Science.gov

Sample records for btp supported liquid

  1. Selective recovery of minor trivalent actinides from high level liquid waste by R-BTP/SiO2-P adsorbents

    NASA Astrophysics Data System (ADS)

    Sano, Yuichi; Surugaya, Naoki; Yamamoto, Masahiko

    2010-03-01

    Concerning the selective recovery of minor trivalent actinides (MA(III) = Am(III) and Cm(III)) from high level liquid waste (HLLW) by extraction chromatography, adsorption and elution behaviours of MA(III) and fission products (FP) in a nitric acid media were studied using iHex-BTP/SiO2-P adsorbents, which is expected to show high adsorption affinity for MA(III) even in concentrated HNO3 solution, such as HLLW. In the batch experiments, Pd showed strong adsorption on iHex-BTP/SiO2-P adsorbents under any concentration of HNO3. The MA(III) and heavy Ln(III) (Sm(III), Eu(III) and Gd(III)) were also adsorbed at the condition of high HNO3 concentration, but they showed no adsorption under low HNO3concentration. The separation factor for MA(III)/heavy Ln(III) took the maximum value (over 100) at around 1mol/dm3 HNO3. It was difficult to elute MA(III) or heavy Ln(III) selectively by HNO3 from the iHex-BTP/SiO2-P adsorbents degradated by γ-ray irradiation. The chromatographic separation of real HLLW by an iHex-BTP/SiO2-P column showed that MA(III) could be recovered selectively by adjusting the acidity of the feed solution, i.e. HLLW, to 1mol/dm3 and using H2O as eluant. The adsorption of Pd(II) can be decreased by the addition of appropriate complexing reagents, e.g. DTPA, into HLLW without any effects on the MA(III) adsorption.

  2. Supported liquid membrane system

    SciTech Connect

    Takigawa, D.Y.; Bush, H. Jr.

    1990-12-31

    A cell apparatus for a supported liquid membrane including opposing faceplates, each having a spirally configured groove, an inlet groove at a first end of the spirally configured groove, and an outlet groove at the other end of the spirally configured groove, within the opposing faces of the faceplates, a microporous membrane situated between the grooved faces of the faceplates, said microporous membrane containing an extractant mixture selective for a predetermined chemical species within the pores of said membrane, means for aligning the grooves of the faceplates in an directly opposing configuration with the porous membrane being situated therebetween, such that the aligned grooves form a pair of directly opposing channels, separate feed solution and stripping solution compartments connected to respective channels between the faceplates and the membrane, separate pumping means for passing feed solution and stripping solution through the channels is provided.

  3. Supported liquid membrane electrochemical separators

    DOEpatents

    Pemsler, J. Paul; Dempsey, Michael D.

    1986-01-01

    Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

  4. Method of fabrication of supported liquid membranes

    DOEpatents

    Luebke, David R.; Hong, Lei; Myers, Christina R.

    2015-11-17

    Method for the fabrication of a supported liquid membrane having a dense layer in contact with a porous layer, and a membrane liquid layer within the interconnected pores of the porous layer. The dense layer is comprised of a solidified material having an average pore size less than or equal to about 0.1 nanometer, while the porous layer is comprised of a plurality of interconnected pores and has an average pore size greater than 10 nanometers. The supported liquid membrane is fabricated through the preparation of a casting solution of a membrane liquid and a volatile solvent. A pressure difference is established across the dense layer and porous layer, the casting solution is applied to the porous layer, and the low viscosity casting solution is drawn toward the dense layer. The volatile solvent is evaporated and the membrane liquid precipitates, generating a membrane liquid layer in close proximity to the dense layer.

  5. Separation of metals by supported liquid membrane

    DOEpatents

    Takigawa, Doreen Y.

    1992-01-01

    A supported liquid membrane system for the separation of a preselected chemical species within a feedstream, preferably an aqueous feedstream, includes a feed compartment containing a feed solution having at least one preselected chemical species therein, a stripping compartment containing a stripping solution therein, and a microporous polybenzimidazole membrane situated between the compartments, the microporous polybenzimidazole membrane containing an extractant mixture selective for the preselected chemical species within the membrane pores is disclosed along with a method of separating preselected chemical species from a feedstream with such a system, and a supported liquid membrane for use in such a system.

  6. Separation of metals by supported liquid membranes

    SciTech Connect

    Takigawa, D.Y.

    1990-12-31

    A supported liquid membrane system for the separation of a preselected chemical species within a feedstream, preferably an aqueous feedstream, includes a feed compartment containing a feed solution having at least one preselected chemical species therein, a stripping compartment containing a stripping solution therein, and a microporous polybenzimidazole membrane situated between the compartments, the microporous polybenzimidazole membrane containing an extractant mixture selective for the preselected chemical species within the membrane pores is disclosed along with a method of separating preselected chemical species from a feedstream with such a system, and a supported liquid membrane for use in such a system.

  7. Separations by supported liquid membrane cascades

    DOEpatents

    Danesi, P.R.

    1983-09-01

    The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solution and the supported liquid membranes are arranged to provide a continuous process.

  8. Support-free pulsed liquid-liquid chromatography.

    PubMed

    Kostanyan, Artak E; Voshkin, Andrei A

    2009-11-01

    A simple technique of support-free liquid-liquid chromatography is suggested that operates without incorporation of a centrifuge. The pulsed chromatography apparatus consists of a stationary coiled tube and a pulsation device to produce reciprocating motion of liquid phases within each individual coil segment. This reciprocating motion generates a centrifugal force field varying in intensity and direction that leads to an improved mixing of the two liquid phases and retains the stationary phase in the coiled tubing. The intensity of the back and forth motion of liquid phases within each coil unit can be varied by varying the frequency and/or the amplitude of the pulsations generated by the pulsation device. As the magnitude of the stationary phase retention is of paramount importance for success of the technique, the retention of the stationary phase in the pulsed coil column was experimentally studied. A few experiments were conducted to test the chromatographic behavior of valeric (n-pentanoic) and caproic (n-hexanoic) acids. The results obtained demonstrate the potential of the new separation method for preparative purposes. PMID:19758594

  9. Separations by supported liquid membrane cascades

    DOEpatents

    Danesi, Pier R. (Clarendon Hills, IL)

    1986-01-01

    The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid membranes. The membranes contain alternatively a liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solutions and the supported liquid membranes are arranged in such a way to provide a continuous process which leads to the continuous enrichment of the species which show the highest permeability coefficients. By virtue of the very high number of stages which can be arranged, even chemical species having very similar chemical behavior (and consequently very similar permeability coefficients) can be completely separated. The invention also provide a way to concentrate the separated species.

  10. Supported polymeric liquid membranes for wastewater treatment

    SciTech Connect

    Ho, S.V.

    1997-12-31

    The removal or elimination of organic residues from aqueous waste streams represents a major need in the chemical industry. A class of membrane has been developed called supported polymeric liquid membranes capable of removing and concentrating low molecular weight organic compounds from dilute aqueous solutions, especially those that also contain high concentrations of inorganic salts. These membranes are prepared by filling the pores of microfiltration or ultrafiltration membranes with polymeric (oligomeric) liquids having affinity for the organic compounds of interest. With this approach, membrane`s separation characteristics are decoupled from its mechanical stability and depend primarily on the chemical properties of the liquid polymer used. As a result, membranes of diverse separation capabilities can be conveniently prepared using liquid polymers possessing the appropriate functional groups. Physical properties typical of polymeric liquids such as high viscosity, extremely low volatility and insolubility in water contribute to the observed stability of the membranes under broad operating conditions. This membrane process has been successfully applied to several aqueous waste streams. This paper describes the early development activities for treating a waste stream containing a dilute mixture of C2-C6 carboxylic acids. Feasibility testings were initially carried out with flat sheet membranes in a small stirred cell. Scaleup was then conducted using hollow fiber membranes, first with small modules prepared in the laboratory, then with a much larger commercial module. Attractive features of this membrane process include the ability to recover the contaminants in concentrated form for either recycle or more economical disposal, low pressure (ambient) operation, simple scale-up using commercial hollow fiber modules, and ease of in-situ regeneration of the polymeric liquid.

  11. Radiolysis and Ageing of C2-BTP in Cinnamaldehyde/Hexanol Mixtures

    SciTech Connect

    Fermvik, Anna; Ekberg, Christian; Retegan, Teodora; Skarnemark, Gunnar

    2007-07-01

    The separation of actinides from lanthanides is an important step in the alternative methods for nuclear waste treatment currently under development. Polycyclic molecules containing nitrogen are synthesised and used for solvent extraction. A potential problem in the separation process is the degradation of the molecule due to irradiation or ageing. An addition of nitrobenzene has proved to have an inhibitory effect on degradation when added to a system containing C2-BTP in hexanol before irradiation. In this study, 2,6-di(5,6-diethyl-1,2,4-triazine-3-yl)pyridine (C2-BTP) was dissolved in different mixtures of cinnamaldehyde and hexanol and the effects on extraction after ageing and irradiation were investigated. Similar to nitrobenzene, cinnamaldehyde contains an aromatic ring which generally has a relatively high resistance towards radiolysis. Both C2-BTP in cinnamaldehyde and C2-BTP in hexanol seem to degrade with time. The system with C2-BTP in pure hexanol is relatively stable up to 17 days but then starts slowly to degrade. The solution with pure cinnamaldehyde as diluent started to degrade after only {approx}20 hours. The opposite is true for degradation caused by radiolysis; hexanol systems are more sensitive to radiolysis than cinnamaldehyde systems. Most of the radiolytic degradation took place during the first days of irradiation, up to a dose of 4 kGy. (authors)

  12. Development of Practical Supported Ionic Liquid Membranes: A Systematic Approach

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-11-01

    Supported liquid membranes (SLMs) are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties to optimize membrane performance. These membranes also have the advantage of liquid phase diffusivities, which are higher than those observed in polymers and grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which may possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they are stable at elevated temperatures and have negligible vapor pressure. A study has been conducted evaluating the use of a variety of ionic liquids in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated membrane performance for the resulting materials. Several steps have been taken in the development of practical supported ionic liquid membranes. Proof-of-concept was established by showing that ionic liquids could be used as the transport media in SLMs. Results showed that ionic liquids are suitable media for gas transport, but the preferred polymeric supports were not stable at temperatures above 135oC. The use of cross-linked nylon66 supports was found to produce membranes mechanically stable at temperatures exceeding 300oC but CO2/H2 selectivity was poor. An ionic liquid whose selectivity does not decrease with increasing temperature was needed, and a functionalized ionic liquid that complexes with CO2 was used. An increase in CO2/H2 selectivity with increasing temperature over the range of 37 to 85oC was observed and the dominance of a facilitated transport mechanism established. The presentation will detail membrane development, the effect of increasing transmembrane pressure, and preliminary results dealing with other gas pairs and contaminants.

  13. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  14. 26. DETAIL OF CONCRETE PIPE SUPPORTS LEADING TO NEW LIQUID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL OF CONCRETE PIPE SUPPORTS LEADING TO NEW LIQUID HYDROGEN TANK FARM; VIEW TO WEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  15. Fabrication of fiber supported ionic liquids and methods of use

    SciTech Connect

    Luebke, David R; Wickramanayake, Shan

    2013-02-26

    One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.

  16. Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    2002-01-01

    The overall goal of this project was to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, was used to remove inhibitory byproducts during fermentation; thus, improve the yield while reducing the need for fresh water. The key objectives of this study were: (1) Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems. (2) Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system. (3) Investigate the effect of gravity on emulsion coalescence within the membrane unit. (4) Access the effect of water re-use on fermentation yields in a model microbial system. and (5) Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts (not completed due to lack of funds)

  17. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  18. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    NASA Astrophysics Data System (ADS)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  19. Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    2002-01-01

    The overall goal of this project is to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, is used to remove inhibitory byproducts during fermentation; thus, improving the yield while reducing the need for fresh water. The key objectives of this study are: Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems; Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system; Investigate the effect of gravity on emulsion coalescence within the membrane unit; Access the effect of water re-use on fermentation yields in a model microbial system; Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts; Work for the coming year will focus on the determination of toxicity of various solvents, selection of the emulsifying agents, as well as characterizing the mass transfer of hollow-fiber contactors.

  20. Liquid-Mercury-Supported Langmuir Films of Ionic Liquids: Isotherms, Structure, and Time Evolution.

    PubMed

    Elfassy, Eitan; Mastai, Yitzhak; Pontoni, Diego; Deutsch, Moshe

    2016-04-01

    Ionic liquids have been intensively developed for the last few decades and are now used in a wide range of applications, from electrochemistry to catalysis and nanotechnology. Many of these applications involve ionic liquid interfaces with other liquids and solids, the subnanometric experimental study of which is highly demanding, and has been little studied to date. We present here a study of mercury-supported Langmuir films of imidazolium-based ionic liquids by surface tensiometry and X-ray reflectivity. The charge-delocalized ionic liquids studied here exhibit no 2D lateral order but show diffuse surface-normal electron density profiles exhibiting gradual mercury penetration into the ionic liquid film, and surface-normal structure evolution over a period of hours. The effect of increasing the nonpolar alkyl chain length was also investigated. The results obtained provide insights into the interactions between these ionic liquids and liquid mercury and about the time evolution of the structure and composition of their interface. PMID:26963651

  1. Supported liquid inorganic membranes for nuclear waste separation

    SciTech Connect

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  2. Feasibility of Surfactant-Free Supported Emulsion Liquid Membrane Extraction

    NASA Technical Reports Server (NTRS)

    Hu, Shih-Yao B.; Li, Jin; Wiencek, John M.

