronchial epithelial cells (HBECs) show gender-independent estrogenic responses. We report that a small sample of HBECs express ~twice as much ERβ as ERα.ERα and ERβ were located in the cytoplasm, nucleus, and mitochondria. In contrast to lung adenocarcinoma cells, estradiol (E2) induced estrogen response element (ERE)-mediated luciferase reporter activity in transiently transfected HBECs regardless of donor gender. Overexpression of ERα-VP16 increased ERE-mediated transcriptional activity in all HBECs. E2 increased and 4-hydroxytamoxifen and ICI 182,780 inhibited HBEC proliferation and cyclin D1 expression in a cell line-specific manner. In conclusion, the response of HBECs to ER ligands is gender-independent suggesting that estrogenic sensitivity may be acquired during lung carcinogenesis. PMID:19433257

  13. Phosphorylation of p65 Is Required for Zinc Oxide Nanoparticle–Induced Interleukin 8 Expression in Human Bronchial Epithelial Cells

    PubMed Central

    Wu, Weidong; Samet, James M.; Peden, David B.; Bromberg, Philip A.

    2010-01-01

    Background Exposure to zinc oxide (ZnO) in environmental and occupational settings causes acute pulmonary responses through the induction of proinflammatory mediators such as interleukin-8 (IL-8). Objective We investigated the effect of ZnO nanoparticles on IL-8 expression and the underlying mechanisms in human bronchial epithelial cells. Methods We determined IL-8 mRNA and protein expression in primary human bronchial epithelial cells and the BEAS-2B human bronchial epithelial cell line using reverse-transcriptase polymerase chain reaction and the enzyme-linked immunosorbent assay, respectively. Transcriptional activity of IL-8 promoter and nuclear factor kappa B (NFκB) in ZnO-treated BEAS-2B cells was measured using transient gene transfection of the luciferase reporter construct with or without p65 constructs. Phosphorylation and degradation of IκBα, an inhibitor of NF-κB, and phosphorylation of p65 were detected using immunoblotting. Binding of p65 to the IL-8 promoter was examined using the chromatin immunoprecipitation assay. Results ZnO exposure (2–8 μg/mL) increased IL-8 mRNA and protein expression. Inhibition of transcription with actinomycin D blocked ZnO-induced IL-8 expression, which was consistent with the observation that ZnO exposure increased IL-8 promoter reporter activity. Further study demonstrated that the κB-binding site in the IL-8 promoter was required for ZnO-induced IL-8 transcriptional activation. ZnO stimulation modestly elevated IκBα phosphorylation and degradation. Moreover, ZnO exposure also increased the binding of p65 to the IL-8 promoter and p65 phosphorylation at serines 276 and 536. Overexpression of p65 constructs mutated at serines 276 or 536 significantly reduced ZnO-induced increase in IL-8 promoter reporter activity. Conclusion p65 phosphorylation and IκBα phosphorylation and degradation are the primary mechanisms involved in ZnO nanoparticle-induced IL-8 expression in human bronchial epithelial cells. PMID

  14. Epoxyeicosatrienoic acids attenuate cigarette smoke extract-induced interleukin-8 production in bronchial epithelial cells.

    PubMed

    Ma, Wen-Jiang; Sun, Yan-Hong; Jiang, Jun-Xia; Dong, Xin-Wei; Zhou, Jian-Ying; Xie, Qiang-Min

    2015-03-01

    In response to endothelial cell activation, arachidonic acid can be converted by cytochrome P450 (CYP) epoxygenases to epoxyeicosatrienoic acids (EETs), which have potent vasodilator and anti-inflammatory properties. In this study, we investigated the effects of exogenous EETs on cigarette smoke extract (CSE)-induced inflammation in human bronchial epithelial cells (NCI-H292). We found that CSE inhibited the expression of CYP2C8 and mildly stimulated the expression of epoxide hydrolase 2 (EPHX2) but did not change the expression of CYP2J2. Treatment with 11,12-EET or 14,15-EET attenuated the CSE-induced release of interleukin (IL)-8 by inhibiting the phosphorylation of p38 mitogen-activated protein kinases (MAPKs). Our results demonstrated that CSE may reduce the anti-inflammatory ability of epithelial cells themselves by lowering the EET level. EETs from pulmonary epithelial cells may play a critical protective role on epithelial cell injury. PMID:25467970

  15. Low molecular weight components of pollen alter bronchial epithelial barrier functions

    PubMed Central

    Blume, Cornelia; Swindle, Emily J; Gilles, Stefanie; Traidl-Hoffmann, Claudia; Davies, Donna E

    2015-01-01

    The bronchial epithelium plays a key role in providing a protective barrier against many environmental substances of anthropogenic or natural origin which enter the lungs during breathing. Appropriate responses to these agents are critical for regulation of tissue homeostasis, while inappropriate responses may contribute to disease pathogenesis. Here, we compared epithelial barrier responses to different pollen species, characterized the active pollen components and the signaling pathways leading to epithelial activation. Polarized bronchial cells were exposed to extracts of timothy grass (Phleum pratense), ragweed (Ambrosia artemisifolia), mugwort (Artemisia vulgaris), birch (Betula alba) and pine (Pinus sylvestris) pollens. All pollen species caused a decrease in ionic permeability as monitored trans-epithelial electrical resistance (TER) and induced polarized release of mediators analyzed by ELISA, with grass pollen showing the highest activity. Ultrafiltration showed that the responses were due to components <3kDa. However, lipid mediators, including phytoprostane E1, had no effect on TER, and caused only modest induction of mediator release. Reverse-phase chromatography separated 2 active fractions: the most hydrophilic maximally affected cytokine release whereas the other only affected TER. Inhibitor studies revealed that JNK played a more dominant role in regulation of barrier permeability in response to grass pollen exposure, whereas ERK and p38 controlled cytokine release. Adenosine and the flavonoid isorhamnetin present in grass pollen contributed to the overall effect on airway epithelial barrier responses. In conclusion, bronchial epithelial barrier functions are differentially affected by several low molecular weight components released by pollen. Furthermore, ionic permeability and innate cytokine production are differentially regulated. PMID:26451347

  16. Arylamine N-acetyltransferase activity in bronchial epithelial cells and its inhibition by cellular oxidants

    SciTech Connect

    Dairou, Julien; Petit, Emile; Ragunathan, Nilusha; Baeza-Squiban, Armelle; Marano, Francelyne; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2009-05-01

    Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and {beta}-naphthylamine ({beta}-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating that inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H{sub 2}O{sub 2} or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.

  17. Barrier responses of human bronchial epithelial cells to grass pollen exposure.

    PubMed

    Blume, Cornelia; Swindle, Emily J; Dennison, Patrick; Jayasekera, Nivenka P; Dudley, Sarah; Monk, Phillip; Behrendt, Heidrun; Schmidt-Weber, Carsten B; Holgate, Stephen T; Howarth, Peter H; Traidl-Hoffmann, Claudia; Davies, Donna E

    2013-07-01

    The airway epithelium forms a physical, chemical and immunological barrier against inhaled environmental substances. In asthma, these barrier properties are thought to be abnormal. In this study, we analysed the effect of grass pollen on the physical and immunological barrier properties of differentiated human primary bronchial epithelial cells. Following exposure to Timothy grass (Phleum pratense) pollen extract, the integrity of the physical barrier was not impaired as monitored by measuring the transepithelial resistance and immunofluorescence staining of tight junction proteins. In contrast, pollen exposure affected the immunological barrier properties by modulating vectorial mediator release. CXC chemokine ligand (CXCL)8/interleukin (IL)-8 showed the greatest increase in response to pollen exposure with preferential release to the apical compartment. Inhibition of the extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways selectively blocked apical CXCL8/IL-8 release via a post-transcriptional mechanism. Apical release of CC chemokine ligand (CCL)20/macrophage inflammatory protein-3α, CCL22/monocyte-derived chemokine and tumour necrosis factor-α was significantly increased only in severe asthma cultures, while CCL11/eotaxin-1 and CXCL10/interferon-γ-induced protein-10 were reduced in nonasthmatic cultures. The bronchial epithelial barrier modulates polarised release of mediators in response to pollen without direct effects on its physical barrier properties. The differential response of cells from normal and asthmatic donors suggests the potential for the bronchial epithelium to promote immune dysfunction in asthma. PMID:23143548

  18. Modulation of bronchial epithelial cell barrier function by in vitro jet propulsion fuel 8 exposure.

    PubMed

    Robledo, R F; Barber, D S; Witten, M L

    1999-09-01

    The loss of epithelial barrier integrity in bronchial and bronchiolar airways may be an initiating factor in the observed onset of toxicant-induced lung injuries. Acute 1-h inhalation exposures to aerosolized jet propulsion fuel 8 (JP-8) have been shown to induce cellular and morphological indications of pulmonary toxicity that was associated with increased respiratory permeability to 99mTc-DTPA. To address the hypothesis that JP-8 jet fuel-induced lung injury is initiated through a disruption in the airway epithelial barrier function, paracellular mannitol flux of BEAS-2B human bronchial epithelial cells was measured. Incubation of confluent cell cultures with non-cytotoxic concentrations of JP-8 or n-tetradecane (C14), a primary constituent of JP-8, for a 1-h exposure period resulted in dose-dependent increases of paracellular flux. Following exposures of 0.17, 0.33, 0.50, or 0.67 mg/ml, mannitol flux increased above vehicle controls by 10, 14, 29, and 52%, respectively, during a 2-h incubation period immediately after each JP-8 exposure. C14 caused greater mannitol flux increases of 37, 42, 63, and 78%, respectively, following identical exposure conditions. The effect on transepithelial mannitol flux reached a maximum at 12 h and spontaneously reversed to control values over a 48-h recovery period, for both JP-8 and C14 exposure. These data indicate that non-cytotoxic exposures to JP-8 or C14 exert a noxious effect on bronchial epithelial barrier function that may preclude pathological lung injury. PMID:10496683

  19. Sodium metavanadate exhibits carcinogenic tendencies in vitro in immortalized human bronchial epithelial cells†

    PubMed Central

    Passantino, Lisa; Muñoz, Alexandra B.

    2014-01-01

    Pentavalent vanadium compounds induce intracellular changes in vitro that are consistent with those of other carcinogenic substances. While there is no clear evidence that vanadium compounds cause cancer in humans, vanadium pentoxide causes lung cancer in rodents after long-term inhalation exposures and in turn IARC has categorized it as a group 2B possible human carcinogen. The goal of this study was to investigate the carcinogenicity of NaVO3 in the human immortalized bronchial epithelial cell line, Beas-2B. Cells were treated with 10 μM NaVO3 for 5 weeks, with or without recovery time, followed by gene expression microarray analysis. In a separate experiment, cells were exposed to 1–10 μM NaVO3 for 4 weeks and then grown in soft agar to test for anchorage-independent growth. A dose-dependent increase in the number of colonies was observed. In scratch tests, NaVO3-transformed clones could repair a wound faster than controls. In a gene expression microarray analysis of soft agar clones there were 2010 differentially expressed genes (DEG) (adjusted p-value ≤ 0.05) in NaVO3-transformed clones relative to control clones. DEG from this experiment were compared with the DEG of 5 week NaVO3 exposure with or without recovery, all with adjusted p-values < 0.05, and 469 genes were altered in the same direction for transformed clones, 5 week NaVO3-treated cells, and the recovered cells. The data from this study imply that chronic exposure to NaVO3 causes changes that are consistent with cellular transformation including anchorage-independent growth, enhanced migration ability, and gene expression changes that were likely epigenetically inherited. PMID:23963610

  20. Genetic damage induced by organic extract of coke oven emissions on human bronchial epithelial cells.

    PubMed

    Zhai, Qingfeng; Duan, Huawei; Wang, Yadong; Huang, Chuanfeng; Niu, Yong; Dai, Yufei; Bin, Ping; Liu, Qingjun; Chen, Wen; Ma, Junxiang; Zheng, Yuxin

    2012-08-01

    Coke oven emissions are known as human carcinogen, which is a complex mixture of polycyclic aromatic hydrocarbon. In this study, we aimed to clarify the mechanism of action of coke oven emissions induced carcinogenesis and to identify biomarkers of early biological effects in a human bronchial epithelial cell line with CYP1A1 activity (HBE-CYP1A1). Particulate matter was collected in the oven area on glass filter, extracted and analyzed by GC/MS. DNA breaks and oxidative damage were evaluated by alkaline and endonucleases (FPG, hOGG1 and ENDO III)-modified comet assays. Cytotoxicity and chromosomal damage were assessed by the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. The cells were treated with organic extract of coke oven emissions (OE-COE) representing 5, 10, 20, 40μg/mL extract for 24h. We found that there was a dose-effect relationship between the OE-COE and the direct DNA damage presented by tail length, tail intensity and Olive tail moment in the comet assay. The presence of lesion-specific endonucleases in the assays increased DNA migration after OE-COE treatment when compared to those without enzymes, which indicated that OE-COE produced oxidative damage at the level of pyrimidine and purine bases. The dose-dependent increase of micronuclei, nucleoplasmic bridges and nuclear buds in exposed cells was significant, indicating chromosomal and genomic damage induced by OE-COE. Based on the cytotoxic biomarkers in CBMN-Cyt assay, OE-COE may inhibit nuclear division, interfere with apoptosis, or induce cell necrosis. This study indicates that OE-COE exposure can induce DNA breaks/oxidative damage and genomic instability in HBE-CYP1A1 cells. The FPG-comet assay appears more specific for detecting oxidative DNA damage induced by complex mixtures of genotoxic substances. PMID:22522113

  1. Human Normal Bronchial Epithelial Cells: A Novel In Vitro Cell Model for Toxicity Evaluation

    PubMed Central

    Huang, Haiyan; Xia, Bo; Liu, Hongya; Li, Jie; Lin, Shaolin; Li, Tiyuan; Liu, Jianjun; Li, Hui

    2015-01-01

    Human normal cell-based systems are needed for drug discovery and toxicity evaluation. hTERT or viral genes transduced human cells are currently widely used for these studies, while these cells exhibited abnormal differentiation potential or response to biological and chemical signals. In this study, we established human normal bronchial epithelial cells (HNBEC) using a defined primary epithelial cell culture medium without transduction of exogenous genes. This system may involve decreased IL-1 signaling and enhanced Wnt signaling in cells. Our data demonstrated that HNBEC exhibited a normal diploid karyotype. They formed well-defined spheres in matrigel 3D culture while cancer cells (HeLa) formed disorganized aggregates. HNBEC cells possessed a normal cellular response to DNA damage and did not induce tumor formation in vivo by xenograft assays. Importantly, we assessed the potential of these cells in toxicity evaluation of the common occupational toxicants that may affect human respiratory system. Our results demonstrated that HNBEC cells are more sensitive to exposure of 10~20 nm-sized SiO2, Cr(VI) and B(a)P compared to 16HBE cells (a SV40-immortalized human bronchial epithelial cells). This study provides a novel in vitro human cells-based model for toxicity evaluation, may also be facilitating studies in basic cell biology, cancer biology and drug discovery. PMID:25861018

  2. Azithromycin differentially affects the IL-13-induced expression profile in human bronchial epithelial cells.

    PubMed

    Mertens, Tinne C J; Hiemstra, Pieter S; Taube, Christian

    2016-08-01

    The T helper 2 (Th2) cytokine interleukin(IL)-13 is a central regulator in goblet cell metaplasia and induces the recently described Th2 gene signature consisting of periostin (POSTN), chloride channel regulator 1 (CLCA1) and serpin B2 (SERPINB2) in airway epithelial cells. This Th2 gene signature has been proposed as a biomarker to classify asthma into Th2-high and Th2-low phenotypes. Clinical studies have shown that the macrolide antibiotic azithromycin reduced clinical symptoms in neutrophilic asthma, but not in the classical Th2-mediated asthma despite the ability of azithromycin to reduce IL-13-induced mucus production. We therefore hypothesize that azithromycin differentially affects the IL-13-induced expression profile. To investigate this, we focus on IL-13-induced mucin and Th2-signature expression in human bronchial epithelial cells and how this combined expression profile is affected by azithromycin treatment. Primary bronchial epithelial cells were differentiated at air liquid interface in presence of IL-13 with or without azithromycin. Azithromycin inhibited IL-13-induced MUC5AC, which was accompanied by inhibition of IL-13-induced CLCA1 and SERPINB2 expression. In contrast, IL-13-induced expression of POSTN was further increased in cells treated with azithromycin. This indicates that azithromycin has a differential effect on the IL-13-induced Th2 gene signature. Furthermore, the ability of azithromycin to decrease IL-13-induced MUC5AC expression may be mediated by a reduction in CLCA1. PMID:27246785

  3. Human normal bronchial epithelial cells: a novel in vitro cell model for toxicity evaluation.

    PubMed

    Feng, Wenqiang; Guo, Juanjuan; Huang, Haiyan; Xia, Bo; Liu, Hongya; Li, Jie; Lin, Shaolin; Li, Tiyuan; Liu, Jianjun; Li, Hui

    2015-01-01

    Human normal cell-based systems are needed for drug discovery and toxicity evaluation. hTERT or viral genes transduced human cells are currently widely used for these studies, while these cells exhibited abnormal differentiation potential or response to biological and chemical signals. In this study, we established human normal bronchial epithelial cells (HNBEC) using a defined primary epithelial cell culture medium without transduction of exogenous genes. This system may involve decreased IL-1 signaling and enhanced Wnt signaling in cells. Our data demonstrated that HNBEC exhibited a normal diploid karyotype. They formed well-defined spheres in matrigel 3D culture while cancer cells (HeLa) formed disorganized aggregates. HNBEC cells possessed a normal cellular response to DNA damage and did not induce tumor formation in vivo by xenograft assays. Importantly, we assessed the potential of these cells in toxicity evaluation of the common occupational toxicants that may affect human respiratory system. Our results demonstrated that HNBEC cells are more sensitive to exposure of 10~20 nm-sized SiO2, Cr(VI) and B(a)P compared to 16HBE cells (a SV40-immortalized human bronchial epithelial cells). This study provides a novel in vitro human cells-based model for toxicity evaluation, may also be facilitating studies in basic cell biology, cancer biology and drug discovery. PMID:25861018

  4. Senescent bronchial fibroblasts induced to senescence by Cr(VI) promote epithelial-mesenchymal transition when co-cultured with bronchial epithelial cells in the presence of Cr(VI).

    PubMed

    Val, Mariana Monteiro; Mendes, Luís André; Alarcão, Ana; Carvalho, Lina; Carreira, Isabel; Rodrigues, Carlos Fernando D; Alpoim, Maria Carmen

    2015-03-01

    Cellular senescence is a physiological process that serves as a powerful barrier for tumorigenesis. However, senescent cells can be deleterious for the tissue microenvironment. Such is the case of senescent fibroblasts that release several pro-tumorigenic factors that promote malignant transformation in the nearby epithelial cells. Occupational exposure to hexavalent chromium [Cr(VI)] compounds is a cause of respiratory cancers. Although Cr(VI) is known to induce senescence in human foreskin fibroblasts, the role of senescent fibroblasts in the Cr(VI)-induced malignant transformation of human bronchial epithelial cells was never assessed. Thus, to study the evolutionary dynamics generated by the interaction between human bronchial epithelial cells and senescent bronchial fibroblasts, the non-tumorigenic human bronchial epithelial BEAS-2B cells were co-cultured with Cr(VI)-induced senescent human bronchial fibroblasts for 4 weeks. Under the pressure of 0.5 µM Cr(VI), senescent fibroblasts promoted the acquisition of mesenchymal features on BEAS-2B cells, e.g. the fusiform shape and increased Vimentin expression, consistent with the occurrence of an epithelial-mesenchymal transition-like process. Features of transformed cells including larger nuclei, as well as nuclei with heterogeneous size, were also observed. Altogether the results obtained demonstrate that besides acting over the epithelium, Cr(VI) also affects bronchial fibroblasts driving them senescent. As a consequence, a paracrine communication loop is established with the above-placed epithelium prompting the epithelial cells for malignant transformation and thus facilitating the initial steps of tumorigenesis. PMID:25406472

  5. Pro-inflammatory response and oxidative stress induced by specific components in ambient particulate matter in human bronchial epithelial cells.

    PubMed

    Yang, Lawei; Liu, Gang; Lin, Ziying; Wang, Yahong; He, Huijuan; Liu, Tie; Kamp, David W

    2016-08-01

    Previous studies have shown that biological effect of particulate matter (PM2.5) is involved in including chemical composition and mass concentration, but the precise components and biological action on human bronchial epithelial cell line (BEAS-2B) are still unclear. The aim of this study was to evaluate the in vitro toxicity of PM2.5 collected at six urban sites in China, and to investigate how particle composition affects cytotoxicity. We used human bronchial epithelial (BEAS-2B) cell lines as model in vitro to expose to PM2.5 from different source, and then reactive oxygen species (ROS), superoxide dismutase activity and total antioxidant capacity were analyzed. Furthermore, we estimated the polycyclic aromatic hydrocarbon (PAH) and transition metal and the endotoxin contents. The mRNA expression of IL-1β and IL-10 following exposure to PM2.5 was measured by QRT-PCR. We also observed the mitochondrial membrane potential (MMP) using JC-1 staining, and apoptosis of BEAS-2B using flow cytometry. In addition, double-stranded DNA breaks (DSBs) were assessed using γ-H2AX immunofluorescence. Our results show that high concentrations of PAHs and elemental Ni were strongly associated with high apoptosis rates and high expression of IL-1β, in addition, Fe element was associated with the ROS level, furthermore, Fe and Cr element were associated with DNA damage in BEAS-2B cells. The cytotoxic effects of urban PM2.5 derived from six different cities in China appear dependent on the specific components in each. Our results indicate that air quality standards based on PM2.5 components may be more relevant than concentration-response functions (CRF). © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 923-936, 2016. PMID:25533354

  6. NLRP3 inflammasome activation by mitochondrial ROS in bronchial epithelial cells is required for allergic inflammation

    PubMed Central

    Kim, S R; Kim, D I; Kim, S H; Lee, H; Lee, K S; Cho, S H; Lee, Y C

    2014-01-01

    Abnormality in mitochondria has been suggested to be associated with development of allergic airway disorders. In this study, to evaluate the relationship between mitochondrial reactive oxygen species (ROS) and NLRP3 inflammasome activation in allergic asthma, we used a newly developed mitochondrial ROS inhibitor, NecroX-5. NecroX-5 reduced the increase of mitochondrial ROS generation in airway inflammatory cells, as well as bronchial epithelial cells, NLRP3 inflammasome activation, the nuclear translocation of nuclear factor-κB, increased expression of various inflammatory mediators and pathophysiological features of allergic asthma in mice. Finally, blockade of IL-1β substantially reduced airway inflammation and hyperresponsiveness in the asthmatic mice. These findings suggest that mitochondrial ROS have a critical role in the pathogenesis of allergic airway inflammation through the modulation of NLRP3 inflammasome activation, providing a novel role of airway epithelial cells expressing NLRP3 inflammasome as an immune responder. PMID:25356867

  7. Evaluation of Differentiated Human Bronchial Epithelial Cell Culture Systems for Asthma Research

    PubMed Central

    Stewart, Ceri E.; Torr, Elizabeth E.; Mohd Jamili, Nur H.; Bosquillon, Cynthia; Sayers, Ian

    2012-01-01

    The aim of the current study was to evaluate primary (human bronchial epithelial cells, HBEC) and non-primary (Calu-3, BEAS-2B, BEAS-2B R1) bronchial epithelial cell culture systems as air-liquid interface- (ALI-) differentiated models for asthma research. Ability to differentiate into goblet (MUC5AC+) and ciliated (β-Tubulin IV+) cells was evaluated by confocal imaging and qPCR. Expression of tight junction/adhesion proteins (ZO-1, E-Cadherin) and development of transepithelial electrical resistance (TEER) were assessed. Primary cells showed localised MUC5AC, β-Tubulin IV, ZO-1, and E-Cadherin and developed TEER with, however, a large degree of inter- and intradonor variation. Calu-3 cells developed a more reproducible TEER and a phenotype similar to primary cells although with diffuse β-Tubulin IV staining. BEAS-2B cells did not differentiate or develop tight junctions. These data highlight the challenges in working with primary cell models and the need for careful characterisation and selection of systems to answer specific research questions. PMID:22287976

  8. Gene amplification and microsatellite instability induced in tumorigenic human bronchial epithelial cells by alpha particles and heavy ions

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    2001-01-01

    Gene amplification and microsatellite alteration are useful markers of genomic instability in tumor and transformed cell lines. It has been suggested that genomic instability contributes to the progression of tumorigenesis by accumulating genetic changes. In this study, amplification of the carbamyl-P-synthetase, aspartate transcarbamylase, dihydro-orotase (CAD) gene in transformed and tumorigenic human bronchial epithelial (BEP2D) cells induced by either alpha particles or (56)Fe ions was assessed by measuring resistance to N-(phosphonacetyl)-l-aspartate (PALA). In addition, alterations of microsatellite loci located on chromosomes 3p and 18q were analyzed in a series of primary and secondary tumor cell lines generated in nude mice. The frequency of PALA-resistant colonies was 1-3 x 10(-3) in tumor cell lines, 5-8 x 10(-5) in transformed cells prior to inoculation into nude mice, and less than 10(-7) in control BEP2D cells. Microsatellite alterations were detected in all 11 tumor cell lines examined at the following loci: D18S34, D18S363, D18S877, D3S1038 and D3S1607. No significant difference in either PALA resistance or microsatellite instability was found in tumor cell lines that were induced by alpha particles compared to those induced by (56)Fe ions.

  9. Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust.

    PubMed

    Zarcone, Maria C; Duistermaat, Evert; van Schadewijk, Annemarie; Jedynska, Aleksandra; Hiemstra, Pieter S; Kooter, Ingeborg M

    2016-07-01

    Diesel emissions are the main source of air pollution in urban areas, and diesel exposure is linked with substantial adverse health effects. In vitro diesel exposure models are considered a suitable tool for understanding these effects. Here we aimed to use a controlled in vitro exposure system to whole diesel exhaust to study the effect of whole diesel exhaust concentration and exposure duration on mucociliary differentiated human primary bronchial epithelial cells (PBEC). PBEC cultured at the air-liquid interface were exposed for 60 to 375 min to three different dilutions of diesel exhaust (DE). The DE mixture was generated by an engine at 47% load, and characterized for particulate matter size and distribution and chemical and gas composition. Cytotoxicity and epithelial barrier function was assessed, as well as mRNA expression and protein release analysis. DE caused a significant dose-dependent increase in expression of oxidative stress markers (HMOX1 and NQO1; n = 4) at 6 h after 150 min exposure. Furthermore, DE significantly increased the expression of the markers of the integrated stress response CHOP and GADD34 and of the proinflammatory chemokine CXCL8, as well as release of CXCL8 protein. Cytotoxic effects or effects on epithelial barrier function were observed only after prolonged exposures to the highest DE dose. These results demonstrate the suitability of our model and that exposure dose and duration and time of analysis postexposure are main determinants for the effects of DE on differentiated primary human airway epithelial cells. PMID:27190060

  10. Expression of polycomb protein BMI-1 maintains the plasticity of basal bronchial epithelial cells.

    PubMed

    Torr, Elizabeth; Heath, Meg; Mee, Maureen; Shaw, Dominick; Sharp, Tyson V; Sayers, Ian

    2016-08-01

    The airway epithelium is altered in respiratory disease and is thought to contribute to disease etiology. A caveat to disease research is that the technique of isolation of bronchial epithelial cells from patients is invasive and cells have a limited lifespan. The aim of this study was to extensively characterize the plasticity of primary human bronchial epithelial cells that have been engineered to delay cell senescence including the ability of these cells to differentiate. Cells were engineered to express BMI-1 or hTERT using viral vector systems. Cells were characterized at passage (p) early (p5), mid (p10), and late (p15) stage for: BMI-1, p16, and CK14 protein expression, viability and the ability to differentiate at air-liquid interface (ALI), using a range of techniques including immunohistochemistry (IHC), immunofluorescence (IF), transepithelial electrical resistance (TEER), scanning electron microscopy (SEM), MUC5AC and beta tubulin (BTUB) staining. BMI-1-expressing cells maintained elevated levels of the BMI-1 protein and the epithelial marker CK14 and showed a suppression of p16. BMI-1-expressing cells had a viability advantage, differentiated at ALI, and had a normal karyotype. In contrast, hTERT-expressing cells had a reduced viability, showed limited differentiation, and had an abnormal karyotype. We therefore provide extensive characterization of the plasticity of BMI-1 expressing cells in the context of the ALI model. These cells retain properties of wild-type cells and may be useful to characterize respiratory disease mechanisms in vitro over sustained periods. PMID:27558999

  11. Zinc Induced G2/M Blockage is p53 and p21 Dependent in Normal Human Bronchial Epithelial Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The involvement of the p53 and p21 signal pathway in the G2/M cell cycle progression of zinc supplemented normal human bronchial epithelial (NHBE) cells was examined using the siRNA approach. Cells were cultured for one passage in different concentrations of zinc: <0.4 microM (ZD) as zinc-deficient;...

  12. INHIBITION OF RESPIRATORY SYNCYTIAL VIRUS (RSV)-INDUCED INFLAMMATION BY 3-NITROTYROSINE IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Inhibition of Respiratory Syncytial Virus (RSV)-Induced Inflammation by 3-Nitrotyrosine in Human Bronchial Epithelial Cells. J. M. Soukup, MPH 1, ZW. Li, MD 2 and YC. T. Huang, MD 1. 1 NHEERL, US Environmental Protection Agency, RTP, NC and 2 CEMALB, University of North Carolina,...

  13. Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells

    PubMed Central

    Zaganjor, Elma; Osborne, Jihan K.; Weil, Lauren M.; Diaz-Martinez, Laura A.; Gonzales, Joshua X.; Singel, Stina M.; Larsen, Jill E.; Girard, Luc; Minna, John D.; Cobb, Melanie H.

    2014-01-01

    We show that expression of the microtubule depolymerizing kinesin KIF2C is induced by transformation of immortalized human bronchial epithelial cells by expression of K-RasG12V and knockdown of p53. Further investigation demonstrates that this is due to the K-Ras/ERK1/2 MAPK pathway, as loss of p53 had little effect on KIF2C expression. In addition to KIF2C, we also found that the related kinesin KIF2A is modestly upregulated in this model system; both proteins are expressed more highly in many lung cancer cell lines compared to normal tissue. As a consequence of their depolymerizing activity, these kinesins increase dynamic instability of microtubules. Depletion of either of these kinesins impairs the ability of cells transformed with mutant K-Ras to migrate and invade matrigel. However, depletion of these kinesins does not reverse the epithelial-mesenchymal transition caused by mutant K-Ras. Our studies indicate that increased expression of microtubule destabilizing factors can occur during oncogenesis to support enhanced migration and invasion of tumor cells. PMID:24240690

  14. Proteomic study of human bronchial epithelial cells exposed to SiC nanoparticles

    NASA Astrophysics Data System (ADS)

    Tokarski, Caroline; Hirano, Seishiro; Rolando, Christian

    2011-07-01

    The presented work proposes an optimized methodology for the study of cell exposure to nanomaterials at protein level. The study was investigated on proteins extracted from human bronchial epithelial cells exposed and non-exposed to silicon carbide nanoparticles (SiC). The analytical strategy was based on high resolution measurement using Fourier transform mass spectrometer 9.4 T. The methodology proposed succeeds in identifying over 300 proteins; most of the identified proteins are present in both exposed and non exposed cells to SiC nanoparticles. More interestingly, cytokines as Macrophage migration inhibitory factor protein could be identified only in the cells exposed to SiC nanoparticles indicating cell inflammatory response.

  15. The molecular and cellular response of normal and progressed human bronchial epithelial cells to HZE particles

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Larsen, Jill

    We have used a model of non-oncogenically immortalized normal human bronchial epithelial cells to determine the response of such cells to particles found outside the protection of the earth’s electromagnetic field. We have identified an enhanced frequency of cellular transformation, as measured by growth in soft agar, for both 56Fe and 28Si (1 GeV/n) that is maximal (4-6 fold) at 0.25 Gy and 0.40 Gy, respectively. At 4 months post-irradiation 38 individual soft agar clones were isolated. These clones were characterized extensively for cellular and molecular changes. Gene expression analysis suggested that these clones had down-regulated several genes associated with anti-oxidant pathways including GLS2, GPX1 and 4, SOD2, PIG3, and NQO1 amongst others. As a result, many of these transformed clones were exposed to high levels of intracellular radical oxygen species (ROS), although there appeared not to be any enhanced mitochondrial ROS. DNA repair pathways associated with ATM/ATR signaling were also upregulated. However, these transformants do not develop into tumors when injected into immune-compromised mice, suggesting that they have not progressed sufficiently to become oncogenic. Therefore we chose 6 soft agar clones for continuous culture for an additional 14 months. Amongst the 6 clones, only one clone showed any significant change in phenotype. Clone 3kt-ff.2a, propagated for 18 months, were 2-fold more radioresistant, had a shortened doubling time and the background rate of transformation more than doubled. Furthermore, the morphology of transformed clones changed. Clones from this culture are being compared to the original clone as well as the parental HBEC3KT and will be injected into immune-compromised mice for oncogenic potential. Oncogenically progressed HBECs, HBEC3KT cells that overexpress a mutant RAS gene and where p53 has been knocked down, designated HBEC3KTR53, responded quite differently to HZE particle exposure. First, these cells are more

  16. E-Cigarette Affects the Metabolome of Primary Normal Human Bronchial Epithelial Cells

    PubMed Central

    Aug, Argo; Altraja, Siiri; Kilk, Kalle; Porosk, Rando; Soomets, Ursel; Altraja, Alan

    2015-01-01

    E-cigarettes are widely believed to be safer than conventional cigarettes and have been even suggested as aids for smoking cessation. However, while reasonable with some regards, this judgment is not yet supported by adequate biomedical research data. Since bronchial epithelial cells are the immediate target of inhaled toxicants, we hypothesized that exposure to e-cigarettes may affect the metabolome of human bronchial epithelial cells (HBEC) and that the changes are, at least in part, induced by oxidant-driven mechanisms. Therefore, we evaluated the effect of e-cigarette liquid (ECL) on the metabolome of HBEC and examined the potency of antioxidants to protect the cells. We assessed the changes of the intracellular metabolome upon treatment with ECL in comparison of the effect of cigarette smoke condensate (CSC) with mass spectrometry and principal component analysis on air-liquid interface model of normal HBEC. Thereafter, we evaluated the capability of the novel antioxidant tetrapeptide O-methyl-l-tyrosinyl-γ-l-glutamyl-l-cysteinylglycine (UPF1) to attenuate the effect of ECL. ECL caused a significant shift in the metabolome that gradually gained its maximum by the 5th hour and receded by the 7th hour. A second alteration followed at the 13th hour. Treatment with CSC caused a significant initial shift already by the 1st hour. ECL, but not CSC, significantly increased the concentrations of arginine, histidine, and xanthine. ECL, in parallel with CSC, increased the content of adenosine diphosphate and decreased that of three lipid species from the phosphatidylcholine family. UPF1 partially counteracted the ECL-induced deviations, UPF1’s maximum effect occurred at the 5th hour. The data support our hypothesis that ECL profoundly alters the metabolome of HBEC in a manner, which is comparable and partially overlapping with the effect of CSC. Hence, our results do not support the concept of harmlessness of e-cigarettes. PMID:26536230

  17. Calcium dependent and independent cytokine synthesis by air pollution particle-exposed human bronchial epithelial cells

    SciTech Connect

    Sakamoto, Noriho; Hayashi, Shizu; Gosselink, John; Ishii, Hiroshi; Ishimatsu, Yuji; Mukae, Hiroshi; Hogg, James C.; Eeden, Stephan F. van

    2007-12-01

    Exposure to ambient air pollution particles with a diameter of < 10 {mu}m (PM{sub 10}) has been associated with increased cardiopulmonary morbidity and mortality. We have shown that human bronchial epithelial cells (HBECs) exposed to PM{sub 10} produce pro-inflammatory mediators that contribute to a local and systemic inflammatory response. Changes in intracellular calcium concentrations ([Ca{sup 2+}]{sub i}) have been demonstrated to regulate several functions of the airway epithelium including the production of pro-inflammatory mediators. The aim of the present study was to determine the nature and mechanism of calcium responses induced by PM{sub 10} in HBECs and its relationship to cytokine synthesis. Methods: Primary HBECs were exposed to urban air pollution particles (EHC-93) and [Ca{sup 2+}]{sub i} responses were measured using the fluoroprobe (Fura-2). Cytokine levels were measured at mRNA and protein levels using real-time PCR and ELISA. Results: PM{sub 10} increased [Ca{sup 2+}]{sub i} in a dose-dependent manner. This calcium response was reduced by blocking the influx of calcium into cells (i.e. calcium-free medium, NiCl{sub 2}, LaCl{sub 3}). PM{sub 10} also decreased the activity of calcium pumps. PM{sub 10} increased the production of IL-1{beta}, IL-8, GM-CSF and LIF. Preincubation with intracellular calcium chelator (BAPTA-AM) attenuated IL-1{beta} and IL-8 production, but not GM-CSF and LIF production. Conclusion: We conclude that exposure to PM{sub 10} induces an increase in cytosolic calcium and cytokine production in bronchial epithelial cells. Our results also suggest that PM{sub 10} induces the production of pro-inflammatory mediators via either intracellular calcium-dependent (IL-1{beta}, IL-8) or -independent (GM-CSF, LIF) pathways.

  18. Diesel Exhaust Particle-Exposed Human Bronchial Epithelial Cells Induce Dendritic Cell Maturation and Polarization via Thymic Stromal Lymphopoietin

    PubMed Central

    Bleck, Bertram; Tse, Doris B.; Curotto de Lafaille, Maria A.; Zhang, Feijie

    2009-01-01

    Human exposure to air pollutants, including ambient particulate matter, has been proposed as a mechanism for the rise in allergic disorders. Diesel exhaust particles, a major component of ambient particulate matter, induce sensitization to neoallergens, but the mechanisms by which sensitization occur remain unclear. We show that diesel exhaust particles upregulate thymic stromal lymphopoietin in human bronchial epithelial cells in an oxidant-dependent manner. Thymic stromal lymphopoietin induced by diesel exhaust particles was associated with maturation of myeloid dendritic cells, which was blocked by anti-thymic stromal lymphopoietin antibodies or silencing epithelial cell-derived thymic stromal lymphopoietin. Dendritic cells exposed to diesel exhaust particle-treated human bronchial epithelial cells induced Th2 polarization in a thymic stromal lymphopoietin-dependent manner. These findings provide new insight into the mechanisms by which diesel exhaust particles modify human lung mucosal immunity. PMID:18049884

  19. A MicroRNA Network Dysregulated in Asthma Controls IL-6 Production in Bronchial Epithelial Cells

    PubMed Central

    Louafi, Fethi; Francisco-Garcia, Ana S.; Rupani, Hitasha; Bedke, Nicole; Holgate, Stephen; Howarth, Peter H.; Davies, Donna E.; Sanchez-Elsner, Tilman

    2014-01-01

    MicroRNAs are short non-coding single stranded RNAs that regulate gene expression. While much is known about the effects of individual microRNAs, there is now growing evidence that they can work in co-operative networks. MicroRNAs are known to be dysregulated in many diseases and affect pathways involved in the pathology. We investigated dysregulation of microRNA networks using asthma as the disease model. Asthma is a chronic inflammatory disease of the airways characterized by bronchial hyperresponsiveness and airway remodelling. The airway epithelium is a major contributor to asthma pathology and has been shown to produce an excess of inflammatory and pro-remodelling cytokines such as TGF-β, IL-6 and IL-8 as well as deficient amounts of anti-viral interferons. After performing microRNA arrays, we found that microRNAs -18a, -27a, -128 and -155 are down-regulated in asthmatic bronchial epithelial cells, compared to cells from healthy donors. Interestingly, these microRNAs are predicted in silico to target several components of the TGF-β, IL-6, IL-8 and interferons pathways. Manipulation of the levels of individual microRNAs in bronchial epithelial cells did not have an effect on any of these pathways. Importantly, knock-down of the network of microRNAs miR-18a, -27a, -128 and -155 led to a significant increase of IL-8 and IL-6 expression. Interestingly, despite strong in silico predictions, down-regulation of the pool of microRNAs did not have an effect on the TGF-β and Interferon pathways. In conclusion, using both bioinformatics and experimental tools we found a highly relevant potential role for microRNA dysregulation in the control of IL-6 and IL-8 expression in asthma. Our results suggest that microRNAs may have different roles depending on the presence of other microRNAs. Thus, interpretation of in silico analysis of microRNA function should be confirmed experimentally in the relevant cellular context taking into account interactions with other micro

  20. Cigarette Smoke and the Induction of Urokinase Plasminogen Activator Receptor In Vivo: Selective Contribution of Isoforms to Bronchial Epithelial Phenotype.

    PubMed

    Portelli, Michael A; Stewart, Ceri E; Hall, Ian P; Brightling, Christopher E; Sayers, Ian

    2015-08-01

    The urokinase plasminogen activator receptor (uPAR) gene (PLAUR) has been identified as an asthma susceptibility gene, with polymorphisms within that gene being associated with baseline lung function, lung function decline, and lung function in a smoking population. Soluble cleaved uPAR (scuPAR), a molecule identified as a marker of increased morbidity and mortality in a number of diseases, has been shown to be elevated in the airways of patients with asthma and in patients with chronic obstructive pulmonary disease. However, the functionality of soluble receptor isoforms and their relationship with an important initiator for obstructive lung disease, cigarette smoke, remains undefined. In this study, we set out to determine the effect of cigarette smoke on soluble uPAR isoforms, its regulatory pathway and the resultant effect on bronchial epithelial cell function. We identified a positive association between cigarette pack-years and uPAR expression in the airway bronchial epithelium of biopsies from patients with asthma (n = 27; P = 0.0485). In vitro, cigarette smoke promoted cleavage of uPAR from the surface of bronchial epithelial cells (1.5× induction; P < 0.0001) and induced the soluble spliced isoform through changes in messenger RNA expression (∼2× change; P < 0.001), driven by loss of endogenous 3' untranslated region suppression. Elevated expression of the soluble isoforms resulted in a proremodeling cell phenotype, characterized by increased proliferation and matrix metalloproteinase-9 expression in primary bronchial epithelial cells. This suggests that cigarette smoke elevates soluble receptor isoforms in bronchial epithelial cells through direct (cleavage) and indirect (messenger RNA expression) means. These findings provide further insight into how cigarette smoke may influence changes in the airways of importance to airway remodeling and obstructive lung disease progression. PMID:25490122

  1. YThe BigH3 Tumor Suppressor Gene in Radiation-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Shao, G.; Piao, C.; Hei, T.

    Carcinogenesis is a multi-stage process with sequences of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer Previous studies from this laboratory have identified a 7 fold down- regulation of the novel tumor suppressor Big-h3 among radiation induced tumorigenic BEP2D cells Furthermore ectopic re-expression of this gene suppresses tumorigenic phenotype and promotes the sensitivity of these tumor cells to etoposide-induced apoptosis To extend these studies using a genomically more stable bronchial cell line we ectopically expresses the catalytic subunit of telomerase hTERT in primary human small airway epithelial SAE cells and generated several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice These cells show no alteration in the p53 gene but a decrease in p16 expression Exponentially growing SAEh cells were exposed to graded doses of 1 GeV nucleon of 56 Fe ions accelerated at the Brookhaven National Laboratory Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium These findings indicate

  2. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    SciTech Connect

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-05-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.

  3. Cigarette smoke alters primary human bronchial epithelial cell differentiation at the air-liquid interface

    PubMed Central

    Schamberger, Andrea C.; Staab-Weijnitz, Claudia A.; Mise-Racek, Nikica; Eickelberg, Oliver

    2015-01-01

    The differentiated human airway epithelium consists of different cell types forming a polarized and pseudostratified epithelium. This is dramatically altered in chronic obstructive pulmonary disease (COPD), characterized by basal and goblet cell hyperplasia, and squamous cell metaplasia. The effect of cigarette smoke on human bronchial epithelial cell (HBEC) differentiation remains to be elucidated. We analysed whether cigarette smoke extract (CSE) affected primary (p)HBEC differentiation and function. pHBEC were differentiated at the air-liquid interface (ALI) and differentiation was quantified after 7, 14, 21, or 28 days by assessing acetylated tubulin, CC10, or MUC5AC for ciliated, Clara, or goblet cells, respectively. Exposure of differentiating pHBEC to CSE impaired epithelial barrier formation, as assessed by resistance measurements (TEER). Importantly, CSE exposure significantly reduced the number of ciliated cells, while it increased the number of Clara and goblet cells. CSE-dependent cell number changes were reflected by a reduction of acetylated tubulin levels, an increased expression of the basal cell marker KRT14, and increased secretion of CC10, but not by changes in transcript levels of CC10, MUC5AC, or FOXJ1. Our data demonstrate that cigarette smoke specifically alters the cellular composition of the airway epithelium by affecting basal cell differentiation in a post-transcriptional manner. PMID:25641363

  4. Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages.

    PubMed

    Hodge, S; Hodge, G; Brozyna, S; Jersmann, H; Holmes, M; Reynolds, P N

    2006-09-01

    Chronic obstructive pulmonary disease (COPD) is associated with increased apoptosis and defective phagocytosis in the airway. As uncleared cells can undergo secondary necrosis and perpetuate inflammation, strategies to improve clearance would have therapeutic significance. There is evidence that the 15-member macrolide antibiotic azithromycin has anti-inflammatory properties. Its effects may be increased in the lung due to its ability to reach high concentrations in alveolar macrophages (AMs). The present study investigated the effects of low-dose (500 ng x mL(-1)) azithromycin on the phagocytosis of apoptotic bronchial epithelial cells and neutrophils by AMs. Flow cytometry was applied to measure phagocytosis and receptors involved in AM recognition of apoptotic cells. Cytokines were investigated using cytometric bead array. Baseline phagocytosis was reduced in COPD subjects compared with controls. Azithromycin significantly improved the phagocytosis of epithelial cells or neutrophils by AMs from COPD subjects by 68 and 38%, respectively, often up to levels comparable with controls. The increase in phagocytosis was partially inhibited by phosphatidylserine, implicating the phosphatidylserine pathway in the pro-phagocytic effects of azithromycin. Azithromycin had no effect on other recognition molecules (granulocyte-macrophage colony-stimulating factor, CD44, CD31, CD36, CD91, alphavbeta3 integrin). At higher doses, azithromycin decreased levels of pro-inflammatory cytokines. Thus, low-dose azithromycin therapy could provide an adjunct therapeutic option in chronic obstructive pulmonary disease. PMID:16737992

  5. Upregulation of TMEM16A Protein in Bronchial Epithelial Cells by Bacterial Pyocyanin

    PubMed Central

    Caci, Emanuela; Scudieri, Paolo; Di Carlo, Emma; Morelli, Patrizia; Bruno, Silvia; De Fino, Ida; Bragonzi, Alessandra; Gianotti, Ambra; Sondo, Elvira; Ferrera, Loretta; Palleschi, Alessandro; Santambrogio, Luigi; Ravazzolo, Roberto; Galietta, Luis J. V.

    2015-01-01

    Induction of mucus hypersecretion in the airway epithelium by Th2 cytokines is associated with the expression of TMEM16A, a Ca2+-activated Cl- channel. We asked whether exposure of airway epithelial cells to bacterial components, a condition that mimics the highly infected environment occurring in cystic fibrosis (CF), also results in a similar response. In cultured human bronchial epithelial cells, treatment with pyocyanin or with a P. aeruginosa culture supernatant caused a significant increase in TMEM16A function. The Ca2+-dependent Cl- secretion, triggered by stimulation with UTP, was particularly enhanced by pyocyanin in cells from CF patients. Increased expression of TMEM16A protein and of MUC5AC mucin by bacterial components was demonstrated by immunofluorescence in CF and non-CF cells. We also investigated TMEM16A expression in human bronchi by immunocytochemistry. We found increased TMEM16A staining in the airways of CF patients. The strongest signal was observed in CF submucosal glands. Our results suggest that TMEM16A expression/function is upregulated in CF lung disease, possibly as a response towards the presence of bacteria in the airways. PMID:26121472

  6. Molecular alterations in tumorigenic human bronchial and breast epithelial cells induced by high let radiation

    NASA Astrophysics Data System (ADS)

    Hei, T. K.; Zhao, Y. L.; Roy, D.; Piao, C. Q.; Calaf, G.; Hall, E. J.

    Carcinogenesis is a multi-stage process with sequence of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer. In the present study, immortalized human bronchial (BEP2D) and breast (MCF-10F) cells were irradiated with graded doses of either 150 keV/μm alpha particles or 1 GeV/nucleon 56Fe ions. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Cell fusion studies indicated that radiation-induced tumorigenic phenotype in BEP2D cells could be completely suppressed by fusion with non-tumorigenic BEP2D cells. The differential expressions of known genes between tumorigenic bronchial and breast cells induced by alpha particles and their respective control cultures were compared using cDNA expression array. Among the 11 genes identified to be differentially expressed in BEP2D cells, three ( DCC, DNA-PK and p21 CIPI) were shown to be consistently down-regulated by 2 to 4 fold in all the 5 tumor cell lines examined. In contrast, their expressions in the fusion cell lines were comparable to control BEP2D cells. Similarly, expression levels of a series of genes were found to be altered in a step-wise manner among tumorigenic MCF-10F cells. The results are highly suggestive that functional alterations of these genes may be causally related to the carcinogenic process.

  7. Sirtuin 3 Protects against Urban Particulate Matter-Induced Autophagy in Human Bronchial Epithelial Cells.

    PubMed

    Chen, I-Chieh; Huang, Hsin-Hsiu; Chen, Pei-Fen; Chiang, Hung-Che

    2016-07-01

    Urban particulate matter (urban PM) is a heterogeneous mixture of various types of particles originating from different sources. Exposure to high concentrations of urban PM leading to adverse health effects is evaluated by using in vitro cultures of human lung epithelial cells. However, the mechanism underlying the correlation between high concentrations of urban PM exposure and adverse health effects has not been fully elucidated; urban PM-induced oxidative stress is considered as an important mechanism of urban PM-mediated cytotoxicity. Sirtuin 3 (SIRT3), a primary mitrochondrial deacetylase, controls cellular reactive oxygen species (ROS) production, and expression of antioxidant enzymes. In this study, we examined the role of SIRT3 in the regulation of urban PM-induced oxidative stress in normal primary human bronchial epithelial cells (HBEpiCs). Cell viability showed a time- and concentration-dependent decrease when exposed to urban PM, which could indicate that the amount of lactate dehydrogenase released from the cell in response to urban PM is related to cell viability in HBEpiC. The effects of urban PM on morphological and biochemical markers of autophagy in HBEpiC were analyzed by electron microscopy and Western blotting. Overexpression of SIRT3 inhibited urban PM-induced ROS generation, while concomitantly increasing the expression of antioxidant enzymes, and decreasing NF-κB activation and release of inflammation factors. Up-regulation of SIRT3 significantly inhibited the expression of autophagy markers and autophagic vacuole formation. Our findings provide a valuable insight into the potential role of the SIRT3 enzyme in regulating urban PM-induced autophagy by mediating urban PM-induced oxidative stress, which may contribute to urban PM-induced impairment of airway epithelial cell function. PMID:27125970

  8. IL-17A induces Pendrin expression and chloride-bicarbonate exchange in human bronchial epithelial cells.

    PubMed

    Adams, Kelly M; Abraham, Valsamma; Spielman, Daniel; Kolls, Jay K; Rubenstein, Ronald C; Conner, Gregory E; Cohen, Noam A; Kreindler, James L

    2014-01-01

    The epithelium plays an active role in the response to inhaled pathogens in part by responding to signals from the immune system. Epithelial responses may include changes in chemokine expression, increased mucin production and antimicrobial peptide secretion, and changes in ion transport. We previously demonstrated that interleukin-17A (IL-17A), which is critical for lung host defense against extracellular bacteria, significantly raised airway surface pH in vitro, a finding that is common to a number of inflammatory diseases. Using microarray analysis of normal human bronchial epithelial (HBE) cells treated with IL-17A, we identified the electroneutral chloride-bicarbonate exchanger Pendrin (SLC26A4) as a potential mediator of this effect. These data were verified by real-time, quantitative PCR that demonstrated a time-dependent increase in Pendrin mRNA expression in HBE cells treated with IL-17A up to 48 h. Using immunoblotting and immunofluorescence, we confirmed that Pendrin protein expression is increased in IL-17 treated HBE cells and that it is primarily localized to the mucosal surface of the cells. Functional studies using live-cell fluorescence to measure intracellular pH demonstrated that IL-17A induced chloride-bicarbonate exchange in HBE cells that was not present in the absence of IL-17A. Furthermore, HBE cells treated with short interfering RNA against Pendrin showed substantially reduced chloride-bicarbonate exchange. These data suggest that Pendrin is part of IL-17A-dependent epithelial changes and that Pendrin may therefore be a therapeutic target in IL-17A-dependent lung disease. PMID:25141009

  9. Pro-Inflammatory Effects of Cook Stove Emissions on Human Bronchial Epithelial Cells

    PubMed Central

    Hawley, Brie; Volckens, John

    2012-01-01

    Approximately half the world’s population uses biomass fuel for indoor cooking and heating. This form of combustion typically occurs in open fires or primitive stoves. Human exposure to emissions from indoor biomass combustion is a global health concern, causing an estimated 1.5 million premature deaths each year. Many ‘improved’ stoves have been developed to address this concern; however, studies that examine exposure-response with cleaner-burning, more efficient stoves are few. The objective of this research was to evaluate the effects of traditional and cleaner burning stove emissions on an established model of the bronchial epithelium. We exposed well-differentiated, normal human bronchial epithelial (NHBE) cells to emissions from a single biomass combustion event using either a traditional three-stone fire or one of two energy-efficient stoves. Air-liquid interface cultures were exposed using a novel, aerosol-to-cell deposition system. Cellular expression of a panel of three pro-inflammatory markers was evaluated at 1 and 24 hours following exposure. Cells exposed to emissions from the cleaner burning stoves generated significantly fewer amounts of pro-inflammatory markers than cells exposed to emissions from a traditional, three stone fire. Particulate matter emissions from each cookstove were substantially different, with the three-stone fire producing the largest concentrations of particles (by both number and mass). This study supports emerging evidence that more efficient cookstoves have the potential to reduce respiratory inflammation in settings where solid fuel combustion is used to meet basic domestic needs. PMID:22672519

  10. Human bronchial epithelial cells exposed in vitro to cigarette smoke at the air-liquid interface resemble bronchial epithelium from human smokers

    PubMed Central

    Poussin, Carine; Weisensee, Dirk; Gebel, Stephan; Hengstermann, Arnd; Sewer, Alain; Belcastro, Vincenzo; Xiang, Yang; Ansari, Sam; Wagner, Sandra; Hoeng, Julia; Peitsch, Manuel C.

    2013-01-01

    Organotypic culture of human primary bronchial epithelial cells is a useful in vitro system to study normal biological processes and lung disease mechanisms, to develop new therapies, and to assess the biological perturbations induced by environmental pollutants. Herein, we investigate whether the perturbations induced by cigarette smoke (CS) and observed in the epithelium of smokers' airways are reproducible in this in vitro system (AIR-100 tissue), which has been shown to recapitulate most of the characteristics of the human bronchial epithelium. Human AIR-100 tissues were exposed to mainstream CS for 7, 14, 21, or 28 min at the air-liquid interface, and we investigated various biological endpoints [e.g., gene expression and microRNA profiles, matrix metalloproteinase 1 (MMP-1) release] at multiple postexposure time points (0.5, 2, 4, 24, 48 h). By performing a Gene Set Enrichment Analysis, we observed a significant enrichment of human smokers' bronchial epithelium gene signatures derived from different public transcriptomics datasets in CS-exposed AIR-100 tissue. Comparison of in vitro microRNA profiles with microRNA data from healthy smokers highlighted various highly translatable microRNAs associated with inflammation or with cell cycle processes that are known to be perturbed by CS in lung tissue. We also found a dose-dependent increase of MMP-1 release by AIR-100 tissue 48 h after CS exposure in agreement with the known effect of CS on this collagenase expression in smokers' tissues. In conclusion, a similar biological perturbation than the one observed in vivo in smokers' airway epithelium could be induced after a single CS exposure of a human organotypic bronchial epithelium-like tissue culture. PMID:23355383

  11. Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells.

    PubMed

    Borgie, Mireille; Ledoux, Frédéric; Verdin, Anthony; Cazier, Fabrice; Greige, Hélène; Shirali, Pirouz; Courcot, Dominique; Dagher, Zeina

    2015-01-01

    Assessment of air pollution by particulate matter (PM) is strongly required in Lebanon in the absence of an air quality law including updated air quality standards. Using two different PM2.5-0.3 samples collected at an urban and a rural site, we examined genotoxic/epigenotoxic effects of PM exposure within a human bronchial epithelial cell line (BEAS-2B). Inorganic and organic contents evidence the major contribution of traffic and generating sets in the PM2.5-0.3 composition. Urban PM2.5-0.3 sample increased the phosphorylation of H2AX, the telomerase activity and the miR-21 up-regulation in BEAS-2B cells in a dose-dependent manner. Furthermore, urban PM2.5-0.3 induced a significant increase in CYP1A1, CYP1B1 and AhRR genes expression. The variable concentrations of transition metals and organic compounds detected in the collected PM2.5-0.3 samples might be the active agents leading to a cumulative DNA damage, critical for carcinogenesis. PMID:25460656

  12. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells

    PubMed Central

    Liu, Ailing; Wu, Jinxiang; Li, Aijun; Bi, Wenxiang; Liu, Tian; Cao, Liuzhao; Liu, Yahui; Dong, Liang

    2016-01-01

    Objectives Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence. Methods Human bronchial epithelial cells (16HBE cells) cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS), PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway. Results Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence. Conclusion CSE can induce cellular senescence in human bronchial epithelial cells, and ROS/PI3K/AKT/mTOR signaling pathway may play an important role in this process. C. sinensis can inhibit the CSE-induced senescence. PMID:27555762

  13. Nicotine exposure induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment.

    PubMed

    Bodas, Manish; Van Westphal, Colin; Carpenter-Thompson, Rhett; K Mohanty, Dillip; Vij, Neeraj

    2016-08-01

    Waterpipe smoking and e-cigarette vaping, the non-combustible sources of inhaled nicotine exposure are increasingly becoming popular and marketed as safer alternative to cigarette smoking. Hence, this study was designed to investigate the impact of inhaled nicotine exposure on disease causing COPD-emphysema mechanisms. For in vitro studies, human bronchial epithelial cells (Beas2b) were treated with waterpipe smoke extract (WPSE, 5%), nicotine (5mM), and/or cysteamine (250μM, an autophagy inducer and anti-oxidant drug), for 6hrs. We observed significantly (p<0.05) increased ubiquitinated protein-accumulation in the insoluble protein fractions of Beas2b cells treated with WPSE or nicotine that could be rescued by cysteamine treatment, suggesting aggresome-formation and autophagy-impairment. Moreover, our data also demonstrate that both WPSE and nicotine exposure significantly (p<0.05) elevates Ub-LC3β co-localization to aggresome-bodies while inducing Ub-p62 co-expression/accumulation, verifying autophagy-impairment. We also found that WPSE and nicotine exposure impacts Beas2b cell viability by significantly (p<0.05) inducing cellular apoptosis/senescence via ROS-activation, as it could be controlled by cysteamine, which is known to have an anti-oxidant property. For murine studies, C57BL/6 mice were administered with inhaled nicotine (intranasal, 500μg/mouse/day for 5 days), as an experimental model of non-combustible nicotine exposure. The inhaled nicotine exposure mediated oxidative-stress induces autophagy-impairment in the murine lungs as seen by significant (p<0.05, n=4) increase in the expression levels of nitrotyrosine protein-adduct (oxidative-stress marker, soluble-fraction) and Ub/p62/VCP (impaired-autophagy marker, insoluble-fraction). Overall, our data shows that nicotine, a common component of WPS, e-cigarette vapor and cigarette smoke, induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment as a potential

  14. Penta- and octa-bromodiphenyl ethers promote proinflammatory protein expression in human bronchial epithelial cells in vitro.

    PubMed

    Koike, Eiko; Yanagisawa, Rie; Takigami, Hidetaka; Takano, Hirohisa

    2014-03-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants in consumer products. Humans can be exposed to PBDEs mainly through the inhalation of air or dust. Thus, PBDEs can affect respiratory and immune systems. In the present study, we investigated whether PBDEs stimulate bronchial epithelial cells. We examined commercial penta-BDE (DE-71), octa-BDE (DE-79), and deca-BDE (DE-83R). Human bronchial epithelial cells (BEAS-2B) were exposed to each PBDE for 24h. Subsequently, the expression of intercellular adhesion molecule-1 (ICAM-1) and proinflammatory cytokines were investigated. DE-71 and DE-79, but not DE-83R, significantly increased the expression of ICAM-1, interleukin-6 (IL-6), and IL-8 in BEAS-2B. Because these remarkable effects were observed with DE-71, we further investigated the underlying intracellular mechanisms. DE-71 promoted epidermal growth factor receptor (EGFR) phosphorylation. Inhibitors of EGFR-selective tyrosine kinase and p38 mitogen-activated protein kinase effectively blocked the increase of IL-6 and IL-8. Furthermore, antagonists of thyroid hormone receptor and aryl hydrocarbon receptor significantly suppressed the increase in IL-6 and/or IL-8 production. In conclusion, penta- and octa-BDE, but not deca-BDE, might promote the expression of proinflammatory proteins in bronchial epithelial cells possibly by activating protein kinases and/or stimulating nuclear receptors related to subsequent activation of transcriptional factors. PMID:24184330

  15. Transcriptomic Analysis of Human Primary Bronchial Epithelial Cells after Chloropicrin Treatment.

    PubMed

    Pesonen, Maija; Storvik, Markus; Kokkola, Tarja; Rysä, Jaana; Vähäkangas, Kirsi; Pasanen, Markku

    2015-10-19

    Chloropicrin is a vaporizing toxic irritant that poses a risk to human health if inhaled, but the mechanism of its toxicity in the respiratory tract is poorly understood. Here, we exposed human primary bronchial epithelial cells (HBEpC) to two concentrations of chloropicrin (10-50 μM) for 6 or 48 h and used genomic microarray, flow cytometry, and TEM-analysis to monitor cellular responses to the exposures. The overall number of differentially expressed transcripts with a fold-change > ± 2 compared to controls increased with longer exposure times. The initial response was activation of genes with a higher number of up- (512 by 10 μM and 408 by 40 μM chloropicrin) rather than down-regulated transcripts (40 by 10 μM and 215 by 40 μM chloropicrin) at 6 h seen with both exposure concentrations. The number of down-regulated transcripts, however, increased with the exposure time. The differentially regulated transcripts were further examined for enriched Gene Ontology Terms (GO) and KEGG-pathways. According to this analysis, the "ribosome" and "oxidative phosphorylation" were the KEGG-pathways predominantly affected by the exposure. The predominantly affected (GO) biological processes were "protein metabolic process" including "translation," "cellular protein complex assembly," and "response to unfolded protein." Furthermore, the top pathways, "NRF2-activated oxidative stress" and "Ah-receptor signaling," were enriched in our data sets by IPA-analysis. Real time qPCR assay of six selected genes agreed with the microarray analysis. In addition, chloropicrin exposure increased the numbers of late S and/or G2/M-phase cells as analyzed by flow cytometry and induced autophagy as revealed by electron microscopy. The targets identified are critical for vital cellular functions reflecting acute toxic responses and are potential causes for the reduced viability of epithelial cells after chloropicrin exposure. PMID:26352163

  16. Quantitative Proteomics Reveals an Altered Cystic Fibrosis In Vitro Bronchial Epithelial Secretome

    PubMed Central

    Peters-Hall, Jennifer R.; Brown, Kristy J.; Pillai, Dinesh K.; Tomney, Amarel; Garvin, Lindsay M.; Wu, Xiaofang

    2015-01-01

    Alterations in epithelial secretions and mucociliary clearance contribute to chronic bacterial infection in cystic fibrosis (CF) lung disease, but whether CF lungs are unchanged in the absence of infection remains controversial. A proteomic comparison of airway secretions from subjects with CF and control subjects shows alterations in key biological processes, including immune response and proteolytic activity, but it is unclear if these are due to mutant CF transmembrane conductance regulator (CFTR) and/or chronic infection. We hypothesized that the CF lung apical secretome is altered under constitutive conditions in the absence of inflammatory cells and pathogens. To test this, we performed quantitative proteomics of in vitro apical secretions from air–liquid interface cultures of three life-extended CF (ΔF508/ΔF508) and three non-CF human bronchial epithelial cells after labeling of CF cells by stable isotope labeling with amino acids in cell culture. Mass spectrometry analysis identified and quantitated 666 proteins across samples, of which 70 exhibited differential enrichment or depletion in CF secretions (±1.5-fold change; P < 0.05). The key molecular functions were innate immunity (24%), cytoskeleton/extracellular matrix organization (24%), and protease/antiprotease activity (17%). Oxidative proteins and classical complement pathway proteins that are altered in CF secretions in vivo were not altered in vitro. Specific differentially increased proteins—MUC5AC and MUC5B mucins, fibronectin, and matrix metalloproteinase-9—were validated by antibody-based assays. Overall, the in vitro CF secretome data are indicative of a constitutive airway epithelium with altered innate immunity, suggesting that downstream consequences of mutant CFTR set the stage for chronic inflammation and infection in CF airways. PMID:25692303

  17. Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael D.; Wilson, Bobby; Wu, Honglu

    2015-01-01

    Lung cancer induced from exposures to space radiation is one of the most significant health risks for long-term space travels. Evidences show that low- and high- Linear energy transfer (LET)-induced transformation of normal human bronchial epithelial cells (HBEC) that are immortalized through the expression of Cdk4 and hTERT. The cells were exposed to gamma rays and high-energy Fe ions for the selection of transformed clones. Transformed HBEC are identified and analyzed chromosome aberrations (i.e. genomic instability) using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. Our results show chromosomal translocations between different chromosomes and several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed and the parental HBEC regardless of the exposure conditions. We observed chromosomal aberrations in the lowand high-LET radiation-induced transformed clones and they are imperfectly different from clones obtain in spontaneous soft agar growth.

  18. Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael T.; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Lung cancer induced from exposure to space radiation is believed to be one of the most significant health risks for long-term space travels. In a previous study, normal human bronchial epithelial cells (HBECs), immortalized through the expression of Cdk4 and hTERT, were exposed to gamma rays and high energy Fe ions for the selection of transformed clones induced by low- and high-LET radiation. In this research, we analyzed chromosome aberrations in these selected clones for genomic instability using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. In most of the clones, we found chromosomal aberrations involving translocations between different chromosomes, with several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed clones and the parental HBEC cells regardless of the exposure condition. Our results indicated that the chromosomal aberrations in low- and high radiation-induced transformed clones are inadequately different from spontaneous soft agar growth. Further analysis is underway to reveal the genomic instability in more transformed clones

  19. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    PubMed Central

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  20. Primary Paediatric Bronchial Airway Epithelial Cell in Vitro Responses to Environmental Exposures

    PubMed Central

    McInnes, Neil; Davidson, Matthew; Scaife, Alison; Miller, David; Spiteri, Daniella; Engelhardt, Tom; Semple, Sean; Devereux, Graham; Walsh, Garry; Turner, Steve

    2016-01-01

    The bronchial airway epithelial cell (BAEC) is the site for initial encounters between inhaled environmental factors and the lower respiratory system. Our hypothesis was that release of pro inflammatory interleukins (IL)-6 and IL-8 from primary BAEC cultured from children will be increased after in vitro exposure to common environmental factors. Primary BAEC were obtained from children undergoing clinically indicated routine general anaesthetic procedures. Cells were exposed to three different concentrations of lipopolysaccharide (LPS) or house dust mite allergen (HDM) or particulates extracted from side stream cigarette smoke (SSCS). BAEC were obtained from 24 children (mean age 7.0 years) and exposed to stimuli. Compared with the negative control, there was an increase in IL-6 and IL-8 release after exposure to HDM (p ≤ 0.001 for both comparisons). There was reduced IL-6 after higher compared to lower SSCS exposure (p = 0.023). There was no change in BAEC release of IL-6 or IL-8 after LPS exposure. BAEC from children are able to recognise and respond in vitro with enhanced pro inflammatory mediator secretion to some inhaled exposures. PMID:27023576

  1. Bronchial Epithelial Cells Produce IL-5: Implications for Local Immune Responses in the Airways

    PubMed Central

    Wu, Carol A.; Peluso, John J.; Zhu, Li; Lingenheld, Elizabeth G.; Walker, Sharale T.; Puddington, Lynn

    2010-01-01

    IL-5 is a pleiotropic cytokine that promotes eosinophil differentiation and survival. While naïve bronchial epithelial cells (BEC) produce low levels of IL-5, the role of BEC-derived IL-5 in allergic airway inflammation is unknown. We now show that BEC, isolated from mice with OVA-induced allergic airway disease (AAD), produced elevated levels of IL-5 mRNA and protein as compared to BEC from naïve mice. To determine the contribution of BEC-derived IL-5 to effector responses in the airways, IL-5 deficient bone marrow chimeric mice were generated in which IL-5 expression was restricted to stromal (e.g. BEC) or hematopoietic cells. When subjected to AAD, IL-5 produced by BECs contributed to mucous metaplasia, airway eosinophilia, and OVA-specific IgA levels. Thus, IL-5 production by BEC can impact the microenvironment of the lung, modifying pathologic and protective immune responses in the airways. PMID:20494340

  2. Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease.

