Science.gov

Sample records for bronsted acid site

  1. Computational studies of Bronsted acid sites in zeolites

    SciTech Connect

    Curtiss, L.A.; Iton, L.E.; Zygmunt, S.A.

    1995-01-01

    The authors have performed high-level ab initio calculations using both Hartree-Fock (HF) and Moller-Plesset perturbation theory (MP2) to study the geometry and energetics of the adsorption complex involving H{sub 2}O and the Bronsted acid site in the zeolite H-ZSM-5. In these calculations, which use aluminosilicate cluster models for the zeolite framework with as many a 28 T atoms (T = Si, Al), we included geometry optimization in the local vicinity of the acid site at the HF/6-31G(d) level of theory, and have calculated corrections for zero-point energies, extensions for zero-point energies, extensions to higher basis sets, and the influence of electron correlation. Results for the adsorption energy and geometry of this complex are reported and compared with previous theoretical and experimental values.

  2. Support Effects on Bronsted acid site densities and alcohol dehydration turnover rates on tungsten oxide domains

    SciTech Connect

    Macht, Josef; Baertsch, Chelsey D.; May-Lozano, Marcos; Soled, Stuart L.; Wang, Yong; Iglesia, Enrique

    2005-03-01

    Initial activity and acid site density of several WAl, WSi (MCM41) and one WSn sample were determined. Trans/cis 2-butene selectivity is dependent on the support. Presumably, these differences are due to subtle differences in base strengths. 2-Butanol dehydration rates (per W-atom) reached maximum values at intermediate WOx surface densities on WAl, as reported for 2-butanol dehydration reactions on WZr. Titration results indicate that Bronsted acid sites are required for 2-butanol dehydration on WAl, WSi and WSn. UV-visible studies suggest that WAl is much more difficult to reduce than WZr. The detection of reduced centers on WAl, the number of which correlates to Bronsted acid site density and catalyst activity, as well as the temperature dependence of Bronsted acid site density indicate the in-situ formation of these active sites. We infer that this mechanism is common among all supported WOx samples described in this study. Turnover rates are a function of Bronsted acid site density only. High acid site densities lead to high turnover rates. Higher active site densities may cause stronger conjugate bases, as a higher electron density has to be stabilized, and thus weaker acidity, enabling a faster rate of product desorption. The maximum achievable active site density is dependent on the support. WZr reaches a higher active site density than WAl.

  3. The Bronsted-Lowery Acid-Base Concept.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1988-01-01

    Gives the background history of the simultaneous discovery of acid-base relationships by Johannes Bronsted and Thomas Lowry. Provides a brief biographical sketch of each. Discusses their concept of acids and bases in some detail. (CW)

  4. Modification of the surface pathways in alkane oxidation by selective doping of Bronsted acid sites of vanadyl pyrophosphate

    SciTech Connect

    Centi, G.; Golinelli, G.; Busca, G. )

    1990-08-23

    The modification of Bronsted POH groups of (VO){sub 2}P{sub 2}O{sub 7} by selective doping with K in an anhydrous medium causes a considerable modification of the surface oxidation pathways in C{sub 4}- and C{sub 5}-alkane oxidative transformation, with (i) a considerable decrease in the selective formation of maleic anhydride from n-butane and of maleic and phthalic anhydrides from n-pentane, (ii) an increase in the relative formation of C-containing surface residues. It is suggested that these effects are due to an inhibition of the catalyzed transformation of furan-like intermediates to corresponding lactones and then to anhydrides in the presence of gaseous O{sub 2} and to a change in the relative rates of O-insertion and H-abstraction on these surface intermediates. The role of the dynamics of competitive surface transformations of adsorbed intermediates on the overall behavior of vanadyl pyrophosphate in C{sub 4}- and C{sub 5}-alkane selective oxidation is also discussed.

  5. Evidence of Bronsted acidity on sulfided promoted and unpromoted Mo/Al sub 2 O sub 3 catalysts

    SciTech Connect

    Topsoe, N.Y.; Topsoe, H. ); Massoth, F.E. )

    1989-09-01

    It is uncertain what effect acidity, especially protonic (Bronsted) acidity, has on typical hydrotreating reactions over molybdenum-containing, sulfided catalysts. In a study of the hydrogenation of 1-hexene, small amounts of propylene were found together with the major product, hexane. The amount of the former increased with increase in the H{sub 2}S partial pressure, leading to the supposition that H{sub 2}S increased the Bronsted acidity of the sulfided catalyst. The hydrodenitrogenation of quinoline was also found to be promoted by H{sub 2}S, which was attributed to an increase in the number of Bronsted acid sites. However, no direct evidence for the presence of Bronsted acid sites was obtained. One of the advantages of using pyridine as the probe molecule for monitoring acidity is that it can adsorb both as coordinated and protonated pyridine on Lewis and Bronsted acid sites, respectively. These adsorbed pyridine species can be easily distinguished by infrared spectroscopy. Bronsted and Lewis acid sites have been detected for oxidic promoted and unpromoted Mo/Al{sub 2}/O{sub 3} catalysts but only Lewis acidity has been found on the corresponding sulfided catalysts. It should be pointed out that most of the previous IR studies have been carried out with pyridine adsorption at relatively low temperatures (below 423 K). It occurred to the authors that since the Bronsted acidity, if it exists, must be weak, higher temperatures may be required to produce the pyridinium ion. The present not reports IR evidence of Bronsted acidity at elevated temperatures corresponding to those typically employed under hydroprocessing reactions.

  6. Effects of Zeolite Structure and Si/Al Ratio on Adsorption Thermodynamics and Intrinsic Kinetics of Monomolecular Cracking and Dehydrogenation of Alkanes over Bronsted Acid Sites

    NASA Astrophysics Data System (ADS)

    Janda, Amber Leigh

    It is well known that the efficacy of acidic zeolite catalysts for the cracking of hydrocarbons originates from the shape and size of the zeolite pores. However, the mechanisms by which changes in pore structure influence cracking kinetics are not well understood or exploited. The aim of this dissertation is to use experiments and simulations to shed light on the ways by which zeolite structure and acid site location affect the apparent and intrinsic kinetics of n-alkane monomolecular cracking and dehydrogenation. In the rate-determining step of these processes, C-C or C-H bonds are cleaved catalytically by Bronsted protons. Thus, the kinetics of monomolecular activation reactions are useful for characterizing the influence of active site structural environment on catalysis. In Chapter 2, the effects of active site distribution on n-butane monomolecular activation kinetics are investigated for commercial samples of MFI having a range of the Si/Al ratio. Based on UV-visible spectroscopic analyses of (Co,Na)-MFI, it is inferred that, with increasing Al concentration, the fraction of Co---and, by extension, Bronsted protons in H-MFI---located at channel intersections increases relative to the fraction located at channels. Concurrently, the first-order rate coefficients (kapp) for cracking and dehydrogenation, the selectivity to terminal cracking versus central cracking, and the selectivity to dehydrogenation versus cracking increase. The stronger dependence of the selectivity to dehydrogenation on Al content is attributed to a product-like transition state, the stability of which is more sensitive to confinement than the stabilities of cracking transition states, which occur earlier along the reaction coordinate. For terminal cracking and dehydrogenation, the intrinsic activation entropy (DeltaS‡int ) increases with Al content, consistent with the larger dimensions of intersections relative to channels. Surprisingly, the rate of dehydrogenation is inhibited by

  7. Cyclopropane reactions over Bronsted, cation, and metal sites in Ni/NaX zeolites

    SciTech Connect

    Simon, M.W.; Suib, S.L.; Bennett, C.O. )

    1994-07-01

    The reactions of cyclopropane in helium and hydrogen were investigated over two different loadings (10.7 and 6.0 wt%) of ion-exchanged Ni/NaX zeolites. The effects of reduction temperatures and hydrogen treatment times on catalytic activity and acidity were studied. Apparent activation energies ranged from 35.5 to 95.4 kJ/mol for isomerization reactions over two loadings of Ni/NaX zeolite reduced under different conditions. Rates of isomerization, hydrogenation, and hydrogenolysis are also reported. Deactivation and regeneration of catalysts are discussed. Particle sizes of 8.9 and 17.3 nm were observed in highly reduced Ni zeolites. Sintering of Ni was observed on the surfaces of the zeolite crystallites. Temperature programmed reduction studies show that stoichiometric amounts of H[sub 2] were used to completely reduce reduce all Ni in the samples. Infrared analysis of chemisorbed pyridine on these materials show that higher loadings of Ni result in higher initial acidities. Increased amounts of reduced Ni significantly increase the number of Bronsted sites on the surface of the catalyst. Electron paramagnetic resonance revealed that Ni[sup +] was present in low loaded Ni/NaX samples upon reduction at low temperatures (350[degrees]C), while higher reduction temperatures (450[degrees]C) resulted in a broad EPR signal corresponding to Ni[sup 0] only. Na vapor deposition experiments, designed to selectively poison Bronsted sites on the catalyst, reveal that Ni[sup +] ions are active in cyclopropane isomerization reactions at high temperatures. 59 refs., 11 figs., 5 tabs.

  8. A {sup 13}C NMR study of the condensation chemistry of acetone and acetaldehyde adsorbed at the Bronsted acid sites in H-ZSM-5

    SciTech Connect

    Biaglow, A.I.; Sepa, J.; Gorte, R.J.

    1995-02-01

    Several bimolecular, acid-catalyzed condensation reactions of acetone and acetaldehyde have been examined in H-ZSM-5, along with the adsorption complexes formed by the products, using {sup 13}C NMR. For acetone, the hydrogen-bonded adsorption complex is stable at room temperature and coverages below one molecule per Broensted acid site. Reaction to mesityl oxide occurs only at higher coverages or temperatures, which are necessary to induce site exchange. The adsorption complex exhibits reaction chemistry analogous to that observed in solution phase, forming adsorption complexes of chloroacetone upon exposure to Cl{sub 2} and of imines upon exposure to NH{sub 3} or dimethylamine. The reactions of acetaldehyde to crotonaldehyde and imines are similar, although they occur at a faster rate due to the higher mobility of this molecule. The adsorption complexes formed by acetone, acetaldehyde, and their condensation products can all be described as rigid, hydrogen-bonded complexes at low coverages. Complexes formed from imines and enamines exhibit isotropic chemical shifts nearly identical to those observed in magic acids, indicating that proton transfer is nearly complete for these molecules. The extent of proton transfer for the remaining molecules varies with the proton affinity of the molecule, ranging from close to complete proton transfer for mesityl oxide and crotonaldehyde to almost complete absence of proton transfer for the chloroacetones. The differences and similarities between these reactions in the zeolite and in solution phase are discussed, along with the implications for understanding the primary processes responsible for these reactions in zeolites. 34 refs., 16 figs., 1 tab.

  9. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions.

    PubMed

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-01-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = Ti(IV), Cu(II), Al(III), Sn(IV), Fe(III), Cr(III), Zr(IV) and Zn(II); for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with Ti(x)H(3-4x)PW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (Ti(x)H(3-4x)PW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse. PMID:26374393

  10. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    PubMed Central

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-01-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3−4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3−4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse. PMID:26374393

  11. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    NASA Astrophysics Data System (ADS)

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-09-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3-4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3-4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse.

  12. Luminescence and IR characterization of acid sites on alumina

    SciTech Connect

    Shen, Yan-Fei; Suib, S.L. ); Deeba, M.; Koermer, G.S. )

    1994-04-01

    Luminescence and infrared (IR) spectroscopies of pyridine and ammonia adsorption have been used to measure acidities of [gamma]-alumina. Neither luminescence nor IR spectra of pyridine adsorption show an Bronsted acidity on [gamma]-alumina pretreated to 400[degrees]C. However, luminescence emission data reveal four weak OH bands even when pretreatment is done at 600[degrees]C. Pyridine and subsequent water adsorption yield six luminescence emission bands. A red shift of the pyridine emission band is found when pretreatment or desorption temperature is increased. IR spectra of ammonia on alumina pretreated at 400[degrees]C show three deformation bands at 1452, 1465, and 1485 cm[sup [minus]1]. The first band is also observed together with a band at 1554 cm[sup [minus]1] even for pretreatment at 950[degrees]C, and it corresponds to NH[sup +][sub 4] formed from dissociative adsorption of ammonia, while the other two bands are assigned to ammonia adsorbed on Bronsted acid sites. These two bands disappear along with the appearance of a new band at 1429 cm[sup [minus]1], when deuterated alumina is pretreated at 400[degrees]C and subsequently subjected to ammonia. This new band at 1429 cm[sup [minus]1] is due to NH[sub 3]D[sup +] formed from ammonia adsorbed on acidic OD sites. Consequently, ammonia IR results demonstrate the existence of Bronsted acid sites on alumina pretreated at 400[degrees]C. 38 refs., 9 figs., 2 tabs.

  13. Brønsted acid sites in gmelinite

    NASA Astrophysics Data System (ADS)

    Benco, Łubomír; Demuth, Thomas; Hafner, Jürgen; Hutschka, François

    1999-10-01

    The structural properties of purely siliceous and Al-substituted protonated gmelinite, a zeolite with a medium-sized unit cell, are investigated by means of first-principles local-density functional calculations. For acid sites introduced into an Al-free structure, optimized geometries are compared with experimental data. The substitution of a Si-O fragment by Al-O-H induces a pronounced local deformation of the structure. Four symmetrically distinct O sites (O1-O4) are classified, according to the pattern of the deformation, into two categories showing rather localized (sites 2 and 3), and mostly delocalized (sites 1 and 4) distortions. Relative stabilities of protonated structures are shown to depend on the initial geometry of the site. Larger Si-O-Si angles lead to a higher stability of the acid site. Two approaches, a static and a dynamical one, are used to derive OH stretching frequencies. Both of them prove a rather complex relation between the infrared (IR) frequency, the acidity, and the local environment of the Bro/nsted acid site. The lowest OH stretching frequency is assigned to the O2 site as distinguished in the dynamical calculations. The shift occurs due to attractive interactions of H to the framework oxygen atoms.

  14. The influence of chemisorbed molecules on mass transfer in H-ZSM-5-type zeolites and the location of Broensted acid sites

    SciTech Connect

    Caro, J.; Buelow, M. ); Kaerger, J.; Pfeifer, H. )

    1988-11-01

    Heterogeneous catalysis is one of the most important applications of zeolites. Therefore, various methods have been developed to determine the strength and concentration of Bronsted acid sites in zeolites. Among them, in the last few years, {sup 1}H MAS NMR has become a powerful tool. In addition to the accessibility of the acid sites probed by chemisorption of N-bases, the steric environment of these catalytically active sites is of importance since it imposes constraints on the geometry of the transition state. However, only a few studies have been reported on this topic. Information was obtained from quantum chemical calculations, catalytic experiments, I.R. spectroscopy, and the arrangement of guest molecules. From these investigations it has been concluded that in H-ZSM-5 the channel intersections should be preferential location centers for the Bronsted acid sites. In adsorption technology, in the use of zeolites as shape-selective adsorbents, modification of the molecular sieve properties by chemisorption of nitrogen-containing bases (N-compounds) has become a common technique. The authors have applied the NMR pulsed field gradient technique to study the influence of chemisorbed N-compounds on transport properties of molecular sieves, considering the chemisorbed compounds as transport obstacles.

  15. Mechanism of hydrodenitrogenation (Part 4) infrared spectroscopy of acidic molybdena catalysts

    SciTech Connect

    Miranda, R.

    1990-01-01

    Mo oxide catalysts supported over a complete series of silica-aluminas have been characterized in the oxidic and reduced states, by means of total acidity measurements and by infrared spectroscopy. Ammonia chemisorption was used to titrate the total acidity of the catalysts, and IR absorption of adsorbed pyridine to distinguish Bronsted from Lewis acid sites. The formation of new acidity upon deposition of molybdena on silica-alumina supports was then explained on the basis of a simple surface model. The new acidity is of both Lewis and Bronsted type, the preponderance of one over the other depending on support composition, as well as loading and state of oxidation of Mo. High-alumina supports and low Mo loading favor dispersed Mo species, in particular bidentate and monodentate di-oxo Mo species. The latter is responsible for the new Bronsted acidity. Coordinative unsaturation of polymolybdates is responsible for the new Lewis acidity, which is increased upon reduction of Mo. High-silica supports favor monodentate species (high Bronsted acidity) up to 4 wt % MoO{sub 3}. Beyond that, polymolybdates species and Lewis acidity predominate. 7 refs., 4 figs.

  16. Solid-state NMR investigation of acid sites in dealuminated HZSM-5 zeolite.

    PubMed

    Deng, F; Du, Y; Ye, C H

    1996-01-01

    The acid sites and the hydration behaviors of dealuminated HZSM-5 zeolites (calcined at 550, 600, 650, and 700 degrees C) were characterized by high-resolution 1H MAS, 1H{27A1} spin-echo double resonance in combination with 27A1 MAS NMR. Apart from the usually observed peaks for dealuminated zeolite HZSM-5, a narrow plus a broad peak simultaneously appears at ca. 6.9 ppm in the 1H spectra and they exhibit different decay behavior in the 1H [27A1] double-resonance experiments. The existence of the former signal indicates that Lewis acid sites may'be formed in the zeolites after calcination. By means of the spin echo double resonance technique, we observed for the first time a previously unexpected narrow signal at 5.2 ppm, which resonates on the downfield side of Bronsted acid signal (4.3 ppm) and cannot be resolved in the 1H MAS spectra. This new signal is probably due to another kind of Bronsted acid site, locating in the small cages bounded by four- and five-membered rings. Three narrow peaks at 50 ppm, 30 ppm, and 0 ppm are superimposed on a very broad signal in the 27A1 MAS NMR spectra of dried HZSM-5. The intensity of the line at 50 ppm is significantly reduced compared with that of the rehydrated sample. 27A1 MAS NMR suggests that most part of the four-coordinated framework A1 turns into a intermediate case between four- and three-coordinated A1 after the dehydration and this process is reversible upon dehydration/rehydration. While some framework A1 atoms are transformed into three-coordinated A1 species and Lewis acid sites are, thus, generated in the dealuminated zeolites. For the signal at 30 ppm, the hydration leads to a dispersion in the chemical shift or the quadrupole interaction, which broadens its linewidth in hydrated samples. PMID:8970117

  17. Bronsted-Evans-Polany relationships for C-C bond forming and C-C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory.

    SciTech Connect

    Assary, R. S.; Broadbelt, L. J.; Curtiss, L. A.

    2012-01-01

    The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Broensted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C-C bond formation and C-C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations.

  18. [Experimental and kinetic modeling of acid/base and redox reactions over oxide catalysts

    SciTech Connect

    Not Available

    1993-01-01

    The research has involved the characterization of catalyst acidity, [sup 2]D NMR studies of Bronsted acid sites, and kinetic, calorimetric, and spectroscopic studies of methylamine synthesis and related reactions over acid catalysts. Approach of this work was to explore quantitative correlations between factors that control the generation, type, strength, and catalytic properties of acid sites on zeolite catalysts. Microcalorimetry, thermogravimetric analysis, IR spectroscopy, and NMR spectroscopy have provided information about the nature and strength of acid sites in zeolites. This was vital in understanding the catalytic cycles involved in methylamine synthesis and related reactions over zeolite catalysts.

  19. [Experimental and kinetic modeling of acid/base and redox reactions over oxide catalysts]. Technical progress report

    SciTech Connect

    Not Available

    1993-07-01

    The research has involved the characterization of catalyst acidity, {sup 2}D NMR studies of Bronsted acid sites, and kinetic, calorimetric, and spectroscopic studies of methylamine synthesis and related reactions over acid catalysts. Approach of this work was to explore quantitative correlations between factors that control the generation, type, strength, and catalytic properties of acid sites on zeolite catalysts. Microcalorimetry, thermogravimetric analysis, IR spectroscopy, and NMR spectroscopy have provided information about the nature and strength of acid sites in zeolites. This was vital in understanding the catalytic cycles involved in methylamine synthesis and related reactions over zeolite catalysts.

  20. Hydrocracking with new solid acid catalysts: Model compounds studies

    SciTech Connect

    Sharma, R.K.; Diehl, J.W.; Olson, E.S. )

    1990-01-01

    Two new solid acid catalysts have been prepared by supporting zinc chloride on silica gel and acid-exchanged montmorillonite. The acid properties of these catalysts were determined by Hammett indicator method which showed that highly Bronsted acidic sites were present. SEM/EDS studies indicated a uniform distribution of silicon, zinc, and chlorine in the silica gel-zinc chloride catalyst. The activities of these catalysts in the hydrocracking of bibenzyl, polybenzyl, alkylbenzenes, and other heteroatom substituted aromatics were investigated. Their results with model compounds account for the effectiveness of these solid acid catalysts for conversion of coals to lower molecular weight materials.

  1. Study of the acidic properties of ZrO2-pillared bentonite

    NASA Astrophysics Data System (ADS)

    Suseno, Ahmad; Priyono; Wijaya, Karna; Trisunaryanti, Wega

    2016-02-01

    Research on pillared clays prepared from purified bentonite of Boyolali Central Jawa, Indonesia, and polycation Zr at various concentration and calcination temperature had been done. Effect of acidity characteristic and structure of resulting materials were studied. The nature of acidic site of the material was identified on the basis of FTIRspectra of pyridine adsorbed on ZrO2- pillared bentonite catalysts. Analysis showed that increasing calcination temperature was followed by decreasing acidity and increasing ZrO2 content in the pillared bentonite accompanied by the increase of its acidity. FTIR spectra showed there was an intensity increase of the characteristic band of 1635 cm-1that indicates a Bronsted acid.

  2. Surface Acidity by Positronium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Weifeng; Huang, Dinah C.

    2001-03-01

    The application of the technique of angular correlation of the annihilation radiation (ACAR) from positron-electron pairs for investigating Bronsted acid sites in zeolytic catalysts was initially introduced by the authors with remarkable success. As incident positrons enter polycrystalline zeolites, a portion of the incident positrons would diffuse through the bulk and emerge on the internal surfaces and form with electrons there hydrogen-like positronium atoms (Ps). The Ps atoms will eventually annihilate also and generate an ACAR spectrum that is distinctively narrower than the one from the bulk. In the presence of Bronsted acid sites, the Ps atom population would be reduced through oxidation by protons, resulting in alteration of the ACAR spectrum which is gauged by using a lineshape parameter S. In this report, results from ACAR measurements for based-adsorbed NaHY zeolites will be presented and discussed in light of acidic stregth and effect of molecular size. Acknowledgement: This project was partially supported by grants from NSF and Taiwan National Science Council.

  3. An Acid Hydrocarbon: A Chemical Paradox

    ERIC Educational Resources Information Center

    Burke, Jeffrey T.

    2004-01-01

    The chemical paradox of cyclopentadiene, a hydrocarbon, producing bubbles like a Bronsted acid is observed. The explanation that it is the comparative thermodynamic constancy of the fragrant cyclopentadienyl anion, which produces the powerful effect, resolves the paradox.

  4. Thermodynamic and kinetic aspects of surface acidity

    SciTech Connect

    Dumesic, J.A.

    1992-01-01

    Our research in the general area of acid catalysis involves the characterization of solid acidity and the corresponding assessment of catalytic performance of acidic materials. Acid characterization studies are required to provide essential information about the type of acid site (i.e., Lewis versus Bronsted), the strength of the sites, and the mobility of molecules adsorbed on the acid sites. An accurate measure of acid strength is given by the heat of adsorption of a basic probe molecule on the acid site. A thermodynamic representation of the mobility of adsorbed species on these sites is given by the entropy of adsorption. Important techniques used in these acid site characterization studies include microcalorimetry, thermogravimetric measurements, temperature programmed desorption, infrared spectroscopy and solid state nuclear magnetic resonance. The combination of these acid site characterization studies with reaction kinetics measurements of selected catalytic processes allows the elucidation of possible relationships between surface thermodynamic and kinetic properties of acidic sites. Such relationships are important milestones in formulating effective strategies for the effective utilization of solid acid catalysts. Current work in this direction involves methylamine syntheses over various zeolites, and the basic probe molecules employed include ammonia, methanol, water and mono-, di- and tri-methylamines. 31 refs., 18 figs., 1 tab.

  5. Thermodynamic and kinetic aspects of surface acidity. Progress report

    SciTech Connect

    Dumesic, J.A.

    1992-04-01

    Our research in the general area of acid catalysis involves the characterization of solid acidity and the corresponding assessment of catalytic performance of acidic materials. Acid characterization studies are required to provide essential information about the type of acid site (i.e., Lewis versus Bronsted), the strength of the sites, and the mobility of molecules adsorbed on the acid sites. An accurate measure of acid strength is given by the heat of adsorption of a basic probe molecule on the acid site. A thermodynamic representation of the mobility of adsorbed species on these sites is given by the entropy of adsorption. Important techniques used in these acid site characterization studies include microcalorimetry, thermogravimetric measurements, temperature programmed desorption, infrared spectroscopy and solid state nuclear magnetic resonance. The combination of these acid site characterization studies with reaction kinetics measurements of selected catalytic processes allows the elucidation of possible relationships between surface thermodynamic and kinetic properties of acidic sites. Such relationships are important milestones in formulating effective strategies for the effective utilization of solid acid catalysts. Current work in this direction involves methylamine syntheses over various zeolites, and the basic probe molecules employed include ammonia, methanol, water and mono-, di- and tri-methylamines. 31 refs., 18 figs., 1 tab.

  6. Acidic and catalytic properties of SiO{sub 2}-Ta{sub 2}O{sub 5} mixed oxides prepared by the sol-gel method

    SciTech Connect

    Guiu, G.; Grange, P.

    1995-09-15

    The acidic and catalytic properties of a series of silicon-tantalum mixed oxides containing between 0 and 30 at% tantalum were characterized by temperature-programmed desorption of ammonia, by FTIR spectra of adsorbed pyridine, and by the test reaction of 1-butanol dehydration at 250-300{degrees}C. Probe molecule adsorption and catalytic testing show an acid site generation in silicon-tantalum mixed oxides compared to pure tantalum oxide. Both Bronsted and Lewis acid sites are present on the mixed oxide surface. Bronsted and Lewis acid sites seem to be weaker in SiO{sub 2}-Ta{sub 2}O{sub 5} mixed oxide than in analogous SiO{sub 2}-Al{sub 2}O{sub 3}, since a greater reaction temperature is required to achieve the same conversion in the above test reaction. However, a great advantage of this new solid acid is the production of butenes with 100% selectivity. 30 refs., 5 figs., 3 tabs.

  7. Adverse experiences with nitric acid at the Savannah River Site

    SciTech Connect

    Durant, W.S.; Craig, D.K.; Vitacco, M.J.; McCormick, J.A.

    1991-06-01

    Nitric acid is used routinely at the Savannah River Site (SRS) in many processes. However, the site has experienced a number of adverse situations in handling nitric acid. These have ranged from minor injuries to personnel to significant explosions. This document compiles many of these events and includes discussions of process upsets, fires, injuries, and toxic effects of nitric acid and its decomposition products. The purpose of the publication is to apprise those using the acid that it is a potentially dangerous material and can react in many ways as demonstrated by SRS experience. 10 refs.

  8. Determination of the acidic sites of purified single-walled carbon nanotubes by acid base titration

    NASA Astrophysics Data System (ADS)

    Hu, H.; Bhowmik, P.; Zhao, B.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C.

    2001-09-01

    We report the measurement of the acidic sites in three different samples of commercially available full-length purified single-walled carbon nanotubes (SWNTs) - as obtained from CarboLex (CLI), Carbon Solutions (CSI) and Tubes@Rice (TAR) - by simple acid-base titration methods. Titration of the purified SWNTs with NaOH and NaHCO 3 solutions was used to determine the total percentage of acidic sites and carboxylic acid groups, respectively. The total percentage of acidic sites in full length purified SWNTs from TAR, CLI and CSI are about 1-3%.

  9. FTIR studies on the acidity of sulfated zirconia prepared by thermolysis of zirconium sulfate

    SciTech Connect

    Platero, E.E.; Mentruit, M.P.; Arean, C.O.; Zecchina, A.

    1996-09-01

    Sulfated zirconia having a BET surface area of 90 m{sup 2}g{sup -1} and a temperature-resistant mesoporous texture was prepared by thermolysis (at 1000 K) of zirconium sulfate. Infrared studies of surface sulfates, CO adsorption at 77 K, and room temperature adsorption of pyridine showed close similarity to sulfated zirconias prepared by impregnation of doping from the gas phase. Four main families of Lewis acid centers were found, which gave CO adducts characterized by stretching frequencies of 2212, 2202, 2196, and 2188 cm{sup -1}. Interaction of CO (at liquid nitrogen temperature) with surface hydroxyls (in partially hydroxylated samples) was found to shift the O-H stretching frequency from 3650 to 3510 cm{sup -1}, due to formation of hydrogen-bonded OH{center_dot}{center_dot}CO complexes. This downward shift, {Delta}{nu}{sub OH} = 140 cm{sup -1}, is significantly larger than the corresponding value for pure zirconia ({Delta}{nu}{sub OH} = 90 cm{sup -1}), which strongly suggests enhancement of the Bronsted acidity. Samples showing the acidic OH group at 3650 cm{sup -1} were found to contain also disulfate groups and traces of molecular water. Surface hydroxyls is sulfated zirconia still appear, however, to be weaker Bronsted acid sites than are bridging OH groups in zeolites. 49 refs., 7 figs., 2 tabs.

  10. SITE PROGRAM EVALUATION OF INNOVATIVE ACID MINE DRAINAGE TREATMENT TECHNOLOGIES AT THE LEVIATHAN MINE SITE, CA

    EPA Science Inventory

    The EPA SITE Program is conducting a detailed sampling and evaluation of several innovative acid mine drainage treatment technologies at the Leviathan Mine Superfund site in California. Technologies include BiPhasic Lime Treatment Plant, an alkaline lagoon, and an innovative bio...

  11. Dehydration of lactic acid to acrylic acid over lanthanum phosphate catalysts: the role of Lewis acid sites.

    PubMed

    Guo, Zhen; Theng, De Sheng; Tang, Karen Yuanting; Zhang, Lili; Huang, Lin; Borgna, Armando; Wang, Chuan

    2016-09-14

    Lanthanum phosphate (LaP) nano-rods were synthesized using n-butylamine as a shape-directing agent (SDA). The resulting catalysts were applied in the dehydration of lactic acid to acrylic acid. Aiming to understand the nature of the active sites, the chemical and physical properties of LaP materials were studied using a variety of characterization techniques. This study showed that the SDA not only affected the porosity of the LaP materials but also modified the acid-base properties. Clearly, the modification of the acid-base properties played a more critical role in determining the catalytic performance than porosity. An optimized catalytic performance was obtained on the LaP catalyst with a higher concentration of Lewis acid sites. Basic sites showed negative effects on the stability of the catalysts. Good stability was achieved when the catalyst was prepared using the appropriate SDA/La ratio. PMID:27514871

  12. Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish.

    PubMed

    Caprio, J; Byrd, R P

    1984-09-01

    Electrophysiological experiments indicate that olfactory receptors of the channel catfish, Ictalurus punctatus, contain different receptor sites for the acidic (A), basic (B), and neutral amino acids; further, at least two partially interacting neutral sites exist, one for the hydrophilic neutral amino acids containing short side chains (SCN), and the second for the hydrophobic amino acids containing long side chains (LCN). The extent of cross-adaptation was determined by comparing the electro-olfactogram (EOG) responses to 20 "test" amino acids during continuous bathing of the olfactory mucosa with water only (control) to those during each of the eight "adapting" amino acid regimes. Both the adapting and test amino acids were adjusted in concentrations to provide approximately equal response magnitudes in the unadapted state. Under all eight adapting regimes, the test EOG responses were reduced from those obtained in the unadapted state, but substantial quantitative differences resulted, depending upon the molecular structure of the adapting stimulus. Analyses of the patterns of EOG responses to the test stimuli identified and characterized the respective "transduction processes," a term used to describe membrane events initiated by a particular subset of amino acid stimuli that are intricately linked to the origin of the olfactory receptor potential. Only when the stimulus compounds interact with different transduction processes are the stimuli assumed to bind to different membrane "sites." Four relatively independent L-alpha-amino acid transduction processes (and thus at least four binding sites) identified in this report include: (a) the A process for aspartic and glutamic acids; (b) the B process for arginine and lysine; (c) the SCN process for glycine, alanine, serine, glutamine, and possibly cysteine; (d) the LCN process for methionine, ethionine, valine, norvaline, leucine, norleucine, glutamic acid-gamma-methyl ester, histidine, phenylalanine, and also

  13. Inorganic Nitrogen Cycling in an Extreme Acid Mine Drainage Site

    NASA Astrophysics Data System (ADS)

    Kalnejais, L. H.; Smith, R. L.; Nordstrom, D. K.; Banfield, J. F.

    2006-12-01

    Weathering of the massive sulfide ore body at Iron Mountain, northern California has generated sulfuric acid solutions with pH values ranging from 0.5 to 1, temperatures up to 50°C and high concentrations of toxic metals. Communities of microorganisms catalyze the oxidation of iron and sulfur that generates this extreme environment. The nitrogen requirements of these organisms and the nitrogen cycling within these waters are not understood. By adapting the chemiluminescence detection method of Baeseman (2004) we have constrained the stability of nitrate and nitrite species in acidic, high ferrous iron solutions and have measured a time series of the nitrate concentrations at sites within Iron Mountain. The half-life of nitrite is less than an hour due to reactions with ferrous ions, while nitrate is found at concentrations of up to 10 μM within the mine. By coupling this information with geochemical and microbial community information at each site together with culture enrichment studies using various nitrogen sources we hope to gain insight into the pathways of nitrogen utilization in this extreme environment. References Baeseman, J.L. (2004) Denitrification in acid-impacted mountain stream sediments. Ph.D. Dissertation, University of Colorado, Department of Civil, Environmental, and Architectural Engineering.

  14. On the behavior of Bronsted-Evans-Polanyi Relations for Transition Metal Oxides

    SciTech Connect

    Vojvodic, Aleksandra

    2011-08-22

    Versatile Broensted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a 'cyclic' behavior in the transition state characteristics upon change of the active transition metal of the oxide.

  15. Specific Initiation Site for Simian Virus 40 Deoxyribonucleic Acid Replication

    PubMed Central

    Thoren, Marilyn M.; Sebring, Edwin D.; Salzman, Norman P.

    1972-01-01

    Replicating simian virus 40 (SV40) deoxyribonucleic acid (DNA) molecules have been isolated under conditions in which the newly synthesized DNA is uniformly labeled with 3H-thymidine. These newly synthesized strands are released from the replicative intermediate molecules by alkaline treatment, and it has been possible to isolate single-stranded SV40 DNA which varies in size from 157,000 daltons (from molecules that are 10% replicated) to 1,360,000 daltons (85% replicated). The rates of duplex formation of newly synthesized DNA have been used to relate their genetic complexity to the extent of DNA replication. As DNA replication proceeds, the time required to effect 50% renaturation of the newly synthesized DNA increases at a proportional rate. The data establish that DNA replication is not initiated at random, but rather that there is a single specific initiation site for DNA replication. PMID:4342054

  16. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, G.C.; Dickson, T.J.

    1998-04-28

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.

  17. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, Gerald Charles; Dickson, Todd Jay

    1998-01-01

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.

  18. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    ERIC Educational Resources Information Center

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  19. Possible intermolecular interaction between quinolones and biphenylacetic acid inhibits gamma-aminobutyric acid receptor sites.

    PubMed

    Akahane, K; Kimura, Y; Tsutomi, Y; Hayakawa, I

    1994-10-01

    The combination of some new quinolone antibacterial agents with 4-biphenylacetic acid (BPAA), a metabolite of fenbufen, is known to specifically induce functional blockade of the gamma-aminobutyric acid (GABA) receptors. The mechanisms of these drug interactions were further examined. Scatchard analysis of [3H]muscimol binding to rat brain plasma membranes in the presence of enoxacin and BPAA revealed that a significant decrease in the number of muscimol binding sites was produced without affecting the affinity of binding to the receptors. In the presence of norfloxacin, BPAA inhibited muscimol binding the most potently of the six BPAA-related compounds tested. Fenbufen and 9,10-dihydro-gamma-oxo-2-phenanthrenebutyric acid also inhibited the binding, and 4-biphenylcarboxylic acid and methyl 4-biphenylacetate inhibited it slightly, but 3-benzoylpropionic acid exhibited no competitive inhibition. Accordingly, hybrid molecules of norfloxacin and BPAA were synthesized for stereochemical analysis of these drug interactions. A hybrid with a -CONH(CH2)3- chain between norfloxacin and BPAA (flexible structure) inhibited muscimol binding, and intracisternal injection of this hybrid caused clonic convulsions in mice more potently than the combination of norfloxacin and BPAA did. In contrast, a hybrid linked by -CONH- (stretched structure) showed almost no such inhibitory effect. 1H NMR analysis indicated the presence of intramolecular attraction at the quinoline ring of the hybrid exhibiting the antagonistic activity. These results suggest the possibility that quinolones and BPAA interact with the GABA receptor at nearby sites and that the binding affinity of quinolones to the GABA receptors is largely enhanced by the intermolecular interaction with BPAA. PMID:7840564

  20. Possible intermolecular interaction between quinolones and biphenylacetic acid inhibits gamma-aminobutyric acid receptor sites.

    PubMed Central

    Akahane, K; Kimura, Y; Tsutomi, Y; Hayakawa, I

    1994-01-01

    The combination of some new quinolone antibacterial agents with 4-biphenylacetic acid (BPAA), a metabolite of fenbufen, is known to specifically induce functional blockade of the gamma-aminobutyric acid (GABA) receptors. The mechanisms of these drug interactions were further examined. Scatchard analysis of [3H]muscimol binding to rat brain plasma membranes in the presence of enoxacin and BPAA revealed that a significant decrease in the number of muscimol binding sites was produced without affecting the affinity of binding to the receptors. In the presence of norfloxacin, BPAA inhibited muscimol binding the most potently of the six BPAA-related compounds tested. Fenbufen and 9,10-dihydro-gamma-oxo-2-phenanthrenebutyric acid also inhibited the binding, and 4-biphenylcarboxylic acid and methyl 4-biphenylacetate inhibited it slightly, but 3-benzoylpropionic acid exhibited no competitive inhibition. Accordingly, hybrid molecules of norfloxacin and BPAA were synthesized for stereochemical analysis of these drug interactions. A hybrid with a -CONH(CH2)3- chain between norfloxacin and BPAA (flexible structure) inhibited muscimol binding, and intracisternal injection of this hybrid caused clonic convulsions in mice more potently than the combination of norfloxacin and BPAA did. In contrast, a hybrid linked by -CONH- (stretched structure) showed almost no such inhibitory effect. 1H NMR analysis indicated the presence of intramolecular attraction at the quinoline ring of the hybrid exhibiting the antagonistic activity. These results suggest the possibility that quinolones and BPAA interact with the GABA receptor at nearby sites and that the binding affinity of quinolones to the GABA receptors is largely enhanced by the intermolecular interaction with BPAA. PMID:7840564

  1. General Acid Catalysis: A Flexible Experiment, Adaptable to Student Ability and Various Teaching Approaches.

    ERIC Educational Resources Information Center

    Bulmer, R. S.; And Others

    1981-01-01

    The acid-catalyzed hydrolysis of N-vinyl pyrrolidone provides a simple spectrophotometric kinetic experiment to introduce general acid catalysis, solvent isotope effects, and other aspects of ionic reactions in solution in advanced courses. The Bronsted equation and concept of linear free-energy changes is also covered. (SK)

  2. A Sialic Acid Binding Site in a Human Picornavirus

    PubMed Central

    Frank, Martin; Hähnlein-Schick, Irmgard; Ekström, Jens-Ola; Arnberg, Niklas; Stehle, Thilo

    2014-01-01

    The picornaviruses coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) cause continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC), a highly contagious eye disease against which neither vaccines nor antiviral drugs are currently available. Moreover, these viruses can cause symptoms in the cornea, upper respiratory tract, and neurological impairments such as acute flaccid paralysis. EV70 and CVA24v are both known to use 5-N-acetylneuraminic acid (Neu5Ac) for cell attachment, thus providing a putative link between the glycan receptor specificity and cell tropism and disease. We report the structures of an intact human picornavirus in complex with a range of glycans terminating in Neu5Ac. We determined the structure of the CVA24v to 1.40 Å resolution, screened different glycans bearing Neu5Ac for CVA24v binding, and structurally characterized interactions with candidate glycan receptors. Biochemical studies verified the relevance of the binding site and demonstrated a preference of CVA24v for α2,6-linked glycans. This preference can be rationalized by molecular dynamics simulations that show that α2,6-linked glycans can establish more contacts with the viral capsid. Our results form an excellent platform for the design of antiviral compounds to prevent AHC. PMID:25329320

  3. Design of a Brønsted acid with two different acidic sites: synthesis and application of aryl phosphinic acid-phosphoric acid as a Brønsted acid catalyst.

    PubMed

    Momiyama, N; Narumi, T; Terada, M

    2015-12-11

    A Brønsted acid with two different acidic sites, aryl phosphinic acid-phosphoric acid, has been synthesized. Its catalytic performance was assessed in the hetero-Diels-Alder reaction of aldehyde hydrates with Danishefsky's diene, achieving high reaction efficiency. PMID:26445921

  4. Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid.

    PubMed

    Dapsens, Pierre Y; Mondelli, Cecilia; Pérez-Ramírez, Javier

    2013-05-01

    Desilication of commercial MFI-type (ZSM-5) zeolites in solutions of alkali metal hydroxides is demonstrated to generate highly selective heterogeneous catalysts for the aqueous-phase isomerization of biobased dihydroxyacetone (DHA) to lactic acid (LA). The best hierarchical ZSM-5 sample attains a LA selectivity exceeding 90 %, which is comparable to that of the state-of-the-art catalyst (i.e., the Sn-beta zeolite); this optimized hierarchical catalyst is recyclable over three runs. The Lewis acid sites, which are created through desilication along with the introduction of mesoporosity, are shown to play a crucial role in the formation of the desired product; these cannot be achieved by using other post-synthetic methods, such as steaming or impregnation of aluminum species. Desilication of other metallosilicates, such as Ga-MFI, also leads to high LA selectivity. In the presence of a soluble aluminum source, such as aluminum nitrate, alkaline-assisted alumination can introduce these unique Lewis acid centers in all-silica MFI zeolites. These findings highlight the potential of zeolites in the field of biomass-to-chemical conversion, and expand the applicability of desilication for the generation of selective catalytic centers. PMID:23554234

  5. Mesoporous Nb and Ta Oxides: Synthesis, Characterization and Applications in Heterogeneous Acid Catalysis

    NASA Astrophysics Data System (ADS)

    Rao, Yuxiang Tony

    In this work, a series of mesoporous Niobium and Tantalum oxides with different pore sizes (C6, C12, C18 , ranging from 12A to 30 A) were synthesized using the ligand-assisted templating approach and investigated for their activities in a wide range of catalytic applications including benzylation, alkylation and isomerization. The as-synthesized mesoporous materials were characterized by nitrogen adsorption, powder X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and solid-state Nuclear magnetic resonance (NMR) techniques. In order to probe into the structural and coordination geometry of mesoporous Nb oxide and in efforts to make meaningful comparisons of mesoporous niobia prepared by the amine-templating method with the corresponding bulk sol-gel prepared Nb2O5 phase, 17O magic-angle-spinning solid-state NMR studies were conducted. The results showed a very high local order in the mesoporous sample. The oxygen atoms are coordinated only as ONb 2 in contrast with bulk phases in which the oxygen atoms are always present in a mixture of ONb2 and ONb3 coordination environments. To enhance their surface acidities and thus improve their performance as solid acid catalysts in the acid-catalyzed reactions mentioned above, pure mesoporous Nb and Ta oxides were further treated with 1M sulfuric acid or phosphoric acid. Their surface acidities before and after acid treatment were measured by Fourier transform infraRed (FT IR), amine titration and temperature programmed desorption of ammonia (NH3-TPD). Results obtained in this study showed that sulfated mesoporous Nb and Ta oxides materials possess relative high surface areas (up to 612 m 2/g) and amorphous wormhole structure. These mesoporous structures are thus quite stable to acid treatment. It was also found that Bronsted (1540 cm-1) and Lewis (1450 cm-1) acid sites coexist in a roughly 50:50 mixture

  6. Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production.

    PubMed

    Chen, Guo; Fang, Baishan

    2011-02-01

    The aim of this work is to study the catalyst prepared by glucose-starch mixture. Assessment experiments showed that solid acid behaved the highest esterification activity when glucose and corn powder were mixed at ratio of 1:1, carbonized at 400°C for 75 min and sulfonated with concentrated H(2)SO(4) (98%) at 150°C for 5 h. The catalyst was characterized by acid activity measurement, XPS, TEM and FT-IR. The results indicated that solid acid composed of CS(0.073)O(0.541) has both Lewis acid sites and Bronsted acid sites caused by SO(3)H and COOH. The conversions of oleic acid esterification and triolein transesterification are 96% and 60%, respectively. Catalyst for biodiesel production from waste cottonseed oil containing high free fatty acid (FFA 55.2 wt.%) afforded the methyl ester yield of about 90% after 12h. The catalyst deactivated gradually after recycles usage, but it could be regenerated by H(2)SO(4) treatment. PMID:21067915

  7. Nitrous Acid at Concordia (Inland Site) and Dumont d'Urville (Costal Site), East Antarctica

    NASA Astrophysics Data System (ADS)

    Kerbrat, M.; Legrand, M.; Preunkert, S.; Gallée, H.; Kleffman, J.

    2012-04-01

    One of the most recent important finding made in Antarctica after the discovery of the appearance of the Antarctic ozone hole in the early 80's was the discovery of a very oxidizing canopy over the South Pole region in relation with unexpected high levels of NO. There is a strong need however to extend investigations of the oxidation capacity of the lower atmosphere at the scale of the whole Antarctic continent, and in particular, over East Antarctica. That motivated the OPALE (Oxidant Production over Antarctic Land and its Export) project. Indeed the limited data gained by using aircraft sampling during ANTCI 2003 suggest that over the East Antarctic plateau even higher NO emissions persist. Among several not yet resolved questions related to the high level of oxidants over Antarctica is the role of nitrous acid (HONO). During the austral summer 2010/2011 the levels of nitrous acid (HONO) were for the first time investigated at Concordia (75°06'S, 123°33'E) and Dumont D'Urville (66°40'S, 140°01'E), two stations located in East Antarctica. Also for the first time in Antarctica, HONO was measured by deploying a long path absorption photometer (LOPAP). At Concordia, from the end of December 2010 to mid January 2011 HONO mixing ratios at 1 m above the snow surface ranged between 5 and 60 pptv. Diurnal cycles were observed with levels peaking in the morning (06:30 to 07:30) and the evening (19:00 to 20:00). At Dumont d'Urville, background mixing ratios close to 2 pptv were observed in February 2011. No clear diurnal cycles were observed at that site but several events of air masses export from inland Antarctica were encountered with enhanced HONO levels reaching 10 pptv at night. These first HONO data gained in East Antarctica are discussed in terms of sources and sinks along with synoptic weather conditions.

  8. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  9. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  10. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  11. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  12. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2009-04-28

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  13. Teachers' Perceptions of the Teaching of Acids and Bases in Swedish Upper Secondary Schools

    ERIC Educational Resources Information Center

    Drechsler, Michal; Van Driel, Jan

    2009-01-01

    We report in this paper on a study of chemistry teachers' perceptions of their teaching in upper secondary schools in Sweden, regarding models of acids and bases, especially the Bronsted and the Arrhenius model. A questionnaire consisting of a Likert-type scale was developed, which focused on teachers' knowledge of different models, knowledge of…

  14. Mechanism of hydrodenitrogenation low temperature oxygen chemisorption over acidic molybdenum catalysts: Part 7

    SciTech Connect

    Miranda, R.

    1991-01-01

    The low temperature oxygen chemisorption over acidic molybdena catalysts has evidenced the strong reducibility of near-surface Mo, and the effect of catalyst loading and support composition on such reducibility. It was determined that for supports with compositions under 50% silica, the optimum loading producing maximum surface reducibility is 8 wt% MoO{sub 3}, while for supports with more than 50% silica, the optimum loading is 4 wt% MoO{sub 3}. At this loading, a substantial portion of the support (containing acidic sites) is also exposed. The role of Lewis sites produced on the molybdena surface by coordinative unsaturation is the strong adsorption of aromatic or unsaturated amines, and the destabilization of C-C and C-N bonds. Hydrogenation and hydrogenolysis can then occur by H addition. The highly acidic Bronsted sites, present on the support as well as on the molybdena, strongly chemisorb the hydrogenated amines. The acidic sites contribute to denitrogenation by Hofmann elimination mechanism, as shown by the the abundance of unsaturated hydrocarbons produced, and are also active for cracking and cyclization, as shown by the selectivity towards methane and cyclopentene. 13 refs., 3 figs., 1 tab.

  15. Interaction of metal ions with acid sites of biosorbents peat moss and Vaucheria and model substances alginic and humic acids

    SciTech Connect

    Crist, R.H.; Martin, J.R.; Crist, D.R.

    1999-07-01

    The interaction between added metal ions and acid sites of two biosorbents, peat moss and the alga Vaucheria, was studied. Results were interpreted in terms of two model substances, alginic acid, a copolymer of guluronic and mannuronic acids present in marine algae, and humic acid in peat moss. For peat moss and Vaucheria at pH 4--6, two protons were displaced per Cd sorbed, after correction for sorbed metals also displaced by the heavy metal. The frequent neglect of exchange of heavy metals for metals either sorbed on the native material or added for pH adjustment leads to erroneous conclusions about proton displacement stoichiometry. Proton displacement constants K{sub ex}{sup H} decreased logarithmically with pH and had similar slopes for alginic acid and biosorbents. This pH effect was interpreted as an electrostatic effect of increasing anionic charge making proton removal less favorable. The maximum number of exchangeable acid sites (capacity C{sub H}) decreased with pH for alginic acid but increased with pH for biosorbents. Consistent with titration behavior, this difference was explained in terms of more weak acid sites in the biosorbents.

  16. Structural and electronic features of a Broensted acid site in H-ZSM-5

    SciTech Connect

    Cook, S.J.; Chakraborty, A.K.; Bell, A.T.; Theodorou, D.N. Univ. of California, Berkeley )

    1993-06-24

    The authors report the results of local density functional theory calculations on a Broensted acid site of the zeolite H-ZSM-5. They have investigated the structural and electronic properties of the site. Comparison is made between their results and existing experimental data. It is shown that structural relaxation around an acid site must be performed to obtain accurate energetics for substitution of aluminum into the zeolite framework. The effects of cluster termination are studied by comparing results obtained for both isolated clusters and clusters embedded in a Madelung field generated by the zeolite framework. The properties of the electron density distribution in the region around an acidic proton indicate that the acidic moiety may be characterized as a rather soft acid. 47 refs., 5 figs., 4 tabs.

  17. Instructional Misconceptions in Acid-Base Equilibria: An Analysis from a History and Philosophy of Science Perspective

    ERIC Educational Resources Information Center

    Kousathana, Margarita; Demerouti, Margarita; Tsaparlis, Georgios

    2005-01-01

    The implications of history and philosophy of chemistry are explored in the context of chemical models. Models and modeling provide the context through which epistemological aspects of chemistry can be promoted. In this work, the development of ideas and models about acids and bases (with emphasis on the Arrhenius, the Bronsted-Lowry, and the…

  18. Evidence that Chemical Chaperone 4-Phenylbutyric Acid Binds to Human Serum Albumin at Fatty Acid Binding Sites

    PubMed Central

    James, Joel; Shihabudeen, Mohamed Sham; Kulshrestha, Shweta; Goel, Varun; Thirumurugan, Kavitha

    2015-01-01

    Endoplasmic reticulum stress elicits unfolded protein response to counteract the accumulating unfolded protein load inside a cell. The chemical chaperone, 4-Phenylbutyric acid (4-PBA) is a FDA approved drug that alleviates endoplasmic reticulum stress by assisting protein folding. It is found efficacious to augment pathological conditions like type 2 diabetes, obesity and neurodegeneration. This study explores the binding nature of 4-PBA with human serum albumin (HSA) through spectroscopic and molecular dynamics approaches, and the results show that 4-PBA has high binding specificity to Sudlow Site II (Fatty acid binding site 3, subdomain IIIA). Ligand displacement studies, RMSD stabilization profiles and MM-PBSA binding free energy calculation confirm the same. The binding constant as calculated from fluorescence spectroscopic studies was found to be kPBA = 2.69 x 105 M-1. Like long chain fatty acids, 4-PBA induces conformational changes on HSA as shown by circular dichroism, and it elicits stable binding at Sudlow Site II (fatty acid binding site 3) by forming strong hydrogen bonding and a salt bridge between domain II and III of HSA. This minimizes the fluctuation of HSA backbone as shown by limited conformational space occupancy in the principal component analysis. The overall hydrophobicity of W214 pocket (located at subdomain IIA), increases upon occupancy of 4-PBA at any FA site. Descriptors of this pocket formed by residues from other subdomains largely play a role in compensating the dynamic movement of W214. PMID:26181488

  19. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China.

    PubMed

    Sun, Xiao; Wang, Yan; Li, Haiyan; Yang, Xueqiao; Sun, Lei; Wang, Xinfeng; Wang, Tao; Wang, Wenxing

    2016-05-01

    To investigate the chemical characteristics of organic acids and to identify their source, cloud water and rainwater samples were collected at Mount Lu, a mountain site located in the acid rain-affected area of south China, from August to September of 2011 and March to May of 2012. The volume-weighted mean (VWM) concentration of organic acids in cloud water was 38.42 μeq/L, ranging from 7.45 to 111.46 μeq/L, contributing to 2.50 % of acidity. In rainwater samples, organic acid concentrations varied from 12.39 to 68.97 μeq/L (VWM of 33.39 μeq/L). Organic acids contributed significant acidity to rainwater, with a value of 17.66 %. Formic acid, acetic acid, and oxalic acid were the most common organic acids in both cloud water and rainwater. Organic acids had an obviously higher concentration in summer than in spring in cloud water, whereas there was much less discrimination in rainwater between the two seasons. The contribution of organic acids to acidity was lower during summer than during spring in both cloud water (2.20 % in summer vs 2.83 % in spring) and rainwater (12.24 % in summer vs 19.89 % in spring). The formic-to-acetic acid ratio (F/A) showed that organic acids were dominated by primary emissions in 71.31 % of the cloud water samples and whole rainwater samples. Positive matrix factorization (PMF) analysis determined four factors as the sources of organic acids in cloud water, including biogenic emissions (61.8 %), anthropogenic emissions (15.28 %), marine emissions (15.07 %) and soil emissions (7.85 %). The findings from this study imply an indispensable role of organic acids in wet deposition, but organic acids may have a limited capacity to increase ecological risks in local environments. PMID:26841776

  20. Probing the Binding Site of Bile Acids in TGR5.

    PubMed

    Macchiarulo, Antonio; Gioiello, Antimo; Thomas, Charles; Pols, Thijs W H; Nuti, Roberto; Ferrari, Cristina; Giacchè, Nicola; De Franco, Francesca; Pruzanski, Mark; Auwerx, Johan; Schoonjans, Kristina; Pellicciari, Roberto

    2013-12-12

    TGR5 is a G-protein-coupled receptor (GPCR) mediating cellular responses to bile acids (BAs). Although some efforts have been devoted to generate homology models of TGR5 and draw structure-activity relationships of BAs, none of these studies has hitherto described how BAs bind to TGR5. Here, we present an integrated computational, chemical, and biological approach that has been instrumental to determine the binding mode of BAs to TGR5. As a result, key residues have been identified that are involved in mediating the binding of BAs to the receptor. Collectively, these results provide new hints to design potent and selective TGR5 agonists. PMID:24900622

  1. Improving Evolutionary Models for Mitochondrial Protein Data with Site-Class Specific Amino Acid Exchangeability Matrices

    PubMed Central

    Dunn, Katherine A.; Jiang, Wenyi; Field, Christopher; Bielawski, Joseph P.

    2013-01-01

    Adequate modeling of mitochondrial sequence evolution is an essential component of mitochondrial phylogenomics (comparative mitogenomics). There is wide recognition within the field that lineage-specific aspects of mitochondrial evolution should be accommodated through lineage-specific amino-acid exchangeability matrices (e.g., mtMam for mammalian data). However, such a matrix must be applied to all sites and this implies that all sites are subject to the same, or largely similar, evolutionary constraints. This assumption is unjustified. Indeed, substantial differences are expected to arise from three-dimensional structures that impose different physiochemical environments on individual amino acid residues. The objectives of this paper are (1) to investigate the extent to which amino acid evolution varies among sites of mitochondrial proteins, and (2) to assess the potential benefits of explicitly modeling such variability. To achieve this, we developed a novel method for partitioning sites based on amino acid physiochemical properties. We apply this method to two datasets derived from complete mitochondrial genomes of mammals and fish, and use maximum likelihood to estimate amino acid exchangeabilities for the different groups of sites. Using this approach we identified large groups of sites evolving under unique physiochemical constraints. Estimates of amino acid exchangeabilities differed significantly among such groups. Moreover, we found that joint estimates of amino acid exchangeabilities do not adequately represent the natural variability in evolutionary processes among sites of mitochondrial proteins. Significant improvements in likelihood are obtained when the new matrices are employed. We also find that maximum likelihood estimates of branch lengths can be strongly impacted. We provide sets of matrices suitable for groups of sites subject to similar physiochemical constraints, and discuss how they might be used to analyze real data. We also discuss how

  2. Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor.

    PubMed

    Van Zeebroeck, Griet; Bonini, Beatriz Monge; Versele, Matthias; Thevelein, Johan M

    2009-01-01

    Transporter-related nutrient sensors, called transceptors, mediate nutrient activation of signaling pathways through the plasma membrane. The mechanism of action of transporting and nontransporting transceptors is unknown. We have screened 319 amino acid analogs to identify compounds that act on Gap1, a transporting amino acid transceptor in yeast that triggers activation of the protein kinase A pathway. We identified competitive and noncompetitive inhibitors of transport, either with or without agonist action for signaling, including nontransported agonists. Using substituted cysteine accessibility method (SCAM) analysis, we identified Ser388 and Val389 as being exposed into the amino acid binding site, and we show that agonist action for signaling uses the same binding site as used for transport. Our results provide the first insight, to our knowledge, into the mechanism of action of transceptors. They indicate that signaling requires a ligand-induced specific conformational change that may be part of but does not require the complete transport cycle. PMID:19060912

  3. Na+ Inhibits the Epithelial Na+ Channel by Binding to a Site in an Extracellular Acidic Cleft*

    PubMed Central

    Kashlan, Ossama B.; Blobner, Brandon M.; Zuzek, Zachary; Tolino, Michael; Kleyman, Thomas R.

    2015-01-01

    The epithelial Na+ channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na+, Cl−, protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na+ concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC α subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na+ binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na+. Mutations at selected sites altered the cation inhibitory preference to favor Li+ or K+ rather than Na+. Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na+. Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family. PMID:25389295

  4. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    DOEpatents

    Xie, Jianming; Wang, Lei; Wu, Ning; Schultz, Peter G.

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  5. Evolution of HLA class II molecules: Allelic and amino acid site variability across populations.

    PubMed Central

    Salamon, H; Klitz, W; Easteal, S; Gao, X; Erlich, H A; Fernandez-Viña, M; Trachtenberg, E A; McWeeney, S K; Nelson, M P; Thomson, G

    1999-01-01

    Analysis of the highly polymorphic beta1 domains of the HLA class II molecules encoded by the DRB1, DQB1, and DPB1 loci reveals contrasting levels of diversity at the allele and amino acid site levels. Statistics of allele frequency distributions, based on Watterson's homozygosity statistic F, reveal distinct evolutionary patterns for these loci in ethnically diverse samples (26 populations for DQB1 and DRB1 and 14 for DPB1). When examined over all populations, the DQB1 locus allelic variation exhibits striking balanced polymorphism (P < 10(-4)), DRB1 shows some evidence of balancing selection (P < 0.06), and while there is overall very little evidence for selection of DPB1 allele frequencies, there is a trend in the direction of balancing selection (P < 0.08). In contrast, at the amino acid level all three loci show strong evidence of balancing selection at some sites. Averaged over polymorphic amino acid sites, DQB1 and DPB1 show similar deviation from neutrality expectations, and both exhibit more balanced polymorphic amino acid sites than DRB1. Across ethnic groups, polymorphisms at many codons show evidence for balancing selection, yet data consistent with directional selection were observed at other codons. Both antigen-binding pocket- and non-pocket-forming amino acid sites show overall deviation from neutrality for all three loci. Only in the case of DRB1 was there a significant difference between pocket- and non-pocket-forming amino acid sites. Our findings indicate that balancing selection at the MHC occurs at the level of polymorphic amino acid residues, and that in many cases this selection is consistent across populations. PMID:10224269

  6. Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Beecher, K. M.; Harriss, R. C.; Cofer, R. W., III

    1988-01-01

    Tropospheric concentrations of formic and acetic acids in the gas, the aerosol, and the rainwater phases were determined in samples collected 1-2 m above ground level at an open field site in eastern Virginia. These acids were found to occur principally (98 percent or above) in the gas phase, with a marked annual seasonality, averaging 1890 ppt for formate and 1310 ppt for acetate during the growing season, as compared to 695 ppt and 700 ppt, respectively, over the nongrowing season. The data support the hypothesis that biogenic emissions from vegatation are important sources of atmospheric formic and acetic acid during the local growing season. The same time trends were observed for precipitation, although with less defined seasonality. The relative increase of the acetic acid/formic acid ratio during the nongrowing season points to the dominance of anthropogenic inputs of acetic acid from motor vehicles and biomass combustion in the wintertime.

  7. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    SciTech Connect

    STALLINGS, MARY

    2004-07-08

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalic acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated

  8. Gas phase acidity measurement of local acidic groups in multifunctional species: controlling the binding sites in hydroxycinnamic acids.

    PubMed

    Guerrero, Andres; Baer, Tomas; Chana, Antonio; González, Javier; Dávalos, Juan Z

    2013-07-01

    The applicability of the extended kinetic method (EKM) to determine the gas phase acidities (GA) of different deprotonable groups within the same molecule was tested by measuring the acidities of cinnamic, coumaric, and caffeic acids. These molecules differ not only in the number of acidic groups but in their nature, intramolecular distances, and calculated GAs. In order to determine independently the GA of groups within the same molecule using the EKM, it is necessary to selectively prepare pure forms of the hydrogen-bound heterodimer. In this work, the selectivity was achieved by the use of solvents of different vapor pressure (water and acetonitrile), as well as by variation of the drying temperature in the ESI source, which affected the production of heterodimers with different solvation energies and gas-phase dissociation energies. A particularly surprising finding is that the calculated solvation enthalpies of water and the aprotic acetonitrile are essentially identical, and that the different gas-phase products generated are apparently the result of their different vapor pressures, which affects the drying mechanism. This approach for the selective preparation of heterodimers, which is based on the energetics, appears to be quite general and should prove useful for other studies that require the selective production of heterodimers in ESI sources. The experimental results were supported by density functional theory (DFT) calculations of both gas-phase and solvated species. The experimental thermochemical parameters (deprotonation ΔG, ΔH, and ΔS) are in good agreement with the calculated values for the monofunctional cinnamic acid, as well as the multifunctional coumaric and caffeic acids. The measured GA for cinnamic acid is 334.5 ± 2.0 kcal/mol. The measured acidities for the COOH and OH groups of coumaric and caffeic acids are 332.7 ± 2.0, 318.7 ± 2.1, 332.2 ± 2.0, and 317.3 ± 2.2 kcal/mol, respectively. PMID:23799241

  9. Efficient solid acid catalyst containing Lewis and Brønsted Acid sites for the production of furfurals.

    PubMed

    Mazzotta, Michael G; Gupta, Dinesh; Saha, Basudeb; Patra, Astam K; Bhaumik, Asim; Abu-Omar, Mahdi M

    2014-08-01

    Self-assembled nanoparticulates of porous sulfonated carbonaceous TiO2 material that contain Brønsted and Lewis acidic sites were prepared by a one-pot synthesis method. The material was characterized by XRD, FTIR spectroscopy, NH3 temperature-programmed desorption, pyridine FTIR spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, N2 -sorption, atomic absorbance spectroscopy, and inductively coupled plasma optical emission spectroscopy. The carbonaceous heterogeneous catalyst (Glu-TsOH-Ti) with a Brønsted-to-Lewis acid density ratio of 1.2 and more accessible acid sites was effective to produce 5-hydroxymethylfurfural and furfural from biomass-derived mono- and disaccharides and xylose in a biphasic solvent that comprised water and biorenewable methyltetrahydrofuran. The catalyst was recycled in four consecutive cycles with a total loss of only 3 % activity. Thus, Glu-TsOH-Ti, which contains isomerization and dehydration catalytic sites and is based on a cheap and biorenewable carbon support, is a sustainable catalyst for the production of furfurals, platform chemicals for biofuels and chemicals. PMID:24807741

  10. Effect of sun elevation upon remote sensing of ocean color over an acid waste dump site

    NASA Technical Reports Server (NTRS)

    Bressette, W. E.

    1978-01-01

    Photographic flights were made over an ocean acid waste dump site while dumping was in progress. The flights resulted in wide angle, broadband, spectral radiance film exposure data between the wavelengths of 500 to 900 nanometers for sun elevation angles ranging from 26 to 42 degrees. It is shown from densitometer data that the spectral signature of acid waste discharged into ocean water can be observed photographically, the influence of sun elevation upon remotely sensed apparent color can be normalized by using a single spectral band ratioing technique, and photographic quantification and mapping of acid waste through its suspended iron precipitate appears possible.

  11. Identification and Pharmacological Characterization of Multiple Allosteric Binding Sites on the Free Fatty Acid 1 Receptor

    PubMed Central

    Lin, Daniel C.-H.; Guo, Qi; Luo, Jian; Zhang, Jane; Nguyen, Kathy; Chen, Michael; Tran, Thanh; Dransfield, Paul J.; Brown, Sean P.; Houze, Jonathan; Vimolratana, Marc; Jiao, Xian Yun; Wang, Yingcai; Birdsall, Nigel J. M.

    2012-01-01

    Activation of FFA1 (GPR40), a member of G protein-coupling receptor family A, is mediated by medium- and long-chain fatty acids and leads to amplification of glucose-stimulated insulin secretion, suggesting a potential role for free fatty acid 1 (FFA1) as a target for type 2 diabetes. It was assumed previously that there is a single binding site for fatty acids and synthetic FFA1 agonists. However, using members of two chemical series of partial and full agonists that have been identified, radioligand binding interaction studies revealed that the full agonists do not bind to the same site as the partial agonists but exhibit positive heterotropic cooperativity. Analysis of functional data reveals positive functional cooperativity between the full agonists and partial agonists in various functional assays (in vitro and ex vivo) and also in vivo. Furthermore, the endogenous fatty acid docosahexaenoic acid (DHA) shows negative or neutral cooperativity with members of both series of agonists in binding assays but displays positive cooperativity in functional assays. Another synthetic agonist is allosteric with members of both agonist series, but apparently competitive with DHA. Therefore, there appear to be three allosterically linked binding sites on FFA1 with agonists specific for each of these sites. Activation of free fatty acid 1 receptor (FFAR1) by each of these agonists is differentially affected by mutations of two arginine residues, previously found to be important for FFAR1 binding and activation. These ligands with their high potencies and strong positive functional cooperativity with endogenous fatty acids, demonstrated in vitro and in vivo, have the potential to deliver therapeutic benefits. PMID:22859723

  12. Identification and pharmacological characterization of multiple allosteric binding sites on the free fatty acid 1 receptor.

    PubMed

    Lin, Daniel C-H; Guo, Qi; Luo, Jian; Zhang, Jane; Nguyen, Kathy; Chen, Michael; Tran, Thanh; Dransfield, Paul J; Brown, Sean P; Houze, Jonathan; Vimolratana, Marc; Jiao, Xian Yun; Wang, Yingcai; Birdsall, Nigel J M; Swaminath, Gayathri

    2012-11-01

    Activation of FFA1 (GPR40), a member of G protein-coupling receptor family A, is mediated by medium- and long-chain fatty acids and leads to amplification of glucose-stimulated insulin secretion, suggesting a potential role for free fatty acid 1 (FFA1) as a target for type 2 diabetes. It was assumed previously that there is a single binding site for fatty acids and synthetic FFA1 agonists. However, using members of two chemical series of partial and full agonists that have been identified, radioligand binding interaction studies revealed that the full agonists do not bind to the same site as the partial agonists but exhibit positive heterotropic cooperativity. Analysis of functional data reveals positive functional cooperativity between the full agonists and partial agonists in various functional assays (in vitro and ex vivo) and also in vivo. Furthermore, the endogenous fatty acid docosahexaenoic acid (DHA) shows negative or neutral cooperativity with members of both series of agonists in binding assays but displays positive cooperativity in functional assays. Another synthetic agonist is allosteric with members of both agonist series, but apparently competitive with DHA. Therefore, there appear to be three allosterically linked binding sites on FFA1 with agonists specific for each of these sites. Activation of free fatty acid 1 receptor (FFAR1) by each of these agonists is differentially affected by mutations of two arginine residues, previously found to be important for FFAR1 binding and activation. These ligands with their high potencies and strong positive functional cooperativity with endogenous fatty acids, demonstrated in vitro and in vivo, have the potential to deliver therapeutic benefits. PMID:22859723

  13. In Situ Oxalic Acid Injection to Accelerate Arsenic Remediation at a Superfund Site in New Jersey

    PubMed Central

    Wovkulich, Karen; Stute, Martin; Mailloux, Brian J.; Keimowitz, Alison R.; Ross, James; Bostick, Benjamin; Sun, Jing; Chillrud, Steven N.