    2001-01-01

    Supported emulsion liquid membrane (SELM) is an effective means to conduct liquid-liquid extraction. SELM extraction is particularly attractive for separation tasks in the microgravity environment where density difference between the solvent and the internal phase of the emulsion is inconsequential and a stable dispersion can be maintained without surfactant. In this research, dispersed two-phase flow in SELM extraction is modeled using the Lagrangian method. The results show that SELM extraction process in the microgravity environment can be simulated on earth by matching the density of the solvent and the stripping phase. Feasibility of surfactant-free SELM (SFSELM) extraction is assessed by studying the coalescence behavior of the internal phase in the absence of the surfactant. Although the contacting area between the solvent and the internal phase in SFSELM extraction is significantly less than the area provided by regular emulsion due to drop coalescence, it is comparable to the area provided by a typical hollow-fiber membrane. Thus, the stripping process is highly unlikely to become the rate-limiting step in SFSELM extraction. SFSELM remains an effective way to achieve simultaneous extraction and stripping and is able to eliminate the equilibrium limitation in the typical solvent extraction processes. The SFSELM design is similar to the supported liquid membrane design in some aspects.

  3. [Preparation and applications of a supported liquid-liquid extraction column with a composite diatomite material].

    PubMed

    Bao, Jianmin; Ma, Zhishuang; Sun, Ying; Wang, Yongzun; Li, Youxin

    2012-08-01

    A rapid and special supported liquid-liquid extraction (SLE) column was developed with a composite diatomite material. The SLE column was evaluated by high performance liquid chromatography (HPLC) with acidic, neutral and alkaline compounds dissolved in water. Furthermore, some real complex samples were also analyzed by HPLC with the SLE method. The recoveries of benzoic acid (acidic), p-nitroaniline (alkaline) and 4-hydroxy-benzoic methyl ester (neutral) treated by the SLE column were 90.6%, 98.1% and 97.7%. However, the recoveries of the three compounds treated by traditional liquid-liquid extraction (LLE) method were 71.9%, 81.9% and 83.9%. The results showed that the SLE technique had higher recoveries than the traditional LLE method. The spiked recoveries of the complex samples, such as benzoic acid in Sprite and dexamethasone acetate, chlorphenamine maleate, indomethacin in bovine serum, were between 80% and 110% and the relative standard deviations (RSDs) were less than 15%. For biological specimen, the results could be accepted. Meantime, many disadvantages associated with traditional LLE method, such as emulsion formation, didn't occur using SLE column. The SLE column technique is a good sample preparation method with many advantages, such as rapid, simple, robust, easily automated, high recovery and high-throughput, which would be widely used in the future. PMID:23256382

  4. A functional link between store-operated and TRPC channels revealed by the 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2.

    PubMed

    He, Li-Ping; Hewavitharana, Thamara; Soboloff, Jonathan; Spassova, Maria A; Gill, Donald L

    2005-03-25

    The coupling between receptor-mediated Ca2+ store release and the activation of "store-operated" Ca2+ entry channels is an important but so far poorly understood mechanism. The transient receptor potential (TRP) superfamily of channels contains several members that may serve the function of store-operated channels (SOCs). The 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2, is a recently described inhibitor of SOC activity in T-lymphocytes. We compared its action on SOC activation in a number of cell types and evaluated its modification of three specific TRP channels, canonical transient receptor potential 3 (TRPC3), TRPC5, and TRPV6, to throw light on any link between SOC and TRP channel function. Using HEK293 cells, DT40 B cells, and A7r5 smooth muscle cells, BTP2 blocked store-operated Ca2+ entry within 10 min with an IC50 of 0.1-0.3 microM. Store-operated Ca2+ entry induced by Ca2+ pump blockade or in response to muscarinic or B cell receptor activation was similarly sensitive to BTP2. Using the T3-65 clonal HEK293 cell line stably expressing TRPC3 channels, TRPC3-mediated Sr2+ entry activated by muscarinic receptors was also blocked by BTP2 with an IC50 of <0.3 microM. Importantly, direct activation of TRPC3 channels by diacylglycerol was also blocked by BTP2 (IC50 approximately 0.3 microM). BTP2 still blocked TRPC3 in medium with N-methyl-D-glucamine-chloride replacing Na+, indicating BTP2 did not block divalent cation entry by depolarization induced by activating monovalent cation entry channels. Whereas whole-cell carbachol-induced TRPC3 current was blocked by 3 microM BTP2, single TRPC3 channel recordings revealed persistent short openings suggesting BTP2 reduces the open probability of the channel rather than its pore properties. TRPC5 channels transiently expressed in HEK293 cells were blocked by BTP2 in the same range as TRPC3. However, function of the highly Ca(2+)-selective TRPV6 channel, with many channel properties akin to SOCs, was entirely unaffected by BTP2. The results indicate a strong functional link between the operation of expressed TRPC channels and endogenous SOC activity. PMID:15647288

  5. Supported ionic liquid catalysis--a new concept for homogeneous hydroformylation catalysis.

    PubMed

    Mehnert, Christian P; Cook, Raymond A; Dispenziere, Nicholas C; Afeworki, Mobae

    2002-11-01

    The new concept of supported ionic liquid catalysis involves the surface of a support material that is modified with a monolayer of covalently attached ionic liquid fragments. Treatment of this surface with additional ionic liquid results in the formation of a multiple layer of free ionic liquid on the support. These layers serve as the reaction phase in which a homogeneous hydroformylation catalyst was dissolved. Supported ionic liquid catalysis combines the advantages of ionic liquid media with solid support materials which enables the application of fixed-bed technology and the usage of significantly reduced amounts of the ionic liquid. The concept of supported ionic liquid catalysis has successfully been used for hydroformylation reactions and can be further expanded into other areas of catalysis. PMID:12405804

  6. Systemic resistance and lipoxygenase-related defence response induced in tomato by Pseudomonas putida strain BTP1

    PubMed Central

    Akram, Adam; Ongena, Marc; Duby, Francéline; Dommes, Jacques; Thonart, Philippe

    2008-01-01

    Background Previous studies showed the ability of Pseudomonas putida strain BTP1 to promote induced systemic resistance (ISR) in different host plants. Since ISR is long-lasting and not conducive for development of resistance of the targeted pathogen, this phenomenon can take part of disease control strategies. However, in spite of the numerous examples of ISR induced by PGPR in plants, only a few biochemical studies have associated the protective effect with specific host metabolic changes. Results In this study, we showed the protective effect of this bacterium in tomato against Botrytis cinerea. Following treatment by P. putida BTP1, analyses of acid-hydrolyzed leaf extracts showed an accumulation of antifungal material after pathogen infection. The fungitoxic compounds thus mainly accumulate as conjugates from which active aglycones may be liberated through the activity of hydrolytic enzymes. These results suggest that strain BTP1 can elicit systemic phytoalexin accumulation in tomato as one defence mechanism. On another hand, we have shown that key enzymes of the lipoxygenase pathway are stimulated in plants treated with the bacteria as compared with control plants. Interestingly, this stimulation is observed only after pathogen challenge in agreement with the priming concept almost invariably associated with the ISR phenomenon. Conclusion Through the demonstration of phytoalexin accumulation and LOX pathway stimulation in tomato, this work provides new insights into the diversity of defence mechanisms that are inducible by non-pathogenic bacteria in the context of ISR. PMID:19000301

  7. Electromembrane extraction through a virtually rotating supported liquid membrane.

    PubMed

    HosseinyDavarani, Saied Saeed; Moazami, Hamid Reza; Memarian, Elham; Nojavan, Saeed

    2016-01-01

    Electromembrane extraction (EME) of model analytes was carried out using a virtually rotating supported liquid membrane (SLM). The virtual (nonmechanical) rotating of the SLM was achieved using a novel electrode assembly including a central electrode immersed inside the lumen of the SLM and five counter electrodes surrounding the SLM. A particular electronic circuit was designed to distribute the potential among five counter electrodes in a rotating pattern. The effect of the experimental parameters on the recovery of the extraction was investigated for verapamil (VPL), trimipramine (TRP), and clomipramine (CLP) as the model analytes and 2-ethyl hexanol as the SLM solvent. The results showed that the recovery of the extraction is a function of the angular velocity of the virtual rotation. The best results were obtained at an angular velocity of 1.83 RadS(-1) (or a rotation frequency of 0.29 Hz).The optimization of the parameters gave higher recoveries up to 50% greater than those of a conventional EME method. The rotating also allowed the extraction to be carried out at shorter time (15 min) and lower voltage (200 V) with respect to the conventional extraction. The model analytes were successfully extracted from wastewater and human urine samples with recoveries ranging from 38 to 85%. The RSD of the determinations was in the range of 12.6 to 14.8%. PMID:26462723

  8. Advanced Supported Liquid Membranes for Carbon Dioxide Control in Extravehicular Activity Applications

    NASA Technical Reports Server (NTRS)

    Wickham, David T. (Inventor); Gleason, Kevin J. (Inventor); Cowley, Scott W. (Inventor)

    2015-01-01

    There is disclosed a portable life support system with a component for removal of at least one selected gas. In an embodiment, the system includes a supported liquid membrane having a first side and a second side in opposition to one another, the first side configured for disposition toward an astronaut and the second side configured for disposition toward a vacuum atmosphere. The system further includes an ionic liquid disposed between the first side and the second side of the supported liquid membrane, the ionic liquid configured for removal of at least one selected gas from a region housing the astronaut adjacent the first side of the supported liquid membrane to the vacuum atmosphere adjacent the second side of the supported liquid membrane. Other embodiments are also disclosed.

  9. The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms

    PubMed Central

    2011-01-01

    Background Some non-pathogenic rhizobacteria called Plant Growth Promoting Rhizobacteria (PGPR) possess the capacity to induce in plant defense mechanisms effective against pathogens. Precedent studies showed the ability of Pseudomonas putida BTP1 to induce PGPR-mediated resistance, termed ISR (Induced Systemic Resistance), in different plant species. Despite extensive works, molecular defense mechanisms involved in ISR are less well understood that in the case of pathogen induced systemic acquired resistance. Results We analyzed the activities of phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX), key enzymes of the phenylpropanoid and oxylipin pathways respectively, in tomato treated or not with P. putida BTP1. The bacterial treatment did not stimulate PAL activity and linoleate-consuming LOX activities. Linolenate-consuming LOX activity, on the contrary, was significantly stimulated in P. putida BTP1-inoculated plants before and two days after infection by B. cinerea. This stimulation is due to the increase of transcription level of two isoforms of LOX: TomLoxD and TomLoxF, a newly identified LOX gene. We showed that recombinant TomLOXF preferentially consumes linolenic acid and produces 13-derivative of fatty acids. After challenging with B. cinerea, the increase of transcription of these two LOX genes and higher linolenic acid-consuming LOX activity were associated with a more rapid accumulation of free 13-hydroperoxy-octadecatrienoic and 13-hydroxy-octadecatrienoic acids, two antifungal oxylipins, in bacterized plants. Conclusion In addition to the discovery of a new LOX gene in tomato, this work is the first to show differential induction of LOX isozymes and a more rapid accumulation of 13-hydroperoxy-octadecatrienoic and 13-hydroxy-octadecatrienoic acids in rhizobacteria mediated-induced systemic resistance. PMID:21294872

  10. Liquid metal systems development: reactor vessel support structure evaluation

    SciTech Connect

    McEdwards, J.A.

    1981-01-01

    Results of an evaluation of support structures for the reactor vessel are reported. The U ring, box ring, integral ring, tee ring and tangential beam supports were investigated. The U ring is the recommended vessel support structure configuration.

  11. A BTP1 prophage gene present in invasive non-typhoidal Salmonella determines composition and length of the O-antigen of the lipopolysaccharide

    PubMed Central

    Kintz, Erica; Davies, Mark R; Hammarlöf, Disa L; Canals, Rocío; Hinton, Jay C D; van der Woude, Marjan W

    2015-01-01

    Salmonella Typhimurium isolate D23580 represents a recently identified ST313 lineage of invasive non-typhoidal Salmonellae (iNTS). One of the differences between this lineage and other non-iNTS S. Typhimurium isolates is the presence of prophage BTP1. This prophage encodes a gtrC gene, implicated in O-antigen modification. GtrCBTP1 is essential for maintaining O-antigen length in isolate D23580, since a gtrBTP1 mutant yields a short O-antigen. This phenotype can be complemented by gtrCBTP1 or very closely related gtrC genes. The short O-antigen of the gtrBTP1 mutant was also compensated by deletion of the BTP1 phage tailspike gene in the D23580 chromosome. This tailspike protein has a putative endorhamnosidase domain and thus may mediate O-antigen cleavage. Expression of the gtrCBTP1 gene is, in contrast to expression of many other gtr operons, not subject to phase variation and transcriptional analysis suggests that gtrC is produced under a variety of conditions. Additionally, GtrCBTP1 expression is necessary and sufficient to provide protection against BTP1 phage infection of an otherwise susceptible strain. These data are consistent with a model in which GtrCBTP1 mediates modification of the BTP1 phage O-antigen receptor in lysogenic D23580, and thereby prevents superinfection by itself and other phage that uses the same O-antigen co-receptor. PMID:25586744

  12. Ionic liquids supported on metal-organic frameworks: remarkable adsorbents for adsorptive desulfurization.

    PubMed

    Khan, Nazmul Abedin; Hasan, Zubair; Jhung, Sung Hwa

    2014-01-01

    Acidic ionic-liquids (IL) supported on metal-organic frameworks (MOFs) have been shown to be beneficial for adsorptive desulfurization. A remarkable improvement in the adsorption capacity (ca. 71%) was observed in for ILs supported on MIL-101 compared with virgin MIL-101. The improved adsorptive performance might be explained by the acid-base interactions between the acidic ionic liquid and basic benzothiophene (BT). Moreover, from this study, it can be suggested that porous MOFs, supported with ionic liquids, may introduce a new class of highly porous adsorbents for the efficient adsorption of various compounds. PMID:24390909

  13. Hyperhydricity and flavonoid content of Scutellaria species in vitro on polyester-supported liquid culture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three Scutellaria species (Scutellaria lateriflora, S. costaricana and S. baicalensis) were grown in different in vitro physical environments: agar, liquid culture, and liquid culture with fiber-supported paper (with initial media volumes of 20 mL and 30 mL). During an eight-week time course, tiss...