    PubMed

    Fujii, Satoko; Hara, Hiromichi; Araya, Jun; Takasaka, Naoki; Kojima, Jun; Ito, Saburo; Minagawa, Shunsuke; Yumino, Yoko; Ishikawa, Takeo; Numata, Takanori; Kawaishi, Makoto; Hirano, Jun; Odaka, Makoto; Morikawa, Toshiaki; Nishimura, Stephen; Nakayama, Katsutoshi; Kuwano, Kazuyoshi

    2012-08-01

    Tobacco smoke-induced accelerated cell senescence has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cell senescence is accompanied by the accumulation of damaged cellular components suggesting that in COPD, inhibition of autophagy may contribute to cell senescence. Here we look at whether autophagy contributes to cigarette smoke extract (CSE) - induced cell senescence of primary human bronchial epithelial cells (HBEC), and further evaluate p62 and ubiquitinated protein levels in lung homogenates from COPD patients. We demonstrate that CSE transiently induces activation of autophagy in HBEC, followed by accelerated cell senescence and concomitant accumulation of p62 and ubiquitinated proteins. Autophagy inhibition further enhanced accumulations of p62 and ubiquitinated proteins, resulting in increased senescence and senescence-associated secretory phenotype (SASP) with interleukin (IL)-8 secretion. Conversely, autophagy activation by Torin1, a mammalian target of rapamycin (mTOR inhibitor), suppressed accumulations of p62 and ubiquitinated proteins and inhibits cell senescence. Despite increased baseline activity, autophagy induction in response to CSE was significantly decreased in HBEC from COPD patients. Increased accumulations of p62 and ubiquitinated proteins were detected in lung homogenates from COPD patients. Insufficient autophagic clearance of damaged proteins, including ubiquitinated proteins, is involved in accelerated cell senescence in COPD, suggesting a novel protective role for autophagy in the tobacco smoke-induced senescence-associated lung disease, COPD. PMID:22934255

  3. Molecular Mechanisms of Malignant Transformation by Low Dose Cadmium in Normal Human Bronchial Epithelial Cells

    PubMed Central

    Kluz, Thomas; Cohen, Lisa; Shen, Steven S.; Costa, Max

    2016-01-01

    Cadmium is a carcinogenic metal, the mechanisms of which are not fully understood. In this study, human bronchial epithelial cells were transformed with sub-toxic doses of cadmium (0.01, 0.05, and 0.1 μM) and transformed clones were characterized for gene expression changes using RNA-seq, as well as other molecular measurements. 440 genes were upregulated and 47 genes were downregulated in cadmium clones relative to control clones over 1.25-fold. Upregulated genes were associated mostly with gene ontology terms related to embryonic development, immune response, and cell movement, while downregulated genes were associated with RNA metabolism and regulation of transcription. Several embryonic genes were upregulated, including the transcription regulator SATB2. SATB2 is critical for normal skeletal development and has roles in gene expression regulation and chromatin remodeling. Small hairpin RNA knockdown of SATB2 significantly inhibited growth in soft agar, indicating its potential as a driver of metal-induced carcinogenesis. An increase in oxidative stress and autophagy was observed in cadmium clones. In addition, the DNA repair protein O6-methylguanine-DNA-methyltransferase was depleted by transformation with cadmium. MGMT loss caused significant decrease in cell viability after treatment with the alkylating agent temozolomide, demonstrating diminished capacity to repair such damage. Results reveal various mechanisms of cadmium-induced malignant transformation in BEAS-2B cells including upregulation of SATB2, downregulation of MGMT, and increased oxidative stress. PMID:27186882

  4. Primary Paediatric Bronchial Airway Epithelial Cell in Vitro Responses to Environmental Exposures.

    PubMed

    McInnes, Neil; Davidson, Matthew; Scaife, Alison; Miller, David; Spiteri, Daniella; Engelhardt, Tom; Semple, Sean; Devereux, Graham; Walsh, Garry; Turner, Steve

    2016-01-01

    The bronchial airway epithelial cell (BAEC) is the site for initial encounters between inhaled environmental factors and the lower respiratory system. Our hypothesis was that release of pro inflammatory interleukins (IL)-6 and IL-8 from primary BAEC cultured from children will be increased after in vitro exposure to common environmental factors. Primary BAEC were obtained from children undergoing clinically indicated routine general anaesthetic procedures. Cells were exposed to three different concentrations of lipopolysaccharide (LPS) or house dust mite allergen (HDM) or particulates extracted from side stream cigarette smoke (SSCS). BAEC were obtained from 24 children (mean age 7.0 years) and exposed to stimuli. Compared with the negative control, there was an increase in IL-6 and IL-8 release after exposure to HDM (p ≤ 0.001 for both comparisons). There was reduced IL-6 after higher compared to lower SSCS exposure (p = 0.023). There was no change in BAEC release of IL-6 or IL-8 after LPS exposure. BAEC from children are able to recognise and respond in vitro with enhanced pro inflammatory mediator secretion to some inhaled exposures. PMID:27023576

  5. Differentiation of human bronchial epithelial cells: role of hydrocortisone in development of ion transport pathways involved in mucociliary clearance.

    PubMed

    Zaidman, Nathan A; Panoskaltsis-Mortari, Angela; O'Grady, Scott M

    2016-08-01

    Glucocorticoids strongly influence the mucosal-defense functions performed by the bronchial epithelium, and inhaled corticosteroids are critical in the treatment of patients with inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. A common pathology associated with these diseases is reduced mucociliary clearance, a defense mechanism involving the coordinated transport of salt, water, and mucus by the bronchial epithelium, ultimately leading to retention of pathogens and particles in the airways and to further disease progression. In the present study we investigated the role of hydrocortisone (HC) in differentiation and development of the ion transport phenotype of normal human bronchial epithelial cells under air-liquid interface conditions. Normal human bronchial epithelial cells differentiated in the absence of HC (HC0) showed significantly less benzamil-sensitive short-circuit current than controls, as well as a reduced response after stimulation with the selective β2-adrenergic receptor agonist salbutamol. Apical membrane localization of epithelial Na(+) channel α-subunits was similarly reduced in HC0 cells compared with controls, supporting a role of HC in the trafficking and density of Na(+) channels in the plasma membrane. Additionally, glucocorticoid exposure during differentiation regulated the transcription of cystic fibrosis transmembrane conductance regulator and β2-adrenergic receptor mRNAs and appeared to be necessary for the expression of cystic fibrosis transmembrane conductance regulator-dependent anion secretion in response to β2-agonists. HC had no significant effect on surface cell differentiation but did modulate the expression of mucin mRNAs. These findings indicate that glucocorticoids support mucosal defense by regulating critical transport pathways essential for effective mucociliary clearance. PMID:27306366

  6. cAMP-dependent protein kinase activation decreases cytokine release in bronchial epithelial cells

    PubMed Central

    Poole, Jill A.; Nordgren, Tara M.; DeVasure, Jane M.; Heires, Art J.; Bailey, Kristina L.; Romberger, Debra J.

    2014-01-01

    Lung injury caused by inhalation of dust from swine-concentrated animal-feeding operations (CAFO) involves the release of inflammatory cytokine interleukin 8 (IL-8), which is mediated by protein kinase C-ε (PKC-ε) in airway epithelial cells. Once activated by CAFO dust, PKC-ε is responsible for slowing cilia beating and reducing cell migration for wound repair. Conversely, the cAMP-dependent protein kinase (PKA) stimulates contrasting effects, such as increased cilia beating and an acceleration of cell migration for wound repair. We hypothesized that a bidirectional mechanism involving PKA and PKC regulates epithelial airway inflammatory responses. To test this hypothesis, primary human bronchial epithelial cells and BEAS-2B cells were treated with hog dust extract (HDE) in the presence or absence of cAMP. PKC-ε activity was significantly reduced in cells that were pretreated for 1 h with 8-bromoadenosine 3′,5′-cyclic monophosphate (8-Br-cAMP) before exposure to HDE (P < 0.05). HDE-induced IL-6, and IL-8 release was significantly lower in cells that were pretreated with 8-Br-cAMP (P < 0.05). To exclude exchange protein activated by cAMP (EPAC) involvement, cells were pretreated with either 8-Br-cAMP or 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2Me-cAMP) (EPAC agonist). 8-CPT-2Me-cAMP did not activate PKA and did not reduce HDE-stimulated IL-6 release. In contrast, 8-Br-cAMP decreased HDE-stimulated tumor necrosis factor (TNF)-α-converting enzyme (TACE; ADAM-17) activity and subsequent TNF-α release (P < 0.001). 8-Br-cAMP also blocked HDE-stimulated IL-6 and keratinocyte-derived chemokine release in precision-cut mouse lung slices (P < 0.05). These data show bidirectional regulation of PKC-ε via a PKA-mediated inhibition of TACE activity resulting in reduced PKC-ε-mediated release of IL-6 and IL-8. PMID:25150062

  7. cAMP-dependent protein kinase activation decreases cytokine release in bronchial epithelial cells.

    PubMed

    Wyatt, Todd A; Poole, Jill A; Nordgren, Tara M; DeVasure, Jane M; Heires, Art J; Bailey, Kristina L; Romberger, Debra J

    2014-10-15

    Lung injury caused by inhalation of dust from swine-concentrated animal-feeding operations (CAFO) involves the release of inflammatory cytokine interleukin 8 (IL-8), which is mediated by protein kinase C-ε (PKC-ε) in airway epithelial cells. Once activated by CAFO dust, PKC-ε is responsible for slowing cilia beating and reducing cell migration for wound repair. Conversely, the cAMP-dependent protein kinase (PKA) stimulates contrasting effects, such as increased cilia beating and an acceleration of cell migration for wound repair. We hypothesized that a bidirectional mechanism involving PKA and PKC regulates epithelial airway inflammatory responses. To test this hypothesis, primary human bronchial epithelial cells and BEAS-2B cells were treated with hog dust extract (HDE) in the presence or absence of cAMP. PKC-ε activity was significantly reduced in cells that were pretreated for 1 h with 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) before exposure to HDE (P < 0.05). HDE-induced IL-6, and IL-8 release was significantly lower in cells that were pretreated with 8-Br-cAMP (P < 0.05). To exclude exchange protein activated by cAMP (EPAC) involvement, cells were pretreated with either 8-Br-cAMP or 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2Me-cAMP) (EPAC agonist). 8-CPT-2Me-cAMP did not activate PKA and did not reduce HDE-stimulated IL-6 release. In contrast, 8-Br-cAMP decreased HDE-stimulated tumor necrosis factor (TNF)-α-converting enzyme (TACE; ADAM-17) activity and subsequent TNF-α release (P < 0.001). 8-Br-cAMP also blocked HDE-stimulated IL-6 and keratinocyte-derived chemokine release in precision-cut mouse lung slices (P < 0.05). These data show bidirectional regulation of PKC-ε via a PKA-mediated inhibition of TACE activity resulting in reduced PKC-ε-mediated release of IL-6 and IL-8. PMID:25150062

  8. Induction of the plasminogen activator system by mechanical stimulation of human bronchial epithelial cells.

    PubMed

    Chu, Eric K; Cheng, Jason; Foley, John S; Mecham, Brigham H; Owen, Caroline A; Haley, Kathleen J; Mariani, Thomas J; Kohane, Isaac S; Tschumperlin, Daniel J; Drazen, Jeffrey M

    2006-12-01

    Mechanical stimulation of the airway epithelium, as would occur during bronchoconstriction, is a potent stimulus and can activate profibrotic pathways. We used DNA microarray technology to examine gene expression in compressed normal human bronchial epithelial cells (NHBE). Compressive stress applied continuously over an 8-h period to NHBE cells led to the upregulation of several families of genes, including a family of plasminogen-related genes that were previously not known to be regulated in this system. Real-time PCR demonstrated a peak increase in gene expression of 8.0-fold for urokinase plasminogen activator (uPA), 16.2-fold for urokinase plasminogen activator receptor (uPAR), 4.2-fold for plasminogen activator inhibitor-1 (PAI-1), and 3.9-fold for tissue plasminogen activator (tPA). Compressive stress also increased uPA protein levels in the cell lysates (112.0 versus 82.0 ng/ml, P = 0.0004), and increased uPA (4.7 versus 3.3 ng/ml, P = 0.02), uPAR (1.3 versus 0.86 ng/ml, P = 0.007), and PAI-1 (50 versus 36 ng/ml, P = 0.006) protein levels in cell culture media. Functional studies demonstrated increased urokinase-dependent plasmin generation in compression-stimulated cells (0.0090 versus 0.0033 OD/min, P = 0.03). In addition, compression led to increased activation of matrix metalloproteinase (MMP)-9 and MMP-2 in a urokinase-dependent manner. In postmortem human lung tissue, we observed an increase in epithelial uPA and uPAR immunostaining in the airways of two patients who died in status asthmaticus compared with minimal immunoreactivity noted in airways from seven lung donors without asthma. Together these observations suggest an integrated response of airway epithelial cells to mechanical stimulation, acting through the plasminogen-activating system to modify the airway microenvironment. PMID:16794260

  9. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    SciTech Connect

    Li, Lingzhi; Qiu, Ping; Chen, Bailing; Lu, Yongju; Wu, Kai; Thakur, Chitra; Chang, Qingshan; Sun, Jiaying; Chen, Fei

    2014-05-01

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROS in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.

  10. Growth and differentiation of primary and passaged equine bronchial epithelial cells under conventional and air-liquid-interface culture conditions

    PubMed Central

    2011-01-01

    Background Horses develop recurrent airway obstruction (RAO) that resembles human bronchial asthma. Differentiated primary equine bronchial epithelial cells (EBEC) in culture that closely mimic the airway cells in vivo would be useful to investigate the contribution of bronchial epithelium in inflammation of airway diseases. However, because isolation and characterization of EBEC cultures has been limited, we modified and optimized techniques of generating and culturing EBECs from healthy horses to mimic in vivo conditions. Results Large numbers of EBEC were obtained by trypsin digestion and successfully grown for up to 2 passages with or without serum. However, serum or ultroser G proved to be essential for EBEC differentiation on membrane inserts at ALI. A pseudo-stratified muco-ciliary epithelium with basal cells was observed at differentiation. Further, transepithelial resistance (TEER) was more consistent and higher in P1 cultures compared to P0 cultures while ciliation was delayed in P1 cultures. Conclusions This study provides an efficient method for obtaining a high-yield of EBECs and for generating highly differentiated cultures. These EBEC cultures can be used to study the formation of tight junction or to identify epithelial-derived inflammatory factors that contribute to lung diseases such as asthma. PMID:21649893

  11. Differential Response of Human Nasal and Bronchial Epithelial Cells upon Exposure to Size-fractionated Dairy Dust

    PubMed Central

    Hawley, Brie; Schaeffer, Joshua; Poole, Jill A.; Dooley, Gregory P.; Reynolds, Stephen; Volckens, John

    2015-01-01

    Exposure to organic dusts is associated with increased respiratory morbidity and mortality in agricultural workers. Organic dusts in dairy farm environments are complex, polydisperse mixtures of toxic and immunogenic compounds. Previous toxicological studies focused primarily on exposures to the respirable size fraction, however, organic dusts in dairy farm environments are known to contain larger particles. Given the size distribution of dusts from dairy farm environments, the nasal and bronchial epithelia represent targets of agricultural dust exposures. In this study, well-differentiated normal human bronchial epithelial cells and human nasal epithelial cells were exposed to two different size fractions (PM10 and PM>10) of dairy parlor dust using a novel aerosol-to-cell exposure system. Levels of pro-inflammatory transcripts (IL-8, IL-6, and TNF-α) were measured two hr after exposure. Lactate dehydrogenase (LDH) release was also measured as an indicator of cytotoxicity. Cell exposure to dust was measured in each size fraction as a function of mass, endotoxin, and muramic acid levels. To our knowledge, this is the first study to evaluate the effects of distinct size fractions of agricultural dust on human airway epithelial cells. Our results suggest that both PM10 and PM>10 size fractions elicit a pro-inflammatory response in airway epithelial cells and that the entire inhalable size fraction needs to be considered when assessing potential risks from exposure to agricultural dusts. Further, data suggest that human bronchial cells respond differently to these dusts than human nasal cells and, therefore, the two cell types need to be considered separately in airway cell models of agricultural dust toxicity. PMID:25965193

  12. Roflumilast Inhibits Respiratory Syncytial Virus Infection in Human Differentiated Bronchial Epithelial Cells

    PubMed Central

    Mata, Manuel; Martinez, Isidoro; Melero, Jose A.; Tenor, Herman; Cortijo, Julio

    2013-01-01

    Respiratory syncytial virus (RSV) causes acute exacerbations in COPD and asthma. RSV infects bronchial epithelial cells (HBE) that trigger RSV associated lung pathology. This study explores whether the phosphodiesterase 4 (PDE4) inhibitor Roflumilast N-oxide (RNO), alters RSV infection of well-differentiated HBE (WD-HBE) in vitro. WD-HBE were RSV infected in the presence or absence of RNO (0.1-100 nM). Viral infection (staining of F and G proteins, nucleoprotein RNA level), mRNA of ICAM-1, ciliated cell markers (digital high speed videomicroscopy, β-tubulin immunofluorescence, Foxj1 and Dnai2 mRNA), Goblet cells (PAS), mRNA of MUC5AC and CLCA1, mRNA and protein level of IL-13, IL-6, IL-8, TNFα, formation of H2O2 and the anti-oxidative armamentarium (mRNA of Nrf2, HO-1, GPx; total antioxidant capacity (TAC) were measured at day 10 or 15 post infection. RNO inhibited RSV infection of WD-HBE, prevented the loss of ciliated cells and markers, reduced the increase of MUC5AC and CLCA1 and inhibited the increase of IL-13, IL-6, IL-8, TNFα and ICAM-1. Additionally RNO reversed the reduction of Nrf2, HO-1 and GPx mRNA levels and consequently restored the TAC and reduced the H2O2 formation. RNO inhibits RSV infection of WD-HBE cultures and mitigates the cytopathological changes associated to this virus. PMID:23936072

  13. [Integrin-ligands binding reaction upregulates the antioxidant activity of rabbit bronchial epithelial cells].

    PubMed

    Qin, X Q; Xiang, Y; Guan, C X; Zhang, C Q; Sun, X H

    2001-02-01

    Antioxidant activity of bronchial epithelial cells (BECs) plays an essential role in preventing the airway epithelium integrity from damage in structure and function. Integrin expressed by BECs is the receptor of extracellular matrix such as fibronectin (Fn), and it is involved in modulation of proliferation, differentiation and metabolism of the cells. In order to test the hypothesis that integrin-ligand binding reaction supports the ability of cells to withstand oxidant attack, the present study evaluated the antioxidant activity of primary cultured rabbit BECs treated with fibronectin or its sequence Arg-Gly-Asp (RGD peptide), by determining changes in the activity of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) and in the level of glutathione (GSH). The results are as follows: (1) Fn (10 micrograms/ml) increased significantly the activity unit of GSH-Px (P < 0.05, n = 5), which was inhibited by calmodulin-inhibitor W7 (10(-5) mol/L) (P < 0.05). Both Fn (5-20 micrograms/ml) and RGD (15-60 micrograms/ml) showed a dose-dependent upregulatory effect (respectively r = 0.93 and r = 0.73). (2) Treatment with Fn increased SOD activity (P < 0.01, n = 7), which was abolished by W7 (P < 0.01). (3) Catalase activity was also stimulated by Fn (P < 0.05, n = 6) and reversed by W7 (P < 0.01). (4) A dose-dependent increase of GSH level was observed in both Fn (r = 0.82) and RGD treatment (r = 0.84). The data suggest that the binding of integrin with extracellular matrix can upregulate activity of antioxidant enzymes, and increase the content of GSH and improve the ability of BECs to resist oxidant injury. PMID:11354796

  14. Microcystin-LR induces mitochondria-mediated apoptosis in human bronchial epithelial cells

    PubMed Central

    Li, Yang; Li, Jinhui; Huang, Hui; Yang, Mingfeng; Zhuang, Donggang; Cheng, Xuemin; Zhang, Huizhen; Fu, Xiaoli

    2016-01-01

    The present study aimed to investigate the toxicity of microcystin-LR (MC-LR) and to explore the mechanism of MC-LR-induced apoptosis in human bronchial epithelial (HBE) cells. HBE cells were treated with MC-LR (1, 10, 20, 30 and 40 µg/ml) alone or with MC-LR (0, 2.5, 5 and 10 µg/ml) and Z-VAD-FMK (0, 10, 20, 40, 60, 80, 100, 120 and 140 µM), which is a caspase inhibitor, for 24 and 48 h. Cell viability was assessed via an MTT assay and the half maximal effective concentration of MC-LR was determined. The optimal concentration of Z-VAD-FMK was established as 50 µm, which was then used in the subsequent experiments. MC-LR significantly inhibited cell viability and induced apoptosis of HBE cells in a dose-dependent manner, as detected by an Annexin V/propidium iodide assay. MC-LR induced cell apoptosis, excess reactive oxygen species production and mitochondrial membrane potential collapse, upregulated Bax expression and downregulated B-cell lymphoma-2 expression in HBE cells. Moreover, western blot analysis demonstrated that MC-LR increased the activity levels of caspase-3 and caspase-9 and induced cytochrome c release into the cytoplasm, suggesting that MC-LR-induced apoptosis is associated with the mitochondrial pathway. Furthermore, pretreatment with Z-VAD-FMK reduced MC-LR-induced apoptosis by blocking caspase activation in HBE cells. Therefore, the results of the present study suggested that MC-LR is capable of significantly inhibiting the viability of HBE cells by inducing apoptosis in a mitochondria-dependent manner. The present study provides a foundation for further understanding the mechanism underlying the toxicity of MC-LR in the respiratory system. PMID:27446254

  15. Untargeted Proteomics and Systems-Based Mechanistic Investigation of Artesunate in Human Bronchial Epithelial Cells.

    PubMed

    Ravindra, Kodihalli C; Ho, Wanxing Eugene; Cheng, Chang; Godoy, Luiz C; Wishnok, John S; Ong, Choon Nam; Wong, W S Fred; Wogan, Gerald N; Tannenbaum, Steven R

    2015-10-19

    The antimalarial drug artesunate is a semisynthetic derivative of artemisinin, the principal active component of a medicinal plant Artemisia annua. It is hypothesized to attenuate allergic asthma via inhibition of multiple signaling pathways. We used a comprehensive approach to elucidate the mechanism of action of artesunate by designing a novel biotinylated dihydroartemisinin (BDHA) to identify cellular protein targets of this anti-inflammatory drug. By adopting an untargeted proteomics approach, we demonstrated that artesunate may exert its protective anti-inflammatory effects via direct interaction with multiple proteins, most importantly with a number of mitochondrial enzymes related to glucose and energy metabolism, along with mRNA and gene expression, ribosomal regulation, stress responses, and structural proteins. In addition, the modulatory effects of artesunate on various cellular transcription factors were investigated using a transcription factor array, which revealed that artesunate can simultaneously modulate multiple nuclear transcription factors related to several major pro- and anti-inflammatory signaling cascades in human bronchial epithelial cells. Artesunate significantly enhanced nuclear levels of nuclear factor erythroid-2-related factor 2 (Nrf2), a key promoter of antioxidant mechanisms, which is inhibited by the Kelch-like ECH-associated protein 1 (Keap1). Our results demonstrate that, like other electrophilic Nrf2 regulators, artesunate activates this system via direct molecular interaction/modification of Keap1, freeing Nrf2 for transcriptional activity. Altogether, the molecular interactions and modulation of nuclear transcription factors provide invaluable insights into the broad pharmacological actions of artesunate in inflammatory lung diseases and related inflammatory disorders. PMID:26340163

  16. Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells

    PubMed Central

    Xu, Yan-Ming; Yu, Fei-Yuan; Yang, Feng; Yao, Yue; Zhou, Yuan; Ching, Yick-Pang; Lau, Andy T. Y.

    2016-01-01

    Protein array technology is a powerful platform for the simultaneous determination of the expression levels of a number of proteins as well as post-translational modifications such as phosphorylation. Here, we screen and report for the first time, the dominant signaling cascades and apoptotic mediators during the course of cadmium (Cd)-induced cytotoxicity in human bronchial epithelial cells (BEAS-2B) by antibody array analyses. Proteins from control and Cd-treated cells were captured on Proteome Profiler™ Arrays for the parallel determination of the relative levels of protein phosphorylation and proteins associated with apoptosis. Our results indicated that the p38 MAPK- and JNK-related signal transduction pathways were dramatically activated by Cd treatment. Cd potently stimulates the phosphorylations of p38α (MAPK14), JNK1/2 (MAPK8/9), and JUN; while the phosphorylations of Akt1, ERK1/2 (MAPK3/1), GSK3β, and mTOR were suppressed. Moreover, there was an induction of proapoptotic protein BAX, release of cytochrome c (CYCS) from mitochondria, activation of caspase-3/9 (CASP3/9); as well as decreased expression of cell cycle checkpoint proteins (TP53, p21, and p27) and several inhibitors of apoptosis proteins (IAPs) [including cIAP-1/2 (BIRC2/3), XIAP (BIRC4), and survivin (BIRC5)]. Pretreatment of cells with the thiol antioxidant glutathione or p38 MAPK/JNK inhibitors before Cd treatment effectively abrogated ROS activation of p38 MAPK/JNK pathways and apoptosis-related proteins. Taken together, our results demonstrate that Cd causes oxidative stress-induced apoptosis; and the p38 MAPK/JNK and mitochondrial pathways are more importantly participated for signal transduction and the induction of apoptosis in Cd-exposed human lung cells. PMID:26716417

  17. Combustion products of 1,3-butadiene are cytotoxic and genotoxic to human bronchial epithelial cells.

    PubMed Central

    Catallo, W J; Kennedy, C H; Henk, W; Barker, S A; Grace, S C; Penn, A

    2001-01-01

    Adverse health effects of airborne toxicants, especially small respirable particles and their associated adsorbed chemicals, are of growing concern to health professionals, governmental agencies, and the general public. Areas rich in petrochemical processing facilities (e.g., eastern Texas and southern California) chronically have poor air quality. Atmospheric releases of products of incomplete combustion (e.g., soot) from these facilities are not subject to rigorous regulatory enforcement. Although soot can include respirable particles and carcinogens, the toxicologic and epidemiologic consequences of exposure to environmentally relevant complex soots have not been well investigated. Here we continue our physico-chemical analysis of butadiene soot and report effects of exposure to this soot on putative targets, normal human bronchial epithelial (NHBE) cells. We examined organic extracts of butadiene soot by gas chromatography-mass spectrometry (GC-MS), probe distillation MS, and liquid chromatography (LC)-MS-MS. Hundreds of aromatic hydrocarbons and polycyclic aromatic hydrocarbons with molecular mass as high as 1,000 atomic mass units were detected, including known and suspected human carcinogens (e.g., benzo(a)pyrene). Butadiene soot particles also had strong, solid-state free-radical character in electron spin resonance analysis. Spin-trapping studies indicated that fresh butadiene soot in a buffered aqueous solution containing dimethylsulfoxide (DMSO) oxidized the DMSO, leading to CH(3)* radical formation. Butadiene soot DMSO extract (BSDE)-exposed NHBE cells displayed extranuclear fluorescence within 4 hr of exposure. BSDE was cytotoxic to > 20% of the cells at 72 hr. Morphologic alterations, including cell swelling and membrane blebbing, were apparent within 24 hr of exposure. These alterations are characteristic of oncosis, an ischemia-induced form of cell death. BSDE treatment also produced significant genotoxicity, as indicated by binucleated cell

  18. Cross-Talk between Human Mast Cells and Bronchial Epithelial Cells in Plasminogen Activator Inhibitor-1 Production via Transforming Growth Factor-β1

    PubMed Central

    Lee, Sun H.; Kato, Atsushi; Takabayashi, Tetsuji; Kulka, Marianna; Shin, Soon C.; Schleimer, Robert P.

    2015-01-01

    Previous reports suggest that plasminogen activator inhibitor-1 (PAI-1) promotes airway remodeling and that human and mouse mast cells (MCs) are an important source of PAI-1. In the present study we investigated MC–epithelial cell (EC) interactions in the production of PAI-1. We stimulated the human MC line LAD2 with IgE-receptor cross-linking and collected the supernatants. We incubated the human bronchial EC line BEAS-2B with the LAD2 supernatants and measured the level of PAI-1. When the supernatants from IgE-stimulated LAD2 were added to BEAS-2B, there was a significant enhancement of PAI-1 production by BEAS-2B. When we treated the MC supernatants with a transforming growth factor (TGF)-β1 neutralizing antibody, the MC-derived induction of PAI-1 from BEAS-2B was completely abrogated. Although TGF-β1 mRNA was constitutively expressed in resting LAD2, it was not highly induced by IgE-mediated stimulation. Nonetheless, active TGF-β1 protein was significantly increased in LAD2 after IgE-mediated stimulation. Active TGF-β1 produced by primary cultured human MCs was significantly reduced in the presence of a chymase inhibitor, suggesting a role of MC chymase as an activator of latent TGF-β1. This study indicates that stimulation of human MCs by IgE receptor cross-linking triggers activation of TGF-β1, at least in part via chymase, which in turn induces the production of PAI-1 by bronchial ECs. Our data suggest that human MCs may play an important role in airway remodeling in asthma as a direct source of PAI-1 and by activating bronchial ECs to produce further PAI-1 via a TGF-β1–mediated activation pathway. PMID:24987792

  19. Cross-talk between human mast cells and bronchial epithelial cells in plasminogen activator inhibitor-1 production via transforming growth factor-β1.

    PubMed

    Cho, Seong H; Lee, Sun H; Kato, Atsushi; Takabayashi, Tetsuji; Kulka, Marianna; Shin, Soon C; Schleimer, Robert P

    2015-01-01

    Previous reports suggest that plasminogen activator inhibitor-1 (PAI-1) promotes airway remodeling and that human and mouse mast cells (MCs) are an important source of PAI-1. In the present study we investigated MC-epithelial cell (EC) interactions in the production of PAI-1. We stimulated the human MC line LAD2 with IgE-receptor cross-linking and collected the supernatants. We incubated the human bronchial EC line BEAS-2B with the LAD2 supernatants and measured the level of PAI-1. When the supernatants from IgE-stimulated LAD2 were added to BEAS-2B, there was a significant enhancement of PAI-1 production by BEAS-2B. When we treated the MC supernatants with a transforming growth factor (TGF)-β1 neutralizing antibody, the MC-derived induction of PAI-1 from BEAS-2B was completely abrogated. Although TGF-β1 mRNA was constitutively expressed in resting LAD2, it was not highly induced by IgE-mediated stimulation. Nonetheless, active TGF-β1 protein was significantly increased in LAD2 after IgE-mediated stimulation. Active TGF-β1 produced by primary cultured human MCs was significantly reduced in the presence of a chymase inhibitor, suggesting a role of MC chymase as an activator of latent TGF-β1. This study indicates that stimulation of human MCs by IgE receptor cross-linking triggers activation of TGF-β1, at least in part via chymase, which in turn induces the production of PAI-1 by bronchial ECs. Our data suggest that human MCs may play an important role in airway remodeling in asthma as a direct source of PAI-1 and by activating bronchial ECs to produce further PAI-1 via a TGF-β1-mediated activation pathway. PMID:24987792

  20. Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis.

    PubMed

    Park, Youn-Hee; Kim, Donghern; Dai, Jin; Zhang, Zhuo

    2015-09-15

    Occupational and environmental exposure to arsenic (III) and chromium VI (Cr(VI)) have been confirmed to cause lung cancer. Mechanisms of these metals carcinogenesis are still under investigation. Selection of cell lines to be used is essential for the studies. Human bronchial epithelial BEAS-2B cells are the cells to be utilized by most of scientists. However, due to p53 missense mutation (CCG→TCG) at codon 47 and the codon 72 polymorphism (CGC→CCC) in BEAS-2B cells, its usage has frequently been questioned. The present study has examined activity and expression of 53 and its downstream target protein p21 upon acute or chronic exposure of BEAS-2B cells to arsenic and Cr(VI). The results show that short-term exposure of BEAS-2B cells to arsenic or Cr(VI) was able to activate both p53 and p21. Chronic exposure of BEAS-2B cells to these two metals caused malignant cell transformation and tumorigenesis. In arsenic-transformed BEAS-2B cells reductions in p53 promoter activity, mRNA expression, and phosphorylation of p53 at Ser392 were observed, while the total p53 protein level remained the same compared to those in passage-matched parent ones. p21 promoter activity and expression were decreased in arsenic-transformed cells. Cr(VI)-transformed cells exhibit elevated p53 promoter activity, mRNA expression, and phosphorylation at Ser15, but reduced phosphorylation at Ser392 and total p53 protein level compared to passage-matched parent ones. p21 promoter activity and expression were elevated in Cr(VI)-transformed cells. These results demonstrate that p53 is able to respond to exposure of arsenic or Cr(VI), suggesting that BEAS-2B cells are an appropriate in vitro model to investigate arsenic or Cr(VI) induced lung cancer. PMID:26091798

  1. D prostanoid receptor 2 (chemoattractant receptor–homologous molecule expressed on TH2 cells) protein expression in asthmatic patients and its effects on bronchial epithelial cells

    PubMed Central

    Stinson, Sally E.; Amrani, Yassine; Brightling, Christopher E.

    2015-01-01

    Background The D prostanoid receptor 2 (DP2; also known as chemoattractant receptor–homologous molecule expressed on TH2 cells) is implicated in the pathogenesis of asthma, but its expression within bronchial biopsy specimens is unknown. Objectives We sought to investigate the bronchial submucosal DP2 expression in asthmatic patients and healthy control subjects and to explore its functional role in epithelial cells. Methods DP2 protein expression was assessed in bronchial biopsy specimens from asthmatic patients (n = 22) and healthy control subjects (n = 10) by using immunohistochemistry and in primary epithelial cells by using flow cytometry, immunofluorescence, and quantitative RT-PCR. The effects of the selective DP2 agonist 13, 14-dihydro-15-keto prostaglandin D2 on epithelial cell migration and differentiation were determined. Results Numbers of submucosal DP2+ cells were increased in asthmatic patients compared with those in healthy control subjects (mean [SEM]: 78 [5] vs 22 [3]/mm2 submucosa, P < .001). The bronchial epithelium expressed DP2, but its expression was decreased in asthmatic patients compared with that seen in healthy control subjects (mean [SEM]: 21 [3] vs 72 [11]/10 mm2 epithelial area, P = .001), with similar differences observed in vitro by primary epithelial cells. Squamous metaplasia of the bronchial epithelium was increased in asthmatic patients and related to decreased DP2 expression (rs = 0.69, P < .001). 13, 14-Dihydro-15-keto prostaglandin D2 promoted epithelial cell migration and at air-liquid interface cultures increased the number of MUC5AC+ and involucrin-positive cells, which were blocked with the DP2-selective antagonist AZD6430. Conclusions DP2 is expressed by the bronchial epithelium, and its activation drives epithelial differentiation, suggesting that in addition to its well-characterized role in inflammatory cell migration, DP2 might contribute to airway remodeling in asthmatic patients. PMID:25312757

  2. Interleukin-13–induced MUC5AC Is Regulated by 15-Lipoxygenase 1 Pathway in Human Bronchial Epithelial Cells

    PubMed Central

    Zhao, Jinming; Maskrey, Ben; Balzar, Silvana; Chibana, Kazuyuki; Mustovich, Anthony; Hu, Haizhen; Trudeau, John B.; O'Donnell, Valerie; Wenzel, Sally E.

    2009-01-01

    Rationale: 15-Lipoxygenase-1 (15LO1) and MUC5AC are highly expressed in asthmatic epithelial cells. IL-13 is known to induce 15LO1 and MUC5AC in human airway epithelial cells in vitro. Whether 15LO1 and/or its product 15-HETE modulate MUC5AC expression is unknown. Objectives: To determine the expression of 15LO1 in freshly harvested epithelial cells from subjects with asthma and normal control subjects and to determine whether IL-13–induced 15LO1 expression and activation regulate MUC5AC expression in human bronchial epithelial cells in vitro. Methods: Human airway epithelial cells from subjects with asthma and normal subjects were evaluated ex vivo for 15LO1 and MUC5AC expression. The impact of 15LO1 on MUC5AC expression in vitro was analyzed by inhibiting 15LO1 through pharmacologic (PD146176) and siRNA approaches in human bronchial epithelial cells cultured under air–liquid interface. We analyzed 15 hydroxyeicosatetraenoic acid (15-HETE) by liquid chromatography/UV/mass spectrometry. MUC5AC and 15LO1 were analyzed by real-time RT-PCR, immunofluoresence, and Western blot. Measurements and Main Results: Epithelial 15LO1 expression increased with asthma severity (P < 0.0001). 15LO1 significantly correlated with MUC5AC ex vivo and in vitro. IL-13 increased 15LO1 expression and stimulated formation of two molecular species of 15-HETE esterified to phosphotidylethanolamine (15-HETE-PE). Inhibition of 15LO1 suppressed 15-HETE-PE and decreased MUC5AC expression in the presence of IL-13 stimulation. The addition of exogenous 15-HETE partially restored MUC5AC expression. Conclusions: Epithelial 15LO1 expression increases with increasing asthma severity. IL-13 induction of 15-HETE-PE enhances MUC5AC expression in human airway epithelial cells. High levels of 15LO1 activity could contribute to the increases of MUC5AC observed in asthma. PMID:19218191

  3. Rhinovirus Load Is High despite Preserved Interferon-β Response in Cystic Fibrosis Bronchial Epithelial Cells

    PubMed Central

    Cammisano, Maria; Chen, He; Singh, Sareen; Kooi, Cora; Leigh, Richard; Beaudoin, Trevor; Rousseau, Simon; Lands, Larry C.

    2015-01-01

    Lung disease in cystic fibrosis (CF) is often exacerbated following acute upper respiratory tract infections caused by the human rhinovirus (HRV). Pathophysiology of these exacerbations is presently unclear and may involve deficient innate antiviral or exaggerated inflammatory responses in CF airway epithelial cells. Furthermore, responses of CF cells to HRV may be adversely affected by pre-exposure to virulence factors of Pseudomonas (P.) aeruginosa, the microorganism that frequently colonizes CF airways. Here we examined production of antiviral cytokine interferon-β and inflammatory chemokine interleukin-8, expression of the interferon-responsive antiviral gene 2’-5’-oligoadenylate synthetase 1 (OAS1), and intracellular virus RNA load in primary CF (delF508 CFTR) and healthy airway epithelial cells following inoculation with HRV16. Parallel cells were exposed to virulence factors of P. aeruginosa prior to and during HRV16 inoculation. CF cells exhibited production of interferon-β and interleukin-8, and expression of OAS1 at levels comparable to those in healthy cells, yet significantly higher HRV16 RNA load during early hours post-inoculation with HRV16. In line with this, HRV16 RNA load was higher in the CFBE41o- dF cell line overexpessing delF508 CFTR, compared with the isogenic control CFBE41o- WT (wild-type CFTR). Pre-exposure to virulence factors of P. aeruginosa did not affect OAS1 expression or HRV16 RNA load, but potentiated interleukin-8 production. In conclusion, CF cells demonstrate elevated HRV RNA load despite preserved interferon-β and OAS1 responses. High HRV load in CF airway epithelial cells appears to be due to deficiencies manifesting early during HRV infection, and may not be related to interferon-β. PMID:26599098

  4. Gene Expression Profile and Toxic Effects in Human Bronchial Epithelial Cells Exposed to Zearalenone

    PubMed Central

    So, Mei Yu; Tian, ZhiPeng; Phoon, Yong Shian; Sha, Sha; Antoniou, Michael N.; Zhang, JiangWen; Wu, Rudolf S. S.; Tan-Un, Kian C

    2014-01-01

    Zearalenone (ZEA), a mycoestrogen produced by Fusarium fungal species, is mainly found in cereal crops such as maize, wheat and barley. Although ZEA has been reported to be present in air, little is known about the health risk or the molecular basis of action when lung cells are exposed to ZEA. As ZEA has a similar structure to estrogen, its potential risk as an endocrine disrupting chemical (EDC) has thus aroused both environmental and public health concerns. The purpose of this study is to identify the responses and underlying molecular changes that occur when human bronchial epithelial BEAS-2B cells are exposed to ZEA. Differential gene expression profiles were identified in cells that were treated with 40 µM ZEA for 6 h and 24 h by high-throughput microarray analysis using Affymetrix Human Gene 2.0 GeneChip. The array results showed that after ZEA treatment, 262 genes at 6 h and 1073 genes at 24 h were invovled in the differential regulation. Pathway analysis revealed that diverse cellular processes were affected when lung cells were exposed to ZEA resulting in impaired response to DNA damage, cell cycle arrest, down-regulation of inflammatory responses and alterations of epigenetic marks. Results of further experiments indicated that 40 µM ZEA decreased cell viability, induced apoptosis and promoted reactive oxygen species (ROS) generation in a time-dependent manner. Immuno-suppressive effects of ZEA were further revealed through the suppression of lipopolysaccharide (LPS)-induced expression of pro-inflammatory cytokines (IL-6, IL-8 and IL-1β). Interestingly, the level of global DNA methylation was markedly decreased after 24 h exposure to ZEA. Collectively, these observations suggested that a broad range of toxic effects are elicited by ZEA. Particularly, ROS may play a pivotal role in ZEA-induced cell death. These adverse effects observed in lung cells suggest that exposure to ZEA may increase susceptibility of lung cells to diseases and required further

  5. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells

    SciTech Connect

    Duan, Wei-Xia; He, Min-Di; Mao, Lin; Qian, Feng-Hua; Li, Yu-Ming; Pi, Hui-Feng; Liu, Chuan; Chen, Chun-Hai; Lu, Yong-Hui; Cao, Zheng-Wang; Zhang, Lei; Yu, Zheng-Ping; Zhou, Zhou

    2015-07-15

    With application of nano-sized nickel-containing particles (Nano-Ni) expanding, the health concerns about their adverse effects on the pulmonary system are increasing. However, the mechanisms for the pulmonary toxicity of these materials remain unclear. In the present study, we focused on the impacts of NiO nanoparticles (NiONPs) on sirtuin1 (SIRT1), a NAD-dependent deacetylase, and investigated whether SIRT1 was involved in NiONPs-induced apoptosis. Although the NiONPs tended to agglomerate in fluid medium, they still entered into the human bronchial epithelial cells (BEAS-2B) and released Ni{sup 2+} inside the cells. NiONPs at doses of 5, 10, and 20 μg/cm{sup 2} inhibited the cell viability. NiONPs' produced cytotoxicity was demonstrated through an apoptotic process, indicated by increased numbers of Annexin V positive cells and caspase-3 activation. The expression of SIRT1 was markedly down-regulated by the NiONPs, accompanied by the hyperacetylation of p53 (tumor protein 53) and overexpression of Bax (Bcl-2-associated X protein). However, overexpression of SIRT1 through resveratrol treatment or transfection clearly attenuated the NiONPs-induced apoptosis and activation of p53 and Bax. Our results suggest that the repression of SIRT1 may underlie the NiONPs-induced apoptosis via p53 hyperacetylation and subsequent Bax activation. Because SIRT1 participates in multiple biologic processes by deacetylation of dozens of substrates, this knowledge of the impact of NiONPs on SIRT1 may lead to an improved understanding of the toxic mechanisms of Nano-Ni and provide a molecular target to antagonize Nano-Ni toxicity. - Highlights: • NiONPs were taken up by BEAS-2B cells and released Ni{sup 2+}. • NiONPs produced cytotoxicity was demonstrated through an apoptotic process. • NiONPs repressed SIRT1 expression and activated p53 and Bax. • Overexpression of SIRT1 attenuated NiONPs-induced apoptosis via deacetylation p53.

  6. Human mesenchymal stem cells suppress the stretch-induced inflammatory miR-155 and cytokines in bronchial epithelial cells.

    PubMed

    Kuo, Yi-Chun; Li, Yi-Shuan Julie; Zhou, Jing; Shih, Yu-Ru Vernon; Miller, Marina; Broide, David; Lee, Oscar Kuang-Sheng; Chien, Shu

    2013-01-01

    Current research in pulmonary pathology has focused on inflammatory reactions initiated by immunological responses to allergens and irritants. In addition to these biochemical stimuli, physical forces also play an important role in regulating the structure, function, and metabolism of the lung. Hyperstretch of lung tissues can contribute to the inflammatory responses in asthma, but the mechanisms of mechanically induced inflammation in the lung remain unclear. Our results demonstrate that excessive stretch increased the secretion of inflammatory cytokines by human bronchial epithelial cells (hBECs), including IL-8. This increase of IL-8 secretion was due to an elevated microRNA-155 (miR-155) expression, which caused the suppression of Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) production and the subsequent activation of JNK signaling. In vivo studies in our asthmatic mouse model also showed such changes in miR-155, IL-8, and SHIP1 expressions that reflect inflammatory responses. Co-culture with human mesenchymal stem cells (hMSCs) reversed the stretch-induced hBEC inflammatory responses as a result of IL-10 secretion by hMSCs to down-regulate miR-155 expression in hBECs. In summary, we have demonstrated that mechanical stretch modulates the homeostasis of the hBEC secretome involving miR-155 and that hMSCs can be used as a potential therapeutic approach to reverse bronchial epithelial inflammation in asthma. PMID:23967196

  7. JNK and STAT3 signaling pathways converge on Akt-mediated phosphorylation of EZH2 in bronchial epithelial cells induced by arsenic

    PubMed Central

    Chen, Bailing; Liu, Jia; Chang, Qingshan; Beezhold, Kevin; Lu, Yongju; Chen, Fei

    2013-01-01

    The molecular mechanisms by which arsenic (As3+) causes human cancers remain to be fully elucidated. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb-repressive complexes 2 (PRC2) that promotes trimethylation of lysine 27 of histone H3, leading to altered expression of tumor suppressors or oncogenes. In the present study, we determined the effect of As3+ on EZH2 phosphorylation and the signaling pathways important for As3+-induced EZH2 phosphorylation in human bronchial epithelial cell line BEAS-2B. The involvement of kinases in As3+-induced EZH2 phosphorylation was validated by siRNA-based gene silencing. The data showed that As3+ can induce phosphorylation of EZH2 at serine 21 in human bronchial epithelial cells and that the phosphorylation of EZH2 requires an As3+-activated signaling cascade from JNK and STAT3 to Akt. Transfection of the cells with siRNA specific for JNK1 revealed that JNK silencing reduced serine727 phosphorylation of STAT3, Akt activation and EZH2 phosphorylation, suggesting that JNK is the upstream kinase involved in As3+-induced EZH2 phosphorylation. Because As3+ is capable of inducing miRNA-21 (miR-21), a STAT3-regulated miRNA that represses protein translation of PTEN or Spry2, we also tested the role of STAT3 and miR-21 in As3+-induced EZH2 phosphorylation. Ectopic overexpression of miR-21 promoted Akt activation and phosphorylation of EZH2, whereas inhibiting miR-21 by transfecting the cells with anti-miR-21 inhibited Akt activation and EZH2 phosphorylation. Taken together, these results demonstrate a contribution of the JNK, STAT3 and Akt signaling axis to As3+-induced EZH2 phosphorylation. Importantly, these findings may reveal new molecular mechanisms underlying As3+-induced carcinogenesis. PMID:23255093

  8. *Iron accumulation in bronchial epithelial cells is dependent on concurrent sodium transport

    EPA Science Inventory

    Airway epithelial cells prevent damaging effects of extracellular iron by taking up the metal and sequestering it within intracellular ferritin. Epithelial iron transport is associated with transcellular movement of other cations including changes in the expression or activity of...

  9. Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis

    SciTech Connect

    Park, Youn-hee; Kim, Donghern; Dai, Jin; Zhang, Zhuo

    2015-09-15

    Occupational and environmental exposure to arsenic (III) and chromium VI (Cr(VI)) have been confirmed to cause lung cancer. Mechanisms of these metals carcinogenesis are still under investigation. Selection of cell lines to be used is essential for the studies. Human bronchial epithelial BEAS-2B cells are the cells to be utilized by most of scientists. However, due to p53 missense mutation (CCG → TCG) at codon 47 and the codon 72 polymorphism (CGC → CCC) in BEAS-2B cells, its usage has frequently been questioned. The present study has examined activity and expression of 53 and its downstream target protein p21 upon acute or chronic exposure of BEAS-2B cells to arsenic and Cr(VI). The results show that short-term exposure of BEAS-2B cells to arsenic or Cr(VI) was able to activate both p53 and p21. Chronic exposure of BEAS-2B cells to these two metals caused malignant cell transformation and tumorigenesis. In arsenic-transformed BEAS-2B cells reductions in p53 promoter activity, mRNA expression, and phosphorylation of p53 at Ser392 were observed, while the total p53 protein level remained the same compared to those in passage-matched parent ones. p21 promoter activity and expression were decreased in arsenic-transformed cells. Cr(VI)-transformed cells exhibit elevated p53 promoter activity, mRNA expression, and phosphorylation at Ser15, but reduced phosphorylation at Ser392 and total p53 protein level compared to passage-matched parent ones. p21 promoter activity and expression were elevated in Cr(VI)-transformed cells. These results demonstrate that p53 is able to respond to exposure of arsenic or Cr(VI), suggesting that BEAS-2B cells are an appropriate in vitro model to investigate arsenic or Cr(VI) induced lung cancer. - Highlights: • Short-term exposure of BEAS-2B cells to arsenic or Cr(VI) activates p53 and p21. • Chronic exposure of BEAS-2B cells to arsenic or Cr(VI) causes cell transformation and tumorigenesis. • Arsenic-transformed cells exhibit

  10. A HUMAN BRONCHIAL EPITHELIAL CELL STRAIN WITH UNUSUAL IN VITRO GROWTH POTENTIAL WHICH UNDERGOES NEOPLASTIC TRANSFORMATION AFTER SV40 T ANTIGEN GENE TRANSFECTION

    EPA Science Inventory

    Bronchial epithelial cells were cultured from an individual with no evidence of malignant disease. hese cells, designated HB56B, had greatly extended in vitro life-span, being able to undergo 50 passages and 200 population doubling in contrast to the usual 3 to 4 passages and 20 ...

  11. Enhanced Gadd45 expression and delayed G2/M progression are p53 dependent in zinc-supplemented human bronchial epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc is an essential nutrient for humans; however, this study demonstrated for the first time that an elevated zinc status, created by culturing cells at optimal plasma zinc concentration attainable by oral zinc supplementation, is cytotoxic for normal human bronchial epithelial (NHBE) cells. p53 p...

  12. Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts in vitro.

    PubMed

    Papazian, D; Wagtmann, V R; Hansen, S; Würtzen, P A

    2015-08-01

    Airway epithelial cells (AECs) form a polarized barrier along the respiratory tract. They are the first point of contact with airborne antigens and are able to instruct resident immune cells to mount appropriate immune responses by either soluble or contact-dependent mechanisms. We hypothesize that a healthy, polarized epithelial cell layer inhibits inflammatory responses towards allergens to uphold homeostasis. Using an in-vitro co-culture model of the airway epithelium, where a polarized cell layer of bronchial epithelial cells can interact with dendritic cells (DCs), we have investigated recall T cell responses in allergic patients sensitized to house dust mite, grass and birch pollen. Using allergen extract-loaded DCs to stimulate autologous allergen-specific T cell lines, we show that AEC-imprinted DCs inhibit T cell proliferation significantly of Bet v 1-specific T cell lines as well as decrease interleukin (IL)-5 and IL-13 production, whereas inhibition of Phl p 5-specific T cells varied between different donors. Stimulating autologous CD4(+) T cells from allergic patients with AEC-imprinted DCs also inhibited proliferation significantly and decreased production of both T helper type 1 (Th1) and Th2 cytokines upon rechallenge. The inhibitory effects of AECs' contact with DCs were absent when allergen extract-loaded DCs had been exposed only to AECs supernatants, but present after direct contact with AECs. We conclude that direct contact between DCs and AECs inhibits T cell recall responses towards birch, grass and house dust mite allergens in vitro, suggesting that AECs-DC contact in vivo constitute a key element in mucosal homeostasis in relation to allergic sensitisation. PMID:25707463

  13. Human bronchial epithelial cell injuries induced by fine particulate matter from sandstorm and non-sandstorm periods: Association with particle constituents.

    PubMed

    Wang, Bin; Li, Ning; Deng, Furong; Buglak, Nicholas; Park, George; Su, Shu; Ren, Aiguo; Shen, Guofeng; Tao, Shu; Guo, Xinbiao

    2016-09-01

    Epidemiological studies have demonstrated the exacerbation of respiratory diseases following sandstorm-derived particulate matter (PM) exposure. The presence of anthropogenic and biological agents on the sandstorm PM and the escalation of PM<2.5μm (PM2.5) pollution in China have led to serious concerns regarding the health effects of PM2.5 during Asian sandstorms. We investigated how changes in PM2.5 composition, as the weather transitioned towards a sandstorm, affected human airway epithelial cells. Six PM2.5 samples covering two sandstorm events and their respective background and transition periods were collected in Baotou, an industrial city near the Gobi Desert in China. PM samples from all three periods had mild cytotoxicity in human bronchial epithelial cell line BEAS-2B, which was positively correlated with the contents of polycyclic aromatic hydrocarbons and several metals. All PM samples potently increased the release of interleukin-6 (IL-6) and interleukin-8 (IL-8). Endotoxin in all samples contributed significantly to the IL-6 response, with only a minor effect on IL-8. Cr was positively correlated with both IL-6 and IL-8 release, while Si was only associated with the increase of IL-6. Our study suggests that local agricultural and industrial surroundings in addition to the sandstorm play important roles in the respiratory effects of sandstorm-derived PM. PMID:27593287

  14. Normal and Cystic Fibrosis Human Bronchial Epithelial Cells Infected with Pseudomonas aeruginosa Exhibit Distinct Gene Activation Patterns

    PubMed Central

    Balloy, Viviane; Varet, Hugo; Dillies, Marie-Agnès; Proux, Caroline; Jagla, Bernd; Coppée, Jean-Yves; Tabary, Olivier; Corvol, Harriet; Chignard, Michel; Guillot, Loïc

    2015-01-01

    Background and Aims In cystic fibrosis (CF), Pseudomonas aeruginosa is not eradicated from the lower respiratory tract and is associated with epithelial inflammation that eventually causes tissue damage. To identify the molecular determinants of an effective response to P. aeruginosa infection, we performed a transcriptomic analysis of primary human bronchial epithelial cells from healthy donors (CTRL) 2, 4, and 6 h after induced P. aeruginosa infection. Compared to noninfected cells, infected cells showed changes in gene activity, which were most marked 6 h postinfection and usually consisted in upregulation. Results By comparing for each time point of infection, the transcriptomic response of epithelial cells from CF patients and healthy donors, we identified 851, 638, 667, and 980 differentially expressed genes 0, 2, 4, and 6 h postinfection, respectively. Gene selection followed by bioinformatic analysis showed that most of the differentially expressed genes, either up- or downregulated, were in the protein-binding and catalytic gene-ontology categories. Finally, we established that the protein products of the genes exhibiting the greatest differential upregulation (CSF2, CCL2, TNF, CSF3, MMP1, and MMP10) between CF patients and CTRL were produced in higher amounts by infected cells from CF patients versus CTRL. Conclusions The differentially expressed genes in CF patients may constitute a signature for a detrimental inflammatory response and for an inefficient P. aeruginosa host-cell response. PMID:26485688

  15. Genome-wide analysis of HIF-2α chromatin binding sites under normoxia in human bronchial epithelial cells (BEAS-2B) suggests its diverse functions

    PubMed Central

    Lee, Meng-Chang; Huang, Hsin-Ju; Chang, Tzu-Hao; Huang, Hsieh-Chou; Hsieh, Shen-Yuan; Chen, Yi-Siou; Chou, Wei-Yuan; Chiang, Chiao-Hsi; Lai, Ching-Huang; Shiau, Chia-Yang

    2016-01-01

    Constitutive functional HIF-2α was recently identified in cancer and stem cell lines under normoxia. In this study, BEAS-2B, a bronchial epithelial cell line, was shown to constitutively express active HIF-2α under normoxia and exhibit markers of pluripotency including Oct-4, Nanog, and sphere formation. Oct-4 expression was reduced after knockdown of HIF-2α under normoxia. Global enrichment analysis of HIF-2α demonstrated the diverse functions of HIF-2α under normoxia. Bioinformatics analysis of the enriched loci revealed an enhancer role of HIF-2α binding sites, involvement of HIF-2α interacting proteins, and enriched de novo motifs which suggest the diverse role of HIF-2α in pseudohypoxia. The low ratio of the discovered loci overlapping with those revealed in cancer cell lines 786-O (16.1%) and MCF-7 (15.9%) under hypoxia indicated a prevailing non-canonical mechanism. Hypoxia had positive, marginal or adverse effects on the enrichment of the selected loci in ChIP-PCR assays. Deletion of the N-terminal activation domain (N-TAD) of HIF-2α disrupted the reporting activity of two of the loci annotated to ELN and ANKRD31. Hypoxia incurring abundance variation of HIF-2α may misrepresent the N-TAD functions as canonical hypoxia inducible features via C-TAD activation. Elucidation of the pseudohypoxia functions of constitutive HIF-2α is useful for resolving its role in malignancy and pluripotency. PMID:27373565

  16. Genome-wide analysis of HIF-2α chromatin binding sites under normoxia in human bronchial epithelial cells (BEAS-2B) suggests its diverse functions.

    PubMed

    Lee, Meng-Chang; Huang, Hsin-Ju; Chang, Tzu-Hao; Huang, Hsieh-Chou; Hsieh, Shen-Yuan; Chen, Yi-Siou; Chou, Wei-Yuan; Chiang, Chiao-Hsi; Lai, Ching-Huang; Shiau, Chia-Yang

    2016-01-01

    Constitutive functional HIF-2α was recently identified in cancer and stem cell lines under normoxia. In this study, BEAS-2B, a bronchial epithelial cell line, was shown to constitutively express active HIF-2α under normoxia and exhibit markers of pluripotency including Oct-4, Nanog, and sphere formation. Oct-4 expression was reduced after knockdown of HIF-2α under normoxia. Global enrichment analysis of HIF-2α demonstrated the diverse functions of HIF-2α under normoxia. Bioinformatics analysis of the enriched loci revealed an enhancer role of HIF-2α binding sites, involvement of HIF-2α interacting proteins, and enriched de novo motifs which suggest the diverse role of HIF-2α in pseudohypoxia. The low ratio of the discovered loci overlapping with those revealed in cancer cell lines 786-O (16.1%) and MCF-7 (15.9%) under hypoxia indicated a prevailing non-canonical mechanism. Hypoxia had positive, marginal or adverse effects on the enrichment of the selected loci in ChIP-PCR assays. Deletion of the N-terminal activation domain (N-TAD) of HIF-2α disrupted the reporting activity of two of the loci annotated to ELN and ANKRD31. Hypoxia incurring abundance variation of HIF-2α may misrepresent the N-TAD functions as canonical hypoxia inducible features via C-TAD activation. Elucidation of the pseudohypoxia functions of constitutive HIF-2α is useful for resolving its role in malignancy and pluripotency. PMID:27373565

  17. Inter-alpha-trypsin inhibitor promotes bronchial epithelial repair after injury through vitronectin binding.

    PubMed

    Adair, Jennifer E; Stober, Vandy; Sobhany, Mack; Zhuo, Lisheng; Roberts, John D; Negishi, Masahiko; Kimata, Koji; Garantziotis, Stavros

    2009-06-19

    Pulmonary epithelial injury is central to the pathogenesis of many lung diseases, such as asthma, pulmonary fibrosis, and the acute respiratory distress syndrome. Regulated epithelial repair is crucial for lung homeostasis and prevents scar formation and inflammation that accompany dysregulated healing. The extracellular matrix (ECM) plays an important role in epithelial repair after injury. Vitronectin is a major ECM component that promotes epithelial repair. However, the factors that modify cell-vitronectin interactions after injury and help promote epithelial repair are not well studied. Inter-alpha-trypsin inhibitor (IaI) is an abundant serum protein. IaI heavy chains contain von Willebrand A domains that can bind the arginine-glycine-aspartate domain of vitronectin. We therefore hypothesized that IaI can bind vitronectin and promote vitronectin-induced epithelial repair after injury. We show that IaI binds vitronectin at the arginine-glycine-aspartate site, thereby promoting epithelial adhesion and migration in vitro. Furthermore, we show that IaI-deficient mice have a dysregulated response to epithelial injury in vivo, consisting of decreased proliferation and epithelial metaplasia. We conclude that IaI interacts not only with hyaluronan, as previously reported, but also other ECM components like vitronectin and is an important regulator of cellular repair after injury. PMID:19395377

  18. Effects of diesel exhaust particles on microRNA-21 in human bronchial epithelial cells and potential carcinogenic mechanisms.

    PubMed

    Zhou, Fang; Li, Suli; Jia, Wenliang; Lv, Gang; Song, Chonglin; Kang, Chunsheng; Zhang, Qingyu

    2015-08-01

    Air pollution plays a role in cancer risk, particularly in lung cancer, which is the leading cause of cancer-related mortality worldwide. Diesel exhaust particles (DEPs), a component of diesel exhaust products, is a complex mixture of particle compounds that include a large number of known and suspected human carcinogens. Historically, lung cancer, which is associated with DEPs, has been the focus of attention as a health risk in human and animal studies. However, the mechanism by which DEPs cause lung cancer remains unclear. The present study reports that DEPs increased miR-21 expression and then activated the PTEN/PI3K/AKT pathway in human bronchial epithelial (HBE) cells, which may serve as an important carcinogenic mechanism. However, the data revealed that short-term exposure to a high DEP concentration did not cause evident cell carcinogenesis in HBE cells. PMID:25901472

  19. Analysis of global gene expression changes in human bronchial epithelial cells exposed to spores of the allergenic fungus, Alternaria alternata

    PubMed Central

    Babiceanu, M. C.; Howard, B. A.; Rumore, A. C.; Kita, H.; Lawrence, C. B.

    2013-01-01

    Exposure and sensitivity to ubiquitous airborne fungi such as Alternaria alternata have long been implicated in the development, onset, and exacerbation of chronic allergic airway disorders. This present study is the first to investigate global changes in host gene expression during the interaction of cultured human bronchial epithelial cells and live Alternaria spores. In in vitro experiments human bronchial epithelial cells (BEAS-2B) were exposed to spores or media alone for 24 h. RNA was collected from three biological replicates per treatment and was used to assess changes in gene expression patterns using Affymetrix Human Genome U133 Plus 2.0 Arrays. In cells treated with Alternaria spores compared to controls, 613 probe sets representing 460 individual genes were found differentially expressed (p ≤ 0.05). In this set of 460 statistically significant, differentially expressed genes, 397 genes were found to be up-regulated and 63 were down-regulated. Of these 397 up-regulated genes, 156 genes were found to be up-regulated ≥2 fold. Interestingly, none of the 63 down-regulated genes were found differentially expressed at ≤−2 fold. Differentially expressed genes were identified following statistical analysis and subsequently used for pathway and network evaluation. Interestingly, many cytokine and chemokine immune response genes were up-regulated with a particular emphasis on interferon-inducible genes. Genes involved in cell death, retinoic acid signaling, and TLR3 response pathways were also significantly up-regulated. Many of the differentially up-regulated genes have been shown in other systems to be associated with innate immunity, inflammation and/or allergic airway diseases. This study now provides substantial information for further investigating specific genes and innate immune system pathways activated by Alternaria in the context of allergic airway diseases. PMID:23882263

  20. Nitrite Reductase from Pseudomonas aeruginosa Released by Antimicrobial Agents and Complement Induces Interleukin-8 Production in Bronchial Epithelial Cells

    PubMed Central

    Sar, Borann; Oishi, Kazunori; Wada, Akihiro; Hirayama, Toshiya; Matsushima, Kouji; Nagatake, Tsuyoshi

    1999-01-01

    We have recently reported that nitrite reductase, a bifunctional enzyme located in the periplasmic space of Pseudomonas aeruginosa, could induce interleukin-8 (IL-8) generation in a variety of respiratory cells, including bronchial epithelial cells (K. Oishi et al. Infect. Immun. 65:2648–2655, 1997). In this report, we examined the mode of nitrite reductase (PNR) release from a serum-sensitive strain of live P. aeruginosa cells during in vitro treatment with four different antimicrobial agents or human complement. Bacterial killing of P. aeruginosa by antimicrobial agents induced PNR release and mediated IL-8 production in human bronchial epithelial (BET-1A) cells. Among these agents, imipenem demonstrated rapid killing of P. aeruginosa as well as rapid release of PNR and resulted in the highest IL-8 production. Complement-mediated killing of P. aeruginosa was also associated with PNR release and enhanced IL-8 production. The immunoprecipitates of the aliquots of bacterial culture containing imipenem or complement with anti-PNR immunoglobulin G (IgG) induced a twofold-higher IL-8 production than did the immunoprecipitates of the aliquots of bacterial culture with a control IgG. These pieces of evidence confirmed that PNR released in the aliquots of bacterial culture was responsible for IL-8 production in the BET-1A cells. Furthermore, the culture supernatants of the BET-1A cells stimulated with aliquots of bacterial culture containing antimicrobial agents or complement similarly mediated neutrophil migration in vitro. These data support the possibility that a potent inducer of IL-8, PNR, could be released from P. aeruginosa after exposure to antimicrobial agents or complement and contributes to neutrophil migration in the airways during bronchopulmonary infections with P. aeruginosa. PMID:10103183

  1. Effects of Chrysotile Exposure in Human Bronchial Epithelial Cells: Insights into the Pathogenic Mechanisms of Asbestos-Related Diseases

    PubMed Central

    Gulino, Giulia Rossana; Polimeni, Manuela; Prato, Mauro; Gazzano, Elena; Kopecka, Joanna; Colombatto, Sebastiano; Ghigo, Dario; Aldieri, Elisabetta

    2015-01-01

    Background: Chrysotile asbestos accounts for > 90% of the asbestos used worldwide, and exposure is associated with asbestosis (asbestos-related fibrosis) and other malignancies; however, the molecular mechanisms involved are not fully understood. A common pathogenic mechanism for these malignancies is represented by epithelial–mesenchymal transition (EMT), through which epithelial cells undergo a morphological transformation to assume a mesenchymal phenotype. In the present work, we propose that chrysotile asbestos induces EMT through a mechanism involving a signaling pathway mediated by tranforming growth factor beta (TGF-β). Objectives: We investigated the role of chrysotile asbestos in inducing EMT in order to elucidate the molecular mechanisms involved in this event. Methods: Human bronchial epithelial cells (BEAS-2B) were incubated with 1 μg/cm2 chrysotile asbestos for ≤ 72 hr, and several markers of EMT were investigated. Experiments with specific inhibitors for TGF-β, glycogen synthase kinase–3β (GSK-3β), and Akt were performed to confirm their involvement in asbestos-induced EMT. Real-time polymerase chain reaction (PCR), Western blotting, and gelatin zymography were performed to detect mRNA and protein level changes for these markers. Results: Chrysotile asbestos activated a TGF-β–mediated signaling pathway, implicating the contributions of Akt, GSK-3β, and SNAIL-1. The activation of this pathway in BEAS-2B cells was associated with a decrease in epithelial markers (E-cadherin and β-catenin) and an increase in mesenchymal markers (α-smooth muscle actin, vimentin, metalloproteinases, and fibronectin). Conclusions: Our findings suggest that chrysotile asbestos induces EMT, a common event in asbestos-related diseases, at least in part by eliciting the TGF-β–mediated Akt/GSK-3β/SNAIL-1 pathway. Citation: Gulino GR, Polimeni M, Prato M, Gazzano E, Kopecka J, Colombatto S, Ghigo D, Aldieri E. 2016. Effects of chrysotile exposure in human

  2. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells

    PubMed Central

    Gudjonsson, Thorarinn; Karason, Sigurbergur

    2015-01-01

    Mechanical ventilation (MV) of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP) gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37). Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR) 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses. PMID:26664810

  3. ASBESTOS-INDUCED ACTIVATION OF CELL SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Using respiratory epithelial cells transfected with either superoxide dismutase (SOD) or catalase, the authors tested the hypothesis that the activation of the epidermal growth factor (EGF) receptor signal pathway after asbestos exposure involves an oxidative stress. Western blot...