    2015-01-01

    Arsenic is a prevalent contaminant at a large number of US Superfund sites; establishing techniques that accelerate As remediation could benefit many sites. Hundreds of tons of As were released into the environment by the Vineland Chemical Co. in southern New Jersey during its manufacturing lifetime (1949–1994), resulting in extensive contamination of surface and subsurface soils and sediments, groundwater, and the downstream watershed. Despite substantial intervention at this Superfund site, sufficient aquifer cleanup could require many decades if based on traditional pump and treat technologies only. Laboratory column experiments have suggested that oxalic acid addition to contaminated aquifer solids could promote significant As release from the solid phase. To evaluate the potential of chemical additions to increase As release in situ and boost treatment efficiency, a forced gradient pilot scale study was conducted on the Vineland site. During spring/summer 2009, oxalic acid and bromide tracer were injected into a small portion (~50 m2) of the site for 3 months. Groundwater samples indicate that introduction of oxalic acid led to increased As release. Between 2.9 and 3.6 kg of As were removed from the sampled wells as a result of the oxalic acid treatment during the 3-month injection. A comparison of As concentrations on sediment cores collected before and after treatment and analyzed using X-ray fluorescence spectroscopy suggested reduction in As concentrations of ~36% (median difference) to 48% (mean difference). While further study is necessary, the addition of oxalic acid shows potential for accelerating treatment of a highly contaminated site and decreasing the As remediation time-scale. PMID:25598701

  14. Acidic properties of sulfated zirconia: An infrared spectroscopic study

    SciTech Connect

    Babou, F.; Coudurier, G.; Vedrine, J.C.

    1995-04-01

    Sulfated zirconia with S content of 2 wt.% equivalent to complete coverage of its surface was studied by infrared spectroscopy. At least four sulfated species were identified and exhibited an important and reversible sensitivity to water. These equilibria were demonstrated to exist by the study of adsorption of incremental amounts of water. D{sub 2}O and H{sub 2}{sup 18}O isotopically enriched water molecules were used to assist interpretation of IR spectra. To characterize acidity features, the probe molecules butane, CO, and H{sub 2}O (as weak bases) or pyridine (as a strong base) were adsorbed. Two Lewis acid sites (L{sub 1} and L{sub 2}) were observed and one Bronsted site (B) related to the zirconia support (L{sub 1}) and the sulfated species (L{sub 2}, B). They were evidenced by pyridine adsorption which was shown to partly displace adsorbed sulfate species. With the help of previous theoretical calculations using an ab initio method and representing the zirconia surface by a mononuclear zirconium complex, it is emphasized that the sulfated zirconia can be visualized as a H{sub 2}SO{sub 4} compound grafted onto the surface of zirconia in a way which makes it very sensitive to water but in a reversible way. Its acidity is similar to that of sulfuric acid but it is not really superacidic. Comparison with other oxides leads us to suggest that the cationic charge borne by the metallic cation is of prime importance for the acidity strength. The role of water on the acidic and catalytic properties for n-butane isomerization reaction is emphasized. 33 refs., 11 figs., 2 tabs.

  15. LIME TREATMENT LAGOONS TECHNOLOGY FOR TREATING ACID MINE DRAINAGE FROM TWO MINING SITES

    EPA Science Inventory

    Runoff and drainage from active and inactive mines are someof the most environmentally damaging land uses i the US. Acid Mine drainage (AMD) from mining sites across the country requires treatment because of high metal concentrations that exceed regulatory standards for safe disc...

  16. PHYSICAL SOLUTIONS FOR ACID ROCK DRAINAGE AT REMOTE SITES DEMONSTRATION PROJECT

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program, Activity III, Project 42, Physical Solutions for Acid Rock Drainage at Remote Sites, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy. A...

  17. Proton-Binding Sites of Acid-Sensing Ion Channel 1

    PubMed Central

    Ishikita, Hiroshi

    2011-01-01

    Acid-sensing ion channels (ASICs) are proton-gated cation channels that exist throughout the mammalian central and peripheral nervous systems. ASIC1 is the most abundant of all the ASICs and is likely to modulate synaptic transmission. Identifying the proton-binding sites of ASCI1 is required to elucidate its pH-sensing mechanism. By using the crystal structure of ASIC1, the protonation states of each titratable site of ASIC1 were calculated by solving the Poisson-Boltzmann equation under conditions wherein the protonation states of all these sites are simultaneously in equilibrium. Four acidic-acidic residue pairs—Asp238-Asp350, Glu220-Asp408, Glu239-Asp346, and Glu80-Glu417—were found to be highly protonated. In particular, the Glu80-Glu417 pair in the inner pore was completely protonated and possessed 2 H+, implying its possible importance as a proton-binding site. The pKa of Glu239, which forms a pair with a possible pH-sensing site Asp346, differs among each homo-trimer subunit due to the different H-bond pattern of Thr237 in the different protein conformations of the subunits. His74 possessed a pKa of ≈6–7. Conservation of His74 in the proton-sensitive ASIC3 that lacks a residue corresponding to Asp346 may suggest its possible pH-sensing role in proton-sensitive ASICs. PMID:21340031

  18. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  19. Characterization and acidic properties of Al-SBA-15 materials prepared by post-synthesis alumination of a low-cost ordered mesoporous silica

    SciTech Connect

    Gomez-Cazalilla, M.; Merida-Robles, J.M.; Gurbani, A.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.

    2007-03-15

    A series of Al-containing SBA-15 type materials with different Si/Al ratio, were prepared by post-synthesis modification of a pure highly ordered mesoporous silica SBA-15 obtained by using sodium silicate as silica source, and amphiphilic block copolymer as structure-directing agent. A high level of aluminum incorporation was achieved, reaching an Si/Al ratio of up to 5.5, without any significant loss in the textural properties of SBA-15. These materials were fully characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), {sup 27}Al NMR spectroscopy, and N{sub 2} adsorption at 77 K. The acid properties of these materials have been evaluated by NH{sub 3}-TPD, adsorption of pyridine and deuterated acetonitrile coupled to FTIR spectroscopy. The effective acidity of these materials was evaluated using two catalytic reactions: 2-propanol dehydrogenation and 1-butene isomerization. The adsorption of basic probe molecules and the catalytic behavior revealed an evolution of the acid properties with the Al content. These studies have shown that the Al-SBA-15 materials contain Bronsted and Lewis acid sites with medium acidity which makes them appropriate to be used as acid catalysts in heterogeneous catalysis, catalytic supports, and adsorbents. - Graphical abstract: Al KLL spectra of Al-SBA-15 materials with different Si/Al ratios.

  20. Site-Specific Radiofluorination of Biomolecules with 8-[(18)F]-Fluorooctanoic Acid Catalyzed by Lipoic Acid Ligase.

    PubMed

    Drake, Christopher R; Sevillano, Natalia; Truillet, Charles; Craik, Charles S; VanBrocklin, Henry F; Evans, Michael J

    2016-06-17

    New methodologies for site-specifically radiolabeling proteins with (18)F are required to generate high quality radiotracers for preclinical and clinical applications with positron emission tomography. Herein, we report an approach by which we use lipoic acid ligase (LplA) to conjugate [(18)F]-fluorooctanoic acid to an antibody fragment bearing the peptide substrate of LplA. The mild conditions of the reaction preserve antibody immunoreactivity, and the efficiency of LplA allows for >90% yield even with very small amounts of peptidic precursor (1-10 nmol). These features are advantageous compared to the current gold standard in the field. Moreover, the methodology introduces a new application for an important tool in chemical biology. PMID:27008570

  1. Lipid Classes and Fatty Acids in Ophryotrocha cyclops, a Dorvilleid from Newfoundland Aquaculture Sites

    PubMed Central

    Salvo, Flora; Dufour, Suzanne C.; Hamoutene, Dounia; Parrish, Christopher C.

    2015-01-01

    A new opportunistic annelid (Ophryotrocha cyclops) discovered on benthic substrates underneath finfish aquaculture sites in Newfoundland (NL) may be involved in the remediation of organic wastes. At those aquaculture sites, bacterial mats and O. cyclops often coexist and are used as indicators of organic enrichment. Little is known on the trophic strategies used by these annelids, including whether they might consume bacteria or other aquaculture-derived wastes. We studied the lipid and fatty acid composition of the annelids and their potential food sources (degraded flocculent organic matter, fresh fish pellets and bacterial mats) to investigate feeding relationships in these habitats and compared the lipid and fatty acid composition of annelids before and after starvation. Fish pellets were rich in lipids, mainly terrestrially derived C18 fatty acids (18:1ω9, 18:2ω6, 18:3ω3), while bacterial samples were mainly composed of ω7 fatty acids, and flocculent matter appeared to be a mixture of fresh and degrading fish pellets, feces and bacteria. Ophryotrocha cyclops did not appear to store excessive amounts of lipids (13%) but showed a high concentration of ω3 and ω6 fatty acids, as well as a high proportion of the main fatty acids contained in fresh fish pellets and bacterial mats. The dorvilleids and all potential food sources differed significantly in their lipid and fatty acid composition. Interestingly, while all food sources contained low proportions of 20:5ω3 and 20:2ω6, the annelids showed high concentrations of these two fatty acids, along with 20:4ω6. A starvation period of 13 days did not result in a major decrease in total lipid content; however, microscopic observations revealed that very few visible lipid droplets remained in the gut epithelium after three months of starvation. Ophryotrocha cyclops appears well adapted to extreme environments and may rely on lipid-rich organic matter for survival and dispersal in cold environments. PMID:26308719

  2. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    PubMed

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs. PMID:26487699

  3. Characterization of Naphthaleneacetic Acid Binding to Receptor Sites on Cellular Membranes of Maize Coleoptile Tissue 1

    PubMed Central

    Ray, Peter M.; Dohrmann, Ulrike; Hertel, Rainer

    1977-01-01

    Characteristics of and optimum conditions for saturable (“specific”) binding of [14C]naphthaleneacetic acid to sites located on membranous particles from maize (Zea mays L.) coleoptiles are described. Most, if not all, of the specific binding appears to be due to a single kinetic class of binding sites having a KD of 5 to 7 × 10−7m for naphthalene-1-acetic acid (NAA). Binding of NAA is insensitive to high monovalent salt concentrations, indicating that binding is not primarily ionic. However, specific binding is inhibited by Mg2+ or Ca2+ above 5 mm. Specific binding is improved by organic acids, especially citrate. Binding is heat-labile and is sensitive to agents that act either on proteins or on lipids. Specific binding is reversibly inactivated by reducing agents such as dithioerythritol; a reducible group, possibly a disulfide group, may be located at the binding site and required for its function. The affinity of the specific binding sites for auxins is modified by an unidentified dialyzable, heat-stable, apparently amphoteric, organic factor (“supernatant factor”) found in maize tissue. PMID:16659851

  4. Site-specific study on stabilization of acid-generating mine tailings using coal fly ash

    SciTech Connect

    Shang, J.Q.; Wang, H.L.; Kovac, V.; Fyfe, J.

    2006-03-15

    A site-specific study on stabilizing acid-generating mine tailings from Sudbury Mine using a coal fly ash from Nanticoke Generating Station is presented in this paper. The objective of the study is to evaluate the feasibility of codisposal of the fly ash and mine tailings to reduce environmental impacts of Sudbury tailings disposal sites. The study includes three phases, i.e., characterization of the mine tailings, and coal fly ash, oxidation tests on the mine tailings and kinetic column permeation tests. The results of the experiments indicate that when permeated with acid mine drainage, the hydraulic conductivity of Nanticoke coal fly ash decreased more than three orders of magnitude (from 1 x 10{sup -6} to 1 x 10{sup -9} cm/s), mainly due to chemical reactions between the ash solids and acid mine drainage. Furthermore, the hydraulic gradient required for acid mine drainage to break through the coal fly ash is increased up to ten times (from 17 to 150) as compared with that for water. The results also show that the leachate from coal fly ash neutralizes the acidic pore fluid of mine tailings. The concentrations of trace elements in effluents from all kinetic column permeation tests indicated that coplacement of coal fly ash with mine tailings has the benefit of immobilizing trace elements, especially heavy metals. All regulated element concentrations from effluent during testing are well below the leachate quality criteria set by the local regulatory authority.

  5. Mutation-selection models of coding sequence evolution with site-heterogeneous amino acid fitness profiles.

    PubMed

    Rodrigue, Nicolas; Philippe, Hervé; Lartillot, Nicolas

    2010-03-01

    Modeling the interplay between mutation and selection at the molecular level is key to evolutionary studies. To this end, codon-based evolutionary models have been proposed as pertinent means of studying long-range evolutionary patterns and are widely used. However, these approaches have not yet consolidated results from amino acid level phylogenetic studies showing that selection acting on proteins displays strong site-specific effects, which translate into heterogeneous amino acid propensities across the columns of alignments; related codon-level studies have instead focused on either modeling a single selective context for all codon columns, or a separate selective context for each codon column, with the former strategy deemed too simplistic and the latter deemed overparameterized. Here, we integrate recent developments in nonparametric statistical approaches to propose a probabilistic model that accounts for the heterogeneity of amino acid fitness profiles across the coding positions of a gene. We apply the model to a dozen real protein-coding gene alignments and find it to produce biologically plausible inferences, for instance, as pertaining to site-specific amino acid constraints, as well as distributions of scaled selection coefficients. In their account of mutational features as well as the heterogeneous regimes of selection at the amino acid level, the modeling approaches studied here can form a backdrop for several extensions, accounting for other selective features, for variable population size, or for subtleties of mutational features, all with parameterizations couched within population-genetic theory. PMID:20176949

  6. Site-Specific Characterization of d-Amino Acid Containing Peptide Epimers by Ion Mobility Spectrometry

    PubMed Central

    2013-01-01

    Traditionally, the d-amino acid containing peptide (DAACP) candidate can be discovered by observing the differences of biological activity and chromatographic retention time between the synthetic peptides and naturally occurring peptides. However, it is difficult to determine the exact position of d-amino acid in the DAACP candidates. Herein, we developed a novel site-specific strategy to rapidly and precisely localize d-amino acids in peptides by ion mobility spectrometry (IMS) analysis of mass spectrometry (MS)-generated epimeric fragment ions. Briefly, the d/l-peptide epimers were separated by online reversed-phase liquid chromatography and fragmented by collision-induced dissociation (CID), followed by IMS analysis. The epimeric fragment ions resulting from d/l-peptide epimers exhibit conformational differences, thus showing different mobilities in IMS. The arrival time shift between the epimeric fragment ions was used as criteria to localize the d-amino acid substitution. The utility of this strategy was demonstrated by analysis of peptide epimers with different molecular sizes, [d-Trp]-melanocyte-stimulating hormone, [d-Ala]-deltorphin, [d-Phe]-achatin-I, and their counterparts that contain all-l amino acids. Furthermore, the crustacean hyperglycemia hormones (CHHs, 8.5 kDa) were isolated from the American lobster Homarus americanus and identified by integration of MS-based bottom-up and top-down sequencing approaches. The IMS data acquired using our novel site-specific strategy localized the site of isomerization of l- to d-Phe at the third residue of the CHHs from the N-terminus. Collectively, this study demonstrates a new method for discovery of DAACPs using IMS technique with the ability to localize d-amino acid residues. PMID:24328107

  7. FT-IR characterization of the acidic and basic sites on a nanostructured aluminum nitride surface

    SciTech Connect

    Baraton, M.I.; Chen, X.; Gonsalves, K.E.

    1997-12-31

    A nanostructured aluminum nitride powder prepared by sol-gel type chemical synthesis is analyzed by Fourier transform infrared spectrometry. The surface acidic and basic sites are probed out by adsorption of several organic molecules. Resulting from the unavoidable presence of oxygen, the aluminum nitride surface is an oxinitride layer in fact, and its surface chemistry should present some analogies with alumina. Therefore, a thorough comparison between the acido-basicity of aluminum nitride and aluminum oxide is discussed. The remaining nitrogen atoms in the first atomic layer modify the acidity-basicity relative balance and reveals the specificity of the aluminum nitride surface.

  8. The control of acid mine drainage at the Summitville Mine Superfund Site

    SciTech Connect

    Ketellapper, V.L.; Williams, L.O.

    1996-11-01

    The Summitville Mine Superfund Site is located about 25 miles south of Del Norte, Colorado, in Rio Grande County. Occurring at an average elevation of 11,500 feet in the San Juan Mountain Range, the mine site is located two miles east of the Continental Divide. Mining at Summitville has occurred since 1870. The mine was most recently operated by Summitville Consolidated Mining Company, Inc. (SCMCI) as an open pit gold mine with extraction by means of a cyanide leaching process. In December of 1992, SCMCI declared bankruptcy and vacated the mine site. At that time, the US Environmental Protection Agency (EPA) took over operations of the water treatment facilities to prevent a catastrophic release of cyanide and metal-laden water from the mine site. Due to high operational costs of water treatment (approximately $50,000 per day), EPA established a goal to minimize active water treatment by reducing or eliminating acid mine drainage (AMD). All of the sources of AMD generation on the mine site were evaluated and prioritized. Of the twelve areas identified as sources of AMD, the Cropsy Waste Pile, the Summitville Dam Impoundment, the Beaver Mud Dump, the Reynolds and Chandler adits, and the Mine Pits were consider to be the most significant contributors to the generation of metal-laden acidic (low pH) water. A two part plan was developed to control AMD from the most significant sources. The first part was initiated immediately to control AMD being released from the Site. This part focused on improving the efficiency of the water treatment facilities and controlling the AMD discharges from the mine drainage adits. The second part of the plan was aimed at reducing the AMD generated in groundwater and surface water runoff from the mine wastes. A lined and capped repository located in the mine pits for acid generating mining waste and water treatment plant sludge was found to be the most feasible alternative.

  9. Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis.

    PubMed

    Ye, Shixin; Köhrer, Caroline; Huber, Thomas; Kazmi, Manija; Sachdev, Pallavi; Yan, Elsa C Y; Bhagat, Aditi; RajBhandary, Uttam L; Sakmar, Thomas P

    2008-01-18

    G protein-coupled receptors (GPCRs) are ubiquitous heptahelical transmembrane proteins involved in a wide variety of signaling pathways. The work described here on application of unnatural amino acid mutagenesis to two GPCRs, the chemokine receptor CCR5 (a major co-receptor for the human immunodeficiency virus) and rhodopsin (the visual photoreceptor), adds a new dimension to studies of GPCRs. We incorporated the unnatural amino acids p-acetyl-L-phenylalanine (Acp) and p-benzoyl-L-phenylalanine (Bzp) into CCR5 at high efficiency in mammalian cells to produce functional receptors harboring reactive keto groups at three specific positions. We obtained functional mutant CCR5, at levels up to approximately 50% of wild type as judged by immunoblotting, cell surface expression, and ligand-dependent calcium flux. Rhodopsin containing Acp at three different sites was also purified in high yield (0.5-2 microg/10(7) cells) and reacted with fluorescein hydrazide in vitro to produce fluorescently labeled rhodopsin. The incorporation of reactive keto groups such as Acp or Bzp into GPCRs allows their reaction with different reagents to introduce a variety of spectroscopic and other probes. Bzp also provides the possibility of photo-cross-linking to identify precise sites of protein-protein interactions, including GPCR binding to G proteins and arrestins, and for understanding the molecular basis of ligand recognition by chemokine receptors. PMID:17993461

  10. Generation of Food-Grade Recombinant Lactic Acid Bacterium Strains by Site-Specific Recombination

    PubMed Central

    Martín, M. Cruz; Alonso, Juan C.; Suárez, Juan E.; Alvarez, Miguel A.

    2000-01-01

    The construction of a delivery and clearing system for the generation of food-grade recombinant lactic acid bacterium strains, based on the use of an integrase (Int) and a resolvo-invertase (β-recombinase) and their respective target sites (attP-attB and six, respectively) is reported. The delivery system contains a heterologous replication origin and antibiotic resistance markers surrounded by two directly oriented six sites, a multiple cloning site where passenger DNA could be inserted (e.g., the cI gene of bacteriophage A2), the int gene, and the attP site of phage A2. The clearing system provides a plasmid-borne gene encoding β-recombinase. The nonreplicative vector-borne delivery system was transformed into Lactobacillus casei ATCC 393 and, by site-specific recombination, integrated as a single copy in an orientation- and Int-dependent manner into the attB site present in the genome of the host strain. The transfer of the clearing system into this strain, with the subsequent expression of the β-recombinase, led to site-specific DNA resolution of the non-food-grade DNA. These methods were validated by the construction of a stable food-grade L. casei ATCC 393-derived strain completely immune to phage A2 infection during milk fermentation. PMID:10831443

  11. Estimates of cloud water deposition at Mountain Acid Deposition Program sites in the Appalachian Mountains.

    PubMed

    Baumgardner, Ralph E; Isil, Selma S; Lavery, Thomas F; Rogers, Christopher M; Mohnen, Volker A

    2003-03-01

    Cloud water deposition was estimated at three high-elevation sites in the Appalachian Mountains of the eastern United States (Whiteface Mountain, NY; Whitetop Mountain, VA; and Clingman's Dome, TN) from 1994 through 1999 as part of the Mountain Acid Deposition Program (MADPro). This paper provides a summary of cloud water chemistry, cloud liquid water content, cloud frequency, estimates of cloud water deposition of sulfur and nitrogen species, and estimates of total deposition of sulfur and nitrogen at these sites. Other cloud studies in the Appalachians and their comparison to MADPro are also summarized. Whiteface Mountain exhibited the lowest mean and median concentrations of sulfur and nitrogen ions in cloud water, while Clingman's Dome exhibited the highest mean and median concentrations. This geographic gradient is partly an effect of the different meteorological conditions experienced at northern versus southern sites in addition to the difference in pollution content of air masses reaching the sites. All sites measured seasonal cloud water deposition rates of SO4(2-) greater than 50 kg/ha and NO3(-) rates of greater than 25 kg/ha. These high-elevation sites experienced additional deposition loading of SO4(2-) and NO3(-) on the order of 6-20 times greater compared with lower elevation Clean Air Status and Trends Network (CASTNet) sites. Approximately 80-90% of this extra loading is from cloud deposition. PMID:12661689

  12. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes. PMID:19754879

  13. Site-specific analysis of protein hydration based on unnatural amino acid fluorescence.

    PubMed

    Amaro, Mariana; Brezovský, Jan; Kováčová, Silvia; Sýkora, Jan; Bednář, David; Němec, Václav; Lišková, Veronika; Kurumbang, Nagendra Prasad; Beerens, Koen; Chaloupková, Radka; Paruch, Kamil; Hof, Martin; Damborský, Jiří

    2015-04-22

    Hydration of proteins profoundly affects their functions. We describe a simple and general method for site-specific analysis of protein hydration based on the in vivo incorporation of fluorescent unnatural amino acids and their analysis by steady-state fluorescence spectroscopy. Using this method, we investigate the hydration of functionally important regions of dehalogenases. The experimental results are compared to findings from molecular dynamics simulations. PMID:25815779

  14. Ionization-site effects on the photofragmentation of chloro- and bromoacetic acid molecules

    NASA Astrophysics Data System (ADS)

    Levola, Helena; Itälä, Eero; Schlesier, Kim; Kooser, Kuno; Laine, Sanna; Laksman, Joakim; Ha, Dang Trinh; Rachlew, Elisabeth; Tarkanovskaja, Marta; Tanzer, Katrin; Kukk, Edwin

    2015-12-01

    Fragmentation of gas-phase chloro- and bromoacetic acid samples, particularly its dependency on the atomic site of the initial core ionization, was studied in photoelectron-photoion-photoion coincidence (PEPIPICO) measurements. The fragmentation was investigated after ionizing carbon 1 s and bromine 3 d or chlorine 2 p core orbitals. It was observed that the samples had many similar fragmentation pathways and that their relative weights depended strongly on the initial ionization site. Additional Auger PEPIPICO measurements revealed a clear dependence of fragment pair intensities on the kinetic energy of the emitted Auger electrons. The modeled and measured Auger electron spectra indicated that the average internal energy of the molecule was larger following the carbon 1 s core-hole decay than after the decay of the halogen core hole. This difference in the internal energies was found to be the source of the site-dependent photofragmentation behavior.

  15. Remaining Sites Verification Package for the 120-B-1, 105-B Battery Acid Sump, Waste Site Reclassification Form 2006-057

    SciTech Connect

    L. M. Dittmer

    2006-09-25

    The 120-B-1 waste site, located in the 100-BC-1 Operable Unit of the Hanford Site, consisted of a concrete battery acid sump that was used from 1944 to 1969 to neutralize the spent sulfuric acid from lead cell batteries of emergency power packs and the emergency lighting system. The battery acid sump was associated with the 105-B Reactor Building and was located adjacent to the building's northwest corner. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  16. Microbial Communities in Biofilms of an Acid Mine Drainage Site Determined by Phospholipid Analysis

    NASA Astrophysics Data System (ADS)

    Das Gupta, S.; Fang, J.

    2008-12-01

    Phospholipids were extracted to determine the microbial biomass and community structure of biofims from an acid mine drainage (AMD) at the Green Valley coal mine site (GVS) in western Indiana. The distribution of specific biomarkers indicated the presence of a variety of microorganisms. Phototrophic microeukaryotes, which include Euglena mutabilis, algae, and cyanobacteria were the most dominant organisms, as indicated by the presence of polyunsaturated fatty acids. The presence of terminally methyl branched fatty acids suggests the presence of Gram-positive bacteria, and the mid-methyl branched fatty acids indicates the presence of sulfate-reducing bacteria. Fungi appear to also be an important part of the AMD microbial communities as suggested by the presence of 18:2 fatty acid. The acidophilic microeukaryotes Euglena dominated the biofilm microbial communities. These microorganisms appear to play a prominent role in the formation and preservation of stromatolites and in releasing oxygen to the atmosphere by oxygenic photosynthesis. Thus, the AMD environment comprises a host of microorganisms spreading out within the phylogenetic tree of life. Novel insights on the roles of microbial consortia in the formation and preservation of stromatolites and the production of oxygen through photosynthesis in AMD systems may have significance in the understanding of the interaction of Precambrian microbial communities in environments that produced microbially-mediated sedimentary structures and that caused oxygenation of Earth's atmosphere.

  17. Characterizing Surface Acidic Sites in Mesoporous-Silica-Supported Tungsten Oxide Catalysts Using Solid State NMR and Quantum Chemistry Calculations

    SciTech Connect

    Hu, Jian Z.; Kwak, Ja Hun; Wang, Yong; Hu, Mary Y.; Turcu, Romulus VF; Peden, Charles HF

    2011-10-18

    The acidic sites in dispersed tungsten oxide supported on SBA-15 mesoporous silica were investigated using a combination of pyridine titration, both fast-, and slow-MAS {sup 15}N NMR, static {sup 2}H NMR, and quantum chemistry calculations. It is found that the bridged acidic -OH groups in surface adsorbed tungsten dimers (i.e., W-OH-W) are the Broensted acid sites. The unusually strong acidity of these Broensted acid sites is confirmed by quantum chemistry calculations. In contrast, terminal W-OH sites are very stable and only weakly acidic as are terminal Si-OH sites. Furthermore, molecular interactions between pyridine molecules and the dimer Broensted and terminal W-OH sites for dispersed tungsten oxide species is strong. This results in restricted molecular motion for the interacting pyridine molecules even at room temperature, i.e., a reorientation mainly about the molecular 2-fold axis. This restricted reorientation makes it possible to estimate the relative ratio of the Broensted (tungsten dimer) to the weakly acidic terminal W-OH sites in the catalyst using the slow-MAS {sup 1}H-{sup 15}N CP PASS method.

  18. Computational study on the roles of amino acid residues in the active site formation mechanism of blue-light photoreceptors

    NASA Astrophysics Data System (ADS)

    Sato, Ryuma; Kitoh-Nishioka, Hirotaka; Ando, Koji; Yamato, Takahisa

    2015-07-01

    To examine the functional roles of the active site methionine (M-site) and glutamic acid (E-site) residues of blue-light photoreceptors, we performed in silico mutation at the M-site in a systematic manner and focused on the hydrogen bonding between the E-site and the substrate: the cyclobutane-pyrimidine dimer (CPD). Fragment molecular orbital calculations with electron correlations demonstrated that substitution of the M-site methionine with either alanine or glutamine always destabilizes the interaction energy between the E-site and the CPD by more than 12.0 kcal/mol, indicating that the methionine and glutamic acid residues cooperatively facilitate the enzymatic reaction in the active site.

  19. Mechanism of dehydroxylation of naturally occurring high-silica zeolites involving the formation of Lewis acid sites

    SciTech Connect

    Kazanskii, V.B.

    1987-11-01

    Using low-temperature adsorbed dihydrogen and carbon monoxide as molecular probes, the dehydroxylation of the hydrogen forms of the zeolites Y, and ZSM-5 has been studied. The high stability of the high-silica zeolites to dealumination and their difference from faujasites has been established as being due not only to the strength of their Broensted acid sites but also to the nature of their Lewis acid sites. The chemical properties of the Lewis acid sites and their possible role in catalytic reactions are discussed.

  20. Site characterization and containment/remediation of acid mine drainage at an abandoned mine waste dump

    SciTech Connect

    Djahanguiri, F.; Snodgrass, J.; Koerth, J.

    1996-12-31

    This paper focuses on the preliminary results of laboratory tests to evaluate a new suspension grout consisting of a mixture of a naturally occurring lignite coal based wax {open_quotes}montan wax{close_quotes}, sodium bentonite {open_quotes}pure gold grout{close_quotes}, and water. The test program assesses the suitability of the grout for creating subsurface containment barriers in coal waste dump sites for acid mine seepage control to surface and ground waters. The laboratory activities evaluated the reduction in permeability that could be achieved in a coal waste dump site under optimum conditions and the compatibility of the grout with representative waste from the test site. Information on geological, geochemical and geophysical about the test site is presented. Laboratory formulation of the grout is complete and simulation of field condition is in progress. Pregrout geophysical surveys for determination of hydrogeologic conditions at the site are also completed. Based on geophysical surveys, a grout curtain is proposed which will consist of two rows of grout placement holes in an array across the seepage area toward Belt Creek in Montana, Post-grout geophysical survey will be carried out immediately after grouting work. Performance of the grout curtain will be monitored by collection of water samples from monitoring wells in the Belt Creek and seepage area.

  1. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2015-12-01

    Computational prediction of nucleic acid binding sites in proteins are necessary to disentangle functional mechanisms in most biological processes and to explore the binding mechanisms. Several strategies have been proposed, but the state-of-the-art approaches display a great diversity in i) the definition of nucleic acid binding sites; ii) the training and test datasets; iii) the algorithmic methods for the prediction strategies; iv) the performance measures and v) the distribution and availability of the prediction programs. Here we report a large-scale assessment of 19 web servers and 3 stand-alone programs on 41 datasets including more than 5000 proteins derived from 3D structures of protein-nucleic acid complexes. Well-defined binary assessment criteria (specificity, sensitivity, precision, accuracy…) are applied. We found that i) the tools have been greatly improved over the years; ii) some of the approaches suffer from theoretical defects and there is still room for sorting out the essential mechanisms of binding; iii) RNA binding and DNA binding appear to follow similar driving forces and iv) dataset bias may exist in some methods. PMID:26681179

  2. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs

    PubMed Central

    Miao, Zhichao; Westhof, Eric

    2015-01-01

    Computational prediction of nucleic acid binding sites in proteins are necessary to disentangle functional mechanisms in most biological processes and to explore the binding mechanisms. Several strategies have been proposed, but the state-of-the-art approaches display a great diversity in i) the definition of nucleic acid binding sites; ii) the training and test datasets; iii) the algorithmic methods for the prediction strategies; iv) the performance measures and v) the distribution and availability of the prediction programs. Here we report a large-scale assessment of 19 web servers and 3 stand-alone programs on 41 datasets including more than 5000 proteins derived from 3D structures of protein-nucleic acid complexes. Well-defined binary assessment criteria (specificity, sensitivity, precision, accuracy…) are applied. We found that i) the tools have been greatly improved over the years; ii) some of the approaches suffer from theoretical defects and there is still room for sorting out the essential mechanisms of binding; iii) RNA binding and DNA binding appear to follow similar driving forces and iv) dataset bias may exist in some methods. PMID:26681179

  3. Modelling metal centres, acid sites and reaction mechanisms in microporous catalysts.

    PubMed

    O'Malley, Alexander J; Logsdail, A J; Sokol, A A; Catlow, C R A

    2016-07-01

    We discuss the role of QM/MM (embedded cluster) computational techniques in catalytic science, in particular their application to microporous catalysis. We describe the methodologies employed and illustrate their utility by briefly summarising work on metal centres in zeolites. We then report a detailed investigation into the behaviour of methanol at acidic sites in zeolites H-ZSM-5 and H-Y in the context of the methanol-to-hydrocarbons/olefins process. Studying key initial steps of the reaction (the adsorption and subsequent methoxylation), we probe the effect of framework topology and Brønsted acid site location on the energetics of these initial processes. We find that although methoxylation is endothermic with respect to the adsorbed system (by 17-56 kJ mol(-1) depending on the location), there are intriguing correlations between the adsorption/reaction energies and the geometries of the adsorbed species, of particular significance being the coordination of methyl hydrogens. These observations emphasise the importance of adsorbate coordination with the framework in zeolite catalysed conversions, and how this may vary with framework topology and site location, particularly suited to investigation by QM/MM techniques. PMID:27136967

  4. Density functional theoretical and NMR study of Hammett bases in acidic zeolites

    SciTech Connect

    Nicholas, J.B.; Haw, J.F.; Beck, L.W.; Krawietz, T.R.; Ferguson, D.B.

    1995-12-13

    We demonstrate here that theoretical calculations using density functional theory (DFT) accurately model proton transfer reactions between Bronsted sites in zeolites (the archetypal solid acids) and Hammett bases. The validity of the theoretical results is verified by NMR measurements of key nuclei of the same Hammett bases in zeolites HZSM-5 (MFI) and HY (FAU), the first such experiments. The accuracy of the predictions of the DFT calculations for the HZSM-5 zeolite model suggests that they may be extended to other zeolite cluster models, including those which have not yet been realized experimentally and hence are not available for NMR study. We optimized the adsorbate zeolite complexes with this angle constrained to larger values; to our surprise, the SVWN/DNP calculations resulted in the proton being transferred from p-fluoronitrobenzene back to the zeolite, even if the Si-O-Al angle was held fixed at 180{degree}. Further tests at higher levels of theory are in progress. This investigation used a choice of indicators that necessarily resulted in wide limits on zeolite acid strength, but the theoretical and experimental methodologies have been established. 21 refs., 3 figs.

  5. Mutational Studies on Resurrected Ancestral Proteins Reveal Conservation of Site-Specific Amino Acid Preferences throughout Evolutionary History

    PubMed Central

    Risso, Valeria A.; Manssour-Triedo, Fadia; Delgado-Delgado, Asunción; Arco, Rocio; Barroso-delJesus, Alicia; Ingles-Prieto, Alvaro; Godoy-Ruiz, Raquel; Gavira, Jose A.; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2015-01-01

    Local protein interactions (“molecular context” effects) dictate amino acid replacements and can be described in terms of site-specific, energetic preferences for any different amino acid. It has been recently debated whether these preferences remain approximately constant during evolution or whether, due to coevolution of sites, they change strongly. Such research highlights an unresolved and fundamental issue with far-reaching implications for phylogenetic analysis and molecular evolution modeling. Here, we take advantage of the recent availability of phenotypically supported laboratory resurrections of Precambrian thioredoxins and β-lactamases to experimentally address the change of site-specific amino acid preferences over long geological timescales. Extensive mutational analyses support the notion that evolutionary adjustment to a new amino acid may occur, but to a large extent this is insufficient to erase the primitive preference for amino acid replacements. Generally, site-specific amino acid preferences appear to remain conserved throughout evolutionary history despite local sequence divergence. We show such preference conservation to be readily understandable in molecular terms and we provide crystallographic evidence for an intriguing structural-switch mechanism: Energetic preference for an ancestral amino acid in a modern protein can be linked to reorganization upon mutation to the ancestral local structure around the mutated site. Finally, we point out that site-specific preference conservation naturally leads to one plausible evolutionary explanation for the existence of intragenic global suppressor mutations. PMID:25392342

  6. Mutational studies on resurrected ancestral proteins reveal conservation of site-specific amino acid preferences throughout evolutionary history.

    PubMed

    Risso, Valeria A; Manssour-Triedo, Fadia; Delgado-Delgado, Asunción; Arco, Rocio; Barroso-delJesus, Alicia; Ingles-Prieto, Alvaro; Godoy-Ruiz, Raquel; Gavira, Jose A; Gaucher, Eric A; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2015-02-01

    Local protein interactions ("molecular context" effects) dictate amino acid replacements and can be described in terms of site-specific, energetic preferences for any different amino acid. It has been recently debated whether these preferences remain approximately constant during evolution or whether, due to coevolution of sites, they change strongly. Such research highlights an unresolved and fundamental issue with far-reaching implications for phylogenetic analysis and molecular evolution modeling. Here, we take advantage of the recent availability of phenotypically supported laboratory resurrections of Precambrian thioredoxins and β-lactamases to experimentally address the change of site-specific amino acid preferences over long geological timescales. Extensive mutational analyses support the notion that evolutionary adjustment to a new amino acid may occur, but to a large extent this is insufficient to erase the primitive preference for amino acid replacements. Generally, site-specific amino acid preferences appear to remain conserved throughout evolutionary history despite local sequence divergence. We show such preference conservation to be readily understandable in molecular terms and we provide crystallographic evidence for an intriguing structural-switch mechanism: Energetic preference for an ancestral amino acid in a modern protein can be linked to reorganization upon mutation to the ancestral local structure around the mutated site. Finally, we point out that site-specific preference conservation naturally leads to one plausible evolutionary explanation for the existence of intragenic global suppressor mutations. PMID:25392342

  7. REMOVING SLUDGE HEELS FROM SAVANNAH RIVER SITE WASTE TANKS BY OXALIC ACID DISSOLUTION

    SciTech Connect

    Poirier, M; David Herman, D; Fernando Fondeur, F; John Pareizs, J; Michael Hay, M; Bruce Wiersma, B; Kim Crapse, K; Thomas Peters, T; Samuel Fink, S; Donald Thaxton, D

    2009-03-01

    The Savannah River Site (SRS) will remove sludge as part of waste tank closure operations. Typically the bulk sludge is removed by mixing it with supernate to produce a slurry, and transporting the slurry to a downstream tank for processing. Experience shows that a residual heel may remain in the tank that cannot be removed by this conventional technique. In the past, SRS used oxalic acid solutions to disperse or dissolve the sludge heel to complete the waste removal. To better understand the actual conditions of oxalic acid cleaning of waste from carbon steel tanks, the authors developed and conducted an experimental program to determine its effectiveness in dissolving sludge, the hydrogen generation rate, the generation rate of other gases, the carbon steel corrosion rate, the impact of mixing on chemical cleaning, the impact of temperature, and the types of precipitates formed during the neutralization process. The test samples included actual SRS sludge and simulated SRS sludge. The authors performed the simulated waste tests at 25, 50, and 75 C by adding 8 wt % oxalic acid to the sludge over seven days. They conducted the actual waste tests at 50 and 75 C by adding 8 wt % oxalic acid to the sludge as a single batch. Following the testing, SRS conducted chemical cleaning with oxalic acid in two waste tanks. In Tank 5F, the oxalic acid (8 wt %) addition occurred over seven days, followed by inhibited water to ensure the tank contained enough liquid to operate the mixer pumps. The tank temperature during oxalic acid addition and dissolution was approximately 45 C. The authors analyzed samples from the chemical cleaning process and compared it with test data. The conclusions from the work are: (1) Oxalic acid addition proved effective in dissolving sludge heels in the simulant demonstration, the actual waste demonstration, and in SRS Tank 5F. (2) The oxalic acid dissolved {approx} 100% of the uranium, {approx} 100% of the iron, and {approx} 40% of the manganese

  8. In situ detection of salicylic acid binding sites in plant tissues.

    PubMed

    Liu, Jing-Wen; Deng, Da-Yi; Yu, Ying; Liu, Fang-Fei; Lin, Bi-Xia; Cao, Yu-Juan; Hu, Xiao-Gang; Wu, Jian-Zhong

    2015-02-01

    The determination of hormone-binding sites in plants is essential in understanding the mechanisms behind hormone function. Salicylic acid (SA) is an important plant hormone that regulates responses to biotic and abiotic stresses. In order to label SA-binding sites in plant tissues, a quantum dots (QDs) probe functionalized with a SA moiety was successfully synthesized by coupling CdSe QDs capped with 3-mercaptopropionic acid (MPA) to 4-amino-2-hydroxybenzoic acid (PAS), using 1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) as the coupling agent. The probe was then characterized by dynamic light scattering and transmission electron microscopy, as well as UV/vis and fluorescence spectrophotometry. The results confirmed the successful conjugation of PAS to CdSe QDs and revealed that the conjugates maintained the properties of the original QDs, with small core diameters and adequate dispersal in solution. The PAS-CdSe QDs were used to detect SA-binding sites in mung bean and Arabidopsis thaliana seedlings in vitro and in vivo. The PAS-CdSe QDs were effectively transported into plant tissues and specifically bound to SA receptors in vivo. In addition, the effects of the PAS-CdSe QDs on cytosolic Ca(2+) levels in the tips of A. thaliana seedlings were investigated. Both SA and PAS-CdSe QDs had similar effects on the trend in cytosolic-free Ca(2+) concentrations, suggesting that the PAS-CdSe QDs maintained the bioactivity of SA. To summarize, PAS-CdSe QDs have high potential as a fluorescent probe for the in vitro/in vivo labeling and imaging of SA receptors in plants. PMID:24833131

  9. Studies on the acidity of mordenite and ZSM-5. 1. Determination of Broensted acid site concentrations in mordenite and ZSM-5 by conductometric titration

    SciTech Connect

    Crocker, M.; Herold, R.H.M.; Sonnemans, M.H.W.; Emeis, C.A.; Wilson, A.E.; Moolen, J.N. van der )

    1993-01-14

    The Broensted acidity of H-mordenite and H-ZSM-5 samples of varying proton concentration has been studied using aqueous conductometric titration, IR spectroscopy, and aqueous potentiometric titration. Good agreement is observed between Broensted acid site concentrations determined by conductometric titration and IR measurements, while indirect potentiometric titration affords acid site concentrations consistently lower than those measured using the conductometric technique. This finding is rationalized on the basis that, in a conductometric titration, all the accessible Broensted acid sites are direct;y titrated, whereas in the potentiometric procedure utilized, only those protons which can be ion-exchanged out of the zeolite are titrated. After allowing for the presence of extraframework aluminum in the zeolites (determined by [sup 27]Al NMR), the measured acidity for H-mordenite is found to increase linearly with increasing Al content within the range 0-1.5 mmol Al/g but appears to reach a limiting value at higher Al concentrations. For H-ZSM-5, the experimentally determined number of Broensted acid sites is also found to be linearly dependent on the Al molar fraction within the range measured (0-1.20 mmol Al/g). For both series of zeolite samples, the measured acidity is generally found to be less than the theoretical maximum calculated on the basis of an H[sup +]/Al ratio of 1. 43 refs., 10 figs., 4 tabs.

  10. Enhanced concentrations of citric acid in spring aerosols collected at the Gosan background site in East Asia

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Kawamura, Kimitaka

    2011-09-01

    In order to investigate water-soluble dicarboxylic acids and related compounds in the aerosol samples under the Asian continent outflow, total suspended particle (TSP) samples ( n = 32) were collected at the Gosan site in Jeju Island over 2-5 days integration during 23 March-1 June 2007 and 16-24 April 2008. The samples were analyzed for water-soluble dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls using a capillary gas chromatography technique. We found elevated concentrations of atmospheric citric acid (range: 20-320 ng m -3) in the TSP samples during mid- to late April of 2007 and 2008. To specify the sources of citric acid, dicarboxylic acids and related compounds were measured in the pollen sample collected at the Gosan site (Pollen_Gosan), authentic pollen samples from Japanese cedar ( Cryptomeria) (Pollen_cedar) and Japanese cypress ( Chamaecyparis obtusa) (Pollen_cypress), and tangerine fruit produced from Jeju Island. Citric acid (2790 ng in unit mg of pollen mass) was found as most abundant species in the Pollen_Gosan, followed by oxalic acid (2390 ng mg -1). Although citric acid was not detected in the Pollen_cedar and Pollen_cypress as major species, it was found as a dominant species in the tangerine juice while malic acid was detected as major species in the tangerine peel, followed by oxalic and citric acids. Since Japanese cedar trees are planted around tangerine farms to prevent strong winds from the Pacific Ocean, citric acid that may be directly emitted from tangerine is likely adsorbed on pollens emitted from Japanese cedar and then transported to the Gosan site. Much lower malic/citric acid ratios obtained under cloudy condition than clear condition suggest that malic acid may rapidly decompose to lower molecular weight compounds such as oxalic and malonic acids (

  11. The species- and site-specific acid-base properties of penicillamine and its homodisulfide

    NASA Astrophysics Data System (ADS)

    Mirzahosseini, Arash; Szilvay, András; Noszál, Béla

    2014-08-01

    Penicillamine, penicillamine disulfide and 4 related compounds were studied by 1H NMR-pH titrations and case-tailored evaluation methods. The resulting acid-base properties are quantified in terms of 14 macroscopic and 28 microscopic protonation constants and the concomitant 7 interactivity parameters. The species- and site-specific basicities are interpreted by means of inductive and shielding effects through various intra- and intermolecular comparisons. The thiolate basicities determined this way are key parameters and exclusive means for the prediction of thiolate oxidizabilities and chelate forming properties in order to understand and influence chelation therapy and oxidative stress at the molecular level.

  12. Site-Specific Mapping of Sialic Acid Linkage Isomers by Ion Mobility Spectrometry.

    PubMed

    Guttman, Miklos; Lee, Kelly K

    2016-05-17

    Detailed structural elucidation of protein glycosylation is a tedious process often involving several techniques. Glycomics and glycoproteomics approaches with mass spectrometry offer a rapid platform for glycan profiling but are limited by the inability to resolve isobaric species such as linkage and positional isomers. Recently, ion mobility spectrometry (IMS) has been shown to effectively resolve isobaric oligosaccharides, but the utility of IMS to obtain glycan structural information on a site-specific level with proteomic analyses has yet to be investigated. Here, we report that the addition of IMS to conventional glycoproteomics platforms adds additional information regarding glycan structure and is particularly useful for differentiation of sialic acid linkage isomers on both N- and O-linked glycopeptides. With further development IMS may hold the potential for rapid and complete structural elucidation of glycan chains at a site-specific level. PMID:27089023

  13. Chronic caffeine or theophylline exposure reduces gamma-aminobutyric acid/benzodiazepine receptor site interactions.

    PubMed

    Roca, D J; Schiller, G D; Farb, D H

    1988-05-01

    Methylxanthines, such as caffeine and theophylline, are adenosine receptor antagonists that exert dramatic effects upon the behavior of vertebrate animals by increasing attentiveness, anxiety, and convulsive activity. Benzodiazepines, such as flunitrazepam, generally exert behavioral effects that are opposite to those of methylxanthines. We report the finding that chronic exposure of embryonic brain neurons to caffeine or theophylline reduces the ability of gamma-aminobutyric acid (GABA) to potentiate the binding of [3H]flunitrazepam to the GABA/benzodiazepine receptor. This theophylline-induced "uncoupling" of GABA- and benzodiazepine-binding site allosteric interactions is blocked by chloroadenosine, an adenosine receptor agonist, indicating that the chronic effects of theophylline are mediated by a site that resembles an adenosine receptor. We speculate that adverse central nervous system effects of long-term exposure to methylxanthines such as in caffeine-containing beverages or theophylline-containing medications may be exerted by a cell-mediated modification of the GABAA receptor. PMID:2835648

  14. Locations of the three primary binding sites for long-chain fatty acids on bovine serum albumin

    SciTech Connect

    Hamilton, J.A.; Era, S.; Bhamidipati, S.P. ); Reed, R.G. )

    1991-03-15

    Binding of {sup 13}C-enriched oleic acid to bovine serum albumin and to three large proteolytic fragments of albumin - two complementary fragments corresponding to the two halved of albumin and one fragment corresponding to the carboxyl-terminal domain - yielded unique patterns of NMR resonances (chemical shifts and relative intensities) that were used to identify the locations of binding of the first 5 mol of oleic acid to the multidomain albumin molecule. The first 3 mol of oleic acid added to intact albumin generated three distinct NMR resonances as a result of simultaneous binding of oleic acid to three heterogeneous sites (primary sites). This distribution suggests albumin to be a less symmetrical binding molecule than theoretical models predict. This work also demonstrates the power of NMR for the study of microenvironments of individual fatty acid binding sites in specific domain.

  15. SAVANNAH RIVER SITE TANK CLEANING: CORROSION RATE FOR ONE VERSUS EIGHT PERCENT OXALIC ACID SOLUTION

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2011-01-20

    Until recently, the use of oxalic acid for chemically cleaning the Savannah River Site (SRS) radioactive waste tanks focused on using concentrated 4 and 8-wt% solutions. Recent testing and research on applicable dissolution mechanisms have concluded that under appropriate conditions, dilute solutions of oxalic acid (i.e., 1-wt%) may be more effective. Based on the need to maximize cleaning effectiveness, coupled with the need to minimize downstream impacts, SRS is now developing plans for using a 1-wt% oxalic acid solution. A technology gap associated with using a 1-wt% oxalic acid solution was a dearth of suitable corrosion data. Assuming oxalic acid's passivation of carbon steel was proportional to the free oxalate concentration, the general corrosion rate (CR) from a 1-wt% solution may not be bound by those from 8-wt%. Therefore, after developing the test strategy and plan, the corrosion testing was performed. Starting with the envisioned process specific baseline solvent, a 1-wt% oxalic acid solution, with sludge (limited to Purex type sludge-simulant for this initial effort) at 75 C and agitated, the corrosion rate (CR) was determined from the measured weight loss of the exposed coupon. Environmental variations tested were: (a) Inclusion of sludge in the test vessel or assuming a pure oxalic acid solution; (b) acid solution temperature maintained at 75 or 45 C; and (c) agitation of the acid solution or stagnant. Application of select electrochemical testing (EC) explored the impact of each variation on the passivation mechanisms and confirmed the CR. The 1-wt% results were then compared to those from the 8-wt%. The immersion coupons showed that the maximum time averaged CR for a 1-wt% solution with sludge was less than 25-mils/yr for all conditions. For an agitated 8-wt% solution with sludge, the maximum time averaged CR was about 30-mils/yr at 50 C, and 86-mils/yr at 75 C. Both the 1-wt% and the 8-wt% testing demonstrated that if the sludge was removed from

  16. Heavy metal binding to heparin disaccharides. I. Iduronic acid is the main binding site.

    PubMed

    Whitfield, D M; Choay, J; Sarkar, B

    1992-06-01

    As model compounds for Ni(II)-binding heparin-like compounds isolated from human kidneys (Templeton, D.M. & Sarkar, B. (1985) Biochem. J. 230 35-42.), we investigated two disaccharides--4-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-2,5-anhydro- D-mannitol, disodium salt (1a), and 4-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-6-O- sulfo-2,5-anhydro-D-mannitol, trisodium salt (1b)--that were isolated from heparin after nitrous acid hydrolysis and reduction. The monosulfate (1a) was active whereas the disulfate (1b) was inactive in a high-performance liquid chromatography (HPLC) binding assay with the tracer ions 63Ni(II) 54Mn(II), 65Zn(II), and 109Cd(II). This result is in accord with the isolation of two 67Cu(II) and 63Ni(II) binding fractions from a complete pool of nitrous-acid-derived heparin disaccharides using sulfate gradients and a MonoQ anion exchange column on an FPLC system. One was identified as compound (1a) and the other as a tetrasulfated trisaccharide by high resolution FAB-MS, NMR and HPLC-PAD. Similarly, two synthetic disaccharides-methyl, 2-O-sulfo-4-O-(alpha-L-idopyranosyluronic acid)-2-deoxy-2-sulfamide-alpha-D-glucosamine, trisodium salt [IdopA2S(alpha 1,4)GlcNS alpha Me, 2a], and 2-O-sulfo-4-O-(alpha-L-idopyranosyluronic acid)-2-deoxy-2-sulfamide-6-O-sulfo- alpha-D-glucosamine, tetrasodium salt [IdopA2S (alpha 1,4)GlcNS6S alpha Me, 2b]--were shown to bind tracer amounts of 63Ni and 67Cu using chromatographic assays. Subsequently, 1H NMR titrations of 1a, 1b, 2a, and 2b with Zn (OAc)2 were analyzed to yield 1:1 Zn(II)-binding constants of 472 +/- 59, 698 +/- 120, 8,758 +/- 2,237 and 20,100 +/- 5,598 M-1, respectively. The values for 2a and 2b suggest chelation. It is suggested that the idopyranosiduronic acid residue is the major metal binding site. NMR evidence for this hypothesis comes from marked 1H and 13C chemical shift changes to the iduronic acid resonances after addition of diamagnetic Zn(II) ions. PMID:1643264

  17. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties.

    PubMed

    Hasan, Md Mehedi; Yang, Shiping; Zhou, Yuan; Mollah, Md Nurul Haque

    2016-03-01

    Lysine succinylation is an emerging protein post-translational modification, which plays an important role in regulating the cellular processes in both eukaryotic and prokaryotic cells. However, the succinylation modification site is particularly difficult to detect because the experimental technologies used are often time-consuming and costly. Thus, an accurate computational method for predicting succinylation sites may help researchers towards designing their experiments and to understand the molecular mechanism of succinylation. In this study, a novel computational tool termed SuccinSite has been developed to predict protein succinylation sites by incorporating three sequence encodings, i.e., k-spaced amino acid pairs, binary and amino acid index properties. Then, the random forest classifier was trained with these encodings to build the predictor. The SuccinSite predictor achieves an AUC score of 0.802 in the 5-fold cross-validation set and performs significantly better than existing predictors on a comprehensive independent test set. Furthermore, informative features and predominant rules (i.e. feature combinations) were extracted from the trained random forest model for an improved interpretation of the predictor. Finally, we also compiled a database covering 4411 experimentally verified succinylation proteins with 12 456 lysine succinylation sites. Taken together, these results suggest that SuccinSite would be a helpful computational resource for succinylation sites prediction. The web-server, datasets, source code and database are freely available at http://systbio.cau.edu.cn/SuccinSite/. PMID:26739209

  18. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofang; Yu, Xiaobo; Wu, Shujie; Liu, Bo; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-02-01

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N 2 adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization.

  19. Hatching success in salamanders and chorus frogs at two sites in Colorado, USA: Effects of acidic deposition and climate

    USGS Publications Warehouse

    Muths, E.; Campbell, D.H.; Corn, P.S.

    2003-01-01

    The snowpack in the vicinity of the Mount Zirkel Wilderness Area is among the most acidic in the western United States. We analyzed water chemistry and examined hatching success in tiger salamanders and chorus frogs at ponds there and at nearby Rabbit Ears Pass (Dumont) to determine whether acid deposition affects amphibians or their breeding habitats at these potentially sensitive locations. We found a wide range of acid neutralizing capacity among ponds within sites; the minimum pH recorded during the experiment was 5.4 at one of 12 ponds with all others at pH ??? 5.7. At Dumont, hatching success for chorus frogs was greater in ponds with low acid neutralizing capacity; however, lowest pHs were >5.8. At current levels of acid deposition, weather and pond characteristics are likely more important than acidity in influencing hatching success in amphibian larvae at these sites.

  20. Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site

    SciTech Connect

    Sudduth, Christie; Vitali, Jason; Keefer, Mark

    2014-01-08

    The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the fact that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process.

  1. Composite active site of chondroitin lyase ABC accepting both epimers of uronic acid

    SciTech Connect

    Shaya, D.; Hahn, Bum-Soo; Bjerkan, Tonje Marita; Kim, Wan Seok; Park, Nam Young; Sim, Joon-Soo; Kim, Yeong-Shik; Cygler, M.

    2008-03-19

    Enzymes have evolved as catalysts with high degrees of stereospecificity. When both enantiomers are biologically important, enzymes with two different folds usually catalyze reactions with the individual enantiomers. In rare cases a single enzyme can process both enantiomers efficiently, but no molecular basis for such catalysis has been established. The family of bacterial chondroitin lyases ABC comprises such enzymes. They can degrade both chondroitin sulfate (CS) and dermatan sulfate (DS) glycosaminoglycans at the nonreducing end of either glucuronic acid (CS) or its epimer iduronic acid (DS) by a {beta}-elimination mechanism, which commences with the removal of the C-5 proton from the uronic acid. Two other structural folds evolved to perform these reactions in an epimer-specific fashion: ({alpha}/{alpha}){sub 5} for CS (chondroitin lyases AC) and {beta}-helix for DS (chondroitin lyases B); their catalytic mechanisms have been established at the molecular level. The structure of chondroitinase ABC from Proteus vulgaris showed surprising similarity to chondroitinase AC, including the presence of a Tyr-His-Glu-Arg catalytic tetrad, which provided a possible mechanism for CS degradation but not for DS degradation. We determined the structure of a distantly related Bacteroides thetaiotaomicron chondroitinase ABC to identify additional structurally conserved residues potentially involved in catalysis. We found a conserved cluster located {approx}12 {angstrom} from the catalytic tetrad. We demonstrate that a histidine in this cluster is essential for catalysis of DS but not CS. The enzyme utilizes a single substrate-binding site while having two partially overlapping active sites catalyzing the respective reactions. The spatial separation of the two sets of residues suggests a substrate-induced conformational change that brings all catalytically essential residues close together.

  2. SITE EVALUATION OF INNOVATIVE SEMI-PASSIVE ACID MINE DRAINAGE TREATMENT TECHNOLOGIES AT THE SUMMITVILLE SUPERFUND SITE, COLORADO

    EPA Science Inventory

    The EPA SITE Program is conducting a detailed sampling and evaluation of two innovative passive mine drainage treatment technologies at the Summitville Superfund Mining site in Southern Colorado. The technologies evaluated include the Aquafix automatic hydraulic lime dispensing s...

  3. Characteristics of fluoride in pore-water at accidental hydrofluoric acid spillage site, Gumi, Korea

    NASA Astrophysics Data System (ADS)

    Kwon, E. H.; Lee, H. A.; Lee, J.; Kim, D.; Lee, S.; Yoon, H. O.

    2015-12-01

    A leakage accident of hydrofluoric acid (HF) occurred in Gumi, South Korea at Sep. 2012. The study site is located in the borderline between a large-scale industrial complex and a rural area. The HF plume was made immediately, and moved toward the rural area through air. After the accident, 212 ha of farm land were influenced and most of crops were withered. To recover the soil, CaO was applied after six months. Although several studies have done to estimate the extension and movement of HF plume in the air and to assess the impact on human health or plant after the incident, the long-term fate of fluoride (F) in the affected soils is not identified clearly. Thus, this study aimed to understand the behavior of F in the soil after HF releasing from accident site through chemical analysis and geochemical modeling. Within the radius of 1 km of accident site, 16 pore-water and soil samples were collected. The semi-quantitative soil composition (i.e., Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti), total F, total P, OM contents in soil, and soil pH have already been measured, and pore-water compositions are also identified. From these experimental and modeling data, we could be evaluate if impact of accident exists until now, and also could be select and identify existing form of fluoride in soil and pore-water.

  4. Generation of Broensted and Lewis acid sites on the surface of silica by addition of dopant cations

    SciTech Connect

    Connell, G.; Dumesic, J.A.

    1987-06-01

    Pyridine adsorption was used to study the acidic properties of silica doped with the following cations: Sc/sup 3 +/, Mg/sup 2 +/, Fe/sup 2 +/, Fe/sup 3 +/, Zn/sup 2 +/, Al/sup 3 +/, and Ga/sup 3 +/. All samples were exposed to pyridine at 423 K and subsequently evacuated at successively higher temperatures to 723 K. Infrared spectra of the adsorbed pyridine indicated that all of these cations generated Lewis acid sites. This can be explained by the presence of coordinatively unsaturated dopant cations on the surface of silica, in accord with a model based on Pauling's electrostatic bond strength rules. The infrared frequency of the 19b band of pyridine adsorbed on these Lewis acid sites was found to increase with increasing electronegativity of the dopant cation. It is suggested that both of these quantities are related to the strength of the Lewis acid sites. Broensted acid sites were also observed by infrared spectroscopy for Sc/sup 3 +/, Al/sup 3 +/, and Ga/sup 3 +/ on silica. These dopant cations are believed to be bonded tetrahedrally on the surface of silica, generating bridging hydroxyl groups between the dopant cation and Si/sup 4 +/. As for zeolite catalysts, the proton associated with these groups and required for charge neutrality is the Broensted acid site. Finally, Broensted acid sites can also be generated on silica by highly electronegative anions, such as HPO/sub 4//sup 2 -/, which generate Broensted acidity in a different manner. 55 references.

  5. Fabrication of hydrophobic polymer foams with double acid sites on surface of macropore for conversion of carbohydrate.

    PubMed

    Pan, Jianming; Mao, Yanli; Gao, Heping; Xiong, Qingang; Qiu, Fengxian; Zhang, Tao; Niu, Xiangheng

    2016-06-01

    Herein we reported a simple and novel synthetic strategy for the fabrication of two kinds of hydrophobic polymer foam catalysts (i.e. Cr(3+)-HPFs-1-H(+) and HPFs-1-H(+)) with hierarchical porous structure, inhomogeneous acidic composition and Lewis-Brønsted double acid sites distributed on the surface, which was used to one-pot conversion of carbohydrate (such as cellulose, glucose and fructose) to a key chemical platform (i.e. 5-hydroxymethylfurfural, HMF). The water-in-oil (W/O) high internal phase emulsions (HIPEs), stabilized by both Span 80 and acidic prepolymers as analogous particles offered the acidic actives, were used as the template for simultaneous polymerization of oil phase in the presence of divinylbenzene (DVB) and styrene (St). After subsequent ion-exchange process, Lewis and Brønsted acid sites derived from exchanged Cr(3+) and H(+) ion were both fixed on the surface of cell of the catalysts. The HPFs-1-H(+) and Cr(3+)-HPFs-1-H(+) had similar hierarchical porous, hydrophobic surface and acid sites (HPFs-1-H(+) with macropores ranging from 0.1 μm to 20 μm, uniform mesopores in 14.4 nm, water contact angle of 122° and 0.614 mmolg(-1) of Brønsted acid sites, as well as Cr(3+)-HPFs-1-H(+) with macropores ranging from 0.1 μm to 20 μm, uniform mesopores in 13.3 nm, water contact angle of 136° and 0.638 mmolg(-1) of Lewis-Brønsted acid sites). It was confirmed that Lewis acid sites of catalyst had a slight influence on the HMF yield of fructose came from the function of Brønsted acid sites, and Lewis acid sites were in favor of improving the HMF yield from cellulose and glucose. This work opens up a simple and novel route to synthesize multifunctional polymeric catalysts for efficient one-pot conversion of carbohydrate to HMF. PMID:27083362

  6. Dansyl labeling to modulate the relative affinity of bile acids for the binding sites of human serum albumin.

    PubMed

    Rohacova, Jana; Sastre, German; Marin, M Luisa; Miranda, Miguel A

    2011-09-01

    Binding of natural bile acids to human serum albumin (HSA) is an important step in enterohepatic circulation and provides a measure of liver function. In this article, we report on the use of four dansyl (Dns) derivatives of cholic acid (ChA) to demonstrate a regiodifferentiation in their relative affinity for the two binding sites of HSA. Using both steady-state and time-resolved fluorescence, formation of Dns-ChA@HSA complexes was confirmed; the corresponding binding constants were determined, and their distribution between bulk solution and HSA microenvironment was estimated. By means of energy transfer from Trp to the Dns moiety, donor-acceptor distances were estimated (21-25 Å) and found to be compatible with both site 1 and site 2 occupancies. Nevertheless, titration using warfarin and ibuprofen as specific displacement probes clearly indicated that 3α- and 3β-Dns-ChA bind to HSA at site 2, whereas their C-7 regioisomers bind to HSA at site 1. Furthermore, the C-3-labeled compounds are displaced by lithocholic acid, whereas they are insensitive to ChA, confirming the assumption that the former binds to HSA at site 2. Thus, Dns labeling provides a useful tool to modulate the relative affinity of ChA to the major binding sites of HSA and, in combination with other fluorescent ChA analogs, to mimic the binding behavior of natural bile acids. PMID:21797258

  7. Role of Criegee Intermediates in Formation of Sulfuric Acid at BVOCs-rich Cape Corsica Site

    NASA Astrophysics Data System (ADS)

    Kukui, A.; Dusanter, S.; Sauvage, S.; Gros, V.; Bourrianne, T.; Sellegri, K.; Wang, J.; Colomb, A.; Pichon, J. M.; Chen, H.; Kalogridis, C.; Zannoni, N.; Bonsang, B.; Michoud, V.; Locoge, N.; Leonardis, T.

    2015-12-01

    Oxidation of SO2 in reactions with stabilised Criegee Intermediates (sCI) was suggested as an additional source of gaseous sulfuric acid (H2SO4) in the atmosphere, complementary to the conventional H2SO4 formation in reaction of SO2 with OH radicals. Evaluation of the importance of this additional source is complicated due to large uncertainty in the mechanism and rate constants for the reactions of different sCI with SO2, water vapor and other atmospheric species. Here we present an evaluation of the role of sCI in H2SO4 production at remote site on Cape Corsica near the North tip of Corsica Island (Ersa station, Western Mediterranean). In July 2013 comprehensive field observations including gas phase (OH and RO2 radicals, H2SO4, VOCs, NOx, SO2, others) and aerosol measurements were conducted at this site in the frame of ChArMEx project. During the field campaign the site was strongly influenced by local emissions of biogenic volatile compounds (BVOCs), including isoprene and terpenes, forming different sCI in reactions with ozone and, hence, presenting additional source of H2SO4 via sCI+SO2. However, this additional source of H2SO4 at the Ersa site was found to be insignificant. The observed concentrations of H2SO4 were found to be in good agreement with those estimated from the H2SO4 condensation sink and the production of H2SO4 only in the reaction of OH with SO2, without accounting for any additional H2SO4 source. Using the BVOCs observations we present estimation of the upper limit for the rate constants of H2SO4 production via reactions of different sCI with SO2.

  8. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction.

    PubMed

    Narsimhan, Karthik; Michaelis, Vladimir K; Mathies, Guinevere; Gunther, William R; Griffin, Robert G; Román-Leshkov, Yuriy

    2015-02-11

    The selective low temperature oxidation of methane is an attractive yet challenging pathway to convert abundant natural gas into value added chemicals. Copper-exchanged ZSM-5 and mordenite (MOR) zeolites have received attention due to their ability to oxidize methane into methanol using molecular oxygen. In this work, the conversion of methane into acetic acid is demonstrated using Cu-MOR by coupling oxidation with carbonylation reactions. The carbonylation reaction, known to occur predominantly in the 8-membered ring (8MR) pockets of MOR, is used as a site-specific probe to gain insight into important mechanistic differences existing between Cu-MOR and Cu-ZSM-5 during methane oxidation. For the tandem reaction sequence, Cu-MOR generated drastically higher amounts of acetic acid when compared to Cu-ZSM-5 (22 vs 4 μmol/g). Preferential titration with sodium showed a direct correlation between the number of acid sites in the 8MR pockets in MOR and acetic acid yield, indicating that methoxy species present in the MOR side pockets undergo carbonylation. Coupled spectroscopic and reactivity measurements were used to identify the genesis of the oxidation sites and to validate the migration of methoxy species from the oxidation site to the carbonylation site. Our results indicate that the Cu(II)-O-Cu(II) sites previously associated with methane oxidation in both Cu-MOR and Cu-ZSM-5 are oxidation active but carbonylation inactive. In turn, combined UV-vis and EPR spectroscopic studies showed that a novel Cu(2+) site is formed at Cu/Al <0.2 in MOR. These sites oxidize methane and promote the migration of the product to a Brønsted acid site in the 8MR to undergo carbonylation. PMID:25562431

  9. 36C1 measurements and the hydrology of an acid injection site

    USGS Publications Warehouse

    Vourvopoulos, G.; Brahana, J.V.; Nolte, E.; Korschinek, G.; Priller, A.; Dockhorn, B.

    1990-01-01

    In an area in western Tennessee (United States), an industrial firm is injecting acidic (pH = 0.1) iron chloride into permeable zones of carbonate rocks at depths ranging from 1000 to 2200 m below land surface. Overlying the injection zone at a depth of approximately 500 m below land surface is a regional fresh-water aquifer, the Knox aquifer. A study is currently underway to investigate whether the injection wells are hydraulically isolated from the fresh-water aquifer. Drilling of a test well that will reach a total depth of 2700 m has been initiated. The 36Cl content of 15 samples from the Knox aquifer, from monitor wells in the vicinity of the injection site, and from the test well have been analyzed. ?? 1990.

  10. Comparison of the autoradiographic binding distribution of [3H]-gabapentin with excitatory amino acid receptor and amino acid uptake site distributions in rat brain.

    PubMed Central

    Thurlow, R. J.; Hill, D. R.; Woodruff, G. N.

    1996-01-01

    1. Gabapentin is a novel anticonvulsant with an unknown mechanism of action. Recent homogenate binding studies with [3H]-gabapentin have suggested a structure-activity relationship similar to that shown for the amino acid transport system responsible for the uptake of large neutral amino acids (LNAA). 2. The autoradiographic binding distribution of [3H]-gabapentin in rat brain was compared with the distributions for excitatory amino acid receptor subtypes and the uptake sites for excitatory and large neutral amino acids in consecutive rat brain sections. 3. Densitometric measurement of the autoradiographic images followed by normalisation with respect to the hippocampus CA1 stratum radiatum, was carried out before comparison of each binding distribution with that of [3H]-gabapentin by linear regression analysis. The correlation coefficients observed showed no absolute correlation was observed between the binding distributions of [3H]-gabapentin and those of the excitatory amino acid receptor subtypes. The acidic and large neutral amino acid uptake site distributions demonstrated a much closer correlation to the [3H]-gabapentin binding site distribution. The correlation coefficients for D-[3H]-aspartate, L-[3H]-leucine and L-[3H]-isoleucine binding site distributions were 0.76, 0.90 and 0.88 respectively. 4. Concentration-dependent inhibition by unlabelled gabapentin of autoradiographic binding of L-[3H]-leucine and L-[3H]-isoleucine was observed, with non-specific binding levels being reached at concentrations between 10 and 100 microM. 5. Excitotoxic quinolinic acid lesion studies in rat brain caudate putamen and autoradiography were carried out for the amino acid uptake sites mentioned above. The resulting glial infiltration of the lesioned areas was visualized by autoradiography using the peripheral benzodiazepine receptor specific ligand [3H]-PK11195. A significant decrease in binding density in the lesioned area compared with sham-operated animals was observed

  11. Volatile aromatic hydrocarbons and dicarboxylic acid concentrations in air at an urban site in the Southwestern US

    NASA Astrophysics Data System (ADS)

    Tran, Ngoc K.; Steinberg, Spencer M.; Johnson, Brian J.