  14. Early transcriptional responses of bovine chorioallantoic membrane explants to wild type, ΔvirB2 or ΔbtpB Brucella abortus infection.

    PubMed

    Mol, Juliana P S; Costa, Erica A; Carvalho, Alex F; Sun, Yao-Hui; Tsolis, Reneé M; Paixão, Tatiane A; Santos, Renato L

    2014-01-01

    The pathogenesis of the Brucella-induced inflammatory response in the bovine placenta is not completely understood. In this study we evaluated the role of the B. abortus Type IV secretion system and the anti-inflammatory factor BtpB in early interactions with bovine placental tissues. Transcription profiles of chorioallantoic membrane (CAM) explants inoculated with wild type (strain 2308), ΔvirB2 or ΔbtpB Brucella abortus were compared by microarray analysis at 4 hours post infection. Transcripts with significant variation (>2 fold change; P<0.05) were functionally classified, and transcripts related to defense and inflammation were assessed by quantitative real time RT-PCR. Infection with wild type B. abortus resulted in slightly more genes with decreased than increased transcription levels. Conversely, infection of trophoblastic cells with the ΔvirB2 or the ΔbtpB mutant strains, that lack a functional T4SS or that has impaired inhibition of TLR signaling, respectively, induced more upregulated than downregulated genes. Wild type Brucella abortus impaired transcription of host genes related to immune response when compared to ΔvirB and ΔbtpB mutants. Our findings suggest that proinflammatory genes are negatively modulated in bovine trophoblastic cells at early stages of infection. The virB operon and btpB are directly or indirectly related to modulation of these host genes. These results shed light on the early interactions between B. abortus and placental tissue that ultimately culminate in inflammatory pathology and abortion. PMID:25259715

  15. Early Transcriptional Responses of Bovine Chorioallantoic Membrane Explants to Wild Type, ΔvirB2 or ΔbtpB Brucella abortus Infection

    PubMed Central

    Mol, Juliana P. S.; Costa, Erica A.; Carvalho, Alex F.; Sun, Yao-Hui; Tsolis, Reneé M.; Paixão, Tatiane A.; Santos, Renato L.

    2014-01-01

    The pathogenesis of the Brucella-induced inflammatory response in the bovine placenta is not completely understood. In this study we evaluated the role of the B. abortus Type IV secretion system and the anti-inflammatory factor BtpB in early interactions with bovine placental tissues. Transcription profiles of chorioallantoic membrane (CAM) explants inoculated with wild type (strain 2308), ΔvirB2 or ΔbtpB Brucella abortus were compared by microarray analysis at 4 hours post infection. Transcripts with significant variation (>2 fold change; P<0.05) were functionally classified, and transcripts related to defense and inflammation were assessed by quantitative real time RT-PCR. Infection with wild type B. abortus resulted in slightly more genes with decreased than increased transcription levels. Conversely, infection of trophoblastic cells with the ΔvirB2 or the ΔbtpB mutant strains, that lack a functional T4SS or that has impaired inhibition of TLR signaling, respectively, induced more upregulated than downregulated genes. Wild type Brucella abortus impaired transcription of host genes related to immune response when compared to ΔvirB and ΔbtpB mutants. Our findings suggest that proinflammatory genes are negatively modulated in bovine trophoblastic cells at early stages of infection. The virB operon and btpB are directly or indirectly related to modulation of these host genes. These results shed light on the early interactions between B. abortus and placental tissue that ultimately culminate in inflammatory pathology and abortion. PMID:25259715

  16. Optofluidic FRET microlasers based on surface-supported liquid microdroplets

    NASA Astrophysics Data System (ADS)

    Özelci, E.; Aas, M.; Jonáš, A.; Kiraz, A.

    2014-04-01

    We demonstrate optofluidic microlasers using highly efficient non-radiative Förster resonance energy transfer (FRET) for pumping of gain medium placed within liquid microdroplets situated on a superhydrophobic surface. Microdroplets generated from a mixture of ethylene glycol, glycerol, and water and stained with the FRET donor-acceptor dye pair Rhodamine 6G-Rhodamine 700 serve as active optical resonant cavities hosting high-quality whispering gallery modes. Upon direct optical pumping of the donor with a pulsed laser, lasing is observed in the emission band of the acceptor as a result of efficient FRET coupling between the acceptor and donor molecules. FRET lasing is characterized for different acceptor and donor concentrations, and threshold pump fluences of acceptor lasing as low as 6.3 mJ cm-2 are demonstrated. We also verify the dominance of the non-radiative FRET over cavity-assisted radiative energy transfer for the range of parameters studied in the experiments.

  17. SEPARATION PROPERTIES OF SURFACE MODIFIED SILICA SUPPORTED LIQUID MEMBRANES FOR DIVALENT METAL REMOVAL/RECOVERY

    EPA Science Inventory

    The synthesis and separation properties of a mesoporous silica supported liquid membrane (SLM) were studied. The membranes consisted of a silica layer, from dip-coated colloidal silica, on a a-alumina support, modified with DCDMS (dichlorodimethyl silane) to add surface methyl g...

  18. Removal and recovery of heavy metals from wastewaters by supported liquid membranes.

    PubMed

    Yang, X J; Fane, A G; MacNaughton, S

    2001-01-01

    The removal and recovery of Cu, Cr and Zn from plating rinse wastewater using supported liquid membranes (SLM) are investigated. SLMs with specific organic extractants as the liquid membrane carriers in series are able to remove and concentrate heavy metals with very high purity, which is very promising for recycling of heavy metals in the electroplating industry. A technical comparison between the membrane process and the conventional chemical precipitation process was made. PMID:11380200

  19. Theories to support method development in comprehensive two-dimensional liquid chromatography--a review.

    PubMed

    Bedani, Filippo; Schoenmakers, Peter J; Janssen, Hans-Gerd

    2012-07-01

    On-line comprehensive two-dimensional liquid chromatography techniques promise to resolve samples that current one-dimensional liquid chromatography methods cannot adequately deal with. To make full use of the potential of two-dimensional liquid chromatography, optimization is required. Optimization of two-dimensional liquid chromatography is a relatively new yet important research topic the aim of which is to predict combinations of stationary and mobile phases, column formats, and chromatographic conditions that maximize resolving power and minimize analysis time. In on-line two-dimensional liquid chromatography, dilution-related issues play also an important role and these should be taken into account when developing optimization strategies. In this work, state-of-the-art strategies that support method development for on-line two-dimensional liquid chromatography through a rigorous choice of chromatographic parameters are critically reviewed. The final aim is to provide practitioners with a clear understanding of which aspects can be optimized using current on-line two-dimensional liquid chromatography strategies (and which ones cannot). In two-dimensional liquid chromatography, maximizing resolving power for a given analysis time and dilution requires optimizing efficiency, selectivity and retention. While great strides forward have been made in the optimization of efficiency-related issues, considerable effort needs still to be made in terms of (1) developing models that can predict the retention factors that given stationary/mobile phase systems can provide and (2) using this information for choosing the two ones that maximize two-dimensional liquid chromatography orthogonality. Because of this limitation, in two-dimensional liquid chromatography, this aspect is typically dealt with a posteriori through examining chromatograms. This review clearly shows that important progress in the optimization of on-line two-dimensional liquid chromatography has recently been made. PMID:22807354

  20. High Temperature Separation of Carbon Dioxide/Hydrogen Mixtures Using Facilitated Supported Ionic Liquid Membranes

    SciTech Connect

    Myers, C.R.; Pennline, H.W.; Luebke, D.R.; Ilconich, J.B.; Dixon, J.K.; Maginn, E.J.; Brennecke, J.F.

    2008-09-01

    Efficiently separating CO2 from H2 is one of the key steps in the environmentally responsible uses of fossil fuel for energy production. A wide variety of resources, including petroleum coke, coal, and even biomass, can be gasified to produce syngas (a mixture of COand H2). This gas stream can be further reacted with water to produce CO2 and more H2. Once separated, the CO2 can be stored in a variety of geological formations or sequestered by other means. The H2 can be combusted to operate a turbine, producing electricity, or used to power hydrogen fuel cells. In both cases, onlywater is produced as waste. An amine functionalized ionic liquid encapsulated in a supported ionic liquid membrane (SILM) can separate CO2 from H2 with a higher permeability and selectivity than any known membrane system. This separation is accomplished at elevated temperatures using facilitated transport supported ionic liquid membranes.

  1. The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes

    PubMed Central

    Akhmetshina, Alsu A.; Davletbaeva, Ilsiya M.; Grebenschikova, Ekaterina S.; Sazanova, Tatyana S.; Petukhov, Anton N.; Atlaskin, Artem A.; Razov, Evgeny N.; Zaripov, Ilnaz I.; Martins, Carla F.; Neves, Luísa A.; Vorotyntsev, Ilya V.

    2015-01-01

    Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N2, NH3, H2S, and CO2 gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF6] and [emim][Tf2N]. The modification of SILMs by nanosize silica particles leads to an increase of NH3 separation relatively to CO2 or H2S. PMID:26729177

  2. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect

    Not Available

    1991-02-02

    This report consists of Detailed Data Acquisition Sheets for Runs E-6 and E-7 for Task 2.2 of the Modification, Operation, and Support Studies of the Liquid Phase Methanol Laporte Process Development Unit. (Task 2.2: Alternate Catalyst Run E-6 and Catalyst Activity Maintenance Run E-7).

  3. Carbon Dioxide Selective Supported Ionic Liquid Membranes: The Effect of Contaminants

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2008-04-01

    The integrated gasification combined cycle (IGCC) is widely viewed as a promising technology for the large scale production of energy in a carbon constrained world. These cycles, which include gasification, contaminant removal, water-gas shift, CO2 capture and compression, and combustion of the reduced-carbon fuel gas in a turbine, often have significant efficiency advantages over conventional combustion technologies. A CO2 selective membrane capable of maintaining performance at conditions approaching those of low temperature water-gas shift (260oC) could facilitate the production of carbon-neutral energy by simultaneously driving the shift reaction to completion and concentrating CO2 for sequestration. Supported ionic liquid membranes (SILMs) have been previously evaluated for this application and determined to be physically and chemically stable to temperatures in excess of 300oC. These membranes were based on ionic liquids which interacted physically with CO2 and diminished considerably in selectivity at higher temperatures. To alleviate this problem, the original ionic liquids were replaced with ionic liquids able to form chemical complexes with CO2. These complexing ionic liquid membranes have a local maximum in selectivity which is observed at increasing temperatures for more stable complexes. Efforts are currently underway to develop ionic liquids with selectivity maxima at temperatures greater than 75oC, the best result to date, but other practical concerns must also be addressed if the membrane is to be realistically expected to function under water-gas shift conditions. A CO2 selective membrane must function not only at high temperature, but also in the presence of all the reactants and contaminants likely to be present in coal-derived fuel gas, including water, CO, and H2S. A study has been undertaken which examines the effects of each of these gases on both complexing and physically interacting supported liquid membranes. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance.

  4. Ultra-hydrophobic ionic liquid 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate supported hollow-fiber membrane liquid-liquid-liquid microextraction of chlorophenols.

    PubMed

    Ge, Dandan; Lee, Hian Kee

    2015-01-01

    An ultra-hydrophobic ionic liquid, 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([HMIM][FAP]) was immobilized in the pores of a polypropylene hollow fiber for liquid-liquid-liquid microextraction (HF-LLLME) of chlorophenols (CPs) (4-chloro-3-methylphenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol). The analytes were first extracted from 10 ml of water sample into the ionic liquid membrane, and then were extracted back into 5 μl of sodium hydroxide aqueous solution in the hollow fiber channel. After extraction, the acceptor solution was directly injected into a high-performance liquid chromatographic system for analysis. Extraction parameters such as extraction time, salt concentration in the sample, the pH of the sample and acceptor phase, and stirring rate during extraction were investigated. The relative standard deviations of the analytes varied from 4 to 6%. Limits of detection of <0.5 ng/ml were obtained for the three analytes. The squared regression coefficients relating to the calibration curve were ≥0.9941. The proposed method was applied to the analysis of CPs in canal water. PMID:25476289

  5. Determination of phthalate ester plasticizers in the aquatic environment using hollow fibre supported liquid membranes

    NASA Astrophysics Data System (ADS)

    Mtibe, A.; Msagati, Titus A. M.; Mishra, Ajay K.; Mamba, Bhekie B.

    Phthalates are known to be carcinogenic, teratogenic as well as endocrine disruptors. The potential risk to human and animals health generated from them has drawn great attention all over the world. Hollow fibre supported liquid membrane (HFSLM) online with high pressure liquid chromatography (HPLC) was used to determine benzyl butyl phthalate (BBP), dibutyl phthalate (DBP) and Diethylhexyl phthalate (DEHP) in wastewater. Toluene, di-n-hexyl ether and undecane were used as liquid barriers separating both donor (sample) and acceptor phase. Toluene performed much better than undecane and was used in sample preparation. The presence of toluene showed the potential for the enrichment and removal of phthalates to the concentrations ranges from 0 to 1.7 mg L-1.

  6. Ignition capsules with aerogel-supported liquid DT fuel for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ho, D. D.-M.; Salmonson, J. D.; Clark, D. S.; Lindl, J. D.; Haan, S. W.; Amendt, P.; Wu, K. J.