  4. Validation of Normal Human Bronchial Epithelial Cells as a Model for Influenza A Infections in Human Distal Trachea

    PubMed Central

    Davis, A. Sally; Chertow, Daniel S.; Moyer, Jenna E.; Suzich, Jon; Sandouk, Aline; Dorward, David W.; Logun, Carolea; Shelhamer, James H.

    2015-01-01

    Primary normal human bronchial/tracheal epithelial (NHBE) cells, derived from the distal-most aspect of the trachea at the bifurcation, have been used for a number of studies in respiratory disease research. Differences between the source tissue and the differentiated primary cells may impact infection studies based on this model. Therefore, we examined how well-differentiated NHBE cells compared with their source tissue, the human distal trachea, as well as the ramifications of these differences on influenza A viral pathogenesis research using this model. We employed a histological analysis including morphological measurements, electron microscopy, multi-label immunofluorescence confocal microscopy, lectin histochemistry, and microarray expression analysis to compare differentiated NHBEs to human distal tracheal epithelium. Pseudostratified epithelial height, cell type variety and distribution varied significantly. Electron microscopy confirmed differences in cellular attachment and paracellular junctions. Influenza receptor lectin histochemistry revealed that α2,3 sialic acids were rarely present on the apical aspect of the differentiated NHBE cells, but were present in low numbers in the distal trachea. We bound fluorochrome bioconjugated virus to respiratory tissue and NHBE cells and infected NHBE cells with human influenza A viruses. Both indicated that the pattern of infection progression in these cells correlated with autopsy studies of fatal cases from the 2009 pandemic. PMID:25604814

  5. MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis

    SciTech Connect

    Liu Xiangde Nelson, Amy; Wang Xingqi; Kanaji, Nobuhiro; Kim, Miok; Sato, Tadashi; Nakanishi, Masanori; Li Yingji; Sun Jianhong; Michalski, Joel; Patil, Amol; Basma, Hesham; Rennard, Stephen I.

    2009-02-27

    MicroRNA plays an important role in cell differentiation, proliferation and cell death. The current study found that miRNA-146a was up-regulated in human bronchial epithelial cells (HBECs) in response to stimulation by TGF-ss1 plus cytomix (a mixture of IL-1ss, IFN-{gamma} and TNF-{alpha}). TGF-ss1 plus cytomix (TCM) induced apoptosis in HBECs (3.4 {+-} 0.6% of control vs 83.1 {+-} 4.0% of TCM treated cells, p < 0.01), and this was significantly blocked by the miRNA-146a mimic (8.8 {+-} 1.5%, p < 0.01). In contrast, a miRNA-146a inhibitor had only a modest effect on cell survival but appeared to augment the induction of epithelial-mesenchymal transition (EMT) in response to the cytokines. The MicroRNA-146a mimic appears to modulate HBEC survival through a mechanism of up-regulating Bcl-XL and STAT3 phosphorylation, and by this mechanism it could contribute to tissue repair and remodeling.

  6. Mucin-Related Molecular Responses of Bronchial Epithelial Cells in Rats Infected with the Nematode Nippostrongylus brasiliensis

    PubMed Central

    Soga, Koichi; Yamada, Minoru; Naito, Yuji; Yoshikawa, Toshikazu; Arizono, Naoki

    2013-01-01

    Although mucins are essential for the protection of internal epithelial surfaces, molecular responses involving mucin production and secretion in response to various infectious agents in the airway have not been fully elucidated. The present study analysed airway goblet cell mucins in rats infected with the nematode Nippostrongylus brasiliensis, which migrates to the lungs shortly after infection. Goblet cell hyperplasia occurred in the bronchial epithelium 3–10 days after infection. The high iron diamine-alcian blue staining combined with neuraminidase treatment showed that sialomucin is the major mucin in hyperplastic goblet cells. Immunohistochemical studies demonstrated that goblet cell mucins were immunoreactive with both the major airway mucin core peptide, Muc5AC, and the major intestinal mucin core peptide Muc2. Reverse transcription real-time PCR studies demonstrated upregulation of gene transcription levels of Muc5AC, Muc2, the sialyltransferase St3gal4, and the resistin-like molecule beta (Retnlb) in the lungs. These results showed that nematode infection induces airway epithelial responses characterised by the production of sialomucin with Muc5AC and Muc2 core peptides. These mucins, as well as Retnlb, might have important roles in the protection of mucosa from migrating nematodes in the airway. PMID:27335862

  7. High-mobility group box 1 promotes extracellular matrix synthesis and wound repair in human bronchial epithelial cells.

    PubMed

    Ojo, Oluwaseun O; Ryu, Min Hyung; Jha, Aruni; Unruh, Helmut; Halayko, Andrew J

    2015-12-01

    High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) protein that binds Toll-like receptors (e.g., TLR4) and the receptor for advanced glycated end products (RAGE). The direct effects of HMGB1 on airway structural cells are not fully known. As epithelial cell responses are fundamental drivers of asthma, including abnormal repair-restitution linked to changes in extracellular matrix (ECM) synthesis, we tested the hypothesis that HMGB1 promotes bronchial epithelial cell wound repair via TLR4 and/or RAGE signaling that regulates ECM (fibronectin and the γ2-chain of laminin-5) and integrin protein abundance. To assess impact of HMGB1 we used molecular and pharmacological inhibitors of RAGE or TLR4 signaling in scratch wound, immunofluorescence, and immunoblotting assays to assess wound repair, ECM synthesis, and phosphorylation of intracellular signaling. HMGB1 increased wound closure, and this effect was attenuated by blocking RAGE and TLR4 signaling. HMGB1-induced fibronectin and laminin-5 (γ2 chain) was diminished by blocking RAGE and/or blunting TLR4 signaling. Similarly, induction of α3-integrin receptor for fibronectin and laminin-5 was also diminished by blocking TLR4 signaling and RAGE. Lastly, rapid and/or sustained phosphorylation of SMAD2, ERK1/2, and JNK signaling modulated HMGB1-induced wound closure. Our findings suggest a role for HMGB1 in human airway epithelial cell repair and restitution via multiple pathways mediated by TLR4 and RAGE that underpin increased ECM synthesis and modulation of cell-matrix adhesion. PMID:26432865

  8. Influence of platinum, palladium and rhodium as compared with cadmium, nickel and chromium on cell viability and oxidative stress in human bronchial epithelial cells.

    PubMed

    Schmid, Michael; Zimmermann, Sonja; Krug, Harald F; Sures, Bernd

    2007-04-01

    The platinum group elements (PGE) Pt, Pd and Rh are increasingly emitted into the environment by automobile catalytic converters. Whereas the biological availability of PGE to plants and animals has been demonstrated, only few studies concentrate on the influence of PGE on a cellular level. The effects of Pt, Pd and Rh compared with Cd, Ni and Cr on cell viability and oxidative stress response using soluble metal salts were studied in the human bronchial epithelial cell line BEAS-2B. Whilst Rh(III) showed little influence, both Pt(II) and Pt(IV) as well as Pd(II) had significant effects on cell viability at levels comparable to Cd(II) and Cr(VI). Arranging metal species in order of increasing toxicity as determined by LC50 yields: Rh(III)=1.2 mmol/L

  9. Enriched inorganic compounds in diesel exhaust particles induce mitogen-activated protein kinase activation, cytoskeleton instability, and cytotoxicity in human bronchial epithelial cells.

    PubMed

    Seriani, Robson; Junqueira, Mara S; Carvalho-Sousa, Claudia E; Arruda, Alessandra C T; Martinez, Diana; Alencar, Adriano M; Garippo, Ana L; Brito, Jôse Mara; Martins, Milton A; Saldiva, Paulo H N; Negri, Elnara M; Mauad, Thais; Macchione, Mariangela

    2015-04-01

    This study assessed the effects of the diesel exhaust particles on ERK and JNK MAPKs activation, cell rheology (viscoelasticity), and cytotoxicity in bronchial epithelial airway cells (BEAS-2B). Crude DEP and DEP after extraction with hexane (DEP/HEX) were utilized. The partial reduction of some DEP/HEX organics increased the biodisponibility of many metallic elements. JNK and ERK were activated simultaneously by crude DEP with no alterations in viscoelasticity of the cells. Mitochondrial activity, however, revealed a decrease through the MTT assay. DEP/HEX treatment increased viscoelasticity and cytotoxicity (membrane damage), and also activated JNK. Our data suggest that the greater bioavailability of metals could be involved in JNK activation and, consequently, in the reduction of fiber coherence and increase in the viscoelasticity and cytotoxicity of BEAS cells. The adverse findings detected after exposure to crude DEP and to DEP/HEX reflect the toxic potential of diesel compounds. Considering the fact that the cells of the respiratory epithelium are the first line of defense between the body and the environment, our data contribute to a better understanding of the pathways leading to respiratory cell injury and provide evidence for the onset of or worsening of respiratory diseases caused by inorganic compounds present in DEP. PMID:25769681

  10. Biological impact of cigarette smoke compared to an aerosol produced from a prototypic modified risk tobacco product on normal human bronchial epithelial cells.

    PubMed

    Kogel, U; Gonzalez Suarez, I; Xiang, Y; Dossin, E; Guy, P A; Mathis, C; Marescotti, D; Goedertier, D; Martin, F; Peitsch, M C; Hoeng, J

    2015-12-01

    Cigarette smoking causes serious and fatal diseases. The best way for smokers to avoid health risks is to quit smoking. Using modified risk tobacco products (MRTPs) may be an alternative to reduce the harm caused for those who are unwilling to quit smoking, but little is known about the toxic effects of MRTPs, nor were the molecular mechanisms of toxicity investigated in detail. The toxicity of an MRTP and the potential molecular mechanisms involved were investigated in high-content screening tests and whole genome transcriptomics analyses using human bronchial epithelial cells. The prototypic (p)MRTP that was tested had less impact than reference cigarette 3R4F on the cellular oxidative stress response and cell death pathways. Higher pMRTP aerosol extract concentrations had impact on pathways associated with the detoxification of xenobiotics and the reduction of oxidative damage. A pMRTP aerosol concentration up to 18 times higher than the 3R4F caused similar perturbation effects in biological networks and led to the perturbation of networks related to cell stress, and proliferation biology. These results may further facilitate the development of a systems toxicology-based impact assessment for use in future risk assessments in line with the 21st century toxicology paradigm, as shown here for an MRTP. PMID:26277032

  11. Glutathione-S-transferase M1 regulation of diesel exhaust particle-induced pro-inflammatory mediator expression in normal human bronchial epithelial cells

    PubMed Central

    2012-01-01

    Background Diesel exhaust particles (DEP) contribute substantially to ambient particulate matter (PM) air pollution in urban areas. Inhalation of PM has been associated with increased incidence of lung disease in susceptible populations. We have demonstrated that the glutathione S-transferase M1 (GSTM1) null genotype could aggravate DEP-induced airway inflammation in human subjects. Given the critical role airway epithelial cells play in the pathogenesis of airway inflammation, we established the GSTM1 deficiency condition in primary bronchial epithelial cells from human volunteers with GSTM1 sufficient genotype (GSTM1+) using GSTM1 shRNA to determine whether GSTM1 deficiency could exaggerate DEP-induced expression of interleukin-8 (IL-8) and IL-1β proteins. Furthermore, the mechanisms underlying GSTM1 regulation of DEP-induced IL-8 and IL-1β expression were also investigated. Methods IL-8 and IL-1β protein levels were measured using enzyme-linked immunosorbent assay. GSTM1 deficiency in primary human bronchial epithelial cells was achieved using lentiviral GSTM1 shRNA particles and verified using real-time polymerase chain reaction and immunoblotting. Intracellular reactive oxygen species (ROS) production was evaluated using flow cytometry. Phosphorylation of protein kinases was detected using immunoblotting. Results Exposure of primary human bronchial epithelial cells (GSTM1+) to 25-100 μg/ml DEP for 24 h significantly increased IL-8 and IL-1β protein expression. Knockdown of GSTM1 in these cells further elevated DEP-induced IL-8 and IL-1β expression, implying that GSTM1 deficiency aggravated DEP-induced pro-inflammatory response. DEP stimulation induced the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, the downstream kinase of phosphoinositide 3-kinase (PI3K), in GSTM1+ bronchial epithelial cells. Pharmacological inhibition of ERK kinase and PI3K activity blocked DEP-induced IL-8 and IL-1β expression. DEP-induced ERK and Akt

  12. The Effect of Therapeutic Blockades of Dust Particles-Induced Ca²⁺ Signaling and Proinflammatory Cytokine IL-8 in Human Bronchial Epithelial Cells.

    PubMed

    Yoon, Ju Hee; Jeong, Sung Hwan; Hong, Jeong Hee

    2015-01-01

    Bronchial epithelial cells are the first barrier of defense against respiratory pathogens. Dust particles as extracellular stimuli are associated with inflammatory reactions after inhalation. It has been reported that dust particles induce intracellular Ca(2+) signal, which subsequently increases cytokines production such as interleukin- (IL-) 8. However, the study of therapeutic blockades of Ca(2+) signaling induced by dust particles in human bronchial epithelial cells is poorly understood. We investigated how to modulate dust particles-induced Ca(2+) signaling and proinflammatory cytokine IL-8 expression. Bronchial epithelial BEAS-2B cells were exposed to PM10 dust particles and subsequent mediated intracellular Ca(2+) signaling and reactive oxygen species signal. Our results show that exposure to several inhibitors of Ca(2+) pathway attenuated the PM10-induced Ca(2+) response and subsequent IL-8 mRNA expression. PM10-mediated Ca(2+) signal and IL-8 expression were attenuated by several pharmacological blockades such as antioxidants, IP3-PLC blockers, and TRPM2 inhibitors. Our results show that blockades of PLC or TRPM2 reduced both of PM10-mediated Ca(2+) signal and IL-8 expression, suggesting that treatment with these blockades should be considered for potential therapeutic trials in pulmonary epithelium for inflammation caused by environmental events such as seasonal dust storm. PMID:26640326

  13. Creation and characterization of an airway epithelial cell line for stable expression of CFTR variants

    PubMed Central

    Gottschalk, Laura B.; Vecchio-Pagan, Briana; Sharma, Neeraj; Han, Sangwoo T.; Franca, Arianna; Wohler, Elizabeth S.; Batista, Denise A.S.; Goff, Loyal A.; Cutting, Garry R.

    2016-01-01

    Background Analysis of the functional consequences and treatment response of rare CFTR variants is challenging due to the limited availability of primary airways cells. Methods A Flp recombination target (FRT) site for stable expression of CFTR was incorporated into an immortalized CF bronchial epithelial cell line (CFBE41o−). CFTR cDNA was integrated into the FRT site. Expression was evaluated by western blotting and confocal microscopy and function measured by short circuit current. RNA sequencing was used to compare the transcriptional profile of the resulting CF8Flp cell line to primary cells and tissues. Results Functional CFTR was expressed from integrated cDNA at the FRT site of the CF8Flp cell line at levels comparable to that seen in native airway cells. CF8Flp cells expressing WT-CFTR have a stable transcriptome comparable to that of primary cultured airway epithelial cells, including genes that play key roles in CFTR pathways. Conclusion CF8Flp cells provide a viable substitute for primary CF airway cells for the analysis of CFTR variants in a native context. PMID:26694805

  14. A species-specific activation of Toll-like receptor signaling in bovine and sheep bronchial epithelial cells triggered by Mycobacterial infections.

    PubMed

    Ma, Yan; Han, Fei; Liang, Jinping; Yang, Jiali; Shi, Juan; Xue, Jing; Yang, Li; Li, Yong; Luo, Meihui; Wang, Yujiong; Wei, Jun; Liu, Xiaoming

    2016-03-01

    Pulmonary tuberculosis caused by a Mycobacterium infection remains a major public health problem in most part of the world, in part owing to the transmission of its pathogens between hosts including human, domestic and wild animals. To date, molecular mechanisms of the pathogenesis of TB are still incompletely understood. In addition to alveolar macrophages, airway epithelial cells have also been recently recognized as main targets for Mycobacteria infections. In an effort to understand the pathogen-host interaction between Mycobacteria and airway epithelial cells in domestic animals, in present study, we investigated the Toll-like receptor (TLR) signaling in bovine and sheep airway epithelial cells in response to an infection of Mycobacterium tuberculosis avirulent H37Ra stain or Mycobacterium bovis BCG vaccine strain, using primary air-liquid interface (ALI) bronchial epithelial culture models. Our results revealed a host and pathogen species-specific TLR-mediated recognition of pathogen-associated molecular patterns (PAMPs), induction and activation of TLR signaling pathways, and substantial induction of inflammatory response in bronchial epithelial cells in response to Mycobacteria infections between these two species. Interestingly, the activation TLR signaling in bovine bronchial epithelial cells induced by Mycobacteria infection was mainly through a myeloid differentiation factor 88 (MyD88)-independent TLR signaling pathway, while both MyD88-dependent and independent TLR signaling cascades could be induced in sheep epithelial cells. Equally noteworthy, a BCG infection was able to induce both MyD88-dependent and independent signaling in sheep and bovine airway epithelial cells, but more robust inflammatory responses were induced in sheep epithelial cells relative to the bovines; whereas an H37Ra infection displayed an ability to mainly trigger a MyD88-independent TLR signaling cascade in these two host species, and induce a more extent expression of

  15. The effects on bronchial epithelial mucociliary cultures of coarse, fine, and ultrafine particulate matter from an underground railway station.

    PubMed

    Loxham, Matthew; Morgan-Walsh, Rebecca J; Cooper, Matthew J; Blume, Cornelia; Swindle, Emily J; Dennison, Patrick W; Howarth, Peter H; Cassee, Flemming R; Teagle, Damon A H; Palmer, Martin R; Davies, Donna E

    2015-05-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10-2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1-11.1 µg/cm(2)) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research. PMID:25673499

  16. The Effects on Bronchial Epithelial Mucociliary Cultures of Coarse, Fine, and Ultrafine Particulate Matter From an Underground Railway Station

    PubMed Central

    Loxham, Matthew; Morgan-Walsh, Rebecca J.; Cooper, Matthew J.; Blume, Cornelia; Swindle, Emily J.; Dennison, Patrick W.; Howarth, Peter H.; Cassee, Flemming R.; Teagle, Damon A. H.; Palmer, Martin R.; Davies, Donna E.

    2015-01-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10–2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1–11.1 µg/cm2) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research. PMID:25673499

  17. Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells

    SciTech Connect

    Xu, Yuan; Zhao, Yue; Xu, Wenchao; Luo, Fei; Wang, Bairu; Li, Yuan; Pang, Ying; Liu, Qizhan

    2013-10-15

    Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover, IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis. - Highlights: • Arsenite induces inflammation. • Arsenite-induced the increases of IL-6 and IL-8 via HIF-2α. • Inflammation is involved in arsenite-induced carcinogenesis.

  18. Evaluation of E-Cigarette Liquid Vapor and Mainstream Cigarette Smoke after Direct Exposure of Primary Human Bronchial Epithelial Cells

    PubMed Central

    Scheffler, Stefanie; Dieken, Hauke; Krischenowski, Olaf; Förster, Christine; Branscheid, Detlev; Aufderheide, Michaela

    2015-01-01

    E-cigarettes are emerging products, often described as “reduced-risk” nicotine products or alternatives to combustible cigarettes. Many smokers switch to e-cigarettes to quit or significantly reduce smoking. However, no regulations for e-cigarettes are currently into force, so that the quality and safety of e-liquids is not necessarily guaranteed. We exposed primary human bronchial epithelial cells of two different donors to vapor of e-cigarette liquid with or without nicotine, vapor of the carrier substances propylene glycol and glycerol as well as to mainstream smoke of K3R4F research cigarettes. The exposure was done in a CULTEX® RFS compact module, allowing the exposure of the cells at the air-liquid interface. 24 h post-exposure, cell viability and oxidative stress levels in the cells were analyzed. We found toxicological effects of e-cigarette vapor and the pure carrier substances, whereas the nicotine concentration did not have an effect on the cell viability. The viability of mainstream smoke cigarette exposed cells was 4.5–8 times lower and the oxidative stress levels 4.5–5 times higher than those of e-cigarette vapor exposed cells, depending on the donor. Our experimental setup delivered reproducible data and thus provides the opportunity for routine testing of e-cigarette liquids to ensure safety and quality for the user. PMID:25856554

  19. Repression of Biotin-Related Proteins by Benzo[a]Pyrene-Induced Epigenetic Modifications in Human Bronchial Epithelial Cells.

    PubMed

    Xia, Bo; Yang, Lin-Qing; Huang, Hai-Yan; Pang, Li; Yang, Xi-Fei; Yi, You-Jin; Ren, Xiao-Hu; Li, Jie; Zhuang, Zhi-Xiong; Liu, Jian-Jun

    2016-05-01

    Benzo[a]pyrene (B[a]P) exposure has been associated with the alteration in epigenetic marks that are involved in cancer development. Biotinidase (BTD) and holocarboxylase synthetase (HCS) are 2 major enzymes involved in maintaining the homeostasis of biotinylation, and the deregulation of this pathway has been associated with a number of cancers. However, the link between B[a]P exposure and the dysregulation of BTD/HCS in B[a]P-associated tumorigenesis is unknown. Here we showed that the expression of both BTD and HCS was significantly decreased upon B[a]P treatment in human bronchial epithelial (16HBE) cells. Benzo[a]pyrene exposure led to the global loss of DNA methylation by immunofluorescence, which coincided with the reduction in acetylation levels on histones H3 and H4 in 16HBE cells. Consistent with decreased histone acetylation, histone deacetylases (HDACs) HDAC2 and HDAC3 were significantly upregulated in a dosage-dependent manner. When DNA methylation or HDAC activity was inhibited, we found that the reduction in BTD and HCS was separately regulated through distinct epigenetic mechanisms. Together, our results suggested the potential link between B[a]P toxicity and deregulation of biotin homeostasis pathway in B[a]P-associated cancer development. PMID:26960346

  20. Effects of Size-Fractionated Particulate Matter on Cellular Oxidant Radical Generation in Human Bronchial Epithelial BEAS-2B Cells.

    PubMed

    Guan, Longfei; Rui, Wei; Bai, Ru; Zhang, Wei; Zhang, Fang; Ding, Wenjun

    2016-01-01

    The aim of the present study was to investigate the effects of size-fractionated (i.e., <1; 1-2.5, and 2.5-10 µm in an aerodynamic diameter) ambient particulate matter (PM) on reactive oxygen species (ROS) activity and cell viability in human bronchial epithelial cells (BEAS-2B). The PM samples were collected from an urban site (uPM) in Beijing and a steel factory site (sPM) in Anshan, China, from March 2013 to December 2014. Metal elements, organic and elemental carbon, and water-soluble inorganic ions in the uPM and sPM were analyzed. The cell viability and ROS generation in PM-exposed BEAS-2B cells were measured by MTS and DCFH-DA. The results showed that both uPM and sPM caused a decrease in the cell viability and an increase in ROS generation. The level of ROS measured in sPM1.0 was approximately triple that in uPM1.0. The results of correlation analysis showed that the ROS activity and cytotoxicity were related to different PM composition. Moreover, deferoxamine (DFO) significantly prevented the increase of ROS generation and the decrease of cell viability. Taken together, our results suggest that the metals absorbed on PM induced oxidant radical generation in BEAS-2B cells that could lead to impairment of pulmonary function. PMID:27171105

  1. Effects of Size-Fractionated Particulate Matter on Cellular Oxidant Radical Generation in Human Bronchial Epithelial BEAS-2B Cells

    PubMed Central

    Guan, Longfei; Rui, Wei; Bai, Ru; Zhang, Wei; Zhang, Fang; Ding, Wenjun

    2016-01-01

    The aim of the present study was to investigate the effects of size-fractionated (i.e., <1; 1–2.5, and 2.5–10 µm in an aerodynamic diameter) ambient particulate matter (PM) on reactive oxygen species (ROS) activity and cell viability in human bronchial epithelial cells (BEAS-2B). The PM samples were collected from an urban site (uPM) in Beijing and a steel factory site (sPM) in Anshan, China, from March 2013 to December 2014. Metal elements, organic and elemental carbon, and water-soluble inorganic ions in the uPM and sPM were analyzed. The cell viability and ROS generation in PM-exposed BEAS-2B cells were measured by MTS and DCFH-DA. The results showed that both uPM and sPM caused a decrease in the cell viability and an increase in ROS generation. The level of ROS measured in sPM1.0 was approximately triple that in uPM1.0. The results of correlation analysis showed that the ROS activity and cytotoxicity were related to different PM composition. Moreover, deferoxamine (DFO) significantly prevented the increase of ROS generation and the decrease of cell viability. Taken together, our results suggest that the metals absorbed on PM induced oxidant radical generation in BEAS-2B cells that could lead to impairment of pulmonary function. PMID:27171105

  2. Transcriptomic Analyses of the Biological Effects of Airborne PM2.5 Exposure on Human Bronchial Epithelial Cells

    PubMed Central

    Zhou, Zhixiang; Liu, Yanghua; Duan, Fengkui; Qin, Mengnan; Wu, Fengchang; Sheng, Wang; Yang, Lixin; Liu, Jianguo; He, Kebin

    2015-01-01

    Epidemiological studies have associated high levels of airborne particulate matter (PM) with increased respiratory diseases. In order to investigate the mechanisms of air pollution-induced lung toxicity in humans, human bronchial epithelial cells (16HBE) were exposed to various concentrations of particles smaller than 2.5 μm (PM2.5) collected from Beijing, China. After observing that PM2.5 decreased cell viability in a dose-dependent manner, we first used Illumina RNA-seq to identify genes and pathways that may contribute to PM2.5-induced toxicity to 16HBE cells. A total of 539 genes, 283 up-regulated and 256 down-regulated, were identified to be significantly differentially expressed after exposure to 25 μg/cm2 PM2.5. PM2.5 induced a large number of genes involved in responses to xenobtiotic stimuli, metabolic response, and inflammatory and immune response pathways such as MAPK signaling and cytokine-cytokine receptor interaction, which might contribute to PM2.5-related pulmonary diseases. We then confirmed our RNA-seq results by qPCR and by analysis of IL-6, CYP1A1, and IL-8 protein expression. Finally, ELISA assay demonstrated a significant association between exposure to PM2.5 and secretion of IL-6. This research provides a new insight into the mechanisms underlying PM2.5-induced respiratory diseases in Beijing. PMID:26382838

  3. Mono- and Cocultures of Bronchial and Alveolar Epithelial Cells Respond Differently to Proinflammatory Stimuli and Their Modulation by Salbutamol and Budesonide.

    PubMed

    Haghi, Mehra; Hittinger, Marius; Zeng, Qingxiang; Oliver, Brian; Traini, Daniela; Young, Paul M; Huwer, Hanno; Schneider-Daum, Nicole; Lehr, Claus-Michael

    2015-08-01

    The aim of this study was to investigate the changes in transport and effectiveness of salbutamol sulfate (SAL) and budesonide (BD) following stimulation with transforming growth factor-β (TGF-β) in mono- and coculture models of bronchial and alveolar epithelium. Primary bronchial and alveolar epithelial cells, grown at air interface on filters, either as monocultures or in coculture with airway smooth muscle cells or alveolar macrophages, respectively, were stimulated with TGF-β. The biological response was modulated by depositing aerosolized SAL and BD on bronchial and alveolar models, respectively. Barrier integrity, permeability to fluorescein-Na, transport of the deposited drug, and the pharmacological response to SAL (cAMP and IL-8 levels) or BD (IL-6 and -8 levels) were measured. While stimulation with TGF-β did not have any significant effect on the transepithelial electrical resistance and permeability to fluorescein-Na in mono- and coculture models, transport of SAL and BD were affected in cultures from some of the patients (6 out of 12 for bronchial and 2 out of 4 for alveolar cells). The bronchial coculture showed a better responsiveness to SAL in terms of cAMP release than the monoculture. In contrast, the difference between alveolar mono- and cocultures to TGF-β mediated interleukin release and its modulation by BD was less pronounced. Our data point to intrinsic differences in the transport of, and responsiveness to, SAL and BD when epithelial cell cultures originate from different patients. Moreover, if the biological responses (e.g., IL-8, cAMP) involve communication between different cell types, coculture models are more relevant to measure such effects than monocultures. PMID:26147243

  4. Effects of ethanol on an intestinal epithelial cell line

    SciTech Connect

    Nano, J.L.; Cefai, D.; Rampal, P. )

    1990-02-01

    The effect of exposure of an intestinal epithelial cell line to various concentrations of ethanol (217 mM (1%) to 652 mM (3%)) during 24, 48, and 72 hr was investigated in vitro using a rat intestinal epithelial cell line (IRD 98). Incubation of these cells in the presence of ethanol significantly decreased cell growth. This inhibition was accompanied by a strong increase in cellular protein. Stimulation of specific disaccharidases, gamma-glutamyl transferase, and aminopeptidase activities by ethanol was dose- and time-dependent. Ethanol induces a change in the relative proportions of the different lipid classes synthesized; triglycerides, fatty acids, and cholesterol esters were preferentially synthethysed. Our findings show that cell lines are good models for investigation of the effects of ethanol, and that alcohol considerably modifies the functions of intestinal epithelial cells.

  5. Regulation and function of the IL-1 family cytokine IL-1F9 in human bronchial epithelial cells.

    PubMed

    Chustz, Regina T; Nagarkar, Deepti R; Poposki, Julie A; Favoreto, Silvio; Avila, Pedro C; Schleimer, Robert P; Kato, Atsushi

    2011-07-01

    The IL-1 family of cytokines, which now includes 11 members, is well known to participate in inflammation. Although the most recently recognized IL-1 family cytokines (IL-1F5-11) have been shown to be expressed in airway epithelial cells, the regulation of their expression and function in the epithelium has not been extensively studied. We investigated the regulation of IL-1F5-11 in primary normal human bronchial epithelial cells. Messenger (m)RNAs for IL-1F6 and IL-1F9, but not IL-1F5, IL-1F8 or IL-1F10, were significantly up-regulated by TNF, IL-1β, IL-17 and the Toll-like receptor (TLR)3 ligand double-stranded (ds)RNA. mRNAs for IL-1F7 and IL-1F11 (IL-33) were weakly up-regulated by some of the cytokines tested. Notably, mRNAs for IL-1F6 and IL-1F9 were synergistically enhanced by the combination of TNF/IL-17 or dsRNA/IL-17. IL-1F9 protein was detected in the supernatant following stimulation with dsRNA or a combination of dsRNA and IL-17. IL-1F6 protein was detected in the cell lysate but was not detected in the supernatant. We screened for the receptor for IL-1F9 and found that lung fibroblasts expressed this receptor. We found that IL-1F9 activated mitogen-activated protein kinases and the transcription factor NF-κB in primary normal human lung fibroblasts. IL-1F9 also stimulated the expression of the neutrophil chemokines IL-8 and CXCL3 and the Th17 chemokine CCL20 in lung fibroblasts. These results suggest that epithelial activation by TLR3 (e.g., by respiratory viral infection) and exposure to cytokines from Th17 cells (IL-17) and inflammatory cells (TNF) may amplify neutrophilic inflammation in the airway via induction of IL-1F9 and activation of fibroblasts. PMID:20870894

  6. Elucidation of changes in molecular signalling leading to increased cellular transformation in oncogenically progressed human bronchial epithelial cells exposed to radiations of increasing LET

    PubMed Central

    Ding, Liang-Hao; Park, Seongmi; Xie, Yang; Girard, Luc; Minna, John D.; Story, Michael D.

    2015-01-01

    The early transcriptional response and subsequent induction of anchorage-independent growth after exposure to particles of high Z and energy (HZE) as well as γ-rays were examined in human bronchial epithelial cells (HBEC3KT) immortalised without viral oncogenes and an isogenic variant cell line whose p53 expression was suppressed but that expressed an active mutant K-RASV12 (HBEC3KT-P53KRAS). Cell survival following irradiation showed that HBEC3KT-P53KRAS cells were more radioresistant than HBEC3KT cells irrespective of the radiation species. In addition, radiation enhanced the ability of the surviving HBEC3KT-P53RAS cells but not the surviving HBEC3KT cells to grow in anchorage-independent fashion (soft agar colony formation). HZE particle irradiation was far more efficient than γ-rays at rendering HBEC3KT-P53RAS cells permissive for soft agar growth. Gene expression profiles after radiation showed that the molecular response to radiation for HBEC3KT-P53RAS, similar to that for HBEC3KT cells, varies with radiation quality. Several pathways associated with anchorage independent growth, including the HIF-1α, mTOR, IGF-1, RhoA and ERK/MAPK pathways, were over-represented in the irradiated HBEC3KT-P53RAS cells compared to parental HBEC3KT cells. These results suggest that oncogenically progressed human lung epithelial cells are at greater risk for cellular transformation and carcinogenic risk after ionising radiation, but particularly so after HZE radiations. These results have implication for: (i) terrestrial radiation and suggests the possibility of enhanced carcinogenic risk from diagnostic CT screens used for early lung cancer detection; (ii) enhanced carcinogenic risk from heavy particles used in radiotherapy; and (iii) for space radiation, raising the possibility that astronauts harbouring epithelial regions of dysplasia or hyperplasia within the lung that contain oncogenic changes, may have a greater risk for lung cancers based upon their exposure to heavy

  7. Elucidation of changes in molecular signalling leading to increased cellular transformation in oncogenically progressed human bronchial epithelial cells exposed to radiations of increasing LET.

    PubMed

    Ding, Liang-Hao; Park, Seongmi; Xie, Yang; Girard, Luc; Minna, John D; Story, Michael D

    2015-09-01

    The early transcriptional response and subsequent induction of anchorage-independent growth after exposure to particles of high Z and energy (HZE) as well as γ-rays were examined in human bronchial epithelial cells (HBEC3KT) immortalised without viral oncogenes and an isogenic variant cell line whose p53 expression was suppressed but that expressed an active mutant K-RAS(V12) (HBEC3KT-P53KRAS). Cell survival following irradiation showed that HBEC3KT-P53KRAS cells were more radioresistant than HBEC3KT cells irrespective of the radiation species. In addition, radiation enhanced the ability of the surviving HBEC3KT-P53RAS cells but not the surviving HBEC3KT cells to grow in anchorage-independent fashion (soft agar colony formation). HZE particle irradiation was far more efficient than γ-rays at rendering HBEC3KT-P53RAS cells permissive for soft agar growth. Gene expression profiles after radiation showed that the molecular response to radiation for HBEC3KT-P53RAS, similar to that for HBEC3KT cells, varies with radiation quality. Several pathways associated with anchorage independent growth, including the HIF-1α, mTOR, IGF-1, RhoA and ERK/MAPK pathways, were over-represented in the irradiated HBEC3KT-P53RAS cells compared to parental HBEC3KT cells. These results suggest that oncogenically progressed human lung epithelial cells are at greater risk for cellular transformation and carcinogenic risk after ionising radiation, but particularly so after HZE radiations. These results have implication for: (i) terrestrial radiation and suggests the possibility of enhanced carcinogenic risk from diagnostic CT screens used for early lung cancer detection; (ii) enhanced carcinogenic risk from heavy particles used in radiotherapy; and (iii) for space radiation, raising the possibility that astronauts harbouring epithelial regions of dysplasia or hyperplasia within the lung that contain oncogenic changes, may have a greater risk for lung cancers based upon their exposure to heavy

  8. Establishment of Hertwig's epithelial root sheath/epithelial rests of Malassez cell line from human periodontium.

    PubMed

    Nam, Hyun; Kim, Ji-Hye; Kim, Jae-Won; Seo, Byoung-Moo; Park, Joo-Cheol; Kim, Jung-Wook; Lee, Gene

    2014-07-01

    Human Hertwig's epithelial root sheath/epithelial rests of Malassez (HERS/ERM) cells are epithelial remnants of teeth residing in the periodontium. Although the functional roles of HERS/ERM cells have yet to be elucidated, they are a unique epithelial cell population in adult teeth and are reported to have stem cell characteristics. Therefore, HERS/ERM cells might play a role as an epithelial component for the repair or regeneration of dental hard tissues; however, they are very rare population in periodontium and the primary isolation of them is considered to be difficult. To overcome these problems, we immortalized primary HERS/ERM cells isolated from human periodontium using SV40 large T antigen (SV40 LT) and performed a characterization of the immortalized cell line. Primary HERS/ERM cells could not be maintained for more than 6 passages; however, immortalized HERS/ERM cells were maintained for more than 20 passages. There were no differences in the morphological and immunophenotypic characteristics of HERS/ERM cells and immortalized HERS/ERM cells. The expression of epithelial stem cell and embryonic stem cell markers was maintained in immortalized HERS/ERM cells. Moreover, immortalized HERS/ERM cells could acquire mesenchymal phenotypes through the epithelial-mesenchymal transition via TGF-β1. In conclusion, we established an immortalized human HERS/ERM cell line with SV40 LT and expect this cell line to contribute to the understanding of the functional roles of HERS/ERM cells and the tissue engineering of teeth. PMID:25081036

  9. Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells: effectiveness of N-acetylcysteine.

    PubMed

    Mata, Manuel; Sarrion, Irene; Armengot, Miguel; Carda, Carmen; Martinez, Isidoro; Melero, Jose A; Cortijo, Julio

    2012-01-01

    Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. These alterations involve reactive oxygen species-dependent mechanisms. The antioxidant N-acetylcysteine (NAC) has proven useful in the management of COPD, reducing symptoms, exacerbations, and accelerated lung function decline. NAC inhibits RSV infection and mucin release in human A549 cells. The main objective of this study was to analyze the effects of NAC in modulating ciliary activity, ciliagenesis, and metaplasia in primary normal human bronchial epithelial cell (NHBEC) cultures infected with RSV. Our results indicated that RSV induced ultrastructural abnormalities in axonemal basal bodies and decreased the expression of β-tubulin as well as two genes involved in ciliagenesis, FOXJ1 and DNAI2. These alterations led to a decrease in ciliary activity. Furthermore, RSV induced metaplastic changes to the epithelium and increased the number of goblet cells and the expression of MUC5AC and GOB5. NAC restored the normal functions of the epithelium, inhibiting ICAM1 expression, subsequent RSV infection through mechanisms involving nuclear receptor factor 2, and the expression of heme oxygenase 1, which correlated with the restoration of the antioxidant capacity, the intracellular H(2)O(2) levels and glutathione content of NHBECs. The results presented in this study support the therapeutic use of NAC for the management of chronic respiratory diseases, including COPD. PMID:23118923

  10. Respiratory Syncytial Virus Inhibits Ciliagenesis in Differentiated Normal Human Bronchial Epithelial Cells: Effectiveness of N-Acetylcysteine

    PubMed Central

    Mata, Manuel; Sarrion, Irene; Armengot, Miguel; Carda, Carmen; Martinez, Isidoro; Melero, Jose A.; Cortijo, Julio

    2012-01-01

    Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. These alterations involve reactive oxygen species-dependent mechanisms. The antioxidant N-acetylcysteine (NAC) has proven useful in the management of COPD, reducing symptoms, exacerbations, and accelerated lung function decline. NAC inhibits RSV infection and mucin release in human A549 cells. The main objective of this study was to analyze the effects of NAC in modulating ciliary activity, ciliagenesis, and metaplasia in primary normal human bronchial epithelial cell (NHBEC) cultures infected with RSV. Our results indicated that RSV induced ultrastructural abnormalities in axonemal basal bodies and decreased the expression of β-tubulin as well as two genes involved in ciliagenesis, FOXJ1 and DNAI2. These alterations led to a decrease in ciliary activity. Furthermore, RSV induced metaplastic changes to the epithelium and increased the number of goblet cells and the expression of MUC5AC and GOB5. NAC restored the normal functions of the epithelium, inhibiting ICAM1 expression, subsequent RSV infection through mechanisms involving nuclear receptor factor 2, and the expression of heme oxygenase 1, which correlated with the restoration of the antioxidant capacity, the intracellular H2O2 levels and glutathione content of NHBECs. The results presented in this study support the therapeutic use of NAC for the management of chronic respiratory diseases, including COPD. PMID:23118923

  11. Cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with accelerated 56Fe ions

    NASA Technical Reports Server (NTRS)

    Suzuki, M.; Piao, C.; Hall, E. J.; Hei, T. K.

    2001-01-01

    We examined cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with high-energy 56Fe ions. Cells were irradiated with graded doses of 56Fe ions (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at Brookhaven National Laboratory. The survival curves for cells plated 1 h after irradiation (immediate plating) showed little or no shoulder. However, the survival curves for cells plated 24 h after irradiation (delayed plating) had a small initial shoulder. The RBE for 56Fe ions compared to 137Cs gamma rays was 1.99 for immediate plating and 2.73 for delayed plating at the D10. The repair ratio (delayed plating/immediate plating) was 1.67 for 137Cs gamma rays and 1.22 for 56Fe ions. The dose-response curves for initially measured and residual chromatid fragments detected by the Calyculin A-mediated premature chromosome condensation technique showed a linear response. The results indicated that the induction frequency for initially measured fragments was the same for 137Cs gamma rays and 56Fe ions. On the other hand, approximately 85% of the fragments induced by 137Cs gamma rays had rejoined after 24 h of postirradiation incubation; the corresponding amount for 56Fe ions was 37%. Furthermore, the frequency of chromatid exchanges induced by gamma rays measured 24 h after irradiation was higher than that induced by 56Fe ions. No difference in the amount of chromatid damage induced by the two types of radiations was detected when assayed 1 h after irradiation. The results suggest that high-energy 56Fe ions induce a higher frequency of complex, unrepairable damage at both the cellular and chromosomal levels than 137Cs gamma rays in the target cells for radiation-induced lung cancers.

  12. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    SciTech Connect

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  13. Haplotype and diplotype analyses of variation in ERCC5 transcription cis-regulation in normal bronchial epithelial cells.

    PubMed

    Zhang, Xiaolu; Crawford, Erin L; Blomquist, Thomas M; Khuder, Sadik A; Yeo, Jiyoun; Levin, Albert M; Willey, James C

    2016-07-01

    Excision repair cross-complementation group 5 (ERCC5) gene plays an important role in nucleotide excision repair, and dysregulation of ERCC5 is associated with increased lung cancer risk. Haplotype and diplotype analyses were conducted in normal bronchial epithelial cells (NBEC) to better understand mechanisms responsible for interindividual variation in transcript abundance regulation of ERCC5 We determined genotypes at putative ERCC5 cis-regulatory SNPs (cis-rSNP) rs751402 and rs2296147, and marker SNPs rs1047768 and rs17655. ERCC5 allele-specific transcript abundance was assessed by a recently developed targeted sequencing method. Syntenic relationships among alleles at rs751402, rs2296147, and rs1047768 were assessed by allele-specific PCR followed by Sanger sequencing. We then assessed association of ERCC5 allele-specific expression at rs1047768 with haplotype and diplotype structure at cis-rSNPs rs751402 and rs2296147. Genotype analysis revealed significantly (P < 0.005) higher interindividual variation in allelic ratios in cDNA samples relative to matched gDNA samples at both rs1047768 and rs17655. By diplotype analysis, mean expression was higher at the rs1047768 alleles syntenic with rs2296147 T allele compared with rs2296147 C allele. Furthermore, mean expression was lower at rs17655 C allele, which is syntenic with G allele at a linked SNP rs873601 (D' = 0.95). These data support the conclusions that in NBEC, T allele at SNP rs2296147 upregulates ERCC5, variation at rs751402 does not alter ERCC5 regulation, and that C allele at SNP rs17655 downregulates ERCC5 Variation in ERCC5 transcript abundance associated with allelic variation at these SNPs could result in variation in NER function in NBEC and lung cancer risk. PMID:27235448

  14. Trans, trans-2,4-decadienal induced cell proliferation via p27 pathway in human bronchial epithelial cells

    SciTech Connect

    Chang, Y.-C.; Lin Pinpin

    2008-04-01

    Lung cancer is the leading cause of cancer deaths worldwide. Epidemiological studies have shown that exposure to cooking oil fumes (COF) is a risk factor for lung cancer. Trans, trans-2,4-decadienal (tt-DDE), a dienaldehyde, is abundant in heated oils and COF. Previously, we found that long-term exposure (45 days) to a sub-lethal dose (1 {mu}M) of tt-DDE significantly increased growth of human bronchial epithelial cells (BEAS-2B). Aims of this study are to understand the mechanism of tt-DDE-induced cell proliferation and possible protective effects of antioxidant, vitamin C and N-acetylcysteine (NAC) in BEAS-2B cells. Utilizing the real-time RT-PCR and Western immunoblotting, we found that p27 mRNA and protein levels were significantly increased by 1 {mu}M tt-DDE treatment. Co-treatment with vitamin C or NAC partially prevented tt-DDE-induced cell proliferation. In addition, the downstream targets of p27, including CDK4, cyclin D{sub 1} and phosphorylated-Rb proteins, increased in 1 {mu}M tt-DDE-treated cells and these changes were prevented by NAC co-treatment. Therefore, these results suggest that tt-DDE increased cell proliferation via inhibition of p27 expression, increase in CDK4/cyclin D{sub 1} protein accumulation and enhancement of Rb phosphorylation. Increased cell proliferation is considered as the early stages of lung carcinogenesis. Administration of antioxidants may prevent COF-associated lung carcinogenesis.

  15. Effect of particle size and dispersion status on cytotoxicity and genotoxicity of zinc oxide in human bronchial epithelial cells.

    PubMed

    Roszak, Joanna; Catalán, Julia; Järventaus, Hilkka; Lindberg, Hanna K; Suhonen, Satu; Vippola, Minnamari; Stępnik, Maciej; Norppa, Hannu

    2016-07-01

    Data available on the genotoxicity of zinc oxide (ZnO) nanoparticles (NPs) are controversial. Here, we examined the effects of particle size and dispersion status on the cytotoxicity and genotoxicity of nanosized and fine ZnO, in the presence and absence of bovine serum albumin (BSA; 0.06%) in human bronchial epithelial BEAS-2B cells. Dynamic light scattering analysis showed the most homogenous dispersions in water alone for nanosized ZnO and in water with BSA for fine ZnO. After a 48-h treatment, both types of ZnO were cytotoxic within a similar, narrow dose range (1.5-3.0μg/cm(2)) and induced micronuclei at a near toxic dose range (1.25-1.75μg/cm(2)), both with and without BSA. In the comet assay, nanosized ZnO (1.25-1.5μg/cm(2)), in the absence of BSA, caused a statistically significant increase in DNA damage after 3-h and 6-h treatments, while fine ZnO did not. Our findings may be explained by better uptake or faster intracellular dissolution of nanosized ZnO without BSA during short treatments (3-6h; the comet assay), with less differences between the two ZnO forms after longer treatments (>48h; the in vitro micronucleus test). As ZnO is genotoxic within a narrow dose range partly overlapping with cytotoxic doses, small experimental differences e.g. in the dispersion of ZnO particles may have a substantial effect on the genotoxicity of the nominal doses added to the cell culture. PMID:27402478

  16. Release of beryllium into artificial airway epithelial lining fluid.

    PubMed

    Stefaniak, Aleksandr B; Virji, M Abbas; Day, Gregory A

    2012-01-01

    Inhaled beryllium particles that deposit in the lung airway lining fluid may dissolve and interact with immune-competent cells resulting in sensitization. As such, solubilization of 17 beryllium-containing materials (ore, hydroxide, metal, oxide, alloys, and process intermediates) was investigated using artificial human airway epithelial lining fluid. The maximum beryllium release in 7 days was 11.78% (from a beryl ore melter dust), although release from most materials was < 1%. Calculated dissolution half-times ranged from 30 days (reduction furnace material) to 74,000 days (hydroxide). Despite rapid mechanical clearance, billions of beryllium ions may be released in the respiratory tract via dissolution in airway lining fluid. Beryllium-containing particles that deposit in the respiratory tract dissolve in artificial lung epithelial lining fluid, thereby providing ions for absorption in the lung and interaction with immune-competent cells in the respiratory tract. PMID:23074979

  17. Role of Pro-inflammatory Cytokines in Radiation-Induced Genomic Instability in Human Bronchial Epithelial Cells.

    PubMed

    Werner, Erica; Wang, Huichen; Doetsch, Paul W

    2015-12-01

    Inflammatory cytokines have been implicated in the regulation of radiation-induced genomic instability in the hematopoietic system and have also been shown to induce chronic DNA damage responses in radiation-induced senescence. We have previously shown that human bronchial epithelial cells (HBEC3-KT) have increased genomic instability and IL-8 production persisting at day 7 after exposure to high-LET (600 MeV/nucleon (56)Fe ions) compared to low-LET (320 keV X rays) radiation. Thus, we investigated whether IL-8 induction is part of a broader pro-inflammatory response produced by the epithelial cells in response to damage, which influences genomic instability measured by increased micronuclei and DNA repair foci frequencies. We found that exposure to radiation induced the release of multiple inflammatory cytokines into the media, including GM-CSF, GROα, IL-1α, IL-8 and the inflammation modulator, IL-1 receptor antagonist (IL-1RA). Our results suggest that this is an IL-1α-driven response, because an identical signature was induced by the addition of recombinant IL-1α to nonirradiated cells and functional interference with recombinant IL-1RA (Anakinra) or anti-IL-1α function-blocking antibody, decreased IL-8 production induced by radiation exposure. However, genomic instability was not influenced by this pathway as addition of recombinant IL-1α to naive or irradiated cells or the presence of IL-1 RA under the same conditions as those that interfered with the function of IL-8, did not affect micronuclei or DNA repair foci frequencies measured at day 7 after exposure. While dose-response studies revealed that genomic instability and IL-8 production are the consequences of targeted effects, experiments employing a co-culture transwell system revealed the propagation of pro-inflammatory responses but not genomic instability from irradiated to nonirradiated cells. Collectively, these results point to a cell-autonomous mechanism sustaining radiation-induced genomic

  18. Vulnerability of the human airway epithelium to hyperoxia. Constitutive expression of the catalase gene in human bronchial epithelial cells despite oxidant stress.

    PubMed

    Yoo, J H; Erzurum, S C; Hay, J G; Lemarchand, P; Crystal, R G

    1994-01-01

    Although catalase is a major intracellular antioxidant, the expression of the human catalase gene appears to be limited in the airway epithelium, making these cells vulnerable to oxidant stress. The basis for this limited gene expression was examined by evaluation of the expression of the endogenous gene in human bronchial epithelial cells in response to hyperoxia. Hyperoxia failed to upregulate endogenous catalase gene expression, in contrast to a marked increase in expression of the heat shock protein gene. Sequence analysis of 1.7 kb of the 5'-flanking region of the human catalase gene showed features of a "house-keeping" gene (no TATA box, high GC content, multiple CCAAT boxes, and transcription start sites). Transfection of human bronchial epithelial cells with fusion genes composed of various lengths of the catalase 5'-flanking region and luciferase as a reporter gene showed low level constitutive promoter activity that did not change after exposure to hyperoxia. Importantly, using a replication-deficient recombinant adenoviral vector containing the human catalase cDNA, levels of catalase were significantly increased in human airway epithelial cells and this was associated with increased survival of the cells when exposed to hyperoxia. These observations provide a basis for understanding the sensitivity of the human airway epithelium to oxidant stress and a strategy for protecting the epithelium from such injury. PMID:8282800

  19. Interleukin 13 Exposure Enhances Vitamin D-Mediated Expression of the Human Cathelicidin Antimicrobial Peptide 18/LL-37 in Bronchial Epithelial Cells

    PubMed Central

    van Sterkenburg, M. A. J. A.; Verhoosel, R. M.; Zuyderduyn, S.; Hiemstra, P. S.

    2012-01-01

    Vitamin D is an important regulator of the expression of antimicrobial peptides, and vitamin D deficiency is associated with respiratory infections. Regulating expression of antimicrobial peptides, such as the human cathelicidin antimicrobial peptide 18 (hCAP18)/LL-37, by vitamin D in bronchial epithelial cells requires local conversion of 25(OH)-vitamin D3 (25D3) into its bioactive metabolite, 1,25(OH)2-vitamin D3 (1,25D3), by CYP27B1. Low circulating vitamin D levels in childhood asthma are associated with more-severe exacerbations, which are often associated with infections. Atopic asthma is accompanied by Th2-driven inflammation mediated by cytokines such as interleukin 4 (IL-4) and IL-13, and the effect of these cytokines on vitamin D metabolism and hCAP18/LL-37 expression is unknown. Therefore, we investigated this with well-differentiated bronchial epithelial cells. To this end, cells were treated with IL-13 with and without 25D3, and expression of hCAP18/LL-37, CYP27B1, the 1,25D3-inactivating enzyme CYP24A1, and vitamin D receptor was assessed by quantitative PCR. We show that IL-13 enhances the ability of 25D3 to increase expression of hCAP18/LL-37 and CYP24A1. In addition, exposure to IL-13 resulted in increased CYP27B1 expression, whereas vitamin D receptor (VDR) expression was not significantly affected. The enhancing effect of IL-13 on 25D3-mediated expression of hCAP18/LL-37 was further confirmed using SDS-PAGE Western blotting and immunofluorescence staining. In conclusion, we demonstrate that IL-13 induces vitamin D-dependent hCAP18/LL-37 expression, most likely by increasing CYP27B1. These data suggest that Th2 cytokines regulate the vitamin D metabolic pathway in bronchial epithelial cells. PMID:23045480

  20. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts

    PubMed Central

    Iskandar, Anita R.; Xiang, Yang; Frentzel, Stefan; Talikka, Marja; Leroy, Patrice; Kuehn, Diana; Guedj, Emmanuel; Martin, Florian; Mathis, Carole; Ivanov, Nikolai V.; Peitsch, Manuel C.; Hoeng, Julia

    2015-01-01

    Organotypic 3D cultures of epithelial cells are grown at the air–liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model. PMID:26085348

  1. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts.

    PubMed

    Iskandar, Anita R; Xiang, Yang; Frentzel, Stefan; Talikka, Marja; Leroy, Patrice; Kuehn, Diana; Guedj, Emmanuel; Martin, Florian; Mathis, Carole; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2015-09-01

    Organotypic 3D cultures of epithelial cells are grown at the air-liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model. PMID:26085348

  2. Effective Apical Infection of Differentiated Human Bronchial Epithelial Cells and Induction of Proinflammatory Chemokines by the Highly Pneumotropic Human Adenovirus Type 14p1

    PubMed Central

    Lam, Elena; Ramke, Mirja; Warnecke, Gregor; Schrepfer, Sonja; Kopfnagel, Verena; Dobner, Thomas; Heim, Albert

    2015-01-01

    Background Only a few pneumotropic types of the human adenoviruses (e.g. type B14p1) cause severe lower respiratory tract infections like pneumonia and acute respiratory distress syndrome (ARDS) even in immunocompetent patients. By contrast, many other human adenovirus (HAdV) types (e.g. HAdV-C5) are associated mainly with upper respiratory tract infections. This is in accordance with a highly physiological cell culture system consisting of differentiated primary human bronchial epithelial cells which are little susceptible for apical HAdV-C5 infections. Objective and Methods We hypothesized that a pneumotropic and highly pathogenic HAdV type infects differentiated human bronchial epithelial cells efficiently from the apical surface and also induces proinflammatory cytokines in order to establish ARDS and pneumonia. Therefore, the apical infection of differentiated primary human bronchial epithelial cells with the pneumotropic and virulent type HAdV-B14p1 was investigated in comparison to the less pneumotropic HAdV-C5 as a control. Results Binding of HAdV-B14p1 to the apical surface of differentiated human bronchial epithelial cells and subsequent internalization of HAdV DNA was 10 fold higher (p<0.01) compared to the less-pneumotropic HAdV-C5 one hour after infection. Overall, the replication cycle of HAdV-B14p1 following apical infection and including apical release of infectious virus progeny was about 1000-fold more effective compared to the non-pneumotropic HAdV-C5 (p<0.001). HAdV-B14p1 infected cells expressed desmoglein 2 (DSG2), which has been described as potential receptor for HAdV-B14p1. Moreover, HAdV-B14p1 induced proinflammatory chemokines IP-10 and I-Tac as potential virulence factors. Interestingly, IP-10 has already been described as a marker for severe respiratory infections e.g. by influenza virus A H5N1. Conclusions The efficient "apical to apical" replication cycle of HAdV-B14p1 can promote endobronchial dissemination of the infection from the

  3. Evidence of a retinoid signaling alteration involving the activator protein 1 complex in tumorigenic human bronchial epithelial cells and non-small cell lung cancer cells.

    PubMed

    Lee, H Y; Dawson, M I; Claret, F X; Chen, J D; Walsh, G L; Hong, W K; Kurie, J M

    1997-03-01

    Retinoids, including retinol and retinoic acid derivatives, inhibit the growth of normal human bronchial epithelial (HBE) cells. Using a lung carcinogenesis model consisting of normal, immortalized, and tumorigenic HBE cells, we showed previously that, compared to normal HBE cells, the tumorigenic HBE cell line 11701 is resistant to the growth-inhibitory effects of all-trans-retinoic acid (t-RA). Retinoid receptor function is preserved in tumorigenic 11701 cells, suggesting that other retinoid signaling components are altered. The activator protein 1 (AP-1) complex is a component of the retinoid signaling pathway and has demonstrated importance in cellular growth and differentiation. Therefore, we investigated whether AP-1 is involved in a retinoid signaling defect in tumorigenic 11701 cells and in retinoid-resistant non-small cell lung cancer (NSCLC) cell lines. We found that t-RA treatment inhibited AP-1 transcriptional activity in normal HBE cells but not in tumorigenic 11701 cells nor in the NSCLC cell lines Calu-1, Calu-6, SKMES-1, and ChaGo K1. We sought mechanisms for this retinoid signaling alteration involving AP-1 in tumorigenic 11701 cells. Basal AP-1 transcriptional activity; AP-1 DNA-binding activity; and the mRNA levels of c-fos, the AP-1 coactivator Jun activation domain-binding protein 1, and the retinoid receptor corepressor, the silencing mediator for retinoid and thyroid hormone receptors (SMRT), were lower in tumorigenic 11701 cells than in normal HBE cells. Transient transfection of tumorigenic 11701 cells with c-fos or CREB binding protein, which is a coactivator of AP-1 and retinoid receptors, enhanced basal AP-1 transcriptional activity but did not alter the effects of t-RA on AP-1 transcriptional activity. These findings provide evidence of a retinoid signaling alteration involving AP-1 in tumorigenic 11701 and NSCLC cells. Furthermore, the inhibitory effect of t-RA on AP-1 transcriptional activity was not restored in tumorigenic 11701

  4. Identification of biomarkers of radioresponse and subsequent progression towards lung cancer in normal human bronchial epithelial cells after HZE particle irradiation

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Park, Seongmi; Minna, John

    Using variants of a non-oncogenically immortalized human bronchial epithelial cell line HBEC3-KT, we have examined global gene expression patterns after low and high LET irradiation up to 24h post-IR. Using supervised analyses we have identified 427 genes whoes expression can be used to discriminate the cellular response to γ-vs Si or Fe particles even when the biological outcome, cell death, is equivalent. Furthermore, genetic background also determines gene expression response. When HBEC3-KT is compared to the HBEC3-KT cells line where mutant k-RAS is over-expressed and p53 has been knocked down, HBEC-3KTr53, principal component analysis clearly shows that the response of each cell resides in a different 3-D space, that is, basal gene expression patterns as well as the gene expression response are unique to each cell type. Using regression analysis to examine these 427 genes show clusters of genes whose temporal expression patterns are the same and which are unique to a given radiation type. Ultimately, this approach will allow for the interrogation of gene promoters to identify response elements that drive how cells respond to different radiation types. We are extending our examination to O particles and are now examining gene expression as a function of beam quality. We have made substantial progress in the determination of cellular transformation by HZE particles for these cell lines. (Transformation as defined by the ability to grow in soft agar.) For HBEC-3KT, the spontaneous transformation frequency is about 10- 7.ExposuretoeitherF eorSiparticlesinc KT r53celllinedidnotshowanyincreaseintransf ormationf requencyaf terdosesof upto1Gy, however, thesp 3KT.W ehavenowisolatedover160individualf ocithatf ormedinsof tagarf romcellculturesthatwereirradia termcultureandthenre-introducedintosof tagartoassurethattheabilitytogrowinsof tagarisclonal.T odatew 30 With these cell isolates in hand we will begin to determine tumorigenicity by subcutaneous injections in nude

  5. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    SciTech Connect

    Zhang, Zhuo; Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok; Kim, Donghern; Shi, Xianglin

    2015-01-09

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H{sub 2}O{sub 2}) and superoxide dismutase 2 (SOD2, antioxidant against O{sub 2}{sup ·−}) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous

  6. Interleukin-17A and Toll-Like Receptor 3 Ligand Poly(I:C) Synergistically Induced Neutrophil Chemoattractant Production by Bronchial Epithelial Cells

    PubMed Central

    Matsuzaki, Hirotaka; Mikami, Yu; Makita, Kousuke; Takeshima, Hideyuki; Horie, Masafumi; Noguchi, Satoshi; Jo, Taisuke; Narumoto, Osamu; Kohyama, Tadashi; Takizawa, Hajime; Nagase, Takahide; Yamauchi, Yasuhiro

    2015-01-01

    Chronic inflammatory airway diseases, such as bronchial asthma and chronic obstructive pulmonary disease, are common respiratory disorders worldwide. Exacerbations of these diseases are frequent and worsen patients’ respiratory condition and overall health. However, the mechanisms of exacerbation have not been fully elucidated. Recently, it was reported that interleukin (IL)-17A might play an important role in neutrophilic inflammation, which is characteristic of such exacerbations, through increased production of neutrophil chemoattractants. Therefore, we hypothesized that IL-17A was involved in the pathogenesis of acute exacerbation, due to viral infection in chronic inflammatory airway diseases. In this study, we assessed chemokine production by bronchial epithelial cells and investigated the underlying mechanisms. Comprehensive chemokine analysis showed that, compared with poly(I:C) alone, co-stimulation of BEAS-2B cells with IL-17A and poly(I:C) strongly induced production of such neutrophil chemoattractants as CXC chemokine ligand (CXCL)8, growth-related oncogene (GRO), and CXCL1. Co-stimulation synergistically induced CXCL8 and CXCL1 mRNA and protein production by BEAS-2B cells and normal human bronchial epithelial cells. Poly(I:C) induced chemokine expression by BEAS-2B cells mainly via Toll-like receptor 3/TIR-domain-containing adapter-inducing interferon-β–mediated signals. The co-stimulation with IL-17A and poly(I:C) markedly activated the p38 and extracellular-signal-regulated kinase 1/2 pathway, compared with poly(I:C), although there was little change in nuclear factor-κB translocation into the nucleus or the transcriptional activities of nuclear factor-κB and activator protein 1. IL-17A promoted stabilization of CXCL8 mRNA in BEAS-2B cells treated with poly(I:C). In conclusion, IL-17A appears to be involved in the pathogenesis of chronic inflammatory airway disease exacerbation, due to viral infection by promoting release of neutrophil

  7. Brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, affect proinflammatory protein expression in human bronchial epithelial cells via disruption of intracellular signaling.

    PubMed

    Koike, Eiko; Yanagisawa, Rie; Takano, Hirohisa

    2016-04-01

    Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) are widely used as brominated flame retardants (BFRs) in consumer products. Because humans can be exposed to BFRs mainly through air or dust, the effects of the BFRs on the respiratory system and the underlying mechanisms were investigated. HBCD exposure significantly increased the expression of intercellular adhesion molecule (ICAM)-1 and the production of interleukin (IL)-6 and -8 in human bronchial epithelial cells (BEAS-2B). TBBPA exposure significantly increased the expression of ICAM-1 and IL-6, but not IL-8. HBCD and TBBPA stimulated epidermal growth factor (EGF) production and EGF receptor (EGFR) phosphorylation. Inhibitors of EGFR-selective tyrosine kinase and the subsequent mitogen-activated protein kinase effectively blocked the increase in the expression of proinflammatory proteins. The activation of nuclear factor-kappa B (p50, p65) and activator protein 1 (c-Jun) was also observed following HBCD exposure. Furthermore, the modulation for nuclear receptors was investigated. TBBPA but not HBCD showed ligand activity for thyroid hormone receptor (TR) and TR antagonist significantly suppressed the TBBPA-induced increase of the expression of ICAM-1 and IL-6. In conclusion, HBCD and TBBPA can disrupt the expression of proinflammatory proteins in bronchial epithelial cells, possibly via the modulation of EGFR-related pathways and/or nuclear receptors. PMID:26718265

  8. Diesel exhaust particle-treated human bronchial epithelial cells upregulate Jagged-1 and OX40L in myeloid dendritic cells via TSLP1

    PubMed Central

    Bleck, Bertram; Tse, Doris B.; Gordon, Terry; Ahsan, Mohammad R.; Reibman, Joan

    2014-01-01

    Ambient particulate matter (PM), including diesel exhaust particles (DEP), promote the development of allergic disorders. Diesel exhaust particles increase oxidative stress and influence human bronchial epithelial cell (HBEC)-dendritic cell (DC) interactions via cytokines including thymic stromal lymphopoietin (TSLP). Upregulation of TSLP results in Th2 responses. Using primary culture human bronchial epithelial cells (pHBEC) and human myeloid DC co-cultures we now show that DEP upregulation of Th2 responses occurred via HBEC-dependent mechanisms that resulted from oxidative stress. Moreover, DEP-treated HBEC and ambient-PM-treated HBEC upregulated OX40L and the Notch ligand Jagged-1 mRNA and expression on mDC. Upregulation of OX40L as well as Jagged-1 on mDC required HBEC and did not occur in the presence of n-acetylcysteine (NAC). Furthermore, OX40L and Jagged-1 upregulation was inhibited when HBEC expression of TSLP was silenced. Thus DEP-treatment of HBEC targeted two distinct pathways in mDC that were downstream of TSLP expression. Upregulation of OX40L and Jagged-1 by mDC resulted in mDC driven Th2 responses. These studies expand our understanding of the mechanism by which ambient pollutants alter mucosal immunity and promote disorders such as asthma. PMID:20974985

  9. Conjugated linoleic acids suppress inflammatory response and ICAM-1 expression through inhibition of NF-κB and MAPK signaling in human bronchial epithelial cells.

    PubMed

    Huang, Wen-Chung; Tu, Rong-Syuan; Chen, Ya-Ling; Tsai, Yun-Yun; Lin, Chwan-Fwu; Liou, Chian-Jiun

    2016-04-20

    Conjugated linoleic acids (CLAs) comprise a group of natural unsaturated fatty acids. CLA was reported to have anti-asthma, anti-adiposity, and anti-tumor effects. The present study aimed to evaluate the suppressive effects of cis-9, trans-11-CLA (c9,t11-CLA) on the expression of proinflammatory cytokines and intercellular adhesion molecule 1 (ICAM-1) in TNF-α-stimulated human bronchial epithelial (BEAS-2B) cells. After treating with various doses of c9,t11-CLA (12.5-100 μg ml(-1)), BEAS-2B cells were induced into an inflamed state by adding TNF-α or TNF-α/IL-4. The presence of c9,t11-CLA significantly suppressed the secretion of cytokines IL-6, IL-8, CCL5, and MCP-1. We also found that c9,t11-CLA inhibited ICAM-1 expression, and decreased monocyte adhesion to inflamed bronchial epithelial cells. Interestingly, c9,t11-CLA attenuated the phosphorylation of mitogen-activated protein kinase (MAPK) and down-regulated the activation of nuclear factor-κB (NF-κB). These results suggested that the anti-inflammatory effects of c9,t11-CLA were mediated by inhibiting proinflammatory cytokines, chemokines, and ICAM-1 expression by blocking NF-κB transcription regulation and by attenuating MAPK signaling pathways. PMID:27007063

  10. Morphine compromises bronchial epithelial TLR2/IL17R signaling crosstalk, necessary for lung IL17 homeostasis

    PubMed Central

    Banerjee, Santanu; Ninkovic, Jana; Meng, Jingjing; Sharma, Umakant; Ma, Jing; Charboneau, Richard; Roy, Sabita

    2015-01-01

    Opportunistic lung infection and inflammation is a hallmark of chronic recreational/clinical use of morphine. We show that early induction of IL17 from the bronchial epithelium, following pathogenic encounter is a protective response, which contributes to pathogenic clearance and currently attributed to TLR2 activation in immune cells. Concurrent activation of TLR2 and IL17R in bronchial epithelium results in the sequestration of MyD88 (TLR2 adapter) by Act1/CIKS (IL17R adapter), thereby turning off TLR2 signaling to restore homeostasis. Morphine inhibits the early IL17 release and interaction between Act1 and MyD88, leading to decreased pathogenic clearance and sustained inflammation. Hence, we propose that therapeutically targeting either TLR2 or IL17 in bronchial epithelia, in the context of morphine, can restore inflammatory homeostasis. PMID:26072707

  11. Keratin metaplasia in the epithelial lining of odontogenic cysts

    PubMed Central

    Maheswaran, Thangadurai; Ramesh, Venkatapathy; Oza, Nirima; Panda, Abikshyeet; Balamurali, P. D.