    Concentrations of benzene, toluene, ethylbenzene, o-xylene, and m- and p-xylene were measured at an urban sampling site in Las Vegas, NV by sorbent sampling followed by thermal desorption and determination by GC-PID. Simultaneously, measurements of oxalic, malonic, succinic, and adipic acids were made at the same site by collection on quartz filters, extraction, esterification, and determination by GC-FID. For the period from April 7, 1997 to June 11, 1997, 201 sets of hydrocarbon measurements and 99 sets of acid measurements were made. Additional measurements of dicarboxylic acids were made on samples that represented potential direct sources, e.g. green plants and road dust. Correlations between the hydrocarbon and CO concentrations (measured by the Clark County Health District at a nearby site) were highly significant and a strong negative correlation of hydrocarbon concentration with ozone concentration (also from the county site) was observed under quiescent atmospheric conditions. In general, dicarboxylic acid concentrations were well correlated with one another (with the exception of adipic acid) but not well correlated with hydrocarbon, CO, and ozone concentrations. Multiple sources and complex formation processes are indicated for the dicarboxylic acids.

  12. Site-specific acid-base properties of pholcodine and related compounds.

    PubMed

    Kovács, Z; Hosztafi, S; Noszál, B

    2006-11-01

    The acid-base properties of pholcodine, a cough-depressant agent, and related compounds including metabolites were studied by 1H NMR-pH titrations, and are characterised in terms of macroscopic and microscopic protonation constants. New N-methylated derivatives were also synthesized in order to quantitate site- and nucleus-specific protonation shifts and to unravel microscopic acid-base equilibria. The piperidine nitrogen was found to be 38 and 400 times more basic than its morpholine counterpart in pholcodine and norpholcodine, respectively. The protonation data show that the molecule of pholcodine bears an average of positive charge of 1.07 at physiological pH, preventing it from entering the central nervous system, a plausible reason for its lack of analgesic or addictive properties. The protonation constants of pholcodine and its derivatives are interpreted by comparing with related molecules of pharmaceutical interest. The pH-dependent relative concentrations of the variously protonated forms of pholcodine and morphine are depicted in distribution diagrams. PMID:17004059

  13. Hybridoma antibodies to the lipid-binding site(s) in the amino-terminal region of fibronectin inhibits binding of streptococcal lipoteichoic acid.

    PubMed

    Stanislawski, L; Courtney, H S; Simpson, W A; Hasty, D L; Beachey, E H; Robert, L; Ofek, I

    1987-08-01

    In this report, we present evidence to suggest that streptococci and lipoteichoic acid (LTA) interact with a fatty acid binding site located near the NH2-terminus of fibronectin. The evidence is based on the following observations. Antibodies directed against a synthetic peptide (residues 1-30 of the amino-terminus of fibronectin) reacted with the two thermolysin-generated peptides (24 and 28 kilodaltons [kDa]) that were adsorbed by and eluted from streptococci. The adsorption of the 24- and 28-kDa peptides to streptococci was inhibited by LTA. The two monoclonal antibodies that inhibited the binding of LTA to fibronectin reacted only with the 24- and 28-kDa fragments of fibronectin. Conversely, LTA, as well as lauric acid and oleic acid, blocked the binding of the same monoclonal antibodies to fibronectin. LTA had no effect on the binding of hybridoma antibodies directed against the collagen or cell-binding domain. PMID:3298457

  14. Diversity of acidophilic prokaryotes at two acid mine drainage sites in Turkey.

    PubMed

    Aytar, Pınar; Kay, Catherine Melanie; Mutlu, Mehmet Burçin; Çabuk, Ahmet; Johnson, David Barrie

    2015-04-01

    The biodiversity of acidophilic prokaryotes in two acidic (pH 2.8-3.05) mine drainage (AMD) sites (Balya and Çan) in Turkey was examined using a combined cultivation-based and cultivation-independent approach. The latter included analyzing microbial diversity using fluorescent in situ hybridization (FISH), terminal restriction enzyme fragment length polymorphism (`T-RFLP), and quantitative PCR (qPCR). Numbers of cultivatable heterotrophic acidophilic bacteria were over an order of magnitude greater than those of chemolithotrophic acidophiles in both AMD ponds examined. Isolates identified as strains of Acidithiobacillus ferrivorans, Acidiphilium organovorum, and Ferrimicrobium acidiphilum were isolated from the Balya AMD pond, and others identified as strains of Leptospirillum ferriphilum, Acidicapsa ligni, and Acidiphilium rubrum from Çan AMD. Other isolates were too distantly related (from analysis of their 16S rRNA genes) to be identified at the species level. Archaeal diversity in the two ponds appeared to be far more limited. T-RFLP and qPCR confirmed the presence of Ferroplasma-like prokaryotes, but no archaea were isolated from the two sites. qPCR generated semiquantitative data for genera of some of the iron-oxidizing acidophiles isolated and/or detected, suggesting the order of abundance was Leptospirillum > Ferroplasma > Acidithiobacillus (Balya AMD) and Ferroplasma > Leptospirillum > Acidithiobacillus (Çan AMD). PMID:25380633

  15. The Protonation Site of para-Dimethylaminobenzoic Acid Using Atmospheric Pressure Ionization Methods

    NASA Astrophysics Data System (ADS)

    Chai, Yunfeng; Weng, Guofeng; Shen, Shanshan; Sun, Cuirong; Pan, Yuanjiang

    2015-04-01

    The protonation site of para-dimethylaminobenzoic acid ( p-DMABA) was investigated using atmospheric pressure ionization methods (ESI and APCI) coupled with collision-induced dissociation (CID), nuclear magnetic resonance (NMR), and computational chemistry. Theoretical calculations and NMR experiments indicate that the dimethyl amino group is the preferred site of protonation both in the gas phase and aqueous solution. Protonation of p-DMABA occurs at the nitrogen atom by ESI independent of the solvents and other operation conditions under typical thermodynamic control. However, APCI produces a mixture of the nitrogen- and carbonyl oxygen-protonated p-DMABA when aprotic organic solvents (acetonitrile, acetone, and tetrahydrofuran) are used, exhibiting evident kinetic characteristics of protonation. But using protic organic solvents (methanol, ethanol, and isopropanol) in APCI still leads to the formation of thermodynamically stable N-protonated p-DMABA. These structural assignments were based on the different CID behavior of the N- and O-protonated p-DMABA. The losses of methyl radical and water are the diagnostic fragmentations of the N- and O-protonated p-DMABA, respectively. In addition, the N-protonated p-DMABA is more stable than the O-protonated p-DMABA in CID revealed by energy resolved experiments and theoretical calculations.

  16. Chemical characteristics and sources of organic acids in precipitation at a semi-urban site in Southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Lee, X. Q.; Cao, F.

    2011-01-01

    In order to investigate the chemical characteristics and sources of organic acids in precipitation in Southwest China, 105 rainwater samples were collected at a semi-urban site in Anshun from June 2007 to June 2008. Organic acids and major anions were analyzed along with pH and electrical conductivity. The pH values varied from 3.57 to 7.09 for all the rainfall events sampled, with an average of 4.67 which was typical acidic value. Formic, acetic and oxalic acids were found to be the predominant carboxylic acids and their volume weighted average (VWA) concentrations were 8.77, 6.93 and 2.84 μmol l -1, respectively. These organic acids were estimated to account for 8.1% to the total free acidity (TFA) in precipitation. The concentrations of the majority organic acids at studied site had a clear seasonal pattern, reaching higher levels during the non-growing season than those in growing season, which was attributed to dilution effect of heavy rainfall during the growing season. The seasonal variation of wet deposition flux of these organic acids confirmed higher source strength of biogenic emissions from vegetation during the growing season. Formic-to-acetic acids ratio (F/A), an indicator of primary versus secondary sources of these organic acids, suggested that primary sources from vehicular emission, biomass burning, soil and vegetation emissions were dominant sources. In addition, the lowest concentrations of organic acids were found under type S, when air masses originated from the marine (South China Sea) during Southern Asian Monsoon period. And the highest concentrations were observed in precipitation events from Northeast China (type NE), prevailing mostly during winter with the lowest rainfall.

  17. Site-specific incorporation of probes into RNA polymerase by unnatural-amino-acid mutagenesis and Staudinger-Bertozzi ligation

    PubMed Central

    Chakraborty, Anirban; Mazumder, Abhishek; Lin, Miaoxin; Hasemeyer, Adam; Xu, Qumiao; Wang, Dongye; Ebright, Yon W.; Ebright, Richard H.

    2015-01-01

    Summary A three-step procedure comprising (i) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (ii) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (iii) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a crosslinking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP. PMID:25665560

  18. Investigation of prototypal MOFs consisting of polyhedral cages with accessible Lewis-acid sites for quinoline synthesis.

    PubMed

    Gao, Wen-Yang; Leng, Kunyue; Cash, Lindsay; Chrzanowski, Matthew; Stackhouse, Chavis A; Sun, Yinyong; Ma, Shengqian

    2015-03-21

    A series of prototypal metal-organic frameworks (MOFs) consisting of polyhedral cages with accessible Lewis-acid sites, have been systematically investigated for Friedländer annulation reaction, a straightforward approach to synthesizing quinoline and its derivatives. Amongst them MMCF-2 demonstrates significantly enhanced catalytic activity compared with the benchmark MOFs, HKUST-1 and MOF-505, as a result of a high-density of accessible Cu(II) Lewis acid sites and large window size in the cuboctahedral cage-based nanoreactor of MMCF-2. PMID:25693429

  19. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy

    PubMed Central

    Simard, J. R.; Zunszain, P. A.; Ha, C.-E.; Yang, J. S.; Bhagavan, N. V.; Petitpas, I.; Curry, S.; Hamilton, J. A.

    2005-01-01

    Human serum albumin (HSA) is a versatile transport protein for endogenous compounds and drugs. To evaluate physiologically relevant interactions between ligands for the protein, it is necessary to determine the locations and relative affinities of different ligands for their binding site(s). We present a site-specific investigation of the relative affinities of binding sites on HSA for fatty acids (FA), the primary physiological ligand for the protein. Titration of HSA with [13C]carboxyl-labeled FA was used initially to identify three NMR chemical shifts that are associated with high-affinity binding pockets on the protein. To correlate these peaks with FA-binding sites identified from the crystal structures of FA–HSA complexes, HSA mutants were engineered with substitutions of amino acids involved in coordination of the bound FA carboxyl. Titration of [13C]palmitate into solutions of HSA mutants for either FA site four (R410A/Y411A) or site five (K525A) within domain III of HSA each revealed loss of a specific NMR peak that was present in spectra of wild-type protein. Because these peaks are among the first three to be observed on titration of HSA with palmitate, sites four and five represent two of the three high-affinity long-chain FA-binding sites on HSA. These assignments were confirmed by titration of [13C]palmitate into recombinant domain III of HSA, which contains only sites four and five. These results establish a protocol for direct probing of the relative affinities of FA-binding sites, one that may be extended to examine competition between FA and other ligands for specific binding sites. PMID:16330771

  20. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy.

    PubMed

    Simard, J R; Zunszain, P A; Ha, C-E; Yang, J S; Bhagavan, N V; Petitpas, I; Curry, S; Hamilton, J A

    2005-12-13

    Human serum albumin (HSA) is a versatile transport protein for endogenous compounds and drugs. To evaluate physiologically relevant interactions between ligands for the protein, it is necessary to determine the locations and relative affinities of different ligands for their binding site(s). We present a site-specific investigation of the relative affinities of binding sites on HSA for fatty acids (FA), the primary physiological ligand for the protein. Titration of HSA with [(13)C]carboxyl-labeled FA was used initially to identify three NMR chemical shifts that are associated with high-affinity binding pockets on the protein. To correlate these peaks with FA-binding sites identified from the crystal structures of FA-HSA complexes, HSA mutants were engineered with substitutions of amino acids involved in coordination of the bound FA carboxyl. Titration of [(13)C]palmitate into solutions of HSA mutants for either FA site four (R410A/Y411A) or site five (K525A) within domain III of HSA each revealed loss of a specific NMR peak that was present in spectra of wild-type protein. Because these peaks are among the first three to be observed on titration of HSA with palmitate, sites four and five represent two of the three high-affinity long-chain FA-binding sites on HSA. These assignments were confirmed by titration of [(13)C]palmitate into recombinant domain III of HSA, which contains only sites four and five. These results establish a protocol for direct probing of the relative affinities of FA-binding sites, one that may be extended to examine competition between FA and other ligands for specific binding sites. PMID:16330771

  1. Direct photoaffinity labeling of cellular retinoic acid-binding protein I (CRABP-I) with all-trans-retinoic acid: identification of amino acids in the ligand binding site.

    PubMed

    Chen, G; Radominska-Pandya, A

    2000-10-17

    Cellular retinoic acid-binding proteins I and II (CRABP-I and -II, respectively) are transport proteins for all-trans-retinoic acid (RA), an active metabolite of vitamin A (retinol), and have been reported to be directly involved in the metabolism of RA. In this study, direct photoaffinity labeling with [11,12-(3)H]RA was used to identify amino acids comprising the ligand binding site of CRABP-I. Photoaffinity labeling of CRABP-I with [(3)H]RA was light- and concentration-dependent and was protected by unlabeled RA and various retinoids, indicating that the labeling was directed to the RA-binding site. Photolabeled CRABP-I was hydrolyzed with endoproteinase Lys-C to yield radioactive peptides, which were separated by reversed-phase HPLC for analysis by Edman degradation peptide sequencing. This method identified five modified amino acids from five separate HPLC fractions: Trp7, Lys20, Arg29, Lys38, and Trp109. All five amino acids are located within one side of the "barrel" structure in the area indicated by the reported crystal structure as the ligand binding site. This is the first direct identification of specific amino acids in the RA-binding site of CRABPs by photoaffinity labeling. These results provide significant information about the ligand binding site of the CRABP-I molecule in solution. PMID:11027136

  2. CHARACTERIZATION OF INDIVIDUAL CHEMICAL REACTIONS CONSUMING ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136B

    SciTech Connect

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J.; Stone, M.

    2009-09-02

    Conversion of legacy radioactive high-level waste at the Savannah River Site into a stable glass waste form involves a chemical pretreatment process to prepare the waste for vitrification. Waste slurry is treated with nitric and formic acids to achieve certain goals. The total quantity of acid added to a batch of waste slurry is constrained by the catalytic activity of trace noble metal fission products in the waste that can convert formic acid into hydrogen gas at many hundreds of times the radiolytic hydrogen generation rate. A large block of experimental process simulations were performed to characterize the chemical reactions that consume acid prior to hydrogen generation. The analysis led to a new equation for predicting the quantity of acid required to process a given volume of waste slurry.

  3. Early smelter sites: A neglected chapter in the history and geography of acid rain in the United States

    NASA Astrophysics Data System (ADS)

    Quinn, M.-L.

    Dominant spatial and temporal theories of acid rain in the U.S. are identified, followed by brief comments on how historical data have generally been used in modern acid rain research. A frequently-cited 1982 article by E.B. Cowling is examined, one that has influenced much thinking on the history of acid rain. The article overlooks early American smelters, however, and the role they played in the true history and geography of acid rain in the United States. Continuing with this theme, a connection is established between acid rain and turn-of-the-century smelter smoke problems. Literature on the latter subject is discussed, and American and German examples are given. A beginning is then made on writing acid rain's neglected chapter, focusing on Tennessee's Copper Basin (Ducktown District) where copper smelting dates back to the 1850s. A short historical overview of this area's smelting operations is given, with particular attention to the air pollution and other environmental problems resulting from large emissions of sulfur dioxide. Five additional early smelter sites for potential study are mentioned as well. The paper concludes with some observations regarding the way in which expanded research of early smelter sites could affect the general perception of acid rain in the U.S. It is also suggested that such research might contribute to a better atmosphere for making decisions and policies pertaining to the phenomenon as it exists today.

  4. Isotope geochemistry of waters affected by acid mine drainage in old labour sites (SE, Spain).

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Garcia-Lorenzo, Maria Luz; Agudo, Ines; Hernandez-Cordoba, Manuel; Recio, Clemente

    2015-04-01

    The ore deposits of this zone have iron, lead and zinc as the main metal components. Iron is present in oxides, hydroxides, sulfides, sulfates, carbonates, and silicates; lead and zinc occur in sulfides (galena and sphalerite, respectively), carbonates, sulfates, and lead or zinc-bearing (manganese, iron) oxides. Mining started with the Romans and activity peaked in the second half of the 19th century and throughout the 20th century until the 1980's. From 1940 to 1957, mineral concentration was made by froth flotation and, prior to this, by gravimetric techniques. The mining wastes, or tailings, with a very fine particle size were deposited inland (tailings dams) and, since 1957, huge releases were made in directly the sea coast. The objective of this work was to evaluate processes affecting waters from abandoned mine sites by way of stable isotopic analysis, particularly H and O stable isotopes from water and S and O from dissolved sulfates. Several common chemical and physical processes, such as evaporation, water-rock interaction and mixing could alter water isotopic composition. Evaporation, which causes an enrichment in δD and δ18O in the residual water, is an important process in semiarid areas. The results obtained indicate that, for sites near the coast, waters are meteoric, and marine infiltration only takes place in the deepest layers near the shore or if water remains stagnated in sediments with low permeability. The main source of sulfate was the oxidation of sulfides, resulting in the liberation of acid, sulfate and metals. In order to assess the mechanism responsible for sulfide oxidation, the stoichiometric isotope balance model and the general isotope balance model were tested, suggesting that the oxidation via Fe3+ was predominant in the surface, and controlled by A. ferrooxidans, while at depth, sulfate reduction occurred.

  5. Iodine 125-lysergic acid diethylamide binds to a novel serotonergic site on rat choroid plexus epithelial cells

    SciTech Connect

    Yagaloff, K.A.; Hartig, P.R.

    1985-12-01

    /sup 125/I-Lysergic acid diethylamide (/sup 125/I-LSD) binds with high affinity to serotonergic sites on rat choroid plexus. These sites were localized to choroid plexus epithelial cells by use of a novel high resolution stripping film technique for light microscopic autoradiography. In membrane preparations from rat choroid plexus, the serotonergic site density was 3100 fmol/mg of protein, which is 10-fold higher than the density of any other serotonergic site in brain homogenates. The choroid plexus site exhibits a novel pharmacology that does not match the properties of 5-hydroxytryptamine-1a (5-HT1a), 5-HT1b, or 5-HT2 serotonergic sites. /sup 125/I-LSD binding to the choroid plexus site is potently inhibited by mianserin, serotonin, and (+)-LSD. Other serotonergic, dopaminergic, and adrenergic agonists and antagonists exhibit moderate to weak affinities for this site. The rat choroid plexus /sup 125/I-LSD binding site appears to represent a new type of serotonergic site which is located on non-neuronal cells in this tissue.

  6. Identification of gamma-aminobutyric acid and its binding sites in Caenorhabditis elegans

    SciTech Connect

    Schaeffer, J.M.; Bergstrom, A.R.

    1988-01-01

    Gamma-aminobutyric acid (GABA), glutamate decarboxylase and GABA-transaminase were identified in the nematode Caenorhabditis elegans. The concentration of GABA in C. elegans is approximately 10-fold lower than the concentration of GABA in rat brain. Glutamate decarboxylase and GABA-transaminase, the GABA anabolic and catabolic enzymes, are also present in C. elegans. Crude membrane fractions were prepared from C. elegans and used to study specific (/sup 3/H) GABA binding sites. GABA binds to C. elegans membranes with high affinity and low capacity. Muscimol is a competitive inhibitor of specific GABA binding with a K/sub I/ value of 120 nM. None of the other GABA agonists or antagonists inhibited greater than 40% of the specific GABA binding at concentrations up to 10/sup -4/M. Thirteen spider venoms were examined as possible GABA agonists or antagonists, the venom from Calilena agelenidae inhibits specific GABA binding with a K/sub I/ value of 6 nl/ml. These results suggest that GABA has a physiological role as a neurotransmitter in C. elegans.

  7. Hydrolysis of phosphodiesters by diiron complexes: design of nonequivalent iron sites in purple acid phosphatase models.

    PubMed

    Verge, François; Lebrun, Colette; Fontecave, Marc; Ménage, Stéphane

    2003-01-27

    New mu-oxo-diferric complexes have been designed for hydrolysis of phosphodiesters. To mimic the diiron active site of purple acid phosphatase, a combinatorial method has been used to select complexes containing two distinct iron coordination spheres. The introduction of a bidentate ligand, a substituted phenanthroline (L) into complex 1, [Fe2O(bipy)4(OH2)2](NO3)4, generates in solution the complex [Fe2O(bipy)3(L)(OH2)2](NO3)4 as shown by ESI/MS and 1H NMR studies. The latter complex was found to be 20-fold more active than complex 1. On the basis of kinetic studies, we demonstrated that the complex [Fe2O(bipy)3(L)(OH)(OH2)](NO3)3 was the active species and the reaction proceeded through the formation of a ternary complex in which one iron binds a hydroxide and the second, the substrate. At nonsaturating concentrations of the substrate, the increased activity with increased methyl substituents in L was due to an increased affinity of the complex for the substrate. The activity of [Fe2O(bipy)3(33'44'Me2-Phen)(OH2)2](NO3)4 [33'44'Me2Phen = 3,3',4,4'-dimethyl-1,10-phenanthroline] was found to be comparable to that reported for Co(III) or Ce(IV) complexes. PMID:12693232

  8. High-Temperature Decomposition of Brønsted Acid Sites in Gallium-Substituted Zeolites

    SciTech Connect

    K Al-majnouni; N Hould; W Lonergan; D Vlachos; R Lobo

    2011-12-31

    The dehydroxylation of Broensted acid sites (BAS) in Ga-substituted zeolites was investigated at temperatures up to 850 C using X-ray absorption spectroscopy (XAS), Fourier transform infrared spectroscopy (FTIR), and mass spectrometry-temperature programmed desorption (MS-TPD). X-ray absorption near-edge spectroscopy (XANES) revealed that the majority of gallium has tetrahedral coordination even after complete dehydroxylation. The interatomic gallium-oxygen distance and gallium coordination number determined by extended X-ray absorption fine structure (EXAFS) are consistent with gallium in tetrahedral coordination at low T (< 550 C). Upon heating Ga-Beta and Ga-ZSM5 to 850 C, analysis of the EXAFS showed that 70 and 80% of the gallium was still in tetrahedral coordination. The remainder of the gallium was found to be in octahedral coordination. No trigonal Ga atoms were observed. FTIR measurements carried out at similar temperatures show that the intensity of the OH vibration due to BAS has been eliminated. MS-TPD revealed that hydrogen in addition to water evolved from the samples during dehydroxylation. This shows that dehydrogenation in addition to dehydration is a mechanism that contributes to BAS decomposition. Dehydrogenation was further confirmed by exposing the sample to hydrogen to regenerate some of the BAS as monitored by FTIR and MS-TPD.

  9. Binding site discovery from nucleic acid sequences by discriminative learning of hidden Markov models

    PubMed Central

    Maaskola, Jonas; Rajewsky, Nikolaus

    2014-01-01

    We present a discriminative learning method for pattern discovery of binding sites in nucleic acid sequences based on hidden Markov models. Sets of positive and negative example sequences are mined for sequence motifs whose occurrence frequency varies between the sets. The method offers several objective functions, but we concentrate on mutual information of condition and motif occurrence. We perform a systematic comparison of our method and numerous published motif-finding tools. Our method achieves the highest motif discovery performance, while being faster than most published methods. We present case studies of data from various technologies, including ChIP-Seq, RIP-Chip and PAR-CLIP, of embryonic stem cell transcription factors and of RNA-binding proteins, demonstrating practicality and utility of the method. For the alternative splicing factor RBM10, our analysis finds motifs known to be splicing-relevant. The motif discovery method is implemented in the free software package Discrover. It is applicable to genome- and transcriptome-scale data, makes use of available repeat experiments and aside from binary contrasts also more complex data configurations can be utilized. PMID:25389269

  10. ESTIMATES OF CLOUD WATER DEPOSITION AT MOUNTAIN DEPOSITION AT MOUNTAIN ACID DEPOSITION PROGRAM SITES IN THE APPALACHIAN MOUNTAINS

    EPA Science Inventory

    Cloud water deposition was estimated at three high elevation sites in the Appalachian Mountains of the eastern United States (Whiteface Mountain, NY, Whitetop Mountain, VA, and Clingrnan's Dome, TN) from 1994 through 1999 as part of the Mountain Acid Deposition Program (MADPro). ...

  11. Non-thermal plasma-assisted NOx reduction over Na-Y zeolites: The promotional effect of acid sites

    SciTech Connect

    Kwak, Ja Hun; Peden, Charles HF; Szanyi, Janos

    2006-06-01

    The effect of acid sites on the catalytic activities of a series of H+-modified Na-Y zeolites was investigated in the non-thermal plasma assisted NOx reduction reaction using a simulated diesel engine exhaust gas mixture. The acid sites were formed by NH4+ ion exchange and subsequent heat treatment of a NaY zeolite. The catalytic activities of these H+-modified NaY zeolites significantly increased with the number of acid sites. This NOx conversion increase was correlated with the decrease in the amount of unreacted NO2. The increase in the number of acid sites did not change the NO level, it stayed constant. Temperature programmed desorption following NO2 adsorption showed the appearance of a high temperature desorption peak at 453 K in addition to the main desorption feature of 343 K observed for the base Na-Y. The results of both the IR and TPD experiments revealed the formation of crotonaldehyde, resulting from condensation reaction of adsorbed acetaldehyde. Strong adsorptions of both NOx and hydrocarbon species are proposed to be responsible for the higher catalytic activity of H+-modified Na-Y zeolites in comparison to the base NaY material

  12. The two active sites in human branched-chain alpha-keto acid dehydrogenase operate independently without an obligatory alternating-site mechanism.

    PubMed

    Li, Jun; Machius, Mischa; Chuang, Jacinta L; Wynn, R Max; Chuang, David T

    2007-04-20

    A long standing controversy is whether an alternating activesite mechanism occurs during catalysis in thiamine diphosphate (ThDP)-dependent enzymes. We address this question by investigating the ThDP-dependent decarboxylase/dehydrogenase (E1b) component of the mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC). Our crystal structure reveals that conformations of the two active sites in the human E1b heterotetramer harboring the reaction intermediate are identical. Acidic residues in the core of the E1b heterotetramer, which align with the proton-wire residues proposed to participate in active-site communication in the related pyruvate dehydrogenase from Bacillus stearothermophilus, are mutated. Enzyme kinetic data show that, except in a few cases because of protein misfolding, these alterations are largely without effect on overall activity of BCKDC, ruling out the requirement of a proton-relay mechanism in E1b. BCKDC overall activity is nullified at 50% phosphorylation of E1b, but it is restored to nearly half of the pre-phosphorylation level after dissociation and reconstitution of BCKDC with the same phosphorylated E1b. The results suggest that the abolition of overall activity likely results from the specific geometry of the half-phosphorylated E1b in the BCKDC assembly and not due to a disruption of the alternating active-site mechanism. Finally, we show that a mutant E1b containing only one functional active site exhibits half of the wild-type BCKDC activity, which directly argues against the obligatory communication between active sites. The above results provide evidence that the two active sites in the E1b heterotetramer operate independently during the ThDP-dependent decarboxylation reaction. PMID:17329260

  13. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid

    PubMed Central

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation. PMID:27028506

  14. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  15. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue.

    PubMed

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males' subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  16. A nuclear magnetic resonance-based structural rationale for contrasting stoichiometry and ligand binding site(s) in fatty acid-binding proteins.

    PubMed

    He, Yan; Estephan, Rima; Yang, Xiaomin; Vela, Adriana; Wang, Hsin; Bernard, Cédric; Stark, Ruth E

    2011-03-01

    Liver fatty acid-binding protein (LFABP) is a 14 kDa cytosolic polypeptide, differing from other family members in the number of ligand binding sites, the diversity of bound ligands, and the transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional (1)H-(15)N nuclear magnetic resonance (NMR) signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without determining the protein-ligand complex structures, to yield the stoichiometries for the bound ligands, their locations within the protein binding cavity, the sequence of ligand occupation, and the corresponding protein structural accommodations. Chemical shifts were monitored for wild-type LFABP and an R122L/S124A mutant in which electrostatic interactions viewed as being essential to fatty acid binding were removed. For wild-type LFABP, the results compared favorably with the data for previous tertiary structures of oleate-bound wild-type LFABP in crystals and in solution: there are two oleates, one U-shaped ligand that positions the long hydrophobic chain deep within the cavity and another extended structure with the hydrophobic chain facing the cavity and the carboxylate group lying close to the protein surface. The NMR titration validated a prior hypothesis that the first oleate to enter the cavity occupies the internal protein site. In contrast, (1)H and (15)N chemical shift changes supported only one liganded oleate for R122L/S124A LFABP, at an intermediate location within the protein cavity. A rationale based on protein sequence and electrostatics was developed to explain the stoichiometry and binding site trends for LFABPs and to put these findings into context within the larger protein family. PMID:21226535

  17. Protons and Psalmotoxin-1 reveal nonproton ligand stimulatory sites in chicken acid-sensing ion channel

    PubMed Central

    Smith, Rachel N; Gonzales, Eric B

    2014-01-01

    Acid-sensing ion channels (ASICs) are proton-sensitive, sodium-selective channels expressed in the nervous system that sense changes in extracellular pH. These ion channels are sensitive to an increasing number of nonproton ligands that include natural venom peptides and guanidine compounds. In the case of chicken ASIC1, the spider toxin Psalmotoxin-1 (PcTx1) activates the channel, resulting in an inward current. Furthermore, a growing class of ligands containing a guanidine group has been identified that stimulate peripheral ASICs (ASIC3), but exert subtle influence on other ASIC subtypes. The effects of the guanidine compounds on cASIC1 have not been the focus of previous study. Here, we investigated the interaction of the guanidine compound 2-guanidine-4-methylquinazoline (GMQ) on cASIC1 proton activation and PcTx1 stimulation. Exposure of expressed cASIC1 to PcTx1 resulted in biphasic currents consisting of a transient peak followed by an irreversible cASIC1 PcTx1 persistent current. This cASIC1 PcTx1 persistent current may be the result of locking the cASIC1 protein into a desensitized transition state. The guanidine compound GMQ increased the apparent affinity of protons on cASIC1 and decreased the half-maximal constant of the cASIC1 steady-state desensitization profile. Furthermore, GMQ stimulated the cASIC1 PcTx1 persistent current in a concentration-dependent manner, which resulted in a non-desensitizing inward current. Our data suggests that GMQ may have multiple sites within cASIC1 and may act as a “molecular wedge” that forces the PcTx1-desensitized ASIC into an open state. Our findings indicate that guanidine compounds, such as GMQ, may alter acid-sensing ion channel activity in combination with other stimuli, and that additional ASIC subtypes (along with ASIC3) may serve to sense and mediate signals from multiple stimuli. PMID:24262969

  18. Contrasting microbial functional genes in two distinct saline-alkali and slightly acidic oil-contaminated sites.

    PubMed

    Liang, Yuting; Zhao, Huihui; Zhang, Xu; Zhou, Jizhong; Li, Guanghe

    2014-07-15

    To compare the functional gene structure and diversity of microbial communities in saline-alkali and slightly acidic oil-contaminated sites, 40 soil samples were collected from two typical oil exploration sites in North and South China and analyzed with a comprehensive functional gene array (GeoChip 3.0). The overall microbial pattern was significantly different between the two sites, and a more divergent pattern was observed in slightly acidic soils. Response ratio was calculated to compare the microbial functional genes involved in organic contaminant degradation and carbon, nitrogen, phosphorus, and sulfur cycling. The results indicated a significantly low abundance of most genes involved in organic contaminant degradation and in the cycling of nitrogen and phosphorus in saline-alkali soils. By contrast, most carbon degradation genes and all carbon fixation genes had similar abundance at both sites. Based on the relationship between the environmental variables and microbial functional structure, pH was the major factor influencing the microbial distribution pattern in the two sites. This study demonstrated that microbial functional diversity and heterogeneity in oil-contaminated environments can vary significantly in relation to local environmental conditions. The limitation of nitrogen and phosphorus and the low degradation capacity of organic contaminant should be carefully considered, particularly in most oil-exploration sites with saline-alkali soils. PMID:24784752

  19. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    SciTech Connect

    Lummis, S.C.R.; Johnston, G.A.R. ); Nicoletti, G. ); Holan, G. )

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.

  20. Acid-Sulfate-Weathering Activity in Shergottite Sites on Mars Recorded in Grim Glasses

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Nyquist, L. E.; Ross, K.; Sutton, S. R.; Schwandt, C. S.

    2011-01-01

    Based on mass spectrometric studies of sulfur species in Shergotty and EET79001, [1] and [2] showed that sulfates and sulfides occur in different proportions in shergottites. Sulfur speciation studies in gas-rich impact-melt (GRIM) glasses in EET79001 by the XANES method [3] showed that S K-XANES spectra in GRIM glasses from Lith A indicate that S is associated with Ca and Al presumably as sulfides/sulfates whereas the XANES spectra of amorphous sulfide globules in GRIM glasses from Lith B indicate that S is associated with Fe as FeS. In these amorphous iron sulfide globules, [4] found no Ni using FE-SEM and suggested that the globules resulting from immiscible sulfide melt may not be related to the igneous iron sulfides having approximately 1-3% Ni. Furthermore, in the amorphous iron sulfides from 507 GRIM glass, [5] determined delta(sup 34)S values ranging from +3.5%o to -3.1%o using Nano-SIMS. These values plot between the delta(sup 34)S value of +5.25%o determined in the sulfate fraction in Shergotty [6] at one extreme and the value of -1.7%o obtained for igneous sulfides in EET79001 and Shergotty [7] at the other. These results suggest that the amorphous Fe-S globules likely originated by shock reduction of secondary iron sulfate phases occurring in the regolith precursor materials during impact [7]. Sulfates in the regolith materials near the basaltic shergottite sites on Mars owe their origin to surficial acid-sulfate interactions. We examine the nature of these reactions by studying the composition of the end products in altered regolith materials. For the parent material composition, we use that of the host shergottite material in which the impact glasses are situated.

  1. Effects of acidic recharge on groundwater at the St. Kevin Gulch site, Leadville, Colorado

    USGS Publications Warehouse

    Paschke, S.S.; Harrison, W.J.; Walton-Day, K.

    2001-01-01

    The acid rock drainage-affected stream of St. Kevin Gulch recharges the Quaternary sand and gravel aquifer of Tennessee Park, near Leadville, Colorado, lowering pH and contributing iron, cadmium, copper, zinc and sulphate to the ground-water system. Dissolved metal mobility is controlled by the seasonal spring runoff as well as oxidation/reduction (redox) reactions in the aquifer. Oxidizing conditions occur in the unconfined portions of the aquifer whilst sulphate-reducing conditions are found down gradient where semi-confined groundwater flow occurs beneath a natural wetland. Iron-reducing conditions occur in the transition from unconfined to semi-confined groundwater flow. Dissolved iron concentrations are low to not detectable in the alluvial fan recharge zone and increase in a down gradient direction. The effects of low-pH, metal-rich recharge are pronounced during low-flow in the fall when there is a defined area of low pH groundwater with elevated concentrations of dissolved zinc, cadmium, copper and sulphate adjacent to St. Kevin Gulch. Dissolved metal and sulphate concentrations in the recharge zone are diluted during spring runoff, although the maximum concentrations of dissolved zinc, cadmium, copper and sulphate occur at selected down gradient locations during high flow. Dissolved zinc, cadmium and copper concentrations are low to not detectable, whereas dissolved iron concentrations are greatest, in groundwater samples from the sulphate-reducing zone. Attenuation of zinc, cadmium and copper beneath the wetland suggests sulphide mineral precipitation is occurring in the semi-confined aquifer, in agreement with previous site investigations and saturation index calculations. Adsorption of dissolved zinc, cadmium and copper onto iron hydroxides is a minor attenuation process due to the low pH of the groundwater system.

  2. Screening and assessment of solidification/stabilization amendments suitable for soils of lead-acid battery contaminated site.

    PubMed

    Zhang, Zhuo; Guo, Guanlin; Teng, Yanguo; Wang, Jinsheng; Rhee, Jae Seong; Wang, Sen; Li, Fasheng

    2015-05-15

    Lead exposure via ingestion of soil and dust generally occurs at lead-acid battery manufacturing and recycling sites. Screening solidification/stabilization (S/S) amendments suitable for lead contaminated soil in an abandoned lead-acid battery factory site was conducted based on its chemical forms and environmental risks. Twelve amendments were used to immobilize the Pb in soil and assess the solidification/stabilization efficiency by toxicity leaching tests. The results indicated that three amendments, KH₂PO₄ (KP), KH₂PO₄:oyster shell power=1:1 (by mass ratio; SPP), and KH₂PO₄:sintered magnesia=1:1 (by mass ratio; KPM) had higher remediation efficiencies that led to a 92% reduction in leachable Pb with the addition of 5% amendments, while the acid soluble fraction of Pb (AS-Pb) decreased by 41-46% and the residual fraction (RS-Pb) increased by 16-25%. The S/S costs of the three selected amendments KP, SPP, and KPM could be controlled to $22.3 per ton of soil when the Pb concentration in soil ranged from 2000 to 3000 mg/kg. The results of this study demonstrated that KP, SPP, and KPM can effectively decrease bioavailability of Pb. These findings could provide basis for decision-making of S/S remediation of lead-acid battery contaminated sites. PMID:25699676

  3. Site-specific regulation of adult neurogenesis by dietary fatty acid content, vitamin E and flight exercise in European starlings.

    PubMed

    Hall, Zachary J; Bauchinger, Ulf; Gerson, Alexander R; Price, Edwin R; Langlois, Lillie A; Boyles, Michelle; Pierce, Barbara; McWilliams, Scott R; Sherry, David F; Macdougall-Shackleton, Scott A

    2014-03-01

    Exercise is known to have a strong effect on neuroproliferation in mammals ranging from rodents to humans. Recent studies have also shown that fatty acids and other dietary supplements can cause an upregulation of neurogenesis. It is not known, however, how exercise and diet interact in their effects on adult neurogenesis. We examined neuronal recruitment in multiple telencephalic sites in adult male European starlings (Sturnus vulgaris) exposed to a factorial combination of flight exercise, dietary fatty acids and antioxidants. Experimental birds were flown in a wind tunnel following a training regime that mimicked the bird's natural flight behaviour. In addition to flight exercise, we manipulated the composition of dietary fatty acids and the level of enrichment with vitamin E, an antioxidant reported to enhance neuronal recruitment. We found that all three factors - flight exercise, fatty acid composition and vitamin E enrichment - regulate neuronal recruitment in a site-specific manner. We also found a robust interaction between flight training and vitamin E enrichment at multiple sites of neuronal recruitment. Specifically, flight training was found to enhance neuronal recruitment across the telencephalon, but only in birds fed a diet with a low level of vitamin E. Conversely, dietary enrichment with vitamin E upregulated neuronal recruitment, but only in birds not flown in the wind tunnel. These findings indicate conserved modulation of adult neurogenesis by exercise and diet across vertebrate taxa and indicate possible therapeutic interventions in disorders characterized by reduced adult neurogenesis. PMID:24372878

  4. Distribution and integrated assessment of lead in an abandoned lead-acid battery site in Southwest China before redevelopment.

    PubMed

    Wang, Mei; Zhang, Chao; Zhang, Zhuo; Li, Fasheng; Guo, Guanlin

    2016-06-01

    Lead-acid battery sites have contributed enormous amounts of lead to the environment, significantly affecting its global biogeochemical cycle and leaving the potential risks to human health. An abandoned lead-acid battery site prepared for redevelopment was selected in order to study the distribution of lead in soils, plants, rhizosphere soils and soil solutions. In total, 197 samples from 77 boreholes were collected and analyzed. Single extractions by acetic acid (HOAc) were conducted to assess the bioavailability and speciation of lead in soils for comparison with the parts of the plants that are aboveground. Health risks for future residential development were evaluated by the integrated exposure uptake biokinetic (IEUBK) model. The results indicated that lead concentrations in 83% of the soil samples exceeded the Chinese Environmental Quality Standard for soil (350 mg/kg for Pb) and mainly occurred at depths between 0 and 1.5 m while accumulating at the surface of demolished construction waste and miscellaneous fill. Lead concentrations in soil solutions and HOAc extraction leachates were linked closely to the contents of aboveground Broussonetia papyrifera and Artemisia annua, two main types of local plants that were found at the site. The probability density of lead in blood (PbB) in excess of 10 µg/dL could overtake the 99% mark in the residential scenario. The findings provided a relatively integrated method to illustrate the onsite investigations and assessment for similar sites before remediation and future development from more comprehensive aspects. PMID:26921546

  5. Site-directed mutagenesis of dicarboxylic acids near the active site of Bacillus cereus 5/B/6 beta-lactamase II.

    PubMed Central

    Lim, H M; Iyer, R K; Pène, J J

    1991-01-01

    An amino acid residue functioning as a general base has been proposed to assist in the hydrolysis of beta-lactam antibiotics by the zinc-containing Bacillus cereus beta-lactamase II [Bicknell & Waley (1985) Biochemistry 24, 6876-6887]. Oligonucleotide-directed mutagenesis of cloned Bacillus cereus 5/B/6 beta-lactamase II was used in an 'in vivo' study to investigate the role of carboxy-group-containing amino acids near the active site of the enzyme. Substitution of asparagine for the wild-type aspartic acid residue at position 81 resulted in fully functional enzyme. An aspartic acid residue at position 90 is essential for beta-lactamase II to confer any detectable ampicillin and cephalosporin C resistance to Escherichia coli. Conversion of Asp90 into Asn90 or Glu90 lead to the synthesis of inactive enzyme, suggesting that the spatial position of the beta-carboxy group of Asp90 is critical for enzyme function. Images Fig. 2. Fig. 3. PMID:1904717

  6. On the nature and formation of the active sites in Re[sub 2]O[sub 7] metathesis catalysts supported on borated alumina

    SciTech Connect

    Sibeijn, M.; Bliek, A. ); Veen, J.A.R. van ); Moulijn, J.A. )

    1994-02-01

    Re[sub 2]O[sub 7] catalysts on borated aluminas have been investigated with a view to correlating the structure of the active site and its activity in the metathesis of methyl oleate. Modification of alumina with boria results in much more active metathesis catalysts. Infrared spectroscopy was used for the characterization, pyridine adsorption measurements for determining the Lewis acid and Bronsted acid sites, and temperature-programmed IR measurements to follow the reactions occurring during calcination of the supports and catalysts. Boria binds to the surface via the alumina hydroxyls. Upon Re[sub 2]O[sub 7] loading of nonborated alumina, the ReO[sub 4] groups react first with Lewis acid sites, onto which they are strongly bonded. Above a Re[sub 2]O[sub 7] loading of 3 wt% surface hydroxyls are also substituted by Re[sub 2]O[sub 7] groups, resulting in an increase in catalytic activity. When the borated supports are loaded with Re[sub 2]O[sub 7], the ReO[sub 4] groups are also first bonded to the Lewis acid sites. During calcination these ReO[sub 4] groups substitute surface hydroxyls preferably on alumina hydroxyls. The substitution of the boron hydroxyls only takes place at a calcination time of at least 2 h at 823 K. At high borate loadings (>10 wt%) the reaction of ReO[sub 4] groups with boron hydroxyls competes with the condensation reaction of two neighbouring boron hydroxyls. Taking into account that a ReO[sub 4] group which has substituted in acidic OH group on the support is the precursor of an active site, the increase in activity of Re[sub 2]O[sub 7] catalysts by modification of the alumina support with boria can be ascribed to two effects, namely, the reduction of the bonding strength of Lewis acid sites with ReO[sub 4], making the ReO[sub 4]-OH substitution reaction possible during calcination even at low rhenium loadings, and the formation of acidic surface hydroxyls. 16 refs., 11 figs., 3 tabs.

  7. High desolvation temperature facilitates the ESI-source H/D exchange at non-labile sites of hydroxybenzoic acids and aromatic amino acids.

    PubMed

    Zherebker, Alexander; Kostyukevich, Yury; Kononikhin, Alexey; Roznyatovsky, Vitaliy A; Popov, Igor; Grishin, Yuri K; Perminova, Irina V; Nikolaev, Eugene

    2016-04-21

    Hydrogen/deuterium exchange coupled with high-resolution mass spectrometry has become a powerful analytical approach for structural investigations of complex organic matrices. Here we report the feasibility of the site-specific H/D exchange of non-labile hydrogens directly in the electrospray ionization (ESI) source, which was facilitated by an increase in the desolvation temperature from 200 °C up to 400 °C. We have found that the exchanges at non-labile sites were observed only for the model compounds capable of keto-enol tautomeric transformations (e.g., 2,3-, 2,4-dihydroxybenzoic acids, gallic acid, DOPA), and only when water was used as a solvent. We hypothesized that the detected additional exchanges were induced by the presence of hydroxyls in the sprayed water droplets generated in the negative ESI mode. It was indicative of the exchange reactions taking place in the sprayed droplets rather than in the gas phase. To support this hypothesis, the H/D exchange experiments were run in deuterated water under base-catalyzed conditions for three model compounds, which showed the most intensive exchanges in the MS experiments: DOPA, 2,4-DHB, and 5-acetylsalicylic acid. (2)H NMR spectroscopy has confirmed keto-enolic transformations of the model compounds leading to the specific labeling of the corresponding non-labile sites. We believe that the proposed technique will be useful for structural investigations of natural complex mixtures (e.g. proteins, humic substances) using site-specific H/D exchange. PMID:27002310

  8. ACIDIC EPISODES AND SURFACE WATER CHEMISTRY: A COMPARISON OF NORTHEAST AND SOUTHEAST STUDY SITES

    EPA Science Inventory

    Much of the emphasis in the National Acid Precipitation Assessment Program (NAPAP) has been on historical or longterm trends in surface water acidification. Short-term acidic episodes, however, also might have significant adverse effects on aquatic ecosystems. The U.S. EPA is pre...

  9. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  10. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  11. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  12. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  13. Probing the steric requirements of the γ-aminobutyric acid aminotransferase active site with fluorinated analogues of vigabatrin

    PubMed Central

    Juncosa, Jose I.; Groves, Andrew P.; Xia, Guoyao; Silverman, Richard B.

    2012-01-01

    We have synthesized three analogues of 4-amino-5-fluorohexanoic acids as potential inactivators of γ-aminobutyric acid aminotransferase (GABA-AT), which were designed to combine the potency of their shorter chain analogue, 4-amino-5-fluoropentanoic acid (AFPA), with the greater enzyme selectivity of the antiepileptic vigabatrin (Sabril®). Unexpectedly, these compounds failed to inactivate or inhibit the enzyme, even at high concentrations. On the basis of molecular modeling studies, we propose that the GABA-AT active site has an accessory binding pocket that accommodates the vinyl group of vigabatrin and the fluoromethyl group of AFPA, but is too narrow to support the extra width of one distal methyl group in the synthesized analogues. PMID:23306054

  14. Novel human D-amino acid oxidase inhibitors stabilize an active-site lid-open conformation

    PubMed Central

    Terry-Lorenzo, Ryan T.; Chun, Lawrence E.; Brown, Scott P.; Heffernan, Michele L. R.; Fang, Q. Kevin; Orsini, Michael A.; Pollegioni, Loredano; Hardy, Larry W.; Spear, Kerry L.; Large, Thomas H.

    2014-01-01

    The NMDAR (N-methyl-D-aspartate receptor) is a central regulator of synaptic plasticity and learning and memory. hDAAO (human D-amino acid oxidase) indirectly reduces NMDAR activity by degrading the NMDAR co-agonist D-serine. Since NMDAR hypofunction is thought to be a foundational defect in schizophrenia, hDAAO inhibitors have potential as treatments for schizophrenia and other nervous system disorders. Here, we sought to identify novel chemicals that inhibit hDAAO activity. We used computational tools to design a focused, purchasable library of compounds. After screening this library for hDAAO inhibition, we identified the structurally novel compound, ‘compound 2’ [3-(7-hydroxy-2-oxo-4-phenyl-2H-chromen-6-yl)propanoic acid], which displayed low nM hDAAO inhibitory potency (Ki=7 nM). Although the library was expected to enrich for compounds that were competitive for both D-serine and FAD, compound 2 actually was FAD uncompetitive, much like canonical hDAAO inhibitors such as benzoic acid. Compound 2 and an analog were independently co-crystalized with hDAAO. These compounds stabilized a novel conformation of hDAAO in which the active-site lid was in an open position. These results confirm previous hypotheses regarding active-site lid flexibility of mammalian D-amino acid oxidases and could assist in the design of the next generation of hDAAO inhibitors. PMID:25001371

  15. Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: a site-specific genetically encoded unnatural amino acid and an active site ligand.

    PubMed

    Thielges, Megan C; Axup, Jun Y; Wong, Daryl; Lee, Hyun Soo; Chung, Jean K; Schultz, Peter G; Fayer, Michael D

    2011-09-29

    Protein dynamics and interactions in myoglobin (Mb) were characterized via two vibrational dynamics labels (VDLs): a genetically incorporated site-specific azide (Az) bearing unnatural amino acid (AzPhe43) and an active site CO ligand. The Az-labeled protein was studied using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. CO bound at the active site of the heme serves as a second VDL located nearby. Therefore, it was possible to use Fourier transform infrared (FT-IR) and 2D IR spectroscopic experiments on the Az in unligated Mb and in Mb bound to CO (MbAzCO) and on the CO in MbCO and MbAzCO to investigate the environment and motions of different states of one protein from the perspective of two spectrally resolved VDLs. A very broad bandwidth 2D IR spectrum, encompassing both the Az and CO spectral regions, found no evidence of direct coupling between the two VDLs. In MbAzCO, both VDLs reported similar time scale motions: very fast homogeneous dynamics, fast, ∼1 ps dynamics, and dynamics on a much slower time scale. Therefore, each VDL reports independently on the protein dynamics and interactions, and the measured dynamics are reflective of the protein motions rather than intrinsic to the chemical nature of the VDL. The AzPhe VDL also permitted study of oxidized Mb dynamics, which could not be accessed previously with 2D IR spectroscopy. The experiments demonstrate that the combined application of 2D IR spectroscopy and site-specific incorporation of VDLs can provide information on dynamics, structure, and interactions at virtually any site throughout any protein. PMID:21823631

  16. Two-Dimensional IR Spectroscopy of Protein Dynamics Using Two Vibrational Labels: A Site-Specific Genetically Encoded Unnatural Amino Acid and an Active Site Ligand

    PubMed Central

    Thielges, Megan C.; Axup, Jun Y.; Wong, Daryl; Lee, Hyun Soo; Chung, Jean K.; Schultz, Peter G.; Fayer, Michael D.

    2012-01-01

    Protein dynamics and interactions in myoglobin (Mb) were characterized via two vibrational dynamics labels (VDLs): a genetically incorporated site-specific azide (Az) bearing unnatural amino acid (AzPhe43) and an active site CO ligand. The Az-labeled protein was studied using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. CO bound at the active site of the heme serves as a second VDL located nearby. Therefore, it was possible to use Fourier transform infrared (FT-IR) and 2D IR spectroscopic experiments on the Az in unligated Mb and in Mb bound to CO (MbAzCO) and on the CO in MbCO and MbAzCO to investigate the environment and motions of different states of one protein from the perspective of two spectrally resolved VDLs. A very broad bandwidth 2D IR spectrum, encompassing both the Az and CO spectral regions, found no evidence of direct coupling between the two VDLs. In MbAzCO, both VDLs reported similar time scale motions: very fast homogeneous dynamics, fast, ~1 ps dynamics, and dynamics on a much slower time scale. Therefore, each VDL reports independently on the protein dynamics and interactions, and the measured dynamics are reflective of the protein motions rather than intrinsic to the chemical nature of the VDL. The AzPhe VDL also permitted study of oxidized Mb dynamics, which could not be accessed previously with 2D IR spectroscopy. The experiments demonstrate that the combined application of 2D IR spectroscopy and site-specific incorporation of VDLs can provide information on dynamics, structure, and interactions at virtually any site throughout any protein. PMID:21823631

  17. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    SciTech Connect

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla; Serne, R. Jeffrey

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  18. Selective synthesis and characterization of single-site HY zeolite-supported rhodium complexes and their use as catalysts for ethylene hydrogenation and dimerization

    NASA Astrophysics Data System (ADS)

    Khivantsev, Konstantin

    Single-site Rh(CO)2, Rh(C2H4)2 and Rh(NO)2 complexes anchored on various dealuminated HY zeolites can be used as precursors for the selective surface mediated synthesis of well-defined site-isolated Rh(CO)(H)x complexes. DFT calculations and D 2 isotope exchange experiments provide strong evidence for the formation of a family of site isolated mononuclear rhodium carbonyl hydride complexes (including the first examples of RhH complexes with undissociated H2 ligands): Rh(CO)(H2), Rh(CO)(H)2, and Rh(CO)(H). The fraction of each individual complex formed varies significantly with the Si/Al ratio of the zeolite and the nature of the precursor used. HY zeolite-supported mononuclear Rh(CO)2 complexes are very active in ethylene hydrogenation and ethylene dimerization under ambient conditions. There is strong evidence for the cooperation mechanism between mononuclear rhodium complexes and Bronsted acid sites of the zeolite support in C-C bond formation process, as well as ethane formation. Finally, it is shown that the dimerization pathway selectivity can be progressively tuned (and completely switched off) by modifying the number of Bronsted acid sites on the zeolite surface. HY zeolite-supported mononuclear Rh(NO)2 complexes can be selectively formed upon exposure of Rh(CO)2/HY to the gas phase NO/He. They are structurally similar to Rh(CO)2/HY with Rh(I) retaining square planar geometry and nitrosyl ligands adopting a linear configuration. Rh(NO)2/HY30 is active in ethylene hydrogenation and ethylene dimerization under ambient conditions. This is the first unprecedented example of a supported transition-metal nitrosyl complex capable of performing a catalytic reaction. Moreover, this is the first example of a site-isolated Rh complex with ligands other than ethylene or carbonyl, which can catalyze both ethylene hydrogenation and dimerization. Unlike its dicarbonyl counterpart, dinitrosyl rhodium complex has a uniquely different reactivity towards ethylene and hydrogen

  19. Site-directed gene mutation at mixed sequence targets by psoralen-conjugated pseudo-complementary peptide nucleic acids.

    PubMed

    Kim, Ki-Hyun; Nielsen, Peter E; Glazer, Peter M

    2007-01-01

    Sequence-specific DNA-binding molecules such as triple helix-forming oligonucleotides (TFOs) provide a means for inducing site-specific mutagenesis and recombination at chromosomal sites in mammalian cells. However, the utility of TFOs is limited by the requirement for homopurine stretches in the target duplex DNA. Here, we report the use of pseudo-complementary peptide nucleic acids (pcPNAs) for intracellular gene targeting at mixed sequence sites. Due to steric hindrance, pcPNAs are unable to form pcPNA-pcPNA duplexes but can bind to complementary DNA sequences by Watson-Crick pairing via double duplex-invasion complex formation. We show that psoralen-conjugated pcPNAs can deliver site-specific photoadducts and mediate targeted gene modification within both episomal and chromosomal DNA in mammalian cells without detectable off-target effects. Most of the induced psoralen-pcPNA mutations were single-base substitutions and deletions at the predicted pcPNA-binding sites. The pcPNA-directed mutagenesis was found to be dependent on PNA concentration and UVA dose and required matched pairs of pcPNAs. Neither of the individual pcPNAs alone had any effect nor did complementary PNA pairs of the same sequence. These results identify pcPNAs as new tools for site-specific gene modification in mammalian cells without purine sequence restriction, thereby providing a general strategy for designing gene targeting molecules. PMID:17977869

  20. Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites

    SciTech Connect

    Senko, John M.; Wanjugi, Pauline; Lucas, Melanie; Bruns, Mary Ann; Burgos, William D.

    2008-06-12

    We characterized the microbiologically mediated oxidative precipitation of Fe(II) from coalminederived acidic mine drainage (AMD) along flow-paths at two sites in northern Pennsylvania. At the Gum Boot site, dissolved Fe(II) was efficiently removed from AMD whereas minimal Fe(II) removal occurred at the Fridays-2 site. Neither site received human intervention to treat the AMD. Culturable Fe(II) oxidizing bacteria were most abundant at sampling locations along the AMD flow path corresponding to greatest Fe(II) removal and where overlying water contained abundant dissolved O2. Rates of Fe(II) oxidation determined in laboratory-based sediment incubations were also greatest at these sampling locations. Ribosomal RNA intergenic spacer analysis and sequencing of partial 16S rRNA genes recovered from sediment bacterial communities revealed similarities among populations at points receiving regular inputs of Fe(II)-rich AMD and provided evidence for the presence of bacterial lineages capable of Fe(II) oxidation. A notable difference between bacterial communities at the two sites was the abundance of Chloroflexi-affiliated 16S rRNA gene sequences in clone libraries derived from the Gum Boot sediments. Our results suggest that inexpensive and reliable AMD treatment strategies can be implemented by mimicking the conditions present at the Gum Boot field site.

  1. Computational investigation of locked nucleic acid (LNA) nucleotides in the active sites of DNA polymerases by molecular docking simulations.

    PubMed

    Poongavanam, Vasanthanathan; Madala, Praveen K; Højland, Torben; Veedu, Rakesh N

    2014-01-01

    Aptamers constitute a potential class of therapeutic molecules typically selected from a large pool of oligonucleotides against a specific target. With a scope of developing unique shorter aptamers with very high biostability and affinity, locked nucleic acid (LNA) nucleotides have been investigated as a substrate for various polymerases. Various reports showed that some thermophilic B-family DNA polymerases, particularly KOD and Phusion DNA polymerases, accepted LNA-nucleoside 5'-triphosphates as substrates. In this study, we investigated the docking of LNA nucleotides in the active sites of RB69 and KOD DNA polymerases by molecular docking simulations. The study revealed that the incoming LNA-TTP is bound in the active site of the RB69 and KOD DNA polymerases in a manner similar to that seen in the case of dTTP, and with LNA structure, there is no other option than the locked C3'-endo conformation which in fact helps better orienting within the active site. PMID:25036012

  2. In situ fluorescence labelling of jasmonic acid binding sites in plant tissues with cadmium-free quantum dots.

    PubMed

    Liao, Qiumei; Yu, Ying; Cao, Yujuan; Lin, Bixia; Wei, Jingjing

    2015-02-01

    The fluorescence labelling of plant hormone binding sites is an important analytical technique in research on the molecular mechanisms of plant hormone activities. The authors synthesised a jasmonic acid (JA)-conjugated ZnS:Mn quantum dot (QD) probe, with a cubic structure and average hydrodynamic sizes of about 17.0 nm. The maximum fluorescence emission of the probe was recorded at about 585 nm. The probe was used for fluorescence labelling of JA binding sites in mung bean seedling tissues. Analysis revealed that the probe exhibited high selectivity to JA binding sites and good performance in eliminating interference from background fluorescence in plant tissues. In addition, the probe did not exhibit any apparent biotoxicity, and is much more suitable than probes constructed from CdTe QDs for the analysis of biological samples. PMID:25650324

  3. A novel method to identify nucleic acid binding sites in proteins by scanning mutagenesis: application to iron regulatory protein.

    PubMed Central

    Neupert, B; Menotti, E; Kühn, L C

    1995-01-01

    We describe a new procedure to identify RNA or DNA binding sites in proteins, based on a combination of UV cross-linking and single-hit chemical peptide cleavage. Site-directed mutagenesis is used to create a series of mutants with single Asn-Gly sequences in the protein to be analysed. Recombinant mutant proteins are incubated with their radiolabelled target sequence and UV irradiated. Covalently linked RNA- or DNA-protein complexes are digested with hydroxylamine and labelled peptides identified by SDS-PAGE and autoradiography. The analysis requires only small amounts of protein and is achieved within a relatively short time. Using this method we mapped the site at which human iron regulatory protein (IRP) is UV cross-linked to iron responsive element RNA to amino acid residues 116-151. Images PMID:7544459

  4. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  5. Low-cost silica, calcite and metal sulfide scale control through on-site production of sulfurous acid from H{sub 2}S or elemental sulfur

    SciTech Connect

    Gallup, D.L.; Kitz, K.

    1997-12-31

    UNOCAL Corporation currently utilizes brine pH modification technology to control scale deposition. Acids utilized in commercial operations include, sulfuric and hydrochloric. A new process reduces costs by producing acid on-site by burning hydrogen sulfide or elemental sulfur. Hydrogen sulfide in non-condensible gas emissions is reduced by oxidization to sulfurous acid. Brine or condensate is treated with sulfurous acid to control scale deposition, mitigate corrosion and improve gas partitioning in condensers.

  6. Formic acid requirement for the Savannah River Site Defense Waste Processing Facility melter feed preparation

    SciTech Connect

    Hsu, C.W.

    1991-01-01

    The Westinghouse Savannah River Company (WSRC) will vitrify the high-level radioactive waste into a borosilicate glass wasteform using a slurry-fed, joule-heated melter. Formic acid is used to treat the sludge slurry for melter feed preparation. Both a minimum formate requirement and a maximum allowable formate level need to be established to adequately prepare the sludge for melter feed. The data from the Savannah River Laboratory (SRL) Scale Glass Melter (SGM), Integrated DWPF Melter System (IDMS), and research mini-melter runs were used for this purpose. The stoichiometry for major reactions during formic acid treatment was revised to reflect the more predominant chemical reactions and their yields. A minimum formic acid requirement was established according to this revised stoichiometry. Methods for determining the minimum level of formic acid were specified. An operating envelope that includes the maximum total formate level and the minimum nitrate levels, was also proposed. 5 refs., 3 figs., 4 tabs.

  7. Seasonal and diurnal cycles of ammonia, nitrous acid and nitric acid at a forest site in Finland

    NASA Astrophysics Data System (ADS)

    Virkkula, A.; Makkonen, U.; Mäntykenttä, J.; Hakola, H.

    2012-04-01

    Background In July - August 2010 a large campaign "Hyytiälä United Measurements of Photochemistry and Particles in Air - Comprehensive Organic Precursor Emission Concentration 2010 (HUMPPA - COPEC-10)", was conducted in a boreal forest at the SMEAR II station in Hyytiälä, southwestern central Finland. The general goal was to study links between gas phase oxidation chemistry and particle properties and processes. The Finnish Meteorological Institute contributed to the campaign with an on-line analyzer MARGA 2S (Ten Brink et al., 2007) for semi-continuous (1-hr time resolution) measurement of water-soluble gases and ions. Concentrations of gases (HCl, HNO3, HNO2, NH3, SO2) and major ions in particles (Cl, NO3, SO4, NH4, Na, K, Mg, Ca) were measured in two size fractions: PM2.5 and PM10. The MARGA was kept running at SMEAR II also after the campaign. Here we discuss data collected until 30 April, 2011, and restrict the analysis to the nitrogen-containing gases. Ammonia plays a key role in neutralizing acidic atmospheric compounds and in aerosol formation. The concentration of semi-volatile aerosol species such as ammonium nitrate and ammonium chloride is strongly dependent on the gas phase precursors, NH3, HNO3 and HCl. HONO is of atmospheric importance due to its expected significant contribution to the production of OH radicals. Results and discussion The median concentrations of ammonia (NH3), nitrous acid (HONO) and nitric acid (HNO3) during whole period of 21 June 2010 - 30 April 2011 were 85, 54, and 57 ppt, respectively. The seasonal cycle was such that in summer the concentrations of all of these gases were the highest, the respective medians were 356, 70, and 81 ppt in June 21 - August 12, and lowest in winter (December - February), the respective medians were 38, 54, and 52 ppt. A very clear diurnal cycle of all these gases was observed, especially in July. In December there were no cyclic diurnal variation of these but in spring, especially in April the

  8. Specificity of the Antibody Receptor Site to D-Lysergamide: Model of a Physiological Receptor for Lysergic Acid Diethylamide

    PubMed Central

    Vunakis, Helen Van; Farrow, John T.; Gjika, Hilda B.; Levine, Lawrence

    1971-01-01

    Antibodies to D-lysergic acid have been produced in rabbits and guinea pigs and a radioimmunoassay for the hapten was developed. The specificity of this lysergamide-antilysergamide reaction was determined by competitive binding with unlabeled lysergic acid diethylamide (LSD), psychotomimetic drugs, neurotransmitters, and other compounds with diverse structures. LSD and several related ergot alkaloids were potent competitors, three to seven times more potent than lysergic acid itself. The N,N-dimethyl derivatives of several compounds, including tryptamine, 5-hydroxytryptamine, 4-hydroxytryptamine, 5-methoxytryptamine, tyramine, and mescaline, were only about ten times less effective than lysergic acid, even though these compounds lack some of the ring systems of lysergic acid. The pattern of inhibition by related compounds with various substituents suggests that the antibody receptor site recognizes structural features resembling the LSD molecule. In particular, the aromatic nucleus and the dimethylated ethylamine side chain in phenylethylamine and tryptamine derivatives may assume in solution a conformation resembling ring A and the methylated nitrogen in ring C of LSD. Among the tryptamine derivatives, a large percentage of the most potent competitors are also psychotomimetic compounds. PMID:5283939

  9. Envelope Membranes from Spinach Chloroplasts Are a Site of Metabolism of Fatty Acid Hydroperoxides.

    PubMed Central

    Blee, E.; Joyard, J.

    1996-01-01

    Enzymes in envelope membranes from spinach (Spinacia oleracea L.) chloroplasts were found to catalyze the rapid breakdown of fatty acid hydroperoxides. In contrast, no such activities were detected in the stroma or in thylakoids. In preparations of envelope membranes, 9S-hydroperoxy-10(E),12(Z)-octadecadienoic acid, 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid, or 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid were transformed at almost the same rates (1-2 [mu]mol min-1 mg-1 protein). The products formed were separated by reversed-phase high-pressure liquid chromatography and further characterized by gas chromatography-mass spectrometry. Fatty acid hydroperoxides were cleaved (a) into aldehydes and oxoacid fragments, corresponding to the functioning of a hydroperoxide lyase, (b) into ketols that were spontaneously formed from allene oxide synthesized by a hydroperoxide dehydratase, (c) into hydroxy compounds synthesized enzymatically by a system that has not yet been characterized, and (d) into oxoenes resulting from the hydroperoxidase activity of a lipoxygenase. Chloroplast envelope membranes therefore contain a whole set of enzymes that catalyze the synthesis of a variety of fatty acid derivatives, some of which may act as regulatory molecules. The results presented demonstrate a new role for the plastid envelope within the plant cell. PMID:12226196

  10. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site

    PubMed Central

    Kellett-Clarke, Helena; Stegmann, Monika; Barclay, A. Neil; Metcalfe, Clive

    2015-01-01

    CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the–LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies. PMID:26379032

  11. Active-site amino acid residues in γ-glutamyltransferase and the nature of the γ-glutamyl-enzyme bond

    PubMed Central

    Elce, John S.

    1980-01-01

    Active-site residues in rat kidney γ-glutamyltransferase (EC 2.3.2.2) were investigated by means of chemical modification. 1. In the presence of maleate, the activity was inhibited by phenylmethanesulphonyl fluoride, and the inhibition was not reversed by β-mercaptoethanol, suggesting that a serine residue is close to the active site, but is shielded except in the presence of maleate. 2. Treatment of the enzyme with N-acetylimidazole modified an amino group, exposed a previously inaccessible cysteine residue and inhibited hydrolysis of the γ-glutamyl-enzyme intermediate, but not its formation. 3. After reaction of the enzyme successively with N-acetylimidazole and with non-radioactive iodoacetamide/serine/borate, two active-site residues reacted with iodo[14C]acetamide. One of these possessed a carboxy group, which formed a [14C]glycollamide ester, and the other was cysteine, shown by isolation of S-[14C]carboxymethylcysteine after acid hydrolysis. When N-acetylimidazole treatment was omitted, only the carboxy group reacted with iodo[14C]acetamide. 4. Isolation of the γ-[14C]glutamyl-enzyme intermediate was made easier by prior treatment of the enzyme with N-acetylimidazole. The γ-glutamyl-enzyme bond was stable to performic acid, and to hydroxylamine/urea at pH10, but was hydrolysed slowly at pH12, indicating attachment of the γ-[14C]glutamyl group in amide linkage to an amino group on the enzyme. Proteolysis of the γ-[14C]glutamyl-enzyme after performic acid oxidation gave rise to a small acidic radioactive peptide that was resistant to further proteolysis and was not identical with γ-glutamyl-ε-lysine. 5. A scheme for the catalytic mechanism is proposed. PMID:6104953

  12. Self-catalyzed syntheses, structural characterization, DPPH radical scavenging-, cytotoxicity-, and DFT studies of phenoxyaliphatic acids of 1,8-dioxo-octahydroxanthene derivatives

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, G. S.; Antony Muthu Prabhu, A.; Seethalashmi, P. G.; Bhuvanesh, N.; Kumaresan, S.

    2014-02-01

    One-pot, in-water syntheses of phenoxyaliphatic acids of 1,8-dioxo-octahydroxanthene derived from dimedone and formylphenoxyaliphatic acids are reported. Geometries of compounds 2b, 2c, and 5a have been examined crystallographically. The synthesized compounds showed better DPPH radical scavenging activity and cytotoxicity against A431 cancer cell line. The molecular properties of all synthesized xanthenes have been investigated using single crystal XRD and DFT method. Self-catalyzed Bronsted-Lowry acid catalytic behavior was also investigated by both experimental and theoretical methods.

  13. Site and chirality selective chemical modifications of boron nitride nanotubes (BNNTs) via Lewis acid-base interactions.

    PubMed

    Sundaram, Rajashabala; Scheiner, Steve; Roy, Ajit K; Kar, Tapas

    2015-02-01

    The pristine BNNTs contain both Lewis acid (boron) and Lewis base (nitrogen) centers at their surface. Interactions of ammonia and borane molecules, representatives of Lewis base and acid as adsorbates respectively, with matching sites at the surface of BNNTs, have been explored in the present DFT study. Adsorption energies suggest stronger chemisorption (about 15-20 kcal mol(-1)) of borane than ammonia (about 5-10 kcal mol(-1)) in both armchair (4,4) and zigzag (8,0) variants of the tube. NH3 favors (8,0) over the (4,4) tube, whereas BH3 exhibits the opposite preference, indicating some chirality dependence on acid-base interactions. A new feature of bonding is found in BH3/AlH3-BNNTs (at the edge site) complexes, where one hydrogen of the guest molecule is involved in three-center two-electron bonding, in addition to dative covalent bond (N: → B). This interaction causes a reversal of electron flow from borane/alane to BNNT, making the tube an electron acceptor, suggesting tailoring of electronic properties could be possible by varying strength of incoming Lewis acids. On the contrary, BNNTs always behave as electron acceptor in ammonia complexes. IR, XPS and NMR spectra show some characteristic features of complexes and can help experimentalists to identify not only structures of such complexes but also the location of the guest molecules and design second functionalizations. Interaction with several other neutral BF3, BCl3, BH2CH3 and ionic CH3(+) acids as well as amino group (CH3NH2 and NH2COOH) were also studied. The strongest interaction (>100 kcal mol(-1)) is found in BNNT-CH3(+) complexes and H-bonds are the only source of stability of NH2COOH-BNNT complexes. PMID:25559141

  14. Chromatographic analysis of the effects of fatty acids and glycation on binding by probes for Sudlow sites I and II to human serum albumin.