    2013-11-01

    For high repetition-rate fusion power plant applications, capsules with aerogel-supported liquid DT fuel can have much reduced fill time compared to β-layering a solid DT fuel layer. The melting point of liquid DT can be lowered once liquid DT is embedded in an aerogel matrix, and the DT vapor density is consequently closer to the desired density for optimal capsule design requirement. We present design for NIF-scale aerogel-filled capsules based on 1-D and 2-D simulations. An optimal configuration is obtained when the outer radius is increased until the clean fuel fraction is within 65 - 75% at peak velocity. A scan (in ablator and fuel thickness parameter space) is used to optimize the capsule configurations. The optimized aerogel-filled capsule has good low-mode robustness and acceptable high-mode mix.

  7. Ignition Capsules with Aerogel-Supported Liquid DT Fuel For The National Ignition Facility

    SciTech Connect

    Ho, D D; Salmonson, J D; Clark, D S; Lindl, J D; Haan, S W; Amendt, P; Wu, K J

    2011-10-25

    For high repetition-rate fusion power plant applications, capsules with aerogel-supported liquid DT fuel can have much reduced fill time compared to {beta}-layering a solid DT fuel layer. The melting point of liquid DT can be lowered once liquid DT is embedded in an aerogel matrix, and the DT vapor density is consequently closer to the desired density for optimal capsule design requirement. We present design for NIF-scale aerogel-filled capsules based on 1-D and 2-D simulations. An optimal configuration is obtained when the outer radius is increased until the clean fuel fraction is within 65-75% at peak velocity. A scan (in ablator and fuel thickness parameter space) is used to optimize the capsule configurations. The optimized aerogel-filled capsule has good low-mode robustness and acceptable high-mode mix.

  8. Development of a Supported Emulsion Liquid Membrane System for Propionic Acid Separation in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Li, Jin; Hu, Shih-Yao B.; Wiencek, John M.

    2001-01-01

    Perstractive fermentation is a good way to increase the productivity of bioreactors. Using Propionibacteria as the model system, the feasibility of using supported emulsion liquid membrane (SELM) for perstractive fermentation is assessed in this study. Five industrial solvents were considered as the solvent for preparing the SELM. The more polar a solvent is, the higher the partition coefficient. However, toxicity of a solvent also increases with its polarity. CO-1055 (industrial decanol/octanol blend) has the highest partition coefficient toward propionic acid among the solvents that has no molecular toxicity toward Propionibacteria. A preliminary extraction study was conducted using tetradecane as solvent in a hydrophobic hollow fiber contactor. The result confirmed that SELM eliminates the equilibrium limitation of conventional liquid-liquid extraction, and allows the use of a non-toxic solvent with low partition coefficient.

  9. Supported Room Temperature Ionic Liquid Membranes for CO{sub 2}/CH{sub 4} Separation

    SciTech Connect

    Iarikov, D. D.; Hacarlioglu, P.; Oyama, S. T.

    2011-01-01

    Room temperature ionic liquids (RTILs) are organic salts which are liquid at or around room temperature. These compounds exhibit many outstanding physical properties such as great thermal stability and no measurable vapor pressure. In this work supported ionic liquid membranes (SILMs) were prepared by impregnating pores of α-alumina inorganic supports with various ionic liquids. In addition to membranes prepared with pure RTILs we were able to synthesize membranes with RTIL mixtures using 1-aminopyridinium iodide dissolved in 1-butyl-4-methylpyridinium tetrafluoroborate or methyltrioctylammonium bis(trifluoromethylsulfonyl)imide. This combination of an RTIL with an organic salt containing an amine group dramatically improved the membrane separation properties. The SILMs displayed CO{sub 2} permeance on the order of 5 × 10{sup −10} to 5 × 10{sup −9} mol m{sup −2} s{sup −1} Pa{sup −1} combined with CO{sub 2}/CH{sub 4} selectivity of 5–30. Although these values are comparable with the current systems for CO{sub 2} purification, CO{sub 2} permeance is still rather low for these compounds.

  10. Martian Liquid CO2 and Metabolic Heat Regenerated Temperature Swing Adsorption for Portable Life Support Systems

    NASA Astrophysics Data System (ADS)

    Iacomini, Christine; MacCallum, Taber; Morin, Tom; Straub-Lopez, Kathrine; Paul, Heather

    2007-01-01

    Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of CO2 in an environment with a ppCO2 of 0.4-0.9 kPa. This paper presents a conceptual system for CO2 collection, compression, and cooling to produce sub-critical (liquid) CO2. A first order estimate of the system mass and energy to condense and store liquid CO2 outside at Mars ambient temperature at 600 kPa is discussed. No serious technical hurdles were identified and it is likely that better overall performance would be achieved if the system were part of an integrated ISRU strategy rather than a standalone system. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology for CO2 removal from a PLSS vent loop, where the Martian liquid CO2 is used as the heat sink is developed to utilize the readily available liquid CO2. This paper will describe the technology and present data in support of its design.

  11. A paper-supported graphene-ionic liquid array for e-nose application.

    PubMed

    Zhu, X; Liu, D; Chen, Q; Lin, L; Jiang, S; Zhou, H; Zhao, J; Wu, J

    2016-02-01

    A flexible graphene sensor array has been fabricated by in situ reduction of a graphene oxide (GO) array patterned on a paper chip. To achieve cross-reactive sensing and gas discrimination ability, the surface of each reduced GO (rGO) spot was modified with different types of ionic liquids (ILs), which could significantly alter the semiconductor properties and consequently the gas sensing behaviour of the paper-supported rGO sensor. PMID:26794831

  12. Towards liquid fuels from biosyngas: effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts.

    PubMed

    Sartipi, Sina; Alberts, Margje; Meijerink, Mark J; Keller, Tobias C; Pérez-Ramírez, Javier; Gascon, Jorge; Kapteijn, Freek

    2013-09-01

    Wax on, wax off: Bifunctional cobalt-based catalysts on zeolite supports are applied for the valorization of biosyngas through Fischer-Tropsch chemistry. By using these catalysts, waxes can be hydrocracked to shorter-chain hydrocarbons, increasing the selectivity towards the C5 -C11 (gasoline) fraction. The zeolite topology and the amount and strength of acid sites are key parameters to maximize the performance of these bifunctional catalysts, steering Fischer-Tropsch product selectivity towards liquid hydrocarbons. PMID:23765635

  13. Constructing CO2-facilitated transport highway in supported ionic liquid membranes

    NASA Astrophysics Data System (ADS)

    Sun, Xiang Jun; Luo, Ju Jie; Zhang, Meng; Li, Jin Ping

    2014-01-01

    A Carbon dioxide-facilitated transport highway (CO2-FTH) on the microporous surface of a membrane matrix was designed using the amino carrier 3-aminopropyltriethoxysilane (APTES). Owing to the reversible reaction between CO2 molecules and fixed-site carriers, this supported ionic liquid membrane was able to selectively transfer CO2 more quickly. This concept may inspire means of fabricating a highly permeable and selective membrane to break through Robeson's upper bound.

  14. Mechanism of Ion Transfer in Supported Liquid Membrane Systems: Electrochemical Control over Membrane Distribution

    PubMed Central

    2013-01-01

    A polarization study carried out on a thin supported liquid membrane separating two aqueous compartments is presented. Transfer of both the ionized and uncharged form of an organic tracer dye, rhodamine B ([9-(2-carboxyphenyl)-6-diethylamino-3-xanthenylidene]-diethylammonium chloride), across supported liquid membranes composed of one of 1-octanol (octan-1-ol), 1,9-decadiene (deca-1,9-diene), 1,2-dichlorobenzene, or nitrophenyl octyl ether (1-(2-nitrophenoxy)octane) was studied using cyclic voltammetry and UV–vis absorption spectrophotometry. Concentration analysis indicates that the high membrane concentration of rhodamine B determines the ionic transfer observed via voltammetry, which is consistent with the low aqueous ionic concentration and large membrane/aqueous distribution of the molecule. The observed double-transfer voltammogram, although it has been largely neglected in previous literature, is a logical consequence of the presence of two liquid–liquid interfaces and is rationalized in terms of ion transfer across the two interfaces on either side of the membrane and supported by voltammograms obtained for a series of ions of varied lipophilicity. The bipolar nature of the voltammetric response offers an effective way of mass transport control via changing polarity of the applied voltage and finds immediate use in extraction, purification, and separation applications. PMID:24299270

  15. Chiroptical Probing of Lanthanide-Directed Self-Assembly Formation Using btp Ligands Formed in One-Pot Diazo-Transfer/Deprotection Click Reaction from Chiral Amines.

    PubMed

    Byrne, Joseph P; Martínez-Calvo, Miguel; Peacock, Robert D; Gunnlaugsson, Thorfinnur

    2016-01-11

    A series of enantiomeric 2,6-bis(1,2,3-triazol-4-yl)pyridines (btp)-containing ligands was synthesized by a one-pot two-step copper-catalyzed amine/alkyne click reaction. The Eu(III) - and Tb(III) -directed self-assembly formation of these ligands was studied in CH3 CN by monitoring their various photophysical properties, including their emerging circular dichroism and circularly polarized luminescence. The global analysis of the former enabled the determination of both the stoichiometry and the stability constants of the various chiral supramolecular species in solution. PMID:26555573

  16. Supported liquid membrane-liquid chromatography-mass spectrometry analysis of cyanobacterial toxins in fresh water systems

    NASA Astrophysics Data System (ADS)

    Mbukwa, Elbert A.; Msagati, Titus A. M.; Mamba, Bhekie B.

    Harmful algal blooms (HABs) are increasingly becoming of great concern to water resources worldwide due to indiscriminate waste disposal habits resulting in water pollution and eutrophication. When cyanobacterial cells lyse (burst) they release toxins called microcystins (MCs) that are well known for their hepatotoxicity (causing liver damage) and have been found in eutrophic lakes, rivers, wastewater ponds and other water reservoirs. Prolonged exposure to low concentrated MCs are equally of health importance as they are known to be bioaccumulative and even at such low concentration do exhibit toxic effects to aquatic animals, wildlife and human liver cells. The application of common treatment processes for drinking water sourced from HABs infested reservoirs have the potential to cause algal cell lyses releasing low to higher amounts of MCs in finished water. Trace microcystins in water/tissue can be analyzed and quantified using Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) following solid-phase extraction (SPE) sample clean-up procedures. However, extracting MCs from algal samples which are rich in chlorophyll pigments and other organic matrices the SPE method suffers a number of drawbacks, including cartridge clogging, long procedural steps and use of larger volumes of extraction solvents. We applied a supported liquid membrane (SLM) based technique as an alternative sample clean-up method for LC-ESI-MS analysis of MCs from both water and algal cells. Four (4) MC variants (MC-RR, -YR, -LR and -WR) from lyophilized cells of Microcystis aeruginosa and water collected from a wastewater pond were identified) and quantified using LC-ESI-MS following a SLM extraction and liquid partitioning step, however, MC-WR was not detected from water extracts. Within 45 min of SLM extraction all studied MCs were extracted and pre-concentrated in approximately 15 μL of an acceptor phase at an optimal pH 2.02 of the donor phase (sample). The highest total quantifiable intracellular and extracellular MCs were 37.039 ± 0.087 μg/g DW and 5.123 ± 0.018 μg/L, respectively. The concentrations of MC-RR were the highest from all samples studied recording maximum values of 21.579 ± 0.066 μg/g DW and 3.199 ± 0.012 μg/L for intracellular and extracellular quantities, respectively.

  17. A supported polymeric liquid membrane process for removal of carboxylic acids from a waste stream

    SciTech Connect

    Ho, S.V.

    1999-12-31

    The removal or elimination of organic residues from aqueous waste streams represents a major need in the chemical industry. The authors have developed a new class of membrane called supported polymeric liquid membranes that are capable of removing and concentrating low molecular weight organic compounds from dilute aqueous solutions, especially those that also contain high concentrations of inorganic salts. Attractive features of this membrane process include the ability to recover the contaminants in concentrated form for either recycle or more economical disposal, low pressure (ambient) operation, simple scale-up using commercial hollow fiber modules, and ease of in-situ regeneration of the polymeric liquid. The process has shown treatment feasibility for several types of aqueous waste streams. This paper describes the laboratory development activities for treating a waste stream containing a dilute mixture of C2-C6 carboxylic acids and nitric acid.

  18. Liquid-Supported Torsion Balance as Gravity Gradiometer: Development and Preliminary Experiments.

    NASA Astrophysics Data System (ADS)

    Keyser, Paul T.

    A liquid-supported torsion balance (LSTB) has been developed which is designed to measure variations in the curvature of the gravity level-surface (i.e., in the "horizontal gravity gradients"). The historical background of LSTB's and gradiometers is reviewed. The theoretical background for an understanding of the essential features of LSTB's is laid. The LSTB is contrasted with the classical fiber-supported torsion balance. The substitution of an electrode array for electrostatic centering and torquing in place of the traditional fiber eliminates many problems associated with fibers and provides an easily-adjustable torsion constant. The apparatus developed is described in detail, with specific reference to temperature-control and liquid-purity issues. We currently obtain temperature stability of (+OR-) 1/2 (mu)(DEGREES)C over a week, with drifts (in the horizontal temperature gradient) as low as 3(mu)(DEGREES)C/hour. The optimal liquid to use in a LSTB is one with a maximum density point, which will minimize the thermal convection currents. In our case the liquid chosen is water. The purification of the water, especially the maintenance of the purity of the free surface, is discussed in detail. The previously-inevitable corrosion of aluminum (an otherwise optimal float material) in water, which seriously compromised the purity of the water, has been studied and its rate reduced by over two orders of magnitude. This allows continuous operation now for at least eight months. Detailed noise analyses are presented and all noise sources are shown to be tractable or small. The noise due to thermal convection currents is presently believed to be the limiting noise source. Progress has been made toward its minimization. Preliminary data are presented and discussed. Plans for future improvements are given.