    2014-01-01

    Objective: To find the prevalence of keratin metaplasia and its relation with clinico-pathological profile of the odontogenic cyst. Materials and Methods: Odontogenic cysts were studied histologically with special stains to identify the presence of keratin and compared with various parameters such as underlying connective tissue inflammation, average epithelial thickness, and site of the cyst, type of the cyst, age and the sex of the patient. Results: Of 71 cases of various odontogenic cysts, 26 (36.6%) cases exhibited keratinization in the epithelial lining. In cysts with severe inflammation there is absence of keratinization. Conclusions: This study reveals higher prevalence of keratin metaplasia in the odontogenic cysts. Furthermore, inflammation is found to be one of factor influencing keratin metaplasia. PMID:25210349

  12. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells§

    PubMed Central

    Bleck, Bertram; Grunig, Gabriele; Chiu, Amanda; Liu, Mengling; Gordon, Terry; Kazeros, Angeliki; Reibman, Joan

    2013-01-01

    Air pollution contributes to acute exacerbations of asthma and the development of asthma in children and adults. Airway epithelial cells interface innate and adaptive immune responses and have been proposed to regulate much of the response to pollutants. Thymic stromal lymphopoietin (TSLP) is a pivotal cytokine linking innate and Th2 adaptive immune disorders and is upregulated by environmental pollutants, including ambient particulate matter (PM) and diesel exhaust particles (DEP). We now show that DEP and ambient fine PM upregulate TSLP mRNA and hsa-miR-375 in primary human bronchial epithelial cells (pHBEC). Moreover, transfection of pHBEC with anti-hsa-miR-375 reduced TSLP mRNA in DEP but not TNF-α treated cells. In silico pathway evaluation suggested the aryl hydrocarbon receptor (AhR) as one possible target of miR-375. DEP and ambient fine PM (3 μg/cm2), down regulated AhR mRNA. Transfection of mimic-hsa-miR-375 resulted in a small downregulation of AhR mRNA compared to resting AhR mRNA. AhR mRNA was increased in pHBEC treated with DEP after transfection with anti-hsa-miR-375. Our data show that two pollutants, DEP and ambient PM, upregulate TSLP in human bronchial epithelial cells by a mechanism that includes hsa-miR-375 with complex regulatory effects on AhR mRNA. The absence of this pathway in TNF-α-treated cells suggests multiple regulatory pathways for TSLP expression in these cells. PMID:23455502

  13. Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells

    PubMed Central

    Montalbano, Angela Marina; Albano, Giusy Daniela; Bonanno, Anna; Riccobono, Loredana; Di Sano, Caterina; Ferraro, Maria; Siena, Liboria; Anzalone, Giulia; Gagliardo, Rosalia; Pieper, Michael Paul; Gjomarkaj, Mark; Profita, Mirella

    2016-01-01

    IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh) increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A) to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation), Bay11-7082 (inhibitor of IkBα phosphorylation), Hemicholinium-3 (HCh-3) (choline uptake blocker), and Tiotropium bromide (Spiriva®) (anticholinergic drug) was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells. PMID:27298519

  14. Upregulation of miR-27a contributes to the malignant transformation of human bronchial epithelial cells induced by SV40 small T antigen.

    PubMed

    Wang, Q; Li, D-C; Li, Z-F; Liu, C-X; Xiao, Y-M; Zhang, B; Li, X-D; Zhao, J; Chen, L-P; Xing, X-M; Tang, S-F; Lin, Y-C; Lai, Y-D; Yang, P; Zeng, J-L; Xiao, Q; Zeng, X-W; Lin, Z-N; Zhuang, Z-X; Zhuang, S-M; Chen, W

    2011-09-01

    The introduction of the Simian virus 40 (SV40) early region, the telomerase catalytic subunit (hTERT) and an oncogenic allele of H-Ras directly transforms primary human cells. SV40 small T antigen (ST), which forms a complex with protein phosphatase 2A (PP2A) and inhibits PP2A activity, is believed to have a critical role in the malignant transformation of human cells. Recent evidence has shown that aberrant microRNA (miRNA) expression patterns are correlated with cancer development. Here, we identified miR-27a as a differentially expressed miRNA in SV40 ST-expressing cells. miR-27a is upregulated in SV40 ST-transformed human bronchial epithelial cells (HBERST). Suppression of miR-27a expression in HBERST cells or lung cancer cell lines (NCI-H226 and SK-MES-1) that exhibited high levels of miR-27a expression lead to cell growth arrested in the G(0)-G(1) phase. In addition, suppression of miR-27a in HBERST cells attenuated the capacity of such cells to grow in an anchorage-independent manner. We also found that suppression of the PP2A B56γ expression resulted in upregulation of miR-27a similar to that achieved by the introduction of ST, indicating that dysregulation of miR-27a expression in ST-expressing cells was mediated by the ST-PP2A interaction. Moreover, we discovered that Fbxw7 gene encoding F-box/WD repeat-containing protein 7 was a potential miR-27a target validated by dual-luciferase reporter system analysis. The inverse correlation between miR-27a expression levels and Fbxw7 protein expression was further confirmed in both cell models and human tumor samples. Fbxw7 regulates cell-cycle progression through the ubiquitin-dependent proteolysis of a set of substrates, including c-Myc, c-Jun, cyclin E1 and Notch 1. Thus, promotion of cell growth arising from the suppression of Fbxw7 by miR-27a overexpression might be responsible for the viral oncoprotein ST-induced malignant transformation. These observations demonstrate that miR-27a functions as an oncogene

  15. dsRNA-induced changes in gene expression profiles of primary nasal and bronchial epithelial cells from patients with asthma, rhinitis and controls

    PubMed Central

    2014-01-01

    Background Rhinovirus infections are the most common cause of asthma exacerbations. The complex responses by airway epithelium to rhinovirus can be captured by gene expression profiling. We hypothesized that: a) upper and lower airway epithelium exhibit differential responses to double-stranded RNA (dsRNA), and b) that this is modulated by the presence of asthma and allergic rhinitis. Objectives Identification of dsRNA-induced gene expression profiles of primary nasal and bronchial epithelial cells from the same individuals and examining the impact of allergic rhinitis with and without concomitant allergic asthma on expression profiles. Methods This study had a cross-sectional design including 18 subjects: 6 patients with allergic asthma with concomitant rhinitis, 6 patients with allergic rhinitis, and 6 healthy controls. Comparing 6 subjects per group, the estimated false discovery rate was approximately 5%. RNA was extracted from isolated and cultured primary epithelial cells from nasal biopsies and bronchial brushings stimulated with dsRNA (poly(I:C)), and analyzed by microarray (Affymetrix U133+ PM Genechip Array). Data were analysed using R and the Bioconductor Limma package. Overrepresentation of gene ontology groups were captured by GeneSpring GX12. Results In total, 17 subjects completed the study successfully (6 allergic asthma with rhinitis, 5 allergic rhinitis, 6 healthy controls). dsRNA-stimulated upper and lower airway epithelium from asthma patients demonstrated significantly fewer induced genes, exhibiting reduced down-regulation of mitochondrial genes. The majority of genes related to viral responses appeared to be similarly induced in upper and lower airways in all groups. However, the induction of several interferon-related genes (IRF3, IFNAR1, IFNB1, IFNGR1, IL28B) was impaired in patients with asthma. Conclusions dsRNA differentially changes transcriptional profiles of primary nasal and bronchial epithelial cells from patients with allergic

  16. Oxidative stress and aromatic hydrocarbon response of human bronchial epithelial cells exposed to petro- or biodiesel exhaust treated with a diesel particulate filter.

    PubMed

    Hawley, Brie; L'Orange, Christian; Olsen, Dan B; Marchese, Anthony J; Volckens, John

    2014-10-01

    The composition of diesel exhaust has changed over the past decade due to the increased use of alternative fuels, like biodiesel, and to new regulations on diesel engine emissions. Given the changing nature of diesel fuels and diesel exhaust emissions, a need exists to understand the human health implications of switching to "cleaner" diesel engines run with particulate filters and engines run on alternative fuels like biodiesel. We exposed well-differentiated normal human bronchial epithelial cells to fresh, complete exhaust from a diesel engine run (1) with and without a diesel particulate filter and (2) using either traditional petro- or alternative biodiesel. Despite the lowered emissions in filter-treated exhaust (a 91-96% reduction in mass), significant increases in transcripts associated with oxidative stress and polycyclic aromatic hydrocarbon response were observed in all exposure groups and were not significantly different between exposure groups. Our results suggest that biodiesel and filter-treated diesel exhaust elicits as great, or greater a cellular response as unfiltered, traditional petrodiesel exhaust in a representative model of the bronchial epithelium. PMID:25061111

  17. Oxidative Stress and Aromatic Hydrocarbon Response of Human Bronchial Epithelial Cells Exposed to Petro- or Biodiesel Exhaust Treated with a Diesel Particulate Filter

    PubMed Central

    Hawley, Brie; L'Orange, Christian; Olsen, Dan B.; Marchese, Anthony J.; Volckens, John

    2014-01-01

    The composition of diesel exhaust has changed over the past decade due to the increased use of alternative fuels, like biodiesel, and to new regulations on diesel engine emissions. Given the changing nature of diesel fuels and diesel exhaust emissions, a need exists to understand the human health implications of switching to “cleaner” diesel engines run with particulate filters and engines run on alternative fuels like biodiesel. We exposed well-differentiated normal human bronchial epithelial cells to fresh, complete exhaust from a diesel engine run (1) with and without a diesel particulate filter and (2) using either traditional petro- or alternative biodiesel. Despite the lowered emissions in filter-treated exhaust (a 91–96% reduction in mass), significant increases in transcripts associated with oxidative stress and polycyclic aromatic hydrocarbon response were observed in all exposure groups and were not significantly different between exposure groups. Our results suggest that biodiesel and filter-treated diesel exhaust elicits as great, or greater a cellular response as unfiltered, traditional petrodiesel exhaust in a representative model of the bronchial epithelium. PMID:25061111

  18. Three-Dimensional Human Bronchial-Tracheal Epithelial Tissue-Like Assemblies (TLAs) as Hosts For Severe Acute Respiratory Syndrome (SARS)-CoV Infection

    NASA Technical Reports Server (NTRS)

    Suderman, M. T.; McCarthy, M.; Mossell, E.; Watts, D. M.; Peters, C. J.; Shope, R.; Goodwin, T. J.

    2006-01-01

    A three-dimensional (3-D) tissue-like assembly (TLA) of human bronchial-tracheal mesenchymal (HBTC) cells with an overlay of human bronchial epithelial (BEAS-2B) cells was constructed using a NASA Bioreactor to survey the infectivity of SARS-CoV. This TLA was inoculated with a low passage number Urbani strain of SARS-CoV. At selected intervals over a 10-day period, media and cell aliquots of the 3-D TLA were harvested for viral titer assay and for light and electron microscopy examination. All viral titer assays were negative in both BEAS-2B two-dimensional monolayer and TLA. Light microscopy immunohistochemistry demonstrated antigen-antibody reactivity with anti-SARS-CoV polyclonal antibody to spike and nuclear proteins on cell membranes and cytoplasm. Coronavirus Group 2 cross-reactivity was demonstrated by positive reaction to anti-FIPV 1 and anti-FIPV 1 and 2 antibodies. TLA examination by transmission electron microscopy indicated increasing cytoplasmic vacuolation with numerous electron-dense bodies measuring 45 to 270 nm from days 4 through 10. There was no evidence of membrane blebbing, membrane duplication, or fragmentation of organelles in the TLAs. However, progressive disruption of endoplasmic reticulum was observed throughout the cells. Antibody response to SARS-CoV specific spike and nucleocapsid glycoproteins, cross-reactivity with FIPV antibodies, and the cytoplasmic pathology suggests this HBTE TLA model is permissive to SARS-CoV infection.

  19. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    SciTech Connect

    Liu, Weili; Xiao, Linlin; Dong, Chen; He, Mingyuan; Pan, Yan; Xie, Yuexia; Tu, Wenzhi; Fu, Jiamei; Shao, Chunlin

    2014-05-09

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway.

  20. Highly Sulfated K5 Escherichia coli Polysaccharide Derivatives Inhibit Respiratory Syncytial Virus Infectivity in Cell Lines and Human Tracheal-Bronchial Histocultures

    PubMed Central

    Cagno, Valeria; Donalisio, Manuela; Civra, Andrea; Volante, Marco; Veccelli, Elena; Oreste, Pasqua; Rusnati, Marco

    2014-01-01

    Respiratory syncytial virus (RSV) exploits cell surface heparan sulfate proteoglycans (HSPGs) as attachment receptors. The interaction between RSV and HSPGs thus presents an attractive target for the development of novel inhibitors of RSV infection. In this study, selective chemical modification of the Escherichia coli K5 capsular polysaccharide was used to generate a collection of sulfated K5 derivatives with a backbone structure that mimics the heparin/heparan sulfate biosynthetic precursor. The screening of a series of N-sulfated (K5-NS), O-sulfated (K5-OS), and N,O-sulfated (K5-N,OS) derivatives with different degrees of sulfation revealed the highly sulfated K5 derivatives K5-N,OS(H) and K5-OS(H) to be inhibitors of RSV. Their 50% inhibitory concentrations were between 1.07 nM and 3.81 nM in two different cell lines, and no evidence of cytotoxicity was observed. Inhibition of RSV infection was maintained in binding and attachment assays but not in preattachment assays. Moreover, antiviral activity was also evident when the K5 derivatives were added postinfection, both in cell-to-cell spread and viral yield reduction assays. Finally, both K5-N,OS(H) and K5-OS(H) prevented RSV infection in human-derived tracheal/bronchial epithelial cells cultured to form a pseudostratified, highly differentiated model of the epithelial tissue of the human respiratory tract. Together, these features put K5-N,OS(H) and K5-OS(H) forward as attractive candidates for further development as RSV inhibitors. PMID:24914125

  1. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion

    SciTech Connect

    Paquette, Stéphane G.; Banner, David; Chi, Le Thi Bao; Leon, Alberto J.; Xu, Luoling; Ran, Longsi; Huang, Stephen S.H.; Farooqui, Amber; and others

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus–epithelial cell interaction. - Highlights: • We investigated H1N1pdm/sH1N1 infection in primary epithelial cells. • H1N1pdm directly initiated a robust inflammatory gene signature, sH1N1 did not. • H1N1pdm viral RNA triggered a stronger response than sH1N1. • H1N1pdm induces greater response due to direct virus–cell interaction. • These results have potential to impact vaccine and therapeutic development.

  2. Characterization of an epithelial cell line from bovine mammary gland.

    PubMed

    German, Tania; Barash, Itamar

    2002-05-01

    Elucidation of the bovine mammary gland's unique characteristics depends on obtaining an authentic cell line that will reproduce its function in vitro. Representative clones from bovine mammary cell populations, differing in their attachment capabilities, were cultured. L-1 cells showed strong attachment to the plate, whereas H-7 cells detached easily. Cultures established from these clones were nontumorigenic upon transplantation to an immunodeficient host; they exhibited the epithelial cell characteristics of positive cytokeratin but not smooth muscle actin staining. Both cell lines depended on fetal calf serum for proliferation. They exhibited distinct levels of differentiation on Matrigel in serum-free, insulin-supplemented medium on the basis of their organization and beta-lactoglobulin (BLG) secretion. H-7 cells organized into mammospheres, whereas L-1 cells arrested in a duct-like morphology. In both cell lines, prolactin activated phosphorylation of the signal transducer and activator of transcription, Stat5-a regulator of milk protein gene transcription, and of PHAS-I-an inhibitor of translation initiation in its nonphosphorylated form. De novo synthesis and secretion of BLG were detected in differentiated cultures: in L-1 cells, BLG was dependent on lactogenic hormones for maximal induction but was less stringently controlled than was beta-casein in the mouse CID-9 cell line. L-1 cells also encompassed a near-diploid chromosomal karyotype and may serve as a tool for studying functional characteristics of the bovine mammary gland. PMID:12418925

  3. Nuclear respiratory factor 1 overexpression attenuates anti-benzopyrene‑7,8-diol-9,10-epoxide-induced S-phase arrest of bronchial epithelial cells.

    PubMed

    Wu, Jing; Wang, Yaning; Wo, Da; Zhang, Lijuan; Li, Jue

    2016-05-01

    Nuclear respiratory factor 1 (NRF-1) has important roles in the regulation of several key metabolic genes required for cellular growth and respiration. A previous study by our group indicated that NRF‑1 is involved in mitochondrial dysfunction induced by the environmental pollutant benzo[a]pyrene in the 16HBE human bronchial epithelial cell line. In the present study, it was observed that its genotoxic metabolite, anti‑benzopyrene‑7,8‑diol‑9,10‑epoxide (BPDE), triggered cell cycle arrest in S‑phase in 16HBE cells by activating ataxia-telangiectasia (ATM)/checkpoint kinase (Chk)2 and ATM and Rad3 related (ATR)/Chk1 signaling pathways. NRF‑1 expression was suppressed by BPDE after treatment for 6 h. Flow cytometric analysis revealed that NRF‑1 overexpression attenuated cell cycle arrest in S‑phase induced by BPDE. In line with this result, DNA‑damage checkpoints were activated following NRF‑1 overexpression, as demonstrated by increased phosphorylation of ATM, Chk2 and γH2AX, but not ATR and Chk1, according to western blot analysis. It was therefore indicated that NRF‑1 overexpression attenuated BPDE‑induced S‑phase arrest via the ATM/Chk2 signaling pathway. PMID:27035420

  4. [Association of the degree of bronchial epithelial dysplasia to the serum level of non-enzymatic antioxidants].

    PubMed

    Kondakova, I V; Cheremisina, O V; Kakurina, G V; Choĭnzonov, E L

    2007-12-01

    The serum levels of non-enzymatic antioxidants were studied in patients with chronic nonspecific lung diseases with first-to-third-degree dysplasia of the bronchial epithelium (BE) before and after therapeutic correction. The development of BE dysplastic changes was ascertained to cause a considerable reduction in the content of antioxidant vitamin A. During the therapy contributing to reversal of BE dysplastic alterations, there was an increase in the serum levels of vitamin A and uric acid in patients with simple chronic bronchitis with both first- and second-degree dysplasia. If no therapeutic effect occurred, the systemic level of the antioxidants remained unchanged. PMID:18228666

  5. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties

    PubMed Central

    Gudjonsson, Thorarinn; Villadsen, René; Nielsen, Helga Lind; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William

    2002-01-01

    The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC+) and epithelial-specific antigen (ESA+) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC−/ESA+). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC+/ESA+ epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC−/ESA+ epithelial cell line was able to generate itself as well as MUC+/ESA+ epithelial cells and Thy-1+/α-smooth muscle actin+ (ASMA+) myoepithelial cells. The MUC−/ESA+ epithelial cell line further differed from the MUC+/ESA+ epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC+/ESA+ epithelial cell line formed acinus-like spheres. In contrast, the MUC−/ESA+ epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by

  6. An antagonist of the platelet-activating factor receptor inhibits adherence of both nontypeable Haemophilus influenzae and Streptococcus pneumoniae to cultured human bronchial epithelial cells exposed to cigarette smoke

    PubMed Central

    Shukla, Shakti D; Fairbairn, Rory L; Gell, David A; Latham, Roger D; Sohal, Sukhwinder S; Walters, Eugene H; O’Toole, Ronan F

    2016-01-01

    Background COPD is emerging as the third largest cause of human mortality worldwide after heart disease and stroke. Tobacco smoking, the primary risk factor for the development of COPD, induces increased expression of platelet-activating factor receptor (PAFr) in the lung epithelium. Nontypeable Haemophilus influenzae (NTHi) and Streptococcus pneumoniae adhere to PAFr on the luminal surface of human respiratory tract epithelial cells. Objective To investigate PAFr as a potential drug target for the prevention of infections caused by the main bacterial drivers of acute exacerbations in COPD patients, NTHi and S. pneumoniae. Methods Human bronchial epithelial BEAS-2B cells were exposed to cigarette smoke extract (CSE). PAFr expression levels were determined using immunocytochemistry and quantitative polymerase chain reaction. The epithelial cells were challenged with either NTHi or S. pneumoniae labeled with fluorescein isothiocyanate, and bacterial adhesion was measured using immunofluorescence. The effect of a well-evaluated antagonist of PAFr, WEB-2086, on binding of the bacterial pathogens to BEAS-2B cells was then assessed. In silico studies of the tertiary structure of PAFr and the binding pocket for PAF and its antagonist WEB-2086 were undertaken. Results PAFr expression by bronchial epithelial cells was upregulated by CSE, and significantly associated with increased bacterial adhesion. WEB-2086 reduced the epithelial adhesion by both NTHi and S. pneumoniae to levels observed for non-CSE-exposed cells. Furthermore, it was nontoxic toward the bronchial epithelial cells. In silico analyses identified a binding pocket for PAF/WEB-2086 in the predicted PAFr structure. Conclusion WEB-2086 represents an innovative class of candidate drugs for inhibiting PAFr-dependent lung infections caused by the main bacterial drivers of smoking-related COPD. PMID:27524890

  7. The comparison of glycosphingolipids isolated from an epithelial ovarian cancer cell line and a nontumorigenic epithelial ovarian cell line using MALDI-MS and MALDI-MS/MS.

    PubMed

    Rajanayake, Krishani K; Taylor, William R; Isailovic, Dragan

    2016-08-01

    Glycosphingolipids (GSLs) are important biomolecules, which are linked to many diseases such as GSL storage disorders and cancer. Consequently, the expression of GSLs may be altered in ovarian cancer cell lines in comparison to apparently healthy cell lines. Here, differential expressions of GSLs in an epithelial ovarian cancer cell line SKOV3 and a nontumorigenic epithelial ovarian cell line T29 were studied using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and MALDI-MS/MS. The isolation of GSLs from SKOV3 and T29 cell lines was carried out using Folch partition. GSLs were successfully detected by MALDI-MS, and structurally assigned by a comparison of their MALDI-MS/MS fragmentation patterns with MS/MS data found in SimLipid database. Additionally, LIPID MAPS was used to assign GSL ion masses in MALDI-MS spectra. Seventeen neutral GSLs were identified in Folch partition lower (chloroform/methanol) phases originating from both cell lines, while five globo series neutral GSLs were identified only in the Folch partition lower phase of SKOV3 cell line. Several different sialylated GSLs were detected in Folch partition upper (water/methanol) phases of SKOV3 and T29 cell lines. Overall, this study demonstrates the alteration and increased glycosylation of GSLs in an epithelial ovarian cancer cell line in comparison to a nontumorigenic epithelial ovarian cell line. PMID:27267063

  8. OIL FLY ASH AND VANADIUM DIMINISH NRAMP-2MRNA AND PROTEIN EXPRESSION IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    The capacity of Nramp2 to transport iron and its ubiquitous expression make it a likely candidate for transferrin-independent uptake of iron in peripheral tissues. Airway epithelial cells increase both mRNA and expression of that isoform of Nramp-2 without an iron response ele...

  9. In Vitro Culture and Characterization of a Mammary Epithelial Cell Line from Chinese Holstein Dairy Cow

    PubMed Central

    Hu, Han; Wang, Jiaqi; Bu, Dengpan; Wei, Hongyang; Zhou, Linyun; Li, Fadi; Loor, Juan J.

    2009-01-01

    Background The objective of this study was to establish a culture system and elucidate the unique characteristics of a bovine mammary epithelial cell line in vitro. Methodology Mammary tissue from a three year old lactating dairy cow (ca. 100 d relative to parturition) was used as a source of the epithelial cell line, which was cultured in collagen-coated tissue culture dishes. Fibroblasts and epithelial cells successively grew and extended from the culturing mammary tissue at the third day. Pure epithelial cells were obtained by passages culture. Principal Findings The strong positive immunostaining to cytokeratin 18 suggested that the resulting cell line exhibited the specific character of epithelial cells. Epithelial cells cultured in the presence of 10% FBS, supraphysiologic concentrations of insulin, and hydrocortisone maintained a normal diploid chromosome modal number of 2n = 60. Furthermore, they were capable of synthesizing β-casein (CSN2), acetyl-CoA carboxylase-α (ACACA) and butyrophilin (BTN1A1). An important finding was that frozen preservation in a mixture of 90% FBS and 10% DMSO did not influence the growth characteristics, chromosome number, or protein secretion of the isolated epithelial cell line. Conclusions The obtained mammary epithelial cell line had normal morphology, growth characteristics, cytogenetic and secretory characteristics, thus, it might represent an useful tool for studying the function of Chinese Holstein dairy cows mammary epithelial cell (CMECs). PMID:19888476

  10. Macrophages Facilitate Coal Tar Pitch Extract-Induced Tumorigenic Transformation of Human Bronchial Epithelial Cells Mediated by NF-κB

    PubMed Central

    Feng, Feifei; Wu, Yiming; Zhang, Shaofeng; Liu, Yu; Qin, Lijuan; Wu, Yongjun; Yan, Zhen; Wu, Weidong

    2012-01-01

    Objective Chronic respiratory inflammation has been associated with lung cancer. Tumor-associated macrophages (TAMs) play a critical role in the formation of inflammation microenvironment. We sought to characterize the role of TAMs in coal tar pitch extract (CTPE)-induced tumorigenic transformation of human bronchial epithelial cells and the underlying mechanisms. Methods The expression of TAMs-specific CD68 in lung cancer tissues and paired adjacent tissues from cancer patients was determined using immunostaining. Co-culture of human bronchial epithelial cells (BEAS-2B) and macrophage-like THP-1 cells were conducted to evaluate the promotive effect of macrophages on CTPE-induced tumorigenic transformation of BEAS-2B cells. BEAS-2B cells were first treated with 2.4 µg/mL CTPE for 72 hours. After removal of CTPE, the cells were continuously cultured either with or without THP-1 cells and passaged using trypsin-EDTA. Alterations of cell cycle, karyotype, colony formation in soft agar and tumor xenograft growth in nude mice of BEAS-2B cells at passages 10, 20 and 30, indicative of tumorigenecity, were determined, respectively. In addition, mRNA and protein levels of NF-κB in BEAS-2B cells were measured with RT-PCR and western blot, respectively. B(a)P was used as the positive control. Results The over-expression of TAMs-specific CD68 around lung tumor tissues was detected and associated with lung cancer progression. The tumorigenic alterations of BEAS-2B cells including increase in cell growth rate, number of cells with aneuploidy, clonogenicity in soft agar, and tumor size in nude mice in vivo occurred at passage 10, becoming significant at passages 20 and 30 of the co-culture following CTPE removal in compared to BEAS-2B cells alone. In addition, the expression levels of NF-κB in BEAS-2B cells were positively correlated to the malignancy of BEAS-2B cells under different conditions of treatment. Conclusion The presence of macrophages facilitated CTPE

  11. Cadmium induces cytotoxicity in human bronchial epithelial cells through upregulation of eIF5A1 and NF-kappaB

    SciTech Connect

    Chen, De-Ju; Xu, Yan-Ming; Du, Ji-Ying; Huang, Dong-Yang; Lau, Andy T.Y.

    2014-02-28

    Highlights: • Normal human bronchial epithelial cells (BEAS-2B) were dosed with cadmium (Cd). • A low level (2 μM) of Cd treatment for 36 h elicited negligible cytotoxicity. • High levels (20 or 30 μM) of Cd treatment for 36 h induced cell death. • High levels of Cd can upregulate the protein levels of eIF5A1 and NF-κB p65. • We suggest that eIF5A1 level is possibly modulated by NF-κB. - Abstract: Cadmium (Cd) and Cd compounds are widely-distributed in the environment and well-known carcinogens. Here, we report that in CdCl{sub 2}-exposed human bronchial epithelial cells (BEAS-2B), the level of p53 is dramatically decreased in a time- and dose-dependent manner, suggesting that the observed Cd-induced cytotoxicity is not likely due to the pro-apoptotic function of p53. Therefore, this prompted us to further study the responsive pro-apoptotic factors by proteomic approaches. Interestingly, we identified that high levels (20 or 30 μM) of Cd can significantly upregulate the protein levels of eukaryotic translation initiation factor 5A1 (eIF5A1) and redox-sensitive transcription factor NF-κB p65. Moreover, there is an enhanced NF-κB nuclear translocation as well as chromatin-binding in Cd-treated BEAS-2B cells. We also show that small interfering RNA-specific knockdown of eIF5A1 in Cd-exposed cells attenuated the Cd cytotoxicity, indicating the potential role of eIF5A1 in Cd cytotoxicity. As eIF5A1 is reported to be related with cell apoptosis but little is known about its transcriptional control, we hypothesize that NF-κB might likely modulate eIF5A1 gene expression. Notably, by bioinformatic analysis, several potential NF-κB binding sites on the upstream promoter region of eIF5A1 gene can be found. Subsequent chromatin immunoprecipitation assay revealed that indeed there is enhanced NF-κB binding on eIF5A1 promoter region of Cd-treated BEAS-2B cells. Taken together, our findings suggest for the first time a regulatory mechanism for the pro

  12. Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line.

    PubMed

    Zaragoza-Ojeda, Montserrat; Eguía-Aguilar, Pilar; Perezpeña-Díazconti, Mario; Arenas-Huertero, Francisco

    2016-08-10

    Polycyclic aromatic hydrocarbons (PAH) are produced by incomplete combustion of organic material. In the Mexico City atmosphere, the most abundant PAH is benzo[ghi]perylene (BghiP), a gasoline combustion marker. At present, there are no reports of the effects of BghiP on human bronchial cells, so the aim of the study was to evaluate the effects in vitro of BghiP on the NL-20 cell line. Results showed that BghiP induced the formation of small vesicles throughout the cytoplasm, with absence of nuclear fragmentation. At 48h exposition, damage in cell membrane increased significantly at 1.24μg/mL of BghiP (p<0.05). Immunocytochemistry revealed that BghiP provokes nuclear translocation of AhR receptor, which indicates that this compound can induce transcription of genes via receptor binding (AhR pathway activation). BghiP induced a two-fold increase (p<0.05) in the expression of AhR and CYP4B1 (a lung-specific pathway effector). In the presence of the receptor antagonist CH-223191, the loss of viability, the nuclear translocation and the overexpression of genes decreased, though this did not prevent the formation of vesicles. BghiP induced oxidative stress and in presence of the receptor antagonist this increased significantly. In conclusion, BghiP can activate the overexpression of AhR and CYP4B1, and the effects are abated by the AhR receptor antagonist. This is the first report to prove that BghiP utilizes the AhR pathway to exert its toxic effects on the NL-20 human bronchial cell line . PMID:27234499

  13. Regulatory peptides modulate adhesion of polymorphonuclear leukocytes to bronchial epithelial cells through regulation of interleukins, ICAM-1 and NF-kappaB/IkappaB.

    PubMed

    Zhang, Jian-Song; Tan, Yu-Rong; Xiang, Yang; Luo, Zi-Qiang; Qin, Xiao-Qun

    2006-02-01

    A complex network of regulatory neuropeptides controls airway inflammation reaction, in which airway epithelial cells adhering to and activating leukocytes is a critical step. To study the effect of intrapulmonary regulatory peptides on adhesion of polymorphonuclear leukocytes (PMNs) to bronchial epithelial cells (BECs) and its mechanism, several regulatory peptides including vasoactive intestinal peptide (VIP), epidermal growth factor (EGF), endothelin-1 (ET-1) and calcitonin gene-related peptide (CGRP), were investigated. The results demonstrated that VIP and EGF showed inhibitory effects both on the secretion of IL-1, IL-8 and the adhesion of PMNs to BECs, whereas ET-1 and CGRP had the opposite effect. Anti-intercellular adhesion molecule-1 (ICAM-1) antibody could block the adhesion of PMNs to ozone-stressed BECs. Using immunocytochemistry and reverse transcription-polymerase chain reaction (RT-PCR), it was shown that VIP and EGF down-regulated the expression of ICAM-1 in BECs, while ET-1 and CGRP up-regulated ICAM-1 expression. NF-kappaB inhibitor MG132 blocked ICAM-1 expression induced by ET-1 and CGRP. Furthermore, in electric mobility shift assay (EMSA), VIP and EGF restrained the binding activity of NF-kappaB to the NF-kappaB binding site within the ICAM-1 promoter in ozone-stressed BECs, while CGRP and ET-1 promoted this binding activity. IkappaB degradation was consistent with NF-kappaB activation. These observations indicate that VIP and EGF inhibit inflammation, while ET-1 and CGRP enhance the inflammation reaction. PMID:16474903

  14. Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells.

    PubMed

    Song, Man; Wang, Yu; Shang, Zeng-Fu; Liu, Xiao-Dan; Xie, Da-Fei; Wang, Qi; Guan, Hua; Zhou, Ping-Kun

    2016-01-01

    Radiation-induced bystander effect (RIBE) describes a set of biological effects in non-targeted cells that receive bystander signals from the irradiated cells. RIBE brings potential hazards to adjacent normal tissues in radiotherapy, and imparts a higher risk than previously thought. Excessive release of some substances from irradiated cells into extracellular microenvironment has a deleterious effect. For example, cytokines and reactive oxygen species have been confirmed to be involved in RIBE process via extracellular medium or gap junctions. However, RIBE-mediating signals and intercellular communication pathways are incompletely characterized. Here, we first identified a set of differentially expressed miRNAs in the exosomes collected from 2 Gy irradiated human bronchial epithelial BEP2D cells, from which miR-7-5p was found to induce autophagy in recipient cells. This exosome-mediated autophagy was significantly attenuated by miR-7-5p inhibitor. Moreover, our data demonstrated that autophagy induced by exosomal miR-7-5p was associated with EGFR/Akt/mTOR signaling pathway. Together, our results support the involvement of secretive exosomes in propagation of RIBE signals to bystander cells. The exosomes-containing miR-7-5p is a crucial mediator of bystander autophagy. PMID:27417393

  15. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells.

    PubMed

    Shen, Yifei; Wolkowicz, Michael J; Kotova, Tatyana; Fan, Lonjiang; Timko, Michael P

    2016-01-01

    Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products. PMID:27041137

  16. Surface reactivity and in vitro toxicity on human bronchial epithelial cells (BEAS-2B) of nanomaterials intermediates of the production of titania-based composites.

    PubMed

    Vergaro, Viviana; Aldieri, Elisabetta; Fenoglio, Ivana; Marucco, Arianna; Carlucci, Claudia; Ciccarella, Giuseppe

    2016-08-01

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. Evaluating the hazards associated with TiO2 NPs is crucial as it enables risk assessment related to human and environmental exposure. In this study the in vitro human toxicity of a set of TiO2 NPs modified with acetic, oleic and boric acids were studied in order to assess the hazard in view of a future scale-up of the synthesis. The surface reactivity of the powders under simulated solar illumination and in the dark has been evaluated by means of EPR spectroscopy. Human bronchial epithelial cells (BEAS-2B) have been chosen as a model for lung epithelium. Cytotoxicity has been assessed by measuring the cells membrane integrity by lactate dehydrogenase (LDH) assay, and the inflammatory response evaluated as nitric oxide (NO) and TNF-α production, and oxidative stress measured as intracellular reduced glutathione (GSH) levels, and induced lipoperoxidation. Aeroxide P25 was used for comparison. The results demonstrated a low photoreactivity and toxic effects lower than Aeroxide P25 of the nano-TiO2 powders, probably as a consequence of the presence of acidic moieties at the surface. PMID:27075777

  17. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen

    SciTech Connect

    Collier, I.E.; Wilhelm, S.M.; Eisen, A.Z.; Marmer, B.L.; Grant, G.A.; Seltzer, J.L.; Kronberger, A.; He, C.; Bauer, E.A.; Goldberg, G.I.

    1988-05-15

    H-ras transformed human bronchial epithelial cells (TBE-1) secrete a single major extracellular matrix metalloprotease which is not found in the normal parental cells. The enzyme is secreted in a latent form which can be activated to catalyze the cleavage of the basement membrane macromolecule type IV collagen. The substrates in their order of preference are: gelatin, type IV collagen, type V collagen, fibronectin, and type VII collagen; but the enzyme does not cleave the interstitial collagens or laminin. This protease is identical to gelatinase isolated from normal human skin explants, normal human skin fibroblasts, and SV40-transformed human lung fibroblasts. Based on this ability to initiate the degradation of type IV collagen in a pepsin-resistant portion of the molecule, it will be referred to as type IV collagenase. This enzyme is most likely the human analog of type IV collagenase detected in several rodent tumors. Type IV collagenase consists of three domains. Type IV collagenase represents the third member of a newly recognized gene family coding for secreted extracellular matrix metalloproteases, which includes interstitial fibroblast collagenase and stromelysin.

  18. Radon and lung carcinogenesis: mutability of p53 codons 249 and 250 to 238Pu alpha-particles in human bronchial epithelial cells.

    PubMed

    Hussain, S P; Kennedy, C H; Amstad, P; Lui, H; Lechner, J F; Harris, C C

    1997-01-01

    Radon-222, a decay product of uranium-238 and a source of high linear energy transfer (LET) alpha-particles, has been implicated in the increased risk of lung cancer in uranium miners as well as non-miners. p53 mutation spectrum studies of radon-associated lung cancer have failed to show any specific mutational hot spot with the exception of a single study in which 31% of squamous cell and large cell lung cancers from uranium miners showed a p53 codon 249 AGGarg --> ATGmet mutation. Although the results of laboratory studies indicate that double-strand breaks and deletions are the principal genetic alterations caused by alpha-particles, uncertainty still prevails in the description of DNA damage in radon-associated human lung cancer. In the present study, we have evaluated the mutability of p53 codons 249 and 250 to alpha-particles in normal human bronchial epithelial (NHBE) cells using a highly sensitive genotypic mutation assay. Exposure of NHBE cells to a total dose of 4 Gy (equivalent to approximately 1460 working level months in uranium mining) of high LET alpha-radiation induced codon 249 AGG --> AAG transitions and codon 250 CCC --> ACC transversions with absolute mutation frequencies of 3.6 x 10(-7) and 3.8 x 10(-7) respectively. This mutation spectrum is consistent with our previous report of radon-associated human lung cancer. PMID:9054598

  19. Fine particulate matter from urban ambient and wildfire sources from California's San Joaquin Valley initiate differential inflammatory, oxidative stress, and xenobiotic responses in human bronchial epithelial cells.

    PubMed

    Nakayama Wong, L S; Aung, H H; Lamé, M W; Wegesser, T C; Wilson, D W

    2011-12-01

    Environmental particulate matter (PM) exposure has been correlated with pathogenesis of acute airway inflammatory disease such as asthma and COPD. PM size and concentration have been studied extensively, but the additional effects of particulate components such as biological material, transition metals, and polycyclic aromatic hydrocarbons could also impact initial disease pathogenesis. In this study, we compared urban ambient particulate matter (APM) collected from Fresno, California with wildfire (WF) particulate matter collected from Escalon, California on early transcriptional responses in human bronchial epithelial cells (HBE). Global gene expression profiling of APM treated HBE activated genes related to xenobiotic metabolism (CYP 1B1), endogenous ROS generation and response genes (DUOX1, SOD2, PTGS2) and pro-inflammatory responses associated with asthma or COPD such as IL-1α, IL-1β, IL-8, and CCL20. WF PM treatments also induced a pro-inflammatory gene response, but elicited a more robust xenobiotic metabolism and oxidative stress response. Inhibitor studies targeting endotoxin, ROS, and trace metals, found endotoxin inhibition had modest selective inhibition of inflammation while inhibition of hydrogen peroxide and transition metals had broad effects suggesting additional interactions with xenobiotic metabolism pathways. APM induced a greater inflammatory response while WF PM had more marked metabolism and ROS related responses. PMID:21703343

  20. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells

    PubMed Central

    Shen, Yifei; Wolkowicz, Michael J.; Kotova, Tatyana; Fan, Lonjiang; Timko, Michael P.

    2016-01-01

    Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products. PMID:27041137

  1. Exosomal miR-21 derived from arsenite-transformed human bronchial epithelial cells promotes cell proliferation associated with arsenite carcinogenesis.

    PubMed

    Xu, Yuan; Luo, Fei; Liu, Yi; Shi, Le; Lu, Xiaolin; Xu, Wenchao; Liu, Qizhan

    2015-07-01

    Intercellular communications within the cancer microenvironment coordinate the assembly of various cell types. Exosomes are mediators of intercellular communication in immune signaling, tumor promotion, stress responses, and angiogenesis. The present research aimed to determine whether miRNAs secreted from human bronchial epithelial (HBE) cells transformed by 1.0 μM arsenite are transferred into normal HBE cells and are functionally active in the recipient cells. The results show that miR-21 is involved in exosome-mediated intercellular communication between neoplastic and normal HBE cells. Exosomes derived from transformed HBE cells stimulated proliferation of normal HBE cells, whereas exosomes from miR-21 depleted cells failed to stimulate proliferation. In normal HBE cells, the expression of phosphatase and tensin homolog, a target gene for miR-21, was increased by exosomal miR-21, indicating that exogenous miRNAs, via exosomal transport, function-like endogenous miRNAs. Concordantly, specific reduction of miR-21 content in exosome-producing transformed cells abolished the stimulation of proliferation by exosomes. Collectively, the data indicate that transformed HBE cells release exosomes containing miR-21, stimulating proliferation in neighboring normal HBE cells and supporting the concept that exosomal miRNAs are involved in cell-cell communication during carcinogenesis induced by environmental chemicals. PMID:24912785

  2. p53-Dependent apoptosis induced in human bronchial epithelial (16-HBE) cells by PM(2.5) sampled from air in Guangzhou, China.

    PubMed

    Zhou, Bo; Liang, Guiqiang; Qin, Huiyan; Peng, Xiaowu; Huang, Jiongli; Li, Qin; Qing, Li; Zhang, Li'e; Chen, Li; Ye, Li; Niu, Piye; Zou, Yunfeng

    2014-12-01

    Epidemiological studies have shown that air pollution particulate matter (PM) is associated with increased respiratory morbidity and mortality. However, the mechanisms are not fully understood. Oxidative stress-mediated apoptosis plays an important role in the occurrence of respiratory diseases. In this study, human bronchial epithelial (16-HBE) cells were exposed to different concentrations (16-128 µg/ml) of PM(2.5) for 24 h to investigate the apoptosis induced by PM(2.5). The results showed that PM(2.5) exposure significantly induced apoptosis, DNA strand breaks, and oxidative damage in a dose-dependent manner in 16-HBE cells. The expression of p53 and p73 increased significantly along with the dose of PM(2.5) in 16-HBE cells, whereas the expression of p21(Cip1/WAF1) decreased; the expression of mdm2 increased and then decreased, but not significantly. Taken together, these observations indicate that PM(2.5) may lead to oxidative damage and induce apoptosis through the p53-dependent pathway in 16-HBE cells. p53-Dependent apoptosis mediated by DNA strand breaks may be an important mechanism of PM(2.5)-induced apoptosis in 16-HBE cells. PMID:25133668

  3. Nickel compounds induce apoptosis in human bronchial epithelial Beas-2B cells by activation of c-Myc through ERK pathway

    SciTech Connect

    Li Qin; Suen, T.-C.; Sun Hong; Arita, Adriana; Costa, Max

    2009-03-01

    Nickel compounds are carcinogenic to humans and have been shown to alter epigenetic homeostasis. The c-Myc protein controls 15% of human genes and it has been shown that fluctuations of c-Myc protein alter global epigenetic marks. Therefore, the regulation of c-Myc by nickel ions in immortalized but not tumorigenic human bronchial epithelial Beas-2B cells was examined in this study. It was found that c-Myc protein expression was increased by nickel ions in non-tumorigenic Beas-2B and human keratinocyte HaCaT cells. The results also indicated that nickel ions induced apoptosis in Beas-2B cells. Knockout of c-Myc and its restoration in a rat cell system confirmed the essential role of c-Myc in nickel ion-induced apoptosis. Further studies in Beas-2B cells showed that nickel ion increased the c-Myc mRNA level and c-Myc promoter activity, but did not increase c-Myc mRNA and protein stability. Moreover, nickel ion upregulated c-Myc in Beas-2B cells through the MEK/ERK pathway. Collectively, the results demonstrate that c-Myc induction by nickel ions occurs via an ERK-dependent pathway and plays a crucial role in nickel-induced apoptosis in Beas-2B cells.

  4. Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells

    PubMed Central

    Song, Man; Wang, Yu; Shang, Zeng-Fu; Liu, Xiao-Dan; Xie, Da-Fei; Wang, Qi; Guan, Hua; Zhou, Ping-Kun

    2016-01-01

    Radiation-induced bystander effect (RIBE) describes a set of biological effects in non-targeted cells that receive bystander signals from the irradiated cells. RIBE brings potential hazards to adjacent normal tissues in radiotherapy, and imparts a higher risk than previously thought. Excessive release of some substances from irradiated cells into extracellular microenvironment has a deleterious effect. For example, cytokines and reactive oxygen species have been confirmed to be involved in RIBE process via extracellular medium or gap junctions. However, RIBE-mediating signals and intercellular communication pathways are incompletely characterized. Here, we first identified a set of differentially expressed miRNAs in the exosomes collected from 2 Gy irradiated human bronchial epithelial BEP2D cells, from which miR-7-5p was found to induce autophagy in recipient cells. This exosome-mediated autophagy was significantly attenuated by miR-7-5p inhibitor. Moreover, our data demonstrated that autophagy induced by exosomal miR-7-5p was associated with EGFR/Akt/mTOR signaling pathway. Together, our results support the involvement of secretive exosomes in propagation of RIBE signals to bystander cells. The exosomes-containing miR-7-5p is a crucial mediator of bystander autophagy. PMID:27417393

  5. HMGB1 binding to receptor for advanced glycation end products enhances inflammatory responses of human bronchial epithelial cells by activating p38 MAPK and ERK1/2.

    PubMed

    Liang, Yue; Hou, Changchun; Kong, Jinliang; Wen, Hanchun; Zheng, Xiaowen; Wu, Lihong; Huang, Hong; Chen, Yiqiang

    2015-07-01

    The proinflammatory factor high mobility group box protein 1 (HMGB1) has been implicated as an important mediator of many chronic inflammatory diseases, including asthma. Human bronchial epithelial cells (HBECs) play a central role in the pathogenesis of asthma. However, the effects of HMGB1 on HBECs and the underlying mechanisms remain unknown. Here, we investigated receptor expression and proinflammatory cytokine production by primary cultures of HBECs stimulated by HMGB1. We then examined the effects of specific receptor blockade and inhibition of p38 MAPK, ERK1/2, or PI3-K on HMGB1-induced expression of proinflammatory cytokines. HMGB1 increased the expression and secretion of TNF-α, TSLP, MMP-9, and VEGF in a dose- and time-dependent manner. HMGB1 also induced elevated expression of RAGE protein. Secretion of TNF-α, VEGF, MMP-9, and TSLP was significantly decreased by RAGE blockade and p38 MAPK pathway inhibition, while a less pronounced effect was mediated by ERK1/2 inhibition. These observations suggest that HMGB1 binds RAGE and promotes activities of p38 MAPK and ERK1/2 pathways in HBECs. This then enhances the expression of TNF-α, VEGF, MMP-9, and TSLP, which are the important inflammatory factors in asthma. These results demonstrate that HMGB1 enhances the inflammatory responses of HBECs, which are involved in the modulation of inflammatory processes in asthma. PMID:25862459

  6. Retinal Pigment Epithelial Cell Line Suppression of Phagolysosome Activation

    PubMed Central

    Taylor, AW; Dixit, S; Yu, J

    2015-01-01

    The eye is an immune privileged tissue with multiple mechanisms of immunosuppression to protect the light gathering tissues from the damage of inflammation. One of theses mechanisms involves retinal pigment epithelial cell suppression of phagosome activation in macrophages. The objective of this work is to determine if the human RPE cell line ARPE-19 is capable of suppressing the activation of the phagolysosome in macrophages in a manner similar to primary RPE. The conditioned media of RPE eyecups, sub-confluent, just confluent cultures, or established confluent cultures of human ARPE-19 cells were generated. These condition media were used to treat macrophages phagocytizing pHrodo bioparticles. After 24 hours incubation the macrophages were imaged by fluorescent microscopy, and fluorescence was measured. The fluorescent intensity is proportional to the amount of bioparticles phagocytized and are in an activated phagolysosome. The conditioned media of in situ mouse RPE eyecups significantly suppressed the activation of phagolysosome. The conditioned media from cultures of human ARPE-19 cells, grown to sub-confluence (50%) or grown to confluence had no effect on phagolysosome activation. In contrast, the conditioned media from established confluent cultures significantly suppressed phagolysosome activation. The neuropeptides alpha-MSH and NPY were depleted from the conditioned media of established confluent ARPE-19 cell cultures. This depleted conditioned media had diminished suppression of phagolysosome activation while promoting macrophage cell death. In addition, the condition media from cultures of ARPE-19 monolayers wounded with a bisecting scrape was diminished in suppressing phagolysosome activation. This technical report suggests that like primary RPE monolayers, established confluent cultures of ARPE-19 cells produce soluble factors that suppress the activation of macrophages, and can be used to study the molecular mechanisms of retinal immunobiology. In

  7. Epinephrine Activation of the β2-Adrenoceptor Is Required for IL-13-Induced Mucin Production in Human Bronchial Epithelial Cells

    PubMed Central

    Al-Sawalha, Nour; Pokkunuri, Indira; Omoluabi, Ozozoma; Kim, Hosu; Thanawala, Vaidehi J.; Hernandez, Adrian; Bond, Richard A.; Knoll, Brian J.

    2015-01-01

    Mucus hypersecretion by airway epithelium is a hallmark of inflammation in allergic asthma and results in airway narrowing and obstruction. Others have shown that administration a TH2 cytokine, IL-13 is sufficient to cause mucus hypersecretion in vivo and in vitro. Asthma therapy often utilizes β2-adrenoceptor (β2AR) agonists, which are effective acutely as bronchodilators, however chronic use may lead to a worsening of asthma symptoms. In this study, we asked whether β2AR signaling in normal human airway epithelial (NHBE) cells affected mucin production in response to IL-13. This cytokine markedly increased mucin production, but only in the presence of epinephrine. Mucin production was blocked by ICI-118,551, a preferential β2AR antagonist, but not by CGP-20712A, a preferential β1AR antagonist. Constitutive β2AR activity was not sufficient for IL-13 induced mucin production and β-agonist-induced signaling is required. A clinically important long-acting β-agonist, formoterol, was as effective as epinephrine in potentiating IL-13 induced MUC5AC transcription. IL-13 induced mucin production in the presence of epinephrine was significantly reduced by treatment with selective inhibitors of ERK1/2 (FR180204), p38 (SB203580) and JNK (SP600125). Replacement of epinephrine with forskolin + IBMX resulted in a marked increase in mucin production in NHBE cells in response to IL-13, and treatment with the inhibitory cAMP analogue Rp-cAMPS decreased mucin levels induced by epinephrine + IL-13. Our findings suggest that β2AR signaling is required for mucin production in response to IL-13, and that mitogen activated protein kinases and cAMP are necessary for this effect. These data lend support to the notion that β2AR-agonists may contribute to asthma exacerbations by increasing mucin production via activation of β2ARs on epithelial cells. PMID:26161982

  8. Induction of the Matrix Metalloproteinase 13 Gene in Bronchial Epithelial Cells by Interferon and Identification of its Novel Functional Polymorphism.

    PubMed

    Mashimo, Yoichi; Sakurai-Yageta, Mika; Watanabe, Misa; Arima, Takayasu; Morita, Yoshinori; Inoue, Yuzaburo; Sato, Kazuki; Nishimuta, Toshiyuki; Suzuki, Shuichi; Watanabe, Hiroko; Hoshioka, Akira; Tomiita, Minako; Yamaide, Akiko; Kohno, Yoichi; Okamoto, Yoshitaka; Shimojo, Naoki; Hata, Akira; Suzuki, Yoichi

    2016-06-01

    Matrix metalloproteinases (MMPs) are a class of extra-cellular and membrane-bound proteases involved in a wide array of physiological and pathological processes including tissue remodeling, inflammation, and cytokine secretion and activation. MMP-13 has been shown to be involved in lung diseases such as acute lung injury, viral infections, and chronic obstructive pulmonary disease; however, the molecular pathogenesis of MMP-13 in these conditions is not well understood. In this study, we investigated the mechanisms and roles of MMP-13 secretion in human small airway epithelial cells (SAECs) and functional polymorphisms of the MMP13 gene. Polyinosinic-polycytidylic acid (poly(I:C)) and interferon β (IFN-β) stimulated the secretion of MMP-13 from SAECs by more than several hundred-fold. Stimulation of the secretion by poly(I:C) was abolished by SB304680 (p38 inhibitor), LY294002 (PI3K inhibitor), Janus kinase (JAK) inhibitor I, RNA-activated protein kinase (PKR) inhibitor, and Bay 11-7082 (NF-κB inhibitor), while stimulation by IFN-β was inhibited by all except Bay 11-7082. These data suggested that the secretion of MMP-13 was mediated through IFN receptor pathways independently of nuclear factor kappa B (NF-κB) and that poly(I:C) stimulated IFN secretion in an NF-κB-dependent manner from SAECs, leading to IFN-stimulated MMP-13 secretion. Chemical MMP-13 inhibitors and MMP-13 small interfering RNA (siRNA) inhibited IFN-stimulated secretion of interferon gamma-inducible protein 10 (IP-10) and regulated on activation, normal T-cell expressed and secreted (RANTES), suggesting that MMP-13 is involved in the secretion of these virus-induced proinflammatory chemokines. We identified a novel functional polymorphism in the promoter region of the MMP13 gene. The MMP13 gene may play important roles in defense mechanisms of airway epithelial cells. PMID:26635116

  9. Comparative in vitro studies on the fibrogenic effects of two samples of silica on epithelial bronchial cells.

    PubMed

    Bodo, M; Muzi, G; Bellucci, C; Lilli, C; Calvitti, M; Lumare, A; Dell'Omo, M; Gambelunghe, A; Baroni, T; Murgia, N

    2007-01-01

    The small dimension and particle shape of silica in gypsum used to prepare moulds for lost wax casting might be responsible for the high prevalence of silicosis in gold jewellery. To test this hypothesis, human pulmonary epithelial cell (BEAS-2B) cultures were exposed to two samples of silica with different crystal micro-morphologies: Silica Powder (Silica P) which is used in casting gold jewellery, and no powder Silica (Silica F). Extracellular matrix (ECM) production was evaluated using radio-labelled precursors and quantified by RT-PCR analysis. Expression of basic fibroblast growth factor (FGF2) and its receptor (FGFR2) was also evaluated. The results demonstrated Silica P particles had a very fine lamellar crystalline structure while Silica F was characterized by larger rounded crystals. Silica P stimulated collagen production significantly more than Silica F and downregulated laminin and metalloprotease expression. Both silica samples down-regulated FGF2 but only Silica F enhanced FGF2 receptor expression. In conclusion each Silica sample promoted a profibrotic lung microenvironment in a different manner and also elicited different FGF2 signalling pathways. The data confirm that different micromorphology of Silica particles affects the fibrogenic potential and the molecular mechanisms of dust pathogenicity. PMID:18261261

  10. Temporal-spatial analysis of U.S.-Mexico border environmental fine and coarse PM air sample extract activity in human bronchial epithelial cells

    SciTech Connect

    Lauer, Fredine T.; Mitchell, Leah A.; Bedrick, Edward; McDonald, Jacob D.; Lee, Wen-Yee; Li, Wen-Whai; Olvera, Hector; Amaya, Maria A.; Berwick, Marianne; Gonzales, Melissa; Currey, Robert; Pingitore, Nicholas E.

    2009-07-01

    Particulate matter less than 10 {mu}m (PM10) has been shown to be associated with aggravation of asthma and respiratory and cardiopulmonary morbidity. There is also great interest in the potential health effects of PM2.5. Particulate matter (PM) varies in composition both spatially and temporally depending on the source, location and seasonal condition. El Paso County which lies in the Paso del Norte airshed is a unique location to study ambient air pollution due to three major points: the geological land formation, the relatively large population and the various sources of PM. In this study, dichotomous filters were collected from various sites in El Paso County every 7 days for a period of 1 year. The sampling sites were both distant and near border crossings, which are near heavily populated areas with high traffic volume. Fine (PM2.5) and Coarse (PM10-2.5) PM filter samples were extracted using dichloromethane and were assessed for biologic activity and polycyclic aromatic (PAH) content. Three sets of marker genes human BEAS2B bronchial epithelial cells were utilized to assess the effects of airborne PAHs on biologic activities associated with specific biological pathways associated with airway diseases. These pathways included in inflammatory cytokine production (IL-6, IL-8), oxidative stress (HMOX-1, NQO-1, ALDH3A1, AKR1C1), and aryl hydrocarbon receptor (AhR)-dependent signaling (CYP1A1). Results demonstrated interesting temporal and spatial patterns of gene induction for all pathways, particularly those associated with oxidative stress, and significant differences in the PAHs detected in the PM10-2.5 and PM2.5 fractions. Temporally, the greatest effects on gene induction were observed in winter months, which appeared to correlate with inversions that are common in the air basin. Spatially, the greatest gene expression increases were seen in extracts collected from the central most areas of El Paso which are also closest to highways and border crossings.

  11. Use of human bronchial epithelial cells (BEAS-2B) to study immunological markers resulting from exposure to PM{sub 2.5} organic extract from Puerto Rico

    SciTech Connect

    Fuentes-Mattei, Enrique; Rivera, Evasomary; Gioda, Adriana; Sanchez-Rivera, Diana; Roman-Velazquez, Felix R.; Jimenez-Velez, Braulio D.

    2010-03-15

    Fine particulate air pollutants, mainly their organic fraction, have been demonstrated to be associated with cardiovascular and respiratory health problems. Puerto Rico has been reported to have the highest prevalence of pulmonary diseases (e.g., asthma) in the United States. The aim of this study was to assess, for the first time, the immunological response of human bronchial epithelial cells (BEAS-2B) to organic extracts isolated from airborne particulate matter (PM{sub 2.5}) in Puerto Rico. Organic extracts from PM{sub 2.5} collected throughout an 8-month period (2000-2001) were pooled (composite) in order to perform chemical analysis and biological activity testing. BEAS-2B cells were exposed to PM{sub 2.5} organic extract to assess cytotoxicity, levels of cytokines and relative gene expression of MHC-II, hPXR and CYP3A5. Our findings show that organic PM{sub 2.5} consist of toxic as well as bioactive components that can regulate the secretion of cytokines in BEAS-2B, which could modulate inflammatory response in the lung. Trace element analyses confirmed the presence of metals in organic extracts highlighting the relative high abundance of Cu and Zn in polar organic extracts. Polar organic extracts exhibited dose-dependant toxicity and were found to significantly induce the release of interleukin 6 (IL-6), IL-1beta and IL-7 while significantly inhibiting the secretion of IL-8, G-CSF and MCP-1. Moreover, MHC-II transcriptional activity was up-regulated after 24 h of exposure, whereas PXR and CYP3A5 were down-regulated. This research provides a new insight into the effects of PM{sub 2.5} organic fractions on specific effectors and their possible role in the development of respiratory inflammatory diseases in Puerto Rico.

  12. Emulsified isoflurane treatment inhibits the cell cycle and respiration of human bronchial epithelial 16HBE cells in a p53-independent manner.

    PubMed

    Yang, Hui; Deng, Jia; Jiang, Yingying; Chen, Jiao; Zeng, Xianzheng; He, Zhiyang; Jiang, Xiaojuan; Li, Zhuoning; Jiang, Chunling

    2016-07-01

    Emulsified isoflurane (EIso), as a result of its rapid anesthetic induction, recovery and convenience, is widely used as a novel intravenous general anesthetic. Treatment with EIso can reduce injuries caused by ischemia/reperfusion (I/R) to organs, including the heart, lung and liver, without knowing understanding the molecular mechanism. The present study hypothesized that treatment with EIso can affect the physiological processes of human lung bronchial epithelial cells (16HBE) prior to I/R. To test this hypothesis, the present study first constructed stable p53 knockdown and synthesis of cytochrome c oxidase (SCO)2 knockdown 16HBE cells. The above cells were subsequently treated with EIso at a concentration of 0.1 and 0.2% for 24 h. The relevant concentration of fat emulsion was used as a negative control. The expression levels of p53, p21, SCO1, SCO2 and Tp53‑induced glycolysis and apoptosis regulator (TIGAR) were detected by reverse transcription‑quantitative polymerase chain reaction and western blotting. Subsequently, the cell proliferation, respiration and glycolysis were investigated. The results revealed that EIso treatment significantly decreased the transcription of TIGAR, SCO1 and SCO2, and increased the transcription of p21, which are all p53 target genes, in a p53-independent manner. The cell cycle was inhibited by arresting cells at the G0/G1 phase. Respiration was reduced, which caused a decrease in oxygen consumption and the accumulation of lactate and reactive oxygen species. Taken together, EIso treatment inhibited the proliferation and respiration, and promoted glycolysis in 16HBE cells. This regulatory pathway may represent a protective mechanism of EIso treatment by inhibiting cell growth and decreasing the oxygen consumption from I/R. PMID:27176636

  13. Organic extracts of urban air pollution particulate matter (PM2.5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells).

    PubMed

    Oh, Seung Min; Kim, Ha Ryong; Park, Yong Joo; Lee, Soo Yeun; Chung, Kyu Hyuck

    2011-08-16

    Traffic is a major source of particulate matter (PM), and ultrafine particulates and traffic intensity probably contribute significantly to PM-related health effects. As a strong relationship between air pollution and motor vehicle-originated pollutants has been shown to exist, air pollution genotoxicity studies of urban cities are steadily increasing. In Korea, the death rate caused by lung cancer is the most rapidly increased cancer death rate in the past 10 years. In this study, genotoxicity of PM2.5 (<2.5μm in aerodynamic diameter particles) collected from the traffic area in Suwon City, Korea, was studied using cultured human lung bronchial epithelial cells (BEAS-2B) as a model system for the potential inhalation health effects. Organic extract of PM2.5 (CE) generated significant DNA breakage and micronucleus formation in a dose-dependent manner (1μg/cm(3)-50μg/cm(3)). In the acid-base-neutral fractionation of PM2.5, neutral samples including the aliphatic (F3), aromatic (F4) and slightly polar (F5) fractions generated significant DNA breakage and micronucleus formation. These genotoxic effects were significantly blocked by scavenging agents [superoxide dismutase (SOD), sodium selenite (SS), mannitol (M), catalase (CAT)]. In addition, in the modified Comet assay using endonucleases (FPG and ENDOIII), CE and its fractions (F3, F4, and F5) increased DNA breakage compared with control groups, indicating that CE and fractions of PM2.5 induced oxidative DNA damage. These results clearly suggest that PM2.5 collected in the Suwon traffic area has genotoxic effects and that reactive oxygen species may play a distinct role in these effects. In addition, aliphatic/chlorinated hydrocarbons, PAH/alkylderivatives, and nitro-PAH/ketones/quinones may be important causative agents of the genotoxic effects. PMID:21524716

  14. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence.

    PubMed

    Takasaka, Naoki; Araya, Jun; Hara, Hiromichi; Ito, Saburo; Kobayashi, Kenji; Kurita, Yusuke; Wakui, Hiroshi; Yoshii, Yutaka; Yumino, Yoko; Fujii, Satoko; Minagawa, Shunsuke; Tsurushige, Chikako; Kojima, Jun; Numata, Takanori; Shimizu, Kenichiro; Kawaishi, Makoto; Kaneko, Yumi; Kamiya, Noriki; Hirano, Jun; Odaka, Makoto; Morikawa, Toshiaki; Nishimura, Stephen L; Nakayama, Katsutoshi; Kuwano, Kazuyoshi

    2014-02-01

    Cigarette smoke (CS)-induced cellular senescence has been implicated in the pathogenesis of chronic obstructive pulmonary disease, and SIRT6, a histone deacetylase, antagonizes this senescence, presumably through the attenuation of insulin-like growth factor (IGF)-Akt signaling. Autophagy controls cellular senescence by eliminating damaged cellular components and is negatively regulated by IGF-Akt signaling through the mammalian target of rapamycin (mTOR). SIRT1, a representative sirtuin family, has been demonstrated to activate autophagy, but a role for SIRT6 in autophagy activation has not been shown. Therefore, we sought to investigate the regulatory role for SIRT6 in autophagy activation during CS-induced cellular senescence. SIRT6 expression levels were modulated by cDNA and small interfering RNA transfection in human bronchial epithelial cells (HBECs). Senescence-associated β-galactosidase staining and Western blotting of p21 were performed to evaluate senescence. We demonstrated that SIRT6 expression levels were decreased in lung homogenates from chronic obstructive pulmonary disease patients, and SIRT6 expression levels correlated significantly with the percentage of forced expiratory volume in 1 s/forced vital capacity. CS extract (CSE) suppressed SIRT6 expression in HBECs. CSE-induced HBEC senescence was inhibited by SIRT6 overexpression, whereas SIRT6 knockdown and mutant SIRT6 (H133Y) without histone deacetylase activity enhanced HBEC senescence. SIRT6 overexpression induced autophagy via attenuation of IGF-Akt-mTOR signaling. Conversely, SIRT6 knockdown and overexpression of a mutant SIRT6 (H133Y) inhibited autophagy. Autophagy inhibition by knockdown of ATG5 and LC3B attenuated the antisenescent effect of SIRT6 overexpression. These results suggest that SIRT6 is involved in CSE-induced HBEC senescence via autophagy regulation, which can be attributed to attenuation of IGF-Akt-mTOR signaling. PMID:24367027

  15. DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: role in apoptosis.

    PubMed

    Oya, Elisabeth; Ovrevik, Johan; Arlt, Volker M; Nagy, Eszter; Phillips, David H; Holme, Jørn A

    2011-11-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are mutagenic and carcinogenic environmental pollutants found in diesel exhaust and on urban air pollution particles. In the present study, human bronchial epithelial BEAS-2B cells were exposed to 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA). DNA damage responses were compared to those observed after exposure to 1-nitropyrene (1-NP) and benzo[a]pyrene (B[a]P). Examination by microscopy revealed that 3-NBA was the most potent toxic compound while weaker responses were observed with 1-NP and B[a]P. Most interestingly, 2-NBA did not induce cell death or any other stress-related responses. 3-NBA induced a typical apoptotic cell death judged by nuclear condensation and little plasma membrane damage as well as cleavage of caspase 3 and poly-(ADP-ribose) polymerase (PARP). Exposure to 3-NBA resulted in an accumulation of cells in S-phase, and further analysis by Western blotting, immunocytochemistry and flow cytometry revealed that 3-NBA induced a DNA damage response characterized by phosphorylation of ATM (ataxia-telangiectasia mutated), checkpoint kinase (Chk) 2/Chk1, H2AX and p53. The p53 inhibitor pifithrin-α inhibited 3-NBA-induced apoptosis while small effects were seen using pifithrin-μ, suggesting that 3-NBA-induced cell death is a result of transcriptional activation of p53. In conclusion, 3-NBA is a potent inducer of apoptosis, which seemed to be triggered by the DNA damage response. Furthermore, a change of the nitro-group to the second position (i.e. 2-NBA) dramatically changed the cellular reactivity of the compound. PMID:21715570

  16. IL-4 and IL-13 exposure during mucociliary differentiation of bronchial epithelial cells increases antimicrobial activity and expression of antimicrobial peptides

    PubMed Central

    2011-01-01

    The airway epithelium forms a barrier against infection but also produces antimicrobial peptides (AMPs) and other inflammatory mediators to activate the immune system. It has been shown that in allergic disorders, Th2 cytokines may hamper the antimicrobial activity of the epithelium. However, the presence of Th2 cytokines also affects the composition of the epithelial layer which may alter its function. Therefore, we investigated whether exposure of human primary bronchial epithelial cells (PBEC) to Th2 cytokines during mucociliary differentiation affects expression of the human cathelicidin antimicrobial protein (hCAP18)/LL-37 and human beta defensins (hBD), and antimicrobial activity. PBEC were cultured at an air-liquid interface (ALI) for two weeks in the presence of various concentrations of IL-4 or IL-13. Changes in differentiation and in expression of various AMPs and the antimicrobial proteinase inhibitors secretory leukocyte protease inhibitor (SLPI) and elafin were investigated as well as antimicrobial activity. IL-4 and IL-13 increased mRNA expression of hCAP18/LL-37 and hBD-2. Dot blot analysis also showed an increase in hCAP18/LL-37 protein in apical washes of IL-4-treated ALI cultures, whereas Western Blot analysis showed expression of a protein of approximately 4.5 kDa in basal medium of IL-4-treated cultures. Using sandwich ELISA we found that also hBD-2 in apical washes was increased by both IL-4 and IL-13. SLPI and elafin levels were not affected by IL-4 or IL-13 at the mRNA or protein level. Apical wash obtained from IL-4- and IL-13-treated cultures displayed increased antimicrobial activity against Pseudomonas aeruginosa compared to medium-treated cultures. In addition, differentiation in the presence of Th2 cytokines resulted in increased MUC5AC production as has been shown previously. These data suggest that prolonged exposure to Th2 cytokines during mucociliary differentiation contributes to antimicrobial defence by increasing the expression

  17. Identification of PM10 characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B).

    PubMed

    Van Den Heuvel, Rosette; Den Hond, Elly; Govarts, Eva; Colles, Ann; Koppen, Gudrun; Staelens, Jeroen; Mampaey, Maja; Janssen, Nicole; Schoeters, Greet

    2016-08-01

    Notwithstanding evidence is present that physicochemical characteristics of ambient particles attribute to adverse health effects, there is still some lack of understanding in this complex relationship. At this moment it is not clear which properties (such as particle size, chemical composition) or sources of the particles are most relevant for health effects. This study investigates the in vitro toxicity of PM10 in relation to PM chemical composition, black carbon (BC), endotoxin content and oxidative potential (OP). In 2013-2014 PM10 was sampled (24h sampling, 108 sampling days) in ambient air at three sites in Flanders (Belgium) with different pollution characteristics: an urban traffic site (Borgerhout), an industrial area (Zelzate) and a rural background location (Houtem). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) have been exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) using the Neutral red Uptake assay, the production of pro-inflammatory molecules by interleukin 8 (IL-8) induction and DNA-damaging activity using the FPG-modified Comet assay. The endotoxin levels in the collected samples were analysed and the capacity of PM10 particles to produce reactive oxygen species (OP) was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 (BC, As, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and meteorological conditions were recorded on the sampling days. PM10 particles exhibited dose-dependent cytotoxicity in Beas-2B cells and were found to significantly induce the release of IL-8 in samples from the three locations. Oxidatively damaged DNA was observed in exposed Beas-2B cells. Endotoxin levels above the detection limit were detected in half of the samples. OP was measurable in all samples. Associations between PM10 characteristics and biological effects of PM10 were assessed by single and multiple regression analyses. The

  18. Functional and pharmacological characterization of volume-regulated anion channels in human normal and cystic fibrosis bronchial and nasal epithelial cells.