    PubMed

    Anguizola, Jeanethe; Debolt, Erin; Suresh, D; Hage, David S

    2016-05-15

    The primary endogenous ligands of human serum albumin (HSA) are non-esterified fatty acids, with 0.1-2mol of fatty acids normally being bound to HSA. In type II diabetes, fatty acid levels in serum are often elevated, and the presence of high glucose results in an increase in the non-enzymatic glycation of HSA. High-performance affinity chromatography (HPAC) was used to examine the combined effects of glycation and the presence of long chain fatty acids on the binding of HSA with R-warfarin and l-tryptophan (i.e., probes for Sudlow sites I and II, the major sites for drugs on this protein). Zonal elution competition studies were used to examine the interactions of myristic acid, palmitic acid and stearic acid with these probes on HSA. It was found that all these fatty acids had direct competition with R-warfarin at Sudlow site I of normal HSA and glycated HSA, with the glycated HSA typically having stronger binding for the fatty acids at this site. At Sudlow site II, direct competition was observed for all the fatty acids with l-tryptophan when using normal HSA, while glycated HSA gave no competition or positive allosteric interactions between these fatty acids and l-tryptophan. These data indicated that glycation can alter the interactions of drugs and fatty acids at specific binding sites on HSA. The results of this study should lead to a better understanding of how these interactions may change during diabetes and demonstrate how HPAC can be used to examine drug/solute-protein interactions in complex systems. PMID:26468085

  15. Site-directed mutagenesis of conserved amino acids in the alpha subunit of toluene dioxygenase: potential mononuclear non-heme iron coordination sites.

    PubMed Central

    Jiang, H; Parales, R E; Lynch, N A; Gibson, D T

    1996-01-01

    The terminal oxygenase component of toluene dioxygenase from Pseudomonas putida F1 is an iron-sulfur protein (ISP(TOL)) that requires mononuclear iron for enzyme activity. Alignment of all available predicted amino acid sequences for the large (alpha) subunits of terminal oxygenases showed a conserved cluster of potential mononuclear iron-binding residues. These were between amino acids 210 and 230 in the alpha subunit (TodC1) of ISP(TOL). The conserved amino acids, Glu-214, Asp-219, Tyr-221, His-222, and His-228, were each independently replaced with an alanine residue by site-directed mutagenesis. Tyr-266 in TodC1, which has been suggested as an iron ligand, was treated in an identical manner. To assay toluene dioxygenase activity in the presence of TodC1 and its mutant forms, conditions for the reconstitution of wild-type ISP(TOL) activity from TodC1 and purified TodC2 (beta subunit) were developed and optimized. A mutation at Glu-214, Asp-219, His-222, or His-228 completely abolished toluene dioxygenase activity. TodC1 with an alanine substitution at either Tyr-221 or Tyr-266 retained partial enzyme activity (42 and 12%, respectively). In experiments with [14C]toluene, the two Tyr-->Ala mutations caused a reduction in the amount of Cis-[14C]-toluene dihydrodiol formed, whereas a mutation at Glu-214, Asp-219, His-222, or His-228 eliminated cis-toluene dihydrodiol formation. The expression level of all of the mutated TWO proteins was equivalent to that of wild-type TodC1 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analyses. These results, in conjunction with the predicted amino acid sequences of 22 oxygenase components, suggest that the conserved motif Glu-X3-4,-Asp-X2-His-X4-5-His is critical for catalytic function and the glutamate, aspartate, and histidine residues may act as mononuclear iron ligands at the site of oxygen activation. PMID:8655491

  16. Computational Identification of Protein Pupylation Sites by Using Profile-Based Composition of k-Spaced Amino Acid Pairs.

    PubMed

    Hasan, Md Mehedi; Zhou, Yuan; Lu, Xiaotian; Li, Jinyan; Song, Jiangning; Zhang, Ziding

    2015-01-01

    Prokaryotic proteins are regulated by pupylation, a type of post-translational modification that contributes to cellular function in bacterial organisms. In pupylation process, the prokaryotic ubiquitin-like protein (Pup) tagging is functionally analogous to ubiquitination in order to tag target proteins for proteasomal degradation. To date, several experimental methods have been developed to identify pupylated proteins and their pupylation sites, but these experimental methods are generally laborious and costly. Therefore, computational methods that can accurately predict potential pupylation sites based on protein sequence information are highly desirable. In this paper, a novel predictor termed as pbPUP has been developed for accurate prediction of pupylation sites. In particular, a sophisticated sequence encoding scheme [i.e. the profile-based composition of k-spaced amino acid pairs (pbCKSAAP)] is used to represent the sequence patterns and evolutionary information of the sequence fragments surrounding pupylation sites. Then, a Support Vector Machine (SVM) classifier is trained using the pbCKSAAP encoding scheme. The final pbPUP predictor achieves an AUC value of 0.849 in 10-fold cross-validation tests and outperforms other existing predictors on a comprehensive independent test dataset. The proposed method is anticipated to be a helpful computational resource for the prediction of pupylation sites. The web server and curated datasets in this study are freely available at http://protein.cau.edu.cn/pbPUP/. PMID:26080082

  17. Computational Identification of Protein Pupylation Sites by Using Profile-Based Composition of k-Spaced Amino Acid Pairs

    PubMed Central

    Lu, Xiaotian; Li, Jinyan; Song, Jiangning; Zhang, Ziding

    2015-01-01

    Prokaryotic proteins are regulated by pupylation, a type of post-translational modification that contributes to cellular function in bacterial organisms. In pupylation process, the prokaryotic ubiquitin-like protein (Pup) tagging is functionally analogous to ubiquitination in order to tag target proteins for proteasomal degradation. To date, several experimental methods have been developed to identify pupylated proteins and their pupylation sites, but these experimental methods are generally laborious and costly. Therefore, computational methods that can accurately predict potential pupylation sites based on protein sequence information are highly desirable. In this paper, a novel predictor termed as pbPUP has been developed for accurate prediction of pupylation sites. In particular, a sophisticated sequence encoding scheme [i.e. the profile-based composition of k-spaced amino acid pairs (pbCKSAAP)] is used to represent the sequence patterns and evolutionary information of the sequence fragments surrounding pupylation sites. Then, a Support Vector Machine (SVM) classifier is trained using the pbCKSAAP encoding scheme. The final pbPUP predictor achieves an AUC value of 0.849 in10-fold cross-validation tests and outperforms other existing predictors on a comprehensive independent test dataset. The proposed method is anticipated to be a helpful computational resource for the prediction of pupylation sites. The web server and curated datasets in this study are freely available at http://protein.cau.edu.cn/pbPUP/. PMID:26080082

  18. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    SciTech Connect

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.; Gray, Kimberly A.; Notestein, Justin M.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiOx domains are titrated on TiOx–SiO2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiOx, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H2O2 activation occurs. We use this method to determine the active site densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h-1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.

  19. Interaction of P-aminobenzoic acid with normal and sickel erythrocyte membrane: photoaffinity labelling of the binding sites

    SciTech Connect

    Premachandra, B.R.

    1986-03-05

    Electron microscopic studies revealed that P-Amino benzoic acid (PABA) could prevent eichinocytosis of red cells in vitro. Equilibrium binding studies with right side out membrane vesicles (ROV) revealed a similar number of binding sites (1.2-1.4 ..mu..mol/mg) and Kd (1.4-1.6 mM) values for both normal and sickle cell membranes. /sup 14/C-Azide analogue of PABA was synthesized as a photoaffinity label to probe its sites of interaction on the erythrocyte membranes. Competitive binding studies of PABA with its azide indicated that both the compounds share common binding sites on the membrane surface since a 20 fold excess of azide inhibited PABA binding in a linear fashion. The azide was covalently incorporated into the membrane components only upon irradiation (52-35% of the label found in the proteins and the rest in lipids). Electrophoretic analysis of photolabelled ROV revealed that the azide interacts chiefly with Band 3 protein. PABA inhibited both high and low affinity calcium (Ca) binding sites situated on either surface of the membrane in a non-competitive manner; however, Ca binding stimulated by Mg-ATP was not affected. Ca transport into inside out vesicles was inhibited by PABA; but it did not affect the calcium ATP-ase activity. The authors studies suggest that the mechanism of action of PABA is mediated by its interaction with Band 3 protein (anion channel), calcium channel and calcium binding sites of erythrocyte membrane.

  20. Fluorescence properties and sequestration of peripheral anionic site specific ligands in bile acid hosts: Effect on acetylcholinesterase inhibition activity.

    PubMed

    Islam, Mullah Muhaiminul; Aguan, Kripamoy; Mitra, Sivaprasad

    2016-05-01

    The increase in fluorescence intensity of model acetyl cholinesterase (AChE) inhibitors like propidium iodide (PI) and ethidium bromide (EB) is due to sequestration of the probes in primary micellar aggregates of bile acid (BA) host medium with moderate binding affinity of ca. 10(2)-10(3)M(-1). Multiple regression analysis of solvent dependent fluorescence behavior of PI indicates the decrease in total nonradiative decay rate due to partial shielding of the probe from hydrogen bond donation ability of the aqueous medium in bile acid bound fraction. Both PI and EB affects AChE activity through mixed inhibition and consistent with one site binding model; however, PI (IC50=20±1μM) shows greater inhibition in comparison with EB (IC50=40±3μM) possibly due to stronger interaction with enzyme active site. The potency of AChE inhibition for both the compounds is drastically reduced in the presence of bile acid due to the formation of BA-inhibitor complex and subsequent reduction of active inhibitor fraction in the medium. Although the inhibition mechanism still remains the same, the course of catalytic reaction critically depends on equilibrium binding among several species present in the solution; particularly at low inhibitor concentration. All the kinetic parameters for enzyme inhibition reaction are nicely correlated with the association constant for BA-inhibitor complex formation. PMID:26974580

  1. Analysis of a nucleotide-binding site of 5-lipoxygenase by affinity labelling: binding characteristics and amino acid sequences.

    PubMed Central

    Zhang, Y Y; Hammarberg, T; Radmark, O; Samuelsson, B; Ng, C F; Funk, C D; Loscalzo, J

    2000-01-01

    5-Lipoxygenase (5LO) catalyses the first two steps in the biosynthesis of leukotrienes, which are inflammatory mediators derived from arachidonic acid. 5LO activity is stimulated by ATP; however, a consensus ATP-binding site or nucleotide-binding site has not been found in its protein sequence. In the present study, affinity and photoaffinity labelling of 5LO with 5'-p-fluorosulphonylbenzoyladenosine (FSBA) and 2-azido-ATP showed that 5LO bound to the ATP analogues quantitatively and specifically and that the incorporation of either analogue inhibited ATP stimulation of 5LO activity. The stoichiometry of the labelling was 1.4 mol of FSBA/mol of 5LO (of which ATP competed with 1 mol/mol) or 0.94 mol of 2-azido-ATP/mol of 5LO (of which ATP competed with 0.77 mol/mol). Labelling with FSBA prevented further labelling with 2-azido-ATP, indicating that the same binding site was occupied by both analogues. Other nucleotides (ADP, AMP, GTP, CTP and UTP) also competed with 2-azido-ATP labelling, suggesting that the site was a general nucleotide-binding site rather than a strict ATP-binding site. Ca(2+), which also stimulates 5LO activity, had no effect on the labelling of the nucleotide-binding site. Digestion with trypsin and peptide sequencing showed that two fragments of 5LO were labelled by 2-azido-ATP. These fragments correspond to residues 73-83 (KYWLNDDWYLK, in single-letter amino acid code) and 193-209 (FMHMFQSSWNDFADFEK) in the 5LO sequence. Trp-75 and Trp-201 in these peptides were modified by the labelling, suggesting that they were immediately adjacent to the C-2 position of the adenine ring of ATP. Given the stoichiometry of the labelling, the two peptide sequences of 5LO were probably near each other in the enzyme's tertiary structure, composing or surrounding the ATP-binding site of 5LO. PMID:11042125

  2. Identification of Rosmarinic Acid-Adducted Sites in Meat Proteins in a Gel Model under Oxidative Stress by Triple TOF MS/MS.

    PubMed

    Tang, Chang-Bo; Zhang, Wan-Gang; Wang, Yao-Song; Xing, Lu-Juan; Xu, Xing-Lian; Zhou, Guang-Hong

    2016-08-24

    Triple TOF MS/MS was used to identify adducts between rosmarinic acid (RosA)-derived quinones and meat proteins in a gel model under oxidative stress. Seventy-five RosA-modified peptides responded to 67 proteins with adduction of RosA. RosA conjugated with different amino acids in proteins, and His, Arg, and Lys adducts with RosA were identified for the first time in meat. A total of 8 peptides containing Cys, 14 peptides containing His, 48 peptides containing Arg, 64 peptides containing Lys, and 5 peptides containing N-termini that which participated in adduction reaction with RosA were identified, respectively. Seventy-seven adduction sites were subdivided into all adducted proteins including 2 N-terminal adduction sites, 3 Cys adduction sites, 4 His adduction sites, 29 Arg adduction sites, and 39 Lys adduction sites. Site occupancy analyses showed that approximately 80.597% of the proteins carried a single RosA-modified site, 14.925% retained two sites, 1.492% contained three sites, and the rest 2.985% had four or more sites. Large-scale triple TOF MS/MS mapping of RosA-adducted sites reveals the adduction regulations of quinone and different amino acids as well as the adduction ratios, which clarify phenol-protein adductions and pave the way for industrial meat processing and preservation. PMID:27486909

  3. Gas/particle partitioning of low-molecular-weight dicarboxylic acids at a suburban site in Saitama, Japan

    NASA Astrophysics Data System (ADS)

    Bao, Linfa; Matsumoto, Mariko; Kubota, Tsutomu; Sekiguchi, Kazuhiko; Wang, Qingyue; Sakamoto, Kazuhiko

    2012-02-01

    Low-molecular-weight dicarboxylic acids (diacids) exhibit semivolatile behavior in the atmosphere, but their partitioning between the gaseous and particulate phases is still unclear. An annular denuder-filter pack system with a cyclone PM 2.5 was employed to investigate the gaseous and particulate phase concentrations of diacids, with high collection efficiency of most target compounds. Saturated diacids, unsaturated diacids, ketocarboxylic acids, and dicarbonyls were determined in gaseous and particulate samples collected from a suburban site in Japan, during 2007 summer, 2008 late-winter and early-winter. The concentrations of gaseous and particulate diacids in early-winter were lower than those in summer, but higher than those in late-winter. Individual diacid in gaseous phase showed a relatively good correlation with ambient oxidants, but a low correlation with NO gas (a primary pollutant). Particulate fraction to the total amount ( FP) of individual acid was larger in winter than in summer, and also was larger at night than in the daytime. In the same sample, individual diacid and ketocarboxylic acid had higher particulate phase occurrence ( FP > 56% in summer), whereas unsaturated diacid had higher gaseous phase occurrence ( FP < 18% in summer). In summer, gas/particle partitioning of diacids varied diurnally; FP values of oxalic and glyoxylic acids increased from their lowest values in the morning to their highest values at night, exhibiting the similar diurnal variation of relative humidity in the atmosphere. The higher humidity at night may lead to the formation of droplets in which water-soluble gaseous phases can dissolve, thus promoting gas-to-particle conversion. These results suggest that gas/particle partitioning of diacids depends not only on the concentrations in the gaseous phase by photochemical oxidation, but also on the characteristics of the atmosphere (e.g., temperature, sunlight, and relative humidity) and the aerosols (e.g., acidity

  4. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1.

    PubMed

    de Vera, Ian Mitchelle S; Giri, Pankaj K; Munoz-Tello, Paola; Brust, Richard; Fuhrmann, Jakob; Matta-Camacho, Edna; Shang, Jinsai; Campbell, Sean; Wilson, Henry D; Granados, Juan; Gardner, William J; Creamer, Trevor P; Solt, Laura A; Kojetin, Douglas J

    2016-07-15

    Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function. PMID:27128111

  5. Investigation of metal binding sites on soil fulvic acid using Eu(III) luminescence spectroscopy

    SciTech Connect

    Yoon, T.H.; Moon, H. ); Park, Y.J.; Park, K.K. )

    1994-11-01

    The [sup 7]F[sub 0] [yields] [sup 5]D[sub 0] excitation spectra of Eu(III) complexed with soil fulvic acid (FA) were acquired over a range of solution pH (2.9-7.8) and FA concentrations (800-3200 mg L[sup [minus]1]) using a pulsed tunable dye laser system. The broad asymmetric excitation spectra were well-fitted to a sum of two conventional Lorentzian-shaped curves, revealing the existence of two types of carboxylate moieties for the binding of metal ions on FA which formed 1:1 (EuL[sup 2+]; L = carboxylate) and 1:2 complexes (EuL[sub 2][sup +]). The weaker binding species, EuL[sup 2+], seemed to be quite abundant and showed a rapid increase as the pH was raised from 2.9 to 6.3, but it was susceptible to hydrolysis at pH higher than 7 while the stronger binding species, EuL[sub 2][sup +], showed only a modest growth with an increase in pH. By contrast, on a more flexible synthetic linear polymer, poly(acrylic acid) (PAA) and poly(vinylbenzoic acid) (PVBA) as model polymers, EuL[sub 2][sup +] was seen as the dominant species except in acidic media. 28 refs., 10 figs., 3 tabs.

  6. [Studies of the fundamental nature of catalytic acidity, sites and intermediates]: Final performance (technical progress) report

    SciTech Connect

    Not Available

    1993-12-31

    This project was concerned with the fundamental nature of catalyst acidity in the H-zeolites and silica/alumina cracking catalysts. This report summarizes the progress on this project over the past five years. The titles of the twelve papers generated by this research are provided in the attached bibliography in chronological order.

  7. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor

    PubMed Central

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K.; Gorska, Magdalena; Tuszynski, Jack A.; Wozniak, Michal

    2016-01-01

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding. PMID:26735581

  8. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor.

    PubMed

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska, Magdalena; Tuszynski, Jack A; Wozniak, Michal

    2016-01-19

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding. PMID:26735581

  9. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.

    PubMed

    Wang, Liang; Zhang, Bingsen; Meng, Xiangju; Su, Dang Sheng; Xiao, Feng-Shou

    2014-06-01

    A composite catalyst including palladium nanoparticles on titania (TiO2) and on nitrogen-modified porous carbon (Pd/TiO2@N-C) is synthesized from palladium salts, tetrabutyl titanate, and chitosan. N2 sorption isotherms show that the catalyst has a high BET surface area (229 m(2)  g(-1)) and large porosity. XPS and TEM characterization of the catalyst shows that palladium species with different chemical states are well dispersed across the TiO2 and nitrogen-modified porous carbon, respectively. The Pd/TiO2@N-C catalyst is very active and shows excellent stability towards hydrogenation of vanillin to 2-methoxy-4-methylphenol using formic acid as hydrogen source. This activity can be attributed to a synergistic effect between the Pd/TiO2 (a catalyst for dehydrogenation of formic acid) and Pd/N-C (a catalyst for hydrogenation of vanillin) sites. PMID:24861954

  10. Subnucleosomes and their relationships to the arrangement of histone binding sites along nucleosome deoxyribonucleic acid

    SciTech Connect

    Nelson, D.A.; Mencke, A.J.; Chambers, S.A.; Oosterhof, D.K.; Rill, R.L.

    1982-01-01

    Micrococcal nuclease cleaves within nucleosomes at sites spaced about 10.4 base pairs (bp) apart. Cleavages at sites equivalent to 30-35 bp from the ends of 146-bp cores cause spontaneous loss of an H2a-H2b pair associated with 30-40 bp length DNA. Cleavages at certain other sites do not affect the nucleosome integrity unless a solvent perturbant such as urea is added. Chromatin moderately digested with micrococcal nuclease, when fractionated by sedimentation or electrophoresis in the presence of 3 M urea, yielded four previously unobserved subnucleosomes with the following histone/DNA compositions: (H3)/sub 2/(H4)/sub 2/(H2a)(H2b)/95-115 bp; (H3)(H4)/70-80 bp DNA; (H2a)(H2b)/50-60 bp DNA; and (H1)/60-70 bp DNA. All but the latter subnucleosome were also obtained upon DNase I digestion of purified nucleosome cores labeled on the 5' ends with /sup 32/P. Only subnucleosomes that retained H2a and H2b also retained labeled ends. These results show that H2a and H2b are paired on the terminal 30-40 bp of core DNA, as suggested from analyses of histone-DNA cross-link products by Mirzabekov and coworkers. Considerations of the orgins and compositions of subnucleosomes and of cross-linking data suggest an expanded model for the locations of histone binding sites along nucleosome core DNA. The principal features of this model are (i) strong electrostatic binding sites of H2a and H2b occur at positions approximately 20-30 bp from the core ends, (ii) strong electrostatic binding sites of H3 and H4 occur primarily on the central 40 bp of core DNA, (iii) strong nonelectrostatic, urea-sensitive binding sites of H3 and H4 occur at positions approximately 30-50 bp from the core ends, and (iv) urea-sensitive binding sites of H2a or H2b may occur on the terminal 10-20 bp of core DNA.

  11. Remediation of acid mine drainage at the friendship hill national historic site with a pulsed limestone bed process

    USGS Publications Warehouse

    Sibrell, P.L.; Watten, B.; Boone, T.

    2003-01-01

    A new process utilizing pulsed fluidized limestone beds was tested for the remediation of acid mine drainage at the Friendship Hill National Historic Site, in southwestern Pennsylvania. A 230 liter-per-minute treatment system was constructed and operated over a fourteen-month period from June 2000 through September 2001. Over this period of time, 50,000 metric tons of limestone were used to treat 50 million liters of water. The influent water pH was 2.5 and acidity was 1000 mg/L as CaCO3. Despite the high potential for armoring at the site, effluent pH during normal plant operation ranged from 5.7 to 7.8 and averaged 6.8. As a result of the high influent acidity, sufficient CO2 was generated and recycled to provide a net alkaline discharge with about 50 mg/L as CaCO3 alkalinity. Additions of commercial CO2 increased effluent alkalinity to as high as 300 mg/L, and could be a useful process management tool for transient high flows or acidities. Metal removal rates were 95% for aluminum (60 mg/L in influent), 50 to 90% for iron (Fe), depending on the ratio of ferrous to ferric iron, which varied seasonally (200 mg/L in influent), and <10% of manganese (Mn) (10 mg/L in influent). Ferrous iron and Mn removal was incomplete because of the high pH required for precipitation of these species. Iron removal could be improved by increased aeration following neutralization, and Mn removal could be effected by a post treatment passive settling/oxidation pond. Metal hydroxide sludges were settled in settling tanks, and then hauled from the site for aesthetic purposes. Over 450 metric tons of sludge were removed from the water over the life of the project. The dried sludge was tested by the Toxicity Characteristics Leaching Protocol (TCLP) and was found to be non-hazardous. Treatment costs were $43,000 per year and $1.08 per m 3, but could be decreased to $22,000 and $0.51 per m3 by decreasing labor use and by onsite sludge handling. These results confirm the utility of the new

  12. Prediction of posttranslational modification sites from amino acid sequences with kernel methods.

    PubMed

    Xu, Yan; Wang, Xiaobo; Wang, Yongcui; Tian, Yingjie; Shao, Xiaojian; Wu, Ling-Yun; Deng, Naiyang

    2014-03-01

    Post-translational modification (PTM) is the chemical modification of a protein after its translation and one of the later steps in protein biosynthesis for many proteins. It plays an important role which modifies the end product of gene expression and contributes to biological processes and diseased conditions. However, the experimental methods for identifying PTM sites are both costly and time-consuming. Hence computational methods are highly desired. In this work, a novel encoding method PSPM (position-specific propensity matrices) is developed. Then a support vector machine (SVM) with the kernel matrix computed by PSPM is applied to predict the PTM sites. The experimental results indicate that the performance of new method is better or comparable with the existing methods. Therefore, the new method is a useful computational resource for the identification of PTM sites. A unified standalone software PTMPred is developed. It can be used to predict all types of PTM sites if the user provides the training datasets. The software can be freely downloaded from http://www.aporc.org/doc/wiki/PTMPred. PMID:24291233

  13. Technology development for phosphoric acid fuel cell powerplant (phase 2). [on site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    Progress is reported in the development of material, cell components, and reformers for on site integrated energy systems. Internal resistance and contact resistance were improved. Dissolved gases (O2, N2, and CO2) were found to have no effect on the electrochemical corrosion of phenolic composites. Stack performance was increased by 100 mV over the average 1979 level.

  14. Site-Specifically Labeled Immunoconjugates for Molecular Imaging—Part 2: Peptide Tags and Unnatural Amino Acids

    PubMed Central

    Adumeau, Pierre; Sharma, Sai Kiran; Brent, Colleen; Zeglis, Brian M.

    2016-01-01

    Molecular imaging using radioisotope- or fluorophore-labeled antibodies is increasingly becoming a critical component of modern precision medicine. Yet despite this promise, the vast majority of these immunoconjugates are synthesized via the random coupling of amine-reactive bifunctional probes to lysines within the antibody, a process that can result in heterogeneous and poorly defined constructs with suboptimal pharmacological properties. In an effort to circumvent these issues, the last 5 years have played witness to a great deal of research focused on the creation of effective strategies for the site-specific attachment of payloads to antibodies. These chemoselective modification methods yield immunoconjugates that are more homogenous and better defined than constructs created using traditional synthetic approaches. Moreover, site-specifically labeled immunoconjugates have also been shown to exhibit superior in vivo behavior compared to their randomly modified cousins. The over-arching goal of this two-part review is to provide a broad yet detailed account of the various site-specific bioconjugation approaches that have been used to create immunoconjugates for positron emission tomography (PET), single photon emission computed tomography (SPECT), and fluorescence imaging. In Part 1, we covered site-specific bioconjugation techniques based on the modification of cysteine residues and the chemoenzymatic manipulation of glycans. In Part 2, we will detail two families of bioconjugation approaches that leverage biochemical tools to achieve site-specificity. First, we will discuss modification methods that employ peptide tags either as sites for enzyme-catalyzed ligations or as radiometal coordination architectures. And second, we will examine bioconjugation strategies predicated on the incorporation of unnatural or non-canonical amino acids into antibodies via genetic engineering. Finally, we will compare the advantages and disadvantages of the modification

  15. Site-Specifically Labeled Immunoconjugates for Molecular Imaging--Part 2: Peptide Tags and Unnatural Amino Acids.

    PubMed

    Adumeau, Pierre; Sharma, Sai Kiran; Brent, Colleen; Zeglis, Brian M

    2016-04-01

    Molecular imaging using radioisotope- or fluorophore-labeled antibodies is increasingly becoming a critical component of modern precision medicine. Yet despite this promise, the vast majority of these immunoconjugates are synthesized via the random coupling of amine-reactive bifunctional probes to lysines within the antibody, a process that can result in heterogeneous and poorly defined constructs with suboptimal pharmacological properties. In an effort to circumvent these issues, the last 5 years have played witness to a great deal of research focused on the creation of effective strategies for the site-specific attachment of payloads to antibodies. These chemoselective modification methods yield immunoconjugates that are more homogenous and better defined than constructs created using traditional synthetic approaches. Moreover, site-specifically labeled immunoconjugates have also been shown to exhibit superior in vivo behavior compared to their randomly modified cousins. The over-arching goal of this two-part review is to provide a broad yet detailed account of the various site-specific bioconjugation approaches that have been used to create immunoconjugates for positron emission tomography (PET), single photon emission computed tomography (SPECT), and fluorescence imaging. In Part 1, we covered site-specific bioconjugation techniques based on the modification of cysteine residues and the chemoenzymatic manipulation of glycans. In Part 2, we will detail two families of bioconjugation approaches that leverage biochemical tools to achieve site-specificity. First, we will discuss modification methods that employ peptide tags either as sites for enzyme-catalyzed ligations or as radiometal coordination architectures. And second, we will examine bioconjugation strategies predicated on the incorporation of unnatural or non-canonical amino acids into antibodies via genetic engineering. Finally, we will compare the advantages and disadvantages of the modification

  16. Structure and Mutagenesis of Neural Cell Adhesion Molecule Domains Evidence for Flexibility in the Placement of Polysialic Acid Attachment Sites

    SciTech Connect

    Foley, Deirdre A.; Swartzentruber, Kristin G.; Lavie, Arnon; Colley, Karen J.

    2010-11-09

    The addition of {alpha}2,8-polysialic acid to the N-glycans of the neural cell adhesion molecule, NCAM, is critical for brain development and plays roles in synaptic plasticity, learning and memory, neuronal regeneration, and the growth and invasiveness of cancer cells. Our previous work indicates that the polysialylation of two N-glycans located on the fifth immunoglobulin domain (Ig5) of NCAM requires the presence of specific sequences in the adjacent fibronectin type III repeat (FN1). To understand the relationship of these two domains, we have solved the crystal structure of the NCAM Ig5-FN1 tandem. Unexpectedly, the structure reveals that the sites of Ig5 polysialylation are on the opposite face from the FN1 residues previously found to be critical for N-glycan polysialylation, suggesting that the Ig5-FN1 domain relationship may be flexible and/or that there is flexibility in the placement of Ig5 glycosylation sites for polysialylation. To test the latter possibility, new Ig5 glycosylation sites were engineered and their polysialylation tested. We observed some flexibility in glycosylation site location for polysialylation and demonstrate that the lack of polysialylation of a glycan attached to Asn-423 may be in part related to a lack of terminal processing. The data also suggest that, although the polysialyltransferases do not require the Ig5 domain for NCAM recognition, their ability to engage with this domain is necessary for polysialylation to occur on Ig5 N-glycans.

  17. The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadium-Based Catalysts.

    PubMed

    Marberger, Adrian; Ferri, Davide; Elsener, Martin; Kröcher, Oliver

    2016-09-19

    The long debated reaction mechanisms of the selective catalytic reduction (SCR) of nitric oxide with ammonia (NH3 ) on vanadium-based catalysts rely on the involvement of Brønsted or Lewis acid sites. This issue has been clearly elucidated using a combination of transient perturbations of the catalyst environment with operando time-resolved spectroscopy to obtain unique molecular level insights. Nitric oxide reacts predominantly with NH3 coordinated to Lewis sites on vanadia on tungsta-titania (V2 O5 -WO3 -TiO2 ), while Brønsted sites are not involved in the catalytic cycle. The Lewis site is a mono-oxo vanadyl group that reduces only in the presence of both nitric oxide and NH3 . We were also able to verify the formation of the nitrosamide (NH2 NO) intermediate, which forms in tandem with vanadium reduction, and thus the entire mechanism of SCR. Our experimental approach, demonstrated in the specific case of SCR, promises to progress the understanding of chemical reactions of technological relevance. PMID:27553251

  18. Capture and Recycling of Sortase A through Site-Specific Labeling with Lithocholic Acid.

    PubMed

    Rosen, Christian B; Kwant, Richard L; MacDonald, James I; Rao, Meera; Francis, Matthew B

    2016-07-18

    Enzyme-mediated protein modification often requires large amounts of biocatalyst, adding significant costs to the process and limiting industrial applications. Herein, we demonstrate a scalable and straightforward strategy for the efficient capture and recycling of enzymes using a small-molecule affinity tag. A proline variant of an evolved sortase A (SrtA 7M) was N-terminally labeled with lithocholic acid (LA)-an inexpensive bile acid that exhibits strong binding to β-cyclodextrin (βCD). Capture and recycling of the LA-Pro-SrtA 7M conjugate was achieved using βCD-modified sepharose resin. The LA-Pro-SrtA 7M conjugate retained full enzymatic activity, even after multiple rounds of recycling. PMID:27239057

  19. One site is enough: a theoretical investigation of iron-catalyzed dehydrogenation of formic Acid.

    PubMed

    Sánchez-de-Armas, Rocío; Xue, Liqin; Ahlquist, Mårten S G

    2013-09-01

    Dehydrogenation of HCO2H: The reaction mechanism for the dehydrogenation of formic acid catalyzed by a highly active and selective iron complex has been studied by DFT. The most favorable pathway shows the hydride in Fe-H complexes acting as a spectator ligand throughout the catalytic cycle. This result opens up the Fe complex for modification in order to achieve more efficient and selective catalysts. PMID:23907850

  20. Distinguishing two groups of flavin reductases by analyzing the protonation state of an active site carboxylic acid.

    PubMed

    Dumit, Verónica I; Cortez, Néstor; Matthias Ullmann, G

    2011-07-01

    Flavin-containing reductases are involved in a wide variety of physiological reactions such as photosynthesis, nitric oxide synthesis, and detoxification of foreign compounds, including therapeutic drugs. Ferredoxin-NADP(H)-reductase (FNR) is the prototypical enzyme of this family. The fold of this protein is highly conserved and occurs as one domain of several multidomain enzymes such as the members of the diflavin reductase family. The enzymes of this family have emerged as fusion of a FNR and a flavodoxin. Although the active sites of these enzymes are very similar, different enzymes function in opposite directions, that is, some reduce oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)) and some oxidize reduced nicotinamide adenine dinucleotide phosphate (NADPH). In this work, we analyze the protonation behavior of titratable residues of these enzymes through electrostatic calculations. We find that a highly conserved carboxylic acid in the active site shows a different titration behavior in different flavin reductases. This residue is deprotonated in flavin reductases present in plastids, but protonated in bacterial counterparts and in diflavin reductases. The protonation state of the carboxylic acid may also influence substrate binding. The physiological substrate for plastidic enzymes is NADP(+), but it is NADPH for the other mentioned reductases. In this article, we discuss the relevance of the environment of this residue for its protonation and its importance in catalysis. Our results allow to reinterpret and explain experimental data. PMID:21538544

  1. (3H) 5,7-dichlorokynurenic acid, a high affinity ligand for the NMDA receptor glycine regulatory site

    SciTech Connect

    Hurt, S.D.; Baron, B.M. )

    1991-01-01

    The NMDA subtype of glutamate receptors is allosterically linked to a strychnine-insensitive glycine regulatory site. Kynurenic acid and its halogenated derivatives are non-competitive NMDA antagonists acting at the glycine site. The authors have prepared (3H) 5,7-dichlorokyrurenic acid (DCKA) as an antagonist radioligand and have characterized its binding. 3-Bromo-5,7-DCKA was catalytically dehalogenated in the presence of tritium gas and HPLC purified to yield (3H) 5,7-DCKA with a specific activity of 17.6 Ci/mmol. (3H) 5,7-DCKA bound to rat brain synaptosomes with a Kd of 69 {plus minus} 23 nM and Bmax = 14.5 {plus minus} 3.2 pmoles/mg protein. Binding was 65-70% specific at 10 nM (3H) 5,7-DCKA. This ligand is thus more selective and has higher affinity than (3H) glycine, in addition to being an antagonist.

  2. Heterogeneous Chemistry of Lipopolysaccharides with Gas-Phase Nitric Acid: Reactive Sites and Reaction Pathways.

    PubMed

    Trueblood, Jonathan V; Estillore, Armando D; Lee, Christopher; Dowling, Jacqueline A; Prather, Kimberly A; Grassian, Vicki H

    2016-08-18

    Recent studies have shown that sea spray aerosol (SSA) has a size-dependent, complex composition consisting of biomolecules and biologically derived organic compounds in addition to salts. This additional chemical complexity most likely influences the heterogeneous reactivity of SSA, as these other components will have different reactive sites and reaction pathways. In this study, we focus on the reactivity of a class of particles derived from some of the biological components of sea spray aerosol including lipopolysaccharides (LPS) that undergo heterogeneous chemistry within the reactive sites of the biological molecule. Examples of these reactions and the relevant reactive sites are proposed as follows: R-COONa(s) + HNO3(g) → NaNO3 + R-COOH and R-HPO4Na(s) + HNO3(g) → NaNO3 + R-H2PO4. These reactions may be a heterogeneous pathway not only for sea spray aerosol but also for a variety of other types of atmospheric aerosol as well. PMID:27445084

  3. Impact of acid mine drainages on surficial waters of an abandoned mining site.

    PubMed

    García-Lorenzo, M L; Marimón, J; Navarro-Hervás, M C; Pérez-Sirvent, C; Martínez-Sánchez, M J; Molina-Ruiz, José

    2016-04-01

    Weathering of sulphide minerals produces a great variety of efflorescences of soluble sulphate salts. These minerals play an important role for environmental pollution, since they can be either a sink or a source for acidity and trace elements. This paper aims to characterise surface waters affected by mining activities in the Sierra Minera of Cartagena-La Union (SE, Spain). Water samples were analysed for trace metals (Zn, Cd, Pb, Cu, As and Fe), major ions (Na(+), K(+), Ca(2+) and Mg(2+)) and anions (F(-), Cl(-), NO3 (-), CO3 (2-), SO4 (2-)) concentrations and were submitted to an "evaporation-precipitation" experiment that consisted in identifying the salts resulting from the evaporation of the water aliquots sampled onsite. Mineralogy of the salts was studied using X-ray diffraction and compared with the results of calculations using VISUAL MINTEQ. The study area is heavily polluted as a result of historical mining and processing activities that has produced large amount of wastes characterised by a high trace elements content, acidic pH and containing minerals resulting from the supergene alteration of the raw materials. The mineralogical study of the efflorescences obtained from waters shows that magnesium, zinc, iron and aluminium sulphates predominate in the acid mine drainage precipitates. Minerals of the hexahydrite group have been quantified together with minerals of the rozenite group, alunogen and other phases such as coquimbite and copiapite. Calcium sulphates correspond exclusively to gypsum. In a semiarid climate, such as that of the study area, these minerals contribute to understand the response of the system to episodic rainfall events. MINTEQ model could be used for the analysis of waters affected by mining activities but simulation of evaporation gives more realistic results considering that MINTEQ does not consider soluble hydrated salts. PMID:26347422

  4. Genetic Incorporation of the Unnatural Amino Acid p-Acetyl Phenylalanine into Proteins for Site-Directed Spin Labeling

    PubMed Central

    Evans, Eric G.B.; Millhauser, Glenn L.

    2016-01-01

    Site-directed spin labeling (SDSL) is a powerful tool for the characterization of protein structure and dynamics; however, its application in many systems is hampered by the reliance on unique and benign cysteine substitutions for the site-specific attachment of the spin label. An elegant solution to this problem involves the use of genetically encoded unnatural amino acids (UAAs) containing reactive functional groups that are chemically orthogonal to those of the 20 amino acids found naturally in proteins. These unique functional groups can then be selectively reacted with an appropriately functionalized spin probe. In this chapter, we detail the genetic incorporation of the ketone-bearing amino acid p-acetyl phenylalanine (pAcPhe) into recombinant proteins expressed in E. coli. Incorporation of pAcPhe is followed by chemoselective reaction of the ketone side chain with a hydroxylamine-functionalized nitroxide to afford the spin-labeled side chain “K1,” and we present two protocols for successful K1 labeling of proteins bearing site-specific pAcPhe. We outline the basic requirements for pAcPhe incorporation and labeling, with an emphasis on practical aspects that must be considered by the researcher if high yields of UAA incorporation and efficient labeling reactions are to be achieved. To this end, we highlight recent advances that have led to increased yields of pAcPhe incorporation, and discuss the use of aniline-based catalysts allowing for facile conjugation of the hydroxylamine spin label under mild reaction conditions. To illustrate the utility of K1 labeling in proteins where traditional cysteine-based SDSL methods are problematic, we site-specifically K1 label the cellular prion protein at two positions in the C-terminal domain and determine the interspin distance using double electron–electron resonance EPR. Recent advances in UAA incorporation and ketone-based bioconjugation, in combination with the commercial availability of all requisite

  5. Element mobility during pyrite weathering: implications for acid and heavy metal pollution at mining-impacted sites

    NASA Astrophysics Data System (ADS)

    Lu, Long; Wang, Rucheng; Chen, Fanrong; Xue, Jiyue; Zhang, Peihua; Lu, Jianjun

    2005-11-01

    Based on back scattered electron images and electron micro-probe analysis results, four alteration layers, including a transition layer, a reticulated ferric oxide layer, a nubby ferric oxide layer and a cellular ferric oxide layer, were identified in the naturally weathering products of pyrite. These layers represent a progressive alteration sequence of pyrite under weathering conditions. The cellular ferric oxide layer correlates with the strongest weathering phase and results from the dissolution of nubby ferric oxide by acidic porewater. Leaching coefficient was introduced to better express the response of element mobility to the degree of pyrite weathering. Its variation shows that the mobility of S, Co and Bi is stronger than As, Cu and Zn. Sulfur in pyrite is oxidized to sulfuric acid and sulfate that are basically released into to porewater, and heavy metals Co and Bi are evidently released by acid dissolution. As, Cu and Zn are enriched in ferric oxide by adsorption and by co-precipitation, but they would re-release to the environment via desorption or dissolution when porewater pH becomes low enough. Consequently, Co, Bi, As, Cu and Zn may pose a substantial impact on water quality. Considering that metal mobility and its concentration in mine waste are two important factors influencing heavy metal pollution at mining-impacted sites, Bi and Co are more important pollutants in this case.

  6. Acid-induced change in ozone-reactive site in indole ring of tryptophan

    SciTech Connect

    Matsumura, Sueo Yoshimura, Ayuko; Okazaki, Kazuyuki; Fijitani, Noboru; Hattori, Hideki

    2009-03-13

    It is well established that ozone as well as oxygen activated by tryptophan 2,3-dioxygenase or indoleamine 2,3-dioxygenase cleave the 2,3-C=C bond of the indole ring of tryptophan to produce N-formylkynurenine. In the present study, however, we found that exposure of tryptophan to aqueous ozone at and below pH 4.5 generated a different compound. The compound was identified as kynurenine by high performance liquid chromatography and mass spectrometry. Exposure of N-formylkynurenine to acidic ozone did not generate a significant amount of kynurenine, indicating that the kynurenine was not produced via N-formylkynurenine. Acidic ozone thus appears to cleave the 1, 2-N-C bond in place of the 2,3-C=C bond of the indole ring, followed by liberation of the 2-C atom. The 1,2-N-C bond and 2,3-C=C bond are likely to undergo changes in their nature of bonding on acidification, enabling ozone to react with the former bond but not with the latter bond.

  7. Fatty Acids and Breast Cancer: Make Them on Site or Have Them Delivered.

    PubMed

    Kinlaw, William B; Baures, Paul W; Lupien, Leslie E; Davis, Wilson L; Kuemmerle, Nancy B

    2016-10-01

    Brisk fatty acid (FA) production by cancer cells is accommodated by the Warburg effect. Most breast and other cancer cell types are addicted to fatty acids (FA), which they require for membrane phospholipid synthesis, signaling purposes, and energy production. Expression of the enzymes required for FA synthesis is closely linked to each of the major classes of signaling molecules that stimulate BC cell proliferation. This review focuses on the regulation of FA synthesis in BC cells, and the impact of FA, or the lack thereof, on the tumor cell phenotype. Given growing awareness of the impact of dietary fat and obesity on BC biology, we will also examine the less-frequently considered notion that, in addition to de novo FA synthesis, the lipolytic uptake of preformed FA may also be an important mechanism of lipid acquisition. Indeed, it appears that cancer cells may exist at different points along a "lipogenic-lipolytic axis," and FA uptake could thwart attempts to exploit the strict requirement for FA focused solely on inhibition of de novo FA synthesis. Strategies for clinically targeting FA metabolism will be discussed, and the current status of the medicinal chemistry in this area will be assessed. J. Cell. Physiol. 231: 2128-2141, 2016. © 2016 Wiley Periodicals, Inc. PMID:26844415

  8. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections

    PubMed Central

    Mingo, Janire; Erramuzpe, Asier; Luna, Sandra; Aurtenetxe, Olaia; Amo, Laura; Diez, Ibai; Schepens, Jan T. G.; Hendriks, Wiljan J. A. J.; Cortés, Jesús M.; Pulido, Rafael

    2016-01-01

    Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis. PMID:27548698

  9. Increase in the Bmax of gamma-aminobutyric acid-A recognition sites in brain regions of mice receiving diazepam.

    PubMed Central

    Ferrero, P; Guidotti, A; Costa, E

    1984-01-01

    gamma-Aminobutyric acid (GABA) receptors were characterized in vivo by studying ex vivo the binding of [3H]muscimol to cerebellum, cortex, hippocampus, and corpus striatum of mice receiving intravenous injections of tracer doses of high-specific-activity (approximately equal to 30 Ci/mmol) [3H]muscimol. This ligand binds with high affinity (apparent Kd, 2-3 X 10(-9) M) to a single population of binding sites (apparent Bmax, 250-180 fmol per 10 mg of protein). Pharmacological studies using drugs that selectively bind to GABAA or GABAB receptors suggest that [3H]muscimol specifically labels a GABAA recognition site. Moreover, diazepam (1.5 mumol/kg, i.p.) increases the Bmax but fails to change the affinity of [3H]muscimol binding to different brain areas. This diazepam-elicited increase in Bmax is blocked in mice receiving the diazepam antagonist Ro 15-1788 (ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5a]-[1,4] benzodiazepine-3-carboxylate). Since the diazepam-induced increase of [3H]muscimol binding is paralleled by a significant potentiation of the inhibitory effect of muscimol on locomotor activity, it is proposed that the facilitatory action on GABAergic transmission elicited in vivo by diazepam is mediated by an increase in the Bmax of the binding sites of GABAA receptors. Images PMID:6326115

  10. Computational Investigation of Locked Nucleic Acid (LNA) Nucleotides in the Active Sites of DNA Polymerases by Molecular Docking Simulations

    PubMed Central

    Poongavanam, Vasanthanathan; Madala, Praveen K.; Højland, Torben; Veedu, Rakesh N.

    2014-01-01

    Aptamers constitute a potential class of therapeutic molecules typically selected from a large pool of oligonucleotides against a specific target. With a scope of developing unique shorter aptamers with very high biostability and affinity, locked nucleic acid (LNA) nucleotides have been investigated as a substrate for various polymerases. Various reports showed that some thermophilic B-family DNA polymerases, particularly KOD and Phusion DNA polymerases, accepted LNA-nucleoside 5′-triphosphates as substrates. In this study, we investigated the docking of LNA nucleotides in the active sites of RB69 and KOD DNA polymerases by molecular docking simulations. The study revealed that the incoming LNA-TTP is bound in the active site of the RB69 and KOD DNA polymerases in a manner similar to that seen in the case of dTTP, and with LNA structure, there is no other option than the locked C3′-endo conformation which in fact helps better orienting within the active site. PMID:25036012

  11. Isolation and properties of the acid site-specific endonuclease from mature eggs of the sea urchin Strongylocentrotus intermedius

    SciTech Connect

    Sibirtsev, Yu.T.; Konechnyi, A.A.; Rasskazov, V.A.

    1986-01-10

    An acid site-specific endonuclease has been detected in mature sea urchin eggs and cells of embryos at early stages of differentiation. Fractionation with ammonium sulfate, followed by chromatography on columns with DEAE, phosphocellulose, and hydroxyapatite resulted in an 18,000-fold purification. The molecular weight of the enzyme was determined at approx. 29,000, the optimum pH 5.5. The activity of the enzyme does not depend on divalent metal ions, EDTA, ATP, and tRNA, but it is modulated to a substantial degree by NaCl. The maximum rate of cleavage of the DNA supercoil (form I) is observed at 100 mM NaCl. Increasing the NaCl concentration to 350 mM only slightly lowers the rate of cleavage of form I, yielding form II, but entirely suppresses the accumulation of form III. Restriction analysis of the products of enzymatic hydrolysis of Co1E1 and pBR322 DNA showed that at the early stages of hydrolysis the enzyme exhibits pronounced specificity for definite sites, the number of which is 12 for Co1 E1 DNA and 8 sites for pBR322 DNA.

  12. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections.

    PubMed

    Mingo, Janire; Erramuzpe, Asier; Luna, Sandra; Aurtenetxe, Olaia; Amo, Laura; Diez, Ibai; Schepens, Jan T G; Hendriks, Wiljan J A J; Cortés, Jesús M; Pulido, Rafael

    2016-01-01

    Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis. PMID:27548698

  13. Acid potentiation of the capsaicin receptor determined by a key extracellular site.

    PubMed

    Jordt, S E; Tominaga, M; Julius, D

    2000-07-01

    The capsaicin (vanilloid) receptor, VR1, is a sensory neuron-specific ion channel that serves as a polymodal detector of pain-producing chemical and physical stimuli. The response of VR1 to capsaicin or noxious heat is dynamically potentiated by extracellular protons within a pH range encountered during tissue acidosis, such as that associated with arthritis, infarction, tumor growth, and other forms of injury. A molecular determinant for this important physiological activity was localized to an extracellular Glu residue (E600) in the region linking the fifth transmembrane domain with the putative pore-forming region of the channel. We suggest that this residue serves as a key regulatory site of the receptor by setting sensitivity to other noxious stimuli in response to changes in extracellular proton concentration. We also demonstrate that protons, vanilloids, and heat promote channel opening through distinct pathways, because mutations at a second site (E648) selectively abrogate proton-evoked channel activation without diminishing responses to other noxious stimuli. Our findings provide molecular evidence for stimulus-specific steps in VR1 activation and offer strategies for the development of novel analgesic agents. PMID:10859346

  14. Characterization of cyclo-Acetoacetyl-L-Tryptophan Dimethylallyltransferase in Cyclopiazonic Acid Biosynthesis: Substrate Promiscuity and Site Directed Mutagenesis Studies

    PubMed Central

    Liu, Xinyu; Walsh, Christopher T.

    2009-01-01

    The fungal neurotoxin α-cyclopiazonic acid (CPA), a nanomolar inhibitor of Ca2+-ATPase with a unique pentacyclic indole tetramic acid scaffold is assembled by a three enzyme pathway CpaS, CpaD and CpaO in Aspergillus sp. We recently characterized the first pathway-specific enzyme CpaS, a hybrid two module polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) that generates cyclo-acetoacetyl-L-tryptophan (cAATrp). Here we report the characterization of the second pathway-specific enzyme CpaD that regiospecifically dimethylallylates cAATrp to form β-cyclopiazonic acid. By exploring the tryptophan and tetramate moieties of cAATrp, we demonstrate that CpaD discriminates against free Trp but accepts tryptophan-containing thiohydantoins, diketopiperazines and linear peptides as substrates for C4-prenylation and also acts as regiospecific O-dimethylallyltransferase (DMAT) on a tyrosine-derived tetramic acid. Comparative evaluation of CpaDs from A. oryzae RIB40 and A. flavus NRRL3357 indicated the importance of the N-terminal region for its activity. Sequence alignment of CpaD with eleven homologous fungal Trp-DMATs revealed five regions of conservation suggesting the presense of critical motifs that could be diagonostic for discovering additional Trp-DMATs. Subsequent site-directed mutagenesis studies identified five polar/charged residues and five tyrosine residues within these motifs that are critical for CpaD activity. This motif characerization will enable a gene probe-based approach to discover additional biosynthetic Trp-DMATs. PMID:19877600

  15. Schiff base structured acid-base cooperative dual sites in an ionic solid catalyst lead to efficient heterogeneous knoevenagel condensations.

    PubMed

    Zhang, Mingjue; Zhao, Pingping; Leng, Yan; Chen, Guojian; Wang, Jun; Huang, Jun

    2012-10-01

    An acid-base bifunctional ionic solid catalyst [PySaIm](3)PW was synthesized by the anion exchange of the ionic-liquid (IL) precursor 1-(2-salicylaldimine)pyridinium bromide ([PySaIm]Br) with the Keggin-structured sodium phosphotungstate (Na(3) PW). The catalyst was characterized by FTIR, UV/Vis, XRD, SEM, Brunauer-Emmett-Teller (BET) theory, thermogravimetric analysis, (1)H NMR spectroscopy, ESI-MS, elemental analysis, and melting points. Together with various counterparts, [PySaIm](3)PW was evaluated in Knoevenagel condensation under solvent and solvent-free conditions. The Schiff base structure attached to the IL cation of [PySaIm](3)PW involves acidic salicyl hydroxyl and basic imine, and provides a controlled nearby position for the acid-base dual sites. The high melting and insoluble properties of [PySaIm](3)PW are relative to the large volume and high valence of PW anions, as well as the intermolecular hydrogen-bonding networks among inorganic anions and IL cations. The ionic solid catalyst [PySaIm](3)PW leads to heterogeneous Knoevenagel condensations. In solvent-free condensation of benzaldehyde with ethyl cyanoacetate, it exhibits a conversion of 95.8 % and a selectivity of 100 %; the conversion is even much higher than that (78.2 %) with ethanol as a solvent. The solid catalyst has a convenient recoverability with only a slight decrease in conversion following subsequent recyclings. Furthermore, the new catalyst is highly applicable to many substrates of aromatic aldehydes with activated methylene compounds. On the basis of the characterization and reaction results, a unique acid-base cooperative mechanism within a Schiff base structure is proposed and discussed, which thoroughly explains not only the highly efficient catalytic performance of [PySaIm](3)PW, but also the lower activities of various control catalysts. PMID:22907828

  16. Site-Selective Binding of Nanoparticles to Double-Stranded DNA via Peptide Nucleic Acid "Invasion"

    SciTech Connect

    Stadler, A.L.; van der Lelie, D.; Sun, D.; Maye, M. M.; Gang, O.

    2011-04-01

    We demonstrate a novel method for by-design placement of nano-objects along double-stranded (ds) DNA. A molecular intercalator, designed as a peptide nucleic acid (PNA)-DNA chimera, is able to invade dsDNA at the PNA-side due to the hybridization specificity between PNA and one of the duplex strands. At the same time, the single-stranded (ss) DNA tail of the chimera, allows for anchoring of nano-objects that have been functionalized with complementary ssDNA. The developed method is applied for interparticle attachment and for the fabrication of particle clusters using a dsDNA template. This method significantly broadens the molecular toolbox for constructing nanoscale systems by including the most conventional not yet utilized DNA motif, double helix DNA.

  17. Neurologic syndrome associated with homozygous mutation at MAG sialic acid binding site.

    PubMed

    Roda, Ricardo H; FitzGibbon, Edmond J; Boucekkine, Houda; Schindler, Alice B; Blackstone, Craig

    2016-08-01

    The MAG gene encodes myelin-associated glycoprotein (MAG), an abundant protein involved in axon-glial interactions and myelination during nerve regeneration. Several members of a consanguineous family with a clinical syndrome reminiscent of Pelizaeus-Merzbacher disease and demyelinating leukodystrophy on brain MRI were recently found to harbor a homozygous missense p.Ser133Arg MAG mutation. Here, we report two brothers from a nonconsanguineous family afflicted with progressive cognitive impairment, neuropathy, ataxia, nystagmus, and gait disorder. Exome sequencing revealed the homozygous missense mutation p.Arg118His in MAG. This Arg118 residue in immunoglobulin domain 1 is critical for sialic acid binding, providing a compelling mechanistic basis for disease pathogenesis. PMID:27606346

  18. Synthesis and Site-Specific Incorporation of Red-Shifted Azobenzene Amino Acids into Proteins.

    PubMed

    John, Alford A; Ramil, Carlo P; Tian, Yulin; Cheng, Gang; Lin, Qing

    2015-12-18

    A series of red-shifted azobenzene amino acids were synthesized in moderate-to-excellent yields via a two-step procedure in which tyrosine derivatives were first oxidized to the corresponding quinonoidal spirolactones followed by ceric ammonium nitrate-catalyzed azo formation with the substituted phenylhydrazines. The resulting azobenzene-alanine derivatives exhibited efficient trans/cis photoswitching upon irradiation with a blue (448 nm) or green (530 nm) LED light. Moreover, nine superfolder green fluorescent protein (sfGFP) mutants carrying the azobenzene-alanine analogues were expressed in E. coli in good yields via amber codon suppression with an orthogonal tRNA/PylRS pair, and one of the mutants showed durable photoswitching with the LED light. PMID:26650435

  19. Tunable translational control using site-specific unnatural amino acid incorporation in Escherichia coli

    PubMed Central

    2015-01-01

    Translation of target gene transcripts in Escherichia coli harboring UAG amber stop codons can be switched on by the amber-codon-specific incorporation of an exogenously supplied unnatural amino acid, 3-iodo-L-tyrosine. Here, we report that this translational switch can control the translational efficiency at any intermediate magnitude by adjustment of the 3-iodo-L-tyrosine concentration in the medium, as a tunable translational controller. The translational efficiency of a target gene reached maximum levels with 10−5 M 3-iodo-L-tyrosine, and intermediate levels were observed with suboptimal concentrations (approximately spanning a 2-log10 concentration range, 10−7–10−5 M). Such intermediate-level expression was also confirmed in individual bacteria. PMID:25945307

  20. Magic-angle-spinning NMR studies of acid sites in zeolite H-ZSM-5

    SciTech Connect

    Brunner, E.; Ernst, H.; Freude, D.; Froehlich, T.; Hunger, M.; Pfeifer, H. )

    1991-01-01

    {sup 1}H, {sup 13}C, {sup 27}Al, and {sup 29}Si magic-angle-spinning (MAS) NMR was used to elucidate the nature of the catalytic activity of zeolite H-ZSM-5. {sup 1}H MAS NMR of sealed samples after mild hydrothermal dealumination shows that the enhanced activity for n-hexane cracking is not due to an enhanced Bronstead acidity. The concentrations of the various OH groups and aluminous species suggest that the reason for the enhanced catalytic activity is the interaction of the n-hexane molecule with a bridging hydroxyl group and with extra-framework aluminium species, which give rise to the enhanced activity, cannot be easily removed from their positions, and are therefore immobilized by the zeolitic framework.

  1. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.

    PubMed

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong

    2011-07-27

    We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene. PMID:21682296

  2. Drug-nucleic acid interactions: conformational flexibility at the intercalation site.

    PubMed Central

    Berman, H M; Neidle, S; Stodola, R K

    1978-01-01

    The conformational features of the intercalation site in polynucleotides were examined. We found that, for all the crystal structures of drug-dinucleoside complexes studied thus far, two torsion angles differ from those found in A RNA (phi and chi) and that alternate sugar puckering is not a prerequisite for intercalation. This intercalation geometry, which is the basis of helix axis displacement in a polymer, would necessitate conformational changes in the adjacent nucleotides. The base-turn angle is less sensitive to the conformation of the backbone than it is to small alterations in the base-pairing geometry. We postulate that this angle is dependent on the nature of the intercalating drug. PMID:273246

  3. Characterization of an intracellular hyaluronic acid binding site in isolated rat hepatocytes

    SciTech Connect

    Frost, S.J.; Raja, R.H.; Weigel, P.H. )

    1990-11-13

    125I-HA, prepared by chemical modification at the reducing sugar, specifically binds to rat hepatocytes in suspension or culture. Intact hepatocytes have relatively few surface 125I-HA binding sites and show low specific binding. However, permeabilization of hepatocytes with the nonionic detergent digitonin results in increased specific 125I-HA binding (45-65%) and a very large increase in the number of specific 125I-HA binding sites. Scatchard analysis of equilibrium 125I-HA binding to permeabilized hepatocytes in suspension at 4 degrees C indicates a Kd = 1.8 x 10(-7) M and 1.3 x 10(6) molecules of HA (Mr approximately 30,000) bound per cell at saturation. Hepatocytes in primary culture for 24 h show the same affinity but the total number of HA molecules bound per cell at saturation decreases to approximately 6.2 x 10(5). Increasing the ionic strength above physiologic concentrations decreases 125I-HA binding to permeable cells, whereas decreasing the ionic strength above causes an approximately 4-fold increase. The divalent cation chelator EGTA does not prevent binding nor does it release 125I-HA bound in the presence of 2 mM CaCl2, although higher divalent cation concentrations stimulate 125I-HA binding. Ten millimolar CaCl2 or MnCl2 increases HA binding 3-6-fold compared to EGTA-treated cells. Ten millimolar MgCl2, SrCl2, or BaCl2 increased HA binding by 2-fold. The specific binding of 125I-HA to digitonin-treated hepatocytes at 4{degrees}C increased greater than 10-fold at pH 5.0 as compared to pH 7.

  4. A Mutational Analysis of Active Site Residues in trans-3-Chloroacrylic Acid Dehalogenase

    PubMed Central

    Poelarends, Gerrit J.; Serrano, Hector; Huddleston, Jamison P.; Johnson, William H.; Whitman, Christian P.

    2013-01-01

    trans -3-Chloroacrylic acid dehalogenase (CaaD) catalyzes the hydrolytic dehalogenation of trans-3-haloacrylates to yield malonate semialdehyde by a mechanism utilizing βPro-1, αArg-8, αArg-11, and αGlu-52. These residues are implicated in a promiscuous hydratase activity where 2-oxo-3-pentynoate is processed to acetopyruvate. The roles of three nearby residues (βAsn-39, αPhe-39, and αPhe-50) are unexplored. Mutants were constructed at these positions (βN39A, αF39A, αF39T, αF50A and αF50Y) and kinetic parameters determined along with those of the αR8K and αR11K mutants. Analysis indicates that αArg-8, αArg-11, and βAsn-39 are critical for dehalogenase activity whereas αArg-11 and αPhe-50 are critical for hydratase activity. Docking studies suggest structural bases for these observations. PMID:23851010

  5. Acid mine drainage risks - A modeling approach to siting mine facilities in Northern Minnesota USA

    NASA Astrophysics Data System (ADS)

    Myers, Tom

    2016-02-01

    Most watershed-scale planning for mine-caused contamination concerns remediation of past problems while future planning relies heavily on engineering controls. As an alternative, a watershed scale groundwater fate and transport model for the Rainy Headwaters, a northeastern Minnesota watershed, has been developed to examine the risks of leaks or spills to a pristine downstream watershed. The model shows that the risk depends on the location and whether the source of the leak is on the surface or from deeper underground facilities. Underground sources cause loads that last longer but arrive at rivers after a longer travel time and have lower concentrations due to dilution and attenuation. Surface contaminant sources could cause much more short-term damage to the resource. Because groundwater dominates baseflow, mine contaminant seepage would cause the most damage during low flow periods. Groundwater flow and transport modeling is a useful tool for decreasing the risk to downgradient sources by aiding in the placement of mine facilities. Although mines are located based on the minerals, advance planning and analysis could avoid siting mine facilities where failure or leaks would cause too much natural resource damage. Watershed scale transport modeling could help locate the facilities or decide in advance that the mine should not be constructed due to the risk to downstream resources.

  6. Changes in polysialic acid expression on myeloid cells during differentiation and recruitment to sites of inflammation: Role in phagocytosis

    PubMed Central

    Stamatos, Nicholas M; Zhang, Lei; Jokilammi, Anne; Finne, Jukka; Chen, Wilbur H; El-Maarouf, Abderrahman; Cross, Alan S; Hankey, Kim G

    2014-01-01

    Polysialic acid (polySia) is a unique linear homopolymer of α2,8-linked sialic acid that has been studied extensively as a posttranslational modification of neural cell adhesion molecule in the central nervous system. Only two proteins are known to be polysialylated in cells of the immune system: CD56 on human natural killer cells and murine bone marrow (BM) leukocytes, and neuropilin-2 (NRP-2) on dendritic cells (DCs). We tested the hypothesis that polySia expression is regulated during maturation and migration of leukocytes and plays a role in functional activity. Using wild-type and NCAM−/− mice, we show that BM neutrophils express only polysialylated CD56, whereas a subset of BM monocytes expresses polysialylated CD56 and/or another polysialylated protein(s). We demonstrate that polysialylated CD56 expression is progressively down-regulated in wild-type monocytes and monocyte-derived cells during migration from BM through peripheral blood to pulmonary and peritoneal sites of inflammation. Freshly isolated monocyte-derived peritoneal macrophages are devoid of polySia yet re-express polySia on NRP-2 and an additional protein(s) after maintenance in culture. Removal of polySia from these cells enhances phagocytosis of Klebsiella pneumoniae, suggesting that down-regulation of polySia on macrophages facilitates bacterial clearance. Using wild-type and NRP-2−/− mice, we demonstrate that NRP-2 and an additional protein(s) are polysialylated by ST8 SiaIV in BM-derived DCs. We conclude that polySia expression in monocyte-derived cells is dynamically regulated by ST8 SiaIV activity and by expression of carrier proteins during recruitment to sites of inflammation and influences cellular interactions with microbes, contributing to innate and adaptive immune responses. PMID:24865221

  7. Site-directed mutagenesis of tobacco anionic peroxidase: Effect of additional aromatic amino acids on stability and activity.

    PubMed

    Poloznikov, A A; Zakharova, G S; Chubar, T A; Hushpulian, D M; Tishkov, V I; Gazaryan, I G

    2015-08-01

    Tobacco anionic peroxidase (TOP) is known to effectively catalyze luminol oxidation without enhancers, in contrast to horseradish peroxidase (HRP). To pursue structure-activity relationship studies for TOP, two amino acids have been chosen for mutation, namely Thr151, close to the heme plane, and Phe140 at the entrance to the active site pocket. Three mutant forms TOP F140Y, T151W and F140Y/T151W have been expressed in Escherichia coli, and reactivated to yield active enzymes. Single-point mutations introducing additional aromatic amino acid residues at the surface of TOP exhibit a significant effect on the enzyme catalytic activity and stability as judged by the results of steady-state and transient kinetics studies. TOP T151W is up to 4-fold more active towards a number of aromatic substrates including luminol, whereas TOP F140Y is 2-fold more stable against thermal inactivation and 8-fold more stable in the reaction course. These steady-state observations have been rationalized with the help of transient kinetic studies on the enzyme reaction with hydrogen peroxide in a single turnover regime. The stopped-flow data reveal (a) an increased stability of F140Y Compound I towards hydrogen peroxide, and thus, a higher operational stability as compared to the wild-type enzyme, and (b) a lesser leakage of oxidative equivalents from TOP T151W Compound I resulting in the increased catalytic activity. The results obtained show that TOP unique properties can be further improved for practical applications by site-directed mutagenesis. PMID:25957835

  8. An arylaminopyridazine derivative of gamma-aminobutyric acid (GABA) is a selective and competitive antagonist at the GABAA receptor site.

    PubMed Central

    Chambon, J P; Feltz, P; Heaulme, M; Restle, S; Schlichter, R; Biziere, K; Wermuth, C G

    1985-01-01

    In view of finding a new gamma-aminobutyric acid (GABA) receptor ligand we synthesized an arylaminopyridazine derivative of GABA, SR 95103 [2-(carboxy-3'-propyl)-3-amino-4-methyl-6-phenylpyridazinium chloride]. SR 95103 displaced [3H]GABA from rat brain membranes with an apparent Ki of 2.2 microM and a Hill number near 1.0. SR 95103 (1-100 microM) antagonized the GABA-mediated enhancement of [3H]diazepam binding in a concentration-dependent manner without affecting [3H]diazepam binding per se. SR 95103 competitively antagonized GABA-induced membrane depolarization in rat spinal ganglia. In all these experiments, the potency of SR 95103 was close to that of bicuculline. SR 95103 (100 microM) did not interact with a variety of central receptors--in particular the GABAB, the strychnine, and the glutamate receptors--did not inhibit Na+-dependent synaptosomal GABA uptake, and did not affect GABA-transaminase and glutamic acid decarboxylase activities. Intraperitoneally administered SR 95103 elicited clonicotonic seizures in mice (ED50 = 180 mg/kg). On the basis of these results it is postulated that St 95103 is a competitive antagonist of GABA at the GABAA receptor site. In addition to being an interesting lead structure for the search of GABA ligands, SR 95103 could also be a useful tool to investigate GABA receptor subtypes because it is freely soluble in water and chemically stable. Images PMID:2984669

  9. Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1∙Nup98)

    SciTech Connect

    Quan, Beili; Seo, Hyuk-Soo; Blobel, Günter; Ren, Yi

    2014-07-01

    mRNA export factor 1 (Rae1) and nucleoporin 98 (Nup98) are host cell targets for the matrix (M) protein of vesicular stomatitis virus (VSV). How Rae1 functions in mRNA export and how M protein targets both Rae1 and Nup98 are not understood at the molecular level. To obtain structural insights, we assembled a 1:1:1 complex of M•Rae1•Nup98 and established a crystal structure at 3.15-Å resolution. We found that the M protein contacts the Rae1•Nup98 heterodimer principally by two protrusions projecting from the globular domain of M like a finger and thumb. Both projections clamp to the side of the β-propeller of Rae1, with the finger also contacting Nup98. The most prominent feature of the finger is highly conserved Methionine 51 (Met51) with upstream and downstream acidic residues. The complementary surface on Rae1 displays a deep hydrophobic pocket, into which Met51 fastens like a bolt, and a groove of basic residues on either side, which bond to the acidic residues of the finger. Notably, the M protein competed for in vitro binding of various oligonucleotides to Rae1•Nup98. We localized this competing activity of M to its finger using a synthetic peptide. Collectively, our data suggest that Rae1 serves as a binding protein for the phosphate backbone of any nucleic acid and that the finger of M mimics this ligand. In the context of mRNA export, we propose that a given mRNA segment, after having been deproteinated by helicase, is transiently reproteinated by Nup98-tethered Rae1. We suggest that such repetitive cycles provide cytoplasmic stopover sites required for ratcheting mRNA across the nuclear pore.

  10. Experimental and computational investigation of acetic acid deoxygenation over oxophilic molybdenum carbide: Surface chemistry and active site identity

    DOE PAGESBeta

    Schaidle, Joshua A.; Blackburn, Jeffrey; Farberow, Carrie A.; Nash, Connor; Steirer, K. Xerxes; Clark, Jared; Robichaud, David J.; Ruddy, Daniel A.