  19. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    PubMed

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-01

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution. PMID:26907588

  20. SUPPORTED LIX-84 LIQUID MEMBRANES FOR METAL ION SEPARATION: A STUDY ON METAL ION SORPTION EQUILIBRIUM AND KINETICS

    EPA Science Inventory

    Supported 2-hydroxy-5-nonyl-acetophenone oxime (LIX-84) liquid membranes have potential applications for the removal (or recovery) of copper ions from waste streams. But, the stability of such a liquid membrane remains the major hurdle for its practical applications. Inorganic su...

  1. SUPPORTED LIQUID CATALYSTS FOR REMOVAL OF HIGH TEMPERATURE FUEL CELL CONTAMINANTS

    SciTech Connect

    Alan W. Weimer; Peter Czerpak; Patrick Hilbert

    2000-01-01

    A novel catalytic synthesis gas oxidation process using molten carbonate salts supported on compatible fluidized iron oxide particles (supported-liquid-phase-catalyst (SLPC) fluidized bed process) was investigated. This process combines the advantages of large scale fluidized bed processing with molten salt bath oxidation. Molten salt catalysts can be supported within porous fluidized particles in order to improve mass transfer rates between the liquid catalysts and the reactant gases. Synthesis gas can be oxidized at reduced temperatures resulting in low NO{sub x} formation while trace sulfides and halides are captured in-situ. Hence, catalytic oxidation of synthesis gas can be carried out simultaneously with hot gas cleanup. Such SLPC fluidized bed processes are affected by inter-particle liquid capillary forces that may lead to agglomeration and de-fluidization of the bed. An understanding of the origin and strength of these forces is needed so that they can be overcome in practice. Process design is based on thermodynamic free energy minimization calculations that indicate the suitability of eutectic Na{sub 2}CO{sub 3}/K{sub 2}CO{sub 3} mixtures for capturing trace impurities in-situ (< 1 ppm SO{sub x} released) while minimizing the formation of NO{sub x}(< 10 ppm). Iron oxide has been identified as a preferred support material since it is non-reactive with sodium, is inexpensive, has high density (i.e. inertia), and can be obtained in various particle sizes and porosities. Force balance modeling has been used to design a surrogate ambient temperature system that is hydrodynamically similar to the real system, thus allowing complementary investigation of the governing fluidization hydrodynamics. The primary objective of this research was to understand the origin of and to quantify the liquid capillary interparticle forces affecting the molten carbonate SLPC fluidized bed process. Substantial theoretical and experimental exploratory results indicate process feasibility. The potential environmental gain from success is enormous, impacting all areas of the world where coal is burned to supply steam or direct industrial heat. Project success may lead to an integrated combustion system providing for simultaneous catalytic oxidation and hot gas cleanup of raw synthesis gas from an upstream coal gasifier.

  2. An Efficient and Recyclable Ionic Liquid-Supported Proline Catalyzed Knoevenagel Condensation

    PubMed Central

    Zhuo, Chen; Xian, Dong; Jian-wei, Wu; Hui, Xie

    2011-01-01

    The Knoevenagel condensation reaction of aldehydes with malononitrile was described in this study, which was catalyzed by an efficient and recyclable ionic liquid-supported proline. The method represented an attractive alternative to the classical synthesis strategies and exhibited the advantage of performing homogeneous chemistry on a large scale additionally avoided large excesses of reagents. The products were obtained in good yields and reasonable purities without the need for further chromatographic purification. Moreover, the catalyst could be reused for at least four times. PMID:24052829

  3. Summary of Liquid Propulsion System Needs in Support of the Constellation Program

    NASA Technical Reports Server (NTRS)

    Lorier, Terry; Sumrall, Phil; Baine, Michael

    2008-01-01

    In January 2004, the President of the United States established the Vision for Space Exploration (VSE) to complete the International Space Station, retire the Space Shuttle and develop its replacement, and expand the human presence on the Moon as a stepping stone to human exploration of Mars and worlds beyond. In response, NASA developed the Constellation Program, consisting of the components shown in Figure 1. This paper will summarize the manned spaceflight liquid propulsion system needs in support of the Constellation Program over the next 10 years. It will address all liquid engine needs to support human exploration from low Earth orbit (LEO) to the lunar surface, including an overview of engines currently under contract, those baselined but not yet under contract, and those propulsion needs that have yet to be initiated. There may be additional engine needs for early demonstrators, but those will not be addressed as part of this paper. Also, other portions of the VSE architecture, including the planned Orion abort test boosters and the Lunar Precursor Robotic Program, are not addressed here as they either use solid motors or are focused on unmanned elements of returning humans to the Moon.

  4. New support for high-performance liquid chromatography based on silica coated with alumina particles.

    PubMed

    Silveira, José Leandro R; Dib, Samia R; Faria, Anizio M

    2014-01-01

    A new material based on silica coated with alumina nanoparticles was proposed for use as a chromatographic support for reversed-phase high-performance liquid chromatography. Alumina nanoparticles were synthesized by a sol-gel process in reversed micelles composed of sodium bis(2-ethylhexyl)sulfosuccinate, and the support material was formed by the self-assembly of alumina layers on silica spheres. Spectroscopic and (29)Si nuclear magnetic resonance results showed evidence of chemical bonds between the alumina nanoparticles and the silica spheres, while morphological characterizations showed that the aluminized silica maintained the morphological properties of silica desired for chromatographic purposes after alumina incorporation. Stability studies indicated that bare silica showed high dissolution (~83%), while the aluminized silica remained practically unchanged (99%) after passing one liter of the alkaline mobile phase, indicating high stability under alkaline conditions. The C18 bonded aluminized silica phase showed great potential for use in high-performance liquid chromatography to separate basic molecules in the reversed-phase mode. PMID:24521917

  5. Advanced Supported Liquid Membranes for Carbon Dioxide Control in Cabin Applications

    NASA Technical Reports Server (NTRS)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Chullen, Cinda

    2016-01-01

    The development of new, robust, life support systems is critical to NASA's continued progress in space exploration. One vital function is maintaining the carbon dioxide (CO2) concentration in the cabin at levels that do not impair the health or performance of the crew. The CO2 removal assembly (CDRA) is the current CO2 control technology on-board the International Space Station (ISS). Although the CDRA has met the needs of the ISS to date, the repeated cycling of the molecular sieve sorbent causes it to break down into small particles that clog filters or generate dust in the cabin. This reduces reliability and increases maintenance requirements. Another approach that has potential advantages over the current system is a membrane that separates CO2 from air. In this approach, cabin air contacts one side of the membrane while other side of the membrane is maintained at low pressure to create a driving force for CO2 transport across the membrane. In this application, the primary power requirement is for the pump that creates the low pressure and then pumps the CO2 to the oxygen recovery system. For such a membrane to be practical, it must have high CO2 permeation rate and excellent selectivity for CO2 over air. Unfortunately, conventional gas separation membranes do not have adequate CO2 permeability and selectivity to meet the needs of this application. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous material filled with a liquid that selectively reacts with CO2 over air. In a recently completed Phase II SBIR project, Reaction Systems, Inc. fabricated an SLM that is very close to meeting permeability and selectivity objectives for use in the advanced space suit portable life support system. This paper describes work carried out to evaluate its potential for use in spacecraft cabin application.

  6. The application of supported liquid extraction in the analysis of benzodiazepines using surface enhanced Raman spectroscopy.

    PubMed

    Doctor, Erika L; McCord, Bruce

    2015-11-01

    Benzodiazepines are among the most frequently prescribed medicines for anxiety disorders and are present in many toxicological screens. These drugs are often administered in the commission of drug facilitated sexual assaults due their effects on the central nervous system. Due to the potency of the drugs, only small amounts are usually given to victims; therefore, the target detection limit for these compounds in biological samples has been set at 50 ng/mL. Currently the standard screening method for detection of this class of drug is the immunoassay; however, screening methods that are more sensitive and selective than immunoassays are needed to encompass the wide range of structural variants of this class of compounds. Surface enhanced Raman spectroscopy (SERS) can be highly sensitive and has been shown to permit analysis of various benzodiazepines with limits of detection as low as 6 ng/mL. This technique permits analytical results in less than 2 min when used on pure drug samples. For biological samples, a key issue for analysis by SERS is removal of exogenous salts and matrix components. In this paper we examine supported liquid extraction as a useful preparation technique for SERS detection. Supported liquid extraction has many of the benefits of liquid-liquid extraction along with the ability to be automated. This technique provides a fast and clean extraction for benzodiazepines from urine at a pH of 5.0, and does not produce large quantities of solvent waste. To validate this procedure we have determined figures of merit and examined simulated urine samples prepared with commonly appearing interferences. It was shown that at a pH 5.0 many drugs that are prevalent in urine samples can be removed, permitting a selective detection of the benzodiazepine of interest. This technique has been shown to provide rapid (less than 20 min), sensitive, and specific detection of benzodiazepines with limits of detection between 32 and 600 ng/mL and dynamic range of 32-25,000 ng/mL. It provides the forensic community with a sensitive and specific screening technique for the detection of benzodiazepines in drug facilitated assault cases. PMID:26452911

  7. Supported Phospholipid Bilayer Defects Created by a Cation or Anion of a Room-Temperature Ionic Liquid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, the independent effects on a supported phospholipid bilayer (SPB) caused by a cation and anion of a room-temperature ionic liquid (RT-IL) were studied via atomic force microscopy (AFM). The supported phospholipid bilayer was composed only of 1,2-dielaidoylphosphatidylcholine (DEPC) an...

  8. The simultaneous stripping of arsenic and selenium from wastewaters using hollow-fibre supported liquid membranes.

    PubMed

    Mafu, Lihle D; Msagati, Titus A M; Mamba, Bhekie B

    2014-12-01

    The extraction of total arsenic and selenium using hollow-fibre supported liquid membranes (HFSLMs), with specific interest in the optimal conditions for the extraction in wastewater, is reported. The extraction time, type of liquid membrane, sample and donor pH and stirring rate were optimised, and thereafter, the developed method was tested in real wastewater samples. The optimal HFSLMs adopted, after optimisation tests, comprised of Aliquat 336, 0.8 M NaOH, 200 rpm and 80 min as the extractant, stripping phase, stirring rate and reaction time, respectively. The developed method had reasonable-to-high extraction efficiencies in real wastewater samples with the final effluent recording as high as 73 and 78 % removal efficiencies for Se and As, respectively. Considering the initial concentrations found in the samples, use of this developed method could bring down the concentrations to levels admissible by the United States Environmental Protection Agency (US-EPA) and World Health Organisation (WHO). PMID:25252794

  9. Some methods of human liquid and solid wastes utilization in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Tikhomirova, N. A.; Ushakova, S. Á.; Tikhomirov, A. Á.; Zolotukhin, I. G.; Gribovskaya, I. V.; Gros, J. B.

    The possibility of stepwise utilization of human liquid and solid wastes with the purpose of an increase of a closure degree of bioregenerative life support systems BLSS and sodium chloride inclusion in the organic matter turnover was investigated On the first stage urine and faeces were subjected to oxidation by Yu A Kudenko physicochemical method On the next stage the products of human liquid and solid wastes oxidation were used for roots nutrition of wheat grown by substrate culture method Soil-like substrate the technology of which was described earlier was used as a substrate After the wheat cultivation the irrigational solution and the solution obtained in the result of substrate washing containing mineral elements not absorbed by the plants were used for cultivation of salt-tolerant Salicornia europaea plants The above-ground biomass of these vegetables can be used as a food and roots washed from dissoluble mineral elements can be added to the soil-like substrate Four consecutive wheat and Salicornia europaea vegetations were cultivated In the result of this complex technology of wheat and Salicornia europaea cultivation the soil-like substrate salinization by NaCl introduced into the irrigational solution together with the products of urine oxidation has considerably decreased

  10. Computational Fluid Dynamics in Support of the SNS Liquid Mercury Thermal-Hydraulic Analysis

    SciTech Connect

    Siman-Tov, M.; Wendel, M.W.; Yoder, G.L.

    1999-11-14

    Experimental and computational thermal-hydraulic research is underway to support the liquid mercury target design for the Spallation Neutron Source (SNS) facility. The SNS target will be subjected to internal nuclear heat generation that results from pulsed proton beam collisions with the mercury nuclei. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots and diminished heat removal from the target structure. Computational fluid dynamics (CFD) models are being used as a part of this research. Recent improvements to the 3D target model include the addition of the flow adapter which joins the inlet/outlet coolant pipes to the target body and an updated heat load distribution at the new baseline proton beam power level of 2 MW. Two thermal-hydraulic experiments are planned to validate the CFD model.