    PubMed

    Stott, Jennifer B; deCourcey, Francine; Ennis, Madeleine; Zholos, Alexander V

    2014-10-01

    Volume-regulated anion channels (VRACs) are widely present in various cell types and have important functions ranging from regulatory volume decrease to control of cell proliferation and apoptosis. Here we aimed to compare the biophysical features and pharmacological profiles of VRAC currents in healthy and cystic fibrosis (CF) respiratory epithelial cells in order to characterize these currents both functionally and pharmacologically. Whole-cell electrophysiology was used to characterize the VRAC current in normal (16HBE14o-; HBE) and CF cell lines (CFBE14o-; CFBE), as well as in native human nasal epithelial cells. Application of hypotonic solution produced current responses of similar sizes in both HBE and CFBE cells. Biophysical properties of VRACs, such as instantaneous activation and deactivation upon voltage step, some inactivation at potentials positive to 40 mV and outwardly-rectifying I-V curves, were indistinguishable in both cell types. Extensive pharmacological analysis of the currents revealed a similar pharmacological profile in response to three blockers--NPPB, DCPIB and DIDS. Native primary human nasal epithelial cells from both healthy and CF volunteers also showed typical VRAC responses of comparable sizes. VRACs in these cells were more sensitive to external solution hypotonicity compared to HBE and CFBE cells. In all cell types studied robust VRAC currents could be induced at constant cell volume by G-protein activation with GTPγS infusion. This study provides the first extensive comparative functional and pharmacological analysis of VRAC currents in normal and CF airway epithelial cells and shows that VRACs are unimpaired molecularly or functionally in CF. PMID:25034811

  19. Short-term exposure of nontumorigenic human bronchial epithelial cells to carcinogenic chromium(VI) compromises their respiratory capacity and alters their bioenergetic signature.

    PubMed

    Cerveira, Joana F; Sánchez-Aragó, María; Urbano, Ana M; Cuezva, José M

    2014-01-01

    Previous studies on the impact of hexavalent chromium [Cr(VI)] on mammalian cell energetics revealed alterations suggestive of a shift to a more fermentative metabolism. Aiming at a more defined understanding of the metabolic effects of Cr(VI) and of their molecular basis, we assessed the impact of a mild Cr(VI) exposure on critical bioenergetic parameters (lactate production, oxygen consumption and intracellular ATP levels). Cells derived from normal human bronchial epithelium (BEAS-2B cell line), the main in vivo target of Cr(VI) carcinogenicity, were subjected for 48 h to 1 μM Cr(VI). We could confirm a shift to a more fermentative metabolism, resulting from the simultaneous inhibition of respiration and stimulation of glycolysis. This shift was accompanied by a decrease in the protein levels of the catalytic subunit (subunit β) of the mitochondrial H(+)-ATP synthase (β-F1-ATPase) and a concomitant marked increase in those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The corresponding alteration in the β-F1-ATPase/GAPDH protein ratio (viewed as a bioenergetic signature) upon Cr(VI) exposure was in agreement with the observed attenuation of cellular respiration and enhancement of glycolytic flux. Altogether, these results constitute a novel finding in terms of the molecular mechanisms of Cr(VI) effects. PMID:25161867

  20. Short-term exposure of nontumorigenic human bronchial epithelial cells to carcinogenic chromium(VI) compromises their respiratory capacity and alters their bioenergetic signature

    PubMed Central

    Cerveira, Joana F.; Sánchez-Aragó, María; Urbano, Ana M.; Cuezva, José M.

    2014-01-01

    Previous studies on the impact of hexavalent chromium [Cr(VI)] on mammalian cell energetics revealed alterations suggestive of a shift to a more fermentative metabolism. Aiming at a more defined understanding of the metabolic effects of Cr(VI) and of their molecular basis, we assessed the impact of a mild Cr(VI) exposure on critical bioenergetic parameters (lactate production, oxygen consumption and intracellular ATP levels). Cells derived from normal human bronchial epithelium (BEAS-2B cell line), the main in vivo target of Cr(VI) carcinogenicity, were subjected for 48 h to 1 μM Cr(VI). We could confirm a shift to a more fermentative metabolism, resulting from the simultaneous inhibition of respiration and stimulation of glycolysis. This shift was accompanied by a decrease in the protein levels of the catalytic subunit (subunit β) of the mitochondrial H+-ATP synthase (β-F1-ATPase) and a concomitant marked increase in those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The corresponding alteration in the β-F1-ATPase/GAPDH protein ratio (viewed as a bioenergetic signature) upon Cr(VI) exposure was in agreement with the observed attenuation of cellular respiration and enhancement of glycolytic flux. Altogether, these results constitute a novel finding in terms of the molecular mechanisms of Cr(VI) effects. PMID:25161867

  1. Differential effects of nitro-PAHs and amino-PAHs on cytokine and chemokine responses in human bronchial epithelial BEAS-2B cells

    SciTech Connect

    Ovrevik, J.; Arlt, V.M.; Oya, E.; Nagy, E.; Mollerup, S.; Phillips, D.H.; Lag, M.; Holme, J.A.

    2010-02-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are found in diesel exhaust and air pollution particles. Along with other PAHs, many nitro-PAHs possess mutagenic and carcinogenic properties, but their effects on pro-inflammatory processes and cell death are less known. In the present study we examined the effects of 1-nitropyrene (1-NP), 3-nitrofluoranthene (3-NF) and 3-nitrobenzanthrone (3-NBA) and their corresponding amino forms, 1-AP, 3-AF and 3-ABA, in human bronchial epithelial BEAS-2B cells. The effects of the different nitro- and amino-PAHs were compared to the well-characterized PAH benzo[a]pyrene (B[a]P). Expression of 17 cytokine and chemokine genes, measured by real-time PCR, showed that 1-NP and 3-NF induced a completely different cytokine/chemokine gene expression pattern to that of their amino analogues. 1-NP/3-NF-induced responses were dominated by maximum effects on CXCL8 (IL-8) and TNF-alpha expression, while 1-AP-/3-AF-induced responses were dominated by CCL5 (RANTES) and CXCL10 (IP-10) expression. 3-NBA and 3-ABA induced only marginal cytokine/chemokine responses. However, 3-NBA exposure induced considerable DNA damage resulting in accumulation of cells in S-phase and a marked increase in apoptosis. B[a]P was the only compound to induce expression of aryl hydrocarbon receptor (AhR)-regulated genes, such as CYP1A1 and CYP1B1, but did not induce cytokine/chemokine responses in BEAS-2B cells. Importantly, nitro-PAHs and amino-PAHs induced both qualitatively and quantitatively different effects on cytokine/chemokine expression, DNA damage, cell cycle alterations and cytotoxicity. The cytokine/chemokine responses appeared to be triggered, at least partly, through mechanisms separate from the other examined endpoints. These results confirm and extend previous studies indicating that certain nitro-PAHs have a considerable pro-inflammatory potential.

  2. Distinct transcriptome profiles identified in normal human bronchial epithelial cells after exposure to γ-rays and different elemental particles of high Z and energy

    PubMed Central

    2013-01-01

    Background Ionizing radiation composed of accelerated ions of high atomic number (Z) and energy (HZE) deposits energy and creates damage in cells in a discrete manner as compared to the random deposition of energy and damage seen with low energy radiations such as γ- or x-rays. Such radiations can be highly effective at cell killing, transformation, and oncogenesis, all of which are concerns for the manned space program and for the burgeoning field of HZE particle radiotherapy for cancer. Furthermore, there are differences in the extent to which cells or tissues respond to such exposures that may be unrelated to absorbed dose. Therefore, we asked whether the energy deposition patterns produced by different radiation types would cause different molecular responses. We performed transcriptome profiling using human bronchial epithelial cells (HBECs) after exposure to γ-rays and to two different HZE particles (28Si and 56Fe) with different energy transfer properties to characterize the molecular response to HZE particles and γ-rays as a function of dose, energy deposition pattern, and time post-irradiation. Results Clonogenic assay indicated that the relative biological effectiveness (RBE) for 56Fe was 3.91 and for 28Si was 1.38 at 34% cell survival. Unsupervised clustering analysis of gene expression segregated samples according to the radiation species followed by the time after irradiation, whereas dose was not a significant parameter for segregation of radiation response. While a subset of genes associated with p53-signaling, such as CDKN1A, TRIM22 and BTG2 showed very similar responses to all radiation qualities, distinct expression changes were associated with the different radiation species. Gene enrichment analysis categorized the differentially expressed genes into functional groups related to cell death and cell cycle regulation for all radiation types, while gene pathway analysis revealed that the pro-inflammatory Acute Phase Response Signaling was

  3. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    SciTech Connect

    Yang, Xuejiao; Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan; Wang, Shou-Lin

    2013-07-15

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  4. Identification of Human Fibroblast Cell Lines as a Feeder Layer for Human Corneal Epithelial Regeneration

    PubMed Central

    Lu, Rong; Bian, Fang; Lin, Jing; Su, Zhitao; Qu, Yangluowa; Pflugfelder, Stephen C.; Li, De-Quan

    2012-01-01

    There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE) and cell growth capacity were evaluated on days 5–14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1×104 in a 35-mm dish (9.6 cm2) grew to confluence (about 1.87–2.41×106 cells) in 12–14 days, representing 187–241 fold expansion with over 7–8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction. PMID:22723892

  5. Macrophages promote benzopyrene-induced tumor transformation of human bronchial epithelial cells by activation of NF-κB and STAT3 signaling in a bionic airway chip culture and in animal models

    PubMed Central

    Sun, Zhao; Wang, Lei; Guo, Zhe; Zhao, Yang; Gao, Zhancheng; Wang, Qi

    2015-01-01

    We investigated the role of macrophages in promoting benzopyrene (BaP)-induced malignant transformation of human bronchial epithelial cells using a BaP-induced tumor transformation model with a bionic airway chip in vitro and in animal models. The bionic airway chip culture data showed that macrophages promoted BaP-induced malignant transformation of human bronchial epithelial cells, which was mediated by nuclear factor (NF)-κB and STAT3 pathways to induce cell proliferation, colony formation in chip culture, and tumorigenicity in nude mice. Blockage of interleukin (IL)-6 or tumor necrosis factor (TNF)-α signaling or inhibition of NF-κB, STAT3, or cyclinD1 expression abrogated the effect of macrophages on malignant transformation in the bionic airway chip culture. In vivo, macrophages promoted lung tumorigenesis in a carcinogen-induced animal model. Similarly, blockage of NF-κB, STAT3, or cyclinD1 using siRNA transfection decreased the carcinogen-induced tumorigenesis in rats. We demonstrated that macrophages are critical in promoting lung tumorigenesis and that the macrophage-initiated TNF-α/NF-κB/cyclinD1 and IL-6/STAT3/cyclinD1 pathways are primarily responsible for promoting lung tumorigenesis. PMID:25823926

  6. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype.

    PubMed

    Kohn, Kurt W; Zeeberg, Barry M; Reinhold, William C; Pommier, Yves

    2014-01-01

    Using gene expression data to enhance our knowledge of control networks relevant to cancer biology and therapy is a challenging but urgent task. Based on the premise that genes that are expressed together in a variety of cell types are likely to functions together, we derived mutually correlated genes that function together in various processes in epithelial-like tumor cells. Expression-correlated genes were derived from data for the NCI-60 human tumor cell lines, as well as data from the Broad Institute's CCLE cell lines. NCI-60 cell lines that selectively expressed a mutually correlated subset of tight junction genes served as a signature for epithelial-like cancer cells. Those signature cell lines served as a seed to derive other correlated genes, many of which had various other epithelial-related functions. Literature survey yielded molecular interaction and function information about those genes, from which molecular interaction maps were assembled. Many of the genes had epithelial functions unrelated to tight junctions, demonstrating that new function categories were elicited. The most highly correlated genes were implicated in the following epithelial functions: interactions at tight junctions (CLDN7, CLDN4, CLDN3, MARVELD3, MARVELD2, TJP3, CGN, CRB3, LLGL2, EPCAM, LNX1); interactions at adherens junctions (CDH1, ADAP1, CAMSAP3); interactions at desmosomes (PPL, PKP3, JUP); transcription regulation of cell-cell junction complexes (GRHL1 and 2); epithelial RNA splicing regulators (ESRP1 and 2); epithelial vesicle traffic (RAB25, EPN3, GRHL2, EHF, ADAP1, MYO5B); epithelial Ca(+2) signaling (ATP2C2, S100A14, BSPRY); terminal differentiation of epithelial cells (OVOL1 and 2, ST14, PRSS8, SPINT1 and 2); maintenance of apico-basal polarity (RAB25, LLGL2, EPN3). The findings provide a foundation for future studies to elucidate the functions of regulatory networks specific to epithelial-like cancer cells and to probe for anti-cancer drug targets. PMID:24940735

  7. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin

    PubMed Central

    Foster, Derek M.; Martin, Luke G.; Papich, Mark G.

    2016-01-01

    Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined) exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL), and the MIC90 for Mannheimia haemolytica (1.0 μg/mL) for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL) for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations, with over 900

  8. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin.

    PubMed

    Foster, Derek M; Martin, Luke G; Papich, Mark G

    2016-01-01

    Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined) exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL), and the MIC90 for Mannheimia haemolytica (1.0 μg/mL) for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL) for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations, with over 900

  9. Giant median raphe cyst of the penis with diffuse melanosis of its epithelial lining.

    PubMed

    Hitti, I F; Vuletin, J C; Rapuano, J

    1989-01-01

    Diffuse melanosis of the epithelial lining of an unusually large median raphe cyst of the penis is reported. Its light microscopic and ultrastructural features are described. The findings are discussed in the context of the published literature of genitourinary melanosis. PMID:2728125

  10. Characteristic and Functional Analysis of a Newly Established Porcine Small Intestinal Epithelial Cell Line

    PubMed Central

    Wang, Jing; Hu, Guangdong; Lin, Zhi; He, Lei; Xu, Lei; Zhang, Yanming

    2014-01-01

    The mucosal surface of intestine is continuously exposed to both potential pathogens and beneficial commensal microorganisms. Recent findings suggest that intestinal epithelial cells, which once considered as a simple physical barrier, are a crucial cell lineage necessary for maintaining intestinal immune homeostasis. Therefore, establishing a stable and reliable intestinal epithelial cell line for future research on the mucosal immune system is necessary. In the present study, we established a porcine intestinal epithelial cell line (ZYM-SIEC02) by introducing the human telomerase reverse transcriptase (hTERT) gene into small intestinal epithelial cells derived from a neonatal, unsuckled piglet. Morphological analysis revealed a homogeneous cobblestone-like morphology of the epithelial cell sheets. Ultrastructural indicated the presence of microvilli, tight junctions, and a glandular configuration typical of the small intestine. Furthermore, ZYM-SIEC02 cells expressed epithelial cell-specific markers including cytokeratin 18, pan-cytokeratin, sucrase-isomaltase, E-cadherin and ZO-1. Immortalized ZYM-SIEC02 cells remained diploid and were not transformed. In addition, we also examined the host cell response to Salmonella and LPS and verified the enhanced expression of mRNAs encoding IL-8 and TNF-α by infection with Salmonella enterica serovars Typhimurium (S. Typhimurium). Results showed that IL-8 protein expression were upregulated following Salmonella invasion. TLR4, TLR6 and IL-6 mRNA expression were upregulated following stimulation with LPS, ZYM-SIEC02 cells were hyporeponsive to LPS with respect to IL-8 mRNA expression and secretion. TNFα mRNA levels were significantly decreased after LPS stimulation and TNF-α secretion were not detected challenged with S. Typhimurium neither nor LPS. Taken together, these findings demonstrate that ZYM-SIEC02 cells retained the morphological and functional characteristics typical of primary swine intestinal epithelial

  11. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    SciTech Connect

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  12. Generation of MHC class I-restricted cytotoxic T cell lines and clones against colonic epithelial cells from ulcerative colitis.

    PubMed

    Yonamine, Y; Watanabe, M; Kinjo, F; Hibi, T

    1999-01-01

    We established CTL lines and clones against colonic epithelial cells from PBLs of patients with ulcerative colitis by continuous stimulation with HLA-A locus-matched colonic epithelial cell lines. We developed a nonradioactive europium release cytotoxicity assay to detect CTLs. PBLs from 3 of 12 patients but not from any of 14 normal controls who shared at least one haplotype of HLA-A locus with two colonic epithelial cell lines, CW2 and ACM, showed increased cytotoxicity against these lines. Three CTL lines established from the PBLs of patients showed increased cytotoxicity against HLA-A locus-matched CW2 or ACM but not against matched lung or esophagus cell lines. The phenotypes of CTL lines were alpha beta-TCR+ CD3+ CD8+ CD16-. The CTL line MS showed increased cytotoxicity against freshly isolated colonic epithelial cells but not against cells with a different HLA-A locus. Two CTL clones were generated from MS and clone 3-2, expressing CD3+ CD8+ CD4- CD56-, showed high MHC class I-restricted cytotoxicity against the colonic epithelial cells. These results indicated that CTLs against colonic epithelial cells may contribute to epithelial cell damage in ulcerative colitis. PMID:10080107

  13. Glutathione peroxidase 3 localizes to the epithelial lining fluid and the extracellular matrix in interstitial lung disease.

    PubMed

    Schamberger, Andrea C; Schiller, Herbert B; Fernandez, Isis E; Sterclova, Martina; Heinzelmann, Katharina; Hennen, Elisabeth; Hatz, Rudolf; Behr, Jürgen; Vašáková, Martina; Mann, Matthias; Eickelberg, Oliver; Staab-Weijnitz, Claudia A

    2016-01-01

    Aberrant antioxidant activity and excessive deposition of extracellular matrix (ECM) are hallmarks of interstitial lung diseases (ILD). It is known that oxidative stress alters the ECM, but extracellular antioxidant defence mechanisms in ILD are incompletely understood. Here, we extracted abundance and detergent solubility of extracellular antioxidant enzymes from a proteomic dataset of bleomycin-induced lung fibrosis in mice and assessed regulation and distribution of glutathione peroxidase 3 (GPX3) in murine and human lung fibrosis. Superoxide dismutase 3 (Sod3), Gpx3, and Gpx activity were increased in mouse BALF during bleomycin-induced lung fibrosis. In lung tissue homogenates, Gpx3, but not Sod3, was upregulated and detergent solubility profiling indicated that Gpx3 associated with ECM proteins. Immunofluorescence analysis showed that Gpx3 was expressed by bronchial epithelial cells and interstitial fibroblasts and localized to the basement membrane and interstitial ECM in lung tissue. As to human ILD samples, BALF of some patients contained high levels of GPX3, and GPX3 was upregulated in lung homogenates from IPF patients. GPX3 expression in primary human bronchial epithelial cells and lung fibroblasts was downregulated by TNF-α, but more variably regulated by TGF-β1 and menadione. In conclusion, the antioxidant enzyme GPX3 localizes to lung ECM and is variably upregulated in ILD. PMID:27435875

  14. Glutathione peroxidase 3 localizes to the epithelial lining fluid and the extracellular matrix in interstitial lung disease

    PubMed Central

    Schamberger, Andrea C.; Schiller, Herbert B.; Fernandez, Isis E.; Sterclova, Martina; Heinzelmann, Katharina; Hennen, Elisabeth; Hatz, Rudolf; Behr, Jürgen; Vašáková, Martina; Mann, Matthias; Eickelberg, Oliver; Staab-Weijnitz, Claudia A.

    2016-01-01

    Aberrant antioxidant activity and excessive deposition of extracellular matrix (ECM) are hallmarks of interstitial lung diseases (ILD). It is known that oxidative stress alters the ECM, but extracellular antioxidant defence mechanisms in ILD are incompletely understood. Here, we extracted abundance and detergent solubility of extracellular antioxidant enzymes from a proteomic dataset of bleomycin-induced lung fibrosis in mice and assessed regulation and distribution of glutathione peroxidase 3 (GPX3) in murine and human lung fibrosis. Superoxide dismutase 3 (Sod3), Gpx3, and Gpx activity were increased in mouse BALF during bleomycin-induced lung fibrosis. In lung tissue homogenates, Gpx3, but not Sod3, was upregulated and detergent solubility profiling indicated that Gpx3 associated with ECM proteins. Immunofluorescence analysis showed that Gpx3 was expressed by bronchial epithelial cells and interstitial fibroblasts and localized to the basement membrane and interstitial ECM in lung tissue. As to human ILD samples, BALF of some patients contained high levels of GPX3, and GPX3 was upregulated in lung homogenates from IPF patients. GPX3 expression in primary human bronchial epithelial cells and lung fibroblasts was downregulated by TNF-α, but more variably regulated by TGF-β1 and menadione. In conclusion, the antioxidant enzyme GPX3 localizes to lung ECM and is variably upregulated in ILD. PMID:27435875

  15. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    PubMed

    O'Connell, J; Bennett, M W; Nally, K; O'Sullivan, G C; Collins, J K; Shanahan, F

    2000-12-01

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell's sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis. PMID:11056003

  16. Examination of in vitro epithelial cell lines as models for Francisella tularensis non-phagocytic infections.

    PubMed

    Lo, Karen Yi-Shyuan; Chua, Michael Dominic; Abdulla, Salima; Law, H T; Guttman, Julian Andrew

    2013-05-01

    Francisella tularensis (F. tularensis), the causative agent of tularemia, has long been known to invade and occupy non-phagocytic epithelial cells. Many epithelial cell infection models have been developed to study this process; however, due to the lack of consensus on infection methods and precise experimental procedures to evaluate invasion and replication, selection of appropriate models to use based on the literature is challenging. To evaluate in vitro non-phagocytic cell infection models, we chose 8 epithelial cultured cell lines from published models to infect with F. tularensis subspecies novicida (F. novicida) and compared the results to a recently developed model that used the mouse hepatocyte BNL CL.2 cell line. We utilized classical gentamicin-based invasion assays to determine total intracellular bacterial loads and employed microscopic examination with staining techniques that distinguished between intracellular and extracellular bacteria to provide an accurate assessment of the proportion of invaded host cells and the degree of bacterial replication. We found that COS-7 cells exhibited the greatest invasion rates; CMT-93 cells contained the largest intracellular bacterial loads; ad HEK-293s were capable of invasion and replication rates at high levels, but required shorter infection incubation times. Although COS-7, CMT-93 and HEK-293 cell lines may be suited to study certain aspects of invasion or replication, we found that BNL CL.2 cells appeared the most appropriate to study the overall pathogenesis of F. novicida when examined in toto. PMID:23523968

  17. Establishment and Evaluation of a Stable Cattle Type II Alveolar Epithelial Cell Line

    PubMed Central

    Su, Feng; Liu, Xin; Liu, Guanghui; Yu, Yuan; Wang, Yongsheng; Jin, Yaping; Hu, Guangdong; Hua, Song; Zhang, Yong

    2013-01-01

    Macrophages and dendritic cells are recognized as key players in the defense against mycobacterial infection. Recent research has confirmed that alveolar epithelial cells (AECs) also play important roles against mycobacterium infections. Thus, establishing a stable cattle AEC line for future endogenous immune research on bacterial invasion is necessary. In the present study, we first purified and immortalized type II AECs (AEC II cells) by transfecting them with a plasmid containing the human telomerase reverse trancriptase gene. We then tested whether or not the immortalized cells retained the basic physiological properties of primary AECs by reverse-transcription polymerase chain reaction and Western blot. Finally, we tested the secretion capacity of immortalized AEC II cells upon stimulation by bacterial invasion. The cattle type II alveolar epithelial cell line (HTERT-AEC II) that we established retained lung epithelial cell characteristics: the cells were positive for surfactants A and B, and they secreted tumor necrosis factor-α and interleukin-6 in response to bacterial invasion. Thus, the cell line we established is a potential tool for research on the relationship between AECs and Mycobacterium tuberculosis. PMID:24086682

  18. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO METALS

    EPA Science Inventory

    We have previously shown that exposure to combustion-derived metals rapidly (within 20 min) activated mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinase (ERK), in the human bronchial epithelial cell line BEAS. To study the mechanisms respons...

  19. Differential regulation of glucocorticoid synthesis in murine intestinal epithelial versus adrenocortical cell lines.

    PubMed

    Mueller, Matthias; Atanasov, Atanas; Cima, Igor; Corazza, Nadia; Schoonjans, Kristina; Brunner, Thomas

    2007-03-01

    Glucocorticoids are steroid hormones with important functions in development, immune regulation, and glucose metabolism. The adrenal glands are the predominant source of glucocorticoids; however, there is increasing evidence for extraadrenal glucocorticoid synthesis in thymus, brain, skin, and vascular endothelium. We recently identified intestinal epithelial cells as an important source of glucocorticoids, which regulate the activation of local intestinal immune cells. The molecular regulation of intestinal glucocorticoid synthesis is currently unexplored. In this study we investigated the transcriptional regulation of the steroidogenic enzymes P450 side-chain cleavage enzyme and 11beta-hydroxylase, and the production of corticosterone in the murine intestinal epithelial cell line mICcl2 and compared it with that in the adrenocortical cell line Y1. Surprisingly, we observed a reciprocal stimulation pattern in these two cell lines. Elevation of intracellular cAMP induced the expression of steroidogenic enzymes in Y1 cells, whereas it inhibited steroidogenesis in mICcl2 cells. In contrast, phorbol ester induced steroidogenic enzymes in intestinal epithelial cells, which was synergistically enhanced upon transfection of cells with the nuclear receptors steroidogenic factor-1 (NR5A1) and liver receptor homolog-1 (NR5A2). Finally, we observed that basal and liver receptor homolog-1/phorbol ester-induced expression of steroidogenic enzymes in mICcl2 cells was inhibited by the antagonistic nuclear receptor small heterodimer partner. We conclude that the molecular basis of glucocorticoid synthesis in intestinal epithelial cells is distinct from that in adrenal cells, most likely representing an adaptation to the local environment and different requirements. PMID:17170096

  20. POLARIZED RELEASE OF LIPID MEDIATORS DERIVED FROM PHOSPHOLIPASE A2 ACTIVITY IN A HUMAN BRONCHIAL CELL LINE

    EPA Science Inventory

    The release of arachidonic acid (AA) and platelet activating factory (PAF) from airway epithelial cells may be an important mediating factor in lung physiological and inflammatory processes. The type of lung response may be determined by the directional release of AA and PAF. We ...

  1. TLR2 Activation Limits Rhinovirus-Stimulated CXCL-10 by Attenuating IRAK-1-Dependent IL-33 Receptor Signaling in Human Bronchial Epithelial Cells.

    PubMed

    Ganesan, Shyamala; Pham, Duc; Jing, Yaxun; Farazuddin, Mohammad; Hudy, Magdalena H; Unger, Benjamin; Comstock, Adam T; Proud, David; Lauring, Adam S; Sajjan, Uma S

    2016-09-15

    Airway epithelial cells are the major target for rhinovirus (RV) infection and express proinflammatory chemokines and antiviral cytokines that play a role in innate immunity. Previously, we demonstrated that RV interaction with TLR2 causes ILR-associated kinase-1 (IRAK-1) depletion in both airway epithelial cells and macrophages. Further, IRAK-1 degradation caused by TLR2 activation was shown to inhibit ssRNA-induced IFN expression in dendritic cells. Therefore, in this study, we examined the role of TLR2 and IRAK-1 in RV-induced IFN-β, IFN-λ1, and CXCL-10, which require signaling by viral RNA. In airway epithelial cells, blocking TLR2 enhanced RV-induced expression of IFNs and CXCL-10. By contrast, IRAK-1 inhibition abrogated RV-induced expression of CXCL-10, but not IFNs in these cells. Neutralization of IL-33 or its receptor, ST2, which requires IRAK-1 for signaling, inhibited RV-stimulated CXCL-10 expression. In addition, RV induced expression of both ST2 and IL-33 in airway epithelial cells. In macrophages, however, RV-stimulated CXCL-10 expression was primarily dependent on TLR2/IL-1R. Interestingly, in a mouse model of RV infection, blocking ST2 not only attenuated RV-induced CXCL-10, but also lung inflammation. Finally, influenza- and respiratory syncytial virus-induced CXCL-10 was also found to be partially dependent on IL-33/ST2/IRAK-1 signaling in airway epithelial cells. Together, our results indicate that RV stimulates CXCL-10 expression via the IL-33/ST2 signaling axis, and that TLR2 signaling limits RV-induced CXCL-10 via IRAK-1 depletion at least in airway epithelial cells. To our knowledge, this is the first report to demonstrate the role of respiratory virus-induced IL-33 in the induction of CXCL-10 in airway epithelial cells. PMID:27503209

  2. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    SciTech Connect

    Medina, D.; Oborn, C.J. ); Li, M.L.; Bissell, M.J. )

    1987-09-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of {beta}-casein mRNA in the presence or absence of prolactin. The inducibility of {beta}-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types.

  3. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production.

    PubMed

    Oglesby, Irene K; Vencken, Sebastian F; Agrawal, Raman; Gaughan, Kevin; Molloy, Kevin; Higgins, Gerard; McNally, Paul; McElvaney, Noel G; Mall, Marcus A; Greene, Catherine M

    2015-11-01

    Interleukin (IL)-8 levels are higher than normal in cystic fibrosis (CF) airways, causing neutrophil infiltration and non-resolving inflammation. Overexpression of microRNAs that target IL-8 expression in airway epithelial cells may represent a therapeutic strategy for cystic fibrosis. IL-8 protein and mRNA were measured in cystic fibrosis and non-cystic fibrosis bronchoalveolar lavage fluid and bronchial brushings (n=20 per group). miRNAs decreased in the cystic fibrosis lung and predicted to target IL-8 mRNA were quantified in βENaC-transgenic, cystic fibrosis transmembrane conductance regulator (Cftr)-/- and wild-type mice, primary cystic fibrosis and non-cystic fibrosis bronchial epithelial cells and a range of cystic fibrosis versus non-cystic fibrosis airway epithelial cell lines or cells stimulated with lipopolysaccharide, Pseudomonas-conditioned medium or cystic fibrosis bronchoalveolar lavage fluid. The effect of miRNA overexpression on IL-8 protein production was measured. miR-17 regulates IL-8 and its expression was decreased in adult cystic fibrosis bronchial brushings, βENaC-transgenic mice and bronchial epithelial cells chronically stimulated with Pseudomonas-conditioned medium. Overexpression of miR-17 inhibited basal and agonist-induced IL-8 protein production in F508del-CFTR homozygous CFTE29o(-) tracheal, CFBE41o(-) and/or IB3 bronchial epithelial cells. These results implicate defective CFTR, inflammation, neutrophilia and mucus overproduction in regulation of miR-17. Modulating miR-17 expression in cystic fibrosis bronchial epithelial cells may be a novel anti-inflammatory strategy for cystic fibrosis and other chronic inflammatory airway diseases. PMID:26160865

  4. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved

    PubMed Central

    2013-01-01

    Background This study explores and characterizes cell cycle alterations induced by urban PM2.5 in the human epithelial cell line BEAS-2B, and elucidates possible mechanisms involved. Methods The cells were exposed to a low dose (7.5 μg/cm2) of Milan winter PM2.5 for different time points, and the cell cycle progression was analyzed by fluorescent microscopy and flow cytometry. Activation of proteins involved in cell cycle control was investigated by Western blotting and DNA damage by 32P-postlabelling, immunostaining and comet assay. The formation of reactive oxygen species (ROS) was quantified by flow cytometry. The role of PM organic fraction versus washed PM on the cell cycle alterations was also examined. Finally, the molecular pathways activated were further examined using specific inhibitors. Results Winter PM2.5 induced marked cell cycle alteration already after 3 h of exposure, represented by an increased number of cells (transient arrest) in G2. This effect was associated with an increased phosphorylation of Chk2, while no changes in p53 phosphorylation were observed at this time point. The increase in G2 was followed by a transient arrest in the metaphase/anaphase transition point (10 h), which was associated with the presence of severe mitotic spindle aberrations. The metaphase/anaphase delay was apparently followed by mitotic slippage at 24 h, resulting in an increased number of tetraploid G1 cells and cells with micronuclei (MN), and by apoptosis at 40 h. Winter PM2.5 increased the level of ROS at 2 h and DNA damage (8-oxodG, single- and double stand breaks) was detected after 3 h of exposure. The PM organic fraction caused a similar G2/M arrest and augmented ROS formation, while washed PM had no such effects. DNA adducts were detected after 24 h. Both PM-induced DNA damage and G2 arrest were inhibited by the addition of antioxidants and α-naphthoflavone, suggesting the involvement of ROS and reactive electrophilic metabolites formed via a P

  5. Activation of CFTR by genistein in human airway epithelial cell lines.

    PubMed

    Andersson, Charlotte; Servetnyk, Zhanna; Roomans, Godfried M

    2003-08-29

    Cystic fibrosis (CF) is caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel expressed in epithelial cells. The effects of genistein and 4-phenylbutyrate (PBA) on CFTR were studied in three human airway epithelial cell lines expressing wild-type or DeltaF508 CFTR: Calu-3, CFSMEo-, and CFBE41o- cells. The cells were loaded with the fluorescent dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) and chloride efflux was studied. Forskolin and 3-isobutyl-1-methylxanthine (IBMX) induced chloride efflux in Calu-3 cells but not in CF lines. Genistein (2.5-50 microM) alone was able to induce chloride efflux in all cell lines. Genistein did not enhance the effect of forskolin and IBMX. PBA had little or no effect on genistein-induced chloride efflux. The effect of genistein seen at low concentrations makes genistein interesting for possible pharmacological treatment of CF, since it is known that similar concentrations can be obtained in plasma by a soy-rich diet. PMID:12914781

  6. Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation

    PubMed Central

    2013-01-01

    Background The involvement of particulate matter (PM) in cardiorespiratory diseases is now established in developed countries whereas in developing areas such as Africa with a high level of specific pollution, PM pollution and its effects are poorly studied. Our objective was to characterize the biological reactivity of urban African aerosols on human bronchial epithelial cells in relation to PM physico-chemical properties to identify toxic sources. Methods Size-speciated aerosol chemical composition was analyzed in Bamako (BK, Mali, 2 samples with one having desert dust event BK1) and Dakar (DK; Senegal) for Ultrafine UF, Fine F and Coarse C PM. PM reactivity was studied in human bronchial epithelial cells investigating six biomarkers (oxidative stress responsive genes and pro-inflammatory cytokines). Results PM mass concentrations were mainly distributed in coarse mode (60%) and were impressive in BK1 due to the desert dust event. BK2 and DK samples showed a high content of total carbon characteristic of urban areas. The DK sample had huge PAH quantities in bulk aerosol compared with BK that had more water soluble organic carbon and metals. Whatever the site, UF and F PM triggered the mRNA expression of the different biomarkers whereas coarse PM had little or no effect. The GM-CSF biomarker was the most discriminating and showed the strongest pro-inflammatory effect of BK2 PM. The analysis of gene expression signature and of their correlation with main PM compounds revealed that PM-induced responses are mainly related to organic compounds. The toxicity of African aerosols is carried by the finest PM as with Parisian aerosols, but when considering PM mass concentrations, the African population is more highly exposed to toxic particulate pollution than French population. Regarding the prevailing sources in each site, aerosol biological impacts are higher for incomplete combustion sources resulting from two-wheel vehicles and domestic fires than from diesel

  7. Cadmium, cobalt and lead cause stress response, cell cycle deregulation and increased steroid as well as xenobiotic metabolism in primary normal human bronchial epithelial cells which is coordinated by at least nine transcription factors.

    PubMed

    Glahn, Felix; Schmidt-Heck, Wolfgang; Zellmer, Sebastian; Guthke, Reinhard; Wiese, Jan; Golka, Klaus; Hergenröder, Roland; Degen, Gisela H; Lehmann, Thomas; Hermes, Matthias; Schormann, Wiebke; Brulport, Marc; Bauer, Alexander; Bedawy, Essam; Gebhardt, Rolf; Hengstler, Jan G; Foth, Heidi

    2008-08-01

    Workers occupationally exposed to cadmium, cobalt and lead have been reported to have increased levels of DNA damage. To analyze whether in vivo relevant concentrations of heavy metals cause systematic alterations in RNA expression patterns, we performed a gene array study using primary normal human bronchial epithelial cells. Cells were incubated with 15 microg/l Cd(II), 25 microg/l Co(II) and 550 microg/l Pb(II) either with individual substances or in combination. Differentially expressed genes were filtered out and used to identify enriched GO categories as well as KEGG pathways and to identify transcription factors whose binding sites are enriched in a given set of promoters. Interestingly, combined exposure to Cd(II), Co(II) and Pb(II) caused a coordinated response of at least seven stress response-related transcription factors, namely Oct-1, HIC1, TGIF, CREB, ATF4, SRF and YY1. A stress response was further corroborated by up regulation of genes involved in glutathione metabolism. A second major response to heavy metal exposure was deregulation of the cell cycle as evidenced by down regulation of the transcription factors ELK-1 and the Ets transcription factor GABP, as well as deregulation of genes involved in purine and pyrimidine metabolism. A third and surprising response was up regulation of genes involved in steroid metabolism, whereby promoter analysis identified up regulation of SRY that is known to play a role in sex determination. A forth response was up regulation of xenobiotic metabolising enzymes, particularly of dihydrodiol dehydrogenases 1 and 2 (AKR1C1, AKR1C2). Incubations with individual heavy metals showed that the response of AKR1C1 and AKR1C2 was predominantly caused by lead. In conclusion, we have shown that in vivo relevant concentrations of Cd(II), Co(II) and Pb(II) cause a complex and coordinated response in normal human bronchial epithelial cells. This study gives an overview of the most responsive genes. PMID:18654764

  8. Antioxidant macromolecules in the epithelial lining fluid of the normal human lower respiratory tract.

    PubMed Central

    Cantin, A M; Fells, G A; Hubbard, R C; Crystal, R G

    1990-01-01

    We hypothesized that the alveolar structures may contain extracellular macromolecules with antioxidant properties to defend against oxidants. To evaluate this 51Cr-labeled human lung fibroblasts (HFL-1) and cat lung epithelial cells (AKD) were exposed to a H2O2-generating system and alveolar epithelial lining fluid (ELF) from healthy nonsmokers was tested for its ability to protect the lung cells from H2O2-mediated injury. The ELF provided marked antioxidant protection, with most from a H2O-soluble fraction in the 100-300-kD range. Plasma proteins with anti-H2O2 properties were in insufficient concentrations to provide the antioxidant protection observed. However, catalase, a normal intracellular antioxidant, was present in sufficient concentration to account for most of the observed anti-H2O2 properties of ELF. Depletion of ELF with an anticatalase antibody abolished the anti-H2O2 macromolecular defenses of ELF. Since catalase is not normally released by cells, a likely explanation for its presence in high concentrations in normal ELF is that it is released by lung inflammatory and parenchymal cells onto the epithelial surface of the lower respiratory tract during their normal turnover and collects there due to the slow turnover of ELF. It is likely that catalase in the ELF of normal individuals plays a role in protecting lung parenchymal cells against oxidants present in the extracellular milieu. Images PMID:2394842

  9. Relationship between trough plasma and epithelial lining fluid concentrations of voriconazole in lung transplant recipients.

    PubMed

    Heng, Siow-Chin; Snell, Gregory I; Levvey, Bronwyn; Keating, Dominic; Westall, Glen P; Williams, Trevor J; Whitford, Helen; Nation, Roger L; Slavin, Monica A; Morrissey, Orla; Kong, David C M

    2013-09-01

    Trough (predose) voriconazole concentrations in plasma and pulmonary epithelial lining fluid (ELF) of lung transplant recipients receiving oral voriconazole preemptive treatment were determined. The mean (± standard deviation [SD]) ELF/plasma ratio was 12.5 ± 6.3. A strong positive linear relationship was noted between trough plasma and ELF voriconazole concentrations (r(2) = 0.87), suggesting the feasibility of using trough plasma voriconazole concentration as a surrogate to estimate the corresponding concentration in ELF of lung transplant recipients. PMID:23817382

  10. Epithelial and mesenchymal stem cells from the umbilical cord lining membrane.

    PubMed

    Lim, Ivor J; Phan, Toan Thang

    2014-01-01

    Intense scientific research over the past two decades has yielded much knowledge about embryonic stem cells, mesenchymal stem cells from bone marrow, as well as epithelial stem cells from the skin and cornea. However, the billions of dollars spent in this research have not overcome the fundamental difficulties intrinsic to these stem cell strains related to ethics (embryonic stem cells), as well as to technical issues such as accessibility, ease of cell selection and cultivation, and expansion/mass production, while maintaining consistency of cell stemness (all of the stem cell strains already mentioned). Overcoming these technical hurdles has made stem cell technology expensive and any potential translational products unaffordable for most patients. Commercialization efforts have been rendered unfeasible by this high cost. Advanced biomedical research is on the rise in Asia, and new innovations have started to overcome these challenges. The Nobel Prize-winning Japanese development of iPSCs has effectively introduced a possible replacement for embryonic stem cells. For non-embryonic stem cells, cord lining stem cells (CLSCs) have overcome the preexisting difficulties inherent to mesenchymal stem cells from the bone marrow as well as epithelial stem cells from the skin and cornea, offering a realistic, practical, and affordable alternative for tissue repair and regeneration. This novel CLSC technology was developed in Singapore in 2004 and has 22 international patents granted to date, including those from the US and UK. CLSCs are derived from the umbilical cord outer lining membrane (usually regarded as medical waste) and is therefore free from ethical dilemmas related to its collection. The large quantity of umbilical cord lining membrane that can be collected translates to billions of stem cells that can be grown in primary stem cell culture and therefore very rapid and inexpensive cell cultivation and expansion for clinical translational therapies. Both

  11. Curcumin inhibits invasive capabilities through epithelial mesenchymal transition in breast cancer cell lines.

    PubMed

    Gallardo, Marcela; Calaf, Gloria M

    2016-09-01

    Curcumin (diferuloyl methane) is an antioxidant that exerts antiproliferative and apoptotic effects and has anti-invasive and anti-metastatic properties. Evidence strongly implicates that epithelial-mesenchymal transition (EMT) is involved in malignant progression affecting genes such as Slug, AXL and Twist1. These genes are abnormally expressed in many tumors and favor metastasis. The purpose of this study was to determine the potential effect of curcumin on EMT, migration and invasion. Triple-positive and triple-negative breast cancer cell lines for estrogen receptor (ER), progesterone receptor (PgR) and HER/neu were used: i) MCF-10F, a normal immortalized breast epithelial cell line (negative), ii) Tumor2, a malignant and tumorigenic cell line (positive) derived from Alpha5 cell line injected into the immunologically depressed mice and transformed by 60/60 cGy doses of high LET (linear energy transfer) α particles (150 keV/µm) of radiation and estrogen, and iii) a commercially available MDA-MB‑231 (negative). The effect of curcumin (30 µM for 48 h) was evaluated on expression of EMT-related genes by RT-qPCR. Results showed that curcumin decreased E-cadherin, N-cadherin, β-catenin, Slug, AXL, Twist1, Vimentin and Fibronectin protein expression, independently of the positivity of the markers in the cell lines. Curcumin also decreased migration and invasive capabilities in comparison to their own controls. It can be concluded that curcumin influenced biochemical changes associated with EMT-related genes that seems to promote such transition and are at the core of several signaling pathways that mediate the transition. Thus, it can be suggested that curcumin is able to prevent or delay cancer progression through the interruption of this process. PMID:27573203

  12. Establishment of immortalized alveolar type II epithelial cell lines from adult rats.

    PubMed

    Driscoll, K E; Carter, J M; Iype, P T; Kumari, H L; Crosby, L L; Aardema, M J; Isfort, R J; Cody, D; Chestnut, M H; Burns, J L

    1995-01-01

    We developed methodology to isolate and culture rat alveolar Type II cells under conditions that preserved their proliferative capacity, and applied lipofection to introduce an immortalizing gene into the cells. Briefly, the alveolar Type II cells were isolated from male F344 rats using airway perfusion with a pronase solution followed by incubation for 30 min at 37 degrees C. Cells obtained by pronase digestion were predominantly epithelial in morphology and were positive for Papanicolaou and alkaline phosphatase staining. These cells could be maintained on an extracellular matrix of fibronectin and Type IV collagen in a low serum, insulin-supplemented Ham's F12 growth medium for four to five passages. Rat alveolar epithelial cells obtained by this method were transformed with the SV40-T antigen gene and two immortalized cell lines (RLE-6T and RLE-6TN) were obtained. The RLE-6T line exhibits positive nuclear immunostaining for the SV40-T antigen and the RLE-6TN line does not. PCR analysis of genomic DNA from the RLE-6T and RLE-6TN cells demonstrated the T-antigen gene was present only in the RLE-6T line indicating the RLE-6TN line is likely derived from a spontaneous transformant. After more than 50 population doublings, the RLE-6T cells stained positive for cytokeratin, possessed alkaline phosphatase activity, and contained lipid-containing inclusion bodies (phosphine 3R staining); all characteristics of alveolar Type II cells. The RLE-6TN cells exhibited similar characteristics except they did not express alkaline phosphatase activity. Early passage RLE-6T and 6TN cells showed a near diploid chromosome number.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8528500

  13. Bronchial carcinosarcoma

    PubMed Central

    Carcano, Carolina; Savage, Edward; Diacovo, Maria Julia; Kirsch, Jacobo

    2012-01-01

    Carcinosarcoma is an uncommon mixed tumor of the lung. We present the case of a 65 year-old-male with cough and a right lower lobe radio-opacity who underwent resection, showing a large endobronchial tumor with an epithelial component of non-small cell carcinoma and malignant mesenchymal elements. The radiologic and histopathologic features are reviewed with reference to relevant literature. PMID:23378874

  14. Perilla frutescens Leaf Extract Inhibits Mite Major Allergen Der p 2-induced Gene Expression of Pro-Allergic and Pro-Inflammatory Cytokines in Human Bronchial Epithelial Cell BEAS-2B

    PubMed Central

    Liu, Jer-Yuh; Chen, Yi-Ching; Lin, Chun-Hsiang; Kao, Shao-Hsuan

    2013-01-01

    Perilla frutescens has been used in traditional medicine for respiratory diseases due to its anti-bacterial and anti-inflammatory activity. This study aimed to investigate effects of Perilla frutescens leaf extract (PFE) on expression of pro-allergic and pro-inflammatory cytokines in airway epithelial cells exposed to mite major allergen Der p 2 (DP2) and the underlying mechanisms. Our results showed that PFE up to 100 µg/mL had no cytotoxic effect on human bronchial epithelial cell BEAS-2B. Further investigations revealed that PFE dose-dependently diminished mRNA expression of pro-allergic cytokine IL-4, IL-5, IL-13 and GM-CSF, as well as pro-inflammatory cytokine IL-6, IL-8 and MCP-1 in BEAS-2B cells treated with DP2. In parallel to mRNA, the DP-2-elevated levels of the tested cytokines were decreased. Further investigation showed that DP2-indued phosphorylation of p38 MAPK (P38) and JNK, but not Erk1/2, was also suppressed by PFE. In addition, PFE elevated cytosolic IκBα level and decreased nuclear NF-κB level in DP2-stimulated BEAS-2B cells. Taken together, these findings revealed that PFE significantly diminished both mRNA expression and protein levels of pro-allergic and pro-inflammatory cytokines in response to DP2 through inhibition of P38/JNK and NK-κB activation. These findings suggest that PFE should be beneficial to alleviate both allergic and inflammatory responses on airway epithelium in response to aeroallergens. PMID:24204835

  15. MOLECULAR AND CYTOGENETIC ANALYSIS OF LUNG TUMOR CELL LINES

    EPA Science Inventory

    We have measured the levels of amplification of oncogenes and tumor marker genes or other genes of interest in nine human lung tumor cell lines in comparison to normal human bronchial epithelial cells or normal blood lymphocytes to test the hypothesis that aberrant amplification ...

  16. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    SciTech Connect

    Luo, Fei; Xu, Yuan; Ling, Min; Zhao, Yue; Xu, Wenchao; Liang, Xiao; Jiang, Rongrong; Wang, Bairu; Bian, Qian; Liu, Qizhan

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT.

  17. Interleukin-8 response of gastric epithelial cell lines to Helicobacter pylori stimulation in vitro.

    PubMed Central

    Sharma, S A; Tummuru, M K; Miller, G G; Blaser, M J

    1995-01-01

    Gastric infection with Helicobacter pylori activates a mucosal inflammatory response by mononuclear cells and neutrophils that includes expression of cytokines interleukin-1 beta (IL-1 beta), IL-6, tumor necrosis factor alpha, and IL-8. In this study, we analyzed the IL-8 response of human gastric cancer cell lines (Kato III, AGS, and MKN28) to H. pylori infection in vitro. IL-8 mRNA expression was detected by reverse transcription-PCR amplification of RNA extracted from epithelial cells after incubation with different H. pylori wild-type and mutant strains, and IL-8 secretion was measured by an enzyme-linked immunosorbent assay. Exposure to viable H. pylori induced IL-8 mRNA and protein synthesis in all three gastric cell lines but not in nongastric epithelial cell lines. Heat-killed H. pylori and a crude cytotoxin preparation did not induce significant IL-8 secretion. IL-8 mRNA peaked between 2 and 4 h postinfection, and IL-8 protein production was maximal 24 h postinfection. Exposure of gastric carcinoma cells to other gastrointestinal bacteria, such as Pseudomonas aeruginosa, Campylobacter jejuni, and Escherichia coli, but not Campylobacter fetus, induced IL-8 synthesis. Wild-type strains that expressed the vacuolating cytotoxin (Tox+) and a cytotoxin-associated gene (cagA) product (CagA+) induced significantly more IL-8 than did CagA- Tox- strains. However, there was no decrease in IL-8 induction by isogenic mutants of CagA-, Tox-, or Cag- Tox- strains or by a mutant lacking the urease subunits. These results indicate that exposure to H. pylori and other gram-negative organisms that do not colonize the gastric mucosa induces IL-8 production by gastric carcinoma cells in vitro. Although the CagA+ Tox+ phenotype of H. pylori is associated with enhanced IL-8 production by gastric cell lines, other bacterial constituents are clearly essential. PMID:7729872

  18. Low cytotoxicity of inorganic nanotubes and fullerene-like nanostructures in human bronchial epithelial cells: relation to inflammatory gene induction and antioxidant response.

    PubMed

    Pardo, Michal; Shuster-Meiseles, Timor; Levin-Zaidman, Smadar; Rudich, Assaf; Rudich, Yinon

    2014-03-18

    The cytotoxicity of tungsten disulfide nano tubes (INT-WS2) and inorganic fullerene-like molybdenum disulfide (IF-MoS2) nanoparticles (NPs) used in industrial and medical applications was evaluated in comparison to standard environmental particulate matter. The IF-MoS2 and INT-WS2 reside in vesicles/inclusion bodies, suggestive of endocytic vesicles. In cells representing the respiratory, immune and metabolic systems, both IF-MoS2 and INT-WS2 NPs remained nontoxic compared to equivalent concentrations (up to 100 μg/mL in the medium) of silica dioxide (SiO2), diesel engine-derived and carbon black NPs, which induced cell death. Associating with this biocompatibility of IF-MoS2\\INT-WS2, we demonstrate in nontransformed human bronchial cells (NL-20) relative low induction of the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α. Moreover, IF-MoS2 and INT-WS2 activated antioxidant response as measured by the antioxidant response element (ARE) using a luciferase reporter, and induced Nrf2-mediated Phase II detoxification genes. Collectively, our findings suggest that the lower cytotoxicity of IF-MoS2 and INT-WS2 NPs does not reflect general biological inertness. Rather, compared to other NP's, it likely results from decreased pro-inflammatory activation, but a comparable significant capacity to induce protective antioxidant/detoxification defense mechanisms. PMID:24533583

  19. Mechanism underlying insulin uptake in alveolar epithelial cell line RLE-6TN.

    PubMed

    Oda, Keisuke; Yumoto, Ryoko; Nagai, Junya; Katayama, Hirokazu; Takano, Mikihisa

    2011-12-15

    For the development of efficient pulmonary delivery systems for protein and peptide drugs, it is important to understand their transport mechanisms in alveolar epithelial cells. In this study, the uptake mechanism for FITC-insulin in cultured alveolar epithelial cell line RLE-6TN was elucidated. FITC-insulin uptake by RLE-6TN cells was time-dependent, temperature-sensitive, and concentration-dependent. The uptake was inhibited by metabolic inhibitors, cytochalasin D, clathrin-mediated endocytosis inhibitors, and dynasore, an inhibitor of dynamin GTPase. On the other hand, no inhibitory effect was observed with caveolae-mediated endocytosis inhibitors and a macropinocytosis inhibitor. Intracellular FITC-insulin was found to be partly transported to the basal side of the epithelial cell monolayers. In addition, colocalization of FITC-insulin and LysoTracker Red was observed on confocal laser scanning microscopy, indicating that FITC-insulin was partly targeted to lysosomes. In accordance with these findings, SDS-PAGE/fluoroimage analysis showed that intact FITC-insulin in the cells was eliminated with time. The possible receptor involved in FITC-insulin uptake by RLE-6TN cells was examined by using siRNA. Transfection of the cells with megalin or insulin receptor siRNA successfully reduced the corresponding mRNA expression. FITC-insulin uptake decreased on the transfection with insulin receptor siRNA, but not that with megalin siRNA. These results suggest that insulin is taken up through endocytosis in RLE-6TN cells, and after the endocytosis, the intracellular insulin is partly degraded in lysosomes and partly transported to the basal side. Insulin receptor, but not megalin, may be involved at least partly in insulin endocytosis in RLE-6TN cells. PMID:22004610

  20. Serum-Induced Keratinization Processes in an Immortalized Human Meibomian Gland Epithelial Cell Line

    PubMed Central

    Hampel, Ulrike; Schröder, Antje; Mitchell, Todd; Brown, Simon; Snikeris, Peta; Garreis, Fabian; Kunnen, Carolina; Willcox, Mark; Paulsen, Friedrich

    2015-01-01

    Purpose The aim of this study was to evaluate a human meibomian gland epithelial cell line (HMGEC) as a model for meibomian gland (patho)physiology in vitro. Methods HMGEC were cultured in the absence or presence of serum. Sudan III lipid staining, ultrastructural analysis and lipidomic analyses were performed. Impedance sensing, desmoplakin 1/2 mRNA and cytokeratin (CK) 1, 5, 6, 14 levels were evaluated. Serum containing medium supplemented with higher serum, glucose, an omega-3 lipid cocktail, eicosapentaenoic acid or sebomed medium were investigated for lipid accumulation and ultrastructural morphology. Results Lipid droplet accumulation in HMGEC was induced by serum containing media after 1 day, but decreased over time. Cultivation in serum induced desmosome and cytokeratin filament formation. Desmoplakin 1/2 gene levels were significantly upregulated after 1d of serum treatment. Furthermore, the normalized impedance increased significantly. Lipidome analysis revealed high levels of phospholipids (over 50%), but very low levels of wax ester and cholesteryl esters (under 1%). Stimulation with eicosapentaenoic acid increased lipid accumulation after one day. Conclusion Serum treatment of HMGEC caused lipid droplet formation to some extent but also induced keratinization. The cells did not produce typical meibum lipids under these growth conditions. HMGEC are well suited to study (hyper)keratinization processes of meibomian gland epithelial cells in vitro. PMID:26042605

  1. Colonization of human epithelial cell lines by Corynebacterium ulcerans from human and animal sources.

    PubMed

    Hacker, Elena; Ott, Lisa; Hasselt, Kristin; Mattos-Guaraldi, Ana Luiza; Tauch, Andreas; Burkovski, Andreas

    2015-08-01

    Corynebacterium ulcerans is an emerging pathogen transmitted by a zoonotic pathway to humans. Despite rising numbers of infections and potentially fatal outcomes, data on the colonization of the human host are lacking up to now. In this study, adhesion of two C. ulcerans isolates to human epithelial cells, invasion of host cells and the function of two putative virulence factors with respect to these processes were investigated. C. ulcerans strains BR-AD22 and 809 were able to adhere to Detroit562 and HeLa cells, and invade these epithelial cell lines with a rate comparable to other pathogens as shown by scanning electron microscopy, fluorescence microscopy and replication assays. Infection led to detrimental effects on the cells as deduced from measurements of transepithelial resistance. Mutant strains of putative virulence factors phospholipase D and DIP0733 homologue CULC22_00609 generated in this study showed no influence on colonization under the experimental conditions tested. The data presented here indicate a high infectious potential of this emerging pathogen. PMID:26066797

  2. Nitric oxide induces apoptosis in a human colonic epithelial cell line, T84

    PubMed Central

    Sandoval, M.; Liu, X.; Oliver, P. D.; Zhang, X.-J.; Clark, D. A.

    1995-01-01

    Chronic inflammation is associated with inducible nitric oxide synthase expression in infiltrating and resident cells (epithelia, neurons) and an exaggerated release of nitric oxide. NO can induce apoptosis in macrophages and tumour cell lines. We investigated whether NO induced cell death in an epithelial (T84) cell fine via apoptosis. Culture T84 cells were exposed to a bolus of NO (40 or 80 μM) dissolved in Hank's balanced salt solution (HBSS) supplemented with 10% fetal calf serum (FCS). After incubation for 4 h at 37°C in 5% CO2, cells were either stained for DNA fragmentation with the TdT-mediated dUTP–biotin nick end labelling (TUNEL) method, or cytosolic DNA fragments quantified by a cell death detection ELISA assay. Nitric oxide induced apoptosis in a dose-dependent manner which preceded frank cell death (failure to exclude Trypan blue). These data suggest that epithelial cell death may be NO dependent and via apoptosis, in states of gut inflammation. PMID:18475646

  3. Characteristics of taurine transport in cultured renal epithelial cell lines: asymmetric polarity of proximal and distal cell lines.

    PubMed

    Jones, D P; Miller, L A; Budreau, A; Chesney, R W

    1992-01-01

    Taurine transport was determined in two continuous, renal epithelial cell lines: LLC-PK1 derived from the proximal tubule of the pig, and the Madin-Darby canine kidney cell (MDCK) from the distal tubule of the dog. In LLC-PK1, taurine transport is maximal at the apical surface, whereas in MDCK cells, transport is greatest at the basolateral surface. Transport is highly dependent on both sodium and chloride in the external medium, and is specific for beta-amino acids. The apical and basolateral surfaces of both cell lines show an adaptive response to extracellular taurine concentration, but only the basolateral surface of the MDCK cell responds to hyperosomolality by increased taurine accumulation. Thus, differential control of the beta-amino acid transport system by substrate and external tonicity exists. The role of the beta-amino acid transport system may differ according to the origin of the cell: in the proximal renal tubular cell, net transepithelial reabsorption of filtered taurine increases the body pool. By contrast, taurine accumulation by distal tubular cells may form a mechanism of cell volume regulation in response to osmotic stress. PMID:1509959

  4. The Role of Interleukin-1 and Interleukin-18 in Pro-Inflammatory and Anti-Viral Responses to Rhinovirus in Primary Bronchial Epithelial Cells

    PubMed Central

    Kay, Linda; Parker, Lisa C.; Sabroe, Ian; Sleeman, Matthew A.; Briend, Emmanuel; Finch, Donna K.

    2013-01-01

    Human Rhinovirus (HRV) is associated with acute exacerbations of chronic respiratory disease. In healthy individuals, innate viral recognition pathways trigger release of molecules with direct anti-viral activities and pro-inflammatory mediators which recruit immune cells to support viral clearance. Interleukin-1alpha (IL-1α), interleukin-1beta (IL-1β) and interleukin-18 (IL-18) have critical roles in the establishment of neutrophilic inflammation, which is commonly seen in airways viral infection and thought to be detrimental in respiratory disease. We therefore investigated the roles of these molecules in HRV infection of primary human epithelial cells. We found that all three cytokines were released from infected epithelia. Release of these cytokines was not dependent on cell death, and only IL-1β and IL-18 release was dependent on caspase-1 catalytic activity. Blockade of IL-1 but not IL-18 signaling inhibited up-regulation of pro-inflammatory mediators and neutrophil chemoattractants but had no effect on virus induced production of interferons and interferon-inducible genes, measured at both mRNA and protein level. Similar level of virus mRNA was detected with and without IL-1RI blockade. Hence IL-1 signaling, potentially involving both IL-1β and IL-1α, downstream of viral recognition plays a key role in induction of pro-inflammatory signals and potentially in recruitment and activation of immune cells in response to viral infection instigated by the epithelial cells, whilst not participating in direct anti-viral responses. PMID:23723976

  5. Localization of GFP-tagged concentrative nucleoside transporters in a renal polarized epithelial cell line.

    PubMed

    Mangravite, L M; Lipschutz, J H; Mostov, K E; Giacomini, K M

    2001-05-01

    Many nucleosides undergo active reabsorption within the kidney, probably via nucleoside transporters. To date, two concentrative nucleoside transporters have been cloned, the sodium-dependent purine-selective nucleoside transporter (SPNT) and concentrative nucleoside transporter 1 (CNT1). We report the stable expression of green fluorescence protein (GFP)-tagged SPNT and CNT1 in Madin-Darby canine kidney (MDCK) cells, a polarized renal epithelial line. We demonstrate that the GFP tag does not alter the substrate selectivity and only modestly affects the kinetic activity of the transporters. By using confocal microscopy and functional studies, both SPNT and CNT1 are localized primarily to the apical membrane of MDCK and LLC-PK(1) cells. Apical localization of these transporters suggests a role in renal nucleoside reabsorption and regulation of tubular function via the adenosine pathway. PMID:11292631

  6. Porin from Pseudomonas aeruginosa Induces Apoptosis in an Epithelial Cell Line Derived from Rat Seminal Vesicles

    PubMed Central

    Buommino, Elisabetta; Morelli, Francesco; Metafora, Salvatore; Rossano, Fabio; Perfetto, Brunella; Baroni, Adone; Tufano, Maria Antonietta

    1999-01-01

    Micromolar concentrations of porin, purified from the outer membranes of Pseudomonas aeruginosa, induced in vitro the classic morphological and biochemical signs of apoptosis in an epithelial cell line (SVC1) derived from the rat seminal vesicle secretory epithelium. The programmed cell death (PCD) was p53 independent and associated with significant decrease of bcl-2 expression, a marked increase of c-myc transcriptional activity, and an absence of the mRNA coding for tissue transglutaminase. The Ca2+ influx, caused by the porin treatment of SVC1 cells, appears to play an important role in the triggering of apoptosis in our biological model. The possibility that the porin property of inducing PCD plays a role in the infertility of individuals chronically infected by gram-negative bacteria is discussed. PMID:10456933

  7. Dynamics of eosinophil infiltration in the bronchial mucosa before and after the late asthmatic reaction.

    PubMed

    Aalbers, R; de Monchy, J G; Kauffman, H F; Smith, M; Hoekstra, Y; Vrugt, B; Timens, W

    1993-06-01

    We wanted to determine whether changes in bronchial hyperresponsiveness (BHR) following allergen challenge show a time relationship with inflammatory events in the airways of allergic asthmatic subjects. Lavage was performed and endobronchial biopsies were taken via the fiberoptic bronchoscope, before, and 3 and 24 h after, allergen challenge, on separate occasions, in nine dual asthmatic responders. The numbers of activated eosinophils, identified by immunohistochemistry, using the monoclonal anti-eosinophil cationic protein antibody, EG2, were significantly increased both at 3 h and at 24 h in the submucosa and bronchial lavage. A significant negative correlation was found between the number of EG2+ cells in the submucosa and in the bronchial lavage 24 h after the allergen challenge (r = -0.70). At 24 h, the amount of eosinophil cationic protein (ECP) was increased in the bronchial lavage. A significant correlation was observed between the amount of ECP at 3 h and the log provocative dose of house dust mite producing a 20% fall in forced expiratory volume in one second (PD20 HDM) (r = -0.63). The results suggest a recruitment of activated eosinophils to the submucosa and, further, to the epithelial lining, followed by degranulation. This process has already started 3 h after allergen challenge, and lasts for at least 24 h, which may result in mucosal damage and subsequent allergen-induced increase in BHR, before and after the late asthmatic reaction. PMID:8339804

  8. Regulation of Lysophosphatidic Acid-induced Epidermal Growth Factor Receptor Transactivation and Interleukin-8 Secretion in Human Bronchial Epithelial Cells by Protein Kinase Cδ, Lyn Kinase, and Matrix Metalloproteinases*

    PubMed Central

    Zhao, Yutong; He, Donghong; Saatian, Bahman; Watkins, Tonya; Spannhake, Ernst Wm.; Pyne, Nigel J.; Natarajan, Viswanathan

    2009-01-01

    We have demonstrated earlier that lysophosphatidic acid (LPA)-induced interleukin-8 (IL-8) secretion is regulated by protein kinase Cδ (PKCδ)-dependent NF-κB activation in human bronchial epithelial cells (HBEpCs). Here we provide evidence for signaling pathways that regulate LPA-mediated transactivation of epidermal growth factor receptor (EGFR) and the role of cross-talk between G-protein-coupled receptors and receptor-tyrosine kinases in IL-8 secretion in HBEpCs. Treatment of HBEpCs with LPA stimulated tyrosine phosphorylation of EGFR, which was attenuated by matrix metalloproteinase (MMP) inhibitor (GM6001), heparin binding (HB)-EGF inhibitor (CRM 197), and HB-EGF neutralizing antibody. Overexpression of dominant negative PKCδ or pretreatment with a PKCδ inhibitor (rottlerin) or Src kinase family inhibitor (PP2) partially blocked LPA-induced MMP activation, proHB-EGF shedding, and EGFR tyrosine phosphorylation. Down-regulation of Lyn kinase, but not Src kinase, by specific small interfering RNA mitigated LPA-induced MMP activation, proHB-EGF shedding, and EGFR phosphorylation. In addition, overexpression of dominant negative PKCδ blocked LPA-induced phosphorylation and translocation of Lyn kinase to the plasma membrane. Furthermore, down-regulation of EGFR by EGFR small interfering RNA or pretreatment of cells with EGFR inhibitors AG1478 and PD158780 almost completely blocked LPA-dependent EGFR phosphorylation and partially attenuated IL-8 secretion, respectively. These results demonstrate that LPA-induced IL-8 secretion is partly dependent on EGFR transactivation regulated by PKCδ-dependent activation of Lyn kinase and MMPs and proHB-EGF shedding, suggesting a novel mechanism of cross-talk and interaction between G-protein-coupled receptors and receptor-tyrosine kinases in HBEpCs. PMID:16687414

  9. Aryl hydrocarbon receptor-dependent up-regulation of the heterodimeric amino acid transporter LAT1 (SLC7A5)/CD98hc (SLC3A2) by diesel exhaust particle extract in human bronchial epithelial cells.