    2016-01-21

    Ex situ catalytic fast pyrolysis (CFP) is a promising route for producing fungible biofuels; however, this process requires bifunctional catalysts that favor C–O bond cleavage, activate hydrogen at near atmospheric pressure and high temperature (350–500 °C), and are stable under high-steam, low hydrogen-to-carbon environments. Recently, early transition-metal carbides have been reported to selectively cleave C–O bonds of alcohols, aldehydes, and oxygenated aromatics, yet there is limited understanding of the metal carbide surface chemistry under reaction conditions and the identity of the active sites for deoxygenation. In this study, we evaluated molybdenum carbide (Mo2C) for the deoxygenation of acetic acid, anmore » abundant component of biomass pyrolysis vapors, under ex situ CFP conditions, and we probed the Mo2C surface chemistry, identity of the active sites, and deoxygenation pathways using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations.« less

  11. Evolution of nuclear retinoic acid receptor alpha (RARα) phosphorylation sites. Serine gain provides fine-tuned regulation.

    PubMed

    Samarut, Eric; Amal, Ismail; Markov, Gabriel V; Stote, Roland; Dejaegere, Annick; Laudet, Vincent; Rochette-Egly, Cécile

    2011-07-01

    The human nuclear retinoic acid (RA) receptor alpha (hRARα) is a ligand-dependent transcriptional regulator, which is controlled by a phosphorylation cascade. The cascade starts with the RA-induced phosphorylation of a serine residue located in the ligand-binding domain, S(LBD), allowing the recruitment of the cdk7/cyclin H/MAT1 subcomplex of TFIIH through the docking of cyclin H. It ends by the subsequent phosphorylation by cdk7 of an other serine located in the N-terminal domain, S(NTD). Here, we show that this cascade relies on an increase in the flexibility of the domain involved in cyclin H binding, subsequently to the phosphorylation of S(LBD). Owing to the functional importance of RARα in several vertebrate species, we investigated whether the phosphorylation cascade was conserved in zebrafish (Danio rerio), which expresses two RARα genes: RARα-A and RARα-B. We found that in zebrafish RARαs, S(LBD) is absent, whereas S(NTD) is conserved and phosphorylated. Therefore, we analyzed the pattern of conservation of the phosphorylation sites and traced back their evolution. We found that S(LBD) is most often absent outside mammalian RARα and appears late during vertebrate evolution. In contrast, S(NTD) is conserved, indicating that the phosphorylation of this functional site has been under ancient high selection constraint. This suggests that, during evolution, different regulatory circuits control RARα activity. PMID:21297158

  12. CS2 activation at uranium(III) siloxide ate complexes: the effect of a Lewis acidic site.

    PubMed

    Camp, Clément; Cooper, Oliver; Andrez, Julie; Pécaut, Jacques; Mazzanti, Marinella

    2015-02-14

    Multimetallic cooperative binding of heteroallenes provides an attractive route to their activation, but the reduction of CS(2) at heterobimetallic sites, associating an electron-rich metal with a main group Lewis acid has not been explored. Here we show that the presence of a heterometallic U, K site plays an important role in the CS(2) reduction by uranium(iii) complexes of the electron-rich and the sterically demanding tris(tert-butoxy)siloxide ligand. Specifically, the ion-pair complex [K(18c6)][U(OSi(O(t)Bu)(3))(4)], 1, leads preferentially to the reductive disproportionation of CS(2) to K(2)CS(3) and CS. The crystal structure of the thiocarbonate intermediate complex [U(OSi(O(t)Bu(3)(4) (μ(3)-κ(2):κ(2):κ(2-)CS(3))K(2)(18c6)(2)], 2, isolated from the toluene reaction mixture has been determined. In contrast, the heterobimetallic complex [U(OSi(O(t)Bu(3)(4)K], 3, promotes preferentially the reductive dimerization of CS(2) to K(2)C(2)S(4) and K(2)C(3)S(5). The [K(2)C(2)S(4)(DMSO)(3)](n), 5, and [U(OSi(O(t)Bu)(3))(4)K(2)(C(3)S(5))](n), 6, polymeric compounds were isolated from this reaction and structurally characterized. PMID:25436831

  13. Multiplex Detection of Functional G Protein-Coupled Receptors Harboring Site-Specifically Modified Unnatural Amino Acids

    PubMed Central

    2015-01-01

    We developed a strategy for identifying positions in G protein-coupled receptors that are amenable to bioorthogonal modification with a peptide epitope tag under cell culturing conditions. We introduced the unnatural amino acid p-azido-l-phenylalanine (azF) into human CC chemokine receptor 5 (CCR5) at site-specific amber codon mutations. We then used strain-promoted azide–alkyne [3+2] cycloaddition to label the azF-CCR5 variants with a FLAG peptide epitope-conjugated aza-dibenzocyclooctyne (DBCO) reagent. A microtiter plate-based sandwich fluorophore-linked immunosorbent assay was used to probe simultaneously the FLAG epitope and the receptor using infrared dye-conjugated antibodies so that the extent of DBCO incorporation, corresponding nominally to labeling efficiency, could be quantified ratiometrically. The extent of incorporation of DBCO at the various sites was evaluated in the context of a recent crystal structure of maraviroc-bound CCR5. We observed that labeling efficiency varied dramatically depending on the topological location of the azF in CCR5. Interestingly, position 109 in transmembrane helix 3, located in a hydrophobic cavity on the extracellular side of the receptor, was labeled most efficiently. Because the bioorthogonal labeling and detection strategy described might be used to introduce a variety of different peptide epitopes or fluorophores into engineered expressed receptors, it might prove to be useful for a wide range of applications, including single-molecule detection studies of receptor trafficking and signaling mechanism. PMID:25524496

  14. Negative regulation of the rat stromelysin gene promoter by retinoic acid is mediated by an AP1 binding site.

    PubMed Central

    Nicholson, R C; Mader, S; Nagpal, S; Leid, M; Rochette-Egly, C; Chambon, P

    1990-01-01

    Stromelysin is a member of the metalloproteinase family which plays an important role in extracellular matrix remodelling during many normal and disease processes. We show here that in polyomavirus-transformed rat embryo fibroblast cells (PyT21), the transcription from the stromelysin gene is repressed by the vitamin A derivative retinoic acid (RA). Furthermore, expression vectors encoding the human RA receptors hRAR-alpha, hRAR-beta and hRAR-gamma repress chloramphenicol acetyltransferase (CAT) expression from stromelysin promoter-CAT gene expression vectors in RA-treated PyT21 and human HeLa cells, as determined by transient transfection assays. Through mutation and deletion analysis, we show that the RA dependent repression is mediated by a 25 bp region from nucleotide positions -72 to -48 of the rat stromelysin 5'-flanking DNA sequence. Further mutation analysis of this region indicates that the DNA sequence required for RA dependent repression colocalizes with an AP1 binding site which is essential for promoter activity. We show also that RA represses the transcriptional activity of a reporter gene containing a TPA responding AP1 binding site driving the HSV tk promoter. Thus the RAR-RA complex appears to repress transcription of the stromelysin gene by blocking activation by positive regulatory factors. However, we found no evidence supporting the possibility that the RA dependent repression could be due to RAR binding to the AP1 binding site or to the AP1 components c-fos and c-jun. Images Fig. 1. Fig. 2. Fig. 4. Fig. 6. Fig. 7. Fig. 8. PMID:2176152

  15. Encapsulating Metal Clusters and Acid Sites within Small Voids: Synthetic Strategies and Catalytic Consequences

    NASA Astrophysics Data System (ADS)

    Goel, Sarika

    The selective encapsulation of metal clusters within zeolites can be used to prepare clusters that are uniform in diameter and to protect them against sintering and contact with feed impurities, while concurrently allowing active sites to select reactants based on their molecular size, thus conferring enzyme-like specificity to chemical catalysis. The apertures in small and medium-pore zeolites preclude the use of post-synthetic protocols to encapsulate the relevant metal precursors because cationic or anionic precursors with their charge-balancing double layer and gaseous complexes cannot diffuse through their windows or channels. We have developed general strategies to encapsulate metal clusters within small-pore zeolites by using metal precursors stabilized by ammonia or organic amine ligands, which stabilize metal precursors against their premature precipitation at the high temperature and pH conditions required for the hydrothermal synthesis of the target zeolite structures and favor interactions between metal precursors and incipient aluminosilicate nuclei during the self-assembly of microporous frameworks. When synthesis temperatures were higher than 400 K, available ligands were unable to prevent the premature precipitation of the metal precursors. In such cases, encapsulation was achieved instead via interzeolite transformations after successfully encapsulating metal precursors or clusters via post-synthesis exchange or ligand protection into parent zeolites and subsequently converting them into the target structures while retaining the encapsulated clusters or precursors. Such strategies led to the successful selective encapsulation of a wide range of metal clusters (Pt, Pd, Ru, Rh, Ir, Re, and Ag) within small-pore (SOD (sodalite), LTA (Linde type A (zeolite A)), GIS (gismondine), and ANA (analcime)) and medium-pore (MFI (ZSM-5)) zeolites. These protocols provide novel and diverse mechanism-based strategies for the design of catalysts with protected

  16. Hydrogeology and ground-water quality of the Chromic Acid Pit site, US Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Thomas, C.L.

    1996-01-01

    The Chromic Acid Pit site is an inactive waste disposal site that is regulated by the Resource Conservation and Recovery Act of 1976. The 2.2-cubic-yard cement-lined pit was operated from 1980 to 1983 by a contractor to the U.S. Army Air Defense Artillery Center and Fort Bliss. The pit, located on the Fort Bliss military reservation, in El Paso, Texas, was used for disposal and evaporation of chromic acid waste generated from chrome plating operations. The site was certified closed in 1989 and the Texas Natural Resources Conservation Commission issued Permit Number HW-50296 (U.S. Environmental Protection Agency Permit Number TX4213720101), which approved and implemented post-closure care for the Chromic Acid Pit site. In accordance with an approved post-closure plan, the U.S. Geological Survey is cooperating with the U.S. Army in evaluating hydrogeologic conditions and ground- water quality at the site. One upgradient and two downgradient ground-water monitoring wells were installed adjacent to the chromic acid pit by a private contractor. Quarterly ground-water sampling of these wells by the U.S. Geological Survey began in December 1993. The Chromic Acid Pit site is situated in the Hueco Bolson intermontane valley. The Hueco Bolson is a primary source of ground water in the El Paso area. City of El Paso and U.S. Army water-supply wells are located on all sides of the study area and are completed 600 to more than 1,200 feet below land surface. The ground-water level in the area of the Chromic Acid Pit site has declined about 25 feet from 1982 to 1993. Depth to water at the Chromic Acid Pit site in September 1994 was about 284 feet below land surface; ground-water flow is to the southeast. Ground-water samples collected from monitoring wells at the Chromic Acid Pit site contained dissolved-solids concentrations of 442 to 564 milligrams per liter. Nitrate as nitrogen concentrations ranged from 2.1 to 2.7 milligrams per liter; nitrite plus nitrate as nitrogen

  17. Incorporating substrate sequence motifs and spatial amino acid composition to identify kinase-specific phosphorylation sites on protein three-dimensional structures

    PubMed Central

    2013-01-01

    Background Protein phosphorylation catalyzed by kinases plays crucial regulatory roles in cellular processes. Given the high-throughput mass spectrometry-based experiments, the desire to annotate the catalytic kinases for in vivo phosphorylation sites has motivated. Thus, a variety of computational methods have been developed for performing a large-scale prediction of kinase-specific phosphorylation sites. However, most of the proposed methods solely rely on the local amino acid sequences surrounding the phosphorylation sites. An increasing number of three-dimensional structures make it possible to physically investigate the structural environment of phosphorylation sites. Results In this work, all of the experimental phosphorylation sites are mapped to the protein entries of Protein Data Bank by sequence identity. It resulted in a total of 4508 phosphorylation sites containing the protein three-dimensional (3D) structures. To identify phosphorylation sites on protein 3D structures, this work incorporates support vector machines (SVMs) with the information of linear motifs and spatial amino acid composition, which is determined for each kinase group by calculating the relative frequencies of 20 amino acid types within a specific radial distance from central phosphorylated amino acid residue. After the cross-validation evaluation, most of the kinase-specific models trained with the consideration of structural information outperform the models considering only the sequence information. Furthermore, the independent testing set which is not included in training set has demonstrated that the proposed method could provide a comparable performance to other popular tools. Conclusion The proposed method is shown to be capable of predicting kinase-specific phosphorylation sites on 3D structures and has been implemented as a web server which is freely accessible at http://csb.cse.yzu.edu.tw/PhosK3D/. Due to the difficulty of identifying the kinase-specific phosphorylation

  18. Characterization of thermally stable Brønsted acid sites on alumina-supported niobium oxide after calcination at high temperatures.

    PubMed

    Kitano, Tomoyuki; Shishido, Tetsuya; Teramura, Kentaro; Tanaka, Tsunehiro

    2013-08-01

    Thermally stable Brønsted acid sites were generated on alumina-supported niobium oxide (Nb2O5/Al2O3) by calcination at high temperatures, such as 1123 K. The results of structural characterization by using Fourier-transform infrared (FTIR) spectroscopy, TEM, scanning transmission electron microscopy (STEM), and energy-dispersive X-ray (EDX) analysis indicated that the Nb2O5 monolayer domains were highly dispersed over alumina at low Nb2O5 loadings, such as 5 wt%, and no Brønsted acid sites were presents. The coverage of Nb2O5 monolayer domains over Al2O3 increased with increasing Nb2O5 loading and almost-full coverage was obtained at a loading of 16 wt%. A sharp increase in the number of hydroxy groups, which acted as Brønsted acid sites, was observed at this loading level. The relationship between the acidic properties and the structure of the material suggested that the bridging hydroxy groups (Nb-O(H)-Nb), which were formed at the boundaries between the domains of the Nb2O5 monolayer, acted as thermally stable Brønsted acid sites. PMID:23784806

  19. The influence of temperature and aerosol acidity on biogenic secondary organic aerosol tracers: Observations at a rural site in the central Pearl River Delta region, South China

    NASA Astrophysics Data System (ADS)

    Ding, Xiang; Wang, Xin-Ming; Zheng, Mei

    2011-02-01

    At a rural site in the central Pearl River Delta (PRD) region in south China, fine particle (PM 2.5) samples were collected during fall-winter 2007 to measure biogenic secondary organic aerosol (SOA) tracers, including isoprene SOA tracers (3-methyl-2,3,4-trihydroxy-1-butene, 2-methylglyceric acid, 2-methylthreitol and 2-methylerythritol), α-pinene SOA tracers ( cis-pinonic acid, pinic acid, 3-methyl-1,2,3-butanetricarboxylic acid, 3-hydroxyglutaric acid and 3-hydroxy-4,4-dimethylglutaric acid) and a sesquiterpene SOA tracer (β-caryophyllinic acid). The isoprene-, α-pinene- and sesquiterpene-SOA tracers averaged 30.8 ± 15.9, 6.61 ± 4.39, and 0.54 ± 0.56 ng m -3, respectively; and 2-methyltetrols (sum of 2-methylthreitol and 2-methylerythritol, 27.6 ± 15.1 ng m -3) and cis-pinonic acid (3.60 ± 3.76 ng m -3) were the dominant isoprene- and α-pinene-SOA tracers, respectively. 2-Methyltetrols exhibited significantly positive correlations ( p < 0.05) with ambient temperature, probably resulting from the enhanced isoprene emission strength and tracer formation rate under higher temperature. The significantly positive correlation ( p < 0.05) between 2-methyltetrols and the estimated aerosol acidity with a slope of 59.4 ± 13.4 ng m -3 per μmol [H +] m -3 reflected the enhancement of isoprene SOA formation by aerosol acidity, and acid-catalyzed heterogeneous reaction was probably the major formation pathway for 2-methyltetrols in the PRD region. 2-Methylglyceric acid showed poor correlations with both temperature and aerosol acidity. The α-pinene SOA tracers showed poor correlations with temperature, probably due to the counteraction between temperature effects on the precursor emission/tracer formation and gas/particle partitioning. Among the α-pinene SOA tracers, only cis-pinonic acid and pinic acid exhibited significant correlations with aerosol acidity with slopes of -11.7 ± 3.7 and -2.2 ± 0.8 ng m -3 per μmol [H +] m -3, respectively. The negative

  20. Amino acid sequence homology between Piv, an essential protein in site-specific DNA inversion in Moraxella lacunata, and transposases of an unusual family of insertion elements.

    PubMed Central

    Lenich, A G; Glasgow, A C

    1994-01-01

    Deletion analysis of the subcloned DNA inversion region of Moraxella lacunata indicates that Piv is the only M. lacunata-encoded factor required for site-specific inversion of the tfpQ/tfpI pilin segment. The predicted amino acid sequence of Piv shows significant homology solely with the transposases/integrases of a family of insertion sequence elements, suggesting that Piv is a novel site-specific recombinase. Images PMID:8021196

  1. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    PubMed Central

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea

    2015-01-01

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. This study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin. PMID:25724962

  2. The linoleic acid derivative DCP-LA selectively activates PKC-epsilon, possibly binding to the phosphatidylserine binding site.

    PubMed

    Kanno, Takeshi; Yamamoto, Hideyuki; Yaguchi, Takahiro; Hi, Rika; Mukasa, Takeshi; Fujikawa, Hirokazu; Nagata, Tetsu; Yamamoto, Satoshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2006-06-01

    This study examined the effect of 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA), a newly synthesized linoleic acid derivative with cyclopropane rings instead of cis-double bonds, on protein kinase C (PKC) activity. In the in situ PKC assay with reverse-phase high-performance liquid chromatography, DCP-LA significantly activated PKC in PC-12 cells in a concentration-dependent (10 nM-100 microM) manner, with the maximal effect at 100 nM, and the DCP-LA effect was blocked by GF109203X, a PKC inhibitor, or a selective inhibitor peptide of the novel PKC isozyme PKC-epsilon. Furthermore, DCP-LA activated PKC in HEK-293 cells that was inhibited by the small, interfering RNA against PKC-epsilon. In the cell-free PKC assay, of the nine isozymes examined here, DCP-LA most strongly activated PKC-epsilon, with >7-fold potency over other PKC isozymes, in the absence of dioleoyl-phosphatidylserine and 1,2-dioleoyl-sn-glycerol; instead, the DCP-LA action was inhibited by dioleoyl-phosphatidylserine. DCP-LA also activated PKC-gamma, a conventional PKC, but to a much lesser extent compared with that for PKC-epsilon, by a mechanism distinct from PKC-epsilon activation. Thus, DCP-LA serves as a selective activator of PKC-epsilon, possibly by binding to the phosphatidylserine binding site on PKC-epsilon. These results may provide fresh insight into lipid signaling in PKC activation. PMID:16520488

  3. Protein stability: a single recorded mutation aids in predicting the effects of other mutations in the same amino acid site

    PubMed Central

    Wainreb, Gilad; Wolf, Lior; Ashkenazy, Haim; Dehouck, Yves; Ben-Tal, Nir

    2011-01-01

    Motivation: Accurate prediction of protein stability is important for understanding the molecular underpinnings of diseases and for the design of new proteins. We introduce a novel approach for the prediction of changes in protein stability that arise from a single-site amino acid substitution; the approach uses available data on mutations occurring in the same position and in other positions. Our algorithm, named Pro-Maya (Protein Mutant stAbilitY Analyzer), combines a collaborative filtering baseline model, Random Forests regression and a diverse set of features. Pro-Maya predicts the stability free energy difference of mutant versus wild type, denoted as ΔΔG. Results: We evaluated our algorithm extensively using cross-validation on two previously utilized datasets of single amino acid mutations and a (third) validation set. The results indicate that using known ΔΔG values of mutations at the query position improves the accuracy of ΔΔG predictions for other mutations in that position. The accuracy of our predictions in such cases significantly surpasses that of similar methods, achieving, e.g. a Pearson's correlation coefficient of 0.79 and a root mean square error of 0.96 on the validation set. Because Pro-Maya uses a diverse set of features, including predictions using two other methods, it also performs slightly better than other methods in the absence of additional experimental data on the query positions. Availability: Pro-Maya is freely available via web server at http://bental.tau.ac.il/ProMaya. Contact: nirb@tauex.tau.ac.il; wolf@cs.tau.ac.il Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21998155

  4. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    SciTech Connect

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.

  5. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    DOE PAGESBeta

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less

  6. In Silico Structure Prediction of Human Fatty Acid Synthase–Dehydratase: A Plausible Model for Understanding Active Site Interactions

    PubMed Central

    John, Arun; Umashankar, Vetrivel; Samdani, A.; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate–active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro. PMID:27559295

  7. Effect of different soil layers on porewater to remediate acidic surface environment at a close mine site.

    PubMed

    Salinas Villafane, Omar R; Igarashi, Toshifumi; Harada, Shusaku; Kurosawa, Mitsuru; Takase, Toshio

    2012-12-01

    This paper describes the chemistry of porewater when constructing different soil layers on acidic weathered rock of a closed mine to remediate the surface environment. Three cases were set on a flat surface of the site, all under different layer systems. Case 1 was only composed of weathered rocks. A top neutralization layer was constructed on the weathered rocks in case 2, whereas both an upper low-permeable and middle neutralization layers were constructed on the weathered rocks in case 3. The low-permeable layer of 30 cm thick consists of clay, and the neutralization layer of 30 cm thick consists of the mixture of the weathered rock and calcium carbonate as a neutralizer. Porewater sampling systems and soil sensors to measure temperature, water content, and electrical conductivity were set at different depths. In case 1, steadily high concentrations of heavy metals were observed regardless of the depth, and the pH ranged from 2 to 4. In cases 2 and 3, a dramatic decrease in concentrations of heavy metals was observed, even below the neutralization layer. For both cases, pH values were circumneutral. There were no significant seasonable changes in heavy metals concentrations and pH of porewater by considering the temperature and precipitation. In addition, the water content of the layers in case 3 fluctuated more mildly than that in cases 1 and 2, indicating that the low-permeable layer reduced the rate of infiltration. Therefore, a significant reduction in the load of heavy metals released from the site can be achieved by both implementing neutralization and low-permeable layers. PMID:22350344

  8. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    PubMed

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro. PMID:27559295

  9. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    SciTech Connect

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Shikazono, Naoya; Yokoya, Akinari; Katsumura, Yosuke

    2013-05-03

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield of DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.

  10. Efficient Catalytic Ozonation over Reduced Graphene Oxide for p-Hydroxylbenzoic Acid (PHBA) Destruction: Active Site and Mechanism.

    PubMed

    Wang, Yuxian; Xie, Yongbing; Sun, Hongqi; Xiao, Jiadong; Cao, Hongbin; Wang, Shaobin

    2016-04-20

    Nanocarbons have been demonstrated as promising environmentally benign catalysts for advanced oxidation processes (AOPs) upgrading metal-based materials. In this study, reduced graphene oxide (rGO) with a low level of structural defects was synthesized via a scalable method for catalytic ozonation of p-hydroxylbenzoic acid (PHBA). Metal-free rGO materials were found to exhibit a superior activity in activating ozone for catalytic oxidation of organic phenolics. The electron-rich carbonyl groups were identified as the active sites for the catalytic reaction. Electron spin resonance (ESR) and radical competition tests revealed that superoxide radical ((•)O2(-)) and singlet oxygen ((1)O2) were the reactive oxygen species (ROS) for PHBA degradation. The intermediates and the degradation pathways were illustrated from mass spectroscopy. It was interesting to observe that addition of NaCl could enhance both ozonation and catalytic ozonation efficiencies and make ·O2(-) as the dominant ROS. Stability of the catalysts was also evaluated by the successive tests. Loss of specific surface area and changes in the surface chemistry were suggested to be responsible for catalyst deactivation. PMID:27007603

  11. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields.

    PubMed

    Liu, Xianglei; Lin, Jun; Hu, Haifeng; Zhou, Bin; Zhu, Baoquan

    2016-01-01

    As the key starting material for the chemical synthesis of Oseltamivir, shikimic acid (SA) has captured worldwide attention. Many researchers have tried to improve SA production by metabolic engineering, yet expression plasmids were used generally. In recent years, site-specific integration of key genes into chromosome to increase the yield of metabolites showed considerable advantages. The genes could maintain stably and express constitutively without induction. Herein, crucial genes aroG, aroB, tktA, aroE (encoding 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase, dehydroquinate synthase, transketolase and shikimate dehydrogenase, respectively) of SA pathway and glk, galP (encoding glucokinase and galactose permease) were integrated into the locus of ptsHIcrr (phosphoenolpyruvate: carbohydrate phosphotransferase system operon) in a shikimate kinase genetic defect strain Escherichia coli BW25113 (ΔaroL/aroK, DE3). Furthermore, another key gene ppsA (encoding phosphoenolpyruvate synthase) was integrated into tyrR (encoding Tyr regulator protein). As a result, SA production of the recombinant (SA5/pGBAE) reached to 4.14 g/L in shake flask and 27.41 g/L in a 5-L bioreactor. These data suggested that integration of key genes increased SA yields effectively. This strategy is environmentally friendly for no antibiotic is added, simple to handle without induction, and suitable for industrial production. PMID:26672454

  12. Site-specific influence of polyunsaturated fatty acids on atherosclerosis in immune incompetent LDL receptor deficient mice.

    PubMed

    Reardon, Catherine A; Blachowicz, Lydia; Gupta, Gaorav; Lukens, John; Nissenbaum, Michael; Getz, Godfrey S

    2006-08-01

    Polyunsaturated fatty acids (PUFA) are thought to influence plasma lipid levels, atherosclerosis, and the immune system. In this study, we fed male LDL receptor deficient (LDLR(-/-)) mice and immune incompetent LDLR(-/-) RAG2(-/-) mice diets containing predominantly saturated fats (milk fat) or PUFA (safflower oil) to determine if the response to diet was influenced by immune status. Relative to milk fat diet, plasma lipid and VLDL levels in both the LDLR(-/-) and LDLR(-/-) RAG2(-/-) mice fed safflower oil diet were lower, suggesting that the primary effect of PUFA on plasma lipids was not due to its inhibition of the immune system. Neither diet nor immune status influenced hepatic triglyceride production and post-heparin lipase activity, suggesting that the differences in triglyceride levels are due to differences in rates of catabolism of triglyceride-rich lipoproteins. While both diets promoted atherogenesis, both aortic root and innominate artery atherosclerosis in LDLR(-/-) mice was less in safflower oil fed animals. In contrast, a site-specific effect of PUFA was observed in the immune incompetent LDLR(-/-) RAG2(-/-). In these mice, aortic root atherosclerosis, but not innominate artery atherosclerosis, was less in PUFA fed animal. These results suggest that PUFA and the immune system may influence innominate artery atherosclerosis by some overlapping mechanisms. PMID:16280127

  13. Acid-Sensitive Sheddable PEGylated PLGA Nanoparticles Increase the Delivery of TNF-α siRNA in Chronic Inflammation Sites.

    PubMed

    Aldayel, Abdulaziz M; Naguib, Youssef W; O'Mary, Hannah L; Li, Xu; Niu, Mengmeng; Ruwona, Tinashe B; Cui, Zhengrong

    2016-01-01

    There has been growing interest in utilizing small interfering RNA (siRNA) specific to pro-inflammatory cytokines, such as tumor necrosis factor-α ( TNF-α), in chronic inflammation therapy. However, delivery systems that can increase the distribution of the siRNA in chronic inflammation sites after intravenous administration are needed. Herein we report that innovative functionalization of the surface of siRNA-incorporated poly (lactic-co-glycolic) acid (PLGA) nanoparticles significantly increases the delivery of the siRNA in the chronic inflammation sites in a mouse model. The TNF-α siRNA incorporated PLGA nanoparticles were prepared by the standard double emulsion method, but using stearoyl-hydrazone-polyethylene glycol 2000, a unique acid-sensitive surface active agent, as the emulsifying agent, which renders (i) the nanoparticles PEGylated and (ii) the PEGylation sheddable in low pH environment such as that in chronic inflammation sites. In a mouse model of lipopolysaccharide-induced chronic inflammation, the acid-sensitive sheddable PEGylated PLGA nanoparticles showed significantly higher accumulation or distribution in chronic inflammation sites than PLGA nanoparticles prepared with an acid-insensitive emulsifying agent (i.e., stearoyl-amide-polyethylene glycol 2000) and significantly increased the distribution of the TNF-α siRNA incorporated into the nanoparticles in inflamed mouse foot. PMID:27434685

  14. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    PubMed

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass. PMID:26059194

  15. Fourier transform infrared photoacoustic spectroscopy of pyridine adsorbed on silica-alumina and. gamma. -alumina

    SciTech Connect

    Riseman, S.M.; Massoth, F.E.; Dhar, G.M.; Eyring, E.M.

    1982-05-13

    Relative numbers of Bronsted acid to Lewis acid sites on silica-alumina have been determined photoacoustically by an infrared analysis of chemisorbed pyridine compared to similar adsorption of ..gamma..-alumina that has only Lewis sites. Results are similar to those obtained by earlier IR transmission studies that suggested the use of framework vibrations of silica as an internal reference standard. The 20% coverage of the silica-alumina surface by pyridine adsorbed at Bronsted sites found photoacoustically is in good agreement with a previous value of 17% estimated from transmission spectroscopic data. Reproducibility of the photoacoustic measurements is excellent.

  16. Fatty acid-binding site environments of serum vitamin D-binding protein and albumin are different

    PubMed Central

    Swamy, Narasimha; Ray, Rahul

    2008-01-01

    Vitamin D-binding protein (DBP) and albumin (ALB) are abundant serum proteins and both possess high-affinity binding for saturated and unsaturated fatty acids. However, certain differences exist. We surmised that in cases where serum albumin level is low, DBP presumably can act as a transporter of fatty acids. To explore this possibility we synthesized several alkylating derivatives of 14C-palmitic acid to probe the fatty acid binding pockets of DBP and ALB. We observed that N-ethyl-5-phenylisooxazolium-3′-sulfonate-ester (WRK ester) of 14C-palmitic acid specifically labeled DBP; but p-nitrophenyl- and N-hydroxysuccinimidyl-esters failed to do so. However, p-nitrophenyl ester of 14C-palmitic acid specifically labeled bovine ALB, indicating that the micro-environment of the fatty acid-binding domains of DBP and ALB may be different; and DBP may not replace ALB as a transporter of fatty acids. PMID:18374965

  17. Mapping general anesthetic binding site(s) in human α1β3 γ-aminobutyric acid type A receptors with [³H]TDBzl-etomidate, a photoreactive etomidate analogue.

    PubMed

    Chiara, David C; Dostalova, Zuzana; Jayakar, Selwyn S; Zhou, Xiaojuan; Miller, Keith W; Cohen, Jonathan B

    2012-01-31

    The γ-aminobutyric acid type A receptor (GABA(A)R) is a target for general anesthetics of diverse chemical structures, which act as positive allosteric modulators at clinical doses. Previously, in a heterogeneous mixture of GABA(A)Rs purified from bovine brain, [³H]azietomidate photolabeling of αMet-236 and βMet-286 in the αM1 and βM3 transmembrane helices identified an etomidate binding site in the GABA(A)R transmembrane domain at the interface between the β and α subunits [Li, G. D., et.al. (2006) J. Neurosci. 26, 11599-11605]. To further define GABA(A)R etomidate binding sites, we now use [³H]TDBzl-etomidate, an aryl diazirine with broader amino acid side chain reactivity than azietomidate, to photolabel purified human FLAG-α1β3 GABA(A)Rs and more extensively identify photolabeled GABA(A)R amino acids. [³H]TDBzl-etomidate photolabeled in an etomidate-inhibitable manner β3Val-290, in the β3M3 transmembrane helix, as well as α1Met-236 in α1M1, a residue photolabeled by [³H]azietomidate, while no photolabeling of amino acids in the αM2 and βM2 helices that also border the etomidate binding site was detected. The location of these photolabeled amino acids in GABA(A)R homology models derived from the recently determined structures of prokaryote (GLIC) or invertebrate (GluCl) homologues and the results of computational docking studies predict the orientation of [³H]TDBzl-etomidate bound in that site and the other amino acids contributing to this GABA(A)R intersubunit etomidate binding site. Etomidate-inhibitable photolabeling of β3Met-227 in βM1 by [³H]TDBzl-etomidate and [³H]azietomidate also provides evidence of a homologous etomidate binding site at the β3-β3 subunit interface in the α1β3 GABA(A)R. PMID:22243422

  18. Characterization of the N-Acetyl-5-neuraminic Acid-binding Site of the Extracytoplasmic Solute Receptor (SiaP) of Nontypeable Haemophilus influenzae Strain 2019

    SciTech Connect

    Johnston, Jason W.; Coussens, Nathan P.; Allen, Simon; Houtman, Jon C.D.; Turner, Keith H.; Zaleski, Anthony; Ramaswamy, S.; Gibson, Bradford W.; Apicella, Michael A.

    2012-11-14

    Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. In this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4 {angstrom} resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.

  19. Evaluation of Fe(II) oxidation at an acid mine drainage site using laboratory-scale reactors

    NASA Astrophysics Data System (ADS)

    Brown, Juliana; Burgos, William

    2010-05-01

    Acid mine drainage (AMD) is a severe environmental threat to the Appalachian region of the Eastern United States. The Susquehanna and Potomac River basins of Pennsylvania drain to the Chesapeake Bay, which is heavily polluted by acidity and metals from AMD. This study attempted to unravel the complex relationships between AMD geochemistry, microbial communities, hydrodynamic conditions, and the mineral precipitates for low-pH Fe mounds formed downstream of deep mine discharges, such as Lower Red Eyes in Somerset County, PA, USA. This site is contaminated with high concentrations of Fe (550 mg/L), Mn (115 mg/L), and other trace metals. At the site 95% of dissolved Fe(II) and 56% of total dissolved Fe is removed without treatment, across the mound, but there is no change in the concentration of trace metals. Fe(III) oxides were collected across the Red Eyes Fe mound and precipitates were analyzed by X-ray diffraction, electron microscopy and elemental analysis. Schwertmannite was the dominant mineral phase with traces of goethite. The precipitates also contained minor amounts of Al2O3, MgO,and P2O5. Laboratory flow-through reactors were constructed to quantify Fe(II) oxidation and Fe removal over time at terrace and pool depositional facies. Conditions such as residence time, number of reactors in sequence and water column height were varied to determine optimal conditions for Fe removal. Reactors with sediments collected from an upstream terrace oxidized more than 50% of dissolved Fe(II) at a ten hour residence time, while upstream pool sediments only oxidized 40% of dissolved Fe(II). Downstream terrace and pool sediments were only capable of oxidizing 25% and 20% of Fe(II), respectively. Fe(II) oxidation rates measured in the reactors were determined to be between 3.99 x 10-8and 1.94 x 10-7mol L-1s-1. The sediments were not as efficient for total dissolved Fe removal and only 25% was removed under optimal conditions. The removal efficiency for all sediments

  20. Probing structural features of Alzheimer's amyloid-β pores in bilayers using site-specific amino acid substitutions.

    PubMed

    Capone, Ricardo; Jang, Hyunbum; Kotler, Samuel A; Kagan, Bruce L; Nussinov, Ruth; Lal, Ratnesh

    2012-01-24

    A current hypothesis for the pathology of Alzheimer's disease (AD) proposes that amyloid-β (Aβ) peptides induce uncontrolled, neurotoxic ion flux across cellular membranes. The mechanism of ion flux is not fully understood because no experiment-based Aβ channel structures at atomic resolution are currently available (only a few polymorphic states have been predicted by computational models). Structural models and experimental evidence lend support to the view that the Aβ channel is an assembly of loosely associated mobile β-sheet subunits. Here, using planar lipid bilayers and molecular dynamics (MD) simulations, we show that amino acid substitutions can be used to infer which residues are essential for channel structure. We created two Aβ(1-42) peptides with point mutations: F19P and F20C. The substitution of Phe19 with Pro inhibited channel conductance. MD simulation suggests a collapsed pore of F19P channels at the lower bilayer leaflet. The kinks at the Pro residues in the pore-lining β-strands induce blockage of the solvated pore by the N-termini of the chains. The cysteine mutant is capable of forming channels, and the conductance behavior of F20C channels is similar to that of the wild type. Overall, the mutational analysis of the channel activity performed in this work tests the proposition that the channels consist of a β-sheet rich organization, with the charged/polar central strand containing the mutation sites lining the pore, and the C-terminal strands facing the hydrophobic lipid tails. A detailed understanding of channel formation and its structure should aid studies of drug design aiming to control unregulated Aβ-dependent ion fluxes. PMID:22242635

  1. Adsorption of Carbon Dioxide on Unsaturated Metal Sites in M2 (dobpdc) Frameworks with Exceptional Structural Stability and Relation between Lewis Acidity and Adsorption Enthalpy.

    PubMed

    Yoo, Ga Young; Lee, Woo Ram; Jo, Hyuna; Park, Joonho; Song, Jeong Hwa; Lim, Kwang Soo; Moon, Dohyun; Jung, Hyun; Lim, Juhyung; Han, Sang Soo; Jung, Yousung; Hong, Chang Seop

    2016-05-23

    A series of metal-organic frameworks (MOFs) M2 (dobpdc) (M=Mn, Co, Ni, Zn; H4 dobpdc=4,4'-dihydroxy-1,1'-biphenyl-3,3'-dicarboxylic acid), with a highly dense arrangement of open metal sites along hexagonal channels were prepared by microwave-assisted or simple solvothermal reactions. The activated materials were structurally expanded when guest molecules including CO2 were introduced into the pores. The Lewis acidity of the open metal sites varied in the order MnZn, as confirmed by C=O stretching bands in the IR spectra, which are related to the CO2 adsorption enthalpy. DFT calculations revealed that the high CO2 binding affinity of transition-metal-based M2 (dobpdc) is primarily attributable to the favorable charge transfer from CO2 (oxygen lone pair acting as a Lewis base) to the open metal sites (Lewis acid), while electrostatic effects, the underlying factor responsible for the particular order of binding strength observed across different transition metals, also play a role. The framework stability against water coincides with the order of Lewis acidity. In this series of MOFs, the structural stability of Ni2 (dobpdc) is exceptional; it endured in water vapor, liquid water, and in refluxing water for one month, and the solid remained intact on exposure to solutions of pH 2-13. The DFT calculations also support the experimental finding that Ni2 (dobpdc) has higher chemical stability than the other frameworks. PMID:27105924

  2. Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs

    PubMed Central

    Chen, Yong-Zi; Tang, Yu-Rong; Sheng, Zhi-Ya; Zhang, Ziding

    2008-01-01

    Background As one of the most common protein post-translational modifications, glycosylation is involved in a variety of important biological processes. Computational identification of glycosylation sites in protein sequences becomes increasingly important in the post-genomic era. A new encoding scheme was employed to improve the prediction of mucin-type O-glycosylation sites in mammalian proteins. Results A new protein bioinformatics tool, CKSAAP_OGlySite, was developed to predict mucin-type O-glycosylation serine/threonine (S/T) sites in mammalian proteins. Using the composition of k-spaced amino acid pairs (CKSAAP) based encoding scheme, the proposed method was trained and tested in a new and stringent O-glycosylation dataset with the assistance of Support Vector Machine (SVM). When the ratio of O-glycosylation to non-glycosylation sites in training datasets was set as 1:1, 10-fold cross-validation tests showed that the proposed method yielded a high accuracy of 83.1% and 81.4% in predicting O-glycosylated S and T sites, respectively. Based on the same datasets, CKSAAP_OGlySite resulted in a higher accuracy than the conventional binary encoding based method (about +5.0%). When trained and tested in 1:5 datasets, the CKSAAP encoding showed a more significant improvement than the binary encoding. We also merged the training datasets of S and T sites and integrated the prediction of S and T sites into one single predictor (i.e. S+T predictor). Either in 1:1 or 1:5 datasets, the performance of this S+T predictor was always slightly better than those predictors where S and T sites were independently predicted, suggesting that the molecular recognition of O-glycosylated S/T sites seems to be similar and the increase of the S+T predictor's accuracy may be a result of expanded training datasets. Moreover, CKSAAP_OGlySite was also shown to have better performance when benchmarked against two existing predictors. Conclusion Because of CKSAAP encoding's ability of

  3. N-Glycosylation Improves the Pepsin Resistance of Histidine Acid Phosphatase Phytases by Enhancing Their Stability at Acidic pHs and Reducing Pepsin's Accessibility to Its Cleavage Sites

    PubMed Central

    Niu, Canfang; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Wang, Yaru; Yang, Peilong

    2015-01-01

    N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin's accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed. PMID:26637601

  4. Low molecular weight (C1-C10) monocarboxylic acids, dissolved organic carbon and major inorganic ions in alpine snow pit sequence from a high mountain site, central Japan

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Matsumoto, Kohei; Tachibana, Eri; Aoki, Kazuma

    2012-12-01

    Snowpack samples were collected from a snow pit sequence (6 m in depth) at the Murodo-Daira site near the summit of Mt. Tateyama, central Japan, an outflow region of Asian dusts. The snow samples were analyzed for a homologous series of low molecular weight normal (C1-C10) and branched (iC4-iC6) monocarboxylic acids as well as aromatic (benzoic) and hydroxy (glycolic and lactic) acids, together with major inorganic ions and dissolved organic carbon (DOC). The molecular distributions of organic acids were characterized by a predominance of acetic (range 7.8-76.4 ng g-1-snow, av. 34.8 ng g-1) or formic acid (2.6-48.1 ng g-1, 27.7 ng g-1), followed by propionic acid (0.6-5.2 ng g-1, 2.8 ng g-1). Concentrations of normal organic acids generally decreased with an increase in carbon chain length, although nonanoic acid (C9) showed a maximum in the range of C5-C10. Higher concentrations were found in the snowpack samples containing dust layer. Benzoic acid (0.18-4.1 ng g-1, 1.4 ng g-1) showed positive correlation with nitrate (r = 0.70), sulfate (0.67), Na+ (0.78), Ca2+ (0.86) and Mg+ (0.75), suggesting that this aromatic acid is involved with anthropogenic sources and Asian dusts. Higher concentrations of Ca2+ and SO42- were found in the dusty snow samples. We found a weak positive correlation (r = 0.43) between formic acid and Ca2+, suggesting that gaseous formic acid may react with Asian dusts in the atmosphere during long-range transport. However, acetic acid did not show any positive correlations with major inorganic ions. Hydroxyacids (0.03-5.7 ng g-1, 1.5 ng g-1) were more abundant in the granular and dusty snow. Total monocarboxylic acids (16-130 ng g-1, 74 ng g-1) were found to account for 1-6% of DOC (270-1500 ng g-1, 630 ng g-1) in the snow samples.

  5. Energy-transfer studies of the distance between the high-affinity metal binding site and the colchicine and 8-anilino-1-naphthalenesulfonic acid binding sites on calf brain tubulin.

    PubMed

    Ward, L D; Timasheff, S N

    1988-03-01

    The high-affinity metal divalent cation Mg2+, associated with the exchangeable guanosine 5'-triphosphate (GTP) binding site (E site) on purified tubulin, has been replaced by the transition metal ion Co2+ on tubulin as well as on the tubulin-colchicine, tubulin-allocolchicine and tubulin-8-anilino-1-naphthalenesulfonic acid (tubulin-ANS) complexes. While pure native tubulin readily incorporated 0.8 atom of Co2+ per tubulin alpha-beta dimer, incorporation was reduced to 0.4 atom of Co2+ per mole of tubulin when it was complexed with colchicine, indicating that the conformational change induced in tubulin by the binding of colchicine leads to a reduced accessibility of the divalent cation binding site linked to the E site without necessarily changing the intrinsic binding constant. The fluorescence emission spectra of tubulin-bound colchicine, allocolchicine, and ANS displayed a strong overlap with the Co2+ absorption spectrum, identifying these as adequate donor-acceptor pairs. Fluorescence energy-transfer measurements were carried out between tubulin-bound colchicine (or allocolchicine) and ANS as donors and tubulin-complexed Co2+ as acceptor. It was found that the distance between the ANS and the high-affinity divalent cation binding sites is greater than 28 A, while that between the colchicine and the divalent cation binding sites is greater than 24 A.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3365404

  6. Developing palaeolimnological records of organic content (DOC and POC) using the UK Acid Water Monitoring Network sites

    NASA Astrophysics Data System (ADS)

    Russell, Fiona; Chiverrell, Richard; Boyle, John

    2016-04-01

    Monitoring programmes have shown increases in concentrations of dissolved organic matter (DOM) in the surface waters of northern and central Europe (Monteith et al. 2007), and negative impacts of the browning of river waters have been reported for fish populations (Jonsson et al. 2012; Ranaker et al. 2012) and for ecosystem services such as water treatment (Tuvendal and Elmqvist 2011). Still the exact causes of the recent browning remain uncertain, the main contenders being climate change (Evans et al. 2005) and reduced ionic strength in surface water resulting from declines in anthropogenic sulphur and sea salt deposition (Monteith et al. 2007). There is a need to better understand the pattern, drivers and trajectory of these increases in DOC and POC in both recent and longer-term (Holocene) contexts to improve the understanding of carbon cycling within lakes and their catchments. In Britain there are some ideal sites for testing whether these trends are preserved and developing methods for reconstructing organic fluxes from lake sedimentary archives. There is a suite of lakes distributed across the country, the UK Acid Waters Monitoring Network (UKAWMN) sites, which have been monitored monthly for dissolved organic carbon and other aqueous species since 1988. These 12 lakes have well studied recent and in some case whole Holocene sediment records. Here four of those lakes (Grannoch, Chon, Scoat Tarn and Cwm Mynach) are revisited, with sampling focused on the sediment-water interface and very recent sediments (approx.150 years). At Scoat Tarn (approx. 1000 years) and Llyn Mynach (11.5k years) longer records have been obtained to assess equivalent patterns through the Holocene. Analyses of the gravity cores have focused on measuring and characterising the organic content for comparison with recorded surface water DOC measurements (UKAWMN). Data from pyrolysis measurements (TGA/DSC) in an N atmosphere show that the mass loss between 330-415°C correlates well with

  7. Harnessing Lewis acidic open metal sites of metal-organic frameworks: the foremost route to achieve highly selective benzene sorption over cyclohexane.

    PubMed

    Mukherjee, Soumya; Manna, Biplab; Desai, Aamod V; Yin, Yuefeng; Krishna, Rajamani; Babarao, Ravichandar; Ghosh, Sujit K

    2016-07-01

    π-Complexation triggered Lewis acid-base interactions between open metal sites (OMS) of metal-organic frameworks (MOFs), and π-e(-) rich adsorptive benzene (Bz) is exploited to establish M-MOF-74 as the best Bz-selective MOF sorbent, marking the first report of utilizing OMS behind benzene/cyclohexane separation; a key advance from the energy-economy standpoint of industrial separation. PMID:27188914

  8. Newly identified essential amino acid residues affecting ^8-sphingolipid desaturase activity revealed by site-directed mutagenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to identify amino acid residues crucial for the enzymatic activity of ^8-sphingolipid desaturases, a sequence comparison was performed among ^8-sphingolipid desaturases and ^6-fatty acid desaturase from various plants. In addition to the known conserved cytb5 (cytochrome b5) HPGG motif and...

  9. Developing the ability to model acid-rock interactions and mineral dissolution during the RMA stimulation test performed at the Soultz-sous-Forêts EGS site, France

    NASA Astrophysics Data System (ADS)

    Portier, Sandrine; Vuataz, François D.

    2010-07-01

    The Soultz Enhanced Geothermal System (EGS) reservoir's response to chemical stimulation is assessed by numerical simulation of coupled thermo-hydraulic-chemical processes. To assess chemical interactions between host rocks and a mixture of HCl and HF as well as its potential effects on the Soultz EGS reservoir, new modelling efforts using the FRACHEM code have been initiated. This article presents the model calibration and results. Simulations consider realistic conditions with available data sets from the EGS system at Soultz. Results indicate that the predicted amount of fracture sealing minerals dissolved by injection of a mixture of acids Regular Mud Acid (RMA) was consistent with the estimated amount from the test performed on GPK4 well at Soultz EGS site. Consequently reservoir porosity and permeability can be enhanced especially near the injection well by acidizing treatment.

  10. Microbial Community Structure and Physiological Status of Different Types of Biofilms in an Acid Mine Drainage Site Determined by Phospholipid Analysis

    NASA Astrophysics Data System (ADS)

    Fang, J.

    2009-12-01

    A unique aspect of the acid mine drainage (AMD) system at the Green Valley coal mine site (GVS) in western Indiana is the abundance of biofims and biolaminates - stromatolites. Three major types of biofilms have been observed from the AMD site: bright green biofilm dominated by the acidophilic, oxygenic photosynthetic protozoan Euglena mutabilis, olive green biofilm of photosynthetic diatom belonging to the genus Nitzschia, and an olive-green to brownish-green filamentous algae-dominated community. These biofilms are either attached to hard substrata of the effluent channel, or floating at the surface of the effluent with abundant oxygen bubbles, with or without encrusted Fe precipitates. We analyzed lipids (hydrocarbons, wax esters, phospholipids, glycolipids, and neutral lipids) to determine the microbial biomass, community structure and physiological status of biofims collected from the GVS site. Distinctive lipid compositions were observed. The attached, red-crusted biofilms were characterized by abundant wax esters, monounsaturated fatty acids, whereas the floating biofilms by phytadienes, phytanol, polyunsaturated n-alkenes, polyunsaturated fatty acids. The accumulation of abundant wax esters probably reflects the readily available carbon and limitation of nutrients to the biofilm. Alternatively, the wax esters may be the biochemical relics of the anaerobic past of the Earth and the detection of these compounds has important implications for the evolution of eukaryotes and the paleo-environmental conditions on early Earth. This type of biochemical machine may have allowed early eukaryotes to survive recurrent anoxic conditions on early Earth.

  11. The reaction mechanism for the SCR process on monomer V(5+) sites and the effect of modified Brønsted acidity.

    PubMed

    Arnarson, Logi; Falsig, Hanne; Rasmussen, Søren B; Lauritsen, Jeppe V; Moses, Poul Georg

    2016-06-22

    The energetics, structures and activity of a monomeric VO3H/TiO2(001) catalyst are investigated for the selective catalytic reduction (SCR) reaction by the use of density functional theory (DFT). Furthermore we study the influences of a dopant substitute in the TiO2 support and its effects on the known properties of the SCR system such as Brønsted acidity and reducibility of vanadium. We find for the reduction part of the SCR mechanism that it involves two Ti-O-V oxygen sites. One is a hydroxyl possessing Brønsted acidity which contributes to the formation of NH4(+), while the other accepts a proton which charge stabilizes the reduced active site. In the reduction the proton is donated to the latter due to a reaction between NH3 and NO that forms a H2NNO molecule which decomposes into N2(g) and H2O(g). A dopant substitution of 10 different dopants: Si, Ge, Se, Zr, Sn, Te, Hf, V, Mo and W at each of the sites, which participate in the reaction, modifies the energetics and therefore the SCR activity. We find that Brønsted acidity is a descriptor for the SCR activity at low temperatures. Based on this descriptor we find that Zr, Hf and Sn have a positive effect as they decrease the activation energy for the SCR reaction. PMID:27297567

  12. Ligand binding site of tear lipocalin: contribution of a trigonal cluster of charged residues probed by 8-anilino-1-naphthalenesulfonic acid.

    PubMed

    Gasymov, Oktay K; Abduragimov, Adil R; Glasgow, Ben J

    2008-02-01

    Human tear lipocalin (TL) exhibits diverse functions, most of which are linked to ligand binding. To map the binding site of TL for some amphiphilic ligands, we capitalized on the hydrophobic and hydrophilic properties of 8-anilino-1-naphthalenesulfonic acid (ANS). In single Trp mutants, resonance energy transfer from Trp to ANS indicates that the naphthalene group of ANS is proximate to Leu105 in the cavity. Binding energies of TL to ANS and its analogues reveal contributions from electrostatic interactions. The sulfonate group of ANS interacts strongly with the nonconserved intracavitary residue Lys114 and less with neighboring residues His84 and Glu34. This trigonal cluster of residues may play a role in the ligand recognition site for some negatively charged ligands. Because many drugs possess sulfonate groups, the trigonal cluster-sulfonate interaction can also be exploited as a lipocalin-based drug delivery mechanism. The binding of lauric acid and its analogues shows that fatty acids assume heterogeneous orientations in the cavity of TL. Predominantly, the hydrocarbon tail is buried in the cavity of TL and the carboxyl group is oriented toward the mouth. However, TL can also interact, albeit relatively weakly, with fatty acids oriented in the opposite direction. As the major lipid binding protein of tears, the ability to accommodate fatty acids in two opposing orientations may have functional implications for TL. At the aqueous-lipid interface, fatty acids whose carboxyl groups are positioned toward the aqueous phase are available for interaction with TL that could augment stability of the tear film. PMID:18179255

  13. Extending the Diffuse Layer Model of Surface Acidity Constant Behavior: II. Estimation of Intrinsic Acidity and Electrolyte Ion Site Binding Constants

    EPA Science Inventory

    The two-pK metal oxide surface acidity constant model relies on generic mass action expressions of the form: Ka = [>SOHx-1x-2]aH+EXP(-ΔGexcess/RT)/[>SOHxX-l] where x equals 1 or 2. While all current two-pK surface complexation models require numerical estimates of "intrinsic" aci...

  14. Does formal intramolecular transfer of an acidic deuterium to a site of halogen-lithium exchange show that lithium-halogen exchange is faster than loss of the acidic deuterium. Evidence in favor of an alternative mechanism

    SciTech Connect

    Beak, P.; Musick, T.J.; Chen, C.

    1988-05-25

    Reactions in which there is formal intramolecular transfer of an acidic deuterium to a site of halogen-lithium exchange could be interpreted to show that initial halogen-lithium exchange occurs faster than loss of the acidic deuterium. However studies of the competition between halogen-metal-deuterium loss for N-deuterio-N-alkyl-o, -m-, and -p-halobenzimides are not consistent with that mechanism. They suggest an alternative in which initial loss of the acidic deuterium is followed by halogen-lithium exchange to give a dilithiated intermediate. Deuterium transfer to the site of halogen-lithium exchange then occurs by reaction of the dilithiated species intermolecularly with unreacted N-deuteriated amide. The halogen-lithium exchange is faster than complete mixing of the reactants and can occur either in an initially formed deprotonated complex or in a transient high local concentration of organolithium reagent. Evidence for both possibilities is provided. Two reactions from the literature in which halogen-lithium exchange appears to be faster than transfer of an acidic hydrogen have been reinvestigated and found to be interpretable in terms of similar sequences.

  15. Identification of Active and Spectator Sn Sites in Sn-β Following Solid-State Stannation, and Consequences for Lewis Acid Catalysis

    PubMed Central

    Hammond, Ceri; Padovan, Daniele; Al-Nayili, Abbas; Wells, Peter P; Gibson, Emma K; Dimitratos, Nikolaos

    2015-01-01

    Lewis acidic zeolites are rapidly emerging liquid-phase Lewis acid catalysts. Nevertheless, their inefficient synthesis procedure currently prohibits greater utilization and exploitation of these promising materials. Herein, we demonstrate that SnIV-containing zeolite beta can readily be prepared both selectively and extremely rapidly by solid-state incorporation (SSI) method. Through a combination of spectroscopic (XRD, UV/Vis, X-ray absorption, magic-angle spinning NMR, and diffuse reflectance infrared Fourier transform spectroscopy) studies, we unambiguously demonstrate that site-isolated, isomorphously substituted SnIV sites dominate the Sn population up to a loading of 5 wt % Sn. These sites are identical to those found in conventionally prepared Sn-beta, and result in our SSI material exhibiting identical levels of intrinsic activity (that is, turnover frequency) despite the threefold increase in Sn loading, and the extremely rapid and benign nature of our preparation methodology. We also identify the presence of spectator sites, in the form of SnIV oligomers, at higher levels of Sn loading. The consequences of this mixed population with regards to catalysis (Meerwein–Pondorf–Verley reaction and glucose isomerization) are also identified. PMID:26583051

  16. Local reactivity descriptors to predict the strength of Lewis acid sites in alkali cation-exchanged zeolites

    NASA Astrophysics Data System (ADS)

    Deka, Ramesh Ch.; Kinkar Roy, Ram; Hirao, Kimihiko

    2004-05-01

    Lewis acidity of alkali cation-exchanged zeolite is studied using local reactivity descriptors based on hard-soft acid-base (HSAB) concept. The local softness for nucleophilic attack ( sx+), local softness for electrophilic attack ( sx-) and their ratio, which is called `relative electrophilicity' ( sx+/ sx-), are calculated for the exchanged cations and Lewis acidity of the cations is found to decrease in the order: Li + > Na + > K + > Rb + > Cs +. Calculated blue shift of CO vibrational frequency (Δ ν) and interaction energy of CO molecule with alkali cation-exchanged zeolite clusters vary linearly with sx+/ sx- values.

  17. Complete amino acid sequence of the lentil trypsin-chymotrypsin inhibitor LCI-1.7 and a discussion of atypical binding sites of Bowman-Birk inhibitors.

    PubMed

    Weder, Jürgen K P; Hinkers, Sabine C

    2004-06-30

    The complete primary structure of the lentil (Lens culinaris) trypsin-chymotrypsin inhibitor LCI-1.7 was determined by conventional methods in order to find relationships between partial sequences and the difference in action against human and bovine chymotrypsin. As other Bowman-Birk type inhibitors, LCI-1.7 contained 68 amino acid residues, seven disulfide bridges, and two reactive sites, Arg16-Ser17 for trypsin and Tyr42-Ser43 for chymotrypsin. Evaluation of sequence homologies showed that it belonged to the group III Bowman-Birk inhibitors. The atypical additional binding site of LCI-1.7 for human chymotrypsin was discussed and compared with such binding sites of two other Bowman-Birk inhibitors, the Bowman-Birk soybean proteinase inhibitor BBI, and the lima bean proteinase inhibitor LBI I, for human and bovine trypsin and chymotrypsin. A concept to reduce the action of these inhibitors against human enzymes by genetic engineering was proposed. PMID:15212472

  18. Multiple propofol-binding sites in a γ-aminobutyric acid type A receptor (GABAAR) identified using a photoreactive propofol analog.

    PubMed

    Jayakar, Selwyn S; Zhou, Xiaojuan; Chiara, David C; Dostalova, Zuzana; Savechenkov, Pavel Y; Bruzik, Karol S; Dailey, William P; Miller, Keith W; Eckenhoff, Roderic G; Cohen, Jonathan B

    2014-10-01

    Propofol acts as a positive allosteric modulator of γ-aminobutyric acid type A receptors (GABAARs), an interaction necessary for its anesthetic potency in vivo as a general anesthetic. Identifying the location of propofol-binding sites is necessary to understand its mechanism of GABAAR modulation. [(3)H]2-(3-Methyl-3H-diaziren-3-yl)ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate (azietomidate) and R-[(3)H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), photoreactive analogs of 2-ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate (etomidate) and mephobarbital, respectively, have identified two homologous but pharmacologically distinct classes of intersubunit-binding sites for general anesthetics in the GABAAR transmembrane domain. Here, we use a photoreactive analog of propofol (2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol ([(3)H]AziPm)) to identify propofol-binding sites in heterologously expressed human α1β3 GABAARs. Propofol, AziPm, etomidate, and R-mTFD-MPAB each inhibited [(3)H]AziPm photoincorporation into GABAAR subunits maximally by ∼ 50%. When the amino acids photolabeled by [(3)H]AziPm were identified by protein microsequencing, we found propofol-inhibitable photolabeling of amino acids in the β3-α1 subunit interface (β3Met-286 in β3M3 and α1Met-236 in α1M1), previously photolabeled by [(3)H]azietomidate, and α1Ile-239, located one helical turn below α1Met-236. There was also propofol-inhibitable [(3)H]AziPm photolabeling of β3Met-227 in βM1, the amino acid in the α1-β3 subunit interface photolabeled by R-[(3)H]mTFD-MPAB. The propofol-inhibitable [(3)H]AziPm photolabeling in the GABAAR β3 subunit in conjunction with the concentration dependence of inhibition of that photolabeling by etomidate or R-mTFD-MPAB also establish that each anesthetic binds to the homologous site at the β3-β3 subunit interface. These results establish that AziPm as well as propofol bind to the homologous

  19. Aspartic Acid 397 in Subunit B of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae Forms Part of a Sodium-binding Site, Is Involved in Cation Selectivity, and Affects Cation-binding Site Cooperativity

    PubMed Central

    Shea, Michael E.; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

    2013-01-01

    The Na+-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC). PMID:24030824

  20. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site.

    PubMed

    Hardwicke, Mary Ann; Rendina, Alan R; Williams, Shawn P; Moore, Michael L; Wang, Liping; Krueger, Julie A; Plant, Ramona N; Totoritis, Rachel D; Zhang, Guofeng; Briand, Jacques; Burkhart, William A; Brown, Kristin K; Parrish, Cynthia A

    2014-09-01

    Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the β-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor. PMID:25086508

  1. Importance of Hydrogen-Bonding Sites in the Chiral Recognition Mechanism Between Racemic D3 Terbium(III) Complexes and Amino Acids

    PubMed Central

    MOUSSA, AHMED; PHAM, CHRISTINE; BOMMIREDDY, SHRUTHI; MULLER, GILLES

    2009-01-01

    The perturbation of the racemic equilibrium of luminescent D3 terbium(III) complexes with chelidamic acid (CDA), a hydroxylated derivative of 2,6-pyridine-dicarboxylic acid (DPA), by added chiral biomolecules such as l-amino acids has been studied using circularly polarized luminescence and 13C NMR spectroscopy. It is shown in this work that the chiral-induced equilibrium shift of [Tb(CDA)3]6− by l-amino acids (i.e. l-proline or l-arginine) was largely influenced by the hydrogen-bonding networks formed between the ligand interface of racemic [Tb(CDA)3]6− and these added chiral agents. The capping of potential hydrogen-bonding sites by acetylation in l-proline led to a ∼100-fold drop in the induced optical activity of the [Tb(CDA)3]6−:N-acetyl-l-proline system. This result suggested that the hydrogen-bonding networks serve as the basis for further noncovalent discriminatory interactions between racemic [Tb(CDA)3]6− and added l-amino acids. PMID:18698640

  2. Changes in the Cytoplasmic Composition of Amino Acids and Proteins Observed in Staphylococcus aureus during Growth under Variable Growth Conditions Representative of the Human Wound Site

    PubMed Central

    Alreshidi, Mousa M.; Dunstan, R. Hugh; Gottfries, Johan; Macdonald, Margaret M.; Crompton, Marcus J.; Ang, Ching-Seng; Williamson, Nicholas A.; Roberts, Tim K.

    2016-01-01

    Staphylococcus aureus is an opportunistic pathogen responsible for a high proportion of nosocomial infections. This study was conducted to assess the bacterial responses in the cytoplasmic composition of amino acids and ribosomal proteins under various environmental conditions designed to mimic those on the human skin or within a wound site: pH6-8, temperature 35–37°C, and additional 0–5% NaCl. It was found that each set of environmental conditions elicited substantial adjustments in cytoplasmic levels of glutamic acid, aspartic acid, proline, alanine and glycine (P< 0.05). These alterations generated characteristic amino acid profiles assessed by principle component analysis (PCA). Substantial alterations in cytoplasmic amino acid and protein composition occurred during growth under conditions of higher salinity stress implemented via additional levels of NaCl in the growth medium. The cells responded to additional NaCl at pH 6 by reducing levels of ribosomal proteins, whereas at pH 8 there was an upregulation of ribosomal proteins compared with the reference control. The levels of two ribosomal proteins, L32 and S19, remained constant across all experimental conditions. The data supported the hypothesis that the bacterium was continually responding to the dynamic environment by modifying the proteome and optimising metabolic homeostasis. PMID:27442022

  3. Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1,3-diols via Prins condensation and hydrolysis reactions.

    PubMed

    Wang, Yehong; Wang, Feng; Song, Qi; Xin, Qin; Xu, Shutao; Xu, Jie

    2013-01-30

    The use of a heterogeneous Lewis acid catalyst, which is insoluble and easily separable during the reaction, is a promising option for hydrolysis reactions from both environmental and practical viewpoints. In this study, ceria showed excellent catalytic activity in the hydrolysis of 4-methyl-1,3-dioxane to 1,3-butanediol in 95% yield and in the one-pot synthesis of 1,3-butanediol from propylene and formaldehyde via Prins condensation and hydrolysis reactions in an overall yield of 60%. In-depth investigations revealed that ceria is a water-tolerant Lewis acid catalyst, which has seldom been reported previously. The ceria catalysts showed rather unusual high activity in hydrolysis, with a turnover number (TON) of 260, which is rather high for bulk oxide catalysts, whose TONs are usually less than 100. Our conclusion that ceria functions as a Lewis acid catalyst in hydrolysis reactions is firmly supported by thorough characterizations with IR and Raman spectroscopy, acidity measurements with IR and (31)P magic-angle-spinning NMR spectroscopy, Na(+)/H(+) exchange tests, analyses using the in situ active-site capping method, and isotope-labeling studies. A relationship between surface vacancy sites and catalytic activity has been established. CeO(2)(111) has been confirmed to be the catalytically active crystalline facet for hydrolysis. Water has been found to be associatively adsorbed on oxygen vacancy sites with medium strength, which does not lead to water dissociation to form stable hydroxides. This explains why the ceria catalyst is water-tolerant. PMID:23228093

  4. An efficient and heterogeneous recyclable silicotungstic acid with modified acid sites as a catalyst for conversion of fructose and sucrose into 5-hydroxymethylfurfural in superheated water.

    PubMed

    Jadhav, Arvind H; Kim, Hern; Hwang, In Taek

    2013-03-01

    Acidity modified silver exchanged silicotungstic acid (AgSTA) catalyst was prepared and characterized by X-ray diffraction, FT-IR spectroscopy, Raman spectroscopy, FT-IR pyridine adsorption, SEM imaging, EDX mapping, and antimicrobial activity was also tested. The catalytic activity was evaluated for the dehydration of fructose and sucrose in superheated water. As a result, 98% conversion of fructose with 85.7% HMF yield and 87.4% HMF selectivity in 120 min reaction time at 120 °C reaction temperature using 10 wt.% of AgSTA catalyst was achieved. While, 92% sucrose conversion with 62.5% of HMF yield was obtained from sucrose at uniform condition in 160 min. The effect of reaction parameters, such as reaction temperature, time, catalyst dosage, and effect acidity on HMF yield was also investigated. The AgSTA catalyst was separated from the reaction mixture by filtration process at end of the reaction and reused eight times without loss of catalytic activity. PMID:23435221

  5. Active-Site Engineering of ω-Transaminase for Production of Unnatural Amino Acids Carrying a Side Chain Bulkier than an Ethyl Substituent.

    PubMed

    Han, Sang-Woo; Park, Eul-Soo; Dong, Joo-Young; Shin, Jong-Shik

    2015-10-01

    ω-Transaminase (ω-TA) is a promising enzyme for use in the production of unnatural amino acids from keto acids using cheap amino donors such as isopropylamine. The small substrate-binding pocket of most ω-TAs permits entry of substituents no larger than an ethyl group, which presents a significant challenge to the preparation of structurally diverse unnatural amino acids. Here we report on the engineering of an (S)-selective ω-TA from Ochrobactrum anthropi (OATA) to reduce the steric constraint and thereby allow the small pocket to readily accept bulky substituents. On the basis of a docking model in which L-alanine was used as a ligand, nine active-site residues were selected for alanine scanning mutagenesis. Among the resulting variants, an L57A variant showed dramatic activity improvements in activity for α-keto acids and α-amino acids carrying substituents whose bulk is up to that of an n-butyl substituent (e.g., 48- and 56-fold increases in activity for 2-oxopentanoic acid and L-norvaline, respectively). An L57G mutation also relieved the steric constraint but did so much less than the L57A mutation did. In contrast, an L57V substitution failed to induce the improvements in activity for bulky substrates. Molecular modeling suggested that the alanine substitution of L57, located in a large pocket, induces an altered binding orientation of an α-carboxyl group and thereby provides more room to the small pocket. The synthetic utility of the L57A variant was demonstrated by carrying out the production of optically pure L- and D-norvaline (i.e., enantiomeric excess [ee]>99%) by asymmetric amination of 2-oxopantanoic acid and kinetic resolution of racemic norvaline, respectively. PMID:26231640

  6. Active-Site Engineering of ω-Transaminase for Production of Unnatural Amino Acids Carrying a Side Chain Bulkier than an Ethyl Substituent

    PubMed Central

    Han, Sang-Woo; Park, Eul-Soo; Dong, Joo-Young

    2015-01-01

    ω-Transaminase (ω-TA) is a promising enzyme for use in the production of unnatural amino acids from keto acids using cheap amino donors such as isopropylamine. The small substrate-binding pocket of most ω-TAs permits entry of substituents no larger than an ethyl group, which presents a significant challenge to the preparation of structurally diverse unnatural amino acids. Here we report on the engineering of an (S)-selective ω-TA from Ochrobactrum anthropi (OATA) to reduce the steric constraint and thereby allow the small pocket to readily accept bulky substituents. On the basis of a docking model in which l-alanine was used as a ligand, nine active-site residues were selected for alanine scanning mutagenesis. Among the resulting variants, an L57A variant showed dramatic activity improvements in activity for α-keto acids and α-amino acids carrying substituents whose bulk is up to that of an n-butyl substituent (e.g., 48- and 56-fold increases in activity for 2-oxopentanoic acid and l-norvaline, respectively). An L57G mutation also relieved the steric constraint but did so much less than the L57A mutation did. In contrast, an L57V substitution failed to induce the improvements in activity for bulky substrates. Molecular modeling suggested that the alanine substitution of L57, located in a large pocket, induces an altered binding orientation of an α-carboxyl group and thereby provides more room to the small pocket. The synthetic utility of the L57A variant was demonstrated by carrying out the production of optically pure l- and d-norvaline (i.e., enantiomeric excess [ee] > 99%) by asymmetric amination of 2-oxopantanoic acid and kinetic resolution of racemic norvaline, respectively. PMID:26231640

  7. Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells

    PubMed Central

    2014-01-01

    Background The hydrogel based system is found to be rarely reported for the delivery of hydrophobic drug due to the incompatibility of hydrophilicity of the polymer network and the hydrophobicity of drug. This problem can be solved by preparing semi-interpenetrating network of cross-linked polymer for tuning the hydrophilicity so as to entrap the hydrophobic drugs. The current study is to develop a folic acid conjugated cross-linked pH sensitive, biocompatible polymeric hydrogel to achieve a site specific drug delivery. For that, we have synthesized a folic acid conjugated PEG cross-linked acrylic polymer (FA-CLAP) hydrogel and investigated its loading and release of curcumin. The formed polymer hydrogel was then conjugated with folic acid for the site specific delivery of curcumin to cancer cells and then further characterized and conducted the cell uptake and cytotoxicity studies on human cervical cancer cell lines (HeLa). Results In this study, we synthesized folic acid conjugated cross-linked acrylic hydrogel for the delivery of hydrophobic drugs to the cancer site. Poly (ethyleneglycol) (PEG) diacrylate cross-linked acrylic polymer (PAA) was prepared via inverse emulsion polymerization technique and later conjugated it with folic acid (FA-CLAP). Hydrophobic drug curcumin is entrapped into it and investigated the entrapment efficiency. Characterization of synthesized hydogel was done by using Fourier Transform-Infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC). Polymerization and folate conjugation was confirmed by FT-IR spectroscopy. The release kinetics of drug from the entrapped form was studied which showed initial burst release followed by sustained release due to swelling and increased cross-linking. In vitro cytotoxicity and cell uptake studies were conducted in human cervical cancer (HeLa) cell lines. Conclusions Results showed that curcumin entrapped folate conjugated cross-linked acrylic

  8. Site-specific solvent exposure analysis of a membrane protein using unnatural amino acids and {sup 19}F nuclear magnetic resonance

    SciTech Connect

    Shi, Pan; Li, Dong; Chen, Hongwei; Xiong, Ying; Tian, Changlin

    2011-10-22

    Highlights: {yields} Solvent isotope shift analysis of {sup 19}F-tfmF in different H{sub 2}O/D{sub 2}O molar ratio. {yields} Correlation between solvent isotope shift of {sup 19}F-spins and solvent exposure analysis. {yields} Solvent exposure analysis of membrane proteins. -- Abstract: Membrane proteins play an essential role in cellular metabolism, transportation and signal transduction across cell membranes. The scarcity of membrane protein structures has thus far prevented a full understanding of their molecular mechanisms. Preliminary topology studies and residue solvent exposure analysis have the potential to provide valuable information on membrane proteins of unknown structure. Here, a {sup 19}F-containing unnatural amino acid (trimethylfluoro-phenylalanine, tfmF) was applied to accomplish site-specific {sup 19}F spin incorporation at different sites in diacylglycerol kinase (DAGK, an Escherichia coli membrane protein) for site-specific solvent exposure analysis. Due to isotope effect on {sup 19}F spins, a standard curve for {sup 19}F-tfmF chemical shifts was drawn for varying solvent H{sub 2}O/D{sub 2}O ratios. Further site-specific {sup 19}F solvent isotope shift analysis was conducted for DAGK to distinguish residues in water-soluble loops, interfacial areas or hydrophobic membrane regions. This site-specific solvent exposure analysis method could be applied for further topological analysis of other membrane proteins.