  11. Silica-particle-supported zwitterionic polymer monolith for microcolumn liquid chromatography.

    PubMed

    An, Ran; Weng, Qianfeng; Li, Jinxiang

    2014-10-01

    A silica-particle-supported zwitterionic polymeric monolithic column, shortened as supported column (S-column), was prepared by the in situ polymerization of methacrylic acid, ethylene dimethacrylate, and 2-(dimethylamino)ethyl methacrylate in the presence of a ternary porogenic solvent containing water, methanol, and cyclohexanol in a 250 μm id fused-silica capillary prepacked with 5 μm bare silica particles. In the S-column, a thin layer of the polymers was formed around the silica particles in the form of nanoglobules, leaving the interstitial spaces between the particles free for liquid flow. The effects of the preparation conditions on the morphology of the monolith were investigated by scanning electron microscopy and backpressure measurements. The selected volumetric ratio of porogens, monomer concentration, polymerization time, and temperature are 1:1:8 (water/methanol/cyclohexanol), 25% v/v, 5 h, and 60°C, respectively. The S-column was evaluated by comparison with its conventional organic counterpart in terms of morphology, mechanical stability, permeability, swelling-shrinking behavior, capacity, and efficiency. The results demonstrate that the S-column is superior to its counterpart in all the terms with the exception of permeability. The above merits and zwitterionic property of the S-column were further confirmed by separate separations of four inorganic anions and three organic cations. PMID:25044794

  12. An electrochemical gas sensor based on paper supported room temperature ionic liquids.

    PubMed

    Dossi, Nicolò; Toniolo, Rosanna; Pizzariello, Andrea; Carrilho, Emanuel; Piccin, Evandro; Battiston, Simone; Bontempelli, Gino

    2012-01-01

    A sensitive and fast-responding membrane-free amperometric gas sensor is described, consisting of a small filter paper foil soaked with a room temperature ionic liquid (RTIL), upon which three electrodes are screen printed with carbon ink, using a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs as well as their easy immobilization into a porous and inexpensive supporting material such as paper. Moreover, thanks to a careful control of the preparation procedure, a very close contact between the RTIL and electrode material can be achieved so as to allow gaseous analytes to undergo charge transfer just as soon as they reach the three-phase sites where the electrode material, paper supported RTIL and gas phase meet. Thus, the adverse effect on recorded currents of slow steps such as analyte diffusion and dissolution in a solvent is avoided. To evaluate the performance of this device, it was used as a wall-jet amperometric detector for flow injection analysis of 1-butanethiol vapours, adopted as the model gaseous analyte, present in headspace samples in equilibrium with aqueous solutions at controlled concentrations. With this purpose, the RTIL soaked paper electrochemical detector (RTIL-PED) was assembled by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as the wicking RTIL and printing the working electrode with carbon ink doped with cobalt(II) phthalocyanine, to profit from its ability to electrocatalyze thiol oxidation. The results obtained were quite satisfactory (detection limit: 0.5 μM; dynamic range: 2-200 μM, both referring to solution concentrations; correlation coefficient: 0.998; repeatability: ±7% RSD; long-term stability: 9%), thus suggesting the possible use of this device for manifold applications. PMID:22076475

  13. Carbon-supported ionic liquids as innovative adsorbents for CO? separation from synthetic flue-gas.

    PubMed

    Erto, Alessandro; Silvestre-Albero, Ana; Silvestre-Albero, Joaqun; Rodrguez-Reinoso, Francisco; Balsamo, Marco; Lancia, Amedeo; Montagnaro, Fabio

    2015-06-15

    Fixed-bed thermodynamic CO2 adsorption tests were performed in model flue-gas onto Filtrasorb 400 and Nuchar RGC30 activated carbons (AC) functionalized with [Hmim][BF4] and [Emim][Gly] ionic liquids (IL). A comparative analysis of the CO2 capture results and N2 porosity characterization data evidenced that the use of [Hmim][BF4], a physical solvent for carbon dioxide, ended up into a worsening of the parent AC capture performance, due to a dominating pore blocking effect at all the operating temperatures. Conversely, the less sterically-hindered and amino acid-based [Emim][Gly] IL was effective in increasing the AC capture capacity at 353 K under milder impregnation conditions, the beneficial effect being attributed to both its chemical affinity towards CO2 and low pore volume reduction. The findings derived in this work outline interesting perspectives for the application of amino acid-based IL supported onto activated carbons for CO2 separation under post-combustion conditions, and future research efforts should be focused on the search for AC characterized by optimal pore size distribution and surface properties for IL functionalization. PMID:25710387

  14. Extraction of phenol using sulfuric acid salts of trioctylamine in a supported liquid membrane

    SciTech Connect

    Wang, M.L.; Hu, K.H. )

    1994-04-01

    The extraction of phenol by trioctylamine sulfate salts in a supported-liquid membrane (SLM) process was investigated. In the extraction process, a transport model, which included the film diffusion of phenol in the aqueous phase, the membrane diffusion within the SLM, and the interfacial chemical reaction, was built. The experimental parameters, such as the cell constant ([beta]), the diffusivity of (TOA)[sub 2]H[sub 2]SO[sub 4][center dot]PhOH in the SLM (D[sub c,b]), and the mass-transfer coefficient of phenol in the aqueous solution (K[sub L]), were determined from experiments. On the basis of the experimental data and the results obtained from the transport model, the rate-controlling step of the extraction of phenol by an SLM during permeation is discussed. The effects of the operating variables and parameters, such as the initial concentration of phenol in the aqueous phase, sulfuric acid, sodium hydroxide, and trioctylamine sulfate salts, on the extraction of phenol were examined.

  15. Interaction of an ionic liquid with a supported phospholipid bilayer is lipid-dependent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liquid salts, commonly called ionic liquids, are used as solvents to conduct transformation of vegetable oils into new products. These reactions are often catalyzed via immobilized enzymes. However, some enzymes were found to lose activity and are in need of some protection. Phospholipid bilayers...

  16. Microextraction of mebendazole across supported liquid membrane forced by pH gradient and electrical field.

    PubMed

    Eskandari, Mahboube; Yamini, Yadollah; Fotouhi, Lida; Seidi, Shahram

    2011-04-01

    In the present study, extraction of mebendazole across a supported-liquid membrane (SLM) was performed based on two different driving forces: (1) pH gradient over the SLM, and (2) electrical field sustained over the SLM. The extracted drug concentration was studied using reversed-phase HPLC-UV. At passive extraction conditions, mebendazole was extracted from alkaline samples (0.01 mmol L(-1) NaOH) into 1-undecanol immobilized in the pores of a porous hollow fiber of polypropylene (SLM), and then transported into 25 μL of 100mM HCl as the acceptor solution. Under electrokinetic migration conditions, mebendazole transported under applied voltage from acidic solutions (100 mmol L(-1) HCl) through 2-nitrophenyl octyl ether (NPOE) immobilized in the pores of hollow fiber, into 25 μL of 100 mmol L(-1) HCl as the acceptor solution. The effects of several factors including the nature of organic solvent, pH of donor and acceptor solutions, extraction time and stirring speed on the extraction efficiency of the drug were investigated and optimized. Under optimal conditions, preconcentration factors (PF) of 211 and 190 were obtained for the drug based on passive transport and electromembrane extraction (EME), respectively. Also, linear range of 0.5-1000 μg L(-1) with estimation of coefficient higher than 0.994 was obtained for both of the proposed methods. The results showed that EME has higher speed in comparison with simple passive transport. The methods were successfully applied to extract mebendazole from plasma and urine samples and satisfactory results were obtained. PMID:21211924

  17. Extraction of uranium by a supported liquid membrane containing mobile carrier.

    PubMed

    Akiba, K; Hashimoto, H

    1985-08-01

    A study has been made of carrier-mediated transport of uranium(VI) by a liquid membrane of 7-dodecenyl-8-quinolinol (Kelex 100). Uranium is transported across the membrane and concentrated in a stripping acid. The apparent rate constant of uranium transport increases slightly with increase in carrier concentration and in the pH of the feed solution. Uranium can be effectively recovered from spiked sea-water through the liquid membrane without any preliminary treatment. PMID:18964012

  18. Piping support system for liquid-metal fast-breeder reactor

    DOEpatents

    Brussalis, Jr., William G.

    1984-01-01

    A pipe support consisting of a rigid link pivotally attached to a pipe and an anchor, adapted to generate stress or strain in the link and pipe due to pipe thermal movement, which stress or strain can oppose further pipe movement and generally provides pipe support. The pipe support can be used in multiple combinations with other pipe supports to form a support system. This support system is most useful in applications in which the pipe is normally operated at a constant elevated or depressed temperature such that desired stress or strain can be planned in advance of pipe and support installation. The support system is therefore especially useful in steam stations and in refrigeration equipment.

  19. Concentration of europium(III) with supported liquid membrane containing a xylene solution of di-2-ethyihexyl phosphoric acid

    NASA Astrophysics Data System (ADS)

    Nishiki, Tadaaki; Bautista, Renato G.

    1983-03-01

    The mechanism of europium transport through a supported liquid membrane is presented. The membrane consisted of a Teflon filter membrane with xylene solution of di-2-ethylhexyl phosphoric acid (HDEHP) as a mobile carrier held within the pores by capillary forces. Interposing the liquid membrane between two aqueous solutions of different pH, europium was transported and concentrated from the high pH solution to the low pH solution across the liquid membrane. The experiments were carried out to investigate the effects of the concentration of europium in the aqueous phase and HDEHP concentration in the membrane solution on the permeation rates of europium. The experimental results have been compared with a transport model for concentrating europium across the liquid membrane. The permeation rates of europium can be explained approximately by the diffusion process of the complex formed between europium ion and HDEHP at the membrane interface through the membrane in addition to the diffusion process of europium in the aqueous film adjacent to the membrane interface.

  20. Buildings R&D Breakthroughs. Technologies and Products Supported by the Building Technologies Program

    SciTech Connect

    none,

    2012-04-01

    This report identifies and characterizes commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects sponsored by BTP’s Emerging Technologies subprogram from 2005-2009.

  1. Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program

    SciTech Connect

    Weakley, Steven A.

    2012-04-15

    The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTP’s Emerging Technologies subprogram from 2005-2011.

  2. Effects of Silica Nanoparticle Supported Ionic Liquid as Additive on Thermal Reversibility of Human Carbonic Anhydrase II

    PubMed Central

    Fallahbagheri, Azadeh; Saboury, Ali Akbar; Ma'mani, Leila; Taghizadeh, Mohammad; Khodarahmi, Reza; Ranjbar, Samira; Bohlooli, Mousa; Shafiee, Abbas; Foroumadi, Alireza; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2013-01-01

    Silica nanoparticle supported imidazolium ionic liquid [SNImIL] was synthesized and utilized as a biocompatible additive for studying the thermal reversibility of human carbonic anhydrase II (HCA II). For this purpose, we prepared additive by modification of nanoparticles through the grafting of ionic liquids on the surface of nanoparticles (SNImIL). The SNImIL were fully characterized by Fourier Transform Infrared spectroscopy, scanning electron microscopy and thermo gravimetric analysis. The characterization of HCA II was investigated by various techniques including UV–Vis and ANS fluorescence spectrophotometry, differential scanning calorimetry, and docking study. SNImIL induced disaggregation, enhanced protein stability and increased thermal reversibility of HCA II by up to 42% at pH 7.75. PMID:22829053

  3. New synthetic ways for the preparation of high-performance liquid chromatography supports.

    PubMed

    Buchmeiser, M R

    2001-05-25

    The latest developments and in particular important synthetic aspects for the preparation of modern HPLC supports are reviewed. In this context, the chemistry of inorganic supports based on silica, zirconia, titania or aluminum oxide as well as of organic supports based on poly(styrene-divinylbenzene), acrylates, methacrylates and other, more specialized polymers is covered. Special consideration is given to modern approaches such as sol-gel technology, molecular imprinting, perfusion chromatography, the preparation of monolithic separation media as well as to organic HPLC supports prepared by new polymer technologies such as ring-opening metathesis polymerization. Synthetic particularities relevant for the corresponding applications are outlined. PMID:11407572

  4. Hollow fiber-supported designer ionic liquid sponges for post-combustion CO2 scrubbing

    SciTech Connect

    Lee, JS; Hillesheim, PC; Huang, DK; Lively, RP; Oh, KH; Dai, S; Koros, WJ

    2012-11-30

    A proof of concept study for a new type of carbon capture system is considered for post-combustion CO2 capture based on porous hollow fiber sorbents with ionic liquids sorbed in the cell walls of the fiber. This study proves that delicate morphological features in the open-celled porous wall can be maintained during the infusion process. Mixtures of task specific ionic liquid (i.e. [BMIM][Tf2N]) and superbase (i.e. DBU) were loaded into polyamide-imide (PAI) fibers by a so-called two-step non-solvent infusion protocol. In the protocol, methanol carries ionic liquids into the pore cell walls of hollow fibers and then hexane carries superbase to create an efficient CO2 sorbent. Our ionic liquid/superbase impregnation technique overcomes a serious increase in mass transfer resistance upon reaction with CO2, thereby allowing its large scale utilization for post-combustion CO2 capture. The investigation on the effect of different pore former additives (different molecular weights of polyvinylpyrrolidone, lithium nitrate, and their mixtures) suggested that a large molecular weight of PVP (M-w; 1300k) including dope composition produces highly interconnected open cell pore structures of PAI hollow fibers. Lastly, a lumen side barrier layer was successfully formed on the bore side of neat PAI fibers by using a mixture of Neoprene (R) with crosslinking agents (TSR-633) via a post-treatment process. The lumen layer will enable heat removal from the fiber sorbents during their application in rapid thermal swing cycling processes. (C) 2012 Elsevier Ltd. All rights reserved.

  5. Simultaneous determination of polycyclic musks in blood and urine by solid supported liquid-liquid extraction and gas chromatography-tandem mass spectrometry.

    PubMed

    Liu, Hongtao; Huang, Liping; Chen, Yuxin; Guo, Liman; Li, Limin; Zhou, Haiyun; Luan, Tiangang

    2015-06-15

    A rapid, precise and accurate method for the simultaneous determination of 5 polycyclic musks (PCMs) in biological fluids was developed by solid supported liquid-liquid extraction (SLE) coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS). All parameters influencing SLE-GC-MS performance, including electron energy of electron-impact ionization source, collision energy for tandem mass spectrometer when operated in selected-reaction monitoring (SRM) mode, type and volume of elution reagent, nitrogen evaporation time, pH and salinity of sample have been carefully optimized. Eight milliliter of n-hexane was finally chosen as elution reagent. Blood and urine sample could be loaded into SLE cartridge without adjusting pH and salinity. Deuterated tonalide (AHTN-d3) was chosen as internal standard. The correlation coefficient (r(2)) of the calibration curves of target compounds ranged from 0.9996 to 0.9998. The dynamic range spanned over two orders of magnitude. The limit of detection (LOD) of target compounds in blood and urine ranged from 0.008 to 0.105μgL(-1) and 0.005 to 0.075μgL(-1), respectively. The developed procedure was successfully applied to the analysis of PCMs in human blood and urine obtaining satisfying recoveries on low, medium and high levels. The method was compared with SLE-GC-MS and shown one to two orders of magnitude improvement in sensitivity. PMID:25965876

  6. Determination of chemotherapeutic drugs in human urine by capillary electrophoresis with UV and fluorimetric detection using solid-supported liquid-liquid extraction for sample clean-up.