    PubMed

    Le Vee, Marc; Jouan, Elodie; Lecureur, Valérie; Fardel, Olivier

    2016-01-01

    The heterodimeric L-type amino acid transporter (LAT) 1/CD98hc is overexpressed in lung cancers with a poor prognosis factor. Factors that contribute to LAT1/CD98hc overexpression in lung cells remain however to be determined, but the implication of atmospheric pollution can be suspected. The present study was therefore designed to analyze the effects of diesel exhaust particle (DEP) extract (DEPe) on LAT1/CD98hc expression in bronchial epithelial BEAS-2B cells. Exposure to DEPe up-regulated LAT1 and CD98hc mRNA levels in a concentration-dependent manner, with DEPe EC50 values (around 0.2 μg/mL) relevant to environmental situations. DEPe concomitantly induced LAT1/CD98hc protein expression and LAT1-mediated leucine accumulation in BEAS-2B cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway through the use of a chemical AhR antagonist or the siRNA-mediated silencing of AhR expression was next found to prevent DEPe-mediated induction of LAT1/CD98hc, indicating that this regulation depends on AhR, known to be activated by major chemical DEP components like polycyclic aromatic hydrocarbons. DEPe exposure was finally shown to induce mRNA expression and activity of matrix metalloproteinase (MMP)-2 in BEAS-2B cells, in a CD98hc/focal adhesion kinase (FAK)/extracellular regulated kinase (ERK) manner, thus suggesting that DEPe-mediated induction of CD98hc triggers activation of the integrin/FAK/ERK signaling pathway known to be involved in MMP-2 regulation. Taken together, these data demonstrate that exposure to DEPe induces functional overexpression of the amino acid transporter LAT1/CD98hc in lung cells. Such a regulation may participate to pulmonary carcinogenic effects of DEPs, owing to the well-documented contribution of LAT1 and CD98hc to cancer development. PMID:26621329

  10. ADAM17 and EGFR regulate IL-6 receptor and amphiregulin mRNA expression and release in cigarette smoke-exposed primary bronchial epithelial cells from patients with chronic obstructive pulmonary disease (COPD).

    PubMed

    Stolarczyk, Marta; Amatngalim, Gimano D; Yu, Xiao; Veltman, Mieke; Hiemstra, Pieter S; Scholte, Bob J

    2016-08-01

    Aberrant activity of a disintegrin and metalloprotease 17 (ADAM17), also known as TACE, and epidermal growth factor receptor (EGFR) has been suggested to contribute to chronic obstructive pulmonary disease (COPD) development and progression. The aim of this study was to investigate the role of these proteins in activation of primary bronchial epithelial cells differentiated at the air-liquid interface (ALI-PBEC) by whole cigarette smoke (CS), comparing cells from COPD patients with non-COPD CS exposure of ALI-PBEC enhanced ADAM17-mediated shedding of the IL-6 receptor (IL6R) and the EGFR agonist amphiregulin (AREG) toward the basolateral compartment, which was more pronounced in cells from COPD patients than in non-COPD controls. CS transiently increased IL6R and AREG mRNA in ALI-PBEC to a similar extent in cultures from both groups, suggesting that posttranslational events determine differential shedding between COPD and non-COPD cultures. We show for the first time by in situ proximity ligation (PLA) that CS strongly enhances interactions of phosphorylated ADAM17 with AREG and IL-6R in an intracellular compartment, suggesting that CS-induced intracellular trafficking events precede shedding to the extracellular compartment. Both EGFR and ADAM17 activity contribute to CS-induced IL-6R and AREG protein shedding and to mRNA expression, as demonstrated using selective inhibitors (AG1478 and TMI-2). Our data are consistent with an autocrine-positive feedback mechanism in which CS triggers shedding of EGFR agonists evoking EGFR activation, in ADAM17-dependent manner, and subsequently transduce paracrine signaling toward myeloid cells and connective tissue. Reducing ADAM17 and EGFR activity could therefore be a therapeutic approach for the tissue remodeling and inflammation observed in COPD. PMID:27561911

  11. The accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in biphasic effects induced by different levels of arsenite in human bronchial epithelial cells

    SciTech Connect

    Xu, Yuan; Li, Yuan; Li, Huiqiao; Pang, Ying; Zhao, Yue; Jiang, Rongrong; Shen, Lu; Zhou, Jianwei; Wang, Xinru; Liu, Qizhan

    2013-01-15

    The biphasic effects of arsenite, in which low levels of arsenite induce cell proliferation and high levels of arsenite induce DNA damage and apoptosis, apparently contribute to arsenite-induced carcinogenesis. However, the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the effects of different levels of arsenite on cell proliferation, DNA damage and apoptosis as well as on signal transduction pathways in human bronchial epithelial (HBE) cells. Our results show that a low level of arsenite activates extracellular signal-regulated kinases (ERK), which probably mediate arsenite-inhibited degradation of ubiquitinated hypoxia-inducible factor-2α (HIF-2α) in HBE cells. ERK inhibition blocks cell proliferation induced by a low level of arsenite, in part via HIF-2α. In contrast, a high level of arsenite activates c-Jun N-terminal kinases (JNK), which provoke a response to suppress ubiquitinated HIF-1α degradation. Down-regulation of HIF-1α by inhibiting JNK, however, increases the DNA damage but decreases the apoptosis induced by a high level of arsenite. Thus, data in the present study suggest that the accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in different levels of arsenite-induced biphasic effects, with low levels of arsenite inducing cell proliferation and high levels of arsenite inducing DNA damage and apoptosis in HBE cells. -- Highlights: ► Biphasic effects induced by different concentrations of arsenite. ► Different regulation of ERK or JNK signal pathway by arsenite. ► Different regulation of HIF1α or HIF 2α by arsenite.

  12. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    SciTech Connect

    Wu Weidong Silbajoris, Robert A.; Cao Dongsun; Bromberg, Philip A.; Zhang Qiao; Peden, David B.; Samet, James M.

    2008-09-01

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional and posttranscriptional events that regulate COX-2 expression in a human bronchial epithelial cell line BEAS-2B exposed to Zn{sup 2+}. Zn{sup 2+} exposure resulted in pronounced increases in COX-2 mRNA and protein expression, which were prevented by pretreatment with the transcription inhibitor actinomycin D, implying the involvement of transcriptional regulation. This was supported by the observation of increased COX-2 promoter activity in Zn{sup 2+}-treated BEAS-2B cells. Mutation of the cAMP response element (CRE), but not the {kappa}B-binding sites in the COX-2 promoter markedly reduced COX-2 promoter activity induced by Zn{sup 2+}. Inhibition of NF{kappa}B activation did not block Zn{sup 2+}-induced COX-2 expression. Measurement of mRNA stability demonstrated that Zn{sup 2+} exposure impaired the degradation of COX-2 mRNA in BEAS-2B cells. This message stabilization effect of Zn{sup 2+} exposure was shown to be dependent on the integrity of the 3'-untranslated region found in the COX-2 transcript. Taken together, these data demonstrate that the CRE and mRNA stability regulates COX-2 expression induced in BEAS-2B cells exposed to extracellular Zn{sup 2+}.

  13. Okadaic Acid Toxin at Sublethal Dose Produced Cell Proliferation in Gastric and Colon Epithelial Cell Lines

    PubMed Central

    del Campo, Miguel; Toledo, Héctor; Lagos, Néstor

    2013-01-01

    The aim of this study was to analyze the effect of Okadaic Acid (OA) on the proliferation of gastric and colon epithelial cells, the main target tissues of the toxin. We hypothesized that OA, at sublethal doses, activates multiple signaling pathways, such as Erk and Akt, through the inhibition of PP2A. To demonstrate this, we carried out curves of doses and time response against OA in AGS, MKN-45 and Caco 2 cell lines, and found an increase in the cell proliferation at sublethal doses, at 24 h or 48 h exposure. Indeed, cells can withstand high concentrations of the toxin at 4 h exposure, the time chosen considering the maximum time before total gastric emptying. We have proved that this increased proliferation is due to an overexpression of Cyclin B, a cyclin that promotes the passage from G2 to mitosis. In addition, we have demonstrated that OA induces activation of Akt and Erk in the three cells lines, showing that OA can activate pathways involved in oncogenesis. In conclusion, this study contributes to the knowledge about the possible effects of chronic OA consumption. PMID:24317467

  14. Host response during Yersinia pestis infection of human bronchial epithelial cells involves negative regulation of autophagy and suggests a modulation of survival-related and cellular growth pathways

    PubMed Central

    Alem, Farhang; Yao, Kuan; Lane, Douglas; Calvert, Valerie; Petricoin, Emanuel F.; Kramer, Liana; Hale, Martha L.; Bavari, Sina; Panchal, Rekha G.; Hakami, Ramin M.

    2015-01-01

    Yersinia pestis (Yp) causes the re-emerging disease plague, and is classified by the CDC and NIAID as a highest priority (Category A) pathogen. Currently, there is no approved human vaccine available and advances in early diagnostics and effective therapeutics are urgently needed. A deep understanding of the mechanisms of host response to Yp infection can significantly advance these three areas. We employed the Reverse Phase Protein Microarray (RPMA) technology to reveal the dynamic states of either protein level changes or phosphorylation changes associated with kinase-driven signaling pathways during host cell response to Yp infection. RPMA allowed quantitative profiling of changes in the intracellular communication network of human lung epithelial cells at different times post infection and in response to different treatment conditions, which included infection with the virulent Yp strain CO92, infection with a derivative avirulent strain CO92 (Pgm-, Pst-), treatment with heat inactivated CO92, and treatment with LPS. Responses to a total of 111 validated antibodies were profiled, leading to discovery of 12 novel protein hits. The RPMA analysis also identified several protein hits previously reported in the context of Yp infection. Furthermore, the results validated several proteins previously reported in the context of infection with other Yersinia species or implicated for potential relevance through recombinant protein and cell transfection studies. The RPMA results point to strong modulation of survival/apoptosis and cell growth pathways during early host response and also suggest a model of negative regulation of the autophagy pathway. We find significant cytoplasmic localization of p53 and reduced LC3-I to LC3-II conversion in response to Yp infection, consistent with negative regulation of autophagy. These studies allow for a deeper understanding of the pathogenesis mechanisms and the discovery of innovative approaches for prevention, early diagnosis, and

  15. Interleukin-8 production by the human colon epithelial cell line HT-29: modulation by interleukin-13.

    PubMed Central

    Kolios, G.; Robertson, D. A.; Jordan, N. J.; Minty, A.; Caput, D.; Ferrara, P.; Westwick, J.

    1996-01-01

    1. We have determined which cytokines induce and modulate the production of the chemokine interleukin-8 (IL-8) by the human colonic epithelial cell line HT-29. 2. Growth arrested cell cultures were stimulated with the human recombinant cytokines interleukin-1 alpha (IL-1 alpha), tumour necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), interleukin-13 (IL-13), interleukin-10 (IL-10) or vehicle added alone or in combination. The production of IL-8 was determined by enzyme-linked immunosorbent assay (ELISA) and IL-8 messenger RNA expression by Northern blot analysis. 3. The production of IL-8 in unstimulated cells was undetectable by both ELISA and Northern blot analysis. 4. HT-29 cells produced IL-8 following stimulation with IL-1 alpha or TNF-alpha in a time- and a concentration-dependent manner, while IFN-gamma, IL-10 and IL-13 did not induce IL-8 production by HT-29 cells. 5. IL-13 was found to up-regulate significantly (P < 0.01) the IL-1 alpha but not the TNF-alpha-induced IL-8 generation by HT-29 cells. In contrast, IL-10 had no effect on either IL-1 alpha or TNF-alpha-induced IL-8 production. 6. Experiments using cycloheximide demonstrated that this synergistic effect of IL-13 and IL-1 alpha on IL-8 secretion was not through de novo protein synthesis. Using actinomycin-D, we demonstrated that the IL-13 up-regulation was at the level of transcription rather than messenger RNA stability. 7. These findings suggest that colonic epithelial cells have a functional IL-13 receptor, which is coupled to an up-regulation of IL-1 alpha, but not TNF-alpha induced IL-8 generation. Images Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:8886420

  16. Characteristics of Kcnn4 channels in the apical membranes of an intestinal epithelial cell line

    PubMed Central

    Basalingappa, Kanthesh M.; Wonderlin, William F.

    2011-01-01

    Intermediate-conductance K+ (Kcnn4) channels in the apical and basolateral membranes of epithelial cells play important roles in agonist-induced fluid secretion in intestine and colon. Basolateral Kcnn4 channels have been well characterized in situ using patch-clamp methods, but the investigation of Kcnn4 channels in apical membranes in situ has been hampered by a layer of mucus that prevents seal formation. In the present study, we used patch-clamp methods to characterize Kcnn4 channels in the apical membrane of IEC-18 cells, a cell line derived from rat small intestine. A monolayer of IEC-18 cells grown on a permeable support is devoid of mucus, and tight junctions enable selective access to the apical membrane. In inside-out patches, Ca2+-dependent K+ channels observed with iberiotoxin (a Kcnma1/large-conductance, Ca2+-activated K+ channel blocker) and apamin (a Kcnn1–3/small-conductance, Ca2+-activated K+ channel blocker) present in the pipette solution exhibited a single-channel conductance of 31 pS with inward rectification. The currents were reversibly blocked by TRAM-34 (a Kcnn4 blocker) with an IC50 of 8.7 ± 2.0 μM. The channels were not observed when charybdotoxin, a peptide inhibitor of Kcnn4 channels, was added to the pipette solution. TRAM-34 was less potent in inhibiting Kcnn4 channels in patches from apical membranes than in patches from basolateral membranes, which was consistent with a preferential expression of Kcnn4c and Kcnn4b isoforms in apical and basolateral membranes, respectively. The expression of both isoforms in IEC-18 cells was confirmed by RT-PCR and Western blot analyses. This is the first characterization of Kcnn4 channels in the apical membrane of intestinal epithelial cells. PMID:21868633

  17. Comparing Two Intestinal Porcine Epithelial Cell Lines (IPECs): Morphological Differentiation, Function and Metabolism

    PubMed Central

    Nossol, Constanze; Barta-Böszörményi, Anicò; Kahlert, Stefan; Zuschratter, Werner; Faber-Zuschratter, Heidi; Reinhardt, Nicole; Ponsuksili, Siriluk; Wimmers, Klaus; Diesing, Anne-Kathrin; Rothkötter, Hermann-Josef

    2015-01-01

    The pig shows genetical and physiological resemblance to human, which predestines it as an experimental animal model especially for mucosal physiology. Therefore, the intestinal epithelial cell lines 1 and J2 (IPEC-1, IPEC-J2) - spontaneously immortalised cell lines from the porcine intestine - are important tools for studying intestinal function. A microarray (GeneChip Porcine Genome Array) was performed to compare the genome wide gene expression of IPECs. Different significantly up-regulated pathways were identified, like “lysosome”, “pathways in cancer”, “regulation of actin cytoskeleton” and “oxidative phosphorylation” in IPEC-J2 in comparison to IPEC-1. On the other hand, “spliceosome”, “ribosome”, “RNA-degradation” and “tight junction” are significantly down-regulated pathways in IPEC-J2 in comparison to IPEC-1. Examined pathways were followed up by functional analyses. ATP-, oxygen, glucose and lactate-measurement provide evidence for up-regulation of oxidative phosphorylation in IPEC-J2. These cells seem to be more active in their metabolism than IPEC-1 cells due to a significant higher ATP-content as well as a higher O2- and glucose-consumption. The down-regulated pathway “ribosome” was followed up by measurement of RNA- and protein content. In summary, IPEC-J2 is a morphologically and functionally more differentiated cell line in comparison to IPEC-1. In addition, IPEC-J2 cells are a preferential tool for in vitro studies with the focus on metabolism. PMID:26147118

  18. Comparative study of the cytoplasmic organelles of epithelial cell lines derived from human carcinomas and nonmalignant tissues

    SciTech Connect

    Springer, E.L.

    1980-03-01

    The cytoplasmic organelles of 16 human epithelial cell lines have been characterized by electron microscopy. The cell lines were derived from normal, nonmalignant tissues of cancerous organs and from primary and metastatic carcinomas. Mitochondrial pleomorphism was expressed slightly by normal, to variable degrees by lines derived from nonmalignant tissues of cancerous organs, and to a much greater extent by all lines derived from malignant tissues. Hypertrophied mitochondria and longitudinal cristal arrangement were found in almost all the malignant lines, but not in any lines derived from nonmalignant tissues of cancerous organs or from normal tissues. All the lines appeared differentiate and showed slightly to moderately developed Golgi and smooth and rough endoplasmic reticula. There were no significant ultrastructural differences in cells at different passage levels or subconfluent and confluent tumor cells; however, more tight junctions were observed in confluent than in subconfluent normal cells.

  19. A new epithelial cell line, HBF from caudal fin of endangered yellow catfish, Horabagrus brachysoma (Gunther, 1864).

    PubMed

    Swaminathan, T Raja; Basheer, V S; Gopalakrishnan, A; Sood, Neeraj; Pradhan, P K

    2016-05-01

    A new epithelial cell line, Horabagrus brachysoma fin (HBF), was established from the caudal fin tissue of yellow catfish, H. brachysoma and characterized. This HBF cell line was maintained in Leibovitz's-15 medium supplemented with 15 % fetal bovine serum (FBS) and subcultured more than 62 times over a period of 20 months. The HBF cell line consists predominantly of epithelial cells and is able to grow at temperatures between 20 and 35 °C with an optimum temperature of 28 °C. The growth rate of these cells increased as the proportion of FBS increased from 5 to 20 % at 28 °C with optimum growth at the concentrations of 15 % FBS. Partial amplification and sequencing of fragments of two mitochondrial genes 16S rRNA and COI confirmed that HBF cell line originated from yellow catfish. The HBF cells showed strong positive reaction to the cytokeratin marker, indicating that it was epithelial in nature. HBF cell line was inoculated with tissue homogenate from juveniles of Sea bass, Lates calcarifer infected with viral nervous necrosis virus (VNNV) and found not susceptible to VNNV. The extracellular products of Vibrio cholerae MTCC 3904 were toxic to the HBF cells. These cells were confirmed for the absence of Mycoplasma sp by PCR. PMID:25359669

  20. Analysis of TGF-β1- and drug-induced epithelial-mesenchymal transition in cultured alveolar epithelial cell line RLE/Abca3.

    PubMed

    Takano, Mikihisa; Yamamoto, Chieko; Yamaguchi, Koki; Kawami, Masashi; Yumoto, Ryoko

    2015-02-01

    In this study, we examined the induction of epithelial-mesenchymal transition (EMT) by transforming growth factor (TGF)-β1 and drugs in genetically engineered type II alveolar epithelial cell line RLE/Abca3. Treatment of RLE/Abca3 cells with TGF-β1 induced marked changes in cell morphology from epithelial-like to elongated fibroblast-like morphology. With these morphological changes, mRNA expression of epithelial markers such as cytokeratin 19 (CK19) decreased, while that of mesenchymal markers such as α-smooth muscle actin (α-SMA) increased. TGF-β1 treatment also decreased the mRNA expression of Abca3, a type II cell marker, and formation of lamellar body structures. Interestingly, the effect of TGF-β1 on Abca3 mRNA expression was observed in RLE/Abca3 cells, but not in wild-type RLE-6TN, A549, and H441 cells. Treatment of RLE/Abca3 cells with bleomycin (BLM) and methotrexate (MTX) induced similar morphological and mRNA expression changes. In addition, the increase in α-SMA and the decrease in Abca3 mRNA expression by these drugs were observed only in RLE/Abca3 cells. These findings suggest that, like TGF-β1, BLM and MTX induce EMT in RLE/Abca3 cells, and RLE/Abca3 cells would be a good model to study drug-induced EMT. The effect of pirfenidone, an antifibrotic and anti-inflammatory drug, on EMT induced by TGF-β1 was also discussed. PMID:25760538

  1. Combined Effects of Nonylphenol and Bisphenol A on the Human Prostate Epithelial Cell Line RWPE-1

    PubMed Central

    Gan, Weidong; Zhou, Ming; Xiang, Zou; Han, Xiaodong; Li, Dongmei

    2015-01-01

    The xenoestrogens nonylphenol (NP) and bisphenol A (BPA) are regarded as endocrine disrupting chemicals (EDCs) which have widespread occurrence in our daily life. In the present study, the purpose was to analyze the combined effects of NP and BPA on the human prostate epithelial cell line RWPE-1 using two mathematical models based on the Loewe additivity (LA) theory and the Bliss independence (BI) theory. RWPE-1 cells were treated with NP (0.01–100 µM) and BPA (1–5000 µM) in either a single or a combined format. A cell viability assay and lactate dehydrogenase (LDH) leakage rate assay were employed as endpoints. As predicted by the two models and based on the cell viability assay, significant synergism between NP and BPA were observed. However, based on the LDH assay, the trends were reversed. Given that environmental contaminants are frequently encountered simultaneously, these data indicated that there were potential interactions between NP and BPA, and the combined effects of the chemical mixture might be stronger than the additive values of individual chemicals combined, which should be taken into consideration for the risk assessment of EDCs. PMID:25874684

  2. A zinc-resistant human epithelial cell line is impaired in cadmium and manganese import

    SciTech Connect

    Rousselet, Estelle |; Richaud, Pierre ||; Douki, Thierry; Chantegrel, Jocelyne Garcia; Favier, Alain |||; Moulis, Jean-Marc ||

    2008-08-01

    A human epithelial cell line (HZR) growing with high zinc concentrations has been analyzed for its ability to sustain high cadmium concentrations. Exposure to up to 200 {mu}M of cadmium acetate for 24 h hardly impacted viability, whereas most of parental HeLa cells were killed by less than 10 {mu}M of cadmium. Upon challenge by 35 fold higher cadmium concentrations than HeLa cells, HZR cells did not display increased DNA damage, increased protein oxidation, or changed intracellular cadmium localization. Rather, the main cause of resistance against cadmium was by avoiding cadmium entry into cells, which differs from that against zinc as the latter accumulates inside cells. The zinc-resistant phenotype of these cells was shown to also impair extracellular manganese uptake. Manganese and cadmium competed for entry into HeLa cells. Probing formerly identified cadmium or manganese transport systems in different animal cells did not evidence any significant change between HeLa and HZR cells. These results reveal zinc adaptation influences manganese and cadmium cellular traffic and they highlight previously unknown connections among homeostasis of divalent metals.

  3. Reinvestigation of epithelial lining of the genital coelomic sinus in asteroids. An ultrastructural study.

    PubMed

    Kalachev, Alexander V

    2014-12-01

    Ultrastructural study of gonadal muscles in sea star, Asterina pectinifera, showed that myoepithelial cells were located only in the epithelial lining of the genital coelomic sinus. No myoepithelial cells were found in the visceral peritoneal epithelium or within connective tissue layer of the outer sac. Morphology of the myoepithelial cells in gonads of A. pectinifera varies during the reproductive cycle. During the gametogenic phase of the reproductive cycle, the myoepithelial cells get an elongated, spindle-like shape having a length of 20–30 m. In prespawning gonads, many of the myoepithelial cells form cytoplasmic extensions of 3–5 m in length, filled with myofilaments and penetrating into the underlying connective tissue of the outer sac or haemal sinus. Besides, myoepithelial cells, simultaneously anchored in the inner and outer sacs, were also observed. These changes result in development of more elaborated musculature and increase in contractility of the gonadal wall in prespawning gonads as compared to that during other stages of the reproductive cycle. PMID:25459377

  4. Vasoactive intestinal peptide stimulates protein phosphorylation in a colonic epithelial cell line

    SciTech Connect

    Cohn, J.A.

    1987-09-01

    The T/sub 84/ colonic epithelial cell line was used to examine protein phosphorylation during neurohumoral stimulation of ion transport. T/sub 84/ cell monolayers grown on collagen-coated filters were mounted in Ussing chambers to measure ion transport stimulated by vasoactive intestinal peptide. Maximal stimulation of active secretion occurred after 8-10 min of stimulation. Protein phosphorylation events accompanying stimulated secretion were detected using two-dimensional gel electrophoresis to resolve phosphoproteins from monolayers previously labeled using /sup 32/P/sub i/. Within 8 min of exposure to vasoactive intestinal peptide, several phosphorylation events were detected, including a two- to fivefold increase in /sup 32/P incorporation into four soluble proteins with apparent molecular weights of 17,000, 18,000, 23,000, and 37,000. The same phosphorylation response occurs in monolayers stimulated by dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP), suggesting that cAMP mediates these intracellular events. This study indicates that changes in protein phosphorylation accompany the secretory action of vasocactive intestinal peptide and suggests that T/sub 84/ cells offer a useful model for studying the possibility that such phosphorylation events regulate enterocyte ion transport.

  5. Sustained distribution of aerosolized PEGylated liposomes in epithelial lining fluids on alveolar surfaces.

    PubMed

    Kaneko, Keita; Togami, Kohei; Yamamoto, Eri; Wang, Shujun; Morimoto, Kazuhiro; Itagaki, Shirou; Chono, Sumio

    2016-10-01

    The distribution characteristics of aerosolized PEGylated liposomes in alveolar epithelial lining fluid (ELF) were examined in rats, and the ensuing mechanisms were investigated in the in vitro uptake and protein adsorption experiments. Nonmodified or PEGylated liposomes (particle size 100 nm) were aerosolized into rat lungs. PEGylated liposomes were distributed more sustainably in ELFs than nonmodified liposomes. Furthermore, the uptake of PEGylated liposomes by alveolar macrophages (AMs) was less than that of nonmodified liposomes. In further in vitro uptake experiments, nonmodified and PEGylated liposomes were opsonized with rat ELF components and then added to NR8383 cells as cultured rat AMs. The uptake of opsonized PEGylated liposomes by NR8383 cells was lower than that of opsonized nonmodified liposomes. Moreover, the protein absorption levels in opsonized PEGylated liposomes were lower than those in opsonized nonmodified liposomes. These findings suggest that sustained distributions of aerosolized PEGylated liposomes in ELFs reflect evasion of liposomal opsonization with surfactant proteins and consequent reductions in uptake by AMs. These data indicate the potential of PEGylated liposomes as aerosol-based drug delivery system that target ELF for the treatment of respiratory diseases. PMID:27334278

  6. Methotrexate influx via folate transporters into alveolar epithelial cell line A549.

    PubMed

    Kawami, Masashi; Miyamoto, Mioka; Yumoto, Ryoko; Takano, Mikihisa

    2015-08-01

    Methotrexate (MTX), a drug used for the treatment of certain cancers as well as rheumatoid arthritis, sometimes induces serious interstitial lung injury. Although lung toxicity of MTX is related to its accumulation, the information concerning MTX transport in the lungs is lacking. In this study, we investigated the mechanisms underlying MTX influx into human alveolar epithelial cell line A549. MTX influx into A549 cells was time-, pH-, and temperature-dependent and showed saturation kinetics. The influx was inhibited by folic acid with IC50 values of 256.1 μM at pH 7.4 and 1.6 μM at pH 5.5, indicating that the mechanisms underlying MTX influx would be different at these pHs. We then examined the role of two folate transporters in MTX influx, reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT). The expression of RFC and PCFT mRNAs in A549 cells was confirmed by reverse transcription polymerase chain reaction. In addition, MTX influx was inhibited by thiamine monophosphate, an RFC inhibitor, at pH 7.4, and by sulfasalazine, a PCFT inhibitor, at pH 5.5. These results indicated that RFC and PCFT are predominantly involved in MTX influx into A549 cells at pH 7.4 and pH 5.5, respectively. PMID:26190800

  7. Antimicrobial disposition in pulmonary epithelial lining fluid of horses, part III. cefquinome.

    PubMed

    Winther, L; Baptiste, K E; Friis, C

    2011-10-01

    Cefquinome concentrations, following intravenous and aerosol administration to horses, in pulmonary epithelial lining fluid (PELF) were examined and compared to plasma concentrations. Single dose of cefquinome sulphate (1 mg/kg) was administered intravenously to six horses followed by a single aerosol administration (225 mg) with a wash-out period of 14 days between treatments. After each drug administration, cefquinome concentrations in plasma and PELF, obtained by intrabronchial cotton swabs, were determined. After intravenous administration, cefquinome concentrations in plasma declined fast and were not detectable after 12 h. After aerosol administration, plasma concentrations were low or below limit of quantification (LOQ) during the entire sampling period. The degree of penetration of cefquinome into PELF after intravenous administration as described by the AUC(PELF) /AUC(plasma) ratio was 0.33. Following aerosol administration, cefquinome concentrations in PELF were high, but only detectable for 4 h. Based on AUC values, total cefquinome concentrations in PELF were one-third of total plasma concentrations after intravenous administration together with shorter time above Minimum Inhibitory Concentrations (T > MIC) in PELF, thus twice daily dosing may be required when treating lower airway infections in horses. Lower doses of cefquinome can be administered as aerosols providing high local drug concentrations in lung, but additional optimization of formulation is needed to improve distribution and persistence in lung. PMID:21083664

  8. Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics

    SciTech Connect

    Booth, Brian W.; Boulanger, Corinne A.; Anderson, Lisa H.; Jimenez-Rojo, Lucia; Brisken, Cathrin; Smith, Gilbert H.

    2010-02-01

    Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D {beta}-geo (CD{beta}geo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CD{beta}geo cells and that the mitogen activated protein kinase signaling pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG{sup -/-} mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro.

  9. Study of antiproliferative effects of synthetic substances against lens epithelial cell line (SRA 01/04).

    PubMed

    Malleter, Marine; Jacquot, Catherine; Rousseau, Benedicte; Tomasoni, Christophe; Ducourneau, Didier; Tourette, Philippe; Pineau, Alain; Roussakis, Christos

    2012-06-01

    A cataract is a clouded area of the eye, which impairs vision. Cataracts can be caused by a natural hardening of the lens in the elderly, or may be the result of eye injury. However there is a treatment by extracapsular surgery, almost 50% of operations are followed by another posterior capsule opacification. This secondary cataract is due to abnormal cellular proliferation. Pharmacologic inhibition of this cellular proliferation would be a very promising treatment. The objective of our study is to test some antiproliferative drugs, less toxic than those currently used such as 5-FU or mytomycin C. We have investigated the in vitro effects of several molecules (V0 and its derivatives) on a proliferative human lens epithelial cell line (SRA 01/04). During a first step, we have measured the IC50 of each molecule. After this first screening, we have studied the kinetic of the cell growth with or without the molecules at different concentration. Then, flow cytometry was used to determine the phase of the cell cycle at which the proliferation stopped. This study has shown that 3 molecules V19, V1, and A190 have an interesting profile in vitro and were selected to analyze their mechanism of action. PMID:22235844

  10. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    SciTech Connect

    Youakim, A.; Herscovics, A.

    1985-11-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-(2-TH)mannose or L-(5,6-TH)fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with (2-TH)mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with (2-TH)mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-(1,6-TH)glucosamine and L-(1- UC)fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced TH-labeled N-acetylglucosamine and N-acetylgalactosamine.

  11. Involvement of Connective Tissue Growth Factor (CTGF) in Insulin-like Growth Factor-I (IGF1) Stimulation of Proliferation of a Bovine Mammary Epithelial Cell Line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin-like growth factor I (IGF1) plays an important role in mammary gland development and lactation in part by stimulating proliferation of the milk-producing epithelial cells. In this study, we used the bovine mammary epithelial cell line MAC-T cells as a model to understand the mechanism by whi...

  12. Evaluation of low-dosage environmental mutagens with a long-term, cultured epithelial cell line

    SciTech Connect

    Li, C.S.; Lin, R.H.

    1996-12-31

    Polycyclic or polynuclear aromatic hydrocarbons (PAHs) are a group of compounds consisting of at least two fused aromatic rings and are common environmental contaminants in soil, water, and air. Additionally, some PAHs are considered to be mutagenic, carcinogenic, and cytotoxic compounds. BaA (Benz(a)anthracene) and BaP (Benzo(a)pyrene) are the two major unsubstituted PAHs identified by the USEPA as priority pollutants. BaA is suspected to be a human carcinogen by the US Department of Health and Human Services, whereas BaP is regarded as an animal carcinogen. It is estimated that the emission concentrations of BaA and BaP from mainstream cigarette smoke are 20-70 ng per g cigarette and 20-40 ng per g cigarette, respectively, with an average sidestream to mainstream weight ratio of 3. In addition, BaA and BaP are also the main emissions from diesel particulate extracts with mean concentrations of 500 ppm and 40 ppm, respectively. From a recent report concerning PAHs in urban areas all over the world, the airborne concentration of BaP was typically found to be in the range of 1-20 ng/m{sup 3} in Europe and 1 ng/m{sup 3} in the U.S.A. For BaA, the concentrations commonly ranged from I to 50 ng/m{sup 3} in Europe and from 0.1 to 1 ng/m{sup 3} in the U.S.A. Therefore, the long term exposure to these two compounds may cause health effects. This study examines long-term cultured epithelial cell lines exposed to BaP or BaA, in vitro, and the frequency of HGPRT mutants. 19 refs., 3 figs.

  13. Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis.

    PubMed

    Kim, Sang-Su; Kim, Jung-Hyun; Han, Ik-Hwan; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2016-04-01

    Trichomonas vaginalis causes the most prevalent sexually transmitted infection worldwide. Trichomonads have been detected in prostatic tissues from prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer. Chronic prostatic inflammation is known as a risk factor for prostate enlargement, benign prostatic hyperplasia symptoms, and acute urinary retention. Our aim was to investigate whether T. vaginalis could induce inflammatory responses in cells of a benign prostatic hyperplasia epithelial cell line (BPH-1). When BPH-1 cells were infected with T. vaginalis, the protein and mRNA of inflammatory cytokines, such as CXCL8, CCL2, IL-1β, and IL-6, were increased. The activities of TLR4, ROS, MAPK, JAK2/STAT3, and NF-κB were also increased, whereas inhibitors of ROS, MAPK, PI3K, NF-κB, and anti-TLR4 antibody decreased the production of the 4 cytokines although the extent of inhibition differed. However, a JAK2 inhibitor inhibited only IL-6 production. Culture supernatants of the BPH-1 cells that had been incubated with live T. vaginalis (trichomonad-conditioned medium, TCM) contained the 4 cytokines and induced the migration of human monocytes (THP-1 cells) and mast cells (HMC-1 cells). TCM conditioned by BPH-1 cells pretreated with NF-κB inhibitor showed decreased levels of cytokines and induced less migration. Therefore, it is suggested that these cytokines are involved in migration of inflammatory cells. These results suggest that T. vaginalis infection of BPH patients may cause inflammation, which may induce lower urinary tract symptoms (LUTS). PMID:27180569

  14. MicroRNA-200a inhibits epithelial-mesenchymal transition in human hepatocellular carcinoma cell line

    PubMed Central

    Zhong, Chong; Li, Ming-Yi; Chen, Zhi-Yuan; Cheng, Hai-Kun; Hu, Ming-Li; Ruan, Yue-Lu; Guo, Rong-Ping

    2015-01-01

    Objective: Our study investigated the role of microRNA (miR)-200a and its molecular targets in hepatocellular carcinoma (HCC) cells. Methods: An inhibitor of miR-200a was transiently transfected into the hepatocellular carcinoma cell line, MHCC-97L. The effect of this transfection on mRNA levels of epithelial-mesenchymal transition (EMT)-related genes was measured by fluorescence-based quantitative real-time polymerase chain reaction (qRT-PCR). Further, protein levels of EMT-related genes, cell proliferation and apoptosis-related markers were assessed by Western blot analysis in these transfected cells. MTT and wound-healing assay were used to evaluate the proliferation and migration of MHCC-97L cells in presence and in absence of miR-200a inhibitor. Results: Compared with miR-NC control group, qRT-PCR results in anti-miR-200a group revealed a significant reduction in the mRNA levels of E-cadherin, with a concomitant increasing in vimentin mRNA level (all P < 0.05). Western blot results showed higher E-cadherin and Caspase-3 protein expressions in anti-miR-200a group compared to miR-NC group (P < 0.05). In addition, vimentin and Ki-67 protein expression was found sharply decreased in anti-miR-200a group compared to miR-NC group (P < 0.05). Consistent with this, wound-healing and MTT assay showed that migration and proliferation capacity of MHCC-97L cells in anti-miR-200a group is significantly increased compared with miR-NC group (both P < 0.05). Conclusion: Our study reveals an important role of miR-200a in inhibiting EMT, proliferation and migration in HCC cells, suggesting the possibility of miR-200a-based therapeutics in HCC. PMID:26617701

  15. Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis

    PubMed Central

    Kim, Sang-Su; Kim, Jung-Hyun; Han, Ik-Hwan; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2016-01-01

    Trichomonas vaginalis causes the most prevalent sexually transmitted infection worldwide. Trichomonads have been detected in prostatic tissues from prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer. Chronic prostatic inflammation is known as a risk factor for prostate enlargement, benign prostatic hyperplasia symptoms, and acute urinary retention. Our aim was to investigate whether T. vaginalis could induce inflammatory responses in cells of a benign prostatic hyperplasia epithelial cell line (BPH-1). When BPH-1 cells were infected with T. vaginalis, the protein and mRNA of inflammatory cytokines, such as CXCL8, CCL2, IL-1β, and IL-6, were increased. The activities of TLR4, ROS, MAPK, JAK2/STAT3, and NF-κB were also increased, whereas inhibitors of ROS, MAPK, PI3K, NF-κB, and anti-TLR4 antibody decreased the production of the 4 cytokines although the extent of inhibition differed. However, a JAK2 inhibitor inhibited only IL-6 production. Culture supernatants of the BPH-1 cells that had been incubated with live T. vaginalis (trichomonad-conditioned medium, TCM) contained the 4 cytokines and induced the migration of human monocytes (THP-1 cells) and mast cells (HMC-1 cells). TCM conditioned by BPH-1 cells pretreated with NF-κB inhibitor showed decreased levels of cytokines and induced less migration. Therefore, it is suggested that these cytokines are involved in migration of inflammatory cells. These results suggest that T. vaginalis infection of BPH patients may cause inflammation, which may induce lower urinary tract symptoms (LUTS). PMID:27180569

  16. Nitric Oxide Oxidation Products are Increased in the Epithelial Lining Fluid of Children with Persistent Asthma

    PubMed Central

    Fitzpatrick, Anne M.; Brown, Lou Ann S.; Holguin, Fernando; Teague, W. Gerald

    2009-01-01

    Background Children with severe allergic asthma have persistent airway inflammation and oxidant stress. Objectives We hypothesized that children with severe allergic asthma would have increased concentrations of the NO oxidation products nitrite, nitrate, and nitrotyrosine in the proximal and distal airway epithelial lining fluid (ELF). We further hypothesized that NO oxidation products would be associated with higher exhaled nitric oxide (FENO), greater allergic sensitization, and lower pulmonary function. Methods Bronchoalveolar lavage (BAL) was obtained from 15 children with mild-to-moderate asthma, 30 children with severe allergic asthma, 5 non-asthmatic children and 20 non-smoking adults. The BAL was divided into proximal and distal portions and nitrite, nitrate, and nitrotyrosine were quantified. Results Children with mild-to-moderate and severe allergic asthma had increased concentrations of nitrite (adult control: 15 ± 3; pediatric control: 23 ± 4; mild-to-moderate asthma: 56 ± 26; severe asthma: 74 ± 18 µM), nitrate (37 ± 13 vs. 145 ± 38 vs. 711 ± 155 vs. 870 ± 168 µM) and nitrotyrosine (2 ± 1 vs. 3 ± 1 vs. 9 ± 3 vs. 10 ± 4 µM) in the proximal ELF. Similar results were seen in the distal ELF although the concentrations were significantly lower (p < 0.05 for each). Although univariate analyses revealed no associations between NO oxidation products and clinical features, multivariate analyses revealed FENO to be a significant predictor of NO oxidation in asthmatic children. Conclusions NO oxidation products are increased in the ELF of asthmatic children. The relationship between FENO and airway nitrosative stress is complicated and requires further study. PMID:19895987

  17. An immortalized goat mammary epithelial cell line induced with human telomerase reverse transcriptase (hTERT) gene transfer.

    PubMed

    He, Y L; Wu, Y H; He, X N; Liu, F J; He, X Y; Zhang, Y

    2009-06-01

    Although mammary epithelial cell lines can provide a rapid and reliable indicator of gene expression efficiency of transgenic animals, their short lifespan greatly limits this application. To provide stable and long lifespan cells, goat mammary epithelial cells (GMECs) were transduced with pLNCX2-hTERT by retrovirus-mediated gene transfer. Transduced GMECs were evaluated by reverse transcriptase polymerase chain reaction (RT-PCR), proliferation assays, karyotype analysis, telomerase activity assay, western blotting, soft agar assay, and injection into nude mice. Non-transduced GMECs were used as a control. The hTERT-GMECs had higher telomerase activity and extended proliferative lifespan compared to non-transfected GMECs; even after Passage 50, hTERT-GMECs had a near diploid complement of chromosomes. Furthermore, they did not gain the anchorage-independent growth property and were not associated with a malignant phenotype in vitro or in vivo. PMID:19303628

  18. Respiratory syncytial virus glycoproteins uptake occurs through clathrin-mediated endocytosis in a human epithelial cell line

    PubMed Central

    Gutiérrez-Ortega, Abel; Sánchez-Hernández, Carla; Gómez-García, Beatriz

    2008-01-01

    Cell-surface viral proteins most frequently enter the cell through clathrin or caveolae endocytosis. Respiratory syncytial virus antigen internalization by immune cells is via caveolin, however, uptake of paramyxovirus cell membrane proteins by non-immune cells is done through clathrin-coated pits. In this work, the uptake of respiratory syncytial virus cell surface glycoproteins by non-immune human epithelial cells was investigated through indirect immunofluorescence with polyclonal anti-RSV antibody and confocal lasser-scanner microscopy. Clathrin and caveolae internalization pathways were monitored through specific inhibitors monodansylcadaverine (MDC) and methyl-beta-cyclodextrin (MBCD), respectively. Internalization of RSV antigens was inhibited by MDC but not by MBCD, implying that clathrin-mediated endocytosis is the major uptake route of RSV antigens by an epithelial human cell line. PMID:18950517

  19. Establishment and characterization of a dairy goat mammary epithelial cell line with human telomerase (hT-MECs).

    PubMed

    Shi, Huaiping; Shi, Hengbo; Luo, Jun; Wang, Wei; Haile, Abiel B; Xu, Huifen; Li, Jun

    2014-07-01

    Although research on dairy goat mammary gland have referred extensively to molecular mechanisms, research on lines of dairy goat mammary epithelial cells (MECs) are still rare. This paper sought to establish an immortal MEC line by stable transfection of human telomerase. MECs from a lactating (45 days post-parturition) Xinong Saanen dairy goat were cultured purely and subsequently transfected with a plasmid carrying the sequence of human telomerase. Immortalized MECs by human telomerase (hT-MECs) exhibited a typical cobblestone morphology and activity and expression levels of telomerase resembled that of MCF-7 cells. hT-MECs on passage 42 grew vigorously and 'S' sigmoid curves of growth were observed. Moreover, hT-MECs maintained a normal chromosome modal number of 2n=60, keratin 8 and epithelial membrane antigen (EMA) were evidently expressed, and beta-casein protein was synthesized and secreted. Beta-casein expression was enhanced by prolactin (P<0.05). Lipid droplets were found in hT-MECs, and messenger RNA levels of PPARG, SREBP, FASN, ACC and SCD in hT-MECs (passage 40) were similar to MECs (passage 7). In conclusion, the obtained hT-MEC line retained a normal morphology, growth characteristics, cytogenetics and secretory characteristics as primary MECs. Hence, it can be a representative model cell line, for molecular and functional analysis, of dairy goat MECs for an extended period of time. PMID:24889218

  20. Transient transfection of polarized epithelial monolayers with CFTR and reporter genes using efficacious lipids.

    PubMed

    Tucker, Torry A; Varga, Karoly; Bebok, Zsuzsa; Zsembery, Akos; McCarty, Nael A; Collawn, James F; Schwiebert, Erik M; Schwiebert, Lisa M

    2003-03-01

    Transient transfection of epithelial cells with lipid reagents has been limited because of toxicity and lack of efficacy. In this study, we show that more recently developed lipids transfect nonpolarized human airway epithelial cells with high efficacy and efficiency and little or no toxicity. Because of this success, we hypothesized that these lipids may also allow transient transfection of polarized epithelial monolayers. A panel of reagents was tested for transfer of the reporter gene luciferase (LUC) into polarized monolayers of non-cystic fibrosis (non-CF) and CF human bronchial epithelial cells, MDCK epithelial cell monolayers, and, ultimately, primary non-CF and CF airway epithelial cells. Lipid reagents, which were most successful in initial LUC assays, were also tested for transfer of vectors bearing the reporter gene green fluorescent protein (GFP) and for successful transfection and expression of an epithelial-specific protein, the cystic fibrosis transmembrane conductance regulator (CFTR). Electrophysiological, biochemical, and immunological assays were performed to show successful complementation of an epithelial monolayer with transiently expressed CFTR. We also present findings that help facilitate monolayer formation by these airway epithelial cell lines. Together, these data show that polarized monolayers are transfected transiently with more recently developed lipids, specifically LipofectAMINE PLUS and LipofectAMINE 2000. Transient transfection of epithelial monolayers provides a powerful system in which to express the cDNA of any epithelium-specific protein transiently in a native polarized epithelium to study protein function. PMID:12421695

  1. Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro.

    PubMed

    Meir, Michael; Flemming, Sven; Burkard, Natalie; Bergauer, Lisa; Metzger, Marco; Germer, Christoph-Thomas; Schlegel, Nicolas

    2015-10-15

    Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling. PMID:26294673

  2. Inflammatory response and genotoxicity of seven wood dusts in the human epithelial cell line A549.

    PubMed

    Bornholdt, Jette; Saber, Anne T; Sharma, Anoop K; Savolainen, Kai; Vogel, Ulla; Wallin, Håkan

    2007-08-15

    Exposure to wood dust is common in many workplaces. Epidemiological studies indicate that occupational exposure to hardwood dusts is more harmful than to softwood dusts. In this study, human epithelial cell line A549 was incubated with well-characterized dusts from six commonly used wood species and from medium density fibreboard (MDF), at concentrations between 10 and 300microg/ml. After 3 and 6h of incubation, genotoxicity was assessed by measurement of DNA damage with the single-cell gel electrophoresis (comet) assay and inflammation was measured by the expression of IL-6 and IL-8 mRNA and by the amount of IL-8 protein. There was a 1.2-1.4-fold increase in DNA strand breaks after incubation with beech, teak, pine and MDF dusts compared with the levels in untreated cells, but after 6h only the increase induced by the MDF dust remained. Increased expression of cellular IL-6 and IL-8 mRNA was induced by all of the wood dusts at both times. Similar to IL-8 mRNA expression, the amounts of secreted IL-8 protein were elevated, except after incubation with oak dust, where a marginal reduction was seen. On the basis of the effects on IL-8 mRNA expression, the wood dusts could be divided into three groups, with teak dust being the most potent, MDF, birch, spruce and pine being intermediate, and beech and oak being the least potent. The induction of DNA strand breaks did not correlate well with the interleukin response. In conclusion, all wood dusts induced cytokine responses, and some dusts induced detectable DNA damage. The inflammatory potency seemed intermediate for dusts from the typical softwoods spruce and pine, whereas the dusts from species linked to cancer, beech and oak, were the least inflammatory. The variation of the effects induced by different wood dusts over time indicates that the DNA damage was not secondary to the cytokine response. Although hardwoods are often considered more harmful than softwoods by regulatory agencies, the current experiments do not

  3. DETECTION OF HUMAN LUNG EPITHELIA CELL GROWTH FACTORS PRODUCED BY A LUNG CARCINOMA CELL LINE: USE IN CULTURE OF PRIMARY SOLID LUNG TUMORS

    EPA Science Inventory

    Serum-free medium conditioned for 72 h by a human undifferentiated adenocarcinoma of lung, Cal u 6, stimulated the colony formation of normal human bronchial epithelial cells, newly cultured cells from human solid lung tumors, and established human lung tumor cell lines, includin...

  4. Synergy-Based Small-Molecule Screen Using a Human Lung Epithelial Cell Line Yields ΔF508-CFTR Correctors That Augment VX-809 Maximal Efficacy

    PubMed Central

    Phuan, Puay-Wah; Veit, Guido; Tan, Joseph; Roldan, Ariel; Finkbeiner, Walter E.; L. Lukacs, Gergely

    2014-01-01

    The most prevalent cystic fibrosis transmembrane conductance regulator (CFTR) mutation causing cystic fibrosis, ΔF508, impairs folding of nucleotide binding domain (NBD) 1 and stability of the interface between NBD1 and the membrane-spanning domains. The interfacial stability defect can be partially corrected by the investigational drug VX-809 (3-[6-[[[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl]amino]-3-methyl-2-pyridinyl]-benzoic acid) or the R1070W mutation. Second-generation ΔF508-CFTR correctors are needed to improve on the modest efficacy of existing cystic fibrosis correctors. We postulated that a second corrector targeting a distinct folding/interfacial defect might act in synergy with VX-809 or the R1070W suppressor mutation. A biochemical screen for ΔF508-CFTR cell surface expression was developed in a human lung epithelium–derived cell line (CFBE41o−) by expressing chimeric CFTRs with a horseradish peroxidase (HRP) in the fourth exofacial loop in either the presence or absence of R1070W. Using a luminescence readout of HRP activity, screening of approximately 110,000 small molecules produced nine novel corrector scaffolds that increased cell surface ∆F508-CFTR expression by up to 200% in the presence versus absence of maximal VX-809. Further screening of 1006 analogs of compounds identified from the primary screen produced 15 correctors with an EC50 < 5 µM. Eight chemical scaffolds showed synergy with VX-809 in restoring chloride permeability in ∆F508-expressing A549 cells. An aminothiazole increased chloride conductance in human bronchial epithelial cells from a ΔF508 homozygous subject beyond that of maximal VX-809. Mechanistic studies suggested that NBD2 is required for the aminothiazole rescue. Our results provide proof of concept for synergy screening to identify second-generation correctors, which, when used in combination, may overcome the “therapeutic ceiling” of first-generation correctors. PMID:24737137

  5. Synergy-based small-molecule screen using a human lung epithelial cell line yields ΔF508-CFTR correctors that augment VX-809 maximal efficacy.

    PubMed

    Phuan, Puay-Wah; Veit, Guido; Tan, Joseph; Roldan, Ariel; Finkbeiner, Walter E; Lukacs, Gergely L; Verkman, A S

    2014-07-01

    The most prevalent cystic fibrosis transmembrane conductance regulator (CFTR) mutation causing cystic fibrosis, ΔF508, impairs folding of nucleotide binding domain (NBD) 1 and stability of the interface between NBD1 and the membrane-spanning domains. The interfacial stability defect can be partially corrected by the investigational drug VX-809 (3-[6-[[[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl]amino]-3-methyl-2-pyridinyl]-benzoic acid) or the R1070W mutation. Second-generation ΔF508-CFTR correctors are needed to improve on the modest efficacy of existing cystic fibrosis correctors. We postulated that a second corrector targeting a distinct folding/interfacial defect might act in synergy with VX-809 or the R1070W suppressor mutation. A biochemical screen for ΔF508-CFTR cell surface expression was developed in a human lung epithelium-derived cell line (CFBE41o(-)) by expressing chimeric CFTRs with a horseradish peroxidase (HRP) in the fourth exofacial loop in either the presence or absence of R1070W. Using a luminescence readout of HRP activity, screening of approximately 110,000 small molecules produced nine novel corrector scaffolds that increased cell surface ∆F508-CFTR expression by up to 200% in the presence versus absence of maximal VX-809. Further screening of 1006 analogs of compounds identified from the primary screen produced 15 correctors with an EC50 < 5 µM. Eight chemical scaffolds showed synergy with VX-809 in restoring chloride permeability in ∆F508-expressing A549 cells. An aminothiazole increased chloride conductance in human bronchial epithelial cells from a ΔF508 homozygous subject beyond that of maximal VX-809. Mechanistic studies suggested that NBD2 is required for the aminothiazole rescue. Our results provide proof of concept for synergy screening to identify second-generation correctors, which, when used in combination, may overcome the "therapeutic ceiling" of first-generation correctors. PMID:24737137

  6. Establishment and characterization of immortalized gingival epithelial and fibroblastic cell lines for the development of organotypic cultures.

    PubMed

    Bao, Kai; Akguel, Baki; Bostanci, Nagihan

    2014-01-01

    In vitro studies using 3D co-cultures of gingival cells can resemble their in vivo counterparts much better than 2D models that typically only utilize monolayer cultures with short-living primary cells. However, the use of 3D gingival models is still limited through lack of appropriate cell lines. We aimed to establish immortalized cell line models of primary human gingival epithelium keratinocytes (HGEK) and gingival fibroblasts (GFB). Immortalized cell lines (HGEK-16 and GFB-16) were induced by E6 and E7 oncoproteins of human papillomavirus. In addition, 3D multilayered organotypic cultures were formed by embedding GFB-16 cells within a collagen (Col) matrix and seeding of HGEK-16 cells on the upper surfaces. Cell growth was analyzed in both immortalized cell lines and their parental primary cells. The expression levels of cell type-specific markers, i.e. cytokeratin (CK) 10, CK13, CK16, CK18, CK19 for HGEK-16 and Col I and Col II for GFB-16, were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Expansion of the primary cultures was impeded at early passages, while the transformed immortalized cell lines could be expanded for more than 30 passages. In 3D cultures, immortalized HGEK formed a multilayer of epithelial cells. qRT-PCR showed that cell-specific marker expression in the 3D cultures was qualitatively and quantitatively closer to that in human gingival tissue than to monolayer cultures. These results indicate that immortalized gingival fibroblastic and epithelial cell lines can successfully form organotypic multilayered cultures and, therefore, may be useful tools for studying gingival tissue in vitro. PMID:25471635

  7. Short-Chain Fatty Acids Regulate Secretion of IL-8 from Human Intestinal Epithelial Cell Lines in vitro.

    PubMed

    Asarat, M; Vasiljevic, T; Apostolopoulos, V; Donkor, O

    2015-01-01

    Short-chain fatty acids (SCFAs) including acetate, propionate and butyrate play an important role in the physiological functions of epithelial cells and colonocytes, such as immune response regulation. Human intestinal epithelial cells (IECs) contribute in intestinal immune response via different ways, such as production of different immune factors including Interleukin (IL) IL-8, which act as chemoattractant for neutrophils, and subsequently enhance inflammation. Therefore, we aimed to evaluate the effects of SCFAs on IECs viability and production of IL-8 in vitro. SCFAs were co-cultured with either normal intestinal epithelial (T4056) or adenocarcinoma derived (HT-29) cell lines for 24-96 h in the presence of E.coli lipopolysaccharides (LPS). Cell viability, proliferation, production of IL-8 and expression of IL-8 mRNA were determined in the cell cultures. The result showed that 20 mM of SCFAs was non-cytotoxic to T4056 and enhanced their growth, whereas the growth of HT-29 was inhibited. The SCFAs down regulated LPS-stimulated IL-8 secretion with different response patterns, but no obvious effects on the release of IL-8 from non LPS- stimulated cells. In conclusion, SCFAs showed regulatory effect on release of LPS-stimulated IL-8 as well as the expression of mRNA of IL-8; these might explain the anti-inflammatory and anti-carcinogenic mechanism of SCFAs. PMID:26436853

  8. An experimental platform using human intestinal epithelial cell lines to differentiate between hazardous and non-hazardous proteins.

    PubMed

    Hurley, Bryan P; Pirzai, Waheed; Eaton, Alex D; Harper, Marc; Roper, Jason; Zimmermann, Cindi; Ladics, Gregory S; Layton, Raymond J; Delaney, Bryan

    2016-06-01

    Human intestinal epithelial cell lines (T84, Caco-2, and HCT-8) grown on permeable Transwell™ filters serve as models of the gastrointestinal barrier. In this study, this in vitro model system was evaluated for effectiveness at distinguishing between hazardous and non-hazardous proteins. Indicators of cytotoxicity (LDH release, MTT conversion), monolayer barrier integrity ([(3)H]-inulin flux, horseradish peroxidase flux, trans-epithelial electrical resistance [TEER]), and inflammation (IL-8, IL-6 release) were monitored following exposure to hazardous or non-hazardous proteins. The hazardous proteins examined include streptolysin O (from Streptococcus pyogenes), Clostridium difficile Toxins A and B, heat-labile toxin from enterotoxigenic Escherichia coli, listeriolysin O (from Listeria monocytogenes), melittin (from bee venom), and mastoparan (from wasp venom). Non-hazardous proteins included bovine and porcine serum albumin, bovine fibronectin, and ribulose bisphosphate carboxylase/oxygenase (RuBisco) from spinach. Food allergenic proteins bovine milk β-lactoglobulin and peanut Ara h 2 were also tested as was the anti-nutritive food protein wheat germ agglutinin. Results demonstrated that this model system effectively distinguished between hazardous and non-hazardous proteins through combined analysis of multiple cells lines and assays. This experimental strategy may represent a useful adjunct to multi-component analysis of proteins with unknown hazard profiles. PMID:27060235

  9. Atypical Bronchial Carcinoid Masquerading as Bronchial Asthma.

    PubMed

    Rajendran, V; Iqbal; Kumar, Vinod

    2015-11-01

    A case study of 35-year-old woman with persistent breathlessness and wheezing that had been unsuccessfully treated with inhaled beta 2-agonists and steroids for about two years. Patient developed dry cough and haemoptysis, so investigated further. Spirometry demonstrated a restrictive pattern. Chest CT demonstrated well defined hyperdense lesion in right middle lobe. Biopsy taken from the mass during bronchoscopy demonstrated the picture of atypical bronchial carcinoid. In this case, due to the lack of awareness, diagnosis of carcinoid was delayed by two years. PMID:27608788

  10. Bronchial secretion concentrations of tobramycin.

    PubMed

    Alexander, M R; Schoell, J; Hicklin, G; Kasik, J E; Coleman, D

    1982-02-01

    The mean concentrations of tobramycin in bronchial secretions from patients with pneumonia were almost two times greater than secretions from patients free of lung infection. Mean tobramycin bronchial secretion to serum concentration ratios also were higher when obtained from infected lungs (0.66 versus 0.17) These data suggest that lung infection enhances the concentrations of tobramycin in bronchial secretions. PMID:7065524

  11. Morphological integrity of the bronchial epithelium in mild asthma.

    PubMed Central

    Lozewicz, S; Wells, C; Gomez, E; Ferguson, H; Richman, P; Devalia, J; Davies, R J

    1990-01-01

    In severe asthma bronchial epithelial cells are damaged and detached, and it has been proposed that such damage might lead to the bronchial hyperresponsiveness that characterises asthma. To investigate the relation between airway hyperresponsiveness and epithelial damage, biopsy specimens of the bronchial mucus membrane were obtained at fibreoptic bronchoscopy from 11 patients with mild atopic asthma and airway hyperresponsiveness (provocative concentration of methacholine causing a 20% fall in FEV1 (PC20) less than 1.0 mg/ml), and from 17 healthy non-atopic subjects who did not have airway hyperresponsiveness (PC20 methacholine greater than 8.0 mg/ml). Observers who were blind to the presence or absence of asthma examined the biopsy specimens by light and electron microscopy. Epithelial cells, intercellular spaces, and goblet cells were counted. Intercellular junctional complexes were examined, and a semiquantitative assessment was made of ciliary loss, non-parallel central ciliary filaments, and vacuoles in ciliated cells. There were no differences between the asthmatic and healthy groups in any of these measurements. These findings indicate that airway hyperresponsiveness may be present when there is no apparent change in the structure of the bronchial epithelium. PMID:2321171

  12. Development of a Bronchial Wall Model: Triple Culture on a Decellularized Porcine Trachea.

    PubMed

    Melo, Esther; Kasper, Jennifer Y; Unger, Ronald E; Farré, Ramon; Kirkpatrick, Charles James

    2015-09-01

    In vitro coculture models mimicking the bronchial barrier are a significant step forward in investigating the behavior and function of the upper respiratory tract mucosa. To date, mostly synthetic materials have been used as substrates to culture the cells. However, decellularized tissues provide a more in vivo-like environment based on the native extracellular matrix. In this study, an in vitro, bronchial wall coculture model has been established using a decellularized, porcine luminal trachea membrane and employing three relevant human cell types. The tissue was decellularized and placed in plastic transwell supports. The human bronchial epithelial cell line, 16HBE14o-, was seeded on the apical side of the membrane with the human lung fibroblast cell line, Wi-38, and/or the microvascular endothelial cell line, ISO-HAS-1, seeded on the basolateral side. Transepithelial electrical resistance (TER) was measured over 10 days and tight/adherens junctions (ZO-1, occludin/β-catenin) were studied through immunofluorescence. Scanning electron microscopy (SEM) was performed to evaluate microvilli and cilia formation. All cultures grew successfully on the membrane. TER values of 555 Ω·cm(2) (±21, SEM) were achieved in the monoculture. Cocultures with fibroblasts reached 565 Ω·cm(2) (±41, SEM), with endothelial cells at 638 Ω·cm(2) (±37, SEM), and the triple culture achieved 552 Ω·cm(2) (±38, SEM). ZO-1, occludin, and β-catenin were expressed in 16HBE14o- under all culture conditions. Using SEM, a dense microvilli population was found. Prominent cell-cell contacts and clusters of emerging cilia could be identified. Fibroblasts and endothelial cells strengthened the formation of a tight barrier by the 16HBE14o-. Thus, the coculture of three relevant cell types in combination with native decellularized scaffolds as a substrate approaches more closely the in vivo situation and could be used to study mechanisms of upper respiratory damage and regeneration. PMID

  13. Lack of Dystrophin Affects Bronchial Epithelium in mdx Mice.

    PubMed

    Morici, Giuseppe; Rappa, Francesca; Cappello, Francesco; Pace, Elisabetta; Pace, Andrea; Mudò, Giuseppa; Crescimanno, Grazia; Belluardo, Natale; Bonsignore, Maria R

    2016-10-01

    Mild exercise training may positively affect the course of Duchenne Muscular Dystrophy (DMD). Training causes mild bronchial epithelial injury in both humans and mice, but no study assessed the effects of exercise in mdx mice, a well known model of DMD. The airway epithelium was examined in mdx (C57BL/10ScSn-Dmdmdx) mice, and in wild type (WT, C57BL/10ScSc) mice either under sedentary conditions (mdx-SD, WT-SD) or during mild exercise training (mdx-EX, WT-EX). At baseline, and after 30 and 45 days of training (5 d/wk for 6 weeks), epithelial morphology and markers of regeneration, apoptosis, and cellular stress were assessed. The number of goblet cells in bronchial epithelium was much lower in mdx than in WT mice under all conditions. At 30 days, epithelial regeneration (PCNA positive cells) was higher in EX than SD animals in both groups; however, at 45 days, epithelial regeneration decreased in mdx mice irrespective of training, and the percentage of apoptotic (TUNEL positive) cells was higher in mdx-EX than in WT-EX mice. Epithelial expression of HSP60 (marker of stress) progressively decreased, and inversely correlated with epithelial apoptosis (r = -0.66, P = 0.01) only in mdx mice. Lack of dystrophin in mdx mice appears associated with defective epithelial differentiation, and transient epithelial regeneration during mild exercise training. Hence, lack of dystrophin might impair repair in bronchial epithelium, with potential clinical consequences in DMD patients. J. Cell. Physiol. 231: 2218-2223, 2016. © 2016 Wiley Periodicals, Inc. PMID:26868633

  14. Transformed sweat gland and nasal epithelial cell lines from control and cystic fibrosis individuals.

    PubMed

    Buchanan, J A; Yeger, H; Tabcharani, J A; Jensen, T J; Auerbach, W; Hanrahan, J W; Riodan, J R; Buchwald, M

    1990-01-01

    We undertook to extend the in vitro lifespan of epithelial cell cultures useful for the study of the cellular defect underlying cystic fibrosis (CF). Primary cultures from sweat glands of four CF and four non-CF and from nasal polyps of one non-CF and two CF individuals were transformed using a chimaeric virus, Ad5/SV40 1613 ori-. The extended lifespans ranged from 20 to more than 250 population doublings beyond that of the primary cultures. Despite some degree of aneuploidy (as assayed by total cellular DNA content) all samples tested retained at least one copy of the region of chromosome 7 containing the CF gene (as assayed by probing with flanking DNA markers). Epithelial characteristics, including an epithelioid morphology, tight junctions and desmosomes, apical microvilli, keratin networks, and dome formation were positive in the majority of cells examined, although variably expressed. All cells tested demonstrated outwardly rectifying chloride channels by patch clamp, with some from non-CF cells responsive to the catalytic subunit of cyclic AMP-dependent protein kinase. The cells were used for DNA transfection assays with selectable marker genes in appropriate vectors, in order to develop methodology for assaying the function of the CF gene product and the effects of mutations. PMID:1693627

  15. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    SciTech Connect

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S. . E-mail: jrhim@cpdr.org

    2006-04-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents.

  16. The neoplastic potential of rat tracheal epithelial cell lines induced by dibenzo(a, i)pyrene and 1-nitropyrene

    SciTech Connect

    Xiang, M.; Ong, T. |; Nath, J.

    1997-10-01

    The rat tracheal epithelial (RTE) cell transformation system is an important short-term assay for respiratory carcinogenesis. In our laboratories, studies have been performed using this assay system to determine the carcinogenic potential of dibenzo(a,i)pyrene (DBP) and 1-nitropyrene (1-NP), two compounds commonly contaminating occupational and environmental settings. RTE cells were exposed in vivo to DBP or 1-NP by intertracheal instillation. RTE cells were then isolated and plated on a medium for determination of cloning and transformation frequencies. Cell lines established from transformed cells induced by DBP and 1-NP were analyzed for their neoplastic potential with the soft agar cloning and the athymic nude mouse tumorigenicity assays. Results showed that: (1) incidence of transformed foci in cultures treated with DBP or 1-NP in vivo was significantly higher than that in the control cultures; (2) 8 and 25 cell lines were established from 28 and 48 transformed foci induced by DBP and 1-NP, respectively; (3) 3 of 5 cell lines from DBP and 5 anchorage independent growth in soft agar; (4) some of the cell lines from DBP and 1-NP induced transformed foci formed tumors after cells were injected in athymic nude mice. These results indicate that in vivo exposure to DBP and 1-NP can induce RTE cell transformation and that transformed cells induced by DBP and 1-NP may have neoplastic potential.