  9. Discrimination between activators and nonactivators of the alternative pathway of complement: Regulation via a sialic acid/polyanion binding site on factor H

    SciTech Connect

    Meri, S.; Pangburn, M.K. )

    1990-05-01

    The alternative complement pathway is capable of discriminating human cells and tissues from a wide variety of potential pathogens. It has been recently demonstrated that attachment of complement component C3b to activator-derived molecules restricts inactivation of C3b by factors H and I in a manner similar to activator surfaces. It is now shown that restriction is reversed by certain soluble polyanions that mimic the effects of sialic acid and glycosaminoglycans on human cells and tissues. Fluid-phase polyanions enhanced binding of factor H to C3b attached to activating particles, indicating that the effect resulted from increased affinity between C3b and factor H. The enhancement was specific for activator-bound C3b since no enhancement was observed on nonactivating particles. While several polyanions could cause this effect, some polyanions could not, indicating specificity. The active polyanions also inhibited lysis of cells via the alternative pathway. The binding site for sialic acid appears to reside on factor H, since factor H bound to heparin-agarose and to sialic acid-bearing fetuinagarose, whereas C3b bound to neither under the same conditions. These observation suggest that occupation of a specific site on factor H by polyanions induces an increase in the C3b-H affinity, resulting in discrimination of host cells and tissues from alternative pathway-activating foreign cells.

  10. Mutation of Arg-115 of human class III alcohol dehydrogenase: a binding site required for formaldehyde dehydrogenase activity and fatty acid activation.

    PubMed Central

    Engeland, K; Höög, J O; Holmquist, B; Estonius, M; Jörnvall, H; Vallee, B L

    1993-01-01

    The origin of the fatty acid activation and formaldehyde dehydrogenase activity that distinguishes human class III alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) from all other alcohol dehydrogenases has been examined by site-directed mutagenesis of its Arg-115 residue. The Ala- and Asp-115 mutant proteins were expressed in Escherichia coli and purified by affinity chromatography and ion-exchange HPLC. The activities of the recombinant native and mutant enzymes toward ethanol are essentially identical, but mutagenesis greatly decreases the kcat/Km values for glutathione-dependent formaldehyde oxidation. The catalytic efficiency for the Asp variant is < 0.1% that of the unmutated enzyme, due to both a higher Km and a lower kcat value. As with the native enzyme, neither mutant can oxidize methanol, be saturated by ethanol, or be inhibited by 4-methylpyrazole; i.e., they retain these class III characteristics. In contrast, however, their activation by fatty acids, another characteristic unique to class III alcohol dehydrogenase, is markedly attenuated. The Ala mutant is activated only slightly, but the Asp mutant is not activated at all. The results strongly indicate that Arg-115 in class III alcohol dehydrogenase is a component of the binding site for activating fatty acids and is critical for the binding of S-hydroxymethylglutathione in glutathione-dependent formaldehyde dehydrogenase activity. PMID:8460164

  11. Acidic episodes and surface-water chemistry: a comparison of northeast and southeast study sites. Project report

    SciTech Connect

    Ford, D.E.; Malcom, J.T.; Murdoch, P.S.; Olem, H.; Witt, E.C.

    1987-05-01

    Much of the emphasis in the National Acid Precipitation Assessment Program (NAPAP) has been on historical or long-term trends in surface-water acidification. Short-term acidic episodes, however, also might have significant adverse effects on aquatic ecosystems. The U.S. EPA is presently designing an Episodic Response Project to investigate the regional extent, frequency, duration and magnitude of acidic episodes. The studies discussed in the report, however, were conducted under NAPAP Task Group E2-Aquatic Effects. A total of four episodic studies were conducted in the Catskill Mountains of New York (Murdoch, USGS), Laurel Hills, PA (Witt and Barker, USGS), Southern Blue Ridge Province, NC, TN (Olem, TVA), and Ouachita Mountains, AR (Nix et al., Ouachita Baptist University).

  12. A single amino acid change, Q114R, in the cleavage-site sequence of Newcastle disease virus fusion protein attenuates viral replication and pathogenicity.

    PubMed

    Samal, Sweety; Kumar, Sachin; Khattar, Sunil K; Samal, Siba K

    2011-10-01

    A key determinant of Newcastle disease virus (NDV) virulence is the amino acid sequence at the fusion (F) protein cleavage site. The NDV F protein is synthesized as an inactive precursor, F(0), and is activated by proteolytic cleavage between amino acids 116 and 117 to produce two disulfide-linked subunits, F(1) and F(2). The consensus sequence of the F protein cleavage site of virulent [(112)(R/K)-R-Q-(R/K)-R↓F-I(118)] and avirulent [(112)(G/E)-(K/R)-Q-(G/E)-R↓L-I(118)] strains contains a conserved glutamine residue at position 114. Recently, some NDV strains from Africa and Madagascar were isolated from healthy birds and have been reported to contain five basic residues (R-R-R-K-R↓F-I/V or R-R-R-R-R↓F-I/V) at the F protein cleavage site. In this study, we have evaluated the role of this conserved glutamine residue in the replication and pathogenicity of NDV by using the moderately pathogenic Beaudette C strain and by making Q114R, K115R and I118V mutants of the F protein in this strain. Our results showed that changing the glutamine to a basic arginine residue reduced viral replication and attenuated the pathogenicity of the virus in chickens. The pathogenicity was further reduced when the isoleucine at position 118 was substituted for valine. PMID:21677091

  13. Comparison of methods for acid quantification: impact of resist components on acid-generating efficiency

    NASA Astrophysics Data System (ADS)

    Cameron, James F.; Fradkin, Leslie; Moore, Kathryn; Pohlers, Gerd

    2000-06-01

    Chemically amplified deep UV (CA-DUV) positive resists are the enabling materials for manufacture of devices at and below 0.18 micrometer design rules in the semiconductor industry. CA-DUV resists are typically based on a combination of an acid labile polymer and a photoacid generator (PAG). Upon UV exposure, a catalytic amount of a strong Bronsted acid is released and is subsequently used in a post-exposure bake step to deprotect the acid labile polymer. Deprotection transforms the acid labile polymer into a base soluble polymer and ultimately enables positive tone image development in dilute aqueous base. As CA-DUV resist systems continue to mature and are used in increasingly demanding situations, it is critical to develop a fundamental understanding of how robust these materials are. One of the most important factors to quantify is how much acid is photogenerated in these systems at key exposure doses. For the purpose of quantifying photoacid generation several methods have been devised. These include spectrophotometric methods, ion conductivity methods and most recently an acid-base type titration similar to the standard addition method. This paper compares many of these techniques. First, comparisons between the most commonly used acid sensitive dye, tetrabromophenol blue sodium salt (TBPB) and a less common acid sensitive dye, Rhodamine B base (RB) are made in several resist systems. Second, the novel acid-base type titration based on the standard addition method is compared to the spectrophotometric titration method. During these studies, the make up of the resist system is probed as follows: the photoacid generator and resist additives are varied to understand the impact of each of these resist components on the acid generation process.

  14. Potential use of fatty acid profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability of collection site

    PubMed Central

    Ricardo, Fernando; Pimentel, Tânia; Moreira, Ana S. P.; Rey, Felisa; Coimbra, Manuel A.; Rosário Domingues, M.; Domingues, Pedro; Costa Leal, Miguel; Calado, Ricardo

    2015-01-01

    Geographic traceability of seafood is key for controlling its quality and safeguarding consumers’ interest. The present study assessed if the fatty acid (FA) profile of the adductor muscle (AM) of fresh cockles (Cerastoderma edule) can be used to discriminate the origin of specimens collected in different bivalve capture/production areas legally defined within a coastal lagoon. Results suggest that this biochemical approach holds the potential to trace sampling locations with a spatial resolution <10 Km, even for areas with identical classification for bivalve production. Cockles further away from the inlet, i.e. in areas exposed to a higher saline variation, exhibited lower levels of saturated fatty acids, which are key for stabilizing the bilayer structure of cell membranes, and a higher percentage of polyunsaturated fatty acids, which enhance bilayer fluidity. Results suggest that the structural nature of the lipids present in the AM provides a stable fatty acid signature and holds potential for tracing the origin of bivalves to their capture/production areas. PMID:26084395

  15. Potential use of fatty acid profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability of collection site.

    PubMed

    Ricardo, Fernando; Pimentel, Tânia; Moreira, Ana S P; Rey, Felisa; Coimbra, Manuel A; Rosário Domingues, M; Domingues, Pedro; Costa Leal, Miguel; Calado, Ricardo

    2015-01-01

    Geographic traceability of seafood is key for controlling its quality and safeguarding consumers' interest. The present study assessed if the fatty acid (FA) profile of the adductor muscle (AM) of fresh cockles (Cerastoderma edule) can be used to discriminate the origin of specimens collected in different bivalve capture/production areas legally defined within a coastal lagoon. Results suggest that this biochemical approach holds the potential to trace sampling locations with a spatial resolution <10 Km, even for areas with identical classification for bivalve production. Cockles further away from the inlet, i.e. in areas exposed to a higher saline variation, exhibited lower levels of saturated fatty acids, which are key for stabilizing the bilayer structure of cell membranes, and a higher percentage of polyunsaturated fatty acids, which enhance bilayer fluidity. Results suggest that the structural nature of the lipids present in the AM provides a stable fatty acid signature and holds potential for tracing the origin of bivalves to their capture/production areas. PMID:26084395

  16. Non-coding nucleotides and amino acids near the active site regulate peptide deformylase expression and inhibitor susceptibility in Chlamydia trachomatis.

    PubMed

    Bao, Xiaofeng; Pachikara, Niseema D; Oey, Christopher B; Balakrishnan, Amit; Westblade, Lars F; Tan, Ming; Chase, Theodore; Nickels, Bryce E; Fan, Huizhou

    2011-09-01

    Chlamydia trachomatis, an obligate intracellular bacterium, is a highly prevalent human pathogen. Hydroxamic-acid-based matrix metalloprotease inhibitors can effectively inhibit the pathogen both in vitro and in vivo, and have exhibited therapeutic potential. Here, we provide genome sequencing data indicating that peptide deformylase (PDF) is the sole target of the inhibitors in this organism. We further report molecular mechanisms that control chlamydial PDF (cPDF) expression and inhibition efficiency. In particular, we identify the σ⁶⁶-dependent promoter that controls cPDF gene expression and demonstrate that point mutations in this promoter lead to resistance by increasing cPDF transcription. Furthermore, we show that substitution of two amino acids near the active site of the enzyme alters enzyme kinetics and protein stability. PMID:21719536

  17. MERCURY-NITRITE-RHODIUM-RUTHENIUM INTERACTIONS IN NOBLE METAL CATALYZED HYDROGEN GENERATION FROM FORMIC ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136C

    SciTech Connect

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J; Stone, M.

    2009-09-02

    Chemical pre-treatment of radioactive waste at the Savannah River Site is performed to prepare the waste for vitrification into a stable waste glass form. During pre-treatment, compounds in the waste become catalytically active. Mercury, rhodium, and palladium become active for nitrite destruction by formic acid, while rhodium and ruthenium become active for catalytic conversion of formic acid into hydrogen and carbon dioxide. Nitrite ion is present during the maximum activity of rhodium, but is consumed prior to the activation of ruthenium. Catalytic hydrogen generation during pre-treatment can exceed radiolytic hydrogen generation by several orders of magnitude. Palladium and mercury impact the maximum catalytic hydrogen generation rates of rhodium and ruthenium by altering the kinetics of nitrite ion decomposition. New data are presented that illustrate the interactions of these various species.

  18. Hydroxamic acid interactions with solvated cerium hydroxides in the flotation of monazite and bastnäsite-Experiments and DFT study

    NASA Astrophysics Data System (ADS)

    Sarvaramini, A.; Azizi, D.; Larachi, F.

    2016-11-01

    Density functional theory (DFT) simulations and experiments were performed to clarify the interaction mechanisms between hydroxamic acid collectors and cerium hydroxides during the flotation of bastnäsite and monazite minerals. These minerals showed considerable floatability at moderately alkaline pH which was related to the adsorption of hydroxamic acids on their surfaces as confirmed by vibrational spectroscopic and zeta potential measurements. DFT simulations showed that at moderately alkaline pH, the interactions between solvated Ce(OH)2+ and Ce(OH)2+ and heptyl-hydroxamic acid (HHA) anions resulted in the formation of, respectively, [Ce(OH)(HHA)x(H2O)y]2-x (x[y = ] = 1[6],2[3],3[1]) and [Ce(OH)2(HHA)x(H2O)y]1-x (x[y = ] = 1[5],2[1],3[0]) complexes. The collector anions were found to interact directly through formation of two covalent bonds between their two polar-head oxygen atoms and cerium in the hydroxide complexes. However, formation of such new bonds resulted in breakage of a few covalent/electrostatic bonds between cerium and water molecules initially present in the first hydration shell of the rare-earth metal cation. Building up in the electric double layer of the semi-soluble minerals, these complexes, and by extension, those from other rare-earth elements belonging to monazite and bastnäsite, are speculated to play a role in the interactions between rare-earth minerals and hydroxamic acid collectors.

  19. Directing Group in Decarboxylative Cross-Coupling: Copper-Catalyzed Site-Selective C-N Bond Formation from Nonactivated Aliphatic Carboxylic Acids.

    PubMed

    Liu, Zhao-Jing; Lu, Xi; Wang, Guan; Li, Lei; Jiang, Wei-Tao; Wang, Yu-Dong; Xiao, Bin; Fu, Yao

    2016-08-01

    Copper-catalyzed directed decarboxylative amination of nonactivated aliphatic carboxylic acids is described. This intramolecular C-N bond formation reaction provides efficient access to the synthesis of pyrrolidine and piperidine derivatives as well as the modification of complex natural products. Moreover, this reaction presents excellent site-selectivity in the C-N bond formation step through the use of directing group. Our work can be considered as a big step toward controllable radical decarboxylative carbon-heteroatom cross-coupling. PMID:27439145

  20. Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: Gas/particle distribution and possible sampling artifacts

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Bilde, Merete; Aalto, Pasi P.; Petäjä, Tuukka; Glasius, Marianne

    2016-04-01

    Carboxylic acids and organosulfates comprise an important fraction of atmospheric secondary organic aerosols formed from both anthropogenic and biogenic precursors. The partitioning of these compounds between the gas and particle phase is still unclear and further research is warranted to better understand the abundance and effect of organic acids and organosulfates on the formation and properties of atmospheric aerosols. This work compares atmospheric aerosols collected at an urban and a boreal forest site using two side-by-side sampling systems; a high volume sampler (HVS) and a low volume (LVS) denuder/filter sampling system allowing for separate collection of gas- and particle-phase organics. All particle filters and denuder samples were collected at H.C. Andersen Boulevard (HCAB), Copenhagen, Denmark in the summer of 2010, and at the remote boreal forest site at Hyytiälä forestry field station in Finland in the summer of 2012. The chemical composition of gas- and particle-phase secondary organic aerosol was investigated by ultra-high performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOFMS), with a focus on carboxylic acids and organosulfates. Results show gas-phase concentrations higher than those observed in the particle phase by a factor of 5-6 in HCAB 2010 and 50-80 in Hyytiälä 2012. Although abundant in the particle phase, no organosulfates were detected in the gas phase at either site. Through a comparison of samples collected by the HVS and the LVS denuder/filter sampling system we evaluate the potential artifacts associated with sampling of atmospheric aerosols. Such comparison shows that particle phase concentrations of semi-volatile organic acids obtained from the filters collected by HVS are more than two times higher than concentrations obtained from filters collected using LVS denuder/filter system. In most cases, higher concentrations of organosulfates are observed in particles

  1. The dapE-encoded N-succinyl-L,L-Diaminopimelic Acid Desuccinylase from Haemophilus influenzae Contains two Active Site Histidine Residues

    PubMed Central

    Gillner, Danuta M.; Bienvenue, David L.; Nocek, Boguslaw P.; Joachimiak, Andrzej; Zachary, Vincentos; Bennett, Brian; Holz, Richard C.

    2009-01-01

    The catalytic and structural properties of the H67A and H349A altered dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) from H. influenzae were investigated. Based on sequence alignment with CPG2 both H67 and H349 were predicted to be Zn(II) ligands. Catalytic activity was observed for the H67A altered DapE enzyme which exhibited kcat = 1.5 ± 0.5 sec−1 and Km = 1.4 ± 0.3 mM. No catalytic activity was observed for H349A under the experimental conditions used. The EPR and electronic absorption data indicate that the Co(II) ion bound to H349A-DapE is analogous to WT DapE after the addition of a single Co(II) ion. The addition of one equivalent of Co(II) to H67A altered DapE provides spectra that are very different from the first Co(II) binding site of the WT enzyme, but similar to the second binding site. The EPR and electronic absorption data, in conjunction with the kinetic data, are consistent with the assignment of H67 and H349 as active site metal ligands for the DapE from H. influenzae. Furthermore, the data suggest that H67 is a ligand in the first metal binding site while H349 resides in the second metal binding site. A three-dimensional homology structure of the DapE from H. influenzae was generated using the X-ray crystal structure of the DapE from N. meningitidis as a template and superimposed on the structure of AAP. This homology structure confirms the assignment of H67 and H349 as active site ligands. The superimposition of the homology model of DapE with the dizinc(II) structure of AAP indicates that within 4.0 Å of the Zn(II) binding sites of AAP, all of the amino acid residues of DapE are nearly identical. PMID:18712420

  2. Peptide Synthesis through Cell-Free Expression of Fusion Proteins Incorporating Modified Amino Acids as Latent Cleavage Sites for Peptide Release.

    PubMed

    Liutkus, Mantas; Fraser, Samuel A; Caron, Karine; Stigers, Dannon J; Easton, Christopher J

    2016-05-17

    Chlorinated analogues of Leu and Ile are incorporated during cell-free expression of peptides fused to protein, by exploiting the promiscuity of the natural biosynthetic machinery. They then act as sites for clean and efficient release of the peptides simply by brief heat treatment. Dehydro analogues of Leu and Ile are similarly incorporated as latent sites for peptide release through treatment with iodine under cold conditions. These protocols complement enzyme-catalyzed methods and have been used to prepare calcitonin, gastrin-releasing peptide, cholecystokinin-7, and prolactin-releasing peptide prohormones, as well as analogues substituted with unusual amino acids, thus illustrating their practical utility as alternatives to more traditional chemical peptide synthesis. PMID:26918308

  3. Mixed-Metal-Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in High-Performance Lithium-Sulfur Batteries.

    PubMed

    Wang, Ziqi; Wang, Buxue; Yang, Yu; Cui, Yuanjing; Wang, Zhiyu; Chen, Banglin; Qian, Guodong

    2015-09-23

    The mixed-metal-organic framework approach and a representative zirconium-metalloporphyrin framework (MOF-525) have been developed to create novel sulfur hosts and Li-S batteries. The different local environments at the centers of the porphyrin moieties in a series of MMOFs-MOF-525(2H), MOF-525(FeCl), and MOF-525(Cu)-have led to their different behaviors for the confinement of sulfur and thus Li-S batteries. The unique structure of MOF-525(Cu) has enabled each Cu(2+) site to offer two Lewis acidic sites, featuring it as a very powerful MOF host for the inclusion of sulfur and polysulfides. The S@MOF-525(Cu) cathode has demonstrated the best performance among all reported sulfur/MOFs composite cathode materials, with a reversible capacity of about 700 mAh/g at 0.5 C after 200 cycles. PMID:26323942

  4. Dual Mode Fluorophore-Doped Nickel Nitrilotriacetic Acid-Modified Silica Nanoparticles Combine Histidine-Tagged Protein Purification with Site-Specific Fluorophore Labeling

    PubMed Central

    Kim, Sung Hoon; Jeyakumar, M.; Katzenellenbogen, John A.

    2008-01-01

    We present the first example of a fluorophore-doped nickel chelate surface- modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700–900 TMRs per ca. 23-nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni+2. Silica-embedded TMR retains very high quantum yield, is resistant to quenching by buffer components and is modestly quenched and only to a certain depth (ca. 2 nm) by surface-attached Ni+2. When exposed to a bacterial lysate containing estrogen receptor α ligand binding domain (ERα) as a minor component, these beads showed very high specificity binding, enabling protein purification in one step. The capacity and specificity of these beads for binding a his-tagged protein were characterized by electrophoresis, radiometric counting, and MALDI-TOF MS. ERα, bound to TMR-SiO2-NTA-Ni++ beads in a site-specific manner, exhibited good activity for ligand binding and for ligand-induced binding to coactivators in solution FRET experiments and protein microarray fluorometric and FRET assays. This dual-mode type TMR-SiO2-NTA-Ni++ system represents a powerful combination of one-step histidine-tagged protein purification and site-specific labeling with multiple fluorophore species. BRIEFS Tetramethylrhodamine-doped silica nanoparticles surface modified with nitrilotriacetic acid are dual-mode agents that can be used to purify and site-specifically fluorophore label his-tagged proteins in one step for fluorometric and FRET experiments. PMID:17910454

  5. Convenient and Precise Strategy for Mapping N-Glycosylation Sites Using Microwave-Assisted Acid Hydrolysis and Characteristic Ions Recognition.

    PubMed

    Ma, Cheng; Qu, Jingyao; Meisner, Jeffrey; Zhao, Xinyuan; Li, Xu; Wu, Zhigang; Zhu, Hailiang; Yu, Zaikuan; Li, Lei; Guo, Yuxi; Song, Jing; Wang, Peng George

    2015-08-01

    N-glycosylation is one of the most prevalence protein post-translational modifications (PTM) which is involved in several biological processes. Alternation of N-glycosylation is associated with cellular malfunction and development of disease. Thus, investigation of protein N-glycosylation is crucial for diagnosis and treatment of disease. Currently, deglycosylation with peptide N-glycosidase F is the most commonly used technique in N-glycosylation analysis. Additionally, a common error in N-glycosylation site identification, resulting from protein chemical deamidation, has largely been ignored. In this study, we developed a convenient and precise approach for mapping N-glycosylation sites utilizing with optimized TFA hydrolysis, ZIC-HILIC enrichment, and characteristic ions of N-acetylglucosamine (GlcNAc) from higher-energy collisional dissociation (HCD) fragmentation. Using this method, we identified a total of 257 N-glycosylation sites and 144 N-glycoproteins from healthy human serum. Compared to deglycosylation with endoglycosidase, this strategy is more convenient and efficient for large scale N-glycosylation sites identification and provides an important alternative approach for the study of N-glycoprotein function. PMID:26161579

  6. Transcription of fractionated mammalian chromatin by mammalian ribonucleic acid polymerase. Demonstration of temperature-dependent rifampicin-resistant initiation sites in euchromatin deoxyribonucleic acid

    PubMed Central

    Chesterton, C. James; Coupar, Barbara E. H.; Butterworth, Peter H. W.

    1974-01-01

    The chromatin fractionation method of Frenster et al. (1963) as modified by Leake et al. (1972) was used to prepare fragments of euchromatin from rat liver nuclei. These remain soluble in 5mm-MgCl2, and contain DNA of maximum mol.wt. 1×106–2×106. The fragments were separated from condensable chromatin on a sucrose gradient. Euchromatin contains endogenous DNA-dependent RNA polymerase, and most of the nascent RNA labelled in vivo or in vitro. Euchromatin fragments allow initiation of transcription by added purified rat liver form-B RNA polymerase and contain temperature-dependent rifampicin-resistant initiation sites for the form-B enzyme. These findings indicate that transcription of the euchromatin regions of interphase chromosomes is not initiated in condensed chromatin, but is initiated within the euchromatin stretches. Condensable chromatin also contains most of these activities, but is not associated with nascent RNA. PMID:4464858

  7. Structure of a highly acidic β-lactamase from the moderate halophile Chromohalobacter sp. 560 and the discovery of a Cs{sup +}-selective binding site

    SciTech Connect

    Arai, Shigeki; Yonezawa, Yasushi; Okazaki, Nobuo; Matsumoto, Fumiko; Shibazaki, Chie; Shimizu, Rumi; Yamada, Mitsugu; Adachi, Motoyasu; Tamada, Taro; Kawamoto, Masahide; Tokunaga, Hiroko; Ishibashi, Matsujiro; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2015-03-01

    The tertiary structure of a β-lactamase derived from the halobacterium Chromohalobacter sp. 560 (HaBLA) was determined by X-ray crystallography. Three unique Sr{sup 2+}-binding sites and one Cs{sup +}-binding site were discovered in the HaBLA molecule. Environmentally friendly absorbents are needed for Sr{sup 2+} and Cs{sup +}, as the removal of the radioactive Sr{sup 2+} and Cs{sup +} that has leaked from the Fukushima Nuclear Power Plant is one of the most important problems in Japan. Halophilic proteins are known to have many acidic residues on their surface that can provide specific binding sites for metal ions such as Cs{sup +} or Sr{sup 2+}. The crystal structure of a halophilic β-lactamase from Chromohalobacter sp. 560 (HaBLA) was determined to resolutions of between 1.8 and 2.9 Å in space group P3{sub 1} using X-ray crystallography. Moreover, the locations of bound Sr{sup 2+} and Cs{sup +} ions were identified by anomalous X-ray diffraction. The location of one Cs{sup +}-specific binding site was identified in HaBLA even in the presence of a ninefold molar excess of Na{sup +} (90 mM Na{sup +}/10 mM Cs{sup +}). From an activity assay using isothermal titration calorimetry, the bound Sr{sup 2+} and Cs{sup +} ions do not significantly affect the enzymatic function of HaBLA. The observation of a selective and high-affinity Cs{sup +}-binding site provides important information that is useful for the design of artificial Cs{sup +}-binding sites that may be useful in the bioremediation of radioactive isotopes.

  8. Site-specific protein adducts of 4-hydroxy-2(E)-nonenal in human THP-1 monocytic cells: Protein carbonylation is diminished by ascorbic acid

    PubMed Central

    Chavez, Juan; Chung, Woon-Gye; Miranda, Cristobal L.; Singhal, Mudita; Stevens, Jan F.; Maier, Claudia S.

    2010-01-01

    The protein targets and sites of modification by 4-hydroxy-2(E)-nonenal (HNE) in human monocytic THP-1 cells after exogenous exposure to HNE were examined using a multi-pronged proteomic approach involving electrophoretic, immunoblotting and mass spectrometric methods. Immunoblot analysis using monoclonal anti-HNE antibodies showed several proteins as targets of HNE adduction. Pretreatment of THP-1 cells with ascorbic acid resulted in reduced levels of HNE-protein adducts. Biotinylation of Michael-type HNE adducts using an aldehyde-reactive hydroxylamine-functionalized probe (aldehyde-reactive probe, ARP) and subsequent enrichment facilitated the identification and site-specific assignment of the modifications by LC-MS/MS analysis. Sixteen proteins were unequivocally identified as targets of HNE adduction and eighteen sites of HNE modification at Cys and His residues were assigned. HNE exposure of THP-1 cells resulted in the modification of proteins involved in cytoskeleton organization and regulation, proteins associated with stress responses and enzymes of the glycolytic and other metabolic pathways. This study yielded the first evidence of site-specific adduction of HNE to Cys-295 in tubulin α-1B chain, Cys-351 and Cys-499 in α-actinin-4, Cys-328 in vimentin, Cys-369 in D-3-phosphoglycerate dehydrogenase and His-246 in aldolase A. PMID:20043646

  9. Structure of a highly acidic β-lactamase from the moderate halophile Chromohalobacter sp. 560 and the discovery of a Cs+-selective binding site

    PubMed Central

    Arai, Shigeki; Yonezawa, Yasushi; Okazaki, Nobuo; Matsumoto, Fumiko; Shibazaki, Chie; Shimizu, Rumi; Yamada, Mitsugu; Adachi, Motoyasu; Tamada, Taro; Kawamoto, Masahide; Tokunaga, Hiroko; Ishibashi, Matsujiro; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2015-01-01

    Environmentally friendly absorbents are needed for Sr2+ and Cs+, as the removal of the radioactive Sr2+ and Cs+ that has leaked from the Fukushima Nuclear Power Plant is one of the most important problems in Japan. Halophilic proteins are known to have many acidic residues on their surface that can provide specific binding sites for metal ions such as Cs+ or Sr2+. The crystal structure of a halophilic β-lactamase from Chromohalobacter sp. 560 (HaBLA) was determined to resolutions of between 1.8 and 2.9 Å in space group P31 using X-ray crystallography. Moreover, the locations of bound Sr2+ and Cs+ ions were identified by anomalous X-ray diffraction. The location of one Cs+-specific binding site was identified in HaBLA even in the presence of a ninefold molar excess of Na+ (90 mM Na+/10 mM Cs+). From an activity assay using isothermal titration calorimetry, the bound Sr2+ and Cs+ ions do not significantly affect the enzymatic function of HaBLA. The observation of a selective and high-affinity Cs+-binding site provides important information that is useful for the design of artificial Cs+-binding sites that may be useful in the bioremediation of radioactive isotopes. PMID:25760604

  10. Genetically Encoded Azide Containing Amino Acid in Mammalian Cells Enables Site-Specific Antibody-Drug Conjugates Using Click Cycloaddition Chemistry.

    PubMed

    VanBrunt, Michael P; Shanebeck, Kurt; Caldwell, Zachary; Johnson, Jeffrey; Thompson, Pamela; Martin, Thomas; Dong, Huifang; Li, Gary; Xu, Hengyu; D'Hooge, Francois; Masterson, Luke; Bariola, Pauline; Tiberghien, Arnaud; Ezeadi, Ebele; Williams, David G; Hartley, John A; Howard, Philip W; Grabstein, Kenneth H; Bowen, Michael A; Marelli, Marcello

    2015-11-18

    Antibody-drug conjugates (ADC) have emerged as potent antitumor drugs that provide increased efficacy, specificity, and tolerability over chemotherapy for the treatment of cancer. ADCs generated by targeting cysteines and lysines on the antibody have shown efficacy, but these products are heterogeneous, and instability may limit their dosing. Here, a novel technology is described that enables site-specific conjugation of toxins to antibodies using chemistry to produce homogeneous, potent, and highly stable conjugates. We have developed a cell-based mammalian expression system capable of site-specific integration of a non-natural amino acid containing an azide moiety. The azide group enables click cycloaddition chemistry that generates a stable heterocyclic triazole linkage. Antibodies to Her2/neu were expressed to contain N6-((2-azidoethoxy)carbonyl)-l-lysine at four different positions. Each site allowed over 95% conjugation efficacy with the toxins auristatin F or a pyrrolobenzodiazepine (PBD) dimer to generate ADCs with a drug to antibody ratio of >1.9. The ADCs were potent and specific in in vitro cytotoxicity assays. An anti Her2/neu conjugate demonstrated stability in vivo and a PBD containing ADC showed potent efficacy in a mouse tumor xenograph model. This technology was extended to generate fully functional ADCs with four toxins per antibody. The high stability of the azide-alkyne linkage, combined with the site-specific nature of the expression system, provides a means for the generation of ADCs with optimized pharmacokinetic, biological, and biophysical properties. PMID:26332743

  11. Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids.

    PubMed

    Chin, Joanna Y; Kuan, Jean Y; Lonkar, Pallavi S; Krause, Diane S; Seidman, Michael M; Peterson, Kenneth R; Nielsen, Peter E; Kole, Ryszard; Glazer, Peter M

    2008-09-01

    Splice-site mutations in the beta-globin gene can lead to aberrant transcripts and decreased functional beta-globin, causing beta-thalassemia. Triplex-forming DNA oligonucleotides (TFOs) and peptide nucleic acids (PNAs) have been shown to stimulate recombination in reporter gene loci in mammalian cells via site-specific binding and creation of altered helical structures that provoke DNA repair. We have designed a series of triplex-forming PNAs that can specifically bind to sequences in the human beta-globin gene. We demonstrate here that these PNAs, when cotransfected with recombinatory donor DNA fragments, can promote single base-pair modification at the start of the second intron of the beta-globin gene, the site of a common thalassemia-associated mutation. This single base pair change was detected by the restoration of proper splicing of transcripts produced from a green fluorescent protein-beta-globin fusion gene. The ability of these PNAs to induce recombination was dependent on dose, sequence, cell-cycle stage, and the presence of a homologous donor DNA molecule. Enhanced recombination, with frequencies up to 0.4%, was observed with use of the lysomotropic agent chloroquine. Finally, we demonstrate that these PNAs were effective in stimulating the modification of the endogenous beta-globin locus in human cells, including primary hematopoietic progenitor cells. This work suggests that PNAs can be effective tools to induce heritable, site-specific modification of disease-related genes in human cells. PMID:18757759

  12. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis.

    PubMed

    Neshat, Armin; Mentz, Almut; Rückert, Christian; Kalinowski, Jörn

    2014-11-20

    The Gram-positive bacterium Corynebacterium glutamicum belongs to the order Corynebacteriales and is used as a producer of amino acids at industrial scales. Due to its economic importance, gene expression and particularly the regulation of amino acid biosynthesis has been investigated extensively. Applying the high-resolution technique of transcriptome sequencing (RNA-seq), recently a vast amount of data has been generated that was used to comprehensively analyze the C. glutamicum transcriptome. By analyzing RNA-seq data from a small RNA cDNA library of C. glutamicum, short transcripts in the known transcriptional attenuators sites of the trp operon, the ilvBNC operon and the leuA gene were verified. Furthermore, whole transcriptome RNA-seq data were used to elucidate the transcriptional organization of these three amino acid biosynthesis operons. In addition, we discovered and analyzed the novel attenuator aroR, located upstream of the aroF gene (cg1129). The DAHP synthase encoded by aroF catalyzes the first step in aromatic amino acid synthesis. The AroR leader peptide contains the amino acid sequence motif F-Y-F, indicating a regulatory effect by phenylalanine and tyrosine. Analysis by real-time RT-PCR suggests that the attenuator regulates the transcription of aroF in dependence of the cellular amount of tRNA loaded with phenylalanine when comparing a phenylalanine-auxotrophic C. glutamicum mutant fed with limiting and excess amounts of a phenylalanine-containing dipeptide. Additionally, the very interesting finding was made that all analyzed attenuators are leaderless transcripts. PMID:24910972

  13. Isoaspartic acid is present at specific sites in myelin basic protein from multiple sclerosis patients: could this represent a trigger for disease onset?

    PubMed

    Friedrich, Michael G; Hancock, Sarah E; Raftery, Mark J; Truscott, Roger J W

    2016-01-01

    Multiple sclerosis (MS) is associated with breakdown of the myelin sheath that coats neurons in the central nervous system. The cause of MS is not known, although the pathogenesis involves destruction of myelin by the immune system. It was the aim of this study to examine the abundant myelin protein, myelin basic protein (MBP), to determine if there are sites of modification that may be characteristic for MS. MBP from the cerebellum was examined from controls and MS patients across the age range using mass spectrometry and amino acid analysis. Amino acid racemization data indicated that myelin basic protein is long-lived and proteomic analysis of MBP showed it to be highly modified. A common modification of MBP was racemization of Asp and this was significantly greater in MS patients. In long-lived proteins, L-Asp and L-Asn can racemize to three other isomers, D-isoAsp, L-isoAsp and D-Asp and this is significant because isoAsp formation in peptides renders them immunogenic.Proteomic analysis revealed widespread modifications of MBP with two surface regions that are altered in MS. In particular, isoAsp was significantly elevated at these sites in MS patients. The generation of isoAsp could be responsible for eliciting an immune response to modified MBP and therefore be implicated in the etiology of MS. PMID:27519525

  14. Amino acids of the Torpedo marmorata acetylcholine receptor. cap alpha. subunit labeled by a photoaffinity ligand for the acetylcholine binding site

    SciTech Connect

    Dennis, M.; Giraudat, J.; Kotzyba-Hibert, F.; Goeldner, M.; Hirth, C.; Chang, J.Y.; Lazure, C.; Chretien, M.; Changeux, J.P.

    1988-04-05

    The acetylcholine-binding sites on the native, membrane-bound acetylcholine receptor from Torpedo marmorata were covalently labeled with the photoaffinity reagent (/sup 3/H)-p-(dimethylamino)-benzenediazonium fluoroborate (DDF) in the presence of phencyclidine by employing an energy-transfer photolysis procedure. The ..cap alpha..-chains isolated from receptor-rich membranes photolabeled in the absence or presence of carbamoylcholine were cleaved with CNBr and the radiolabeled fragments purified by high-performance liquid chromatography. Amino acid and/or sequence analysis demonstrated that the ..cap alpha..-chain residues Trp-149, Tyr-190, Cys-192, and Cys-193 and an unidentified residue(s) in the segment ..cap alpha.. 31-105 were all labeled by the photoaffinity reagent in an agonist-protectable manner. The labeled amino acids are located within three distinct regions of the large amino-terminal hydrophilic domain of the ..cap alpha..-subunit primary structure and plausibly lie in proximity to one another at the level of the acetylcholine-binding sites in the native receptor. These findings are in accord with models proposed for the transmembrane topology of the ..cap alpha..-chain that assign the amino-terminal segment ..cap alpha.. 1-210 to the synaptic cleft. Furthermore, the results suggest that the four identified (/sup 3/H)DDF-labeled resides, which are conserved in muscle and neuronal ..cap alpha..-chains but not in the other subunits, may be directly involved in agonist binding.

  15. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming.

    PubMed

    Zhong, Ziyi; Ang, Hanwee; Choong, Catherine; Chen, Luwei; Huang, Lin; Lin, Jianyi

    2009-02-01

    Rh catalysts supported on ZrO(2)-based oxides were studied for ethanol steam reforming (SR) reaction. Pure ZrO(2) as the support resulted in higher H(2) production yield compared to the ZrO(2) oxide decorated with CeO(2), Al(2)O(3), La(2)O(3) or Li(2)O at the reaction temperature of 300 degrees C. Above 450 degrees C, all the catalysts exhibited similar catalytic activity. However, at low reaction temperatures (below 400 degrees C), a significant enhancement in the catalytic activity, selectivity and stability was achieved by replacing the ZrO(2) support prepared by a precipitation method (ZrO(2)-CP) with that prepared by a hydrothermal method (ZrO(2)-HT). A deactivation was observed during the EtOH SR reaction at 300 degrees C on the two catalysts of Rh/ZrO(2)-CP and Rh/ZrO(2)-HT. NH(3)-TPD experiments confirmed that the ZrO(2)-HT support had two types of acidic sites while the ZrO(2)-CP support had only one type of weak acidic sites. DRIFTS studies showed that the absorption of EtOH molecules was strong on the Rh/ZrO(2)-HT catalyst and a number of C(2) oxygenates were accumulated on the catalyst surface. Meanwhile, the EtOH absorption on the Rh/ZrO(2)-CP catalyst was weak and the accumulation of CO, carbonate and CH(x) was observed. It is concluded that the relatively strong Lewis acidic sites in the Rh/ZrO(2)-HT catalyst is responsible for the strong absorption of EtOH molecules, and the subsequent C-H breakage step (formation of acetaldehyde or called as dehydrogenation reaction) is a fast reaction on it; on the Rh/ZrO(2)-CP catalyst, the EtOH adsorption was weak and the C-C breakage was the dominating reaction which led to the accumulation of surface CO, CH(x) and CO(2) species. Therefore, it is believed that, in order to promote the absorption of EtOH molecules and to reduce the formation of metastable carbonaceous species (C(2) oxygenates) during the reaction, the catalyst should be enhanced both with Lewis acidity and with C-C bond breakage function. Also

  16. Effects of metal and acidic sites on the reaction by-products of butyl acetate oxidation over palladium-based catalysts.

    PubMed

    Yue, Lin; He, Chi; Hao, Zhengping; Wang, Shunbing; Wang, Hailin

    2014-03-01

    Catalytic oxidation is widely used in pollution control technology to remove volatile organic compounds. In this study, Pd/ZSM-5 catalysts with different Pd contents and acidic sites were prepared via the impregnation method. All the catalysts were characterized by means of N2 adsorption-desorption, X-ray fluorescence (XRF), H2 temperature programmed reduction (H2-TPR), and NH3 temperature programmed desorption (NH3-TPD). Their catalytic performance was investigated in the oxidation of butyl acetate experiments. The by-products of the reaction were collected in thermal desorption tubes and identified by gas chromatography/mass spectrometry. It was found that the increase of Pd content slightly changed the catalytic activity of butyl acetate oxidation according to the yield of CO2 achieved at 90%, but decreased the cracking by-products, whereas the enhancement of strong acidity over Pd-based catalysts enriched the by-product species. The butyl acetate oxidation process involves a series of reaction steps including protolysis, dehydrogenation, dehydration, cracking, and isomerization. Generally, butyl acetate was cracked to acetic acid and 2-methylpropene and the latter was an intermediate of the other by-products, and the oxidation routes of typical by-products were proposed. Trace amounts of 3-methylpentane, hexane, 2-methylpentane, pentane, and 2-methylbutane originated from isomerization and protolysis reactions. PMID:25079284

  17. Accurate and easy-to-use assessment of contiguous DNA methylation sites based on proportion competitive quantitative-PCR and lateral flow nucleic acid biosensor.

    PubMed

    Xu, Wentao; Cheng, Nan; Huang, Kunlun; Lin, Yuehe; Wang, Chenguang; Xu, Yuancong; Zhu, Longjiao; Du, Dan; Luo, Yunbo

    2016-06-15

    Many types of diagnostic technologies have been reported for DNA methylation, but they require a standard curve for quantification or only show moderate accuracy. Moreover, most technologies have difficulty providing information on the level of methylation at specific contiguous multi-sites, not to mention easy-to-use detection to eliminate labor-intensive procedures. We have addressed these limitations and report here a cascade strategy that combines proportion competitive quantitative PCR (PCQ-PCR) and lateral flow nucleic acid biosensor (LFNAB), resulting in accurate and easy-to-use assessment. The P16 gene with specific multi-methylated sites, a well-studied tumor suppressor gene, was used as the target DNA sequence model. First, PCQ-PCR provided amplification products with an accurate proportion of multi-methylated sites following the principle of proportionality, and double-labeled duplex DNA was synthesized. Then, a LFNAB strategy was further employed for amplified signal detection via immune affinity recognition, and the exact level of site-specific methylation could be determined by the relative intensity of the test line and internal reference line. This combination resulted in all recoveries being greater than 94%, which are pretty satisfactory recoveries in DNA methylation assessment. Moreover, the developed cascades show significantly high usability as a simple, sensitive, and low-cost tool. Therefore, as a universal platform for sensing systems for the detection of contiguous multi-sites of DNA methylation without external standards and expensive instrumentation, this PCQ-PCR-LFNAB cascade method shows great promise for the point-of-care diagnosis of cancer risk and therapeutics. PMID:26914373

  18. On-site cellulase production by Trichoderma reesei 3EMS35 mutant and same vessel saccharification and fermentation of acid treated wheat straw for ethanol production

    PubMed Central

    Khokhar, Zia-ullah; Syed, Qurat-ul-Ain; Wu, Jing; Athar, Muhammad Amin

    2014-01-01

    Bioethanol production from lignocellulosic raw materials involves process steps like pre-treatment, enzymatic hydrolysis, fermentation and distillation. In this study, wheat straw was explored as feedstock for on-site cellulase production by T. reesei 3EMS35 mutant, and as a substrate for second generation bioethanol production from baker yeast. Scanning electron microscopy (SEM) and X-ray diffractography (XRD) of untreated wheat straw (UWS) and acid treated wheat straw (TWS) were done to understand the structural organization and changes in the cellulase accessibility and reactivity. The effect of delignification and structural modification for on-site cellulase enzyme production was comparably studied. The efficiency of crude cellulase enzyme for digestion of UWS and TWS and then production of ethanol from TWS was studied using same-vessel saccharification and fermentation (SVSF) technique, both in shaking flasks as well as in fermenters. Two different methods of operation were tested, i.e. the UWSEnz method, where UWS was used for on-site enzyme production, and TWSEnz method where TWS was applied as substrate for cellullase production. Results obtained showed structural modifications in cellulose of TWS due to delignification, removal of wax and change of crystallinity. UWS was better substrate than TWS for cellulase production due to the fact that lignin did not hinder the enzyme production by fungus but acted as a booster. On-site cellulase enzyme produced by T. reesei 3EMS35 mutant hydrolyzed most of cellulose (91 %) in TWS within first 24 hrs. Shake flasks experiments showed that ethanol titers and yields with UWSEnz were 2.9 times higher compared to those obtained with TWSEnz method respectively. Comparatively, titer of ethanol in shake flask experiments was 10 % higher than this obtained in 3 L fermenter with UWSEnz. Outcomes from this investigation clearly demonstrated the potential of on-site cellulase enzyme production and SVSF for ethanol production

  19. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme.

    PubMed

    Ibba, M; Hong, K W; Sherman, J M; Sever, S; Söll, D

    1996-07-01

    Sequence-specific interactions between aminoacyl-tRNA synthetases and their cognate tRNAs both ensure accurate RNA recognition and prevent the binding of noncognate substrates. Here we show for Escherichia coli glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18) that the accuracy of tRNA recognition also determines the efficiency of cognate amino acid recognition. Steady-state kinetics revealed that interactions between tRNA identity nucleotides and their recognition sites in the enzyme modulate the amino acid affinity of GlnRS. Perturbation of any of the protein-RNA interactions through mutation of either component led to considerable changes in glutamine affinity with the most marked effects seen at the discriminator base, the 10:25 base pair, and the anticodon. Reexamination of the identity set of tRNA(Gln) in the light of these results indicates that its constituents can be differentiated based upon biochemical function and their contribution to the apparent Gibbs' free energy of tRNA binding. Interactions with the acceptor stem act as strong determinants of tRNA specificity, with the discriminator base positioning the 3' end. The 10:25 base pair and U35 are apparently the major binding sites to GlnRS, with G36 contributing both to binding and recognition. Furthermore, we show that E. coli tryptophanyl-tRNA synthetase also displays tRNA-dependent changes in tryptophan affinity when charging a noncognate tRNA. The ability of tRNA to optimize amino acid recognition reveals a novel mechanism for maintaining translational fidelity and also provides a strong basis for the coevolution of tRNAs and their cognate synthetases. PMID:8692925

  20. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition.

    PubMed

    Jia, Jianhua; Liu, Zi; Xiao, Xuan; Liu, Bingxiang; Chou, Kuo-Chen

    2016-09-01

    With the explosive growth of protein sequences entering into protein data banks in the post-genomic era, it is highly demanded to develop automated methods for rapidly and effectively identifying the protein-protein binding sites (PPBSs) based on the sequence information alone. To address this problem, we proposed a predictor called iPPBS-PseAAC, in which each amino acid residue site of the proteins concerned was treated as a 15-tuple peptide segment generated by sliding a window along the protein chains with its center aligned with the target residue. The working peptide segment is further formulated by a general form of pseudo amino acid composition via the following procedures: (1) it is converted into a numerical series via the physicochemical properties of amino acids; (2) the numerical series is subsequently converted into a 20-D feature vector by means of the stationary wavelet transform technique. Formed by many individual "Random Forest" classifiers, the operation engine to run prediction is a two-layer ensemble classifier, with the 1st-layer voting out the best training data-set from many bootstrap systems and the 2nd-layer voting out the most relevant one from seven physicochemical properties. Cross-validation tests indicate that the new predictor is very promising, meaning that many important key features, which are deeply hidden in complicated protein sequences, can be extracted via the wavelets transform approach, quite consistent with the facts that many important biological functions of proteins can be elucidated with their low-frequency internal motions. The web server of iPPBS-PseAAC is accessible at http://www.jci-bioinfo.cn/iPPBS-PseAAC , by which users can easily acquire their desired results without the need to follow the complicated mathematical equations involved. PMID:26375780

  1. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.

    PubMed

    Bea, Sergio A; Wainwright, Haruko; Spycher, Nicolas; Faybishenko, Boris; Hubbard, Susan S; Denham, Miles E

    2013-08-01

    Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of clean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H(+) adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates

  2. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Bea, Sergio A.; Wainwright, Haruko; Spycher, Nicolas; Faybishenko, Boris; Hubbard, Susan S.; Denham, Miles E.

    2013-08-01

    Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of clean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H+ adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates and

  3. The Phosphatidic Acid Binding Site of the Arabidopsis Trigalactosyldiacylglycerol 4 (TGD4) Protein Required for Lipid Import into Chloroplasts*

    PubMed Central

    Wang, Zhen; Anderson, Nicholas Scott; Benning, Christoph

    2013-01-01

    Chloroplast membrane lipid synthesis relies on the import of glycerolipids from the ER. The TGD (TriGalactosylDiacylglycerol) proteins are required for this lipid transfer process. The TGD1, -2, and -3 proteins form a putative ABC (ATP-binding cassette) transporter transporting ER-derived lipids through the inner envelope membrane of the chloroplast, while TGD4 binds phosphatidic acid (PtdOH) and resides in the outer chloroplast envelope. We identified two sequences in TGD4, amino acids 1–80 and 110–145, which are necessary and sufficient for PtdOH binding. Deletion of both sequences abolished PtdOH binding activity. We also found that TGD4 from 18:3 plants bound specifically and with increased affinity PtdOH. TGD4 did not interact with other proteins and formed a homodimer both in vitro and in vivo. Our results suggest that TGD4 is an integral dimeric β-barrel lipid transfer protein that binds PtdOH with its N terminus and contains dimerization domains at its C terminus. PMID:23297418

  4. Enhancement of bacterial iron and sulfate respiration for in situ bioremediation of acid mine drainage sites: a case study

    SciTech Connect

    Bilgin, A.A.; Harrington, J.M.; Silverstein, J.

    2007-08-15

    The prevention of acid mine drainage (AMD) in situ is more attractive than down-gradient treatment alternatives that do not involve source control. AMD source control can be achieved by shifting the microbial activity in the sulfidic rock from pyrite oxidation to anaerobic heterotrophic activity. This is achieved by adding biodegradable organic carbon amendments to the sulfidic rock. This technique was applied to an abandoned coal mine pool in Pennsylvania. The pool had a pH of 3.0 to 3.5. Following treatment, near-neutral pH and decreased effluent heavy metal concentrations were achieved. In situ bioremediation by the enhancement of bacterial iron and sulfate reduction is a promising technology for AMD prevention.

  5. Modeling the Distribution of Acidity within Nuclear Fuel (UO{sub 2}) Corrosion Product Deposits and Porous Sites

    SciTech Connect

    Cheong, W.J.; Keech, P.G.; Wren, J.C.; Shoesmith, D.W.; Qin, Z.

    2007-07-01

    A model for acidity within pores within corrosion products on anodically-dissolving UO{sub 2} was developed using Comsol Multiphysics 3.2 to complement ongoing electrochemical measurements. It was determined that a depression of pH within pores can be maintained if: electrochemically measured dissolution currents used in the calculations are attenuated to reflect very localized pores; corrosion potentials exceed -250 mV (vs. SCE); and pore depths are >1 {mu}m for 300 mV or >100 {mu}m for -50 mV (vs. SCE). Mixed diffusional-chemical equilibria control is suggested through deviations in the shapes between pH-potential and pH-pore depth plots. (authors)

  6. Dissociative attachment reactions of electrons with strong acid molecules

    NASA Astrophysics Data System (ADS)

    Adams, Nigel G.; Smith, David; Viggiano, A. A.; Paulson, John F.; Henchman, Michael J.

    1986-06-01

    Using the flowing afterglow/Langmuir probe (FALP) technique, we have determined (at variously 300 and 570 K) the dissociative attachment coefficients β for the reactions of electrons with the common acids HNO3 (producing NO-2) and H2SO4 (HSO-4), the superacids FSO3H (FSO-3), CF3SO3H (CF3SO-3), ClSO3H (ClSO-3,Cl-), the acid anhydride (CF3SO2)2O (CF3SO-3), and the halogen halides HBr (Br-) and HI (I-). The anions formed in the reactions are those given in the parentheses. The reactions with HF and HCl were investigated, but did not occur at a measurable rate since they are very endothermic. Dissociative attachment is rapid for the common acids, the superacids, and the anhydride, the measured β being appreciable fractions of the theoretical maximum β for such reactions, βmax. The HI reaction is very fast ( β˜βmax) but the HBr reaction occurs much more slowly because it is significantly endothermic. The data indicate that the extreme acidity of the (Bronsted-type) superacids has its equivalence in the very efficient gas-phase dissociative attachment which these species undergo when reacting with free electrons. The anions of the superacids generated in these reactions, notably FSO-3 and CF3SO-3, are very stable (unreactive) implying exceptionally large electron affinities for the FSO3 and CF3SO3 radicals.

  7. Acid neutralizing capacity and leachate results for igneous rocks, with associated carbon contents of derived soils, Animas River AML site, Silverton, Colorado

    USGS Publications Warehouse

    Yager, Douglas B.; Stanton, Mark R.; Choate, LaDonna M.; Burchell, Alison

    2009-01-01

    Mine planning efforts have historically overlooked the possible acid neutralizing capacity (ANC) that local igneous rocks can provide to help neutralize acidmine drainage. As a result, limestone has been traditionally hauled to mine sites for use in neutralizing acid drainage. Local igneous rocks, when used as part of mine life-cycle planning and acid mitigation strategy, may reduce the need to transport limestone to mine sites because these rocks can contain acid neutralizing minerals. Igneous hydrothermal events often introduce moderately altered mineral assemblages peripheral to more intensely altered rocks that host metal-bearing veins and ore bodies. These less altered rocks can contain ANC minerals (calcite-chlorite-epidote) and are referred to as a propylitic assemblage. In addition, the carbon contents of soils in areas of new mining or those areas undergoing restoration have been historically unknown. Soil organic carbon is an important constituent to characterize as a soil recovery benchmark that can be referred to during mine cycle planning and restoration.
    This study addresses the mineralogy, ANC, and leachate chemistry of propylitic volcanic rocks that host polymetallic mineralization in the Animas River watershed near the historical Silverton, Colorado, mining area. Acid titration tests on volcanic rocks containing calcite (2 – 20 wt %) and chlorite (6 – 25 wt %), have ANC ranging from 4 – 146 kg/ton CaCO3 equivalence. Results from a 6-month duration, kinetic reaction vessel test containing layered pyritic mine waste and underlying ANC volcanic rock (saturated with deionized water) indicate that acid generating mine waste (pH 2.4) has not overwhelmed the ANC of propylitic volcanic rocks (pH 5.8). Sequential leachate laboratory experiments evaluated the concentration of metals liberated during leaching. Leachate concentrations of Cu-Zn-As-Pb for ANC volcanic rock are one-to-three orders of magnitude lower when compared to leached

  8. Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid.

    PubMed

    Maierhofer, Tobias; Diekmann, Marion; Offenborn, Jan Niklas; Lind, Christof; Bauer, Hubert; Hashimoto, Kenji; S Al-Rasheid, Khaled A; Luan, Sheng; Kudla, Jörg; Geiger, Dietmar; Hedrich, Rainer

    2014-09-01

    Under drought stress, abscisic acid (ABA) triggers closure of leaf cell pores called stomata, which are formed by two specialized cells called guard cells in plant epidermis. Two pathways downstream of ABA stimulate phosphorylation of the S-type anion channels SLAC1 (slow anion channel associated 1) and SLAH3 (SLAC1 homolog 3), which causes these channels to open, reducing guard cell volume and triggering stomatal closure. One branch involves OST1 (open stomata 1), a calcium-independent SnRK2-type kinase, and the other branch involves calcium-dependent protein kinases of the CPK (calcium-dependent protein kinase) family. We used coexpression analyses in Xenopus oocytes to show that the calcineurin B-like (CBL) calcium sensors CBL1 and CBL9 and their interacting protein kinase CIPK23 also triggered SLAC1 and SLAH3 opening. We analyzed whether regulation of SLAC1 opening by these different families of kinases involved the same or different sites on SLAC1 by measuring channel conductance of SLAC1 with mutations in the putative phosphorylation sites in the amino or carboxyl termini coexpressed with specific kinases in Xenopus oocytes. SLAC1 mutants lacking the OST1-phosphorylated site were still activated by CPK or by CBL/CIPK complexes. Phosphorylation and activation of SLAC1 by any of the kinases were inhibited by the phosphatase ABI1 (ABA insensitive 1), which is inactivated in response to ABA signaling. These findings identified CBL/CIPK complexes as potential regulators of stomatal aperture through S-type anion channels and indicated that phosphorylation at distinct sites enables SLAC1 activation by both calcium-dependent and calcium-independent pathways downstream of ABA. PMID:25205850

  9. Signatures of Autotrophic and Heterotrophic Metabolic Activity in Enrichment Cultures from a Sulphur Oxidizing Acid Mine Site

    NASA Astrophysics Data System (ADS)

    Slater, G. F.; Bernier, L.; Cowie, B. R.; Warren, L. A.

    2006-12-01

    Delineating the role of microorganisms in geochemical processes of interest in natural environments requires the development of tools that provide the ability to distinguish amongst microbial activity associated with different metabolic guilds. The gap between phylogenetic characterization and phenotypic understanding remains, underscoring the need to consider alternative methods. Compound specific analysis of cellular components has the potential to differentiate between active metabolic processes supporting microbial communities and may be especially useful in extreme environments. The goal of this study was to determine whether the phospholipids fatty acid (PLFA) distribution and isotopic signatures associated with autotrophs and heterotrophs enriched from an acid mine drainage (AMD) system differed, and further whether natural consortial autotrophic isolates showed similar signatures to autotrophic pure strains of Acidithiobacillus ferrooxidans and A. thiooxidans. Two distinct initial enrichments with tetrathionate and CO2 yielded primarily autotrophic (95%) Acidithiobaccillus spp. sulphur oxidizing communities. The remaining microbial members of theses enrichments (<5%) were morphologically distinct and heterotrophic, as subculture of the consortial isolates in a medium amended with glucose but without tetrathionate selectively resulted in their visible growth. PLFA profiles and δ13C signatures from autotrophic (1) natural enrichments, pure cultures of (2) A. ferrooxidans and (3) A. thiooxidans were similar, but collectively differed from those of the natural heterotrophic enrichment cultures. The PLFA profiles for the heterotrophic communities were made up of primarily (88-99%) C16:0 and two isomers of C18:1. In contrast, the autotrophic communities had high proportions of C16:1 (up to 18%) as well as cyclo C17 and cyclo C19 PLFA that combined comprised 18 to 58% of the observed PLFA. The δ13C signatures of the PLFA also differed strongly between the two

  10. iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins with Physicochemical Properties of Amino Acids

    PubMed Central

    Xu, Yan; Ding, Jun; Wu, Ling-Yun

    2016-01-01

    Cysteine S-sulfenylation is an important post-translational modification (PTM) in proteins, and provides redox regulation of protein functions. Bioinformatics and structural analyses indicated that S-sulfenylation could impact many biological and functional categories and had distinct structural features. However, major limitations for identifying cysteine S-sulfenylation were expensive and low-throughout. In view of this situation, the establishment of a useful computational method and the development of an efficient predictor are highly desired. In this study, a predictor iSulf-Cys which incorporated 14 kinds of physicochemical properties of amino acids was proposed. With the 10-fold cross-validation, the value of area under the curve (AUC) was 0.7155 ± 0.0085, MCC 0.3122 ± 0.0144 on the training dataset for 20 times. iSulf-Cys also showed satisfying performance in the independent testing dataset with AUC 0.7343 and MCC 0.3315. Features which were constructed from physicochemical properties and position were carefully analyzed. Meanwhile, a user-friendly web-server for iSulf-Cys is accessible at http://app.aporc.org/iSulf-Cys/. PMID:27104833

  11. Bioaccumulation of metals in reeds collected from an acid mine drainage contaminated site in winter and spring.

    PubMed

    Guo, Lin; Cutright, Teresa J

    2016-07-01

    Wetland plants such as Phragmites australis has been used to treat acid mine drainage (AMD) contaminated soil which is a serious environmental issue worldwide. This project investigated metal plaque content(s) and metal uptake in reeds grown in an AMD field in winter and spring. The results indicated that the level of Fe plaque was much higher than Mn and Al plaque as the soil contained more Fe than Al and Mn. The amounts of Mn and Al plaque formed on reeds in spring were not significantly different from that in winter (p > .05). However, more Fe plaque was formed on reeds collected in spring. The concentrations of metals in underground organs were positively related to the metal levels in soils. More Mn and Al transferred to the aboveground tissues of reeds during the spring while the Fe levels in reeds did not significantly vary with seasons. Roots and rhizomes were the main organs for Fe sequestration (16.3 ± 4.15 mg/g in roots in spring) while most Al was sequestered in the shoots of reeds (2.05 ± 0.09 mg/g in shoots in spring). Further research may be needed to enhance the translocation of metals in reeds and increase the phytoremediation efficiency. PMID:26789500

  12. Engineering D-Amino Acid Containing Collagen Like Peptide at the Cleavage Site of Clostridium histolyticum Collagenase for Its Inhibition

    PubMed Central

    Velmurugan, Punitha; Jonnalagadda, Raghava Rao; Unni Nair, Balachandran

    2015-01-01

    Collagenase is an important enzyme which plays an important role in degradation of collagen in wound healing, cancer metastasis and even in embryonic development. However, the mechanism of this degradation has not yet been completely understood. In the field of biomedical and protein engineering, the design and development of new peptide based materials is of main concern. In the present work an attempt has been made to study the effect of DAla in collagen like peptide (imino-poor region of type I collagen) on the structure and stability of peptide against enzyme hydrolysis. Effect of replacement of DAla in the collagen like peptide has been studied using circular dichroic spectroscopy (CD). Our findings suggest that, DAla substitution leads to conformational changes in the secondary structure and favours the formation of polyproline II conformation than its L-counterpart in the imino-poor region of collagen like peptides. Change in the chirality of alanine at the cleavage site of collagenase in the imino-poor region inhibits collagenolytic activity. This may find application in design of peptides and peptidomimics for enzyme-substrate interaction, specifically with reference to collagen and other extra cellular matrix proteins. PMID:25973613

  13. Uncoupled hydrogen and volatile fatty acids generation in a two-step biotechnological anaerobic process fed with actual site wastewater.

    PubMed

    Monti, Matilde; Scoma, Alberto; Martinez, Gonzalo; Bertin, Lorenzo; Fava, Fabio

    2015-05-25

    Among agro-wastes, olive mill wastewater (OMW) truly qualifies as a high impact organic residue due to its biochemical-rich composition and high annual production. In the present investigation, dephenolized OMW (OMWdeph) was employed as the feedstock for a biotechnological two-stage anaerobic process dedicated to the production of biohydrogen and volatile fatty acids (VFAs), respectively. To this end, two identically configured packed-bed biofilm reactors were operated sequentially. In the first, the hydraulic retention time was set to 1 day, whereas in the second it was equal to 5 days. The rationale was to decouple the hydrolysis of the organic macronutrients held by the OMWdeph, so as to quantitatively generate a biogas enriched in H2 (first stage aim), for the acidogenesis of the residual components left after hydrolysis, to then produce a highly concentrated mixture of VFAs (second stage aim). Results showed that the generation of H2 and VFAs was effectively split, with carbohydrates and lipids, respectively, being the main substrates of the two processes. About 250 ml H2 L(-1) day(-1) was produced, corresponding to a yield of 0.36 mol mol(-1) of consumed carbohydrates (expressed as glucose equivalents). The overall concentration of VFAs in the acidogenic process was 13.80 g COD L(-1), so that 2.76 g COD L(-1) day(-1) was obtained. Second generation biorefineries use a selected fraction of an organic waste to conduct a microbiologically-driven pathway towards the generation of one target molecule. With the proposed approach, a greater value of the waste was attained, since the multi-purpose two-stage process did not entail competition for substrates between the first and the second steps. PMID:25174889

  14. Probing the Active Site of MIO-dependent Aminomutases, Key Catalysts in the Biosynthesis of amino Acids Incorporated in Secondary Metabolites

    SciTech Connect

    Cooke, H.; Bruner, S

    2010-01-01

    The tyrosine aminomutase SgTAM produces (S)-{beta}-tyrosine from L-tyrosine in the biosynthesis of the enediyne antitumor antibiotic C-1027. This conversion is promoted by the methylideneimidazole-5-one (MIO) prosthetic group. MIO was first identified in the homologous family of ammonia lyases, which deaminate aromatic amino acids to form {alpha},{beta}-unsaturated carboxylates. Studies of substrate specificity have been described for lyases but there have been limited reports in altering the substrate specificity of aminomutases. Furthermore, it remains unclear as to what structural properties are responsible for catalyzing the presumed readdition of the amino group into the {alpha},{beta}-unsaturated intermediates to form {beta}-amino acids. Attempts to elucidate specificity and mechanistic determinants of SgTAM have also proved to be difficult as it is recalcitrant to perturbations to the active site via mutagenesis. An X-ray cocrystal structure of the SgTAM mutant of the catalytic base with L-tyrosine verified important substrate binding residues as well as the enzymatic base. Further mutagenesis revealed that removal of these crucial interactions renders the enzyme inactive. Proposed structural determinants for mutase activity probed via mutagenesis, time-point assays and X-ray crystallography revealed a complicated role for these residues in maintaining key quaternary structure properties that aid in catalysis.

  15. A replacement of the active-site aspartic acid residue 293 in mouse cathepsin D affects its intracellular stability, processing and transport in HEK-293 cells.

    PubMed Central

    Partanen, Sanna; Storch, Stephan; Löffler, Hans-Gerhard; Hasilik, Andrej; Tyynelä, Jaana; Braulke, Thomas

    2003-01-01

    The substitution of an active-site aspartic acid residue by asparagine in the lysosomal protease cathepsin D (CTSD) results in a loss of enzyme activity and severe cerebrocortical atrophy in a novel form of neuronal ceroid lipofuscinosis in sheep [Tyynelä, Sohar, Sleat, Gin, Donnelly, Baumann, Haltia and Lobel (2000) EMBO J. 19, 2786-2792]. In the present study we have introduced the corresponding mutation by replacing aspartic acid residue 293 with asparagine (D293N) into the mouse CTSD cDNA to analyse its effect on synthesis, transport and stability in transfected HEK-293 cells. The complete inactivation of mutant D293N mouse CTSD was confirmed by a newly developed fluorimetric quantification system. Moreover, in the heterologous overexpression systems used, mutant D293N mouse CTSD was apparently unstable and proteolytically modified during early steps of the secretory pathway, resulting in a loss of mass by about 1 kDa. In the affected sheep, the endogenous mutant enzyme was stable but also showed the shift in its molecular mass. In HEK-293 cells, the transport of the mutant D293N mouse CTSD to the lysosome was delayed and associated with a low secretion rate compared with wild-type CTSD. These data suggest that the mutation may result in a conformational change which affects stability, processing and transport of the enzyme. PMID:12350228

  16. Probing the active site of MIO-dependent aminomutases, key catalysts in the biosynthesis of beta-amino acids incorporated in secondary metabolites.

    PubMed

    Cooke, Heather A; Bruner, Steven D

    2010-09-01

    The tyrosine aminomutase SgTAM produces (S)-ss-tyrosine from L-tyrosine in the biosynthesis of the enediyne antitumor antibiotic C-1027. This conversion is promoted by the methylideneimidazole-5-one (MIO) prosthetic group. MIO was first identified in the homologous family of ammonia lyases, which deaminate aromatic amino acids to form alpha,ss-unsaturated carboxylates. Studies of substrate specificity have been described for lyases but there have been limited reports in altering the substrate specificity of aminomutases. Furthermore, it remains unclear as to what structural properties are responsible for catalyzing the presumed readdition of the amino group into the alpha,ss-unsaturated intermediates to form ss-amino acids. Attempts to elucidate specificity and mechanistic determinants of SgTAM have also proved to be difficult as it is recalcitrant to perturbations to the active site via mutagenesis. An X-ray cocrystal structure of the SgTAM mutant of the catalytic base with L-tyrosine verified important substrate binding residues as well as the enzymatic base. Further mutagenesis revealed that removal of these crucial interactions renders the enzyme inactive. Proposed structural determinants for mutase activity probed via mutagenesis, time-point assays and X-ray crystallography revealed a complicated role for these residues in maintaining key quaternary structure properties that aid in catalysis. PMID:20577998

  17. Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereospecific biosynthesis of (R)-(-)-mandelic acid.