    PubMed

    Hurtado-Sánchez, María del Carmen; Acedo-Valenzuela, María Isabel; Durán-Merás, Isabel; Rodríguez-Cáceres, María Isabel

    2015-06-01

    Capillary electrophoresis was used for the rapid determination of three chemotherapeutic drugs employed to treat colorectal cancer: irinotecan, tegafur, and leucovorin, and their main metabolites (7-ethyl-10-hydroxycamptothecin and 5-fluorouracil), in human urine samples. A phosphate buffer (pH 11.34; 20 mM) was selected as the background electrolyte. A hydrodynamic injection (9 s, 30 mbar) was applied and the separation was carried out using a separation temperature and voltage of 25°C and 25 kV, respectively. A capillary with two detection windows for serial online UV and fluorescence detection was satisfactorily employed. A solid-supported liquid-liquid extraction procedure was optimized for the clean-up of the urine samples and the extraction of the analytes. Matrix effects were assessed and signal suppression was observed for three of the analytes, thus, matrix-matched calibration was used for compensating residual matrix effects on these analytes. The proposed method allows the separation and quantification of the chemotherapeutics in less than 6 min. Detection limits range between 0.01 and 0.30 mg/L. The method was satisfactorily applied to the determination of the target compounds in human urine samples, with recoveries of 92.4-107.7%. PMID:25820908

  7. Influence of membrane solvent on strontium transport from reprocessing concentrate solutions through flat-sheet-supported liquid membranes

    SciTech Connect

    Dozol, J.F.; Casas, J. ); Sastre, A.M. )

    1993-08-01

    The influence of membrane solvents on strontium transport from nuclear fuel reprocessing concentrate solutions to demineralized water through a flat-sheet-supported liquid membrane has been studied using dicyclohexano-18-crown-6 as the extractant and Celgard 2500 as the solid support. Even though the highest values of the distribution coefficients of strontium were obtained with nitrated compounds as membrane solvents, strontium permeabilities were determined only when a membrane solvent was used for which stable SLMs were obtained. Among the latter, the use of 4-nonylphenol as a phase modifier is not satisfactory for long-term strontium transport experiments due to its reactivity with the nitric acid of the aqueous feed solution. We achieved a good correlation between strontium permeability and two parameters of the membrane diffusion coefficient (molecular weight and viscosity of the membrane solvent) for aromatic solvents modified with isotridecanol or 1-decanol. The best results were obtained with n-hexylbenzene (0.7 mol[center dot]L [sup 1]isotridecanol) which should lead to a high strontium decontamination by hollow-fiber-supported liquid membranes. The transport of nitric acid and nonradioactive cations through the membrane was not greatly influenced by the membrane solvent used. 10 refs., 4 figs., 7 tabs.

  8. Thermo-mechanical simulation of liquid-supported stretch blow molding

    NASA Astrophysics Data System (ADS)

    Zimmer, J.; Stommel, M.

    2015-05-01

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg˜85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way, a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera.

  9. Thermo-mechanical simulation of liquid-supported stretch blow molding

    SciTech Connect

    Zimmer, J.; Stommel, M.

    2015-05-22

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way, a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera.

  10. Status of development and licensing support for advanced liquid metal reactors in the United States

    SciTech Connect

    Pedersen, D.R.; Gyorey, G.

    1991-12-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the ALMR plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. The paper addresses the status of the IFR program, the ALMR program and the interaction of the ALMR program with the regulatory environment.

  11. Status of development and licensing support for advanced liquid metal reactors in the United States

    SciTech Connect

    Pedersen, D.R. ); Gyorey, G. )

    1991-01-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the ALMR plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. The paper addresses the status of the IFR program, the ALMR program and the interaction of the ALMR program with the regulatory environment.

  12. Electrochemical gas sensors based on paper-supported room-temperature ionic liquids for improved analysis of acid vapours.

    PubMed

    Toniolo, Rosanna; Dossi, Nicolò; Pizzariello, Andrea; Casagrande, Alice; Bontempelli, Gino

    2013-04-01

    A prototype of a fast-response task-specific amperometric gas sensor based on paper-supported room-temperature ionic liquids (RTILs) is proposed here for improved analysis of volatile acid species. It consists of a small filter paper foil soaked with a RTIL mixture containing an ionic liquid whose anion (acetate) displays a basic character, upon which three electrodes are screen printed by carbon ink profiting from a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs and of their easy immobilization into a porous and inexpensive supporting material such as paper. The performance of this device, used as a wall-jet amperometric detector for flow injection analyses of headspace samples in equilibrium with aqueous solutions at controlled concentrations, was evaluated for phenol and 1-butanethiol vapours which were adopted as model acid gaseous analytes. The results obtained showed that the quite high potentials required for the detection of these analytes are lowered significantly, thanks to the addition of the basic acetate RTIL. In such a way, overlap with the medium discharge is avoided, and the possible adverse effect of interfering species is minimised. The sensor performance was quite satisfactory (detection limits, ca. 0.3 μM; dynamic range, ca. 1-200 μM, both referred to solution concentrations; correlation coefficients in the range 0.993-0.997; repeatability, ± 6% RSD; long-term stability, 9%); thus suggesting the possible use of this device for manifold applications. PMID:23232956

  13. Apparatus for supporting contactors used in extracting nuclear materials from liquids

    DOEpatents

    Leonard, Ralph A.; Frank, Robert C.

    1991-01-01

    Apparatus is provided for supporting one or more contactor stages used to remove radioactive materials from aqueous solutions. The contactor stages include a housing having an internal rotor, a motor secured to the top of the housing for rotating the rotor, and a drain in the bottom of the housing. The support apparatus includes two or more vertical members each secured to a ground support that is horizontal and perpendicular to the frame member, and a horizontally disposed frame member. The frame member may be any suitable shape, but is preferably a rectangular tube having substantially flat, spaced top and bottom surfaces separated by substantially vertical side surfaces. The top and bottom surfaces each have an opening through which the contactor housing is secured so that the motor is above the frame and the drain is below the frame during use.

  14. Influence of support on the performance of molybdenum sulfide catalysts used to hydrotreat coal liquids

    SciTech Connect

    McCormick, R.L.

    1988-01-01

    Supports for molybdenum sulfide hydrotreating catalysts included silica, silica-magnesia, titania, chromia-alumina, activated carbon and nitrided activated carbon. The alumina supported Amocat 1A and Amocat 1C as well as the silica-alumina supported, Harshaw CoMo-0402 were also studied. Catalysts were characterized by BET surface area, mercury porosimetry and x-ray powder diffraction. Acidity was measured by the temperature programmed desorption of tert-butyl amine. Initial activity screening studies were conducted in a stirred autoclave batch reactor to determine appropriate metals loadings for the various supports. Initially active catalysts were then tested in a bench scale, trickle bed reactor to determine activity maintenance, coking tendency and selectivity at lined out conditions. Selectivities for hydrodenitrogenation and for the production of hydrogen donor molecules were of interest. The donatable hydrogen content of the produce was determined by {sup 1}H and {sup 13}C NMR spectroscopy. The results indicated a strong correlation between lined out hydrogenation activity and the volume in 60-200 {angstrom} diameter pores. A second correlation was observed between HDN activity and acid site density, indicating the importance of acid sites in denitrogenation. Low acidity catalysts appeared to produce a greater hydrogen donor content in the product oil than did high acidity catalysts but the results were not conclusive. The results also suggest that Bronsted acid sites can markedly reduce coking tendency but that in general, coke formation is related in a complex way to the acid/base chemistry of the surface.

  15. The Influence of MSI (Metal-Support Interactions) and the Solvent in Liquid-Phase Reactions

    SciTech Connect

    Vannice, M. A.

    2003-05-30

    Results were repeatedly obtained that were consistent with a hypothesis proposed at the beginning of this program, i.e., due to Metal-Support Interactions (MSI), unique active sites can be created in the metal-support interfacial region to enhance activity and improve selectivity in certain types of reactions, especially those involving the hydrogenation of carbonyl and unsaturated C=C bonds. Higher turnover frequencies (TOF-molecule/s/site) and increased selectivity for C=O bond versus C=C bond hydrogenation was established in the hydrogenation reactions of: acetone, crotonaldehyde, acetophenone, phenylethanol, acetylcyclohexane, benzaldehyde, benzyl alcohol, phenylacetaldehyde and citral over Pt/TiO{sub 2} MSI catalysts. Higher rates of hydrogenation benzene, toluene and xylene could be obtained over certain supported Pt and Pd catalysts. Au/TiO{sub 2} catalysts were developed that were active for CO hydrogenation at subambient temperatures. The influence of support and metal crystallite size were established for the adsorption of H{sub 2}, CO and O{sub 2} on families of Pt and Pd catalysts.

  16. Liquid phase methanol LaPorte process development unit: Modification operation, and support studies

    SciTech Connect

    Not Available

    1991-01-28

    In April 1987, Air Products started the third and final contract with the US Department of Energy to develop the Liquid Phase Methanol (LPMEOH) process. One of the objectives was to identify alternative commercial catalyst(s) for the process. This objective was strategically important as we want to demonstrate that the LPMEOH process is flexible and not catalyst selection limited. Among three commercially available catalysts evaluated in the lab, the catalyst with a designation of F21/0E75-43 was the most promising candidate. The initial judging criteria included not only the intrinsic catalyst activity but also the ability to be used effectively in a slurry reactor. The catalyst was then advanced for a 40-day life test in a laboratory 300 cc autoclave. The life test result also revealed superior stability when compared with that of a standard catalyst. Consequently, the new catalyst was recommended for demonstration in the Process Development Unit (PDU) at LaPorte, Texas. This report details the methodology of testing and selecting the catalyst.

  17. Ionic liquid-based preparation of cellulose-dendrimer films as solid supports for enzyme immobilization.

    PubMed

    Bagheri, Mozhgan; Rodríguez, Héctor; Swatloski, Richard P; Spear, Scott K; Daly, Daniel T; Rogers, Robin D

    2008-01-01

    Surface-active cellulose films for covalent attachment of bioactive moieties were achieved by codissolution of cellulose with polyamidoamine (PAMAM) dendrimers in an ionic liquid followed by regeneration of the composite as a film. Different generations of PAMAM were used for the formation of cellulose-dendrimer composites, as well as films with the dendrimer covalently bonded to the cellulose by means of the linker 1,3-phenylene diisocyanate. Surface characterization, thermal stability, and utility for immobilization of laccase were determined. The presence of the dendrimer amino groups was confirmed by detailed characterization of the films' surfaces. These modified films exhibit acceptable thermal stability, comparable to that of other regenerated cellulose films, but the number of active functional groups on the surface is much smaller than the theoretical amount expected. Films made with 1,3-phenylene diisocyanate as linker for covalently bound cellulose and dendrimers exhibit a better performance for immobilization of laccase than those prepared by simple mixing of the cellulose and dendrimer. In general, a linear correspondence between the dendrimer generation within the films and the specific activity of immobilized laccase in such films was not observed. PMID:18163541

  18. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect

    Not Available

    1990-10-23

    The objectives of this program are to implement and test the process improvements identified through the engineering studies of the current program to demonstrate the capability of long-term catalyst activity maintenance, and to perform process and design engineering work that can be applied to a scaled-up Liquid Phase Methanol (LPMEOH) facility. An optional series of PDU runs is offered to extend the testing of the process improvements. A parallel research program will be performed to enhance the LPMEOH technical data base to improve the likelihood of commercialization of the LPMEOH process. Activities this quarter include: Flow sheet development for La Porte PDU modifications continues. A preliminary P ID review was completed and flow sheet modifications were identified and are being incorporated. A preliminary hazards review was completed on 22 May. Some minor flow sheet modifications resulted and a number of action items were identified. The most significant action item is to develop a materials reactivity and compatibility grid for the different alcohols, ethers, and esters which will be produced at the PDU. Heat and material balances were completed for the maximum production case of the mixed DME/MEOH synthesis campaign. An improved rate expression was developed. 1 fig.