  17. Unusual bronchial foreign body.

    PubMed

    Kuba, Paresh Kumar; Sharma, Jasvinder; Sharma, Ashok Kumar

    2015-11-01

    We present an unusual case of bronchial foreign body in an adult who presented with bronchiectasis more than two decades later. The patient was unaware of his accidental aspiration of the foreign body, and the final diagnosis was made intraoperatively. PMID:26113734

  18. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    PubMed Central

    2014-01-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

  19. Chidamide alleviates TGF-β-induced epithelial-mesenchymal transition in lung cancer cell lines.

    PubMed

    Lin, Sheng-Hao; Wang, Bing-Yen; Lin, Ching-Hsiung; Chien, Peng-Ju; Wu, Yueh-Feng; Ko, Jiunn-Liang; Chen, Jeremy J W

    2016-07-01

    Transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition is a critical process in the initiation of metastasis of various types of cancer. Chidamide is a class I histone deacetylase inhibitor with anti-tumor activity. This study investigated the effects of chidamide on TGF-β-mediated suppression of E-cadherin expression in adenocarcinomic lung epithelial cells and the molecular mechanisms involved in these effects. Western blot analysis, confocal microscopy, Quantitative methyl-specific PCR and bisulfite sequencing were used to evaluate the effects of different treatments on chidamide ameliorating TGF-β induced-E-cadherin loss. H3 acetylation binding to the promoter of E-cadherin was detected by chromatin immunoprecipitations (CHIP). We found that chidamide reduced the level of lung cancer cell migration observed using a Boyden chamber assay (as an indicator of metastatic potential). Chidamide inhibited TGF-β-induced SMAD2 phosphorylation and attenuated TGF-β-induced loss of E-cadherin expression in lung cancer cells by Western blotting and confocal microscopy, respectively. Quantitative methyl-specific PCR and bisulfite sequencing revealed that TGF-β-enhanced E-cadherin promoter methylation was ameliorated in cells treated with chidamide. We demonstrated that histone H3 deacetylation within the E-cadherin promoter was required for TGF-β-induced E-cadherin loss; cell treatment with chidamide increased the H3 acetylation detected by CHIP. Taken together, our results demonstrate that TGF-β suppressed E-cadherin expression by regulating promoter methylation and histone H3 acetylation. Chidamide significantly enhanced E-cadherin expression in TGF-β-treated cells and inhibited lung cancer cell migration. These findings indicate that chidamide has a potential therapeutic use due to its capacity to prevent cancer cell metastasis. PMID:27188428

  20. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    NASA Astrophysics Data System (ADS)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  1. Microarray analysis of a Chlamydia pneumoniae-infected human epithelial cell line by use of gene ontology hierarchy.

    PubMed

    Alvesalo, Joni; Greco, Dario; Leinonen, Maija; Raitila, Tuomas; Vuorela, Pia; Auvinen, Petri

    2008-01-01

    Chlamydia pneumoniae, a gram-negative obligate intracellular bacterium, is a common cause of upper and lower respiratory tract infections worldwide. Persistent C. pneumoniae infections have been linked to chronic disease processes, such as atherosclerosis. In the present study, we examined gene expression changes in the human epithelial cell line at different stages of acute C. pneumoniae infection and used gene ontology annotation, along with single-gene analysis, to select a small group of target genes that could possibly play a key role in C. pneumoniae infection. Selected genes were silenced using small interfering RNA, and the effect of silencing on the number of C. pneumoniae inclusions was measured by time-resolved fluorometric immunoassay. The greatest reduction in the number of C. pneumoniae inclusions was due to the silencing of the gene coding for the transcription factor early growth response 1, which decreased the number of inclusions by 38.6%. PMID:18171299

  2. Specific Glycosylation of Membrane Proteins in Epithelial Ovarian Cancer Cell Lines: Glycan Structures Reflect Gene Expression and DNA Methylation Status *

    PubMed Central

    Anugraham, Merrina; Jacob, Francis; Nixdorf, Sheri; Everest-Dass, Arun Vijay; Heinzelmann-Schwarz, Viola; Packer, Nicolle H.

    2014-01-01

    Epithelial ovarian cancer is the fifth most common cause of cancer in women worldwide bearing the highest mortality rate among all gynecological cancers. Cell membrane glycans mediate various cellular processes such as cell signaling and become altered during carcinogenesis. The extent to which glycosylation changes are influenced by aberrant regulation of gene expression is nearly unknown for ovarian cancer and remains crucial in understanding the development and progression of this disease. To address this effect, we analyzed the membrane glycosylation of non-cancerous ovarian surface epithelial (HOSE 6.3 and HOSE 17.1) and serous ovarian cancer cell lines (SKOV 3, IGROV1, A2780, and OVCAR 3), the most common histotype among epithelial ovarian cancers. N-glycans were released from membrane glycoproteins by PNGase F and analyzed using nano-liquid chromatography on porous graphitized carbon and negative-ion electrospray ionization mass spectrometry (ESI-MS). Glycan structures were characterized based on their molecular masses and tandem MS fragmentation patterns. We identified characteristic glycan features that were unique to the ovarian cancer membrane proteins, namely the “bisecting N-acetyl-glucosamine” type N-glycans, increased levels of α 2–6 sialylated N-glycans and “N,N′-diacetyl-lactosamine” type N-glycans. These N-glycan changes were verified by examining gene transcript levels of the enzymes specific for their synthesis (MGAT3, ST6GAL1, and B4GALNT3) using qRT-PCR. We further evaluated the potential epigenetic influence on MGAT3 expression by treating the cell lines with 5-azacytidine, a DNA methylation inhibitor. For the first time, we provide evidence that MGAT3 expression may be epigenetically regulated by DNA hypomethylation, leading to the synthesis of the unique “bisecting GlcNAc” type N-glycans on the membrane proteins of ovarian cancer cells. Linking the observation of specific N-glycan substructures and their complex association

  3. Specific glycosylation of membrane proteins in epithelial ovarian cancer cell lines: glycan structures reflect gene expression and DNA methylation status.

    PubMed

    Anugraham, Merrina; Jacob, Francis; Nixdorf, Sheri; Everest-Dass, Arun Vijay; Heinzelmann-Schwarz, Viola; Packer, Nicolle H

    2014-09-01

    Epithelial ovarian cancer is the fifth most common cause of cancer in women worldwide bearing the highest mortality rate among all gynecological cancers. Cell membrane glycans mediate various cellular processes such as cell signaling and become altered during carcinogenesis. The extent to which glycosylation changes are influenced by aberrant regulation of gene expression is nearly unknown for ovarian cancer and remains crucial in understanding the development and progression of this disease. To address this effect, we analyzed the membrane glycosylation of non-cancerous ovarian surface epithelial (HOSE 6.3 and HOSE 17.1) and serous ovarian cancer cell lines (SKOV 3, IGROV1, A2780, and OVCAR 3), the most common histotype among epithelial ovarian cancers. N-glycans were released from membrane glycoproteins by PNGase F and analyzed using nano-liquid chromatography on porous graphitized carbon and negative-ion electrospray ionization mass spectrometry (ESI-MS). Glycan structures were characterized based on their molecular masses and tandem MS fragmentation patterns. We identified characteristic glycan features that were unique to the ovarian cancer membrane proteins, namely the "bisecting N-acetyl-glucosamine" type N-glycans, increased levels of α 2-6 sialylated N-glycans and "N,N'-diacetyl-lactosamine" type N-glycans. These N-glycan changes were verified by examining gene transcript levels of the enzymes specific for their synthesis (MGAT3, ST6GAL1, and B4GALNT3) using qRT-PCR. We further evaluated the potential epigenetic influence on MGAT3 expression by treating the cell lines with 5-azacytidine, a DNA methylation inhibitor. For the first time, we provide evidence that MGAT3 expression may be epigenetically regulated by DNA hypomethylation, leading to the synthesis of the unique "bisecting GlcNAc" type N-glycans on the membrane proteins of ovarian cancer cells. Linking the observation of specific N-glycan substructures and their complex association with epigenetic

  4. Correlation of Organic Cation/Carnitine Transporter 1 and Multidrug Resistance-Associated Protein 1 Transport Activities With Protein Expression Levels in Primary Cultured Human Tracheal, Bronchial, and Alveolar Epithelial Cells.

    PubMed

    Sakamoto, Atsushi; Suzuki, Shinobu; Matsumaru, Takehisa; Yamamura, Norio; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya

    2016-02-01

    Understanding how transporters contribute to the distribution of inhaled drugs in the lung is important for the discovery and development of such drugs. Protein expression levels may be useful to predict and understand drug distribution. As previously reported, organic cation/carnitine transporter 1 (OCTN1) and multidrug resistance-associated protein 1 (MRP1) have higher levels of protein expression among transporters in primary cultured human lung cells. Nevertheless, it is unclear to what extent transport activity correlates with transporter protein expression. The purpose is to evaluate whether differences in OCTN1 and MRP1 protein expression govern the respective transport activity in primary cultured human lung cells. The model substrates of 4-[4-(dimethylamino) styryl]-N-methylpyridinium iodide (ASP(+)) and carboxy-dichlorofluorescein (CDF) for OCTN1 and MRP1, respectively, were used in the lung cells from five donors. Significant correlation was found between the kinetic parameter Vmax for ASP(+) and OCTN1 protein expression in plasma membrane of tracheal, bronchial, and alveolar cells (r(2) = 0.965, 0.834, and 0.877, respectively), and between the efflux of CDF and MRP1 protein expression in plasma membrane of tracheal, bronchial, and alveolar cells (r(2) = 0.800, 0.904, and 0.790, respectively). These findings suggest that OCTN1 and MRP1 protein concentrations are determinants for drug distribution in the lung. PMID:26429295

  5. Dependence of mutation induction on fast-neutron energy in a human epithelial teratocarcinoma cell line (P3).

    PubMed

    Sharma, S; Hill, C K

    1996-03-01

    To date, few studies have evaluated the magnitude of the risks of somatic effects in humans from low-dose or protracted radiation exposure to neutrons using in vitro or in vivo techniques (A. Kronenberg, Radiat. Res. 128, S87-S93, 1991). In earlier study a strong energy dependence was shown for neutron-induced mutations at both the hprt and the tk loci in a rodent fibroblast cell line (Zhu and Hill, Radiat. Res. 139, 300-306, 1994). Using fast neutrons produced by impinging protons on a beryllium target at the UCLA/VA cyclotron, we have been examining the energy dependence of mutation induction at the HPRT locus in a human epithelial cell line derived from solid tumor tissue. In the present study, human epithelial teratocarcinoma cells were exposed to neutron beams produced from protons with 46, 30, 20 and 14 MeV energy. We found that cytotoxicity increased by 50% as the neutron beams produced from 46 MeV to 14 MeV, confirming many earlier reports. But as with the Chinese hamster cells, the mutation frequency at the HPRT locus increased 2.5-4-fold with decreasing neutron energy. Additionally, although there was a strong energy dependence for mutation induction, we noted that the shape of the induction curves was curvilinear for the human cells compared to the linearity of the curves obtained for the Chinese hamster cells and some other non-solid tissue human cell lines. Calculations of the RBE, using gamma rays as the standard reflected these differences. The RBE for mutation at the HPRT locus was dependent not only upon energy but also on dose, giving rise to RBEs that were in some cases distinctly different from those found in the Chinese hamster cell line. In the low-dose region (doses below 75 cGy) the maximum RBE of about 5 resulted from irradiation by the lowest-energy neutron beam (14 MeV protons on beryllium). PMID:8927701

  6. Bronchial carcinoma and hypercalcaemia

    PubMed Central

    Azzopardi, J. G.; Whittaker, R. S.

    1969-01-01

    Hypercalcaemia due to malignant disease, in the absence of bone metastases, is generally regarded as a rare event. It occurred in 16% of a series of cases of bronchial carcinoma coming to necropsy. Hypercalcaemia is a relatively common complication of bronchial carcinoma. The hypercalcaemia is usually accompanied by hypophosphataemia and, in this respect, must be distinguished from the hypercalcaemia that may be found with breast carcinoma. It is frequently accompanied by hypokalaemic alkalosis; this must not be confused with the metabolic disorder that results from the production of ectopic `ACTH'. The bones sometimes show changes of osteitis fibrosa akin to those seen in hyperparathyroidism. Cystic disease of bone recognizable radiologically is rare, probably because of the relatively short duration of the metabolic disturbance. The parathyroids are usually mildly atrophic. There is no evidence that the main pathogenetic mechanism is stimulation of the parathyroids by the tumour. Acceptable instances of parathyroid hyperplasia are very rare: the significance of these exceptional cases awaits further study. Squamous carcinoma of the bronchus is the type mainly incriminated. Oat-cell carcinoma and bronchial adenocarcinoma are involved less frequently than expected by chance. The significance of the tumour types implicated is discussed in relation to the possible pathogenesis. Images PMID:5365347

  7. Ellagic Acid and Resveratrol Prevent the Development of Cisplatin Resistance in the Epithelial Ovarian Cancer Cell Line A2780

    PubMed Central

    Engelke, Laura H.; Hamacher, Alexandra; Proksch, Peter; Kassack, Matthias U.

    2016-01-01

    Purpose. Several studies have shown that natural compounds like resveratrol or ellagic acid have anticancer and antioxidant properties and can stimulate apoptosis in many cancer cell lines. The aim of this study was to elucidate if resveratrol or ellagic acid, respectively, could improve the efficacy of cisplatin in ovarian cancer. Methods. As a cellular resistance model, the epithelial ovarian cancer cell line A2780 and its cisplatin-resistant subclone A2780CisR were used. A2780CisR was obtained by intermittent treatment of A2780 with cisplatin for 26 weekly cycles and showed a 4-6-fold increased resistance towards cisplatin compared to A2780. Results. Pretreatment with resveratrol or ellagic acid 48 h prior to treatment with cisplatin showed a moderate enhancement of cisplatin cytotoxicity in A2780CisR cells (shift factors were 1.6 for ellagic acid and 2.5 for resveratrol). However, intermittent treatment of A2780 with cisplatin for 26 weekly cycles in permanent presence of resveratrol or ellagic acid, respectively, completely prevented the development of cisplatin resistance. The generated cell lines named A2780Resv and A2780Ellag displayed functional characteristics (migration, proliferation, apoptosis, activation of ErbB3, ROS generation) similar to the parental cell line A2780. Conclusion. In conclusion, weekly intermittent treatment cycles of cisplatin-sensitive ovarian cancer cells with cisplatin retain cisplatin chemosensitivity in permanent presence of ellagic acid or resveratrol, respectively, whereas clinically relevant cisplatin chemoresistance develops in the absence of ellagic acid or resveratrol. Use of natural phenolic compounds may thus be a promising approach to prevent cisplatin resistance in ovarian cancer. PMID:26918049

  8. The Effect of Estradiol and Progesterone on Toll Like Receptor Gene Expression in A Human Fallopian Tube Epithelial Cell Line

    PubMed Central

    Zandieh, Zahra; Amjadi, Fatemehsadat; Ashrafi, Mahnaz; Aflatoonian, Abbas; Fazeli, Alireza; Aflatoonian, Reza

    2016-01-01

    Objective Toll like receptors (TLRs) are one of the main components of the innate im- mune system. It has been reported that expression of these receptors are altered in the female reproductive tract (FRT) during menstrual cycle. Here we used a fallopian tube epithelial cell line (OE-E6/E7) to evaluate the effect of two sex hormones in modulating TLR expression. Materials and Methods In this experimental study, initially TLR gene expression in OE- E6/E7 cells was evaluated and compared with that of fallopian tube tissue using quanti- tative real time-polymerase chain reaction (qRT-PCR) and immunostaining. Thereafter, OE-E6/E7 cells were cultured with different concentrations of estradiol and progesterone, and combination of both. qRT-PCR was performed to reveal any changes in expression of TLR genes as a result of hormonal treatment. Results TLR1-10 genes were expressed in human fallopian tube tissue. TLR1-6 genes and their respective proteins were expressed in the OE-E6/E7 cell line. Although estradiol and progesterone separately had no significant effect on TLR expression, their combined treatment altered the expression of TLRs in this cell line. Also, the pattern of TLR expres- sion in preovulation (P), mensturation (M) and window of implantation (W) were the same for all TLRs with no significant differences between P, M and W groups. Conclusion These data show the significant involvement of the combination of es- tradiol and progesterone in modulation of TLR gene expression in this human fal- lopian tube cell line. Further experiments may reveal the regulatory mechanism and signalling pathway behind the effect of sex hormones in modulating TLRs in the hu- man FRT. PMID:26862527

  9. A Comparison of the ATP Generating Pathways Used by S. Typhimurium to Fuel Replication within Human and Murine Macrophage and Epithelial Cell Lines.

    PubMed

    Garcia-Gutierrez, Enriqueta; Chidlaw, Amanda C; Le Gall, Gwenaelle; Bowden, Steven D; Tedin, Karsten; Kelly, David J; Thompson, Arthur

    2016-01-01

    The metabolism of S. Typhimurium within infected host cells plays a fundamental role in virulence since it enables intracellular proliferation and dissemination and affects the innate immune response. An essential requirement for the intracellular replication of S. Typhimurium is the need to regenerate ATP. The metabolic route used to fulfil this requirement is the subject of the present study. For infection models we used human and murine epithelial and macrophage cell lines. The epithelial cell lines were mICc12, a transimmortalised murine colon enterocyte cell line that shows many of the characteristics of a primary epithelial cell line, and HeLa cells. The model macrophage cell lines were THP-1A human monocyte/macrophages and RAW 264.7 murine macrophages. Using a mutational approach combined with an exometabolomic analysis, we showed that neither fermentative metabolism nor anaerobic respiration play major roles in energy generation in any of the cell lines studied. Rather, we identified overflow metabolism to acetate and lactate as the foremost route by which S. Typhimurium fulfils its energy requirements. PMID:26930214

  10. A Comparison of the ATP Generating Pathways Used by S. Typhimurium to Fuel Replication within Human and Murine Macrophage and Epithelial Cell Lines

    PubMed Central

    Garcia-Gutierrez, Enriqueta; Chidlaw, Amanda C.; Le Gall, Gwenaelle; Bowden, Steven D.; Tedin, Karsten; Kelly, David J.; Thompson, Arthur

    2016-01-01

    The metabolism of S. Typhimurium within infected host cells plays a fundamental role in virulence since it enables intracellular proliferation and dissemination and affects the innate immune response. An essential requirement for the intracellular replication of S. Typhimurium is the need to regenerate ATP. The metabolic route used to fulfil this requirement is the subject of the present study. For infection models we used human and murine epithelial and macrophage cell lines. The epithelial cell lines were mICc12, a transimmortalised murine colon enterocyte cell line that shows many of the characteristics of a primary epithelial cell line, and HeLa cells. The model macrophage cell lines were THP-1A human monocyte/macrophages and RAW 264.7 murine macrophages. Using a mutational approach combined with an exometabolomic analysis, we showed that neither fermentative metabolism nor anaerobic respiration play major roles in energy generation in any of the cell lines studied. Rather, we identified overflow metabolism to acetate and lactate as the foremost route by which S. Typhimurium fulfils its energy requirements. PMID:26930214

  11. Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture

    SciTech Connect

    Hall, H.G.; Farson, D.A.; Bissel, M.J.

    1982-08-01

    Two cells lines--Madin-Darby canine kidney (MDCK) and normal murine mammary gland (NMuMG)--growing as monolayers on collagen gels were overlaid with another collagen gel. The cells responded to the overlay by undergoing reorganization resulting in the creation of lumina. MDCK cells formed lumina that coalesced to form large cavities comparable in size with a tubule. NMuMG cells formed clusters surrounding small lumina, which appeared similar to acini of glandular tissue. The characteristic arrangements, described here by light and electron microscopy, resembled the morphology of the tissues of cell line origin. MDCK cells, grown in the presence of serum, formed lumina whether or not serum was removed at the time of overlay, whereas NMuMG cells required either a nondialyzable component of serum or hormonal supplements in serum-free defined media. Lumen formation was delayed by MDCK cells in the presence of the glutamine analog 6-diazo-5-oxo-L-norleucine, but this compound did not affect NMuMG lumen formation. In both cell lines, lumen formation was unaffected by the absence of sulfate, the presence of an inhibitor of sulfate glycosaminoglycan synthesis, or an inhibitor of collagen synthesis. DNA synthesis accompanied lumen formation but was not required.

  12. 1α,25-dihydroxyvitamin D₃ counteracts the effects of cigarette smoke in airway epithelial cells.

    PubMed

    Zhang, Ruhui; Zhao, Haijin; Dong, Hangming; Zou, Fei; Cai, Shaoxi

    2015-06-01

    Cigarette smoke extracts (CSE) alter calpain-1 expression via ERK signaling pathway in bronchial epithelial cells. 1α,25-dihydroxyvitamin D3 (1,25D3) inhibits cigarette smoke-induced epithelial barrier disruption. This study was aimed to explore whether the 1,25D3 counteracted the CSE effects in a human bronchial epithelial cell line (16HBE). In particular, transepithelial electrical resistance (TER) and permeability, expression and distribution of E-cadherin and β-catenin, calpain-1 expression, and ERK phosphorylation were assessed in the CSE-stimulated 16HBE cells. The CSE induced the ERK phosphorylation, improved the calpain-1 expression, increased the distribution anomalies and the cleaving of E-cadherin and β-catenin, and resulted in the TER reduction and the permeability increase. The 1,25D3 reduced these pathological changes. The 1,25D3 mediated effects were associated with a reduced ERK phosphorylation. In conclusion, the present study provides compelling evidences that the 1,25D3 may be considered a possible valid therapeutic option in controlling the cigarette smoke-induced epithelial barrier disruption. PMID:25880105

  13. Cytotoxic coumarins from the aerial parts of Tordylium apulum and their effects on a non-small-cell bronchial carcinoma cell line.

    PubMed

    Kofinas, C; Chinou, L; Loukis, A; Harvala, C; Roussakis, C; Maillard, M; Hostettmann, K

    1998-03-01

    Seven coumarins were isolated from the aerial parts of Tordylium apulum; their structures were established by spectroscopic means. All compounds were tested in vitro for their cytotoxicity against two cell line systems. The antiproliferative effects for three of them were studied at the level of the cell cycle in asynchronous cells of the NSCLC-N6 line with a flow cytometry apparatus. PMID:17253232

  14. Cytotoxic coumarins from the aerial parts of Tordylium apulum and their effects on a non-small-cell bronchial carcinoma line.

    PubMed

    Kofinas, C; Chinou, I; Loukis, A; Harvala, C; Roussakis, C; Maillard, M; Hostettmann, K

    1998-03-01

    Seven coumarins were isolated from the aerial parts of Tordylium apulum; their structures were established by spectroscopic means. All compounds were tested in vitro for their cytotoxicity against two cell line systems. The antiproliferative effects for three of them were studied at the level of the cell cycle in asynchronous cells of the NSCLC-N6 line with a flow cytometry apparatus. PMID:9525110

  15. Establishment and characterization of duck embryo epithelial (DEE) cell line and its use as a new approach toward DHAV-1 propagation and vaccine development.

    PubMed

    Wang, Wenxiu; Said, Abdelrahman; Wang, Yan; Fu, Qiang; Xiao, Yueqiang; Lv, Sufang; Shen, Zhiqiang

    2016-02-01

    The primary cell culture was derived from duck embryonic tissue, digested with collagenase type I. The existence of cell colonies with epithelial-like morphology, named duck embryo epithelial (DEE), were purified and optimally maintained at 37°C in M199 medium supplemented with 5% fetal bovine serum. The purified cells were identified as epithelial cell line by detecting Keratin-18 expression using immunofluorescence assay. Our findings demonstrated that DEE cell line can be propagated in culture with (i) a great capacity to adhere, (ii) a great proliferation activity, and (iii) a population doubling time of approximately 18h. Chromosomal features of the DEE cell line were remained constant after the 50th passage. Further characterizations of DEE cell line showed that cell line can normally be grown even after several passages and never converted to tumorigenic cells either in vitro or in vivo study. Susceptibility of DEE cell line was determined for transfection and duck hepatitis A type 1 virus (DHAV-1)-infection. Interestingly, the 50% egg lethal dose (ELD50) of the propagated virus in DEE cell line was higher than ELD50 of the propagated virus in embryonated eggs. Finally, DEE cell line was evaluated to be used as a candidate for DHAV-1 vaccine development. Our results showed that the propagated DHAV-1 vaccine strain SDE in DEE cell line was able to protect ducklings against DHAV-1 challenge. Taken together, our findings suggest that the DEE cell line can serve as a valuable tool for DHAV-1 propagation and vaccine production. PMID:26739426

  16. Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients

    PubMed Central

    2010-01-01

    Background Stenotrophomonas maltophilia has recently gained considerable attention as an important emerging pathogen in cystic fibrosis (CF) patients. However, the role of this microorganism in the pathophysiology of CF lung disease remains largely unexplored. In the present study for the first time we assessed the ability of S. maltophilia CF isolates to adhere to and form biofilm in experimental infection experiments using the CF-derived bronchial epithelial IB3-1cell line. The role of flagella on the adhesiveness of S. maltophilia to IB3-1 cell monolayers was also assessed by using fliI mutant derivative strains. Results All S. maltophilia CF isolates tested in the present study were able, although at different levels, to adhere to and form biofilm on IB3-1 cell monolayers. Scanning electron and confocal microscopy revealed S. maltophilia structures typical of biofilm formation on bronchial IB3-1 cells. The loss of flagella significantly (P < 0.001) decreased bacterial adhesiveness, if compared to that of their parental flagellated strains. S. maltophilia CF isolates were also able to invade IB3-1 cells, albeit at a very low level (internalization rate ranged from 0.01 to 4.94%). Pre-exposure of IB3-1 cells to P. aeruginosa PAO1 significantly increased S. maltophilia adhesiveness. Further, the presence of S. maltophilia negatively influenced P. aeruginosa PAO1 adhesiveness. Conclusions The main contribution of the present study is the finding that S. maltophilia is able to form biofilm on and invade CF-derived IB3-1 bronchial epithelial cells, thus posing a rationale for the persistence and the systemic spread of this opportunistic pathogen in CF patients. Experiments using in vivo models which more closely mimic CF pulmonary tissues will certainly be needed to validate the relevance of our results. PMID:20374629

  17. [Bronchial mucoepidermoid carcinoma].

    PubMed

    Bregante, J I; Rituerto, B; Font de Mora, F; Alonso, F; Andreu, M J; Figuerola, J; Mulet, J F

    1998-07-01

    We submit the case of a child afflicted with a mucoepidermoid bronchial tumor. The patient is a boy, aged seven, who after undergoing antibiotic treatment for six weeks because of a fever and atelectasia-condensation in the right lower lobe showed no signs of clinical improvement and was sent to our department to undergo further study and treatment. A bronchoscopy performed shows a polypoid mass that partially blocks the main bronchial tube a few milimiters under the access to the right upper lobe. A biopsy is carried out and the anatomopathological test shows there is a low degree epidermoid carcinoma. We decide to perform a lobectomy which for the tumor location and the lung condition has to be medium and lower right. We proceed to remove the adenopaty of hilium not affected by the tumor. The postoperative period develops without incidents. A check-up bronchoscopy performed three months later shows two polypoid masses in the right bronchial tube which, once a biopsy is performed, proved to be granulation tissue. Twelve months after undergoing surgery, the patient's condition is good, there is no evidence of tumor relapse and the breathing capacity is adequate, though there is an obstructive restrictive pattern in the espirometry. Even taking into consideration that lung tumors are extremely unusual, the epidermoid carcinoma is the one which most frequently occurs. The tumor's low malignancy is a sign that points to a good prognosis. Performing conservative surgery by means of bronchoplasty should be taken into account so as to keep the sequelae on the lung condition to a minimum, even though in this case the tumor location made it impossible. PMID:12602035

  18. The TNF Family Molecules LIGHT and Lymphotoxin αβ Induce a Distinct Steroid-Resistant Inflammatory Phenotype in Human Lung Epithelial Cells.

    PubMed

    da Silva Antunes, Ricardo; Madge, Lisa; Soroosh, Pejman; Tocker, Joel; Croft, Michael

    2015-09-01

    Lung epithelial cells are considered important sources of inflammatory molecules and extracellular matrix proteins that contribute to diseases such as asthma. Understanding the factors that stimulate epithelial cells may lead to new insights into controlling lung inflammation. This study sought to investigate the responsiveness of human lung epithelial cells to the TNF family molecules LIGHT and lymphotoxin αβ (LTαβ). Bronchial and alveolar epithelial cell lines, and primary human bronchial epithelial cells, were stimulated with LIGHT and LTαβ, and expression of inflammatory cytokines and chemokines and markers of epithelial-mesenchymal transition and fibrosis/remodeling was measured. LTβ receptor, the receptor shared by LIGHT and LTαβ, was constitutively expressed on all epithelial cells. Correspondingly, LIGHT and LTαβ strongly induced a limited but highly distinct set of inflammatory genes in all epithelial cells tested, namely the adhesion molecules ICAM-1 and VCAM-1; the chemokines CCL5, CCL20, CXCL1, CXCL3, CXCL5, and CXCL11; the cytokines IL-6, activin A and GM-CSF; and metalloproteinases matrix metalloproteinase-9 and a disintegrin and metalloproteinase domain-8. Importantly, induction of the majority of these inflammatory molecules was insensitive to the suppressive effects of the corticosteroid budesonide. LIGHT and LTαβ also moderately downregulated E-cadherin, a protein associated with maintaining epithelial integrity, but did not significantly drive production of extracellular matrix proteins or α-smooth muscle actin. Thus, LIGHT and LTαβ induce a distinct steroid-resistant inflammatory signature in airway epithelial cells via constitutively expressed LTβ receptor. These findings support our prior murine studies that suggested the receptors for LIGHT and LTαβ contribute to development of lung inflammation characteristic of asthma and idiopathic pulmonary fibrosis. PMID:26209626

  19. Isolation and characterization of a spontaneously immortalized bovine retinal pigmented epithelial cell line

    PubMed Central

    2009-01-01

    Background The Retinal Pigmented Epithelium (RPE) is juxtaposed with the photoreceptor outer segments of the eye. The proximity of the photoreceptor cells is a prerequisite for their survival, as they depend on the RPE to remove the outer segments and are also influenced by RPE cell paracrine factors. RPE cell death can cause a progressive loss of photoreceptor function, which can diminish vision and, over time, blindness ensues. Degeneration of the retina has been shown to induce a variety of retinopathies, such as Stargardt's disease, Cone-Rod Dystrophy (CRD), Retinitis Pigmentosa (RP), Fundus Flavimaculatus (FFM), Best's disease and Age-related Macular Degeneration (AMD). We have cultured primary bovine RPE cells to gain a further understanding of the mechanisms of RPE cell death. One of the cultures, named tRPE, surpassed senescence and was further characterized to determine its viability as a model for retinal diseases. Results The tRPE cell line has been passaged up to 150 population doublings and was shown to be morphologically similar to primary cells. They have been characterized to be of RPE origin by reverse transcriptase PCR and immunocytochemistry using the RPE-specific genes RPE65 and CRALBP and RPE-specific proteins RPE65 and Bestrophin. The tRPE cells are also immunoreactive to vimentin, cytokeratin and zonula occludens-1 antibodies. Chromosome analysis indicates a normal diploid number. The tRPE cells do not grow in suspension or in soft agar. After 3H thymidine incorporation, the cells do not appear to divide appreciably after confluency. Conclusion The tRPE cells are immortal, but still exhibit contact inhibition, serum dependence, monolayer growth and secrete an extra-cellular matrix. They retain the in-vivo morphology, gene expression and cell polarity. Additionally, the cells endocytose exogenous melanin, A2E and purified lipofuscin granules. This cell line may be a useful in-vitro research model for retinal maculopathies. PMID:19413901

  20. Transection of a Coopdech bronchial blocker tip during bronchial resection for right upper lobectomy: a case report

    PubMed Central

    Lee, Yong-Hun; Yang, Hye Mo; Kim, Hyun-Chang; Bahk, Jae-Hyon

    2015-01-01

    A bronchial blocker (BB) is preferred for lung separation in patients with difficult airways. However, BBs, unlike double-lumen tubes, must be placed in the bronchus of the lung being operated on, hence can be damaged by surgical manipulation. Intubation was unexpectedly difficult in this male patient, so a Coopdech BB was placed in the right mainstem bronchus through a single-lumen tracheoscopic ventilation tube for a thoracoscopic right upper lobectomy. During the bronchial resection, however, the distal tip of the BB was transected and pinched in the staple line, so the staple line was partially opened, and the BB was withdrawn into the trachea. The opened bronchial stump was sutured manually under apnea without conversion to an open thoracotomy, and there was no significant air leakage through the suture line. This case underlines the importance of frequently evaluating the position of a BB during lung surgery. PMID:26045933

  1. Glyoxalase I drives epithelial-to-mesenchymal transition via argpyrimidine-modified Hsp70, miR-21 and SMAD signalling in human bronchial cells BEAS-2B chronically exposed to crystalline silica Min-U-Sil 5: Transformation into a neoplastic-like phenotype.

    PubMed

    Antognelli, Cinzia; Gambelunghe, Angela; Muzi, Giacomo; Talesa, Vincenzo Nicola

    2016-03-01

    Glyoxalase I (Glo1) is the main scavenging enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). AGEs are known to control multiple biological processes, including epithelial to mesenchymal transition (EMT), a multistep phenomenon associated with cell transformation, playing a major role in a variety of diseases, including cancer. Crystalline silica is a well-known occupational health hazard, responsible for a great number of human pulmonary diseases, such as silicosis. There is still much debate concerning the carcinogenic role of crystalline silica, mainly due to the lack of a causal demonstration between silica exposure and carcinogenesis. It has been suggested that EMT might play a role in crystalline silica-induced lung neoplastic transformation. The aim of this study was to investigate whether, and by means of which mechanism, the antiglycation defence Glo1 is involved in Min-U-Sil 5 (MS5) crystalline silica-induced EMT in BEAS-2B human bronchial epithelial cells chronically exposed, and whether this is associated with the beginning of a neoplastic-like transformation process. By using gene silencing/overexpression and scavenging/inhibitory agents, we demonstrated that MS5 induced hydrogen peroxide-mediated c-Jun-dependent Glo1 up-regulation which resulted in a decrease in the Argpyrimidine-modified Hsp70 protein level which triggered EMT in a novel mechanism involving miR-21 and SMAD signalling. The observed EMT was associated with a neoplastic-like phenotype. The results obtained provide a causal in vitro demonstration of the MS5 pro-carcinogenic transforming role and more importantly they provide new insights into the mechanisms involved in this process, thus opening new paths in research concerning the in vivo study of the carcinogenic potential of crystalline silica. PMID:26784015

  2. Lactobacillus plantarum Lipoteichoic Acid Alleviates TNF-α-Induced Inflammation in the HT-29 Intestinal Epithelial Cell Line

    PubMed Central

    Kim, Hangeun; Jung, Bong Jun; Jung, Ji Hae; Kim, Joo Yun; Chung, Sung Kyun; Chung, Dae Kyun

    2012-01-01

    We recently observed that lipoteichoic acid (LTA) isolated from Lactobacillus plantarum inhibited endotoxin-mediated inflammation of the immune cells and septic shock in a mouse model. Here, we examined the inhibitory role of L. plantarum LTA (pLTA) on the inflammatory responses of intestinal epithelial cells (IEC). The human colon cell line, HT-29, increased interleukin (IL)-8 expression in response to recombinant human tumor necrosis factor (TNF)-alpha, but not in response to bacterial ligands and interferon (IFN)-gamma. TNF-α also increased the production of inducible nitric oxide synthase (iNOS), nitric oxide (NO), and intercellular adhesion molecule 1 (ICAM-1) through activation of p38 mitogen-activated protein kinase (MAPK) from HT-29 cells. However, the inflammatory response of HT-29 on TNF-α stimulation was significantly inhibited by pLTA treatment. This pLTA-mediated inhibition accompanied the inhibition of nuclear factor (NF)-kappa B and MAPKs. Our data suggest that pLTA regulates cytokine-mediated immune responses and may be a good candidate for maintaining intestinal homeostasis against excessive inflammation. PMID:22526394

  3. Proteomic analysis of human epithelial lining fluid by microfluidics-based nanoLC-MS/MS: a feasibility study.

    PubMed

    Franciosi, Lorenza; Govorukhina, Natalia; Fusetti, Fabrizia; Poolman, Bert; Lodewijk, Monique E; Timens, Wim; Postma, Dirkje; ten Hacken, Nick; Bischoff, Rainer

    2013-09-01

    Microfluidics-based nanoLC-MS/MS (chipLC-MS/MS) was used to identify and quantify proteins in epithelial lining fluid (ELF), collected during bronchoscopy from the main bronchi of chronic obstructive pulmonary disease (COPD) patients and healthy controls using microprobes. ELF is a biofluid that is well suited to study pathophysiological processes in the lung, because it contains high concentrations of biologically active molecules. 1D-PAGE followed by in-gel tryptic digestion and chipLC-MS/MS resulted in identification of approximately 300 proteins. A comparative study of ELF from COPD patients and non-COPD controls using chemical stable isotope labeling (iTRAQ®-8Plex) showed that the levels of lactotransferrin, high-mobility group protein B1 (HMGB 1), alpha 1-antichymotrypsin and cofilin-1 differed significantly in ELF from COPD patients and non-COPD controls (p-values < 0.05). These results were reproduced in another, independent set of ELF samples from COPD patients and non-COPD controls and further validated by immunohistochemistry. This study shows the feasibility of performing chipLC-MS/MS and quantitative proteomics in human ELF. PMID:23712570

  4. Effect of CD133 overexpression on the epithelial-to-mesenchymal transition in oral cancer cell lines.

    PubMed

    Moon, YeonHee; Kim, Donghwi; Sohn, HongMoon; Lim, Wonbong

    2016-06-01

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers in the world. In OSCC, CD133 promotes tumor invasion and metastasis by inducing the epithelial-to-mesenchymal transition (EMT). A small subset of cancer cells known as cancer stem cells (CSCs) are thought to give rise to differentiated tumor cells and to predict tumor recurrence and metastases, i.e., CSCs may be metastatic precursors. In this study, we show that ectopic overexpression of CD133 in OSCC cell lines KB, YD9, and YD10B cells significantly promotes the EMT and acquisition of stemness properties. CSC properties were analyzed by colony-formation assay and measurement of OCT4, SOX2, and NANOG expression, and the EMT was monitored by cell migration, a cell invasion assay, and analysis of E-cadherin, N-cadherin, and vimentin expression. CD133 overexpression led to formation of irregular spheroid colonies consistent with a stem cell phenotype and increased the expression of OCT4, SOX2, NANOG, N-cadherin, and vimentin. Taken together, these findings show that elevated levels of CD133 lead to OSCC invasiveness and metastasis, associated with the upregulation of EMT and stemness markers. PMID:27137188

  5. Thrombospondin-1 induces differential response in human corneal and conjunctival epithelial cells lines under in vitro inflammatory and apoptotic conditions.

    PubMed

    Soriano-Romaní, Laura; García-Posadas, Laura; López-García, Antonio; Paraoan, Luminita; Diebold, Yolanda

    2015-05-01

    Recently, thrombospondin-1 (TSP-1) has been reported to be critical for maintaining a healthy ocular surface. The purpose of the study was to characterize the expression of TSP-1 and of its receptors CD36 and CD47 in corneal and conjunctival epithelial cells and determine the effect of exogenous TSP-1 treatment on these cells, following the induction of inflammation- and apoptosis-related changes. The expression of TSP-1, CD36 and CD47 by corneal and conjunctival cell lines was firstly characterized by ELISA, immunofluorescence analysis, Western blotting and reverse transcription polymerase chain reaction (RT-PCR). Benzalkonium chloride (BAC) exposure for 5 or 15 min was used as pro-inflammatory and pro-apoptotic stimulus for corneal or conjunctival epithelial cells, respectively. To analyze inflammation and apoptosis-related changes, IL-6 and TGF-β2 secretion determined by ELISA was used as inflammatory markers, while activated caspase-3/7 levels and cell viability, determined by CellEvent™ Caspase-3/7 Green Detection Reagent and XTT cytotoxicity assay, respectively, were used as apoptotic markers. Changes in CD36 and CD47 mRNA expression were quantified by real time RT-PCR. Corneal epithelial cells secreted and expressed higher protein levels of TSP-1 than conjunctival epithelial cells, although TSP-1 mRNA expression levels were similar and had lower CD36 and CD47, both at protein and mRNA levels. Both cell lines responded to exogenous TSP-1 treatment increasing CD36 at protein and mRNA levels. Blocking experiments revealed a predominance of TSP-1/CD47 rather than TSP-1/CD36 interactions to up-regulate CD36 levels in conjunctival epithelial cells, but not in corneal epithelial cells. BAC exposure increased IL-6 secretion and caspase-3/7 levels and decreased cell viability in both, corneal and conjunctival epithelial cells. Moreover, BAC exposure increased latent TGF-β2 levels in conjunctival epithelial cells. Interestingly, CD36 mRNA expression was down

  6. Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Shan, Jiajie; Liao, Jie; Huang, Junwei; Robert, Renaud; Palmer, Melissa L; Fahrenkrug, Scott C; O'Grady, Scott M; Hanrahan, John W

    2012-01-01

    Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl− and HCO3− secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines derived from the human airway epithelial cell line Calu-3. Forskolin stimulated the short-circuit current (Isc) across voltage-clamped monolayers, and also increased the equivalent short-circuit current (Ieq) calculated under open-circuit conditions. Isc was equivalent to the HCO3− net flux measured using the pH-stat technique, whereas Ieq was the sum of the Cl− and HCO3− net fluxes. Ieq and HCO3− fluxes were increased by bafilomycin and ZnCl2, suggesting that some secreted HCO3− is neutralized by parallel electrogenic H+ secretion. Ieq and fluid secretion were dependent on the presence of both Na+ and HCO3−. The carbonic anhydrase inhibitor acetazolamide abolished forskolin stimulation of Ieq and HCO3− secretion, suggesting that HCO3− transport under these conditions requires catalysed synthesis of carbonic acid. Cl− was the predominant anion in secretions under all conditions studied and thus drives most of the fluid transport. Nevertheless, 50–70% of Cl− and fluid transport was bumetanide-insensitive, suggesting basolateral Cl− loading by a sodium–potassium–chloride cotransporter 1 (NKCC1)-independent mechanism. Imposing a transepithelial HCO3− gradient across basolaterally permeabilized Calu-3 cells sustained a forskolin-stimulated current, which was sensitive to CFTR inhibitors and drastically reduced in CFTR-deficient cells. Net HCO3− secretion was increased by bilateral Cl− removal and therefore did not require apical Cl−/HCO3− exchange. The results suggest a model in which most HCO3− is recycled basolaterally by exchange with Cl−, and the resulting HCO3−-dependent Cl− transport provides an osmotic driving force for

  7. Cytotoxicity, apoptosis, DNA damage and methylation in mammary and kidney epithelial cell lines exposed to ochratoxin A.

    PubMed

    Giromini, Carlotta; Rebucci, Raffaella; Fusi, Eleonora; Rossi, Luciana; Saccone, Francesca; Baldi, Antonella

    2016-06-01

    This study aimed to investigate the in vitro damage induced by ochratoxin A (OTA) in BME-UV1 and MDCK epithelial cells. Both cells lines were treated with OTA (0 up to 10 μg/mL), and cell viability (MTT assay), membrane stability (lactate dehydrogenase (LDH) release assay) and apoptotic cell rate (Tunel assay) were investigated. Further, the effect of the incubation with OTA has been evaluated at DNA level by the determination of DNA integrity, by the quantification of DNA adduct formation (8-hydroxy-2'-deoxyguanosine (8-OHdG)) and by the assessment of the global DNA methylation status (5-methyl-cytosine (5-mC)). The obtained results showed that after 24 h of OTA treatment, BME-UV1 cell viability was reduced in a dose-dependent way. OTA significantly (P < 0.05) increased LDH release in BME-UV1 cells at all concentrations tested. OTA (1.25 μg/mL) induced 35 % LDH release in MDCK cells (P < 0.05). A significant (P < 0.05) change in percentages of apoptotic BME-UV1 (10 ± 0.86) and MDCK (25 ± 0.88) cells was calculated when the cells were co-incubated with OTA. The level of 8-OHdG adduct formation was significantly (P < 0.05) increased in BME-UV1 cells treated with 1.25 μg/mL of OTA. The results of the present study suggest that a different mechanism of action may occur in these cell lines. Graphical abstract Study results overview. PMID:27154019

  8. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines

    PubMed Central

    Lanone, Sophie; Rogerieux, Françoise; Geys, Jorina; Dupont, Aurélie; Maillot-Marechal, Emmanuelle; Boczkowski, Jorge; Lacroix, Ghislaine; Hoet, Peter

    2009-01-01

    Background A critical issue with nanomaterials is the clear understanding of their potential toxicity. We evaluated the toxic effect of 24 nanoparticles of similar equivalent spherical diameter and various elemental compositions on 2 human pulmonary cell lines: A549 and THP-1. A secondary aim was to elaborate a generic experimental set-up that would allow the rapid screening of cytotoxic effect of nanoparticles. We therefore compared 2 cytotoxicity assays (MTT and Neutral Red) and analyzed 2 time points (3 and 24 hours) for each cell type and nanoparticle. When possible, TC50 (Toxic Concentration 50 i.e. nanoparticle concentration inducing 50% cell mortality) was calculated. Results The use of MTT assay on THP-1 cells exposed for 24 hours appears to be the most sensitive experimental design to assess the cytotoxic effect of one nanoparticle. With this experimental set-up, Copper- and Zinc-based nanoparticles appear to be the most toxic. Titania, Alumina, Ceria and Zirconia-based nanoparticles show moderate toxicity, and no toxicity was observed for Tungsten Carbide. No correlation between cytotoxicity and equivalent spherical diameter or specific surface area was found. Conclusion Our study clearly highlights the difference of sensitivity between cell types and cytotoxicity assays that has to be carefully taken into account when assessing nanoparticles toxicity. PMID:19405955

  9. Concurrent expression of heme oxygenase-1 and p53 in human retinal pigment epithelial cell line

    SciTech Connect

    Lee, Sang Yull; Jo, Hong Jae; Kim, Kang Mi; Song, Ju Dong; Chung, Hun Taeg; Park, Young Chul

    2008-01-25

    Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. Here, we investigated the effects of HO activity on the expression of p53 in the human retinal pigment epithelium (RPE) cell line ARPE-19. Cobalt protoporphyrin (CoPP) induced the expression of both HO-1 and p53 without significant toxicity to the cells. In addition, the blockage of HO activity with the iron chelator DFO or with HO-1 siRNA inhibited the CoPP-induced expression of p53. Similarly, zinc protoporphyrin (ZnPP), an inhibitor of HO, suppressed p53 expression in ARPE-19 cells, although ZnPP increased the level of HO-1 protein while inhibiting HO activity. Also, CoPP-induced p53 expression was not affected by the formation of reactive oxygen species (ROS). Based on these results, we conclude that HO activity is involved in the regulation of p53 expression in a ROS-independent mechanism, and also suggest that the expression of p53 in ARPE-19 cells is associated with heme metabolites such as biliverdin/bilirubin, carbon monoxide, and iron produced by the activity of HO.

  10. Tissue-engineered endothelial and epithelial implants differentially and synergistically regulate airway repair.

    PubMed

    Zani, Brett G; Kojima, Koji; Vacanti, Charles A; Edelman, Elazer R

    2008-05-13

    The trilaminate vascular architecture provides biochemical regulation and mechanical integrity. Yet regulatory control can be regained after injury without recapitulating tertiary structure. Tissue-engineered (TE) endothelium controls repair even when placed in the perivascular space of injured vessels. It remains unclear from vascular repair studies whether endothelial implants recapitulate the vascular epithelial lining or expose injured tissues to endothelial cells (ECs) with unique healing potential because ECs line the vascular epithelium and the vasa vasorum. We examined this issue in a nonvascular tubular system, asking whether airway repair is controlled by bronchial epithelial cells (EPs) or by ECs of the perfusing bronchial vasculature. Localized bronchial denuding injury damaged epithelium, narrowed bronchial lumen, and led to mesenchymal cell hyperplasia, hypervascularity, and inflammatory cell infiltration. Peribronchial TE constructs embedded with EPs or ECs limited airway injury, although optimum repair was obtained when both cells were present in TE matrices. EC and EP expression of PGE(2), TGFbeta1, TGFbeta2, GM-CSF, IL-8, MCP-1, and soluble VCAM-1 and ICAM-1 was altered by matrix embedding, but expression was altered most significantly when both cells were present simultaneously. EPs may provide for functional control of organ injury and fibrous response, and ECs may provide for preservation of tissue perfusion and the epithelium in particular. Together the two cells optimize functional restoration and healing, suggesting that multiple cells of a tissue contribute to the differentiated biochemical function and repair of a tissue, but need not assume a fixed, ordered architectural relationship, as in intact tissues, to achieve these effects. PMID:18458330

  11. Human bronchial epithelial cells exposed in vitro to diesel exhaust particles exhibit alterations in cell rheology and cytotoxicity associated with decrease in antioxidant defenses and imbalance in pro- and anti-apoptotic gene expression.

    PubMed

    Seriani, Robson; de Souza, Claudia Emanuele Carvalho; Krempel, Paloma Gava; Frias, Daniela Perroni; Matsuda, Monique; Correia, Aristides Tadeu; Ferreira, Márcia Zotti Justo; Alencar, Adriano Mesquita; Negri, Elnara Marcia; Saldiva, Paulo Hilário Nascimento; Mauad, Thais; Macchione, Mariangela

    2016-05-01

    Diesel exhaust particles (DEPs) from diesel engines produce adverse alterations in cells of the airways by activating intracellular signaling pathways and apoptotic gene overexpression, and also by influencing metabolism and cytoskeleton changes. This study used human bronchial epithelium cells (BEAS-2B) in culture and evaluates their exposure to DEPs (15ug/mL for 1 and 2 h) in order to determine changes to cell rheology (viscoelasticity) and gene expression of the enzymes involved in oxidative stress, apoptosis, and cytotoxicity. BEAS-2B cells exposed to DEPs were found to have a significant loss in stiffness, membrane stability, and mitochondrial activity. The genes involved in apoptosis [B cell lymphoma 2 (BCL-2 and caspase-3)] presented inversely proportional expressions (p = 0.05, p = 0.01, respectively), low expression of the genes involved in antioxidant responses [SOD1 (superoxide dismutase 1); SOD2 (superoxide dismutase 2), and GPx (glutathione peroxidase) (p = 0.01)], along with an increase in cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) (p = 0.01). These results suggest that alterations in cell rheology and cytotoxicity could be associated with oxidative stress and imbalance between pro- and anti-apoptotic genes. PMID:26856867

  12. Quantitative architectural analysis of bronchial intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Guillaud, Martial; MacAulay, Calum E.; Le Riche, Jean C.; Dawe, Chris; Korbelik, Jagoda; Lam, Stephen

    2000-04-01

    Considerable variation exists among pathologist in the interpretation of intraepithelial neoplasia making it difficult to determine the natural history of these lesion and to establish management guidelines for chemoprevention. The aim of the study is to evaluate architectural features of pre-neoplastic progression in lung cancer, and to search for a correlation between architectural index and conventional pathology. Quantitative architectural analysis was performed on a series of normal lung biopsies and Carcinoma In Situ (CIS). Centers of gravity of the nuclei within a pre-defined region of interest were used as seeds to generate a Voronoi Diagram. About 30 features derived from the Voronoi diagram, its dual the Delaunay tessellation, and the Minimum Spanning Tree were extracted. A discriminant analysis was performed to separate between the two groups. The architectural Index was calculated for each of the bronchial biopsies that were interpreted as hyperplasia, metaplasia, mild, moderate or severe dysplasia by conventional histopathology criteria. As a group, lesions classified as CIS by conventional histopathology criteria could be distinguished from dysplasia using the architectural Index. Metaplasia was distinct from hyperplasia and hyperplasia from normal. There was overlap between severe and moderate dysplasia but mild dysplasia could be distinguished form moderate dysplasia. Bronchial intraepithelial neoplastic lesions can be degraded objectively by architectural features. Combination of architectural features and nuclear morphometric features may improve the quantitation of the changes occurring during the intra-epithelial neoplastic process.

  13. Bronchial pleomorphic adenoma coexisting with lung cancer.

    PubMed

    Goto, Taichiro; Maeshima, Arafumi; Akanabe, Kumi; Hamaguchi, Reo; Wakaki, Misa; Oyamada, Yoshitaka; Kato, Ryoichi

    2011-01-01

    Pleomorphic adenoma usually occurs in the salivary glands but rarely in the trachea or bronchi. A 71-year-old man had abnormal shadows on a chest X-ray. Chest CT revealed one tumor in the right basal segment of the lung and another, in the left main bronchus. Bronchoscopic biopsy of the right tumor revealed well-differentiated squamous cell carcinoma. Right lower lobectomy and lymph node dissection were performed (pT2N0M0, stage IB). At the orifice of the left main bronchus, bronchoscopy identified a polypoid lesion nearly obstructing the airway. The lesion was resected with hot snare ablation. The histological examination revealed a mixture of epithelial and myxoid mesenchymal elements, characterized by ductal structures, squamous metaplasia, and cartilage tissue. The diagnosis was bronchial pleomorphic adenoma coexisting with squamous cell carcinoma of the lung. PMID:21597416

  14. Poloxamer bioadhesive hydrogel for buccal drug delivery: Cytotoxicity and trans-epithelial permeability evaluations using TR146 human buccal epithelial cell line.

    PubMed

    Zeng, Ni; Mignet, Nathalie; Dumortier, Gilles; Olivier, Elodie; Seguin, Johanne; Maury, Marc; Scherman, Daniel; Rat, Patrice; Boudy, Vincent

    2015-11-30

    A salbutamol sulfate (SS)-Poloxamer bioadhesive hydrogel specially developed for buccal administration was investigated by studying interactions with TR146 human buccal epithelium cells (i.e. cellular toxicity (i) and trans-epithelial SS diffusion (ii)). The assessment of cell viability (MTT, Alamar Blue), membrane integrity (Neutral Red), and apoptosis assay (Hoechst 33342), were performed and associated to Digital Holographic Microscopy analysis. After the treatment of 2h, SS solution induced drastic cellular alterations that were prevented by hydrogels in relation with the concentrations of poloxamer and xanthan gum. The formulation containing P407 19%/P188 1%/Satiaxane 0.1% showed the best tolerance after single and multiple administrations and significantly reduced the trans-epithelial permeability from 5.00±0.29 (×10(3)) (SS solution) to 1.83±0.22 cm/h. Digital Holographic Microscopy images in good agreement with the viability data confirmed the great interest of this direct technique. In conclusion, the proposed hydrogels represent a safe and efficient buccal drug delivery platform. PMID:26403384

  15. Monitoring in real time the cytotoxic effect of Clostridium difficile upon the intestinal epithelial cell line HT29.

    PubMed

    Valdés, Lorena; Gueimonde, Miguel; Ruas-Madiedo, Patricia

    2015-12-01

    The incidence and severity of Clostridium difficile infections (CDI) has been increased not only among hospitalized patients, but also in healthy individuals traditionally considered as low risk population. Current treatment of CDI involves the use of antibiotics to eliminate the pathogen, although recurrent relapses have also been reported. For this reason, the search of new antimicrobials is a very active area of research. The strategy to use inhibitors of toxin's activity has however been less explored in spite of being a promising option. In this regard, the lack of fast and reliable in vitro screening methods to search for novel anti-toxin drugs has hampered this approach. The aim of the current study was to develop a method to monitor in real time the cytotoxicity of C. difficile upon the human colonocyte-like HT29 line, since epithelial intestinal cells are the primary targets of the toxins. The label-free, impedance based RCTA (real time cell analyser) technology was used to follow overtime the behaviour of HT29 in response to C. difficile LMG21717 producing both A and B toxins. Results obtained showed that the selection of the medium to grow the pathogen had a great influence in obtaining toxigenic supernatants, given that some culture media avoided the release of the toxins. A cytotoxic dose- and time-dependent effect of the supernatant obtained from GAM medium upon HT29 and Caco2 cells was detected. The sigmoid-curve fit of data obtained with HT29 allowed the calculation of different toxicological parameters, such as EC50 and LOAEL values. Finally, the modification in the behaviour of HT29 reordered in the RTCA was correlated with the cell rounding effect, typically induced by these toxins, visualized by time-lapsed captures using an optical microscope. Therefore, this RTCA method developed to test cytotoxicity kinetics of C. difficile supernatants upon IEC could be a valuable in vitro model for the screening of new anti-CDI agents. PMID:26436983

  16. Zanamivir pharmacokinetics and pulmonary penetration into epithelial lining fluid following intravenous or oral inhaled administration to healthy adult subjects.

    PubMed

    Shelton, Mark J; Lovern, Mark; Ng-Cashin, Judith; Jones, Lori; Gould, Elizabeth; Gauvin, Jennifer; Rodvold, Keith A

    2011-11-01

    Zanamivir serum and pulmonary pharmacokinetics were characterized following intravenous (i.v.) or oral inhaled administration. I.v. zanamivir was given as intermittent doses of 100 mg, 200 mg, and 600 mg every 12 h (q12h) for two doses or as a continuous infusion (6-mg loading dose followed by 3 mg/h for 12 h). Oral inhaled zanamivir (two 5-mg inhalations q12h for two doses) was evaluated as well. Each zanamivir regimen was administered to six healthy subjects with serial pharmacokinetic sampling. In addition, a single bronchoalveolar lavage (BAL) fluid sample was collected at various time points and used to calculate epithelial lining fluid (ELF) drug concentrations for each subject. For intermittent i.v. administration of 100 mg, 200 mg, and 600 mg zanamivir, the median zanamivir concentrations in ELF collected 12 h after dosing were 74, 146, and 419 ng/ml, respectively, each higher than the historic mean 50% inhibitory concentrations for the neuraminidases of wild-type strains of influenza A and B viruses. Median ELF/serum zanamivir concentration ratios ranged from 55 to 79% for intermittent i.v. administration (when sampled 12 h after the last dose) and 43 to 45% for continuous infusion (when sampled 6 to 12 h after the start of the infusion). For oral inhaled zanamivir, the median zanamivir concentrations in ELF were 891 ng/ml for the first BAL fluid collection and 326 ng/ml for subsequent BAL fluid collections (when sampled 12 h after the last dose); corresponding serum drug concentrations were undetectable. This study demonstrates zanamivir's penetration into the human pulmonary compartment and supports the doses selected for the continuing development of i.v. zanamivir in clinical studies of influenza. PMID:21896909

  17. Zanamivir Pharmacokinetics and Pulmonary Penetration into Epithelial Lining Fluid following Intravenous or Oral Inhaled Administration to Healthy Adult Subjects▿

    PubMed Central

    Shelton, Mark J.; Lovern, Mark; Ng-Cashin, Judith; Jones, Lori; Gould, Elizabeth; Gauvin, Jennifer; Rodvold, Keith A.

    2011-01-01

    Zanamivir serum and pulmonary pharmacokinetics were characterized following intravenous (i.v.) or oral inhaled administration. I.v. zanamivir was given as intermittent doses of 100 mg, 200 mg, and 600 mg every 12 h (q12h) for two doses or as a continuous infusion (6-mg loading dose followed by 3 mg/h for 12 h). Oral inhaled zanamivir (two 5-mg inhalations q12h for two doses) was evaluated as well. Each zanamivir regimen was administered to six healthy subjects with serial pharmacokinetic sampling. In addition, a single bronchoalveolar lavage (BAL) fluid sample was collected at various time points and used to calculate epithelial lining fluid (ELF) drug concentrations for each subject. For intermittent i.v. administration of 100 mg, 200 mg, and 600 mg zanamivir, the median zanamivir concentrations in ELF collected 12 h after dosing were 74, 146, and 419 ng/ml, respectively, each higher than the historic mean 50% inhibitory concentrations for the neuraminidases of wild-type strains of influenza A and B viruses. Median ELF/serum zanamivir concentration ratios ranged from 55 to 79% for intermittent i.v. administration (when sampled 12 h after the last dose) and 43 to 45% for continuous infusion (when sampled 6 to 12 h after the start of the infusion). For oral inhaled zanamivir, the median zanamivir concentrations in ELF were 891 ng/ml for the first BAL fluid collection and 326 ng/ml for subsequent BAL fluid collections (when sampled 12 h after the last dose); corresponding serum drug concentrations were undetectable. This study demonstrates zanamivir's penetration into the human pulmonary compartment and supports the doses selected for the continuing development of i.v. zanamivir in clinical studies of influenza. PMID:21896909

  18. Differential response of the human renal proximal tubular epithelial cell line HK-2 to Shiga toxin types 1 and 2.

    PubMed

    Lentz, Erin K; Leyva-Illades, Dinorah; Lee, Moo-Seung; Cherla, Rama P; Tesh, Vernon L

    2011-09-01

    Shiga toxins (Stxs) are expressed by the enteric pathogens Shigella dysenteriae serotype 1 and certain serotypes of Escherichia coli. Stx-producing bacteria cause bloody diarrhea with the potential to progress to acute renal failure. Stxs are potent protein synthesis inhibitors and are the primary virulence factors responsible for renal damage that may follow diarrheal disease. We explored the use of the immortalized human proximal tubule epithelial cell line HK-2 as an in vitro model of Stx-induced renal damage. We showed that these cells express abundant membrane Gb(3) and are differentially susceptible to the cytotoxic action of Stxs, being more sensitive to Shiga toxin type 1 (Stx1) than to Stx2. At early time points (24 h), HK-2 cells were significantly more sensitive to Stxs than Vero cells; however, by 72 h, Vero cell monolayers were completely destroyed while some HK-2 cells survived toxin challenge, suggesting that a subpopulation of HK-2 cells are relatively toxin resistant. Fluorescently labeled Stx1 B subunits localized to both lysosomal and endoplasmic reticulum (ER) compartments in HK-2 cells, suggesting that differences in intracellular trafficking may play a role in susceptibility to Stx-mediated cytotoxicity. Although proinflammatory cytokines were not upregulated by toxin challenge, Stx2 selectively induced the expression of two chemokines, macrophage inflammatory protein-1α (MIP-1α) and MIP-1β. Stx1 and Stx2 differentially activated components of the ER stress response in HK-2 cells. Finally, we demonstrated significant poly(ADP-ribose) polymerase (PARP) cleavage after exposure to Stx1 or Stx2. However, procaspase 3 cleavage was undetectable, suggesting that HK-2 cells may undergo apoptosis in response to Stxs in a caspase 3-independent manner. PMID:21708996

  19. Brucella suis vaccine strain S2-infected immortalized caprine endometrial epithelial cell lines induce non-apoptotic ER-stress.

    PubMed

    Wang, Xiangguo; Lin, Pengfei; Yin, Yanlong; Zhou, Jinhua; Lei, Lanjie; Zhou, Xudong; Jin, Yaping; Wang, Aihua

    2015-05-01

    Brucella, which is regarded as an intracellular pathogen responsible for a zoonotic disease called brucellosis, survives and proliferates within several types of phagocytic and non-phagocytic cells. Brucella infects not only their preferred hosts but also other domestic and wild animal species, inducing abortion and infertility. Therefore, the interaction between uterine cells and Brucella is important for understanding the pathogenesis of this disease. In this study, we describe the Brucella suis vaccine strain S2 (B.suis.S2) infection and replication in the immortalized caprine endometrial epithelial cell line hTERT-EECs and the induced cellular and molecular response modulation in vitro. We found that B.suis S2 was able to infect and replicate to high titers and inhibit the proliferation of EECs and induce non-apoptotic pathways, as determined by B.suis.S2 detection using MTT and acridine orange/ethidium bromide (AO/EB) staining and flow cytometry. We explored the evidence of non-apoptotic pathways using real-time quantitative RT-PCR and by western blot analysis. Finally, we discovered the over-expression of GRP78, ATF4, ATF6, PERK, eIF2α, CHOP, and cytochrome c (Cyt-c) but not IRE1, xbp-1, and caspase-3 in B.suis.S2 (HK)-attacked and B.suis.S2-infected cells, suggesting that the molecular mechanism of ER stress sensor activation by B.suis.S2 is basically concomitant with that by B.suis.S2 (HK) and that ER stress, especially the PERK pathway, plays an important role in the process of B.suis.S2 infecting EEC, which may, in part, explain the role of the uterus in the pathogenesis of B.suis.S2. PMID:25633898

  20. Epithelial-mesenchymal transition in human gastric cancer cell lines induced by TNF-α-inducing protein of Helicobacter pylori.

    PubMed

    Watanabe, Tatsuro; Takahashi, Atsushi; Suzuki, Kaori; Kurusu-Kanno, Miki; Yamaguchi, Kensei; Fujiki, Hirota; Suganuma, Masami

    2014-05-15

    Helicobacter pylori strains produce tumor necrosis factor-α (TNF-α)-inducing protein, Tipα as a carcinogenic factor in the gastric epithelium. Tipα acts as a homodimer with 38-kDa protein, whereas del-Tipα is an inactive monomer. H. pylori isolated from gastric cancer patients secreted large amounts of Tipα, which are incorporated into gastric cancer cells by directly binding to nucleolin on the cell surface, which is a receptor of Tipα. The binding complex induces expression of TNF-α and chemokine genes, and activates NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells). To understand the mechanisms of Tipα in tumor progression, we looked at numerous effects of Tipα on human gastric cancer cell lines. Induction of cell migration and elongation was found to be mediated through the binding to surface nucleolin, which was inhibited by the nucleolin-targeted siRNAs. Tipα induced formation of filopodia in MKN-1 cells, suggesting invasive morphological changes. Tipα enhanced the phosphorylation of 11 cancer-related proteins in serine, threonine and tyrosine, indicating activation of MEK-ERK signal cascade. Although the downregulation of E-cadherin was not shown in MKN-1 cells, Tipα induced the expression of vimentin, a significant marker of the epithelial-mesenchymal transition (EMT). It is of great importance to note that Tipα reduced the Young's modulus of MKN-1 cells determined by atomic force microscopy: This shows lower cell stiffness and increased cell motility. The morphological changes induced in human gastric cancer cells by Tipα are significant phenotypes of EMT. This is the first report that Tipα is a new inducer of EMT, probably associated with tumor progression in human gastric carcinogenesis. PMID:24249671

  1. Breath condensate hydrogen peroxide correlates with both airway cytology and epithelial lining fluid ascorbic acid concentration in the horse.

    PubMed

    Deaton, Christopher M; Marlin, David J; Smith, Nicola C; Smith, Ken C; Newton, Richard J; Gower, Susan M; Cade, Susan M; Roberts, Colin A; Harris, Pat A; Schroter, Robert C; Kelly, Frank J

    2004-02-01

    The relationship between hydrogen peroxide (H2O2) concentration in expired breath condensate (EBC) and cytology of the respiratory tract obtained from tracheal wash (TW) or bronchoalveolar lavage (BAL), and epithelial lining fluid (ELF) antioxidant status is unknown. To examine this we analysed the concentration of H2O2 in breath condensate from healthy horses and horses affected by recurrent airway obstruction (RAO), a condition considered to be an animal model of human asthma. The degree of airway inflammation was determined by assessing TW inflammation as mucus, cell density and neutrophil scores, and by BAL cytology. ELF antioxidant status was determined by measurement of ascorbic acid, dehydroascorbate, reduced and oxidised glutathione, uric acid and alpha-tocopherol concentrations. RAO-affected horses with marked airway inflammation had significantly higher concentrations of breath condensate H2O2 than control horses and RAO-affected horses in the absence of inflammation (2.0 +/- 0.5 micromol/l. 0.4 +/- 0.2 micromol/l and 0.9 +/- 0.2 micromol/l H2O2, respectively; p < 0.0001). The concentration of breath condensate H2O2 was related inversely to the concentration of ascorbic acid in ELF (r = -0.80; p < 0.0001) and correlated positively with TW inflammation score (r = 0.76, p < 0.0001) and BAL neutrophil count (r = 0.80, p < 0.0001). We conclude that the concentration of H2O2 in breath condensate influences the ELF ascorbic acid concentration and provides a non-invasive diagnostic indicator of the severity of neutrophilic airway inflammation. PMID:15104214

  2. Cytotoxicity, oxidative stress and genotoxicity induced by glass fibers on human alveolar epithelial cell line A549.

    PubMed

    Rapisarda, Venerando; Loreto, Carla; Ledda, Caterina; Musumeci, Giuseppe; Bracci, Massimo; Santarelli, Lory; Renis, Marcella; Ferrante, Margherita; Cardile, Venera

    2015-04-01

    Man-made vitreous fibers have been widely used as insulation material as asbestos substitutes; however their morphology and composition raises concerns. In 1988 the International Agency for Research on Cancer classified fiberglass, rock wool, slag wool, and ceramic fibers as Group 2B, i.e. possibly carcinogenic to humans. In 2002 it reassigned fiberglass, rock and slag wool, and continuous glass filaments to Group 3, not classifiable as carcinogenic to humans. The aim of this study was to verify the cytotoxic and genotoxic effects and oxidative stress production induced by in vitro exposure of human alveolar epithelial cells A549 to glass fibers with a predominant diameter <3 μm (97%) and length >5 μm (93%). A549 cells were incubated with 5, 50, or 100 μg/ml (2.1, 21, and 42 μg/cm(2), respectively) of glass fibers for 72 h. Cytotoxicity and DNA damage were tested by the MTT and the Comet assay, respectively. Oxidative stress was determined by measuring inducible nitric oxide synthase (iNOS) expression by Western blotting, production of nitric oxide (NO) with Griess reagent, and concentration of reactive oxygen species by fluorescent quantitative analysis with 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The results showed that glass fiber exposure significantly reduced cell viability and increased DNA damage and oxidative stress production in a concentration-dependent manner, demonstrating that glass fibers exert cytotoxic and genotoxic effects related to increased oxidative stress on the human alveolar cell line A549. PMID:25620604

  3. The tyrosine kinase BceF and the phosphotyrosine phosphatase BceD of Burkholderia contaminans are required for efficient invasion and epithelial disruption of a cystic fibrosis lung epithelial cell line.