    PubMed

    Liu, Zhi-Qiang; Zhang, Xin-Hong; Xue, Ya-Ping; Xu, Ming; Zheng, Yu-Guo

    2014-05-21

    Nitrilases have recently received considerable attention as the biocatalysts for stereospecific production of carboxylic acids. To improve the activity, the nitrilase from Alcaligenes faecalis was selected for further modification by the gene site saturation mutagenesis method (GSSM), based on homology modeling and previous reports about mutations. After mutagenesis, the positive mutants were selected using a convenient two-step high-throughput screening method based on product formation and pH indicator combined with the HPLC method. After three rounds of GSSM, Mut3 (Gln196Ser/Ala284Ile) with the highest activity and ability of tolerance to the substrate was selected. As compared to the wild-type A. faecalis nitrilase, Mut3 showed 154% higher specific activity. Mut3 could retain 91.6% of its residual activity after incubation at pH 6.5 for 6 h. In a fed-batch reaction with 800 mM mandelonitrile as the substrate, the cumulative production of (R)-(-)-mandelic acid after 7.5 h of conversion reached 693 mM with an enantiomeric excess of 99%, and the space-time productivity of Mut3 was 21.50-fold higher than that of wild-type nitrilase. The Km, Vmax, and k(cat) of wild-type and Mut3 for mandelonitrile were 20.64 mM, 33.74 μmol mg(-1) min(-1), 24.45 s(-1), and 9.24 mM, 47.68 μmol mg(-1) min(-1), and 34.55 s(-1), respectively. A homology modeling and molecular docking study showed that the diameter of the catalytic tunnel of Mut3 became longer and that the tunnel volume was smaller. These structural changes are proposed to improve the hydrolytic activity and pH stability of Mut3. Mut3 has the potential for industrial applications in the upscale production of (R)-(-)-mandelic acid. PMID:24766313

  18. Site-directed mutagenesis of amino acid residues of D1 protein interacting with phosphatidylglycerol affects the function of plastoquinone QB in photosystem II.

    PubMed

    Endo, Kaichiro; Mizusawa, Naoki; Shen, Jian-Ren; Yamada, Masato; Tomo, Tatsuya; Komatsu, Hirohisa; Kobayashi, Masami; Kobayashi, Koichi; Wada, Hajime

    2015-12-01

    Recent X-ray crystallographic analysis of photosystem (PS) II at 1.9-Å resolution identified 20 lipid molecules in the complex, five of which are phosphatidylglycerol (PG). In this study, we mutagenized amino acid residues S232 and N234 of D1, which interact with two of the PG molecules (PG664 and PG694), by site-directed mutagenesis in Synechocystis sp. PCC 6803 to investigate the role of the interaction in PSII. The serine and asparagine residues at positions 232 and 234 from the N-terminus were mutagenized to alanine and aspartic acid, respectively, and a mutant carrying both amino acid substitutions was also produced. Although the obtained mutants, S232A, N234D, and S232AN234D, exhibited normal growth, they showed decreased photosynthetic activities and slower electron transport from QA to QB than the control strain. Thermoluminescence analysis suggested that this slower electron transfer in the mutants was caused by more negative redox potential of QB, but not in those of QA and S2. In addition, the levels of extrinsic proteins, PsbV and PsbU, were decreased in PSII monomer purified from the S232AN234D mutant, while that of Psb28 was increased. In the S232AN234D mutant, the content of PG in PSII was slightly decreased, whereas that of monogalactosyldiacylglycerol was increased compared with the control strain. These results suggest that the interactions of S232 and N234 with PG664 and PG694 are important to maintain the function of QB and to stabilize the binding of extrinsic proteins to PSII. PMID:25921208

  19. Active-Site Residues of Escherichia coli DNA Gyrase Required in Coupling ATP Hydrolysis to DNA Supercoiling and Amino Acid Substitutions Leading to Novobiocin Resistance

    PubMed Central

    Gross, Christian H.; Parsons, Jonathan D.; Grossman, Trudy H.; Charifson, Paul S.; Bellon, Steven; Jernee, James; Dwyer, Maureen; Chambers, Stephen P.; Markland, William; Botfield, Martyn; Raybuck, Scott A.

    2003-01-01

    DNA gyrase is a bacterial type II topoisomerase which couples the free energy of ATP hydrolysis to the introduction of negative supercoils into DNA. Amino acids in proximity to bound nonhydrolyzable ATP analog (AMP · PNP) or novobiocin in the gyrase B (GyrB) subunit crystal structures were examined for their roles in enzyme function and novobiocin resistance by site-directed mutagenesis. Purified Escherichia coli GyrB mutant proteins were complexed with the gyrase A subunit to form the functional A2B2 gyrase enzyme. Mutant proteins with alanine substitutions at residues E42, N46, E50, D73, R76, G77, and I78 had reduced or no detectable ATPase activity, indicating a role for these residues in ATP hydrolysis. Interestingly, GyrB proteins with P79A and K103A substitutions retained significant levels of ATPase activity yet demonstrated no DNA supercoiling activity, even with 40-fold more enzyme than the wild-type enzyme, suggesting that these amino acid side chains have a role in the coupling of the two activities. All enzymes relaxed supercoiled DNA to the same extent as the wild-type enzyme did, implying that only ATP-dependent reactions were affected. Mutant genes were examined in vivo for their abilities to complement a temperature-sensitive E. coli gyrB mutant, and the activities correlated well with the in vitro activities. We show that the known R136 novobiocin resistance mutations bestow a significant loss of inhibitor potency in the ATPase assay. Four new residues (D73, G77, I78, and T165) that, when changed to the appropriate amino acid, result in both significant levels of novobiocin resistance and maintain in vivo function were identified in E. coli. PMID:12604539

  20. An evaluation of the regional acid deposition model surface module for ozone uptake at three sites in the San Joaquin Valley of California

    NASA Technical Reports Server (NTRS)

    Massman, W. J.; Pederson, J.; Delany, A.; Grantz, D.; Hertog, G. Den; Neumann, H. H.; Oncley, S. P.; Pearson, R., Jr.; Shaw, R. H.

    1994-01-01

    Plants and soils act as major sinks for the destruction of tropospheric ozone, especially during daylight hours when plant stomata open and are thought to provide the dominant pathway for the uptake of ozone. The present study, part of the California Ozone Deposition Experiment, compares predictions of the regional acid deposition model ozone surface conductance module with surface conductance data derived from eddy covariance measurements of ozone flux taken at a grape, a cotton, and a grassland site in the San Joaquin Valley of California during the summer of 1991. Results indicate that the model (which was developed to provide long-term large-area estimates for the eastern United States) significantly overpredicts the surface conductance at all times of the day for at least two important types of plant cover of the San Joaquin Valley and that it incorrectly partitions the ozone flux between transpiring and nontranspiring components of the surface at the third site. Consequently, the model either overpredicts or inaccurately represents the observed deposition velocities. Other results indicate that the presence of dew does not reduce the rate of ozone deposition, contradicting to model assumptions, and that model assumptions involving the dependency of stomata upon environmental temperature are unnecessary. The effects of measurement errors and biases, arising from the presence of the roughness sublayer and possible photochemical reactions, are also discussed. A simpler model for ozone surface deposition (at least for the San Joaquin Valley) is proposed and evaluated.

  1. An evaluation of the regional acid deposition model surface module for ozone uptake at three sites in the San Joaquin Valley of California

    NASA Astrophysics Data System (ADS)

    Massman, W. J.; Pederson, J.; Delany, A.; Grantz, D.; den Hartog, G.; Neumann, H. H.; Oncley, S. P.; Pearson, R.; Shaw, R. H.

    1994-04-01

    Plants and soils act as major sinks for the destruction of tropospheric ozone, especially during daylight hours when plant stomata open and are thought to provide the dominant pathway for the uptake of ozone. The present study, part of the California Ozone Deposition Experiment, compares predictions of the regional acid deposition model ozone surface conductance module with surface conductance data derived from eddy covariance measurements of ozone flux taken at a grape, a cotton, and a grassland site in the San Joaquin Valley of California during the summer of 1991. Results indicate that the model (which was developed to provide long-term large-area estimates for the eastern United States) significantly overpredicts the surface conductance at all times of the day for at least two important types of plant cover of the San Joaquin Valley and that it incorrectly partitions the ozone flux between transpiring and nontranspiring components of the surface at the third site. Consequently, the model either overpredicts or inaccurately represents the observed deposition velocities. Other results indicate that the presence of dew does not reduce the rate of ozone deposition, contradicting to model assumptions, and that model assumptions involving the dependency of stomata upon environmental temperature are unnecessary. The effects of measurement errors and biases, arising from the presence of the roughness sublayer and possible photochemical reactions, are also discussed. A simpler model for ozone surface deposition (at least for the San Joaquin Valley) is proposed and evaluated.

  2. Binding of 3,4,5,6-Tetrahydroxyazepanes to the Acid-[beta]-glucosidase Active Site: Implications for Pharmacological Chaperone Design for Gaucher Disease

    SciTech Connect

    Orwig, Susan D.; Tan, Yun Lei; Grimster, Neil P.; Yu, Zhanqian; Powers, Evan T.; Kelly, Jeffery W.; Lieberman, Raquel L.

    2013-03-07

    Pharmacologic chaperoning is a therapeutic strategy being developed to improve the cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding acid-{beta}-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant folded or nearly folded GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze the accumulated substrate. To date, the pharmacologic chaperone (PC) candidates that have been investigated largely have been active site-directed inhibitors of GCase, usually containing five- or six-membered rings, such as modified azasugars. Here we show that a seven-membered, nitrogen-containing heterocycle (3,4,5,6-tetrahydroxyazepane) scaffold is also promising for generating PCs for GCase. Crystal structures reveal that the core azepane stabilizes GCase in a variation of its proposed active conformation, whereas binding of an analogue with an N-linked hydroxyethyl tail stabilizes GCase in a conformation in which the active site is covered, also utilizing a loop conformation not seen previously. Although both compounds preferentially stabilize GCase to thermal denaturation at pH 7.4, reflective of the pH in the ER, only the core azepane, which is a mid-micromolar competitive inhibitor, elicits a modest increase in enzyme activity for the neuronopathic G202R and the non-neuronopathic N370S mutant GCase in an intact cell assay. Our results emphasize the importance of the conformational variability of the GCase active site in the design of competitive inhibitors as PCs for Gaucher disease.

  3. Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation.

    PubMed

    Hong, Seok Hoon; Ntai, Ioanna; Haimovich, Adrian D; Kelleher, Neil L; Isaacs, Farren J; Jewett, Michael C

    2014-06-20

    Site-specific incorporation of nonstandard amino acids (NSAAs) into proteins enables the creation of biopolymers, proteins, and enzymes with new chemical properties, new structures, and new functions. To achieve this, amber (TAG codon) suppression has been widely applied. However, the suppression efficiency is limited due to the competition with translation termination by release factor 1 (RF1), which leads to truncated products. Recently, we constructed a genomically recoded Escherichia coli strain lacking RF1 where 13 occurrences of the amber stop codon have been reassigned to the synonymous TAA codon (rEc.E13.ΔprfA). Here, we assessed and characterized cell-free protein synthesis (CFPS) in crude S30 cell lysates derived from this strain. We observed the synthesis of 190±20 μg/mL of modified soluble superfolder green fluorescent protein (sfGFP) containing a single p-propargyloxy-L-phenylalanine (pPaF) or p-acetyl-L-phenylalanine. As compared to the parent rEc.E13 strain with RF1, this results in a modified sfGFP synthesis improvement of more than 250%. Beyond introducing a single NSAA, we further demonstrated benefits of CFPS from the RF1-deficient strains for incorporating pPaF at two- and five-sites per sfGFP protein. Finally, we compared our crude S30 extract system to the PURE translation system lacking RF1. We observed that our S30 extract based approach is more cost-effective and high yielding than the PURE translation system lacking RF1, ∼1000 times on a milligram protein produced/$ basis. Looking forward, using RF1-deficient strains for extract-based CFPS will aid in the synthesis of proteins and biopolymers with site-specifically incorporated NSAAs. PMID:24328168

  4. Binding of 3,4,5,6-tetrahydroxyazepanes to the acid-β-glucosidase active site: implications for pharmacological chaperone design for Gaucher disease†

    PubMed Central

    Orwig, Susan. D.; Tan, Yun Lei; Grimster, Neil P.; Yu, Zhanqian; Powers, Evan; Kelly, Jeffery W.; Lieberman, Raquel L.

    2011-01-01

    Pharmacological chaperoning is a therapeutic strategy being developed to restore cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding for acid- β-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze accumulated substrate. To date, pharmacologic chaperone (PC) candidates investigated have largely been active-site-directed inhibitors of GCase, usually containing five- or six-membered rings, such as modified azasugars. Here we show that a seven-membered, nitrogen-containing heterocycle (3,4,5,6-tetrahydroxyazepane) scaffold is also promising for generating PCs for GCase. Crystal structures reveal that the core azepane stabilizes GCase in a variation of its proposed active conformation, whereas binding of an analog with an N-linked hydroxyethyl tail stabilizes a conformation of GCase in which the active site is covered, also utilizing a loop conformation not seen previously. Although both compounds preferentially stabilize GCase to thermal denaturation at pH 7.4, reflective of the pH in the ER, only the core azepane, which is a micromolar competitive inhibitor, elicits a modest increase in enzyme activity for the neuronopathic G202R- and the non-neuronopathic N370S- mutant GCase in an intact cell assay. Our results emphasize the importance of the conformational variability of the GCase active site in the design of competitive inhibitors as PCs for Gaucher disease. PMID:22047104

  5. The Fatty Acid Profile Analysis of Cyperus laxus Used for Phytoremediation of Soils from Aged Oil Spill-Impacted Sites Revealed That This Is a C18:3 Plant Species.

    PubMed

    Rivera Casado, Noemí Araceli; Montes Horcasitas, María del Carmen; Rodríguez Vázquez, Refugio; Esparza García, Fernando José; Pérez Vargas, Josefina; Ariza Castolo, Armando; Ferrera-Cerrato, Ronald; Gómez Guzmán, Octavio; Calva Calva, Graciano

    2015-01-01

    The effect of recalcitrant hydrocarbons on the fatty acid profile from leaf, basal corm, and roots of Cyperus laxus plants cultivated in greenhouse phytoremediation systems of soils from aged oil spill-impacted sites containing from 16 to 340 g/Kg total hydrocarbons (THC) was assessed to investigate if this is a C18:3 species and if the hydrocarbon removal during the phytoremediation process has a relationship with the fatty acid profile of this plant. The fatty acid profile was specific to each vegetative organ and was strongly affected by the hydrocarbons level in the impacted sites. Leaf extracts of plants from uncontaminated soil produced palmitic acid (C16), octadecanoic acid (C18:0), unsaturated oleic acids (C18:1-C18:3), and unsaturated eichosanoic (C20:2-C20:3) acids with a noticeable absence of the unsaturated hexadecatrienoic acid (C16:3); this finding demonstrates, for the first time, that C. laxus is a C18:3 plant. In plants from the phytoremediation systems, the total fatty acid contents in the leaf and the corm were negatively affected by the hydrocarbons presence; however, the effect was positive in root. Interestingly, under contaminated conditions, unusual fatty acids such as odd numbered carbons (C15, C17, C21, and C23) and uncommon unsaturated chains (C20:3n6 and C20:4) were produced together with a remarkable quantity of C22:2 and C24:0 chains in the corm and the leaf. These results demonstrate that weathered hydrocarbons may drastically affect the lipidic composition of C. laxus at the fatty acid level, suggesting that this species adjusts the cover lipid composition in its vegetative organs, mainly in roots, in response to the weathered hydrocarbon presence and uptake during the phytoremediation process. PMID:26473488

  6. The Fatty Acid Profile Analysis of Cyperus laxus Used for Phytoremediation of Soils from Aged Oil Spill-Impacted Sites Revealed That This Is a C18:3 Plant Species

    PubMed Central

    Montes Horcasitas, María del Carmen; Rodríguez Vázquez, Refugio; Esparza García, Fernando José; Pérez Vargas, Josefina; Ariza Castolo, Armando; Ferrera-Cerrato, Ronald; Gómez Guzmán, Octavio

    2015-01-01

    The effect of recalcitrant hydrocarbons on the fatty acid profile from leaf, basal corm, and roots of Cyperus laxus plants cultivated in greenhouse phytoremediation systems of soils from aged oil spill-impacted sites containing from 16 to 340 g/Kg total hydrocarbons (THC) was assessed to investigate if this is a C18:3 species and if the hydrocarbon removal during the phytoremediation process has a relationship with the fatty acid profile of this plant. The fatty acid profile was specific to each vegetative organ and was strongly affected by the hydrocarbons level in the impacted sites. Leaf extracts of plants from uncontaminated soil produced palmitic acid (C16), octadecanoic acid (C18:0), unsaturated oleic acids (C18:1-C18:3), and unsaturated eichosanoic (C20:2-C20:3) acids with a noticeable absence of the unsaturated hexadecatrienoic acid (C16:3); this finding demonstrates, for the first time, that C. laxus is a C18:3 plant. In plants from the phytoremediation systems, the total fatty acid contents in the leaf and the corm were negatively affected by the hydrocarbons presence; however, the effect was positive in root. Interestingly, under contaminated conditions, unusual fatty acids such as odd numbered carbons (C15, C17, C21, and C23) and uncommon unsaturated chains (C20:3n6 and C20:4) were produced together with a remarkable quantity of C22:2 and C24:0 chains in the corm and the leaf. These results demonstrate that weathered hydrocarbons may drastically affect the lipidic composition of C. laxus at the fatty acid level, suggesting that this species adjusts the cover lipid composition in its vegetative organs, mainly in roots, in response to the weathered hydrocarbon presence and uptake during the phytoremediation process. PMID:26473488

  7. Molecular modelling and experimental studies of mutation and cell-adhesion sites in the fibronectin type III and whey acidic protein domains of human anosmin-1.

    PubMed Central

    Robertson, A; MacColl, G S; Nash, J A; Boehm, M K; Perkins, S J; Bouloux, P M

    2001-01-01

    Anosmin-1, the gene product of the KAL gene, is implicated in the pathogenesis of X-linked Kallmann's syndrome. Anosmin-1 protein expression is restricted to the basement membrane and interstitial matrix of tissues affected in this syndrome during development. The anosmin-1 sequence indicates an N-terminal cysteine-rich domain, a whey acidic protein (WAP) domain, four fibronectin type III (FnIII) domains and a C-terminal histidine-rich region, and shows similarity with cell-adhesion molecules, such as neural cell-adhesion molecule, TAG-1 and L1. We investigated the structural and functional significance of three loss-of-function missense mutations of anosmin-1 using comparative modelling of the four FnIII and the WAP domains based on known NMR and crystal structures. Three missense mutation-encoded amino acid substitutions, N267K, E514K and F517L, were mapped to structurally defined positions on the GFCC' beta-sheet face of the first and third FnIII domains. Electrostatic maps demonstrated large basic surfaces containing clusters of conserved predicted heparan sulphate-binding residues adjacent to these mutation sites. To examine these modelling results anosmin-1 was expressed in insect cells. The incorporation of the three mutations into recombinant anosmin-1 had no effect on its secretion. The removal of two dibasic motifs that may constitute potential physiological cleavage sites for anosmin-1 had no effect on cleavage. Peptides based on the anosmin-1 sequences R254--K285 and P504--K527 were then synthesized in order to assess the effect of the three mutations on cellular adhesion, using cell lines that represented potential functional targets of anosmin-1. Peptides (10 microg/ml) incorporating the N267K and E514K substitutions promoted enhanced adhesion to 13.S.1.24 rat olfactory epithelial cells and canine MDCK1 kidney epithelial cells (P<0.01) compared with the wild-type peptides. This result was attributed to the introduction of a lysine residue adjacent to

  8. Molecular characterization of the body site-specific human epidermal cytokeratin 9: cDNA cloning, amino acid sequence, and tissue specificity of gene expression.

    PubMed

    Langbein, L; Heid, H W; Moll, I; Franke, W W

    1993-12-01

    Differentiation of human plantar and palmar epidermis is characterized by the suprabasal synthesis of a major special intermediate-sized filament (IF) protein, the type I (acidic) cytokeratin 9 (CK 9). Using partial amino acid (aa) sequence information obtained by direct Edman sequencing of peptides resulting from proteolytic digestion of purified CK 9, we synthesized several redundant primers by 'back-translation'. Amplification by polymerase chain reaction (PCR) of cDNAs obtained by reverse transcription of mRNAs from human foot sole epidermis, including 5'-primer extension, resulted in multiple overlapping cDNA clones, from which the complete cDNA (2353 bp) could be constructed. This cDNA encoded the CK 9 polypeptide with a calculated molecular weight of 61,987 and an isoelectric point at about pH 5.0. The aa sequence deduced from cDNA was verified in several parts by comparison with the peptide sequences and showed the typical structure of type I CKs, with a head (153 aa), and alpha-helical coiled-coil-forming rod (306 aa), and a tail (163 aa) domain. The protein displayed the highest homology to human CK 10, not only in the highly conserved rod domain but also in large parts of the head and the tail domains. On the other hand, the aa sequence revealed some remarkable differences from CK 10 and other CKs, even in the most conserved segments of the rod domain. The nuclease digestion pattern seen on Southern blot analysis of human genomic DNA indicated the existence of a unique CK 9 gene. Using CK 9-specific riboprobes for hybridization on Northern blots of RNAs from various epithelia, a mRNA of about 2.4 kb in length could be identified only in foot sole epidermis, and a weaker cross-hybridization signal was seen in RNA from bovine heel pad epidermis at about 2.0 kb. A large number of tissues and cell cultures were examined by PCR of mRNA-derived cDNAs, using CK 9-specific primers. But even with this very sensitive signal amplification, only palmar

  9. Delta-elimination by T4 endonuclease V at a thymine dimer site requires a secondary binding event and amino acid Glu-23.

    PubMed

    Latham, K A; Lloyd, R S

    1995-07-11

    Endonuclease V from bacteriophage T4 is a well characterized enzyme that initiates the repair of ultraviolet light induced pyrimidine dimers. Scission of the phosphodiester backbone between the pyrimidines within a dimer, or 3' to an abasic (AP) site, occurs by a beta-elimination mechanism. In addition, high concentrations of endonuclease V have been reported to catalyze the cleavage of the C5'-O-P bond in a reaction referred to as delta-elimination. To better understand the enzymology of endonuclease V, the delta-elimination reaction of the enzyme has been investigated using an oligonucleotide containing a site-specific cis-syn cyclobutane thymine dimer. The slower kinetics of the delta-elimination reaction compared to beta-elimination and the ability of unlabeled dimer-containing DNA to compete more efficiently for delta-elimination than beta-elimination indicate that delta-elimination most likely occurs during a separate enzyme encounter with the incised DNA. Previous studies have shown that both the alpha-amino group of the N-terminus and the acidic residue Glu-23 are necessary for the N-glycosylase and AP lyase activities of endonuclease V. Experiments with T2P, E23Q, and E23D mutants, which are defective in pyrimidine dimer-specific nicking, demonstrated that delta-elimination requires Glu-23, but not the primary amine at the N-terminus. In fact, the T2P mutant was much more efficient at promoting delta-elimination than the wild-type enzyme. Besides lending further proof that delta-elimination requires a second encounter between enzyme and DNA, this result may reflect an enhanced binding of the T2P mutant to dimer-containing DNA. PMID:7612620

  10. Targeting Species-Specific Low-Affinity 16S rRNA Binding Sites by Using Peptide Nucleic Acids for Detection of Legionellae in Biofilms

    PubMed Central

    Wilks, Sandra A.; Keevil, C. William

    2006-01-01

    Using fluorescence in situ hybridization to detect bacterial groups has several inherent limitations. DNA probes are generally used, targeting sites on the 16S rRNA. However, much of the 16S rRNA is highly conserved, with variable regions often located in inaccessible areas where secondary structures can restrict probe access. Here, we describe the use of peptide nucleic acid (PNA) probes as a superior alternative to DNA probes, especially when used for environmental samples. A complex bacterial genus (Legionella) was studied, and two probes were designed, one to detect all species and one targeted to Legionella pneumophila. These probes were developed from existing sequences and are targeted to low-binding-affinity sites on the 16S rRNA. In total, 47 strains of Legionella were tested. In all cases, the Legionella spp. PNA probe labeled cells strongly but did not bind to any non-Legionella species. Likewise, the specific L. pneumophila PNA probe labeled only strains of L. pneumophila. By contrast, the equivalent DNA probes performed poorly. To assess the applicability of this method for use on environmental samples, drinking-water biofilms were spiked with a known concentration of L. pneumophila bacteria. Quantifications of the L. pneumophila bacteria were compared using PNA hybridization and standard culture methods. The culture method quantified only 10% of the number of L. pneumophila bacteria found by PNA hybridization. This illustrates the value of this method for use on complex environmental samples, especially where cells may be in a viable but noncultivable state. PMID:16885298

  11. DNase I hypersensitivity sites and nuclear protein binding on the fatty acid synthase gene: identification of an element with properties similar to known glucose-responsive elements.

    PubMed Central

    Foufelle, F; Lepetit, N; Bosc, D; Delzenne, N; Morin, J; Raymondjean, M; Ferré, P

    1995-01-01

    We have shown previously that fatty acid synthase (FAS) gene expression is positively regulated by glucose in rat adipose tissue and liver. In the present study, we have identified in the first intron of the gene a sequence closely related to known glucose-responsive elements such as in the L-pyruvate kinase and S14 genes, including a putative upstream stimulatory factor/major late transcription factor (USF/MLTF) binding site (E-box) (+ 292 nt to + 297 nt). Location of this sequence corresponds to a site of hypersensitivity to DNase I which is present in the liver but not in the spleen. Moreover, using this information from a preliminary report of the present work, others have shown that a + 283 nt to + 303 nt sequence of the FAS gene can confer glucose responsiveness to a heterologous promoter. The protein binding to this region has been investigated in vitro by a combination of DNase I footprinting and gel-retardation experiments with synthetic oligonucleotides and known nuclear proteins. DNase I footprinting experiments using a + 161 nt to + 405 nt fragment of the FAS gene demonstrate that a region from + 290 nt to + 316 nt is protected by nuclear extracts from liver and spleen. This region binds two ubiquitous nuclear factors, USF/MLTF and the CAAT-binding transcription factor/nuclear factor 1 (CTF/NF1). Binding of these factors is similar in nuclear extracts from liver which does or does not express the FAS gene as observed for glucose-responsive elements in the L-pyruvate kinase and S14 genes. This suggests a posttranslational modification of a factor of the complex after glucose stimulation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7772036

  12. Mechanism of hydrodenitrogenation

    SciTech Connect

    Miranda, R.

    1992-11-30

    In this project it was proposed that the selectivity of the HDN reaction can be affected by an alteration of the catalyst acidity since it is possible that an acidic Hofmann-like deamination C--N--C bonds. Such a possibility was verified in this work by studying the denitrogenation of piperidine over acidic catalysts, and it was demonstrated that Bronsted acid sites are active for the denitrogenation of N-heterocycles, whereas Lewis sites are not. To better understand the role of acidic sites in the presence of hydrogenation and hydrogenolysis sites, molybdena was supposed on a series of acidic aluminas, and the resulting new acidity and molybdic phases were characterized. The oxidized catalysts supported on silica-aluninas showed increases from 3 to 150% of weak, medium and strong acid sites, which were produced by the molybdena phases. The new acidity was both of Lewis and Bronsted type, the predominance of one over the other depending upon support composition, as well as on loading and state of oxidation of Mo. High-alumina supports and low Mo loading favor dispersed Mo species, in particular bidentate and monodentate di-oxo Mo species. The latter is responsible for the new Bronsted acidity. Coordinative unsaturation of polymolybdates is responsible for the new Lewis acidity, which is increased upon reduction of Mo. High-silica supports favor monodentate species (high Bronsted acidity) up to 4 wt % MoO[sub 3]. Beyond that, polymolybdate species and Lewis acidity predominate. The nature of the reduced molybdena phases is obviously affected by support composition. The HDN reaction of pyridine was utilized to assess the variation in activity and selectivity produced by the nature of the support.

  13. Mechanism of hydrodenitrogenation. Final report, September 1, 1989--August 31, 1992

    SciTech Connect

    Miranda, R.

    1992-11-30

    In this project it was proposed that the selectivity of the HDN reaction can be affected by an alteration of the catalyst acidity since it is possible that an acidic Hofmann-like deamination C--N--C bonds. Such a possibility was verified in this work by studying the denitrogenation of piperidine over acidic catalysts, and it was demonstrated that Bronsted acid sites are active for the denitrogenation of N-heterocycles, whereas Lewis sites are not. To better understand the role of acidic sites in the presence of hydrogenation and hydrogenolysis sites, molybdena was supposed on a series of acidic aluminas, and the resulting new acidity and molybdic phases were characterized. The oxidized catalysts supported on silica-aluninas showed increases from 3 to 150% of weak, medium and strong acid sites, which were produced by the molybdena phases. The new acidity was both of Lewis and Bronsted type, the predominance of one over the other depending upon support composition, as well as on loading and state of oxidation of Mo. High-alumina supports and low Mo loading favor dispersed Mo species, in particular bidentate and monodentate di-oxo Mo species. The latter is responsible for the new Bronsted acidity. Coordinative unsaturation of polymolybdates is responsible for the new Lewis acidity, which is increased upon reduction of Mo. High-silica supports favor monodentate species (high Bronsted acidity) up to 4 wt % MoO{sub 3}. Beyond that, polymolybdate species and Lewis acidity predominate. The nature of the reduced molybdena phases is obviously affected by support composition. The HDN reaction of pyridine was utilized to assess the variation in activity and selectivity produced by the nature of the support.

  14. Efficient identification of photolabelled amino acid residues by combining immunoaffinity purification with MS: revealing the semotiadil-binding site and its relevance to binding sites for myristates in domain III of human serum albumin.

    PubMed Central

    Kawahara, Kohichi; Kuniyasu, Akihiko; Masuda, Katsuyoshi; Ishiguro, Masaji; Nakayama, Hitoshi

    2002-01-01

    To identify photoaffinity-labelled amino acid residue(s), we devised an effective method utilizing immunoaffinity purification of photolabelled fragments, followed by matrix-assisted laser-desorption ionization-time of flight (MALDI-TOF) MS and nanoelectrospray ionization tandem MS (nano-ESI-MS/MS) analysis. Human serum albumin (HSA) was photolabelled with an azidophenyl derivative of semotiadil, FNAK [(+)-(R)-3,4-dihydro-2-[5-methoxy-2-[3-[N-methyl-N-[2-(3-azidophenoxy)-ethyl]amino]propoxyl]phenyl]-4-methyl-2H-1,4-benzothiazin-3-(4H)-one], since HSA is a major binding protein for semotiadil in serum. After lysyl endopeptidase digestion, photolabelled HSA fragments were adsorbed selectively on to Sepharose beads on which an anti-semotiadil antibody was immobilized, and fractions were eluted quantitatively by 50% acetonitrile/10 mM HCl. MALDI-TOF MS analysis of the eluted fraction showed that it contained two photolabelled fragments of m/z 2557.54 (major) and 1322.44 (minor), corresponding to Lys-414-Lys-432 and Ala-539-Lys-545, respectively. Further nano-ESI-MS/MS analysis revealed that Lys-414 was the photolabelled amino acid residue in fragment 414-432 and Lys-541 was a likely candidate in fragment 539-545. Based on the photolabelling results, we constructed a three-dimensional model of the FNAK-HSA complex, revealing that FNAK resides in a pocket that overlaps considerably with myristate (Myr)-binding sites, Myr-3 and -4, by comparison with crystallographic data of HSA-Myr complexes described in Curry, Mandelkow, Brick and Franks (1998) Nat. Struct. Biol. 5, 827-835. Moreover, addition of Myr increased photo-incorporation into Lys-414, whereas incorporation into Lys-541 decreased under conditions of [Myr]/[HSA]<1. Further addition of Myr, however, uniformly decreased photo-incorporation into both Lys residues. These results indicate that FNAK labelling can also be used to monitor Myr binding in domain III. An interpretation for the concomitant local

  15. Acid-site characterization of water-oxidized alumina films by near-edge x-ray absorption and soft x-ray photoemission

    SciTech Connect

    O`Hagan, P.J.; Merrill, R.P.; Rhodin, T.N.; Woronick, S.W.; Shinn, N.D.; Woolery, G.L.; Chester, A.W.

    1994-12-01

    Hydroxylated alumina films have been synthesized by water oxidation of single crystal Al(110) surfaces. Thermal dehydroxylation results in anion vacancies which produce an Al(3s) defect state 3.5 eV below the conduction band edge. A maximum in the defect-DOS occurs for oxides heated to 350 to 400C, which is where the materials exhibit maximum Lewis acidity with respect to C{sub 2}H{sub 4}. Adsorbed C{sub 2}H{sub 4} produces thermally active C{sub 2} species which interact covalently with the defect-DOS and nonbonding O(2p) from the top of the valence band. C(1s) binding energies suggest significant charge transfer which is consistent with a carbenium ion. Ni evaporated onto the surface, however, transfers charge directly to Al species and does not interact with O atoms at the defect site. The defect-DOS is regenerated when the C{sub 2} species decomposes or when Ni migrates thermally through the oxide layer.

  16. Encapsulation of paclitaxel into lauric acid-O-carboxymethyl chitosan-transferrin micelles for hydrophobic drug delivery and site-specific targeted delivery.

    PubMed

    Nam, Joung-Pyo; Park, Seong-Cheol; Kim, Tae-Hun; Jang, Jae-Yeang; Choi, Changyong; Jang, Mi-Kyeong; Nah, Jae-Woon

    2013-11-30

    Transferrin/PEG/O-carboxymethyl chitosan/fatty acid/paclitaxel (TPOCFP) micelles were tested for suitability as a drug carrier characterized by low cytotoxicity, sustained release, high cellular uptake, and site-specific targeted delivery of hydrophobic drugs. Characterization, drug content, encapsulation efficiency, and in vitro drug release were investigated. When the feeding amount of paclitaxel (PTX) was increased, the drug content increased, but loading efficiency decreased. TPOCFP micelles had a spherical shape, with a particle size of approximately 140-649 nm. In vitro cell cytotoxicity and hemolysis assays were conducted to confirm the safety of the micelles. Anticancer activity and confocal laser scanning microscopy (CLSM) were used to confirm the targeting efficiency of target ligand-modified TPOCFP micelles. Anticancer activity and CLSM results clearly demonstrated that transferrin-modified TPOCFP micelles were quickly taken up by the cell. The endocytic pathway of TPOCFP micelles was analyzed by flow cytometry, revealing transfection via receptor-mediated endocytosis. These results suggest that PTX-encapsulated TPOCFP micelles may be used as an effective cancer-targeting drug delivery system for chemotherapy. PMID:24076228

  17. On the abundance and source contributions of dicarboxylic acids in size-resolved aerosol particles at continental sites in Central Europe

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Neusüß, C.; Herrmann, H.

    2013-12-01

    Dicarboxylic acids (DCAs) are among the most abundant organic compounds observed in atmospheric aerosol particles and have been extensively studied at many places around the world. The importance of the various primary sources and secondary formation pathways discussed in the literature is often difficult to assess from field studies, though. In the present study, a large dataset of size-resolved DCA concentrations from several inland sites in Germany is combined with results from a recently developed approach of statistical back-trajectory analysis and additional data. Principal component analysis is then used to reveal the most important factors governing the abundance of DCAs in different particle size ranges. The two most important sources revealed are (i) photochemical formation in polluted air masses, likely occurring in the gas phase on short timescales (gasSOA), and (ii) secondary reactions in anthropogenically influenced air masses, likely occurring in the aqueous phase on longer timescales (aqSOA). While the first source strongly impacts DCA concentrations mainly in small and large particles, the second one enhances accumulation mode DCAs and is responsible for the bulk of the observed concentrations. Primary sources were found to be minor (sea salt, soil resuspension) or non-existent (biomass burning, traffic). The results can be regarded representative for typical central-european continental conditions.

  18. On the abundance and source contributions of dicarboxylic acids in size-resolved aerosol particles at continental sites in central Europe

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Neusüß, C.; Herrmann, H.

    2014-04-01

    Dicarboxylic acids (DCAs) are among the most abundant organic compounds observed in atmospheric aerosol particles and have been extensively studied at many places around the world. The importance of the various primary sources and secondary formation pathways discussed in the literature is often difficult to assess from field studies, though. In the present study, a large data set of size-resolved DCA concentrations from several inland sites in Germany is combined with results from a recently developed approach of statistical back-trajectory analysis and additional data. Principal component analysis is then used to reveal the most important factors governing the abundance of DCAs in different particle size ranges. The two most important sources revealed are (i) photochemical formation during intense radiation days in polluted air masses, likely occurring in the gas phase on short timescales (gasSOA), and (ii) secondary reactions in anthropogenically influenced air masses, likely occurring in the aqueous phase on longer timescales (aqSOA). While the first source strongly impacts DCA concentrations mainly in small and large particles, the second one enhances accumulation mode DCAs and is responsible for the bulk of the observed concentrations. Primary sources were found to be minor (sea salt, soil resuspension) or non-existent (biomass burning, traffic). The results can be regarded as representative for typical central European continental conditions.

  19. Creation of a data base for sequences of ribosomal nucleic acids and detection of conserved restriction endonucleases sites through computerized processing.

    PubMed Central

    Patarca, R; Dorta, B; Ramirez, J L

    1982-01-01

    As part of a project pertaining the organization of ribosomal genes in Kinetoplastidae, we have created a data base for published sequences of ribosomal nucleic acids, with information in Spanish. As a first step in their processing, we have written a computer program which introduces the new feature of determining the length of the fragments produced after single or multiple digestion with any of the known restriction enzymes. With this information we have detected conserved SAU 3A sites: (i) at the 5' end of the 5.8S rRNA and at the 3' end of the small subunit rRNA, both included in similar larger sequences; (ii) in the 5.8S rRNA of vertebrates (a second one), which is not present in lower eukaryotes, showing a clear evolutive divergence; and, (iii) at the 5' terminal of the small subunit rRNA, included in a larger conserved sequence. The possible biological importance of these sequences is discussed. PMID:6278402

  20. SITE AND EXENT OF DIGESTION, DUODENAL FLOW, AND INTESTINAL DISAPPEARANCE OF TOTAL AND ESTERIFIED FATTY ACIDS IN SHEEP FED A HIGH-CONCENTRATE DIET SUPPLEMENTED WITH HIGH-LINOLEATE SAFFLOWER OIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to determine duodenal and ileal flows of total and esterified fatty acids and to determine ruminal fermentation characteristics and site and extent of nutrient digestion in sheep fed an 80% concentrate diet supplemented with high-linoleate (77%) safflower oil at 0, 3, 6, and 9% of ...

  1. Ground-water quality, water year 1995, and statistical analysis of ground-water-quality data, water years 1994-95, at the Chromic Acid Pit site, US Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Roybal, R.G.

    1996-01-01

    The Chromic Acid Pit site is an inactive waste disposal site that is regulated by the Resource Conservation and Recovery Act of 1976. The 2.2-cubic-yard cement-lined pit was operated from 1980 to 1983 by a contractor to the U.S. Army Air Defense Artillery Center and Fort Bliss. The pit, located on the Fort Bliss military reservation in El Paso, Texas, was used for disposal and evaporation of chromic acid waste generated from chrome plating operations. The site was closed in 1989, and the Texas Natural Resources Conservation Commission issued permit number HW-50296 (U.S. Environmental Protection Agency number TX4213720101), which approved and implemented post-closure care for the Chromic Acid Pit site. In accordance with an approved post-closure plan, the U.S. Geological Survey is cooperating with the U.S. Army in monitoring and evaluating ground-water quality at the site. One upgradient ground-water monitoring well (MW1) and two downgradient ground-water monitoring wells (MW2 and MW3), installed adjacent to the chromic acid pit, are monitored on a quarterly basis. Ground-water sampling of these wells by the U.S. Geological Survey began in December 1993. The ground-water level, measured in a production well located approximately 1,700 feet southeast of the Chromic Acid Pit site, has declined about 29.43 feet from 1982 to 1995. Depth to water at the Chromic Acid Pit site in September 1995 was 284.2 to 286.5 feet below land surface; ground-water flow at the water table is assumed to be toward the southeast. Ground-water samples collected from monitoring wells at the Chromic Acid Pit site during water year 1995 contained dissolved- solids concentrations of 481 to 516 milligrams per liter. Total chromium concentrations detected above the laboratory reporting limit ranged from 0.0061 to 0.030 milligram per liter; dissolved chromium concentrations ranged from 0.0040 to 0.010 milligram per liter. Nitrate as nitrogen concentrations ranged from 2.1 to 2.8 milligrams per

  2. Mapping the binding site pocket of the serotonin 5-Hydroxytryptamine2A receptor. Ser3.36(159) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin.

    PubMed

    Almaula, N; Ebersole, B J; Zhang, D; Weinstein, H; Sealfon, S C

    1996-06-21

    Like other amine neurotransmitters that activate G-protein-coupled receptors, 5-hydroxytryptamine (5-HT) binds to the 5-HT2A receptor through the interaction of its cationic primary amino group with the conserved Asp3.32(155) in transmembrane helix 3. Computational experiments with a 5-HT2A receptor model suggest that the same functional group of 5-hydroxytryptamine also forms a hydrogen bond with the side chain of Ser3.36(159), which is adjacent in space to Asp3.32(155). However, other 5-HT2A receptor ligands like lysergic acid diethylamide (LSD), in which the amine nitrogen is embedded in a heterocycle, or N,N-dimethyl 5-HT, in which the side chain is a tertiary amine, are found in the computational simulations to interact with the aspartate but not with the serine, due mainly to steric hindrance. The predicted difference in the interaction of various ligands in the same receptor binding pocket was tested with site-directed mutagenesis of Ser3.36(159) --> Ala and Ser3.36(159) --> Cys. The alanine substitution led to an 18-fold reduction in 5-HT affinity and the cysteine substitution to an intermediate 5-fold decrease. LSD affinity, in contrast, was unaffected by either mutation. N,N-Dimethyl 5-HT affinity was unaffected by the cysteine mutation and had a comparatively small 3-fold decrease in affinity for the alanine mutant. These findings identify a mode of ligand-receptor complexation that involves two receptor side chains interacting with the same functional group of specific serotonergic ligands. This interaction serves to orient the ligands in the binding pocket and may influence the degree of receptor activation. PMID:8663249

  3. Isotopic Systematics (U, nitrate and Sr) of the F-Area Acidic Contamination Plume at the Savannah River Site: Clues to Contaminant History and Mobility

    NASA Astrophysics Data System (ADS)

    Christensen, J. N.; Conrad, M. E.; Bill, M.; Denham, M.; Wan, J.; Rakshit, S.; Stringfellow, W. T.; Spycher, N.

    2010-12-01

    Seepage basins in the F-Area of the Savannah River Site were used from 1955 to 1989 for the disposal of low-level radioactive acidic (ave. pH ˜2.9) waste solutions from site operations involving irradiated uranium billets and other materials used in the production of radionuclides. These disposal activities resulted in a persistent acidic groundwater plume (pH as low as 3.2) beneath the F-Area including contaminants such as tritium, nitrate, 90Sr, 129I and uranium and that has impinged on surface water (Four Mile Branch) about 600 m from the basins. After cessation of disposal in 1989, the basins were capped in 1991. Since that time, remediation has consisted of a pump-and-treat system that has recently been replaced with in situ treatment using a funnel-and-gate system with injection of alkaline solutions in the gates to neutralize pH. In order to delineate the history of contamination and the current mobility and fate of contaminants in F-Area groundwater, we have undertaken a study of variations in the isotopic compositions of U (234U/238U, 235U/238U, 236U/238U), Sr (87Sr/86Sr) and nitrate (δ15N, δ18O) within the contaminant plume. This data can be used to trace U transport within the plume, evaluate chemical changes of nitrate, and potentially track plume/sediment chemical interaction and trace the migration of 90Sr. We have analyzed a suite of groundwater samples from monitoring wells, as well as pore-water samples extracted from aquifer sediment cores to map out the isotopic variation within the plume. The isotopic compositions of U from well samples and porewater samples are all consistent with the variable burn-up of depleted U. The variation in U isotopic composition requires at least three different endmembers, without any significant influence of background natural U. The δ15N and δ18O of nitrate from F-Area plume groundwater are distinct both from natural and unaltered synthetic nitrate, and likely represents fractionation due to waste volume

  4. Biosynthesis of a Novel Glutamate Racemase Containing a Site-Specific 7-Hydroxycoumarin Amino Acid: Enzyme–Ligand Promiscuity Revealed at the Atomistic Level

    PubMed Central

    2015-01-01

    Glutamate racemase (GR) catalyzes the cofactor independent stereoinversion of l- to d-glutamate for biosynthesis of bacterial cell walls. Because of its essential nature, this enzyme is under intense scrutiny as a drug target for the design of novel antimicrobial agents. However, the flexibility of the enzyme has made inhibitor design challenging. Previous steered molecular dynamics (MD), docking, and experimental studies have suggested that the enzyme forms highly varied complexes with different competitive inhibitor scaffolds. The current study employs a mutant orthogonal tRNA/aminoacyl-tRNA synthetase pair to genetically encode a non-natural fluorescent amino acid, l-(7-hydroxycoumarin-4-yl) ethylglycine (7HC), into a region (Tyr53) remote from the active site (previously identified by MD studies as undergoing ligand-associated changes) to generate an active mutant enzyme (GRY53/7HC). The GRY53/7HC enzyme is an active racemase, which permitted us to examine the nature of these idiosyncratic ligand-associated phenomena. One type of competitive inhibitor resulted in a dose-dependent quenching of the fluorescence of GRY53/7HC, while another type of competitive inhibitor resulted in a dose-dependent increase in fluorescence of GRY53/7HC. In order to investigate the environmental changes of the 7HC ring system that are distinctly associated with each of the GRY53/7HC–ligand complexes, and thus the source of the disparate quenching phenomena, a parallel computational study is described, which includes essential dynamics, ensemble docking and MD simulations of the relevant GRY53/7HC–ligand complexes. The changes in the solvent exposure of the 7HC ring system due to ligand-associated GR changes are consistent with the experimentally observed quenching phenomena. This study describes an approach for rationally predicting global protein allostery resulting from enzyme ligation to distinctive inhibitor scaffolds. The implications for fragment-based drug discovery and

  5. Uric Acid Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Uric Acid Share this page: Was this page helpful? Also known as: Serum Urate; UA Formal name: Uric Acid Related tests: Synovial Fluid Analysis , Kidney Stone Analysis , ...

  6. Methylmalonic Acid Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Methylmalonic Acid Share this page: Was this page helpful? Also known as: MMA Formal name: Methylmalonic Acid Related tests: Vitamin B12 and Folate , Homocysteine , Intrinsic ...

  7. The 7-amino-acid site in the proline-rich region of the N-terminal domain of p53 is involved in the interaction with FAK and is critical for p53 functioning.

    PubMed

    Golubovskaya, Vita M; Finch, Richard; Zheng, Min; Kurenova, Elena V; Cance, William G

    2008-04-01

    It is known that p53 alterations are commonly found in tumour cells. Another marker of tumorigenesis is FAK (focal adhesion kinase), a non-receptor kinase that is overexpressed in many types of tumours. Previously we determined that the N-terminal domain of FAK physically interacted with the N-terminal domain of p53. In the present study, using phage display, sitedirected mutagenesis, pulldown and immunoprecipitation assays we localized the site of FAK binding to a 7-amino-acid region(amino acids 65-71) in the N-terminal proline-rich domain of human p53. Mutation of the binding site in p53 reversed the suppressive effect of FAK on p53-mediated transactivation ofp21, BAX (Bcl-2-associated X protein) and Mdm2 (murine double minute 2) promoters. In addition, to functionally test this p53 site, we conjugated p53 peptides [wild-type (containing the wild-type binding site) and mutant (with a mutated 7-aminoacid binding site)] to a TAT peptide sequence to penetrate the cells, and demonstrated that the wild-type p53 peptide disrupted binding of FAK and p53 proteins and significantly inhibited cell viability of HCT116 p53+/+ cells compared with the control mutant peptide and HCT116 p53-/- cells. Furthermore, the TAT-p53 peptide decreased the viability of MCF-7 cells, whereas the mutant peptide did not cause this effect. Normal fibroblast p53+/+ and p53-/- MEF (murine embryonic fibroblast) cells and breast MCF10A cells were not sensitive to p53 peptide. Thus, for the first time, we have identified the binding site of the p53 andFAK interaction and have demonstrated that mutating this site and targeting the site with peptides affects p53 functioning and viability in the cells. PMID:18215142

  8. One-pot assembly of metal/organic-acid sites on amine-functionalized ligands of MOFs for photocatalytic hydrogen peroxide splitting.

    PubMed

    Qin, Lei; Li, Zhaowen; Hu, Qiong; Xu, Zehai; Guo, Xinwen; Zhang, Guoliang

    2016-06-01

    A one-pot organic-acid-directed post-synthetic modification allows molecular iron/citric acid complexes to be anchored into amine-functionalized MOFs by a simple and rapid liquid spraying method. Amidation between organic acid and -NH2 groups of ligands can lead to more small nanoparticles (NPs) that are well-dispersed into MOFs and exhibit high activity for photocatalytic H2O2 splitting. PMID:27166081

  9. Conjugate Acid-Base Pairs, Free Energy, and the Equilibrium Constant

    ERIC Educational Resources Information Center

    Beach, Darrell H.

    1969-01-01

    Describes a method of calculating the equilibrium constant from free energy data. Values of the equilibrium constants of six Bronsted-Lowry reactions calculated by the author's method and by a conventional textbook method are compared. (LC)

  10. Substitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial D-amino acid transaminase. Effects of exogenous amines on the slow formation of intermediates.

    PubMed

    Futaki, S; Ueno, H; Martinez del Pozo, A; Pospischil, M A; Manning, J M; Ringe, D; Stoddard, B; Tanizawa, K; Yoshimura, T; Soda, K

    1990-12-25

    In bacterial D-amino acid transaminase, Lys-145, which binds the coenzyme pyridoxal 5'-phosphate in Schiff base linkage, was changed to Gln-145 by site-directed mutagenesis (K145Q). The mutant enzyme had 0.015% the activity of the wild-type enzyme and was capable of forming a Schiff base with D-alanine; this external aldimine was formed over a period of minutes depending upon the D-alanine concentration. The transformation of the pyridoxal-5'-phosphate form of the enzyme to the pyridoxamine-5'-phosphate form (i.e. the half-reaction of transamination) occurred over a period of hours with this mutant enzyme. Thus, information on these two steps in the reaction and on the factors that influence them can readily be obtained with this mutant enzyme. In contrast, these reactions with the wild-type enzyme occur at much faster rates and are not easily studied separately. The mutant enzyme shows distinct preference for D- over L-alanine as substrates but it does so about 50-fold less effectively than the wild-type enzyme. Thus, Lys-145 probably acts in concert with the coenzyme and other functional side chain(s) to lead to efficient and stereochemically precise transamination in the wild-type enzyme. The addition of exogenous amines, ethanolamine or methyl amine, increased the rate of external aldimine formation with D-alanine and the mutant enzyme but the subsequent transformation to the pyridoxamine-5'-phosphate form of the enzyme was unaffected by exogenous amines. The wild-type enzyme displayed a large negative trough in the circular dichroic spectrum at 420 nm, which was practically absent in the mutant enzyme. However, addition of D-alanine to the mutant enzyme generated this negative Cotton effect (due to formation of the external aldimine with D-alanine). This circular dichroism band gradually collapsed in parallel with the transformation to the pyridoxamine-5'-phosphate enzyme. Further studies on this mutant enzyme, which displays the characteristics of the wild

  11. Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions

    SciTech Connect

    Shiju N. R.; Syed K.; Alberts A.; Brown D. and Rothenberg G.

    2011-09-15

    A bifunctional solid catalyst is prepared by combining acid and base functions on mesoporous silica supports. The co-existence of these functions is shown by a two-step reaction sequence in one pot. Excellent product yields, which cannot be obtained by separated acid and base functions in one pot, show the validity of our concept.

  12. PHOTOCHEMICAL ALTERATION OF DISSOLVED ORGANIC MATTER: EFFECTS ON THE CONCENTRATION AND ACIDITIES OF IONIZABLE SITES IN DISSOLVED ORGANIC MATTER IN THE SATILLA RIVER OF GEORGIA, USA

    EPA Science Inventory

    The acid-base properties of humic substances, the major component of dissolved organic matter (DOM), area major control on the alkalinity, or acid neutralizing capacity of freshwater systems. Alkalinity is one of the fundamental parameters measured in aquatic sciences, and is an ...

  13. Recent advances in the analysis of the site-specific isotopic fractionation of metabolites such as fatty acids using anisotropic natural-abundance 2H NMR spectroscopy: application to conjugated linolenic methyl esters.

    PubMed

    Lesot, Philippe; Serhan, Zeinab; Billault, Isabelle

    2011-01-01

    The full elucidation of the enzymatic mechanisms leading to polyunsaturated ω-3 to ω-5 fatty acids (PUFAs) occurring in plants or microorganisms by analyzing their site-specific isotopic fractionation profiles is a challenging task. Isotropic SNIF-NMR® method is an historical, powerful tool for the determination of ((2)H/(1)H) ratios. However, the absence of accessible isotopic data on the enantiotopic hydrogen sites (CH(2) groups) prevents the study of the enzymatic reaction stereoselectivity. Natural-abundance deuterium (NAD) 2D NMR experiment using chiral liquid crystals (CLC) as solvent is a new tool in this field, overcoming this limitation. In this work, we have explored various possibilities for optimizing the enantio-discrimination properties of CLC by changing the nature of the polypeptide and/or increasing the polarity of the organic co-solvents. We report also the first applications of TMU as co-solvent for preparing enantio-discriminating, homogenous polypeptide mesophases. The various experimental NAD NMR results recorded at an optimal sample temperature are discussed and compared in terms of number of discriminated (2)H sites and magnitude of spectral separation for different PUFAs such as the linoleic and linolenic acids. The comparison of all NMR results shows that optimal results are obtained when CLC mixtures made of poly-γ-benzyl-L-glutamate (PBLG) and high polarity co-solvents are used. As new challenging examples of applications, we report the preliminary analytical results obtained from two ω-5 conjugated linolenic acids: the α-eleostearic acid (9Z, 11E, 13E) and the punicic acid (9Z, 11E, 13Z). NMR data are discussed in terms of molecular orientational ordering parameters and isotopic distribution. PMID:21107978

  14. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    SciTech Connect

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik; Whittaker, Gary R.

    2012-12-05

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  15. Two Cytoplasmic Acylation Sites and an Adjacent Hydrophobic Residue, but No Other Conserved Amino Acids in the Cytoplasmic Tail of HA from Influenza A Virus Are Crucial for Virus Replication.

    PubMed

    Siche, Stefanie; Brett, Katharina; Möller, Lars; Kordyukova, Larisa V; Mintaev, Ramil R; Alexeevski, Andrei V; Veit, Michael

    2015-12-01

    Recruitment of the matrix protein M1 to the assembly site of the influenza virus is thought to be mediated by interactions with the cytoplasmic tail of hemagglutinin (HA). Based on a comprehensive sequence comparison of all sequences present in the database, we analyzed the effect of mutating conserved residues in the cytosol-facing part of the transmembrane region and cytoplasmic tail of HA (A/WSN/33 (H1N1) strain) on virus replication and morphology of virions. Removal of the two cytoplasmic acylation sites and substitution of a neighboring isoleucine by glutamine prevented rescue of infectious virions. In contrast, a conservative exchange of the same isoleucine, non-conservative exchanges of glycine and glutamine, deletion of the acylation site at the end of the transmembrane region and shifting it into the tail did not affect virus morphology and had only subtle effects on virus growth and on the incorporation of M1 and Ribo-Nucleoprotein Particles (RNPs). Thus, assuming that essential amino acids are conserved between HA subtypes we suggest that, besides the two cytoplasmic acylation sites (including adjacent hydrophobic residues), no other amino acids in the cytoplasmic tail of HA are indispensable for virus assembly and budding. PMID:26670246

  16. Two Cytoplasmic Acylation Sites and an Adjacent Hydrophobic Residue, but No Other Conserved Amino Acids in the Cytoplasmic Tail of HA from Influenza A Virus Are Crucial for Virus Replication

    PubMed Central

    Siche, Stefanie; Brett, Katharina; Möller, Lars; Kordyukova, Larisa V.; Mintaev, Ramil R.; Alexeevski, Andrei V.; Veit, Michael

    2015-01-01

    Recruitment of the matrix protein M1 to the assembly site of the influenza virus is thought to be mediated by interactions with the cytoplasmic tail of hemagglutinin (HA). Based on a comprehensive sequence comparison of all sequences present in the database, we analyzed the effect of mutating conserved residues in the cytosol-facing part of the transmembrane region and cytoplasmic tail of HA (A/WSN/33 (H1N1) strain) on virus replication and morphology of virions. Removal of the two cytoplasmic acylation sites and substitution of a neighboring isoleucine by glutamine prevented rescue of infectious virions. In contrast, a conservative exchange of the same isoleucine, non-conservative exchanges of glycine and glutamine, deletion of the acylation site at the end of the transmembrane region and shifting it into the tail did not affect virus morphology and had only subtle effects on virus growth and on the incorporation of M1 and Ribo-Nucleoprotein Particles (RNPs). Thus, assuming that essential amino acids are conserved between HA subtypes we suggest that, besides the two cytoplasmic acylation sites (including adjacent hydrophobic residues), no other amino acids in the cytoplasmic tail of HA are indispensable for virus assembly and budding. PMID:26670246

  17. Transforming the recognition site of 4-hydroxyaniline into 4-methoxyaniline grafted onto a BODIPY core switches the selective detection of peroxynitrite to hypochlorous acid.

    PubMed

    Zhao, Chunchang; An, Jiancai; Zhou, Li; Fei, Qiang; Wang, Feiyi; Tan, Jie; Shi, Ben; Wang, Rui; Guo, Zhiqian; Zhu, Wei-Hong

    2016-02-01

    Two novel probes were designed, sharing the same BODIPY core but differing only by a minimized variation in the recognition site from 4-hydroxyaniline into 4-methoxyaniline. Such a small change in the reaction site could switch the selective detection from peroxynitrite to HOCl. Undoubtedly, the new designed BODIPY core exhibits valuable properties. PMID:26688579

  18. Identification of S-glutathionylation sites in species-specific proteins by incorporating five sequence-derived features into the general pseudo-amino acid composition.

    PubMed

    Zhao, Xiaowei; Ning, Qiao; Ai, Meiyue; Chai, Haiting; Yang, Guifu

    2016-06-01

    As a selective and reversible protein post-translational modification, S-glutathionylation generates mixed disulfides between glutathione (GSH) and cysteine residues, and plays an important role in regulating protein activity, stability, and redox regulation. To fully understand S-glutathionylation mechanisms, identification of substrates and specific S-Glutathionylated sites is crucial. Experimental identification of S-glutathionylated sites is labor-intensive and time consuming, so establishing an effective computational method is much desirable due to their convenient and fast speed. Therefore, in this study, a new bioinformatics tool named SSGlu (Species-Specific identification of Protein S-glutathionylation Sites) was developed to identify species-specific protein S-glutathionylated sites, utilizing support vector machines that combine multiple sequence-derived features with a two-step feature selection. By 5-fold cross validation, the performance of SSGlu was measured with an AUC of 0.8105 and 0.8041 for Homo sapiens and Mus musculus, respectively. Additionally, SSGlu was compared with the existing methods, and the higher MCC and AUC of SSGlu demonstrated that SSGlu was very promising to predict S-glutathionylated sites. Furthermore, a site-specific analysis showed that S-glutathionylation intimately correlated with the features derived from its surrounding sites. The conclusions derived from this study might help to understand more of the S-glutathionylation mechanism and guide the related experimental validation. For public access, SSGlu is freely accessible at http://59.73.198.144:8080/SSGlu/. PMID:27025952

  19. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL. PMID:26820485

  20. Alterations in ovarian follicular progesterone secretion by elevated exposures to the drinking water disinfection by-product dibromoacetic acid: examination of the potential site(s) of impact along the steroidogenic pathway

    EPA Science Inventory

    Previous data from our laboratory indicated that the drinking water disinfection by-product, dibromoacetic acid (DBA), when applied in vitro to rat preovulatory follicles at a concentration consistent with blood levels found to disrupt estrous cyclicity, was able to block the sti...

  1. Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site.

    PubMed Central

    Wise, R J; Barr, P J; Wong, P A; Kiefer, M C; Brake, A J; Kaufman, R J

    1990-01-01

    Intracellular proteolytic processing of precursor polypeptides is an essential step in the maturation of many proteins, including plasma proteins, hormones, neuropeptides, and growth factors. Most frequently, propeptide cleavage occurs after paired basic amino acid residues. To date, no mammalian propeptide processing enzyme with such specificity has been purified or cloned and functionally characterized. We report the isolation and functional expression of a cDNA encoding a propeptide-cleaving enzyme from a human liver cell line. The encoded protein, called PACE (paired basic amino acid cleaving enzyme), has structural homology to the well-characterized subtilisin-like protease Kex2 from yeast. The functional specificity of PACE for mediating propeptide cleavage at paired basic amino acid residues was demonstrated by the enhancement of propeptide processing of human von Willebrand factor when coexpressed with PACE in COS-1 cells. Images PMID:2251280

  2. Mapping the X(+1) binding site of the Grb2-SH2 domain with alpha,alpha-disubstituted cyclic alpha-amino acids.

    PubMed

    García-Echeverría, C; Gay, B; Rahuel, J; Furet, P

    1999-10-18

    A series of phosphopeptides containing alpha,alpha-disubstituted cyclic alpha-amino acids (Ac(n)c, 3 < or = n < or = 7; n refers to the number of carbons in the ring) at the X(+1) position of Ac-Tyr(PO3H2)-X(+1)-Asn-NH2 has been synthesised and their inhibitory activity as antagonists of the Grb2-SH2 domain has been determined in competitive binding assays. The SAR data obtained have been interpreted by using models constructed from the X-ray structure of the ligand-bound Grb2-SH2 domain. The used of alpha,alpha-disubstituted cyclic alpha-amino acids to map the binding pockets of proteins expands the classical alanine scan concept and takes advantage of the known conformational preferences of these amino acids. PMID:10571147

  3. Incorporation of Non-natural Amino Acids Improves Cell Permeability and Potency of Specific Inhibitors of Proteasome Trypsin-like Sites

    PubMed Central

    Geurink, Paul P.; van der Linden, Wouter A.; Mirabella, Anne C.; Gallastegui, Nerea; de Bruin, Gerjan; Blom, Annet E. M.; Voges, Mathias J.; Mock, Elliot D.; Florea, Bogdan I.; van der Marel, Gijs A.; Driessen, Christoph; van der Stelt, Mario; Groll, Michael; Overkleeft, Herman S.; Kisselev, Alexei F.

    2013-01-01

    Proteasomes degrade the majority of proteins in mammalian cells by a concerted action of three distinct pairs of active sites. The chymotrypsin-like sites are targets of antimyeloma agents bortezomib and carfilzomib. Inhibitors of the trypsin-like site sensitize multiple myeloma cells to these agents. Here we describe systematic effort to develop inhibitors with improved potency and cell permeability, yielding azido-Phe-Leu-Leu-4-aminomethyl-Phe-methyl vinyl sulfone (4a, LU-102), and a fluorescent activity-based probe for this site. X-ray structures of 4a and related inhibitors complexed with yeast proteasomes revealed the structural basis for specificity. Nontoxic to myeloma cells when used as a single agent, 4a sensitized them to bortezomib and carfilzomib. This sensitizing effect was much stronger than the synergistic effects of histone acetylase inhibitors or additive effects of doxorubicin and dexamethasone, raising the possibility that combinations of inhibitors of the trypsin-like site with bortezomib or carfilzomib would have stronger antineoplastic activity than combinations currently used clinically. PMID:23320547

  4. Three-dimensional structural model analysis of the binding site of lithocholic acid, an inhibitor of DNA polymerase beta and DNA topoisomerase II.

    PubMed

    Mizushina, Y; Kasai, N; Sugawara, F; Iida, A; Yoshida, H; Sakaguchi, K

    2001-11-01

    The molecular action of lithocholic acid (LCA), a selective inhibitor of mammalian DNA polymerase beta (pol beta), was investigated. We found that LCA could also strongly inhibit the activity of human DNA topoisomerase II (topo II). No other DNA metabolic enzymes tested were affected by LCA. Therefore, LCA should be classified as an inhibitor of both pol beta and topo II. Here, we report the molecular interaction of LCA with pol beta and topo II. By three-dimensional structural model analysis and by comparison with the spatial positioning of specific amino acids binding to LCA on pol beta (Lys60, Leu77, and Thr79), we obtained supplementary information that allowed us to build a structural model of topo II. Modeling analysis revealed that the LCA-interaction interface in both enzymes has a pocket comprised of three amino acids in common, which binds to the LCA molecule. In topo II, the three amino acid residues were Lys720, Leu760, and Thr791. These results suggested that the LCA binding domains of pol beta and topo II are three-dimensionally very similar. PMID:11686928

  5. Point mutations of the alpha 1 beta 2 gamma 2 gamma-aminobutyric acid(A) receptor affecting modulation of the channel by ligands of the benzodiazepine binding site.

    PubMed

    Buhr, A; Baur, R; Malherbe, P; Sigel, E

    1996-06-01

    Clinically relevant benzodiazepines allosterically stimulate neurotransmitter-evoked chloride currents at the gamma-aminobutyric acid type A(GABAA) receptor. Rat wild-type or mutated alpha 1, beta 2, and gamma 2S subunits were coexpressed in Xenopus oocytes and investigated with electrophysiological techniques. Point mutations in two subunits were identified that affect the response of gamma-aminobutyric acid (GABA)-induced currents by benzodiazepines. Mutation of one of three amino acid residues to alanine (alpha Tyr161 and alpha Thr206) or leucine (gamma Phe77) resulted in a approximately 3-fold increase in potentiation by diazepam. The response to zolpidem was increased in two mutant channels containing the mutated alpha subunit but was nearly absent in channels containing the mutated gamma subunit. In the former cases, methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) acted as a negative allosteric modulator of the channel, much stronger than in the wild-type channel, whereas there was no significant difference to the wild-type channel in the latter case. Thus, the mutant gamma subunit has different functional consequences for the various types of ligand of the benzodiazepine binding site. All three amino acid residues, alpha Tyr161, alpha Thr206, and gamma Phe77, are close or identical to homologous residues that are implicated in GABA binding. If the residues binding the channel agonist GABA are located at subunit interfaces, the residues influencing the benzodiazepine effects must also be located at subunit interfaces. PMID:8649346

  6. USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15

    SciTech Connect

    KETUSKY, EDWARD

    2005-10-31

    This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

  7. Synthesis of 3,4-dihydro-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxides and their evaluation as ligands for NMDA receptor glycine binding site.

    PubMed

    Bluke, Zanda; Paass, Einars; Sladek, Meik; Abel, Ulrich; Kauss, Valerjans

    2016-08-01

    A series of 2-substituted 3,4-dihydro-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxides were synthesized and evaluated for their affinity to the glycine binding site of the N-methyl-d-aspartate (NMDA) receptor. The binding affinity was determined by the displacement of radioligand [(3)H]MDL-105,519 from rat cortical membrane preparations. The most attractive structures in the search for prospective NMDA receptor ligands were identified to be 2-arylcarbonylmethyl substituted 3,4-dihydro-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxides. It has been demonstrated for the first time that the replacement of NH group in the ligand by sp(3) CH2 is tolerated. This finding may pave the way for previously unexplored approaches for designing new ligands of the NMDA receptor. PMID:26114309

  8. Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxy acetone by Lewis acid active site models.

    PubMed

    Assary, Rajeev S; Curtiss, Larry A

    2011-08-11

    The isomerization of glyceraldehyde to dihydroxy acetone catalyzed by the active site of Sn-beta zeolite is investigated using the B3LYP density functional and MP2 levels of theory. Structural studies were aimed to understanding the binding modes of glyceraldehyde with the active site, and the detailed free energy landscape was computed for the isomerization process. The rate-limiting step for the isomerization is the 1,2-hydride shift, which is enhanced by the active participation of the hydroxyl group in the hydrolyzed Sn-beta active site analogues to the one seen in the xylose isomerase. On the basis of the assessment of the activation barriers for isomerization by the Sn, Zr, Ti, and Si zeolite models, the activity of the catalysts are in the order of Sn > Zr > Ti > Si in aqueous dielectric media. PMID:21707087

  9. Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxy acetone by Lewis acid active site models.

    SciTech Connect

    Assary, R. S.; Curtiss, L. A.

    2011-08-01

    The isomerization of glyceraldehyde to dihydroxy acetone catalyzed by the active site of Sn-beta zeolite is investigated using the B3LYP density functional and MP2 levels of theory. Structural studies were aimed to understanding the binding modes of glyceraldehyde with the active site, and the detailed free energy landscape was computed for the isomerization process. The rate-limiting step for the isomerization is the 1,2-hydride shift, which is enhanced by the active participation of the hydroxyl group in the hydrolyzed Sn-beta active site analogues to the one seen in the xylose isomerase. On the basis of the assessment of the activation barriers for isomerization by the Sn, Zr, Ti, and Si zeolite models, the activity of the catalysts are in the order of Sn > Zr > Ti > Si in aqueous dielectric media.

  10. Theoretical Study of 1,2-Hydride Shift Associated with the Isomerization of Glyceraldehyde to Dihydroxy Acetone by Lewis Acid Active Site Models

    SciTech Connect

    Assary, Rajeev S.; Curtiss, Larry A.

    2011-08-11

    The isomerization of glyceraldehyde to dihydroxy acetone catalyzed by the active site of Sn-beta zeolite is investigated using the B3LYP density functional and MP2 levels of theory. Structural studies were aimed to understanding the binding modes of glyceraldehyde with the active site, and the detailed free energy landscape was computed for the isomerization process. The rate-limiting step for the isomerization is the 1,2-hydride shift, which is enhanced by the active participation of the hydroxyl group in the hydrolyzed Sn-beta active site analogues to the one seen in the xylose isomerase. On the basis of the assessment of the activation barriers for isomerization by the Sn, Zr, Ti, and Si zeolite models, the activity of the catalysts are in the order of Sn > Zr > Ti > Si in aqueous dielectric media.

  11. Crystal structures of the apo form and a complex of human LMW-PTP with a phosphonic acid provide new evidence of a secondary site potentially related to the anchorage of natural substrates.

    PubMed

    Fonseca, Emanuella M B; Trivella, Daniela B B; Scorsato, Valéria; Dias, Mariana P; Bazzo, Natália L; Mandapati, Kishore R; de Oliveira, Fábio L; Ferreira-Halder, Carmen V; Pilli, Ronaldo A; Miranda, Paulo C M L; Aparicio, Ricardo

    2015-08-01

    Low molecular weight protein tyrosine phosphatases (LMW-PTP, EC 3.1.3.48) are a family of single-domain enzymes with molecular weight up to 18 kDa, expressed in different tissues and considered attractive pharmacological targets for cancer chemotherapy. Despite this, few LMW-PTP inhibitors have been described to date, and the structural information on LMW-PTP druggable binding sites is scarce. In this study, a small series of phosphonic acids were designed based on a new crystallographic structure of LMW-PTP complexed with benzylsulfonic acid, determined at 2.1Å. In silico docking was used as a tool to interpret the structural and enzyme kinetics data, as well as to design new analogs. From the synthesized series, two compounds were found to act as competitive inhibitors, with inhibition constants of 0.124 and 0.047 mM. We also report the 2.4Å structure of another complex in which LMW-PTP is bound to benzylphosphonic acid, and a structure of apo LMW-PTP determined at 2.3Å resolution. Although no appreciable conformation changes were observed, in the latter structures, amino acid residues from an expression tag were found bound to a hydrophobic region at the protein surface. This regions is neighbored by positively charged residues, adjacent to the active site pocket, suggesting that this region might be not a mere artefact of crystal contacts but an indication of a possible anchoring region for the natural substrate-which is a phosphorylated protein. PMID:26117648

  12. Evidence for a conserved binding motif of the dinuclear metal site in mammalian and plant purple acid phosphatases: 1H NMR studies of the di-iron derivative of the Fe(III)Zn(II) enzyme from kidney bean.

    PubMed Central

    Battistuzzi, G; Dietrich, M; Löcke, R; Witzel, H

    1997-01-01

    The di-iron core of mammalian purple acid phosphatases has been reproduced in the plant enzyme from kidney bean (Mr 111000) upon insertion of an Fe(II) ion in place of the native zinc(II) in the dinuclear Fe(III)Zn(II) core. The shortening of the electronic relaxation time of the metal centre allows detection of hyperfine-shifted 1H NMR resonances, although severe broadening due to Curie relaxation prevents independent signal assignment. Nevertheless, comparison of the spectral features of the structurally characterized plant enzyme with those of the mammalian species, which were previously extensively assigned, is consistent with a close similarity of the metal-binding sites, also suggested by previous sequence-alignment studies. Some differences appear to be mainly localized at the M(II) site. Spectral comparison was also carried out on the Fe(III)Co(II) derivatives. PMID:9169589

  13. Spectroscopic and catalytic study of P-modified ZSM-5

    SciTech Connect

    Rahman, A.; Lemay, G.; Adnot, A.; Kaliaguine, S. )

    1988-08-01

    Postsynthesis modification of ZSM-5 with phosphorus was performed by gas-phase adsorption of triphenylphosphine. IR spectra of adsorbed pyridine indicated an interaction of phosphorus species with Bronsted acid sites. ESCA analysis of noncalcined catalysts suggests a model for this interaction. A quantitative treatment of ESCA intensity ratios for the calcined catalysis before and after grinding allows one to calculate the size and loading of both extraparticle and intra-pore-lattice (IPL) phosphorus oxide particles. The IPL loading was found to be vary close to the loading of exchange phosphorus calculated from the IR of adsorbed pyridine. The product distribution of MTG conversion was found to be correlated with the extent of Bronsted acid site poisoning following exchange with phosphorus species.

  14. The NH4--NO3--Cl--SO42--H2O Aerosol System and its Gas Phase Precursors at a Rural Site in the Amazon Basin: How Relevant are Mineral Cations and Soluble Organic Acids?

    NASA Astrophysics Data System (ADS)

    Helas, G.; Trebs, I.; Metzger, S.; Meixner, F. X.; Hoffer, A.; Moura, M. A.; da Silva, R. S.; Rudich, Y.; Falkovich, A.; Artaxo, P.; Slanina, J.; Andreae, M. O.

    2004-12-01

    We performed real-time measurements of ammonia (NH3), nitric acid (HNO3), hydrochloric acid (HCl), sulfur dioxide (SO2) and the water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), chloride (Cl-), and sulfate (SO42-) at a pasture site in the Amazon Basin (Rondônia, Brazil). The measurements were made during the closing of the dry season (biomass burning), the transition period, and the onset of the wet season (clean conditions) (12 Sep. to 14 Nov. 2002, LBA-SMOCC*), using a wet-annular denuder (WAD) in combination with a Steam-Jet Aerosol Collector (SJAC). Real-time data were combined with measurements of mineral cations (K+ , Ca2+ , Mg2+) and low-molecular weight (LMW) polar organic acids on 12-, 24- and 48-hours integrated filter samples. The contribution of inorganic species to the fine particulate mass (Dp < 2.5 um)was frequently below 20 % by mass, indicating the preponderance of organic matter. The high abundance of NH3 at the sampling site substantially influenced gas/aerosol partitioning processes, being responsible for complete acid neutralization through the aerosol phase forming aerosol NH4+. Balances of aerosol fine mode inorganic ionic charges indicated the role of dissociated low-molecular weight (LMW) polar organic acids, which were apparently neutralized by excess NH3. The measured concentration products of NH3 x HNO3 and NH3 x HCl persistently remained below the theoretical equilibrium dissociation constants of the NH3/HNO3/NH4NO3 and NH3/HCl/NH4Cl systems during daytime (RH < 90 %). The application of thermodynamic equilibrium models (EQMs), namely EQSAM, ISORROPIA, GEFMN and SCAPE2 indicated that balancing of aerosol NO3-, Cl- and SO42- preferentially proceeded via mineral cations (particularly pyrogenic K+) during daytime. At nighttime (RH > 90 %) NH4NO3 and NH4Cl were predicted to be formed in the aqueous aerosol phase. Cl- was largely driven out of the aerosol phase by reaction of KCl with HNO3 and H2SO4. As shown by an

  15. Characterization of limestone reacted with acid-mine drainage in a pulsed limestone bed treatment system at the Friendship Hill National Historical Site, Pennsylvania, USA

    USGS Publications Warehouse

    Hammarstrom, J.M.; Sibrell, P.L.; Belkin, H.E.

    2003-01-01

    Armoring of limestone is a common cause of failure in limestone-based acid-mine drainage (AMD) treatment systems. Limestone is the least expensive material available for acid neutralization, but is not typically recommended for highly acidic, Fe-rich waters due to armoring with Fe(III) oxyhydroxide coatings. A new AMD treatment technology that uses CO2 in a pulsed limestone bed reactor minimizes armor formation and enhances limestone reaction with AMD. Limestone was characterized before and after treatment with constant flow and with the new pulsed limestone bed process using AMD from an inactive coal mine in Pennsylvania (pH = 2.9, Fe = 150 mg/l, acidity = 1000 mg/l CaCO3). In constant flow experiments, limestone is completely armored with reddish-colored ochre within 48 h of contact in a fluidized bed reactor. Effluent pH initially increased from the inflow pH of 2.9 to over 7, but then decreased to 6 during operation. Limestone removed from a pulsed bed pilot plant is a mixture of unarmored, rounded and etched limestone grains and partially armored limestone and refractory mineral grains (dolomite, pyrite). The ???30% of the residual grains in the pulsed flow reactor that are armored have thicker (50- to 100-??m), more aluminous coatings and lack the gypsum rind that develops in the constant flow experiment. Aluminium-rich zones developed in the interior parts of armor rims in both the constant flow and pulsed limestone bed experiments in response to pH changes at the solid/solution interface. ?? 2003 Elsevier Ltd. All rights reserved.

  16. Pentamethylcyclopentadienyl aminoborollide derivatives of zirconium and hafnium. A new class of amphoteric molecule having both Lewis acidic and Lewis basic sites

    SciTech Connect

    Quan, R.W.; Bazan, G.C.; Kiely, A.F.; Schaefer, W.P.; Bercaw, J.E. )

    1994-05-18

    Although dicarbollide complexes are similar to their bis(cyclopentadienyl) analogs in reactivity, the increase in overall negative charge generally reduces their electrophilicity. Moreover, crystal structure determinations for several dimeric dicarbollide complexes have revealed bridging interactions involving a B-H bond of the dicarbollide cage with the Lewis acidic metal that further reduce their reactivity. We have therefore examined the dianionic aminoborollide ligand, [C[sub 4]H[sub 4]BN(CHMe[sub 2])[sub 2

  17. Experimental identification of the active sites in pyrolyzed carbon-supported cobalt-polypyrrole-4-toluenesulfinic acid as electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Sha, Hao-Dong; Yuan, Xianxia; Li, Lin; Ma, Zhong; Ma, Zi-Feng; Zhang, Lei; Zhang, Jiujun

    2014-06-01

    A series of carbon supported cobalt-polypyrrole-4-toluenesulfinic acid have been pyrolyzed in an argon atmosphere at 800 °C, then structurally characterized and electrochemically evaluated as oxygen reduction reaction (ORR) catalysts in aqueous 0.5 M sulfuric acid. The structures are cobalt bonded to nitrogen species (Co-Nx) along with metallic cobalt and cobalt oxide. When the cobalt loading in the compound is less than 1.0 wt%, the predominate form is Co-Nx, when the loading is higher than 1.0 wt%, metallic Co and Co oxide particles co-exist with the Co-Nx compound. At a Co loading of ∼1.0 wt%, the catalyst gives the best ORR activity. Both metallic Co and Co oxide are not active for catalyzing ORR, and block the catalytically active Co-Nx species from the surface and reduce the catalytic activity since the diffusion limiting current density on a rotating disk electrode (RDE) increases when the electrode blocking agents are washed away with acid.

  18. Acid Thunder: Acid Rain and Ancient Mesoamerica

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  19. Implementation of an ex situ stabilization technique at the Sand Springs superfund site to solidify and stabilize acid tar sludges involving a quick-lime based stabilization process and innovative equipment design

    SciTech Connect

    McManus, R.W.; Grajczak, P.; Wilcoxson, J.C.; Webster, S.D.

    1997-12-31

    An old refinery site was safely remediated a year before schedule and for 25% less than final engineering estimates for the stabilization remedy thanks to energetic project management and innovative design involving ex situ stabilization/solidification of acid tar sludges. A quicklime based process, Dispersion by Chemical Reaction (DCR{trademark}), was employed to solidify and stabilize (SS) over 103,000 cubic meters (135,000 cubic yards) of petroleum waste, mostly acidic tarry sludge. The SS process was selected over competing methods because it afforded minimal volume increase, could readily achieve Record of Decision (ROD) specified physical and chemical treatment goals, could be implemented with treatment equipment that minimized emissions, and could be performed with low reagent usage and at low cost. To ensure treatment goals were achieved and an accelerated schedule met, a custom designed and fabricated transportable treatment unit (TTU) was employed to implement the process. The treated material was visually soil-like in character, it was left in stockpiles for periods of time, and it was placed and compacted in the on site landfill using standard earth-moving equipment.

  20. Active Site Dynamical Effects in the Hydrogen Transfer Rate-limiting Step in the Catalysis of Linoleic Acid by Soybean Lipoxygenase-1 (SLO-1): Primary and Secondary Isotope Contributions.

    PubMed

    Phatak, Prasad; Venderley, Jordan; Debrota, John; Li, Junjie; Iyengar, Srinivasan S

    2015-07-30

    Using ab initio molecular dynamics (AIMD) simulations that facilitate the treatment of rare events, we probe the active site participation in the rate-determining hydrogen transfer step in the catalytic oxidation of linoleic acid by soybean lipoxygenase-1 (SLO-1). The role of two different active site components is probed. (a) On the hydrogen atom acceptor side of the active site, the hydrogen bonding propensity between the acceptor side hydroxyl group, which is bound to the iron cofactor, and the backbone carboxyl group of isoleucine (residue number 839) is studied toward its role in promoting the hydrogen transfer event. Primary and secondary (H/D) isotope effects are also probed and a definite correlation with subtle secondary H/D isotope effects is found. With increasing average nuclear kinetic energy, the increase in transfer probability is enhanced due to the presence of the hydrogen bond between the backbone carbonyl of I839 and the acceptor oxygen. Further increase in average nuclear kinetic energy reduces the strength of this secondary hydrogen bond which leads to a deterioration in hydrogen transfer rates and finally embrances an Arrhenius-like behavior. (b) On the hydrogen atom donor side, the coupling between vibrational modes predominantly localized on the donor-side linoleic acid group and the reactive mode is probed. There appears to be a qualitative difference in the coupling between modes that belong to linoleic acid and the hydrogen transfer mode, for hydrogen and deuterium transfer. For example, the donor side secondary hydrogen atom is much more labile (by nearly a factor of 5) during deuterium transfer as compared to the case for hydrogen transfer. This appears to indicate a greater coupling between the modes belonging to the linoleic acid scaffold and the deuterium transfer mode and also provides a new rationalization for the abnormal (nonclassical) secondary isotope effect results obtained by Knapp, Rickert, and Klinman in J. Am. Chem. Soc

  1. Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1

    PubMed Central

    Milichovský, Jan; Bárta, František; Schmeiser, Heinz H.; Arlt, Volker M.; Frei, Eva; Stiborová, Marie; Martínek, Václav

    2016-01-01

    Aristolochic acid I (AAI) is a plant drug found in Aristolochia species that causes aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is activated via nitroreduction producing genotoxic N-hydroxyaristolactam, which forms DNA adducts. The major enzymes responsible for the reductive bioactivation of AAI are NAD(P)H:quinone oxidoreductase and cytochromes P450 (CYP) 1A1 and 1A2. Using site-directed mutagenesis we investigated the possible mechanisms of CYP1A1/1A2/1B1-catalyzed AAI nitroreduction. Molecular modelling predicted that the hydroxyl groups of serine122/threonine124 (Ser122/Thr124) amino acids in the CYP1A1/1A2-AAI binary complexes located near to the nitro group of AAI, are mechanistically important as they provide the proton required for the stepwise reduction reaction. In contrast, the closely related CYP1B1 with no hydroxyl group containing residues in its active site is ineffective in catalyzing AAI nitroreduction. In order to construct an experimental model, mutant forms of CYP1A1 and 1A2 were prepared, where Ser122 and Thr124 were replaced by Ala (CYP1A1-S122A) and Val (CYP1A2-T124V), respectively. Similarly, a CYP1B1 mutant was prepared in which Ala133 was replaced by Ser (CYP1B1-A133S). Site-directed mutagenesis was performed using a quickchange approach. Wild and mutated forms of these enzymes were heterologously expressed in Escherichia coli and isolated enzymes characterized using UV-vis spectroscopy to verify correct protein folding. Their catalytic activity was confirmed with CYP1A1, 1A2 and 1B1 marker substrates. Using 32P-postlabelling we determined the efficiency of wild-type and mutant forms of CYP1A1, 1A2, and 1B1 reconstituted with NADPH:CYP oxidoreductase to bioactivate AAI to reactive intermediates forming covalent DNA adducts. The S122A and T124V mutations in CYP1A1 and 1A2, respectively, abolished the efficiency of CYP1A1 and 1A2 enzymes to generate AAI-DNA adducts. In contrast

  2. Effect of Lewis acid on the structure of a diiron dithiolate complex based on the active site of [FeFe]-hydrogenase assessed by density functional theory.

    PubMed

    Lee, Jin Woo; Jo, Won Ho

    2009-10-28

    The effect of Lewis acid on the structure and H2 productivity of a diiron dithiolate complex was investigated by using density functional theory (DFT) calculations. When a model molecule of [(CH3SH)(CO)2Fe(p)(mu-SCH2NHCH2S)Fe(d)(CO)3] was geometrically optimized, two isomers were found: one is the unrotated structure (1) with no ligand between two Fe atoms and the other is the rotated structure (1*) with one CO ligand between two Fe atoms. The energy of 1* was higher than 1 by 6.4 kcal/mol in a vacuum. DFT calculations also revealed that all Lewis acids bound to the rotated structure more strongly than to the unrotated structure, leading to the stabilization of the rotated structure. In particular, when AlCl3 is used, the rotated structure (1*/AlCl3) is more stable than the unrotated one (1/AlCl3) by 1.2 kcal/mol in a vacuum. The stabilization of the rotated structure arises from both the stronger basicity of the mu-CO ligand than the axial CO ligand and the increase of the bond strength between the mu-CO ligand and Fe(p) atom upon binding of Lewis acid to 1*. Calculation of energy barriers during electrocatalytic H2 production revealed that 1*/AlCl3 could efficiently produce H2via a chemical-electrochemical-chemical-electrochemical mechanism. The analysis of the energy level of the lowest unoccupied molecular orbital showed that 1*/AlCl3 may produce H2 at significantly lower reduction potential as compared with 1*. It is also found that the catalytic activity decreases with increasing polarity of the medium. PMID:19809728

  3. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    SciTech Connect

    Taguchi, J.; Kuriyama, K. )

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  4. Using environmental isotopes to characterize hydrologic processes of the Nelson Tunnel acid mine drainage site, West Willow Creek watershed, Creede, CO

    NASA Astrophysics Data System (ADS)

    Krupicka, A.; Williams, M. W.

    2010-12-01

    Acid mine drainage continues to be a pressing ecological issue across the Mountain West. Traditional remediation strategies usually involve the installation of an expensive and unsightly “end-of-pipe” water treatment plant without a full understanding of the overall hydrology of the system. In this study we show how applying water chemistry techniques to investigate water sources, ages, flow paths and residence times in a watershed affected by acid mine drainage can lead to alternative, less expensive methods of reclamation. We use both radiogenic (3H and 14C) and stable (18O and D) environmental isotopes to age waters and characterize the level of surface and groundwater interaction. Tritium content for waters collected in the tunnel was largely found to be 0-3 TU, indicating an age of greater than 50 years. This was supported by 14C values of DIC in tunnel samples that indicated ages and a hydraulic residence time on the order of hundreds to thousands of years. Stable isotopes 18O and D plotted closely to the Global Meteoric Water Line (GMWL). Combined with the heavy faulting and dominant welded volcanic tuffs of the region, this all indicates a system with very little surface-ground water interaction and a long, deep, likely channelized flow path. A future up-gradient pumping test would help confirm these findings and further elucidate the location and mechanism of the system’s primary recharge to the mine workings.

  5. Characterization of anthropogenic and natural sources of acid rock drainage at the Cinnamon Gulch abandoned mine land inventory site, Summit County, Colorado

    USGS Publications Warehouse

    Bird, D.A.

    2003-01-01

    Colorado's Cinnamon Gulch releases acid rock drainage (ARD) from anthropogenic and natural sources. In 2001, the total discharge from Cinnamon Gulch was measured at 1.02 cfs (29 L/s) at base flow and 4.3 cfs (122 L/s) at high flow (spring runoff). At base flow, natural sources account for 98% of the discharge from the watershed, and about 96% of the chemical loading. At high flow, natural sources contribute 96% of discharge and 92 to 95% of chemical loading. The pH is acidic throughout the Cinnamon Gulch watershed, ranging from 2.9 to 5.4. At baseflow, nearly all of the trace metals analyzed in the 18 samples exceeded state hardness-dependent water quality standards for aquatic life. Maximum dissolved concentrations of selected constituents included 16 mg/ L aluminum, 15 mg/L manganese, 40 mg/L iron, 2 mg/L copper, 560 ??g/L lead, 8.4 mg/L zinc, and 300 mg/L sulfate. Average dissolved concentrations of selected metals at baseflow were 5.5 mg/L aluminum, 5.5 mg/L manganese, 14 ??g/L cadmium, 260 ??g/L copper, 82 ??g/L lead, and 2.8 mg/L zinc.

  6. Highly Luminescent Microporous Organic Polymer with Lewis Acidic Boron Sites on the Pore Surface: Ratiometric Sensing and Capture of F(-) Ions.

    PubMed

    Suresh, Venkata M; Bandyopadhyay, Arkamita; Roy, Syamantak; Pati, Swapan K; Maji, Tapas Kumar

    2015-07-20

    Reversible and selective capture/detection of F(-) ions in water is of the utmost importance, as excess intake leads to adverse effects on human health. Highly robust Lewis acidic luminescent porous organic materials have potential for efficient sequestration and detection of F(-) ions. Herein, the rational design and synthesis of a boron-based, Lewis acidic microporous organic polymer (BMOP) derived from tris(4-bromo-2,3,5,6-tetramethylphenyl)boron nodes and diethynylbiphenyl linkers with a pore size of 1.08 nm for selective turn-on sensing and capture of F(-) ion are reported. The presence of a vacant pπ orbital on the boron center of BMOP results in intramolecular charge transfer (ICT) from the linker to boron. BMOP shows selective turn-on blue emission for F(-) ions in aqueous mixtures with a detection limit of 2.6 μM. Strong B-F interactions facilitate rapid sequestration of F(-) by BMOP. The ICT emission of BMOP can be reversibly regenerated by addition of an excess of water, and the polymer can be reused several times. PMID:26074403

  7. Distinct oxidative cleavage and modification of bovine [Cu- Zn]-SOD by an ascorbic acid/Cu(II) system: Identification of novel copper binding site on SOD molecule.

    PubMed

    Uehara, Hiroshi; Luo, Shen; Aryal, Baikuntha; Levine, Rodney L; Rao, V Ashutosh

    2016-05-01

    We investigated the combined effect of ascorbate and copper [Asc/Cu(II)] on the integrity of bovine [Cu-Zn]-superoxide dismutase (bSOD1) as a model system to study the metal catalyzed oxidation (MCO) and fragmentation of proteins. We found Asc/Cu(II) mediates specific cleavage of bSOD1 and generates 12.5 and 3.2kDa fragments in addition to oxidation/carbonylation of the protein. The effect of other tested transition metals, a metal chelator, and hydrogen peroxide on the cleavage and oxidation indicated that binding of copper to a previously unknown site on SOD1 is responsible for the Asc/Cu(II) specific cleavage and oxidation. We utilized tandem mass spectrometry to identify the specific cleavage sites of Asc/Cu(II)-treated bSOD1. Analyses of tryptic- and AspN-peptides have demonstrated the cleavage to occur at Gly31 with peptide bond breakage with Thr30 and Ser32 through diamide and α-amidation pathways, respectively. The three-dimensional structure of bSOD1 reveals the imidazole ring of His19 localized within 5Å from the α-carbon of Gly31 providing a structural basis that copper ion, most likely coordinated by His19, catalyzes the specific cleavage reaction. PMID:26872685

  8. Observation and modelling of ambient nitrous acid (HONO) at a rural site (Wangdu) in the North China Plain in summer 2014

    NASA Astrophysics Data System (ADS)

    Liu, Yuhan; Lu, Keding; Li, Xin; Dong, Huabin; Ye, Nini; Tan, Zhaofeng; Wu, Yusheng; Zeng, Liming; Bohn, Birger; Broch, Sebastian; Fuchs, Hendrik; Hofzumahaus, Andrease; Holland, Frank; Rohrer, Franz; Wahner, Andrease; Zhang, Yuanhang

    2016-04-01

    Significant missing daytime HONO sources were determined in many places worldwide from urban to rural conditions. In recent field campaigns performed in Chinese megacity regions such as Pearl River Delta, Yangtze River Delta and North China Plain, strong missing HONO sources were also determined and possible explanations including photoenhanced heterogeneous conversion of NO2, photolysis of particulate nitrate, soil emission, and emission from biomass burning. In the present work, we performed in situ measurements of ambient HONO concentration at a rural site (Wangdu) in North China Plain in summer 2014. The observed HONO concentration ranges from tens ppt to 5 ppb. The relations between observed HONO concentration and nitrogen oxide, aerosol and gas-phase chemistry are discussed with statistical methods. Moreover, we use an observational constrained box model to explore the possible roles of the state of art HONO production mechanisms. In addition, after the day of fertilization, we observed a daytime HONO peak around noon time which was distinct from other days by the HONO/NO2 ratio. We believe this peak is a strong indication of soil HONO emission since our site was located in center of a large wheat field. Compared to other days, this increased HONO concentration contributes significantly to the OH production around noontime.

  9. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation.

    PubMed

    Kim, Ingu; Saito, Takeshi; Fujii, Norihiko; Kanamoto, Takashi; Chatake, Toshiyuki; Fujii, Noriko

    2015-10-30

    Although cataracts are a well-known age-related disease, the mechanism of their formation is not well understood. It is currently thought that eye lens proteins become abnormally aggregated, initially causing clumping that scatters the light and interferes with focusing on the retina, and ultimately resulting in a cataract. The abnormal aggregation of lens proteins is considered to be triggered by various post-translational modifications, such as oxidation, deamidation, truncation and isomerization, that occur during the aging process. Such modifications, which are also generated by free radical and reactive oxygen species derived from γ-irradiation, decrease crystallin solubility and lens transparency, and ultimately lead to the development of a cataract. In this study, we irradiated young rat lenses with low-dose γ-rays and extracted the water-soluble and insoluble protein fractions. The water-soluble and water-insoluble lens proteins were digested with trypsin, and the resulting peptides were analyzed by LC-MS. Specific oxidation sites of methionine, cysteine and tryptophan in rat water-soluble and -insoluble γE and γF-crystallin were determined by one-shot analysis. The oxidation sites in rat γE and γF-crystallin resemble those previously identified in γC and γD-crystallin from human age-related cataracts. Our study on modifications of crystallins induced by ionizing irradiation may provide useful information relevant to human senile cataract formation. PMID:26385181

  10. Synthesis of a specific monolithic column with artificial recognition sites for L-glutamic acid via cryo-crosslinking of imprinted nanoparticles.

    PubMed

    Göktürk, Ilgım; Üzek, Recep; Uzun, Lokman; Denizli, Adil

    2016-06-01

    In this study, a new molecular imprinting (MIP)-based monolithic cryogel column was prepared using chemically crosslinked molecularly imprinted nanoparticles, to achieve a simplified chromatographic separation (SPE) for a model compound, L-glutamic acid (L-Glu). Cryogelation through crosslinking of imprinted nanoparticles forms stable monolithic cryogel columns. This technique reduces the leakage of nanoparticles and increases the surface area, while protecting the structural features of the cryogel for stable and efficient recognition of the template molecule. A non-imprinted monolithic cryogel column (NIP) was also prepared, using non-imprinted nanoparticles produced without the addition of L-Glu during polymerization. The molecularly imprinted monolithic cryogel column (MIP) indicates apparent recognition selectivity and a good adsorption capacity compared to the NIP. Also, we have achieved a significant increase in the adsorption capacity, using the advantage of high surface area of the nanoparticles. PMID:25749280

  11. Development of an enzyme-linked immunosorbent assay to determine the numbers of chemolithotrophic bacteria at acid-mine-drainage sites. Technical report (Final)

    SciTech Connect

    Blake, R.C.; Revis, N.W.; Holdsworth, G.

    1990-09-01

    Thiobacillus ferrooxidans is a prominent member of a group of chemo-lithotrophic bacteria that bear principal responsibility for the formation of acid mine drainage. A prototype enzyme-linked immunosorbent assay (ELISA) for enumerating and qualifying T. ferrooxidans was assembled and characterized. The immunoassay protocol consisted of sequential incubations of the sample with (i) the primary antibody, (ii) the enzyme-labeled secondary antibody, and (iii) a chromogenic substrate specific for the enzyme lable. The necessary reagents comprised primary polyclonal rabbit antibodies directed against T. ferrooxidans ATCC 23270, alkaline phosphatase-copled goat anti-rabbit polyclonal antibodies, and phenolphrhalein monophosphate. The ELISA developed herein correctly identified whether iron-oxidizing bacteria were present in each of 4 samples supplied and analyzed by an independent laboratory. Sufficient preliminary data was obtained to warrant further research and development activities.

  12. Diversity in the structures and ligand-binding sites of nematode fatty acid and retinol-binding proteins revealed by Na-FAR-1 from Necator americanus

    PubMed Central

    Rey-Burusco, M. Florencia; Ibáñez-Shimabukuro, Marina; Gabrielsen, Mads; Franchini, Gisela R.; Roe, Andrew J.; Griffiths, Kate; Zhan, Bin; Cooper, Alan; Kennedy, Malcolm W.; Córsico, Betina; Smith, Brian O.

    2015-01-01

    Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein–ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male. PMID:26318523

  13. Origin of observed acidic-alkaline rains in a wet-only precipitation study in a Mediterranean coastal site, Patras, Greece

    NASA Astrophysics Data System (ADS)

    Glavas, Sotirios; Moschonas, Nektarios

    Major anions and cations were analyzed in a wet-only precipitation study for 16 months. The pH exhibited large variation, from 4.07 to 8.51 pH units. Twenty-eight percent of the observed rain volume had pH <5, whereas 42% of the rains had pH >6, as is usually observed in the Mediterranean. Comparison with our work of 15 years ago indicates a free acidity reduction by ˜18%, non-sea-salt sulfate ions reduction of ˜40% and nitrate ions reduction of 66%. Chloride and all cation concentrations were similar in the present work and that carried out in 1985-86 indicating similar sources, namely aerosol and crustal material as in MS. Calcium ions were the dominating neutralization ions. The annual wet-only deposition rates were calculated for the major species and were found to be comparable to those reported in past studies. Deposition of calcium ions dominates all deposited species, except sea salt, and indicates its significance in the neutralizing mechanisms of soils of the region, if neutralization is needed. Air mass back trajectories calculated for all analyzed samples, revealed four sectors of origin of air masses: NW to NE Europe, northern Africa, local and western Mediterranean, each with a specific chemistry. Cluster analysis and factor analysis also discriminated the samples by their sources. The main sources derived from the statistical analysis were: marine aerosols, alkalinity-acidity as inferred by the calcium ion concentrations from crustal sources and hydronium ions mainly from anthropogenic activities and ammonium salts of sulfate and nitrate also mainly from anthropogenic activities. These sources were closely correlated with the geographic sectors obtained from the air mass back trajectories.

  14. Diversity in the structures and ligand-binding sites of nematode fatty acid and retinol-binding proteins revealed by Na-FAR-1 from Necator americanus.

    PubMed

    Rey-Burusco, M Florencia; Ibáñez-Shimabukuro, Marina; Gabrielsen, Mads; Franchini, Gisela R; Roe, Andrew J; Griffiths, Kate; Zhan, Bin; Cooper, Alan; Kennedy, Malcolm W; Córsico, Betina; Smith, Brian O

    2015-11-01

    Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein-ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male. PMID:26318523

  15. Use of H2S to Probe the Active Sites in FeNC Catalysts for the Oxygen Reduction Reaction (ORR) in Acidic Media

    SciTech Connect

    Singh, Deepika; Mamtani, Kuldeep; Bruening, Christopher R.; Miller, Jeffrey T.; Ozkan, Umit S.

    2014-10-01

    H2S has been used as a probe molecule both in an “in situ” poisoning experiment and in intermediate-temperature heat-treatment steps during and after the preparation of FeNC catalysts in an attempt to analyze its effect on their ORR activity. The heat treatments were employed either on the ball-milled precursor of FeNC or after the Ar-NH3 high temperature heat treatments. ORR activity of the H2S-treated catalysts was seen to be significantly lower than the sulfur-free catalysts, whether the sulfur exposure was during a half-cell testing, or as an intermediate-temperature exposure to H2S. The incorporation of sulfur species and interaction of Fe with sulfur were confirmed by characterization using XPS, EXAFS, TPO, and TPD. This study provides crucial evidence regarding differences in active sites in FeNC versus nitrogen-containing carbon nanostructured (CNx) catalysts.

  16. Weak-acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: importance of post-synthetic functionalization of the carbon surface.

    PubMed

    To, Anh The; Chung, Po-Wen; Katz, Alexander

    2015-09-14

    The direct hydrolysis of crystalline cellulose to glucose in water without prior pretreatment enables the transformation of biomass into fuels and chemicals. To understand which features of a solid catalyst are most important for this transformation, the nanoporous carbon material MSC-30 was post-synthetically functionalized by oxidation. The most active catalyst depolymerized crystalline cellulose without prior pretreatment in water, providing glucose in an unprecedented 70 % yield. In comparison, virtually no reaction was observed with MSC-30, even when the reaction was conducted in aqueous solution at pH 2. As no direct correlations between the activity of this solid-solid reaction and internal-site characteristics, such as the β-glu adsorption capacity and the rate of catalytic hydrolysis of adsorbed β-glu strands, were observed, contacts of the external surface with the cellulose crystal are thought to be key for the overall efficiency. PMID:26276901

  17. His-65 in the proton–sucrose symporter is an essential amino acid whose modification with site-directed mutagenesis increases transport activity

    PubMed Central

    Lu, Jade M.-Y.; Bush, Daniel R.

    1998-01-01

    The proton–sucrose symporter that mediates phloem loading is a key component of assimilate partitioning in many higher plants. Previous biochemical investigations showed that a diethyl pyrocarbonate-sensitive histidine residue is at or near the substrate-binding site of the symporter. Among the proton–sucrose symporters cloned to date, only the histidine residue at position 65 of AtSUC1 from Arabidopsis thaliana is conserved across species. To test whether His-65 is involved in the transport reaction, we have used site-directed mutagenesis and functional expression in yeast to determine the significance of this residue in the reaction mechanism. Symporters with mutations at His-65 exhibited a range of activities; for example, the H65C mutant resulted in the complete loss of transport capacity, whereas H65Q was almost as active as wild type. Surprisingly, the H65K and H65R symporters transport sucrose at significantly higher rates (increased Vmax) than the wild-type symporter, suggesting His-65 may be associated with a rate-limiting step in the transport reaction. RNA gel blot and protein blot analyses showed that, with the exception of H65C, the variation in transport activity was not because of alterations in steady-state levels of mRNA or symporter protein. Significantly, those symporters with substitutions of His-65 that remained transport competent were no longer sensitive to inactivation by diethyl pyrocarbonate, demonstrating that this is the inhibitor-sensitive histidine residue. Taken together with our previous results, these data show that His-65 is involved in sucrose binding, and increased rates of transport implicate this region of the protein in the transport reaction. PMID:9671798

  18. Crystal Structures of Human Choline Kinase Isoforms in Complex with Hemicholinium-3 Single Amino Acid near the Active Site Influences Inhibitor Sensitivity

    SciTech Connect

    Hong, Bum Soo; Allali-Hassani, Abdellah; Tempel, Wolfram; Finerty, Jr., Patrick J.; MacKenzie, Farrell; Dimov, Svetoslav; Vedadi, Masoud; Park, Hee-Won

    2010-07-06

    Human choline kinase (ChoK) catalyzes the first reaction in phosphatidylcholine biosynthesis and exists as ChoK{alpha} ({alpha}1 and {alpha}2) and ChoK{beta} isoforms. Recent studies suggest that ChoK is implicated in tumorigenesis and emerging as an attractive target for anticancer chemotherapy. To extend our understanding of the molecular mechanism of ChoK inhibition, we have determined the high resolution x-ray structures of the ChoK{alpha}1 and ChoK{beta} isoforms in complex with hemicholinium-3 (HC-3), a known inhibitor of ChoK. In both structures, HC-3 bound at the conserved hydrophobic groove on the C-terminal lobe. One of the HC-3 oxazinium rings complexed with ChoK{alpha}1 occupied the choline-binding pocket, providing a structural explanation for its inhibitory action. Interestingly, the HC-3 molecule co-crystallized with ChoK{beta} was phosphorylated in the choline binding site. This phosphorylation, albeit occurring at a very slow rate, was confirmed experimentally by mass spectroscopy and radioactive assays. Detailed kinetic studies revealed that HC-3 is a much more potent inhibitor for ChoK{alpha} isoforms ({alpha}1 and {alpha}2) compared with ChoK{beta}. Mutational studies based on the structures of both inhibitor-bound ChoK complexes demonstrated that Leu-401 of ChoK{alpha}2 (equivalent to Leu-419 of ChoK{alpha}1), or the corresponding residue Phe-352 of ChoK{beta}, which is one of the hydrophobic residues neighboring the active site, influences the plasticity of the HC-3-binding groove, thereby playing a key role in HC-3 sensitivity and phosphorylation.

  19. Monoclonal anti-acid-labile subunit oligopeptide antibodies and their use in a two-site immunoassay for ALS measurement in humans.

    PubMed

    Stadler, S; Wu, Z; Dressendörfer, R A; Morrison, K M; Khare, A; Lee, P D; Strasburger, C J

    2001-06-01

    Quantification of the acid-labile subunit (ALS) has to date been restricted to immunoassays utilizing polyclonal antibodies. By immunization with N-terminal and C-terminal specific ALS oligopeptides, we generated monoclonal antibodies (mAbs) that target ALS-specific sequences outside the nonspecific leucine-rich repeats in the ALS molecule. For mAb selection, a special screening method was developed. Monoclonal antibody 5C9, which targets the N-terminus of ALS, is immobilized and the anti-ALS mAb 7H3, directed against the C-terminus, is biotinylated and used as tracer Ab. Due to the extreme pH-lability of ALS, changes in immunorecognition of ALS were investigated after acidification for protein unfolding in different pH ranges and in a time-dependent manner. It was determined that acidification of the serum samples to pH 2.7 for 30 min, followed by neutralization and dilution to 1:100 was the optimal acid-neutralization method. For standardization purposes, a serum pool derived from healthy volunteers was assigned the value 1 U/ml ALS. The sandwich assay has a working range with a linear dose-response curve in a log/log system between 0.005 and 10 U/ml. ALS levels in seven acromegalic patients ranged from 2.0 to 4.2 U/ml, and in 12 untreated growth hormone deficient patients from 0.036 to 0.986 U/ml (mean=0.45 U/ml). After 12 months of growth hormone therapy, ALS levels increased significantly to 1.18+/-0.45 U/ml (mean+/-SD; p<0.0006). The increase ranged from 0.48 to 1.4 U/ml. The change in ALS with growth hormone (GH) therapy correlated closer with the change in IGF-I (r=0.798, p=0.0057; Spearman rank correlation) than with the change in insulin-like growth factor binding protein (IGFBP3; r=0.549, p=0.057). This specific sandwich assay for the measurement of ALS provides a potentially valuable indicator of growth hormone secretory status. With this mAb-based immunofluorometric assay, the nonspecific detection of other proteins containing leucine-rich repeat

  20. Chromate reduction on humic acid derived from a peat soil--exploration of the activated sites on HAs for chromate removal.

    PubMed

    Huang, S W; Chiang, P N; Liu, J C; Hung, J T; Kuan, W H; Tzou, Y M; Wang, S L; Huang, J H; Chen, C C; Wang, M K; Loeppert, R H

    2012-05-01

    Humic substances are a major component of soil organic matter that influence the behavior and fate of heavy metals such as Cr(VI), a toxic and carcinogenic element. In the study, a repetitive extraction technique was used to fractionate humic acids (HAs) from a peat soil into three fractions (denoted as F1, F2, and F3), and the relative importance of O-containing aromatic and aliphatic domains in humic substances for scavenging Cr(VI) was addressed at pH 1. Spectroscopic analyses indicated that the concentrations of aromatic C and O-containing functional groups decreased with a progressive extraction as follows: F1>F2>F3. Cr(VI) removal by HA proceeded slowly, but it was enhanced when light was applied due to the production of efficient reductants, such as superoxide radical and H(2)O(2), for Cr(VI). Higher aromatic- and O-containing F1 fraction exhibited a greater efficiency for Cr(VI) reduction (with a removal rate of ca. 2.89 mmol g(-1) HA under illumination for 3 h). (13)C NMR and FTIR spectra further demonstrated that the carboxyl groups were primarily responsible for Cr(VI) reduction. This study implied the mobility and fate of Cr(VI) would be greatly inhibited in the environments containing such organic groups. PMID:22309710

  1. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  2. Cleavage of nucleic acids

    SciTech Connect

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  3. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  4. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  5. Nucleic acid detection compositions

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  6. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    PubMed Central

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960

  7. On-site rapid detection of trace non-volatile inorganic explosives by stand-alone ion mobility spectrometry via acid-enhanced evaporization.

    PubMed

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960

  8. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    NASA Astrophysics Data System (ADS)

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-10-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones.

  9. Application of water flow and geochemical models to support the remediation of acid rock drainage from the uranium mining site of Pocos de Caldas, Brazil

    SciTech Connect

    Franklin, Mariza; Fernandes, Horst; Van Genuchten, Martinus Th.; Vargas, Euripedes Jr.; Azevedo, Jose Paulo

    2007-07-01

    Available in abstract form only. Full text of publication follows: This paper discusses the use of two numerical models (HYDRUS-2D and STEADQL-v4) for simulating water flow and relevant geochemical processes in one of the waste rock piles of the first uranium mine in Brazil, in order to facilitate the selection of appropriate remediation strategies. The long time scale required for the oxidation of sulfidic wastes (at least 600 years) implies the need to implement permanent remediation actions. The best remediation scheme should depend on the water flow regime inside the waste pile and on the geochemical processes that occur as a result of the interactions between water and the waste (especially oxidative dissolution of pyrite). Accurate modeling of the waste site, which contains a wide range of grain and rock sizes at different degrees of water saturation and is subject to reactive multicomponent transport, entails considerable physical, mathematical and numerical challenges. This paper describes the approach used to obtain a detailed representation of the system involving both unsaturated/ saturated flow (most of the physical properties of the waste were estimated from measured data) and the geochemical network reactions (including equilibrium and kinetics reactions). (authors)

  10. Site-directed mutagenesis of Escherichia coli acetylglutamate kinase and aspartokinase III probes the catalytic and substrate-binding mechanisms of these amino acid kinase family enzymes and allows three-dimensional modelling of aspartokinase.

    PubMed

    Marco-Marín, Clara; Ramón-Maiques, Santiago; Tavárez, Sandra; Rubio, Vicente

    2003-11-28

    We test, using site-directed mutagenesis, predictions based on the X-ray structure of N-acetyl-L-glutamate kinase (NAGK), the paradigm of the amino acid kinase protein family, about the roles of specific residues on substrate binding and catalysis. The mutations K8R and D162E decreased V([sustrate]= infinity ) 100-fold and 1000-fold, respectively, in agreement with the predictions that K8 catalyzes phosphoryl transfer and D162 organizes the catalytic groups. R66K and N158Q increased selectively K(m)(Asp) three to four orders of magnitude, in agreement with the binding of R66 and N158 to the C(alpha) substituents of NAG. Mutagenesis in parallel of aspartokinase III (AKIII phosphorylates aspartate instead of acetylglutamate), another important amino acid kinase family member of unknown 3-D structure, identified in AKIII two residues, K8 and D202, that appear to play roles similar to those of K8 and D162 of NAGK, and supports the involvement of E119 and R198, similarly to R66 and N158 of NAGK, in the binding of the amino acid substrate, apparently interacting, respectively, with the alpha-NH(3)(+) and alpha-COO(-) of aspartate. These results and an improved alignment of the NAGK and AKIII sequences have guided us into 3-D modelling of the amino acid kinase domain of AKIII using NAGK as template. The model has good stereochemistry and validation parameters. It provides insight into substrate binding and catalysis, agreeing with mutagenesis results with another aspartokinase that were not considered when building the model.AKIII is homodimeric and is inhibited by lysine. Lysine may bind to a regulatory region that is C-terminal to the amino acid kinase domain. We make a C-terminally truncated AKIII (AKIIIt) and show that the C-region is involved in intersubunit interactions, since AKIIIt is found to be monomeric. Further, it is inactive, as demanded if dimer formation is essential for activity. Models for AKIII architecture are proposed that account for these findings

  11. Competition between pi and non-pi cation-binding sites in aromatic amino acids: a theoretical study of alkali metal cation (Li+, Na+, K+)-phenylalanine complexes.

    PubMed

    Siu, Fung Ming; Ma, Ngai Ling; Tsang, Chun Wai

    2004-04-19

    To understand the cation-pi interaction in aromatic amino acids and peptides, the binding of M(+) (where M(+) = Li(+), Na(+), and K(+)) to phenylalanine (Phe) is studied at the best level of density functional theory reported so far. The different modes of M(+) binding show the same order of binding affinity (Li(+)>Na(+)>K(+)), in the approximate ratio of 2.2:1.5:1.0. The most stable binding mode is one in which the M(+) is stabilized by a tridentate interaction between the cation and the carbonyl oxygen (O[double bond]C), amino nitrogen (--NH(2)), and aromatic pi ring; the absolute Li(+), Na(+), and K(+) affinities are estimated theoretically to be 275, 201, and 141 kJ mol(-1), respectively. Factors affecting the relative stabilities of various M(+)-Phe binding modes and conformers have been identified, with ion-dipole interaction playing an important role. We found that the trend of pi and non-pi cation bonding distances (Na(+)-pi>Na(+)-N>Na(+)-O and K(+)-pi>K(+)-N>K(+)-O) in our theoretical Na(+)/K(+)-Phe structures are in agreement with the reported X-ray crystal structures of model synthetic receptors (sodium and potassium bound lariat ether complexes), even though the average alkali metal cation-pi distance found in the crystal structures is longer. This difference between the solid and the gas-phase structures can be reconciled by taking the higher coordination number of the cations in the lariat ether complexes into account. PMID:15079836

  12. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors.

    PubMed

    Zhang, Yumin; Zhou, Junhui; Yang, Cuihong; Wang, Weiwei; Chu, Liping; Huang, Fan; Liu, Qiang; Deng, Liandong; Kong, Deling; Liu, Jianfeng; Liu, Jinjian

    2016-01-01

    Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur) delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM) with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM). Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against HeLa cells, which had a high level of glutathione. Meanwhile, the folate receptor-mediated drug delivery (FA-CCM-Cur) further enhanced the endocytosis and cytotoxicity. Ex vivo imaging studies showed that CCM-Cur and FA-CCM-Cur possessed higher tumor accumulation until 24 hours after injection. Concretely, FA-CCM-Cur exhibited the highest tumor accumulation with 1.7-fold of noncross-linked micelle Cur and 2.8-fold of free Cur. By combining cross-linking of the core with active tumor targeting of FA, we demonstrated a new and effective way to design nanocarriers for enhanced drug encapsulation, smart tumor responsiveness, and elevated tumor accumulation. PMID:27051287

  13. GM1 gangliosidosis and Morquio B disease: expression analysis of missense mutations affecting the catalytic site of acid beta-galactosidase.

    PubMed

    Hofer, Doris; Paul, Karl; Fantur, Katrin; Beck, Michael; Bürger, Friederike; Caillaud, Catherine; Fumic, Ksenija; Ledvinova, Jana; Lugowska, Agnieszka; Michelakakis, Helen; Radeva, Briguita; Ramaswami, Uma; Plecko, Barbara; Paschke, Eduard

    2009-08-01

    Alterations in GLB1, the gene coding for acid beta-D-galactosidase (beta-Gal), can result in GM1 gangliosidosis (GM1), a neurodegenerative disorder, or in Morquio B disease (MBD), a phenotype with dysostosis multiplex and normal central nervous system (CNS) function. While most MBD patients carry a common allele, c.817TG>CT (p.W273L), only few of the >100 mutations known in GM1 can be related to a certain phenotype. In 25 multiethnic patients with GM1 or MBD, 11 missense mutations were found as well as one novel insertion and a transversion causing aberrant gene products. Except c.602G>A (p.R201H) and two novel alleles, c.592G>T (p.D198Y) and c.1189C>G (p.P397A), all mutants resulted in significantly reduced beta-Gal activities (<10% of normal) upon expression in COS-1 cells. Although c.997T>C (p.Y333H) expressed 3% of normal activity, the mutant protein was localized in the lysosomal-endosomal compartment. A homozygous case presented with late infantile GM1, while a heterozygous, juvenile case carried p.Y333H together with p.R201H. This allele, recently found in homozygous MBD, gives rise to rough endoplasmic reticulum (RER)-located beta-Gal precursors. Thus, unlike classical MBD, the phenotype of heterozygotes carrying p.R201H may rather be determined by poorly active, properly transported products of the counter allele than by the mislocalized p.R201H precursors. PMID:19472408

  14. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors

    PubMed Central

    Zhang, Yumin; Zhou, Junhui; Yang, Cuihong; Wang, Weiwei; Chu, Liping; Huang, Fan; Liu, Qiang; Deng, Liandong; Kong, Deling; Liu, Jianfeng; Liu, Jinjian

    2016-01-01

    Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur) delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM) with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM). Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against HeLa cells, which had a high level of glutathione. Meanwhile, the folate receptor-mediated drug delivery (FA-CCM-Cur) further enhanced the endocytosis and cytotoxicity. Ex vivo imaging studies showed that CCM-Cur and FA-CCM-Cur possessed higher tumor accumulation until 24 hours after injection. Concretely, FA-CCM-Cur exhibited the highest tumor accumulation with 1.7-fold of noncross-linked micelle Cur and 2.8-fold of free Cur. By combining cross-linking of the core with active tumor targeting of FA, we demonstrated a new and effective way to design nanocarriers for enhanced drug encapsulation, smart tumor responsiveness, and elevated tumor accumulation. PMID:27051287

  15. Low resolution X-ray structure of γ-glutamyltranspeptidase from Bacillus licheniformis: opened active site cleft and a cluster of acid residues potentially involved in the recognition of a metal ion.

    PubMed

    Lin, Long-Liu; Chen, Yi-Yu; Chi, Meng-Chun; Merlino, Antonello

    2014-09-01

    γ-Glutamyltranspeptidases (γ-GTs) cleave the γ-glutamyl amide bond of glutathione and transfer the released γ-glutamyl group to water (hydrolysis) or acceptor amino acids (transpeptidation). These ubiquitous enzymes play a key role in the biosynthesis and degradation of glutathione, and in xenobiotic detoxification. Here we report the 3Å resolution crystal structure of Bacillus licheniformis γ-GT (BlGT) and that of its complex with l-Glu. X-ray structures confirm that BlGT belongs to the N-terminal nucleophilic hydrolase superfamily and reveal that the protein possesses an opened active site cleft similar to that reported for the homologous enzyme from Bacillus subtilis, but different from those observed for human γ-GT and for γ-GTs from other microorganisms. Data suggest that the binding of l-Glu induces a reordering of the C-terminal tail of BlGT large subunit and allow the identification of a cluster of acid residues that are potentially involved in the recognition of a metal ion. The role of these residues on the conformational stability of BlGT has been studied by characterizing the autoprocessing, enzymatic activity, chemical and thermal denaturation of four new Ala single mutants. The results show that replacement of Asp568 with an Ala affects both the autoprocessing and structural stability of the protein. PMID:24780583

  16. The 18-kilodalton Chlamydia trachomatis histone H1-like protein (Hc1) contains a potential N-terminal dimerization site and a C-terminal nucleic acid-binding domain.

    PubMed

    Pedersen, L B; Birkelund, S; Holm, A; Ostergaard, S; Christiansen, G

    1996-02-01

    The Chlamydia trachomatis histone H1-like protein (Hc1) is a DNA-binding protein specific for the metabolically inactive chlamydial developmental form, the elementary body. Hc1 induces DNA condensation in Escherichia coli and is a strong inhibitor of transcription and translation. These effects may, in part, be due to Hc1-mediated alterations of DNA topology. To locate putative functional domains within Hc1, polypeptides Hc1(2-57) and Hc1(53-125), corresponding to the N- and C-terminal parts of Hc1, respectively, were generated. By chemical cross-linking with ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester), purified recombinant Hc1 was found to form dimers. The dimerization site was located in the N-terminal part of Hc1 (Hc1(2-57)). Moreover, circular dichroism measurements indicated an overall alpha-helical structure of this region. By using limited proteolysis, Southwestern blotting, and gel retardation assays, Hc1(53-125) was shown to contain a domain capable of binding both DNA and RNA. Under the same conditions, Hc1(2-57) had no nucleic acid-binding activity. Electron microscopy of Hc1-DNA and Hc1(53-125)-DNA complexes revealed differences suggesting that the N-terminal part of Hc1 may affect the DNA-binding properties of Hc1. PMID:8576073

  17. Amino acid sequence and molecular structure of an alkaline amylopullulanase from Bacillus that hydrolyzes alpha-1,4 and alpha-1,6 linkages in polysaccharides at different active sites.

    PubMed

    Hatada, Y; Igarashi, K; Ozaki, K; Ara, K; Hitomi, J; Kobayashi, T; Kawai, S; Watabe, T; Ito, S

    1996-09-27

    An amylopullulanase from alkalophilic Bacillus sp. KSM-1378 hydrolyzes both alpha-1,6 linkages in pullulan and alpha-1,4 linkages in other polysaccharides, with maximum activity in each case at an alkaline pH, to generate oligosaccharides (Ara, K., Saeki, K., Igarashi, K., Takaiwa, M., Uemura, T., Hagihara, H., Kawai, S., and Ito, S. (1995) Biochim. Biophys. Acta 1243, 315-324). Here, we report the molecular cloning and sequencing of the gene for and the structure of this enzyme and show that its dual hydrolytic activities are associated with two independent active sites. The structural gene contained a single, long open reading frame of 5,814 base pairs, corresponding to 1,938 amino acids that included a signal peptide of 32 amino acids. The molecular mass of the extracellular mature enzyme (Glu33 through Leu1938) was calculated to be 211,450 Da, a value close to the 210 kDa determined for the amylopullulanase produced by Bacillus sp. KSM-1378. The amylase and the pullulanase domains were located in the amino-terminal half and in the carboxyl-terminal half of the enzyme, respectively, being separated by a tandem repeat of a sequence of 35 amino acids. Four regions, designated I, II, III, and IV, were highly conserved in each catalytic domain, and they included a putative catalytic triad Asp550-Glu579-Asp645 for the amylase activity and Asp1464-Glu1493-Asp1581 for the pullulanase activity. The purified enzyme was rotary shadowed at a low angle and observed by transmission electron microscopy; it appeared to be a "castanet-like" or "bent dumbbell-like" molecule with a diameter of approximately 25 nm. PMID:8798645

  18. Characterization of the Functional Roles of Amino Acid Residues in Acceptor-binding Subsite +1 in the Active Site of the Glucansucrase GTF180 from Lactobacillus reuteri 180.

    PubMed

    Meng, Xiangfeng; Pijning, Tjaard; Dobruchowska, Justyna M; Gerwig, Gerrit J; Dijkhuizen, Lubbert

    2015-12-11

    α-Glucans produced by glucansucrase enzymes hold strong potential for industrial applications. The exact determinants of the linkage specificity of glucansucrase enzymes have remained largely unknown, even with the recent elucidation of glucansucrase crystal structures. Guided by the crystal structure of glucansucrase GTF180-ΔN from Lactobacillus reuteri 180 in complex with the acceptor substrate maltose, we identified several residues (Asp-1028 and Asn-1029 from domain A, as well as Leu-938, Ala-978, and Leu-981 from domain B) near subsite +1 that may be critical for linkage specificity determination, and we investigated these by random site-directed mutagenesis. First, mutants of Ala-978 (to Leu, Pro, Phe, or Tyr) and Asp-1028 (to Tyr or Trp) with larger side chains showed reduced degrees of branching, likely due to the steric hindrance by these bulky residues. Second, Leu-938 mutants (except L938F) and Asp-1028 mutants showed altered linkage specificity, mostly with increased (α1 → 6) linkage synthesis. Third, mutation of Leu-981 and Asn-1029 significantly affected the transglycosylation reaction, indicating their essential roles in acceptor substrate binding. In conclusion, glucansucrase product specificity is determined by an interplay of domain A and B residues surrounding the acceptor substrate binding groove. Residues surrounding the +1 subsite thus are critical for activity and specificity of the GTF180 enzyme and play different roles in the enzyme functions. This study provides novel insights into the structure-function relationships of glucansucrase enzymes and clearly shows the potential of enzyme engineering to produce tailor-made α-glucans. PMID:26507662

  19. 3-Nitropropionic Acid is a Suicide Inhibitor of MitochondrialRespiration that, Upon Oxidation by Complex II, Forms a Covalent AdductWith a Catalytic Base Arginine in the Active Site of the Enzyme

    SciTech Connect

    Huang, Li-shar; Sun, Gang; Cobessi, David; Wang, Andy C.; Shen,John T.; Tung, Eric Y.; Anderson, Vernon E.; Berry, Edward A.

    2005-12-01

    We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 {angstrom} resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator of succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation.

  20. Resistance of a human serum-selected human immunodeficiency virus type 1 escape mutant to neutralization by CD4 binding site monoclonal antibodies is conferred by a single amino acid change in gp120.

    PubMed Central

    McKeating, J A; Bennett, J; Zolla-Pazner, S; Schutten, M; Ashelford, S; Brown, A L; Balfe, P

    1993-01-01

    We have selected an HXB2 variant which can replicate in the presence of a neutralizing human serum. Sequencing of the gp120 region of the env gene from the variant and parental viruses identified a single amino acid substitution in the third conserved region of gp120 at residue 375 (AGT-->AAT, Ser-->Asn; designated 375 S/N). The escape mutant was found to be resistant to neutralization by soluble CD4 (sCD4) and four monoclonal antibodies (MAbs), 39.13g, 1.5e, G13, and 448, binding to epitopes overlapping that of the CD4 binding site (CD4 b.s.). Introduction of the 375 S/N mutation into HXB2 by site-directed mutagenesis confirmed that this mutation is responsible for the neutralization-resistant phenotype. Both sCD4 and three of the CD4 b.s. MAbs (39.13g, 1.5e, and G13) demonstrated reduced binding to the native 375 S/N mutant gp120. The ability to select for an escape variant resistant to multiple independent CD4 b.s. MAbs by a human serum confirms the reports that antibodies to the discontinuous CD4 b.s. are a major component of the group-specific neutralizing activity in human sera. PMID:7688820

  1. Role of Enzyme Flexibility in Ligand Access and Egress to Active Site: Bias-Exchange Metadynamics Study of 1,3,7-Trimethyluric Acid in Cytochrome P450 3A4.

    PubMed

    Paloncýová, Markéta; Navrátilová, Veronika; Berka, Karel; Laio, Alessandro; Otyepka, Michal

    2016-04-12

    Although the majority of enzymes have buried active sites, very little is known about the energetics and mechanisms associated with substrate and product channeling in and out. Gaining direct information about these processes is a challenging task both for experimental and theoretical techniques. Here, we present a methodology that enables following of a ligand during its passage to the active site of cytochrome P450 (CYP) 3A4 and mapping of the free energy associated with this process. The technique is based on a combination of a bioinformatics tool for identifying access channels and bias-exchange metadynamics and provides converged free energies in good agreement with experimental data. In addition, it identifies the energetically preferred escape routes, limiting steps, and amino acids residues lining the channel. The approach was applied to mapping of a complex channel network in a complex environment, i.e., CYP3A4 attached to a lipid bilayer mimicking an endoplasmic reticulum membrane. The results provided direct information about the energetics and conformational changes associated with the ligand channeling. The methodology can easily be adapted to study channeling through other flexible biomacromolecular channels. PMID:26967371

  2. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  3. Human Immunodeficiency Virus Type 1 Resistance to the Small Molecule Maturation Inhibitor 3-O-(3′,3′-Dimethylsuccinyl)-Betulinic Acid Is Conferred by a Variety of Single Amino Acid Substitutions at the CA-SP1 Cleavage Site in Gag▿ †

    PubMed Central

    Zhou, Jing; Chen, Chin Ho; Aiken, Christopher

    2006-01-01

    The compound 3-O-(3′,3′-dimethylsuccinyl)-betulinic acid (DSB) potently and specifically inhibits human immunodeficiency virus type 1 (HIV-1) replication by delaying the cleavage of the CA-SP1 junction in Gag, leading to impaired maturation of the viral core. In this study, we investigated HIV-1 resistance to DSB by analyzing HIV-1 mutants encoding a variety of individual amino acid substitutions in the CA-SP1 cleavage site. Three of the substitutions were lethal to HIV-1 replication owing to a deleterious effect on particle assembly. The remaining mutants exhibited a range of replication efficiencies; however, each mutant was capable of replicating in the presence of concentrations of DSB that effectively inhibited wild-type HIV-1. Mutations conferring resistance to DSB also led to impaired binding of the compound to immature HIV-1 virions and loss of DSB-mediated inhibition of cleavage of Gag. Surprisingly, two of the DSB-resistant mutants retained an intermediate ability to bind the compound, suggesting that binding of DSB to immature HIV-1 particles may not be sufficient for antiviral activity. Overall, our results indicate that Gag amino acids L363 and A364 are critical for inhibition of HIV-1 replication by DSB and suggest that these residues form key contacts with the drug in the context of the assembling HIV-1 particle. These results have implications for the design of and screening for novel inhibitors of HIV-1 maturation. PMID:17035324

  4. Simple method of isolating humic acids from organic soils

    NASA Astrophysics Data System (ADS)

    Ahmed, O. H.; Susilawati, K.; Nik Muhamad, A. B.; Khanif, M. Y.

    2009-04-01

    Humic substances particularly humic acids (HA) play a major role in soil conditioning e.g. erosion control, soil cation exchange capacity, complexation of heavy metal ions and pesticides, carbon and nitrogen cycles, plant growth and reduction of ammonia volatilization from urea. Humified substances such as coal, composts, and peat soils have substantial amounts of HA but the isolation of these acids is expensive, laborious, and time consuming. Factors that affect the quality and yield of HA isolated from these materials include extraction, fractionation, and purification periods. This work developed a simple, rapid, and cost effective method of isolating HA from peat soils. There was a quadratic relationship between extraction period and HA yield. Optimum extraction period was estimated at 4 h instead of the usual range of 12 to 48 h. There was no relationship between fractionation period and HA yield. As such 2 h instead of the usual range of 12 to 24 h fractionation period could be considered optimum. Low ash content (5%), remarkable reduction in K, coupled with the fact that organic C, E4/E6, carboxylic COOH, phenolic OH, and total acidity values of the HA were consistent with those reported by other authors suggest that the HA dealt with were free from mineral matter. This was possible because the distilled water used to purify the HA served as Bronsted-Lowry acid during the purification process of the HA. Optimum purification period using distilled waster was 1 h instead of the usual range of 1 and 7 days (uses HF and HCl and dialysis). Humic acids could be isolated from tropical peat soils within 7 h (i.e. 4 h extraction, 2 h fractionation, and 1 h purification) instead of the existing period of 2 and 7 days. This could facilitate the idea of producing organic fertilizers such as ammonium-humate and potassium-humate from humified substances since techniques devised in this study did not alter the true nature of the HA. Besides, the technique is rapid, simple

  5. The NH4+-NO3--Cl--SO42--H2O aerosol system and its gas phase precursors at a pasture site in the Amazon Basin: How relevant are mineral cations and soluble organic acids?

    NASA Astrophysics Data System (ADS)

    Trebs, Ivonne; Metzger, Swen; Meixner, Franz X.; Helas, Günter; Hoffer, AndráS.; Rudich, Yinon; Falkovich, Alla H.; Moura, Marcos A. L.; da Silva, Rosiberto S.; Artaxo, Paulo; Slanina, Jacob; Andreae, Meinrat O.

    2005-04-01

    Real-time measurements of ammonia, nitric acid, hydrochloric acid, sulfur dioxide and the water-soluble inorganic aerosol species, ammonium, nitrate, chloride, and sulfate were performed at a pasture site in the Amazon Basin (Rondônia, Brazil). The measurements were made during the late dry season (biomass burning), the transition period, and the onset of the wet season (clean conditions) using a wet-annular denuder (WAD) in combination with a Steam-Jet Aerosol Collector (SJAC). Measurements were conducted from 12 September to 14 November 2002 within the framework of LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate). Real-time data were combined with measurements of sodium, potassium, calcium, magnesium, and low-molecular weight (LMW) polar organic acids determined on 12-, 24-, and 48-hours integrated filter samples. The contribution of inorganic species to the fine particulate mass (Dp ≤ 2.5 μm) was frequently below 20% by mass, indicating the preponderance of organic matter. The measured concentration products of NH3 × HNO3 and NH3 × HCl persistently remained below the theoretical equilibrium dissociation constants of the NH3/HNO3/NH4NO3 and NH3/HCl/NH4Cl systems during daytime (RH < 90%). The application of four thermodynamic equilibrium models (EQMs) indicates that the fine mode aerosol anions NO3-, Cl-, and SO42- were balanced predominantly by mineral cations (particularly pyrogenic K+) during daytime. At nighttime (RH > 90%) fine-mode NH4NO3 and NH4Cl are predicted to be formed in the aqueous aerosol phase. Probably, Cl- was driven out of the aerosol phase largely by reaction of pyrogenic KCl with HNO3 and H2SO4. As shown by an updated version of the equilibrium simplified aerosol model (EQSAM2), which incorporates mineral aerosol species and lumped LMW polar organic acids, daytime aerosol NH4+ was mainly balanced by

  6. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  7. SITE RANK

    EPA Science Inventory

    Site rank is formulated for ranking the relative hazard of contamination sources and vulnerability of drinking water wells. Site rank can be used with a variety of groundwater flow and transport models.

  8. Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G).

    PubMed

    Han, Ruizhi; Liu, Long; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Chen, Jian

    2013-07-01

    In this work, the site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase towards maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) by CGTase. When using maltodextrin as glycosyl donor, four mutants K47F (lysine→ phenylalanine), K47L (lysine→ leucine), K47V (lysine→ valine) and K47W (lysine→ tryptophan) showed higher AA-2G yield as compared with that produced by the wild-type CGTase. The transformation conditions (temperature, pH and the mass ratio of L-ascorbic acid to maltodextrin) were optimized and the highest titer of AA-2G produced by the mutant K47L could reach 1.97 g/l, which was 64.2% higher than that (1.20 g/l) produced by the wild-type CGTase. The reaction kinetics analysis confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, the four mutants had relatively lower cyclization activities and higher disproportionation activities, which was favorable for AA-2G synthesis. The mechanism responsible for the enhanced substrate specificity was further explored by structure modeling and it was indicated that the enhancement of maltodextrin specificity may be due to the short residue chain and the removal of hydrogen bonding interactions between the side chain of residue 47 and the sugar at -3 subsite. Here the obtained mutant CGTases, especially the K47L, has a great potential in the production of AA-2G with maltodextrin as a cheap and easily soluble substrate. PMID:23129181

  9. Amino acids

    MedlinePlus

    Amino acids are organic compounds that combine to form proteins . Amino acids and proteins are the building blocks of life. When proteins are digested or broken down, amino acids are left. The human body uses amino acids ...

  10. Crystal Structures of the Staphylococcal Toxin SSL5 in Complex With Sialyl-Lewis X Reveal a Conserved Binding Site That Shares Common Features With Viral And Bacterial Sialic Acid-Binding Proteins

    SciTech Connect

    Baker, H.M.; Basu, I.; Chung, M.C.; Caradoc-Davies, T.; Fraser, J.D.; Baker, E.N.

    2009-06-02

    Staphylococcus aureus is a significant human pathogen. Among its large repertoire of secreted toxins is a group of staphylococcal superantigen-like proteins (SSLs). These are homologous to superantigens but do not have the same activity. SSL5 is shown here to bind to human granulocytes and to the cell surface receptors for human IgA (Fc alphaRI) and P-selectin [P-selectin glycoprotein ligand-1 (PSGL-1)] in a sialic acid (Sia)-dependent manner. Co-crystallization of SSL5 with the tetrasaccharide sialyl Lewis X (sLe(X)), a key determinant of PSGL-1 binding to P-selectin, led to crystal structures of the SSL5-sLe(X) complex at resolutions of 1.65 and 2.75 A for crystals at two pH values. In both structures, sLe(X) bound to a specific site on the surface of the C-terminal domain of SSL5 in a conformation identical with that bound by P-selectin. Conservation of the key carbohydrate binding residues indicates that this ability to bind human glycans is shared by a substantial subgroup of the SSLs, including SSL2, SSL3, SSL4, SSL5, SSL6, and SSL11. This indicates that the ability to target human glycans is an important property of this group of toxins. Structural comparisons also showed that the Sia binding site in SSL5 contains a substructure that is shared by other Sia binding proteins from bacteria as well as viruses and represents a common binding motif.

  11. All-trans retinoic acid (RA) stimulates events in organ-cultured human skin that underlie repair. Adult skin from sun-protected and sun-exposed sites responds in an identical manner to RA while neonatal foreskin responds differently.

    PubMed Central

    Varani, J; Perone, P; Griffiths, C E; Inman, D R; Fligiel, S E; Voorhees, J J

    1994-01-01

    Adult human skin from a sun-protected site (hip) and from a sun-exposed site (forearm) was maintained in organ culture for 12 d in the presence of a serum-free, growth factor-free basal medium. Cultures were incubated under conditions optimized for keratinocyte growth (i.e., in 0.15 mM extracellular Ca2+) or for fibroblast growth (i.e., in 1.4 mM extracellular Ca2+). Treatment with all-trans retinoic acid (RA) induced histological changes in the organ-cultured skin under both conditions which were similar to the changes seen in intact skin after topical application. These included expansion of the viable portion of the epidermis and activation of cells in the dermis. In sun-damaged skin samples, which were characterized by destruction of normal connective tissue elements and presence of thick, dark-staining elastotic fibers, a zone of healthy connective tissue could be seen immediately below the dermo-epidermal junction. This zone was more prominent in RA-treated organ cultures than in matched controls. Associated with these histological changes was an increase in overall protein and extracellular matrix synthesis. In concomitant studies, it was found that RA treatment enhanced survival and proliferation of adult keratinocytes and adult dermal fibroblasts under both low- and high-Ca2+ conditions. In all of these assays, responses of sun-protected and sun-exposed skin were identical. In contrast, responses of neonatal foreskin to RA were similar to those of adult skin in the presence of low-Ca2+ culture medium, but under conditions of high extracellular Ca2+ RA provided little or no additional stimulus. Together these studies suggest that the ability of RA to enhance repair of sun-damaged skin (documented in previous studies) may reflect its ability to influence the behavior of skin in a manner that is age dependent but independent of sun-exposure status. Images PMID:7962521

  12. Structure-function relationships in the Na,K-ATPase. cap alpha. subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme

    SciTech Connect

    Price, E.M.; Lingrel, J.B.

    1988-11-01

    Na,K-ATPases from various species differ greatly in their sensitivity to cardiac glycosides such as ouabain. The sheep and human enzymes are a thousand times more sensitive than the corresponding ones from rat and mouse. To define the region of the ..cap alpha..1 subunit responsible for this differential sensitivity, chimeric cDNAs of sheep and rat were constructed and expressed in ouabain-sensitive HeLa cells. The construct containing the amino-terminal half of the rat ..cap alpha..1 subunit coding region and carboxyl-terminal half of the sheep conferred th