    PubMed

    Ferreira, Ana S; Silva, Inês N; Fernandes, Fábio; Pilkington, Ruth; Callaghan, Máire; McClean, Siobhán; Moreira, Leonilde M

    2015-02-01

    Bacterial tyrosine kinases and their cognate protein tyrosine phosphatases are best known for regulating the biosynthesis of polysaccharides. Moreover, their roles in the stress response, DNA metabolism, cell division, and virulence have also been documented. The aim of this study was to investigate the pathogenicity and potential mechanisms of virulence dependent on the tyrosine kinase BceF and phosphotyrosine phosphatase BceD of the cystic fibrosis opportunistic pathogen Burkholderia contaminans IST408. The insertion mutants bceD::Tp and bceF::Tp showed similar attenuation of adhesion and invasion of the cystic fibrosis lung epithelial cell line CFBE41o- compared to the parental strain B. contaminans IST408. In the absence of bceD or bceF genes, B. contaminans also showed a reduction in the ability to translocate across polarized epithelial cell monolayers, demonstrated by a higher transepithelial electrical resistance, reduced flux of fluorescein isothiocyanate-labeled bovine serum albumin, and higher levels of tight junction proteins ZO-1, occludin, and claudin-1 present in monolayers exposed to these bacterial mutants. Furthermore, bceD::Tp and bceF::Tp mutants induced lower levels of interleukin-6 (IL-6) and IL-8 release than the parental strain. In conclusion, although the mechanisms of pathogenicity dependent on BceD and BceF are not understood, these proteins contribute to the virulence of Burkholderia by enhancement of cell attachment and invasion, disruption of epithelial integrity, and modulation of the proinflammatory response. PMID:25486990

  4. The Tyrosine Kinase BceF and the Phosphotyrosine Phosphatase BceD of Burkholderia contaminans Are Required for Efficient Invasion and Epithelial Disruption of a Cystic Fibrosis Lung Epithelial Cell Line

    PubMed Central

    Ferreira, Ana S.; Silva, Inês N.; Fernandes, Fábio; Pilkington, Ruth; Callaghan, Máire; McClean, Siobhán

    2014-01-01

    Bacterial tyrosine kinases and their cognate protein tyrosine phosphatases are best known for regulating the biosynthesis of polysaccharides. Moreover, their roles in the stress response, DNA metabolism, cell division, and virulence have also been documented. The aim of this study was to investigate the pathogenicity and potential mechanisms of virulence dependent on the tyrosine kinase BceF and phosphotyrosine phosphatase BceD of the cystic fibrosis opportunistic pathogen Burkholderia contaminans IST408. The insertion mutants bceD::Tp and bceF::Tp showed similar attenuation of adhesion and invasion of the cystic fibrosis lung epithelial cell line CFBE41o- compared to the parental strain B. contaminans IST408. In the absence of bceD or bceF genes, B. contaminans also showed a reduction in the ability to translocate across polarized epithelial cell monolayers, demonstrated by a higher transepithelial electrical resistance, reduced flux of fluorescein isothiocyanate-labeled bovine serum albumin, and higher levels of tight junction proteins ZO-1, occludin, and claudin-1 present in monolayers exposed to these bacterial mutants. Furthermore, bceD::Tp and bceF::Tp mutants induced lower levels of interleukin-6 (IL-6) and IL-8 release than the parental strain. In conclusion, although the mechanisms of pathogenicity dependent on BceD and BceF are not understood, these proteins contribute to the virulence of Burkholderia by enhancement of cell attachment and invasion, disruption of epithelial integrity, and modulation of the proinflammatory response. PMID:25486990

  5. Bronchi, Bronchial Tree, & Lungs

    MedlinePlus

    ... Cells, Tissues, & Membranes Cell Structure & Function Cell Structure Cell Function Body Tissues Epithelial Tissue Connective Tissue Muscle Tissue Nervous Tissue Membranes Review Quiz Skeletal ... they are mostly air spaces surrounded by the alveolar cells and elastic connective tissue. They are separated from ...

  6. A Core Invasiveness Gene Signature Reflects Epithelial-to-Mesenchymal Transition but Not Metastatic Potential in Breast Cancer Cell Lines and Tissue Samples

    PubMed Central

    Marsan, Melike; Van den Eynden, Gert; Limame, Ridha; Neven, Patrick; Hauspy, Jan; Van Dam, Peter A.; Vergote, Ignace; Dirix, Luc Y.; Vermeulen, Peter B.; Van Laere, Steven J.

    2014-01-01

    Introduction Metastases remain the primary cause of cancer-related death. The acquisition of invasive tumour cell behaviour is thought to be a cornerstone of the metastatic cascade. Therefore, gene signatures related to invasiveness could aid in stratifying patients according to their prognostic profile. In the present study we aimed at identifying an invasiveness gene signature and investigated its biological relevance in breast cancer. Methods & Results We collected a set of published gene signatures related to cell motility and invasion. Using this collection, we identified 16 genes that were represented at a higher frequency than observed by coincidence, hereafter named the core invasiveness gene signature. Principal component analysis showed that these overrepresented genes were able to segregate invasive and non-invasive breast cancer cell lines, outperforming sets of 16 randomly selected genes (all P<0.001). When applied onto additional data sets, the expression of the core invasiveness gene signature was significantly elevated in cell lines forced to undergo epithelial-mesenchymal transition. The link between core invasiveness gene expression and epithelial-mesenchymal transition was also confirmed in a dataset consisting of 2420 human breast cancer samples. Univariate and multivariate Cox regression analysis demonstrated that CIG expression is not associated with a shorter distant metastasis free survival interval (HR = 0.956, 95%C.I. = 0.896–1.019, P = 0.186). Discussion These data demonstrate that we have identified a set of core invasiveness genes, the expression of which is associated with epithelial-mesenchymal transition in breast cancer cell lines and in human tissue samples. Despite the connection between epithelial-mesenchymal transition and invasive tumour cell behaviour, we were unable to demonstrate a link between the core invasiveness gene signature and enhanced metastatic potential. PMID:24586640

  7. The Effect of Size on Ag Nanosphere Toxicity in Macrophage Cell Models and Lung Epithelial Cell Lines Is Dependent on Particle Dissolution

    PubMed Central

    Hamilton, Raymond F.; Buckingham, Sarah; Holian, Andrij

    2014-01-01

    Silver (Ag) nanomaterials are increasingly used in a variety of commercial applications. This study examined the effect of size (20 and 110 nm) and surface stabilization (citrate and PVP coatings) on toxicity, particle uptake and NLRP3 inflammasome activation in a variety of macrophage and epithelial cell lines. The results indicated that smaller Ag (20 nm), regardless of coating, were more toxic in both cell types and most active in the THP-1 macrophages. TEM imaging demonstrated that 20 nm Ag nanospheres dissolved more rapidly than 110 nm Ag nanospheres in acidic phagolysosomes consistent with Ag ion mediated toxicity. In addition, there were some significant differences in epithelial cell line in vitro exposure models. The order of the epithelial cell lines’ sensitivity to Ag was LA4 > MLE12 > C10. The macrophage sensitivity to Ag toxicity was C57BL/6 AM > MARCO null AM, which indicated that the MARCO receptor was involved in uptake of the negatively charged Ag particles. These results support the idea that Ag nanosphere toxicity and NLRP3 inflammasome activation are determined by the rate of surface dissolution, which is based on relative surface area. This study highlights the importance of utilizing multiple models for in vitro studies to evaluate nanomaterials. PMID:24758926

  8. Protective effects of Ezrin on cold storage preservation injury in the pig kidney proximal tubular epithelial cell line [LLC-PK1

    PubMed Central

    Tian, Tao; Lindell, Susanne L.; Henderson, Scott C.; Mangino, Martin J.

    2009-01-01

    Background Renal damage caused by cold preservation and warm reperfusion has been well documented and involves tissue edema, cell swelling, ATP depletion, calcium toxicity, and oxidative stress. However, more common proximal mechanisms have not been identified, which may limit the development of effective clinical treatment strategies. Previous work indicates that many cytoskeletal structures are affected by cold preservation and reperfusion, including membrane rich ezrin associated complexes. The aim of this study was to investigate whether the sub-lamellar cytoskeletal protein ezrin is causally involved in cold preservation injury in renal tubule epithelial cells. Methods We created a stably transfected cell Line [LLC-EZ] using the pig kidney proximal tubular epithelial cell line [LLC-PK1], which constitutively over-expresses wild-type ezrin. These cells were cold stored in UW solution and reperfused in-vitro to model renal tubule preservation injury, which was assessed by biochemical, metabolic, functional, and structural end points. Results Over-expression of ezrin increased cell viability (LDH release), mitochondrial activity (ATP synthesis, dehydrogenase activity, and inner mitochondrial membrane potential), and protected the structure of cell membrane microvilli and mitochondria after cold storage preservation injury. Reperfusion-induced apoptosis was also significantly reduced in LLC-EZ cells over-expressing ezrin. Conclusions Enhanced ezrin expression protects tubule epithelial cells from cold storage preservation injury, possibly by membrane or mitochondrial mechanisms. PMID:19461485

  9. Pulmonary epithelial cancer cells and their exosomes metabolize myeloid cell-derived leukotriene C4 to leukotriene D4.

    PubMed

    Lukic, Ana; Ji, Jie; Idborg, Helena; Samuelsson, Bengt; Palmberg, Lena; Gabrielsson, Susanne; Rådmark, Olof

    2016-09-01

    Leukotrienes (LTs) play major roles in lung immune responses, and LTD4 is the most potent agonist for cysteinyl LT1, leading to bronchoconstriction and tissue remodeling. Here, we studied LT crosstalk between myeloid cells and pulmonary epithelial cells. Monocytic cells (Mono Mac 6 cell line, primary dendritic cells) and eosinophils produced primarily LTC4 In coincubations of these myeloid cells and epithelial cells, LTD4 became a prominent product. LTC4 released from the myeloid cells was further transformed by the epithelial cells in a transcellular manner. Formation of LTD4 was rapid when catalyzed by γ-glutamyl transpeptidase (GGT)1 in the A549 epithelial lung cancer cell line, but considerably slower when catalyzed by GGT5 in primary bronchial epithelial cells. When A549 cells were cultured in the presence of IL-1β, GGT1 expression increased about 2-fold. Also exosomes from A549 cells contained GGT1 and augmented LTD4 formation. Serine-borate complex (SBC), an inhibitor of GGT, inhibited conversion of LTC4 to LTD4 Unexpectedly, SBC also upregulated translocation of 5-lipoxygenase (LO) to the nucleus in Mono Mac 6 cells, and 5-LO activity. Our results demonstrate an active role for epithelial cells in biosynthesis of LTD4, which may be of particular relevance in the lung. PMID:27436590

  10. Novel high-grade serous epithelial ovarian cancer cell lines that reflect the molecular diversity of both the sporadic and hereditary disease

    PubMed Central

    Carmona, Euridice; Portelance, Lise; Arcand, Suzanna L.; Rahimi, Kurosh; Tonin, Patricia N.; Provencher, Diane; Mes-Masson, Anne-Marie

    2015-01-01

    Few cell line models of epithelial ovarian cancer (EOC) have been developed for the high-grade serous (HGS) subtype, which is the most common and lethal form of gynaecological cancer. Here we describe the establishment of six new EOC cell lines spontaneously derived from HGS tumors (TOV2978G, TOV3041G and TOV3291G) or ascites (OV866(2), OV4453 and OV4485). Exome sequencing revealed somatic TP53 mutations in five of the cell lines. One cell line has a novel BRCA1 splice-site mutation, and another, a recurrent BRCA2 nonsense mutation, both of germline origin. The novel BRCA1 mutation induced abnormal splicing, mRNA instability, resulting in the absence of BRCA1 protein. None of the cell lines harbor mutations in KRAS or BRAF, which are characteristic of other EOC subtypes. SNP arrays showed that all of the cell lines exhibited structural chromosomal abnormalities, copy number alterations and regions of loss of heterozygosity, consistent with those described for HGS. Four cell lines were able to produce 3D-spheroids, two exhibited anchorage-independent growth, and three (including the BRCA1 and BRCA2 mutated cell lines) formed tumors in SCID mice. These novel HGS EOC cell lines and their detailed characterization provide new research tools for investigating the most common and lethal form of EOC. PMID:26622941

  11. Bilateral renal dysplasia, nephroblastomatosis, and bronchial stenosis. A new syndrome?

    PubMed

    Rodriguez, Maria Matilde; Correa-Medina, Mayrin; Whittington, Elizabeth E

    2015-06-01

    Bilateral nephroblastomatosis (NB) is an uncommon renal anomaly characterized by multiple confluent nephrogenic rests scattered through both kidneys, with only a limited number of cases reported in the medical literature. Some of these children may have associated either Perlman or Beckwith-Wiedemann syndrome and others do not demonstrate syndromic features. We report a full-term boy with anteverted nose, bilateral bronchial stenosis due to lack of cartilage, bilateral obstructive renal dysplasia and NB with glomeruloid features. The infant had visceromegaly, but neither gigantism nor hemihypertrophy. Immunohistochemistry for PAX2 (Paired box gene-2) and WT-1 (Wilms Tumor 1) were strongly positive in the areas of NB. GLEPP-1 (Glomerular Epithelial Protein) did not stain the areas of NB with a glomeruloid appearance, but was positive in the renal glomeruli as expected. We found neither associated bronchial stenosis nor the histology of NB resembling giant glomeruli in any of the reported cases of NB. PMID:25871299

  12. Bilateral Renal Dysplasia, Nephroblastomatosis, and Bronchial Stenosis. A New Syndrome?

    PubMed Central

    Rodriguez, Maria Matilde; Correa-Medina, Mayrin; Whittington, Elizabeth E.

    2015-01-01

    Bilateral nephroblastomatosis (NB) is an uncommon renal anomaly characterized by multiple confluent nephrogenic rests scattered through both kidneys, with only a limited number of cases reported in the medical literature. Some of these children may have associated either Perlman or Beckwith–Wiedemann syndrome and others do not demonstrate syndromic features. We report a full-term boy with anteverted nose, bilateral bronchial stenosis due to lack of cartilage, bilateral obstructive renal dysplasia and NB with glomeruloid features. The infant had visceromegaly, but neither gigantism nor hemihypertrophy. Immunohistochemistry for PAX2 (Paired box gene-2) and WT-1 (Wilms Tumor 1) were strongly positive in the areas of NB. GLEPP-1 (Glomerular Epithelial Protein) did not stain the areas of NB with a glomeruloid appearance, but was positive in the renal glomeruli as expected. We found neither associated bronchial stenosis nor the histology of NB resembling giant glomeruli in any of the reported cases of NB. PMID:25871299

  13. MANNITOL BRONCHIAL CHALLENGE TEST IN ASTHMATIC CHILDREN.

    PubMed

    Miraglia Del Giudice, M; Capristo, C; Decima, F; Coronella, A; Indolfi, C; Parisi, G; Maiello, N

    2015-01-01

    Bronchial asthma is a chronic inflammatory disease characterized by bronchial obstruction, usually reversible spontaneously or after therapy, bronchial hyperreactivity and accelerated decrease of lung function that may possibly evolve into irreversible obstruction of the respiratory tract. Bronchial provocation tests can be used in order to assess the presence and degree of bronchial hyper reactivity. The recently introduced mannitol powder inhalation indirect test seems to have an interesting and promising role, especially in childhood, because of its high diagnostic specificity, easiness of execution and best standardization. In this study the authors focused on the significance and clinical use of mannitol bronchial challenge test in asthmatic children. PMID:26634590

  14. Pharmacokinetics and Penetration of Ceftazidime and Avibactam into Epithelial Lining Fluid in Thigh- and Lung-Infected Mice

    PubMed Central

    Melchers, Maria J.; van Mil, Anita C.; Lagarde, Claudia M.; Nichols, Wright W.

    2015-01-01

    Ceftazidime and the β-lactamase inhibitor avibactam constitute a new, potentially highly active combination in the battle against extended-spectrum-β-lactamase (ESBL)-producing bacteria. To determine possible clinical use, it is important to know the pharmacokinetic profiles of the compounds related to each other in plasma and the different compartments of infection in experimentally infected animals and in humans. We used a neutropenic murine thigh infection model and lung infection model to study pharmacokinetics in plasma and epithelial lining fluid (ELF). Mice were infected with ca. 106 CFU of Pseudomonas aeruginosa intramuscularly into the thigh or intranasally to cause pneumonia and were given 8 different (single) subcutaneous doses of ceftazidime and avibactam in various combined concentrations, ranging from 1 to 128 mg/kg of body weight in 2-fold increases. Concomitant samples of serum and bronchoalveolar lavage fluid were taken at up to 12 time points until 6 h after administration. Pharmacokinetics of both compounds were linear and dose proportional in plasma and ELF and were independent of the infection type, with estimated half-lives (standard deviations [SD]) in plasma of ceftazidime of 0.28 (0.02) h and of avibactam of 0.24 (0.04) h and volumes of distribution of 0.80 (0.14) and 1.18 (0.34) liters/kg. The ELF-plasma (area under the concentration-time curve [AUC]) ratios (standard errors [SE]) were 0.24 (0.03) for total ceftazidime and 0.27 (0.03) for unbound ceftazidime; for avibactam, the ratios were 0.20 (0.02) and 0.22 (0.02), respectively. No pharmacokinetic interaction between ceftazidime and avibactam was observed. Ceftazidime and avibactam showed linear plasma pharmacokinetics that were independent of the dose combinations used or the infection site in mice. Assuming pharmacokinetic similarity in humans, this indicates that similar dose ratios of ceftazidime and avibactam could be used for different types and sites of infection. PMID:25645843

  15. Pharmacokinetics and penetration of ceftazidime and avibactam into epithelial lining fluid in thigh- and lung-infected mice.

    PubMed

    Berkhout, Johanna; Melchers, Maria J; van Mil, Anita C; Seyedmousavi, Seyedmojtaba; Lagarde, Claudia M; Nichols, Wright W; Mouton, Johan W

    2015-04-01

    Ceftazidime and the β-lactamase inhibitor avibactam constitute a new, potentially highly active combination in the battle against extended-spectrum-β-lactamase (ESBL)-producing bacteria. To determine possible clinical use, it is important to know the pharmacokinetic profiles of the compounds related to each other in plasma and the different compartments of infection in experimentally infected animals and in humans. We used a neutropenic murine thigh infection model and lung infection model to study pharmacokinetics in plasma and epithelial lining fluid (ELF). Mice were infected with ca. 10(6) CFU of Pseudomonas aeruginosa intramuscularly into the thigh or intranasally to cause pneumonia and were given 8 different (single) subcutaneous doses of ceftazidime and avibactam in various combined concentrations, ranging from 1 to 128 mg/kg of body weight in 2-fold increases. Concomitant samples of serum and bronchoalveolar lavage fluid were taken at up to 12 time points until 6 h after administration. Pharmacokinetics of both compounds were linear and dose proportional in plasma and ELF and were independent of the infection type, with estimated half-lives (standard deviations [SD]) in plasma of ceftazidime of 0.28 (0.02) h and of avibactam of 0.24 (0.04) h and volumes of distribution of 0.80 (0.14) and 1.18 (0.34) liters/kg. The ELF-plasma (area under the concentration-time curve [AUC]) ratios (standard errors [SE]) were 0.24 (0.03) for total ceftazidime and 0.27 (0.03) for unbound ceftazidime; for avibactam, the ratios were 0.20 (0.02) and 0.22 (0.02), respectively. No pharmacokinetic interaction between ceftazidime and avibactam was observed. Ceftazidime and avibactam showed linear plasma pharmacokinetics that were independent of the dose combinations used or the infection site in mice. Assuming pharmacokinetic similarity in humans, this indicates that similar dose ratios of ceftazidime and avibactam could be used for different types and sites of infection. PMID

  16. Meropenem-RPX7009 Concentrations in Plasma, Epithelial Lining Fluid, and Alveolar Macrophages of Healthy Adult Subjects.

    PubMed

    Wenzler, Eric; Gotfried, Mark H; Loutit, Jeffrey S; Durso, Stephanie; Griffith, David C; Dudley, Michael N; Rodvold, Keith A

    2015-12-01

    The steady-state concentrations of meropenem and the β-lactamase inhibitor RPX7009 in plasma, epithelial lining fluid (ELF), and alveolar macrophage (AM) concentrations were obtained in 25 healthy, nonsmoking adult subjects. Subjects received a fixed combination of meropenem (2 g) and RPX7009 (2 g) administered every 8 h, as a 3-h intravenous infusion, for a total of three doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject at 1.5, 3.25, 4, 6, or 8 h after the start of the last infusion. Meropenem and RPX7009 achieved a similar time course and magnitude of concentrations in plasma and ELF. The mean pharmacokinetic parameters ± the standard deviations of meropenem and RPX7009 determined from serial plasma concentrations were as follows: Cmax = 58.2 ± 10.8 and 59.0 ± 8.4 μg/ml, Vss = 16.3 ± 2.6 and 17.6 ± 2.6 liters; CL = 11.1 ± 2.1 and 10.1 ± 1.9 liters/h, and t1/2 = 1.03 ± 0.15 and 1.27 ± 0.21 h, respectively. The intrapulmonary penetrations of meropenem and RPX7009 were ca. 63 and 53%, respectively, based on the area under the concentration-time curve from 0 to 8 h (AUC0-8) values of ELF and total plasma concentrations. When unbound plasma concentrations were considered, ELF penetrations were 65 and 79% for meropenem and RPX7009, respectively. Meropenem concentrations in AMs were below the quantitative limit of detection, whereas median concentrations of RPX7009 in AMs ranged from 2.35 to 6.94 μg/ml. The results from the present study lend support to exploring a fixed combination of meropenem (2 g) and RPX7009 (2 g) for the treatment of lower respiratory tract infections caused by meropenem-resistant Gram-negative pathogens susceptible to the combination of meropenem-RPX7009. PMID:26349830

  17. [Chronic bronchial dilatations in different colonies of laboratory rats].

    PubMed

    Miguel, Juan Carlos; Erazo, Ariana; Beduino, Fernanda; Picena, Juan Carlos; Luciano, María Isabel; Pizzutti, Gustavo; Tarrés, María Cristina; Montenegro, Silvana; Martínez, Stella Maris

    2002-06-01

    Bronchiectasis occurred naturally in 12-month-old spontaneously diabetic eSS male rats. The lungs of 3 and 6-month-old eSS rats were compared in eumetabolic eSS rats from three inbred lines consisting of inbred spontaneously diabetic eSS derived from IIM strain; these were compared with eumetabolic, outbred Wistar rats, paired by sex and age. Acrylic casts of bronchial tree were obtained after injection of a plastic substance. The casts were pruned to focus on the first four bronchial branchings. Diameter and volume of the conductive bronchial tree were determined using a binocular magnifier. Histological sections were obtained. All lines showed multiple bronchiectasis, mostly fusiform, bronchial dilatation and inflammatory response with lymphocytic infiltrates. These symptoms were much more severe in 180-day-old eSS males. Bacteria were isolated from the lungs in 70% of cases (n = 32), except in eSS rats. Pseudomonas spp. (38%) and Gram-positive cocci as coagulase-negative Staphylococcus spp. (20%) were detected. Neither pathogenic bacteria nor saprophyte fungi were found. Although all lines were affected, diabetes in eSS appears to be an aggravating factor. PMID:12152476

  18. Characterization and gene sequence of the precursor of elafin, an elastase-specific inhibitor in bronchial secretions.

    PubMed

    Sallenave, J M; Silva, A

    1993-04-01

    Human bronchial mucous secretions have been shown to contain inhibitors of serine proteinases secreted by neutrophils. The role of these inhibitors is probably to control the enzymes secreted in the airways and in the lung interstitium. Three of these inhibitors have been identified and characterized: alpha 1-proteinase inhibitor, mucus proteinase inhibitor, and elafin. The elafin molecule, a 6.0 kD inhibitor of serine proteinases shows homology with mucus proteinase inhibitor. We recently isolated both molecules in bronchial secretions. In this report, we present evidence for the existence of a precursor of the elafin molecule. We have cloned and sequenced the gene for this precursor and show that it is composed of three exons. The coding information for a 117 amino acid precursor protein of elafin (inclusive of the signal peptide) is contained in the first two exons. This was confirmed at the mRNA and protein levels. By Northern Blot analysis we detected a 800 bp long product, and by immunoaffinity we detected in sputum and in cultured epithelial cell supernatant (NCI-H322 cell line) a 12 kD protein species cross-reacting with anti-elafin IgG. The finding of possible cross-linking function for the precursor in addition to its antiproteinase activity indicates a possible role for this molecule as a cross-linker agent in the extracellular matrix. PMID:8476637

  19. Proteome-Wide Effect of 17-β-Estradiol and Lipoxin A4 in an Endometriotic Epithelial Cell Line

    PubMed Central

    Sobel, Jonathan A.; Waridel, Patrice; Gori, Ilaria; Quadroni, Manfredo; Canny, Geraldine O.

    2016-01-01

    Endometriosis affects approximately 10% of women of reproductive age. This chronic, gynecological inflammatory disease results in a decreased quality of life for patients, with the main symptoms including chronic pelvic pain and infertility. The steroid hormone 17-β Estradiol (E2) plays a key role in the pathology. Our previous studies showed that the anti-inflammatory lipid Lipoxin A4 (LXA4) acts as an estrogen receptor-alpha agonist in endometrial epithelial cells, inhibiting certain E2-mediated effects. LXA4 also prevents the progression of endometriosis in a mouse model via anti-proliferative mechanisms and by impacting mediators downstream of ER signaling. The aim of the present study was therefore to examine global proteomic changes evoked by E2 and LXA4 in endometriotic epithelial cells. E2 impacted a greater number of proteins in endometriotic epithelial cells than LXA4. Interestingly, the combination of E2 and LXA4 resulted in a reduced number of regulated proteins, with LXA4 mediating a suppressive effect on E2-mediated signaling. These proteins are involved in diverse pathways of relevance to endometriosis pathology and metabolism, including mRNA translation, growth, proliferation, proteolysis, and immune responses. In summary, this study sheds light on novel pathways involved in endometriosis pathology and further understanding of signaling pathways activated by estrogenic molecules in endometriotic epithelial cells. PMID:26779118

  20. Decreased expression of the type I isozyme of cAMP-dependent protein kinase in tumor cell lines of lung epithelial origin.

    PubMed

    Lange-Carter, C A; Fossli, T; Jahnsen, T; Malkinson, A M

    1990-05-15

    A spontaneous transformant derived from a mouse lung epithelial cell line exhibited decreased cAMP-dependent protein kinase (PKA) activity. DEAE column chromatography demonstrated that this was caused by specific loss of the type I PKA isozyme (PKA I). Western immunoblot analysis indicated that indeed several mouse lung tumor-derived cell lines and spontaneous transformants of immortalized, nontumorigenic lung cell lines contained less PKA I regulatory subunit (RI) protein than normal cell lines. PKA II regulatory subunit protein differed only slightly among cell lines and showed no conspicuous trend between normal and neoplastic cells. The decrease in RI was apparently concomitant with decreased catalytic (C) subunit levels in neoplastic cells since no free catalytic subunit activity was detected by DEAE chromatography. Northern blot analysis using RI alpha and C alpha cDNA probes showed that the levels of RI alpha and C alpha mRNAs paralleled their intracellular protein concentrations; neoplastic cell lines contained significantly less RI alpha and C alpha mRNAs than the normal cell line. The decreased expression of both RI and C subunits therefore results in a net decrease of PKA I in neoplastic lung cells, an isozymic difference which may account for the differential effects of cAMP analogs on cell growth and differentiation in normal and neoplastic cells. PMID:2159459

  1. Transfection of fetal rat intestinal epithelial cells by viral oncogenes: establishment and characterization of the E1A-immortalized SLC-11 cell line.

    PubMed Central

    Emami, S; Mir, L; Gespach, C; Rosselin, G

    1989-01-01

    Intestinal epithelial cells from 19-day-old rat fetuses underwent electropermeabilization and were successfully transfected by three recombinant plasmids containing the cloned oncogenes from the human adenovirus type 2 early region E1A (SLC-11 cells) and polyoma virus and simian virus 40 large T tumor antigens (SLC-21 and SLC-41 cells). SLC-11 cells were propagated for 21 months in culture (current passage, 76; doubling time, 17 hr) and were immortalized by E1A, as shown by RNA transfer blot (Northern blot) analysis and indirect immunofluorescence of the nuclear oncoproteins. These cells were not tumorigenic in either athymic nude mice or syngeneic Wistar rats and showed a nearly normal karyotype with minimal chromosomal changes. The immortalized epithelial cell line SLC-11 retained several of the phenotypes observed in the parent cells of the intestinal mucosa, including cytoplasmic villin, cytokeratins, enkephalinase, and cell surface receptors sensitive to vasoactive intestinal peptide. It is concluded that immortal SLC-11 cells are a suitable model for studying the proliferation and differentiation of epithelial intestinal cells and analyzing cancer progression in the gastrointestinal tract. Images PMID:2470094

  2. Engineered human broncho-epithelial tissue-like assemblies

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    2012-01-01

    Three-dimensional human broncho-epithelial tissue-like assemblies (TLAs) are produced in a rotating wall vessel (RWV) with microcarriers by coculturing mesenchymal bronchial-tracheal cells (BTC) and bronchial epithelium cells (BEC). These TLAs display structural characteristics and express markers of in vivo respiratory epithelia. TLAs are useful for screening compounds active in lung tissues such as antiviral compounds, cystic fibrosis treatments, allergens, and cytotoxic compounds.

  3. Fusion of CCL21 Non-Migratory Active Breast Epithelial and Breast Cancer Cells Give Rise to CCL21 Migratory Active Tumor Hybrid Cell Lines

    PubMed Central

    Reith, Georg; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S.; Dittmar, Thomas

    2013-01-01

    The biological phenomenon of cell fusion has been linked to tumor progression because several data provided evidence that fusion of tumor cells and normal cells gave rise to hybrid cell lines exhibiting novel properties, such as increased metastatogenic capacity and an enhanced drug resistance. Here we investigated M13HS hybrid cell lines, derived from spontaneous fusion events between M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics and HS578T-Hyg breast cancer cells, concerning CCL21/CCR7 signaling. Western Blot analysis showed that all cell lines varied in their CCR7 expression levels as well as differed in the induction and kinetics of CCR7 specific signal transduction cascades. Flow cytometry-based calcium measurements revealed that a CCL21 induced calcium influx was solely detected in M13HS hybrid cell lines. Cell migration demonstrated that only M13HS hybrid cell lines, but not parental derivatives, responded to CCL21 stimulation with an increased migratory activity. Knockdown of CCR7 expression by siRNA completely abrogated the CCL21 induced migration of hybrid cell lines indicating the necessity of CCL21/CCR7 signaling. Because the CCL21/CCR7 axis has been linked to metastatic spreading of breast cancer to lymph nodes we conclude from our data that cell fusion could be a mechanism explaining the origin of metastatic cancer (hybrid) cells. PMID:23667660

  4. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization.

    PubMed

    McCall, Ingrid C; Betanzos, Abigail; Weber, Dominique A; Nava, Porfirio; Miller, Gary W; Parkos, Charles A

    2009-11-15

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains. PMID:19679145

  5. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization

    PubMed Central

    McCall, Ingrid C.; Betanzos, Abigail; Weber, Dominique A.; Nava, Porfirio; Miller, Gary W.; Parkos, Charles A.

    2010-01-01

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains. PMID:19679145

  6. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization

    SciTech Connect

    McCall, Ingrid C.; Betanzos, Abigail; Weber, Dominique A.; Nava, Porfirio; Miller, Gary W.; Parkos, Charles A.

    2009-11-15

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains.

  7. Inhibition of cellular proliferation and modulation of insulin-like growth factor binding proteins by retinoids in a bovine mammary epithelial cell line.

    PubMed

    Woodward, T L; Turner, J D; Hung, H T; Zhao, X

    1996-06-01

    Retinoids are potent inhibitors of growth and tumor progression in many mammary carcinoma cell lines, though regulation of growth in nontumorigenic mammary epithelial cells by retinoids is less clear. Here, we have characterized the inhibition of MAC-T (a nontransformed bovine mammary epithelial cell line) cellular proliferation by retinoids and their role in regulating insulin-like growth factor binding proteins (IGFBPs). Retinoic acid (RA) (100 nM) was a potent inhibitor of MAC-T cell proliferation. Retinol was 10-100 times less effective. Neither retinoid could completely arrest growth at noncytotoxic concentrations. Retinoic acid inhibited cellular proliferation by 1 h (P < .05), but inhibition was fivefold greater by 24 h (P < .01). This second stage of growth inhibition (after 12 h) was dependent upon protein synthesis. However, RA-induced inhibition of cellular proliferation did not persist, with thymidine incorporation increasing toward control levels by 4 days in culture. Retinoic acid was less effective in inhibiting thymidine incorporation when cells were stimulated with insulin, des(1-3) IGF-I, or Long(R3) IGF-I when compared to cells stimulated with native IGF-I or serum. Inhibition of proliferation by RA was associated with increased levels of IGFBP-2 in conditioned media and in plasma membrane preparations. Treatment with insulin or des(1-3) IGF-I resulted in the appearance of IGFBP-3 in conditioned media and on the cell surface. However, RA significantly reduced IGFBP-3 levels in conditioned media and eliminated IGFBP-3 associated with the plasma membrane. Thus, RA is a potent but transient inhibitor of bovine mammary epithelial cell proliferation, and this growth inhibition is correlated with increased IGFBP-2 accumulation and inhibition of IGF-I stimulated IGFBP-3 protein secretion. PMID:8655603

  8. Establishment of a novel immortalized human prostatic epithelial cell line stably expressing androgen receptor and its application for the functional screening of androgen receptor modulators

    SciTech Connect

    Yu, Shan; Wang, Ming-Wei; Yao, Xiaoqiang; Chan, F.L.

    2009-05-15

    In this study, we developed a human prostatic epithelial cell line BPH-1-AR stably expressing AR by lentiviral transduction. Characterization by immunoblot and RT-PCR showed that AR was stably expressed in all representative BPH-1-AR clones. Androgen treatment induced a secretory differentiation phenotype in BPH-1-AR cells but suppressed their cell proliferation. Treatments with AR agonists induced transactivation of a transfected PSA-gene promoter reporter in BPH-1-AR cells, whereas this transactivation was suppressed by an AR antagonist flutamide, indicating that the transduced AR in BPH-1-AR cells was functional. Finally, we utilized BPH-1-AR cells to evaluate the androgenic activities and growth effects of five newly developed non-steroidal compounds. Results showed that these compounds showed androgenic activities and growth-inhibitory effects on BPH-1-AR cells. Our results showed that BPH-1-AR cell line would be a valuable in vitro model for the study of androgen-regulated processes in prostatic epithelial cells and identification of compounds with AR-modulating activities.

  9. Characteristics of a human prostate stromal cell line related to its use in a stromal-epithelial coculture model for the study of cancer chemoprevention.

    PubMed

    Diaw, Lena; Roth, Mark; Schwinn, Debra A; d'Alelio, Mary E; Green, Lisa J; Tangrea, Joseph A

    2005-01-01

    An immortalized human prostate stromal cell line (PS30) was previously established using recombinant retrovirus encoding human papillomavirus 16 gene products. In this study, we further characterize this stromal cell line for its potential use in a stromal-epithelial coculture model for prostate cancer prevention. Using reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and immunocytochemistry, we examined expression of androgen receptor (AR), vitamin D receptor (VDR), prostate-specific antigen (PSA), transforming growth factor-beta (TGF-beta), and insulin-like growth factors (IGF) families and their receptors, metalloproteinases (MMP) MMP-2 and MMP-9, as well as the cells' ability to respond to the synthetic androgen R1881. The PS30 stromal cells do not express PSA, confirming their stromal origin. They are positive for both AR messenger ribonucleic acid (mRNA) and protein; however, they do not respond to growth stimulation by the synthetic androgen R1881. The PS30 cells express mRNA for VDR, TGF-betas, IGFs and their receptors, as well as the MMPs. Moreover, they produce significant amounts of TGF-beta1, TGF-beta2, IGFBP-3, and MMP-2 proteins. Our observations confirm the use of PS30 for the study of stromal-epithelial interactions in the modulation of prostate carcinogenesis. PMID:16153146

  10. Formation of a Neurosensory Organ by Epithelial Cell Slithering.

    PubMed

    Kuo, Christin S; Krasnow, Mark A

    2015-10-01

    Epithelial cells are normally stably anchored, maintaining their relative positions and association with the basement membrane. Developmental rearrangements occur through cell intercalation, and cells can delaminate during epithelial-mesenchymal transitions and metastasis. We mapped the formation of lung neuroepithelial bodies (NEBs), innervated clusters of neuroendocrine/neurosensory cells within the bronchial epithelium, revealing a targeted mode of cell migration that we named "slithering," in which cells transiently lose epithelial character but remain associated with the membrane while traversing neighboring epithelial cells to reach cluster sites. Immunostaining, lineage tracing, clonal analysis, and live imaging showed that NEB progenitors, initially distributed randomly, downregulate adhesion and polarity proteins, crawling over and between neighboring cells to converge at diametrically opposed positions at bronchial branchpoints, where they reestablish epithelial structure and express neuroendocrine genes. There is little accompanying progenitor proliferation or apoptosis. Activation of the slithering program may explain why lung cancers arising from neuroendocrine cells are highly metastatic. PMID:26435104

  11. Hepatocyte growth factor-induced up-regulation of Twist drives epithelial-mesenchymal transition in a canine mammary tumour cell line.

    PubMed

    Yoshida, Kota; Choisunirachon, Nan; Saito, Tomochika; Matsumoto, Kaori; Saeki, Kohei; Mochizuki, Manabu; Nishimura, Ryohei; Sasaki, Nobuo; Nakagawa, Takayuki

    2014-12-01

    Epithelial-mesenchymal transition (EMT) is a crucial step in tumour progression. However, the molecular mechanisms underlying EMT in canine tumours remain to be elucidated. In this study, the similarity or difference in the molecular mechanism of EMT in canine cells was evaluated and compared with that reported in human and mouse cells. We used eight cell lines derived from canine mammary cancers. Stimulation with hepatocyte growth factor (HGF) increased cell motility and changed EMT-related markers towards mesenchyme in CHMm cell line. These changes were accompanied by an increase in Twist expression and did not occur in CHMm transfected with Twist siRNA, indicating that Twist plays a key role in this phenomenon in CHMm. However, the down-regulation of E-cadherin was not observed by HGF stimulation. Further studies are required to elucidate the difference between human and canine Twist. PMID:25278141

  12. Does bronchial hyperresponsiveness in asthma matter?

    PubMed

    Currie, Graeme P; Jackson, Catherine M; Lipworth, Brian J

    2004-01-01

    Bronchial hyperresponsiveness is a fundamental component of the asthmatic inflammatory process causing airway narrowing on exposure to a bronchoconstrictor stimulus. This in turn causes patients to experience symptoms of breathlessness, chest tightness, cough and wheeze. Bronchial challenge tests can be performed in the laboratory to establish the degree of bronchial hyperresponsiveness to both direct and indirect stimuli. The extent to which asthma pharmacotherapy attenuates bronchial hyperresponsiveness is therefore an important measure of efficacy. This review article discusses the effects of inhaled and oral asthma treatment upon bronchial hyperresponsiveness and highlights how, in conjunction with conventional measures of asthma control, it can be used as an aid to optimally manage patients. PMID:15260457

  13. Antibacterial activity and immunomodulatory effects on a bovine mammary epithelial cell line exerted by nisin A-producing Lactococcus lactis strains.

    PubMed

    Malvisi, M; Stuknytė, M; Magro, G; Minozzi, G; Giardini, A; De Noni, I; Piccinini, R

    2016-03-01

    Twenty-nine strains of mastitis pathogens were used to study the antibacterial activity of the cell-free supernatants (CFS) of 25 strains of Lactococcus lactis ssp. lactis. Out of the tested strains, only the CFS of L. lactis LL11 and SL153 were active, inhibiting and killing most of the pathogens. By means of ultra-performance liquid chromatography/high resolution mass spectrometry, they were shown to produce nisin A, a class I bacteriocin. A variable sensitivity to nisin A-containing CFS was observed among Streptococcus uberis and Enterococcus faecalis strains. Nonetheless, Streptococcus agalactiae, Strep. uberis, and E. faecalis displayed high minimum inhibitory concentration values, reaching 384 arbitrary units/mL. Interestingly, the minimum inhibitory values and the bactericidal concentrations were almost identical among them for each of the 2 stains, LL11 and SL153. Staphylococci were, on average, less sensitive than streptococci, but the 2 CFS inhibited and killed, at different dilutions, strains of methicillin-resistant Staphylococcus aureus. The immune response to nisin A-containing CFS was tested using the bovine mammary epithelial cell line BME-UV1. Application of CFS did not damage epithelial integrity, as demonstrated by the higher activity of N-acetyl-β-d-glucosaminidase (NAGase) and lysozyme inside the cells, in both treated and control samples. On the other hand, the increase of released NAGase after 15 to 24h of treatment with LL11 or SL153 live cultures demonstrated an inflammatory response of epithelial cells. Similarly, a significantly higher lysozyme activity was detected in the cells treated with LL11 live culture confirming the stimulation of lysosomal activity. The treatment of epithelial cells with SL153 live culture induced a significant tumor necrosis factor-α downregulation in the cells, but did not influence IL-8 expression. The control of tumor necrosis factor-α release could be an interesting approach to reduce the symptoms linked

  14. PVD9902, a porcine vas deferens epithelial cell line that exhibits neurotransmitter-stimulated anion secretion and expresses numerous HCO3(-) transporters.

    PubMed

    Carlin, Ryan W; Sedlacek, Roger L; Quesnell, Rebecca R; Pierucci-Alves, Fernando; Grieger, David M; Schultz, Bruce D

    2006-06-01

    Epithelial ion transport disorders, including cystic fibrosis, adversely affect male reproductive function by nonobstructive mechanisms and by obstruction of the distal duct. Continuous cell lines that could be used to define ion transport mechanisms in this tissue are not readily available. In the present study, porcine vas deferens epithelial cells were isolated by standard techniques, and the cells spontaneously immortalized to form a porcine vas deferens epithelial cell line that we have titled PVD9902. Cells were maintained in continuous culture for >4 yr and 200 passages in a typical growth medium. Frozen stocks were generated, and thawed cells exhibited growth characteristics indistinguishable from their nonfrozen counterparts. Molecular and immunocytochemical studies confirmed the origin and epithelial nature of these cells. When seeded on permeable supports, PVD9902 cells grew as electrically tight (>6,000 ohms x cm2), confluent monolayers that responded to forskolin with an increase in short-circuit current (I(sc); 8 +/- 1 microA/cm2) that required Cl-, HCO3(-), and Na+, and was partially sensitive to bumetanide. mRNA was expressed for a number of anion transporters, including CFTR, electrogenic Na+-HCO3(-) cotransporter 1b (NBCe1b), downregulated in adenoma, pendrin, and Cl-/formate exchanger. Both forskolin and isoproterenol caused an increase in cellular cAMP levels. In addition, PVD9902 cell monolayers responded to physiological (i.e., adenosine, norepinephrine) and pharmacological [i.e., 5'-(N-ethylcarboxamido)adenosine, isoproterenol] agonists with increases in I(sc). Unlike their freshly isolated counterparts, however, PVD9902 cells did not respond to glucocorticoid exposure with an increase in amiloride-sensitive I(sc). RT-PCR analysis revealed the presence of both glucocorticoid and mineralocorticoid receptor mRNA as well as mRNA for the alpha- and gamma-subunits of the epithelia Na+ channels (alpha- and gamma-ENaC), but not beta

  15. Clathrin-mediated endocytosis of FITC-albumin in alveolar type II epithelial cell line RLE-6TN.

    PubMed

    Yumoto, Ryoko; Nishikawa, Hiromi; Okamoto, Miho; Katayama, Hirokazu; Nagai, Junya; Takano, Mikihisa

    2006-05-01

    We examined mechanisms of FITC-albumin uptake by alveolar type II epithelial cells using cultured RLE-6TN cells. Alkaline phosphatase activity and the expression of cytokeratin 19 mRNA, which are characteristic features of alveolar type II epithelial cells, were detected in RLE-6TN cells. The uptake of FITC-albumin by the cells was time and temperature dependent and showed the saturation kinetics of high- and low-affinity transport systems. FITC-albumin uptake was inhibited by native albumin, by chemically modified albumin, and by metabolic inhibitors and bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPase. Confocal laser scanning microscopic analysis after FITC-albumin uptake showed punctate localization of fluorescence in the cells, which was partly localized in lysosomes. FITC-albumin taken up by the cells gradually degraded over time, as shown by fluoroimage analyzer after SDS-PAGE. The uptake of FITC-albumin by RLE-6TN cells was not inhibited by nystatin, indomethacin, or methyl-beta-cyclodextrin (inhibitors of caveolae-mediated endocytosis) but was inhibited by phenylarsine oxide and chlorpromazine (inhibitors of clathrin-mediated endocytosis) in a concentration-dependent manner. Uptake was also inhibited by potassium depletion and hypertonicity, conditions known to inhibit clathrin-mediated endocytosis. These results indicate that the uptake of FITC-albumin in cultured alveolar type II epithelial cells, RLE-6TN, is mediated by clathrin-mediated but not by caveolae-mediated endocytosis, and intracellular FITC-albumin is gradually degraded in lysosomes. Possible receptors involved in this endocytic system are discussed. PMID:16361359

  16. Dioxin exerts anti-estrogenic actions in a novel dioxin-responsive telomerase-immortalized epithelial cell line of the porcine oviduct (TERT-OPEC).

    PubMed

    Hombach-Klonisch, Sabine; Pocar, Paola; Kauffold, Johannes; Klonisch, Thomas

    2006-04-01

    Oviduct epithelial cells are important for the nourishment and survival of ovulated oocytes and early embryos, and they respond to the steroid hormones estrogen and progesterone. Endocrine-disrupting polyhalogenated aromatic hydrocarbons (PHAH) are environmental toxins that act in part through the ligand-activated transcription factor arylhydrocarbon receptor (AhR; dioxin receptor), and exposure to PHAH has been shown to decrease fertility. To investigate effects of PHAHs on the oviduct epithelium as a potential target tissue of dioxin-type endocrine disruptors, we have established a novel telomerase-immortalized oviduct porcine epithelial cell line (TERT-OPEC). TERT-OPEC exhibited active telomerase and the immunoreactive epithelial marker cytokeratin but lacked the stromal marker vimentin. TERT-OPEC contained functional estrogen receptor (ER)-alpha and AhR, as determined by the detection of ER-alpha- and AhR-specific target molecules. Treatment of TERT-OPEC with the AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in a significant increase in the production of the cytochrome P-450 microsomal enzyme CYP1A1. Activated AhR caused a downregulation of ER nuclear protein fraction and significantly decreased ER-signaling in TERT-OPEC as determined by ERE-luciferase transient transfection assays. In summary, the TCDD-induced and AhR-mediated anti-estrogenic responses by TERT-OPEC suggest that PHAH affect the predominantly estrogen-dependent differentiation of the oviduct epithelium within the fallopian tube. This action then alters the local endocrine milieu, potentially resulting in a largely unexplored cause of impaired embryonic development and female infertility. PMID:16431846

  17. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line.

    PubMed

    Li, Hui; van Berlo, Damien; Shi, Tingming; Speit, Günter; Knaapen, Ad M; Borm, Paul J A; Albrecht, Catrin; Schins, Roel P F

    2008-02-15

    Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reduces hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1beta) and tumour necrosis factor-alpha (TNFalpha). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure. PMID:18001810

  18. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line

    SciTech Connect

    Li Hui; Berlo, Damien van; Shi Tingming; Speit, Guenter; Knaapen, Ad M.; Borm, Paul J.A.; Albrecht, Catrin; Schins, Roel P.F.

    2008-02-15

    Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reduces hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1{beta}) and tumour necrosis factor-alpha (TNF{alpha}). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure.

  19. Silica induces NLRP3 inflammasome activation in human lung epithelial cells

    PubMed Central

    2013-01-01

    Background In myeloid cells the inflammasome plays a crucial role in innate immune defenses against pathogen- and danger-associated patterns such as crystalline silica. Respirable mineral particles impinge upon the lung epithelium causing irreversible damage, sustained inflammation and silicosis. In this study we investigated lung epithelial cells as a target for silica-induced inflammasome activation. Methods A human bronchial epithelial cell line (BEAS-2B) and primary normal human bronchial epithelial cells (NHBE) were exposed to toxic but nonlethal doses of crystalline silica over time to perform functional characterization of NLRP3, caspase-1, IL-1β, bFGF and HMGB1. Quantitative RT-PCR, caspase-1 enzyme activity assay, Western blot techniques, cytokine-specific ELISA and fibroblast (MRC-5 cells) proliferation assays were performed. Results We were able to show transcriptional and translational upregulation of the components of the NLRP3 intracellular platform, as well as activation of caspase-1. NLRP3 activation led to maturation of pro-IL-1β to secreted IL-1β, and a significant increase in the unconventional release of the alarmins bFGF and HMGB1. Moreover, release of bFGF and HMGB1 was shown to be dependent on particle uptake. Small interfering RNA experiments using siNLRP3 revealed the pivotal role of the inflammasome in diminished release of pro-inflammatory cytokines, danger molecules and growth factors, and fibroblast proliferation. Conclusion Our novel data indicate the presence and functional activation of the NLRP3 inflammasome by crystalline silica in human lung epithelial cells, which prolongs an inflammatory signal and affects fibroblast proliferation, mediating a cadre of lung diseases. PMID:23402370

  20. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  1. The ethanolic extract of bark from Salix aegyptiaca L. inhibits the metastatic potential and epithelial to mesenchymal transition of colon cancer cell lines.

    PubMed

    Enayat, Shabnam; Banerjee, Sreeparna

    2014-01-01

    Willow bark extracts have been used for centuries as a natural pain killer. Recently their potential as anticancer agents has been reported. We have shown the high antioxidant activity, phenolic and flavonoid content in the ethanolic extract of bark (EEB) from Salix aegyptiaca, a species endogenous to the Middle East. We have also reported that incubation with EEB resulted in a reduction in cell proliferation through the induction of apoptosis and cell cycle arrest via the inhibition of phosphatidyl inositol 3-kinase/Protein kinase B and mitogen activated protein kinases signaling pathways as strongly as commercial inhibitors. The current study demonstrates the robust inhibition of anchorage-independent growth, motility, migration, and adhesion of colon cancer cell lines HCT-116 and HT-29 by EEB. These in vitro functional changes were accompanied by a restoration of E-cadherin expression, a reduction in EGFR, SNAI1, SNAI2, and Twist1 and the matrix metalloproteases MMP9 and MMP2. Many of these proteins are involved in the process of epithelial to mesenchymal transition, which is considered as a critical step in the progression of noninvasive tumor cells into malignant, metastatic carcinomas. We therefore propose that EEB from Salix aegyptiaca is a potent nutraceutical causing cancer chemoprevention by inhibiting epithelial to mesenchymal transition and can be consumed for its health promoting effects. PMID:25175673

  2. Wound repair and anti-oxidative capacity is regulated by ITGB4 in airway epithelial cells.

    PubMed

    Liu, Chi; Liu, Hui-jun; Xiang, Yang; Tan, Yu-rong; Zhu, Xiao-lin; Qin, Xiao-qun

    2010-08-01

    Integrin beta 4 (ITGB4) is a structural adhesion molecule which engages in maintaining the integrity of airway epithelial cells. Its specific cytomembrane structural feature strongly indicates that ITGB4 may engage in many signaling pathways and physiologic processes. However, in addition to adhesion, the specific biologic significance of ITGB4 in airway epithelial cells is almost unknown. In this article, we investigated the expression and functional properties of ITGB4 in airway epithelial cells in vivo and in vitro. Human bronchial epithelial cell line (16HBE14O-cells) and primary rat tracheal epithelial cells (RTE cells) were used to determine ITGB4 expression under ozone tress or mechanical damage, respectively. An ovalbumin (OVA)-challenged asthma model was used to investigate ITGB4 expression after antigen exposure in vivo. In addition, an ITGB4 overexpression vector and ITGB4 silence virus vector were constructed and transfected into RTE cells. Then, wound repair ability and anti-oxidation capacity was evaluated. Our results demonstrated that, on the edge of mechanically wounded cell areas, ITGB4 expression was increased after mechanical injury. After ozone stress, upregulation expression of ITGB4 was also detected. In the OVA-challenged asthma model, ITGB4 expression was decreased on airway epithelial cells accompanying with structural disruption and damage of anti-oxidation capacity. Besides, our study revealed that upregulation of ITGB4 promotes wound repair ability and anti-oxidative ability, while such abilities were blocked when ITGB4 was silenced. Taken together, these results showed that ITGB4 was a new interesting molecule involved in the regulation of wound repair and anti-oxidation processes for airway epithelial cells. PMID:20364299

  3. P11: 18FDG-PET/CT for early prediction of response to first line platinum chemotherapy in advanced thymic epithelial tumors

    PubMed Central

    Palmieri, Giovannella; Ottaviano, Margaret; Del Vecchio, Silvana; Segreto, Sabrina; Tucci, Irene; Damiano, Vincenzo

    2015-01-01

    Background To investigate the value of the metabolic tumor response assessed with 18F-fluorodeoxyglucose positron emission tomography (FDG-PET), compared with clinicobiological markers, to predict the response disease to first line platinum based chemotherapy in advanced thymic epithelial tumors (TETs). Methods Twenty patients with diagnosis of TET and stage of disease III and IV sec, Masaoka-Koga, were retrospectively included in this monocentric study. Different pre-treatment clinical, biological and pathological parameters, including histotype sec, WHO 2004 and stage of disease sec, Masaoka-Koga were assessed. Tumor glucose metabolism at baseline and its change after the first line platinum based chemotherapy (from 4 to 6 cycles) were assessed using FDG-PET, moreover the response disease was assessed using total body CT scan for the evaluation of RECIST criteria 1.1. Results Twelve patients had an objective response to the first line platinum based chemotherapy according RECIST criteria 1.1 and all of them started with a SUVmax at baseline major than 5, indeed the other eight patients, non-responders to chemotherapy, had a SUVmax at baseline minor than 5. Conclusions It is important to define the chemosensitivity of advanced TETs early. Combining bio-pathological parameters with the metabolism at baseline assessed with FDG-PET can help the physician to early predict the probability of obtaining a disease response to first line platinum based chemotherapy. The SUVmax cut off of 5 at 18FDG-PET/CT performed at baseline treatment might be a new parameter for choosing the most powerful first line of chemotherapy. Given these results, further prospective studies are needed to establish a new first line therapy in advanced TETs with a low SUVmax at baseline, non-responders to conventional chemotherapy.

  4. Anti-proliferative effect on a prostatic epithelial cell line (PZ-HPV-7) by Epilobium angustifolium L.

    PubMed

    Vitalone, A; Bordi, F; Baldazzi, C; Mazzanti, G; Saso, L; Tita, B

    2001-01-01

    Symptomatic benign prostatic hyperplasia (BPH) is a common condition in elderly men and has a significant impact on their daily lives. The drugs prescribed for treatment include alpha1-blockers, 5-alpha-reductase inhibitors and plant preparations. Epilobium angustifolium L. is deemed to be helpful in BPH therapy, although there is less information regarding the mechanism of its biological activity. The present study evaluated the effect of E. angustifolium extract on human prostatic epithelial cells (PZ-HPV-7). The exposure to E. angustifolium extract induced a marked inhibition of cell growth in all tested conditions. The anti-proliferative effect observed in in vitro systems clearly indicates a biologically relevant effect of compounds present in the extract. Considering these results, the use in traditional medicine of E. angustifolium extract against BPH seems to be justified. However, further experimental studies are needed to determine the biochemical mechanism of the action and the clinical value of the E. angustifolium extract. PMID:11482783

  5. [Anesthetic management in bronchial asthma].

    PubMed

    Kozian, Alf; Schilling, Thomas; Hachenberg, Thomas

    2016-06-01

    In daily practice, acute and chronic pulmonary diseases are common issues presenting to the anesthetist. Respiratory physiology in general is affected by both general and regional anesthesia, which results in an increased number of perioperative complications in pulmonary risk patients. Therefore, anesthetic management of patients with bronchial asthma needs to address different clinical topics: the physical appearance of pulmonary disease, type and extent of surgical intervention as well as effects of therapeutic drugs, anesthetics and mechanical ventilation on respiratory function. The present work describes important precautions in preoperative scheduling of the asthmatic patient. In the operative course, airway manipulation and a number of anesthetics are able to trigger intraoperative bronchial spasm with possibly fatal outcome. It is essential to avoid these substances to prevent asthma attack. If asthmatic status occurs, appropriate procedures according to therapeutic standards have to be applied to the patient. Postoperatively, sufficient pain therapy avoids pulmonary complications and improves outcome. PMID:27359239

  6. Nucleoside transport in human colonic epithelial cell lines: evidence for two Na+-independent transport systems in T84 and Caco-2 cells.

    PubMed

    Ward, J L; Tse, C M

    1999-06-01

    RT-PCR of RNA isolated from monolayers of the human colonic epithelial cell lines T84 and Caco-2 demonstrated the presence of mRNA for the two cloned Na+-independent equilibrative nucleoside transporters, ENT1 and ENT2, but not for the cloned Na+-dependent concentrative nucleoside transporters, CNT1 and CNT2. Uptake of [3H]uridine by cell monolayers in balanced Na+-containing and Na+-free media confirmed the presence of only Na+-independent nucleoside transport mechanisms. This uptake was decreased by 70-75% in the presence of 1 microM nitrobenzylthioinosine, a concentration that completely inhibits ENT1, and was completely blocked by the addition of 10 microM dipyridamole, a concentration that inhibits both ENT1 and ENT2. These findings indicate the presence in T84 and Caco-2 cells of two functional Na+-independent equilibrative nucleoside transporters, ENT1 and ENT2. PMID:10366666

  7. Development of the microsporidian parasite, Loma salmonae, in a rainbow trout gill epithelial cell line (RTG-1): evidence of xenoma development in vitro.

    PubMed

    McConnachie, S H; Sheppard, J; Wright, G M; Speare, D J

    2015-02-01

    Growth and propagation of fish-infecting microsporidians within cell culture has been more difficult to achieve than for insect- and human-infecting microsporidians. Fish microsporidia tend to elicit xenoma development rather than diffuse growth in vivo, and this process likely increases host specificity. We present evidence that the fish microsporidian, Loma salmonae, has the capacity to develop xenomas within a rainbow trout gill epithelial cell line (RTG-1). Spore numbers increased over a 4 weeks period within cell culture flasks. Xenoma-like structures were observed using phase contrast microscopy, and then confirmed using transmission electron microscopy. Optimization of the L. salmonae-RTG-1 cell model has important implications in elucidating the process of xenoma development induced by microsporidian parasites. PMID:25434457

  8. Cultivated microalgae and the carotenoid fucoxanthin from Odontella aurita as potent anti-proliferative agents in bronchopulmonary and epithelial cell lines.

    PubMed

    Moreau, Dimitri; Tomasoni, Christophe; Jacquot, Catherine; Kaas, Raymond; Le Guedes, Roland; Cadoret, Jean-Paul; Muller-Feuga, Arnaud; Kontiza, Ioanna; Vagias, Constantinos; Roussis, Vassilios; Roussakis, Christos

    2006-07-01

    The antiproliferative activities of several extracts from cultivated microalgae in France have been studied against bronchopulmonary and epithelial cell lines, respectively (A549, NSCLC-N6 and SRA 01/04). The algal extracts, of Diatomae (Odontella aurita, Chaetoseros sp.), as well as of Haptophyceae: Isochrisys aff. galbana, appeared as the most active among all the assayed species, expressing a broad spectrum of in vitro antiproliferative activity of well-differentiated pathologic cells such as NSCLC-N6 by terminal differentiation. Bio-guided fractionation of the above referred extracts, led us to the isolation, of the carotenoid fucoxanthin. Fucoxanthin has been structurally determined, through modern spectral means and has been studied separately for its activities. PMID:21783694

  9. Pollutant particles induce arginase II in human bronchial epithelial cells

    EPA Science Inventory

    Exposure to particulate matter (PM) is associated with adverse pulmonary effects, including induction and exacerbation of asthma. Recently arginase was shown to play an important role in the pathogenesis of asthma. In this study, we hypothesized that PM exposure would induce ar...

  10. Reactive airways dysfunction syndrome due to chlorine: sequential bronchial biopsies and functional assessment.

    PubMed

    Lemière, C; Malo, J L; Boutet, M

    1997-01-01

    Very little information is available on the acute histopathological bronchial alterations caused by reactive airways dysfunction syndrome (RADS). We had the opportunity to carry out sequential bronchial biopsies in a subject with RADS due to chlorine (60 h, 15 days, 2 and 5 months after the acute exposure), and also to assess spirometry and bronchial responsiveness to methacholine. A 36 year old worker in a water-filtration plant (nonsmoker) abruptly inhaled high concentrations of chlorine on September 12, 1994. He experienced immediate nasal and throat burning, retrosternal burning and wheezing, and these symptoms persisted during and after the workshift. Two days later, he complained of retrosternal burning, dyspnoea and wheezing. Inspiratory wheezing was documented. His forced expiratory volume in one second (FEV1) was 66% of predicted and the provocative concentration of methacholine causing a 20% fall in FEV1 (PC20) was slightly abnormal (2.5 mg.mL-1). On the following day, the patient underwent bronchial biopsies, which showed almost complete replacement of the epithelium by a fibrinohaemorhagic exsudate. The subject was prescribed inhaled steroids. Fifteen days after the accident, the PC20 was improved to 6 mg.mL-1. Bronchial biopsies showed considerable epithelial desquamation with an inflammatory exudate and swelling of the subepithelial space. Five weeks after the accident, the PC20 was normal (57 mg.mL-1). Inhaled steroids were stopped. Two months after the accident, the PC20 deteriorated to 4 mg.mL-1. Biopsies then showed regeneration of the epithelium by basal cells and there was still a pronounced inflammatory infiltrate. Inhaled steroids were restarted. Three and five months later, the PC20 was normal (24 mg.mL-1). Bronchial biopsies showed a greatly improved epithelium and reduction of the inflammatory infiltrate. This case report shows that reactive airways dysfunction syndrome can cause acute, marked, though partially reversible, histological

  11. Cytotoxicity and genotoxicity of coronaridine from Tabernaemontana catharinensis A.DC in a human laryngeal epithelial carcinoma cell line (Hep-2)

    PubMed Central

    Rizo, Walace Fraga; Ferreira, Luis Eduardo; Colnaghi, Vanessa; Martins, Juliana Simões; Franchi, Leonardo Pereira; Takahashi, Catarina Satie; Beleboni, Rene Oliveira; Marins, Mozart; Pereira, Paulo Sérgio; Fachin, Ana Lúcia

    2013-01-01

    Cancer has become a major public health problem worldwide and the number of deaths due to this disease is increasing almost exponentially. In the constant search for new treatments, natural products of plant origin have provided a variety of new compounds to be explored as antitumor agents. Tabernaemontana catharinensis is a medicinal plant that produces alkaloids with expressive antitumor activity, such as heyneanine, coronaridine and voacangine. The aim of present study was firstly to screen the cytotoxic activity of the indole alkaloids heyneanine, coronaridine and voacangine against HeLa (human cervix tumor), 3T3 (normal mouse embryo fibroblasts), Hep-2 (human laryngeal epithelial carcinoma) and B-16 (murine skin) cell lines by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); and secondly to analyze the apoptotic activity, cell membrane damage and genotoxicity of the compound that showed the best cytotoxic activity against the tumor cell lines tested. Coronaridine was the one that exhibited greater cytotoxic activity in the laryngeal carcinoma cell line Hep-2 (IC50 = 54.47 μg/mL) than the other alkaloids tested (voacangine IC50 = 159.33 g/mL, and heyneanine IC50 = 689.45 μg/mL). Coronaridine induced apoptosis in cell lines 3T3 and Hep-2, even at high concentrations. The evaluation of genotoxicity by comet assay showed further that coronaridine caused minimal DNA damage in the Hep-2 tumor cell line, and the LDH test showed that it did not affect the plasma membrane. These results suggest that further investigation of coronaridine as an antitumor agent has merit. PMID:23569415

  12. Kinetics of antibody-induced modulation of respiratory syncytial virus antigens in a human epithelial cell line

    PubMed Central

    Sarmiento, Rosa E; Tirado, Rocio G; Valverde, Laura E; Gómez-Garcia, Beatriz

    2007-01-01

    Background The binding of viral-specific antibodies to cell-surface antigens usually results in down modulation of the antigen through redistribution of antigens into patches that subsequently may be internalized by endocytosis or may form caps that can be expelled to the extracellular space. Here, by use of confocal-laser-scanning microscopy we investigated the kinetics of the modulation of respiratory syncytial virus (RSV) antigen by RSV-specific IgG. RSV-infected human epithelial cells (HEp-2) were incubated with anti-RSV polyclonal IgG and, at various incubation times, the RSV-cell-surface-antigen-antibody complexes (RSV Ag-Abs) and intracellular viral proteins were detected by indirect immunoflourescence. Results Interaction of anti-RSV polyclonal IgG with RSV HEp-2 infected cells induced relocalization and aggregation of viral glycoproteins in the plasma membrane formed patches that subsequently produced caps or were internalized through clathrin-mediated endocytosis participation. Moreover, the concentration of cell surface RSV Ag-Abs and intracellular viral proteins showed a time dependent cyclic variation and that anti-RSV IgG protected HEp-2 cells from viral-induced death. Conclusion The results from this study indicate that interaction between RSV cell surface proteins and specific viral antibodies alter the expression of viral antigens expressed on the cells surface and intracellular viral proteins; furthermore, interfere with viral induced destruction of the cell. PMID:17608950

  13. Transcriptome analysis of Cronobacter sakazakii ATCC BAA-894 after interaction with human intestinal epithelial cell line HCT-8.

    PubMed

    Jing, Chun-e; Du, Xin-jun; Li, Ping; Wang, Shuo

    2016-01-01

    Cronobacter spp. are opportunistic pathogens that are responsible for infections including severe meningitis, septicemia, and necrotizing enterocolitis in neonates and infants. To date, questions still remain regarding the mechanisms of pathogenicity and virulence determinants for each bacterial strain. In this study, we established an in vitro model for Cronobacter sakazakii ATCC BAA-894 infection of HCT-8 human colorectal epithelial cells. The transcriptome profile of C. sakazakii ATCC BAA-894 after interaction with HCT-8 cells was determined using high-throughput whole-transcriptome sequencing (RNA sequencing (RNA-seq)). Gene expression profiles indicated that 139 genes were upregulated and 72 genes were downregulated in the adherent C. sakazakii ATCC BAA-894 strain on HCT-8 cells compared to the cultured bacteria in the cell-free medium. Expressions of some flagella genes and virulence factors involved in adherence were upregulated. High osmolarity and osmotic stress-associated genes were highly upregulated, as well as genes responsible for the synthesis of lipopolysaccharides and outer membrane proteins, iron acquisition systems, and glycerol and glycerophospholipid metabolism. In sum, our study provides further insight into the mechanisms underlying C. sakazakii pathogenesis in the human gastrointestinal tract. PMID:26481623

  14. Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition

    NASA Astrophysics Data System (ADS)

    Santana, Steven Michael; Antonyak, Marc A.; Cerione, Richard A.; Kirby, Brian J.

    2014-12-01

    Extracellular shed vesicles (ESVs) facilitate a unique mode of cell-cell communication wherein vesicle uptake can induce a change in the recipient cell's state. Despite the intensity of ESV research, currently reported data represent the bulk characterization of concentrated vesicle samples with little attention paid to heterogeneity. ESV populations likely represent diversity in mechanisms of formation, cargo and size. To better understand ESV subpopulations and the signaling cascades implicated in their formation, we characterize ESV size distributions to identify subpopulations in normal and cancerous epithelial cells. We have discovered that cancer cells exhibit bimodal ESV distributions, one small-diameter and another large-diameter population, suggesting that two mechanisms may govern ESV formation, an exosome population and a cancer-specific microvesicle population. Altered glutamine metabolism in cancer is thought to fuel cancer growth but may also support metastatic niche formation through microvesicle production. We describe the role of a glutaminase inhibitor, compound 968, in ESV production. We have discovered that inhibiting glutamine metabolism significantly impairs large-diameter microvesicle production in cancer cells.

  15. Low-affinity transport of FITC-albumin in alveolar type II epithelial cell