  19. Designing Supported Ionic Liquids (ILs) within Inorganic Nanosheets for CO2 Capture Applications.

    PubMed

    Zhou, Yingjie; Liu, Jingjing; Xiao, Min; Meng, Yuezhong; Sun, Luyi

    2016-03-01

    A new methodology was developed for the immobilization of ionic liquids (ILs) on α-zirconium phosphate (ZrP) and montmorillonite (MMT) single-layer nanosheets via a facile coassembly process. The coassembled inorganic nanosheet/1-n-butyl-3-methylimidazolium chloride (BMIMCl) hybrids were systematically characterized. The results showed that the ILs were successfully assembled with ZrP or MMT single-layer nanosheets to form an intercalated structure. The inorganic nanosheet/IL hybrids can serve as efficient CO2 absorbents. The CO2 sorption of BMIMCl could be made up to 21 times more efficient because of the high exposure of the functional groups of BMIMCl in the coassembled hybrids. CO2 was physically absorbed by the hybrids with a slow equilibrium time at lower temperatures, whereas higher temperatures allowed for faster diffusion and chemical absorption of CO2. The best CO2 capture capacities of the hybrids were 0.73 mmol/g at 60 °C for ZrP/BMIMCl and 0.42 mmol/g at 70 °C for MMT/BMIMCl. PMID:26840623

  20. Liquid Phase Methanol LaPorte Process Development Unit: Modification, operation, and support studies

    SciTech Connect

    Not Available

    1990-08-31

    A gas phase and a slurry phase radioactive tracer study was performed on the 12 ton/day Liquid Phase Methanol (LPMEOH) Process Development Unit (PDU) in LaPorte, Texas. To study the gas phase mixing characteristics, a radioactive argon tracer was injected into the feed gas and residence time distribution was generated by measuring the response at the reactor outlet. Radioactive manganese oxide powder was independently injected into the reactor to measure the slurry phase mixing characteristics. A tanks-in-series model and an axial dispersion model were applied to the data to characterize the mixing in the reactor. From the axial dispersion model, a translation to the number of CSTR's (continuous stirred tank reactors) was made for comparison purposes with the first analysis. Dispersion correlations currently available in the literature were also compared. The tanks-in-series analysis is a simpler model whose results are easily interpreted. However, it does have a few drawbacks; among them, the lack of a reliable method for scaleup of a reactor and no direct correlation between mixing in the slurry and gas phases. The dispersion model allows the mixing in the gas and slurry phases to be characterized separately while including the effects of phase transfer. This analysis offers a means for combining the gas and slurry phase dispersion models into an effective dispersion coefficient, which, in turn, can be related to an equivalent number of tanks-in-series. The dispersion methods reported are recommended for scaleup of a reactor system. 24 refs., 18 figs., 8 tabs.

  1. A review of the supply of liquid propellants and other fluids in support of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Churchwell, Stacy E.; Bain, A. L.

    1989-01-01

    In this study, over twenty significant liquid propellants and other fluids were reviewed as to their supply in support of the Space Shuttle Program (SSP), primarily at KSC. The uniqueness of most of the products, either by their application or production characteristics, present a variety of supply issues to contend with. Each, however, is critical to the success of the SSP. It becomes necessary to formulate, and maintain, a logistic approach to assure a continued availability of each product. For convenience, two categories were established. One, labeled limited-availability, represents those products wherein they are single sourced, have production restrictions and/or there has been a history of supply problems. The other, labeled universally-available, is characteristic of those having several sources and/or having little, if any, historical supply problems. This last category was not examined in depth. Through concepts of establishing stockpile inventories, multiple supply contracts, or other arrangements, the supply of liquid propellants and other fluids can be assured.

  2. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    SciTech Connect

    Borra, E. F.

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror uses a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.

  3. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    PubMed Central

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  4. Extraction of lutetium(III) from aqueous solutions by employing a single fibre-supported liquid membrane.

    PubMed

    Trtić-Petrović, Tatjana M; Kumrić, Ksenija R; Dordević, Jelena S; Vladisavljević, Goran T

    2010-07-01

    Transport behaviour of Lu(III) across a polypropylene hollow fibre-supported liquid membrane containing di(2-ethylhexyl)phosphoric acid (DEHPA) in dihexyl ether as a carrier has been studied. The donor phase was LuCl(3) in the buffer solution consisting of 0.2 M sodium acetate at pH 2.5-5.0. A miniaturised system with a single hollow fibre has been operated in a batch mode. The concentration of Lu(III) was determined by indirect voltammetric method using Zn-EDTA complex. The effect of pH and volume of the donor phase, DEHPA concentration in the organic (liquid membrane) phase, the time of extraction and the content of the acceptor phase on the Lu(III) extraction and stripping behaviour was investigated. The results were discussed in terms of the pertraction and removal efficiency, the memory effect and the mean flux of Lu(III). The optimal conditions for the removal of (177)Lu(III) from labelled (177)Lu-radiopharmaceuticals were discussed and identified. The removal efficiency of Lu(III) greater than 99% was achieved at pH of the donor phase between 3.5 and 5.0 using DEHPA concentration in the organic phase of 0.47 M and the ratio of the donor to the acceptor phase of 182. PMID:20506430

  5. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    PubMed

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  6. Supported liquid membrane as a novel tool for driving the equilibrium of ω-transaminase catalyzed asymmetric synthesis.

    PubMed

    Rehn, Gustav; Adlercreutz, Patrick; Grey, Carl

    2014-06-10

    An attractive option to produce chiral amines of industrial importance is through asymmetric synthesis using ω-transaminase. However, reaching high yields often requires a strategy for shifting the equilibrium position. This paper describes a novel strategy for handling this problem. It involves the use of a supported liquid membrane (SLM) together with a packed bed reactor. The reactor contains Escherichia coli cells with ω-transaminase from Arthrobacter citreus, immobilized by flocculation with chitosan. The SLM consists of a hollow fibre membrane contactor in which the pores contain undecane. The system enables continuous extraction of the amine product and was used to successfully shift the equilibrium in asymmetric synthesis of (S)-α-methylbenzylamine (MBA). A conversion of 98% was reached, compared to 50% without product extraction. Moreover, a selective extraction of the produced MBA was realized. A high product concentration of 55g/l was reached after 80h, and the system showed promising potential for continuous operation. PMID:24675224

  7. Dynamic supported liquid membrane tip extraction of glyphosate and aminomethylphosphonic acid followed by capillary electrophoresis with contactless conductivity detection.

    PubMed

    See, Hong Heng; Hauser, Peter C; Sanagi, M Marsin; Ibrahim, Wan Aini Wan

    2010-09-10

    A dynamic supported liquid membrane tip extraction (SLMTE) procedure for the effective extraction and preconcentration of glyphosate (GLYP) and its metabolite aminomethylphosphonic acid (AMPA) in water has been investigated. The SLMTE procedure was performed in a semi-automated dynamic mode and demonstrated a greater performance against a static extraction. Several important extraction parameters such as donor phase pH, cationic carrier concentration, type of membrane solvent, type of acceptor stripping phase, agitation and extraction time were comprehensively optimized. A solution of Aliquat-336, a cationic carrier, in dihexyl ether was selected as the supported liquid incorporated into the membrane phase. Quantification of GLYP and AMPA was carried out using capillary electrophoresis with contactless conductivity detection. An electrolyte solution consisting of 12 mM histidine (His), 8 mM 2-(N-morpholino)ethanesulfonic acid (MES), 75 microM cetyltrimethylammonium bromide (CTAB), 3% methanol, pH 6.3, was used as running buffer. Under the optimum extraction conditions, the method showed good linearity in the range of 0.01-200 microg/L (GLYP) and 0.1-400 microg/L (AMPA), acceptable reproducibility (RSD 5-7%, n=5), low limits of detection of 0.005 microg/L for GLYP and 0.06 microg/L for AMPA, and satisfactory relative recoveries (90-94%). Due to the low cost, the SLMTE device was disposed after each run which additionally eliminated the possibility of carry-over between runs. The validated method was tested for the analysis of both analytes in spiked tap water and river water with good success. PMID:20696433

  8. Permeation of iridium(IV) and metal impurity chlorocomplexes through a supported liquid membrane designed for rhodium separation

    SciTech Connect

    Ashrafizadeh, S.N.; Demopoulos, G.P.; Rovira, M.; Sastre, A.M.

    1998-06-01

    A supported liquid membrane (SLM) system previously designed for Rh separation has been examined for its capability to reject the metal impurities which are commonly encountered in industrial Rh chloride solutions. Special attention was paid to Ir(IV) chlorocomplexes and their extraction/transport behavior against both conventional solvent extraction and supported liquid membrane systems of Kelex 100. A lab-scale SLM cell with an effective membrane area of 44 cm{sup 2} was used to conduct the SLM permeation tests. The SLM was composed of a Gore-Tex polymer substrate impregnated with an organic solution of Kelex 100, tridecanol, and kerosene. The impurities tested [in addition to Ir(IV)] were AG(I), As(V), Bi(III), Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II), Pd(II), Pt(IV), Se(IV), Te(IV), and Zn(II). These impurities, based on their response against the SLM, were classified into three groups, i.e., those permeated through [Zn(II), Pb(II), Cd(II), Bi(III), Te(IV), and Ir(IV)], those nonpermeated at all [Ni(II), Co(II), As(V), Se(IV), Cu(II), and Fe(III)], and those blocking the membrane [Pt(IV), Pd(II), Ag(I), Pb(II), and Bi(III)]. The SLM was not capable of discriminating between Rh(III) and Ir(IV) transport at the optimum operating conditions. Complementary upstream and downstream processes are required to separate the impurities from the feed and the product solutions, respectively. Overall, this work revealed the great limitations of SLMs as effective and potentially useful separation media for the extraction of metals from industrial-like multicomponent aqueous feed solutions.

  9. Feasible way of Human Solid and Liquid Wastes' Inclusion Into Intersystem Mass Exchange of Biological-Technical Life Support Systems

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Tikhomirov, Alexander A.; Tikhomirova, Natalia; Kudenko, Yurii; Griboskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe

    The basic objective arising at use of mineralized human solid and liquid wastes serving as the source of mineral elements for plants cultivation in biological-technical life support systems appears to be NaCl presence in them. The given work is aimed at feasibility study of mineralized human metabolites' utilization for nutrient solutions' preparation for their further employment at a long-term cultivation of uneven-aged wheat and Salicornia europaea L. cenosis in a conveyer regime. Human solid and liquid wastes were mineralized by the "wet incineration" method developed by Yu. Kudenko. On their base the solutions were prepared which were used for cultivation of 5-aged wheat conveyer with the time step-interval of 14 days. Wheat was cultivated by hydroponics method on expanded clay aggregate. For partial demineralization of nutrient solution every two weeks after regular wheat harvesting 12 L of solution was withdrawn from the wheat irrigation tank and used for Salicornia europaea cultivation by the water culture method in a conveyer regime. The Salicornia europaea conveyer was represented by 2 ages with the time step-interval of 14 days. Resulting from repeating withdrawal of the solution used for wheat cultivation, sodium concentration in the wheat irrigation solution did not exceed 400 mg/l, and mineral elements contained in the taken solution were used for Salicornia europaea cultivation. The experiment lasted 7 months. Total wheat biomass productivity averaged 30.1 g*m-2*day-1 at harvest index equal to 36.8The work was carried out under support of SB RAS grant 132 and INTAS 05-1000008-8010

  10. Simultaneous determination of total fatty acid esters of chloropropanols in edible oils by gas chromatography-mass spectrometry with solid-supported liquid-liquid extraction.

    PubMed

    Liu, Qing; Han, Feng; Xie, Ke; Miao, Hong; Wu, Yongning

    2013-11-01

    This study aimed to establish a novel robust method for the simultaneous determination of total fatty acid esters of 4 chloropropanols including fatty acid esters of 3-monochloropropane-1,2-diol (3-MCPD esters), 2-monochloropropane-1,3-diol (2-MCPD esters), 1,3-dichloropropan-2-ol (1,3-DCP esters) and 2,3-dichloropropan-1-ol (2,3-DCP esters) in edible oils. In this method, sodium methylate in methanol was used as the reagent for the ester cleavage reaction of chloropropanols esters. The reaction products were extracted by a sodium sulfate solution, and then purified by solid-supported liquid-liquid extraction (SLE) using diatomaceous earth (Hydromatrix™) as the sorbent. Finally, the extracts were derivatized with heptafluorobutyrylim idazole (HFBI) and analyzed by gas chromatography-mass spectrometry (GC-MS). Quantification was achieved using deuterated chloropropanols as their respective internal standards, including 3-MCPD-d5, 2-MCPD-d5, 1,3-DCP-d5 and 2,3-DCP-d5. A good linear relationship between peak area and concentrations was obtained within the range of 0.025-2.000mgL(-1) with a correlation coefficients not less than 0.999 for all the chloropropanols esters. The limits of detection (LODs) of esters of 3-MCPD, 2-MCPD, 1,3-DCP and 2,3-DCP (calculated as corresponding chloropropanols) were 30, 30, 100 and 30μgkg(-1), respectively. The average recoveries of the 3-MCPD esters and the 4 chloropropanols spiked at 0.1, 0.5 and 2mgkg(-1) into blank oil matrix were typically in a range from 70.7% to 113.3%. The robust method validation data including calibration, LOD/LOQ, accuracy and repeatability and proficiency test results (Z-score: -0.5) of the official Food Analysis Performance Assessment Scheme (FAPAS) indicated that the present quantitative method could be successfully applied to the determination of total chloropropanols esters in various edible oils. PMID:24070627

  11. Cyanophenyl vs. pyridine substituent: impact on the adlayer structure and formation on HOPG and Au(111).

    PubMed

    Dai, Y; Eggers, B; Metzler, M; Knzel, D; Gro, A; Jacob, T; Ziener, U

    2016-03-01

    A new cyano substituted bis(terpyridine) derivative CN-BTP was synthesized and its adsorption on highly oriented pyrolytic graphite (HOPG) and Au(111) was investigated. CN-BTP is closely related to the previously investigated 2,4'-BTP, where the cyanophenyl groups are replaced by pyridine moieties. The scanning tunneling microscopy (STM) investigation of CN-BTP at the liquid|HOPG interface shows a highly ordered herringbone structure that is stabilized by double weak intermolecular C-HN hydrogen bonds, partially through the -CN substituents, which is different from the most stable square structure of 2,4'-BTP. The adsorption processes were investigated using cyclic voltammetry (CV) on Au(111) in a neutral phosphate buffer. A fast and full adlayer formation could be observed with CN-BTP, whereas an extremely slow process with 2,4'-BTP under the same conditions was found. Our data show that the CN substituents on BTP not only change the structure of the monolayer at the liquid|HOPG interface, but also accelerate the phase transition process in the electrolyte dramatically. This could be explained by the adlayer-substrate interactions, which is supported by DFT calculations. Our findings might be extended more generally to further pyridine comprising self-assembling molecules to fine-tune the adlayer structure and phase transition/adsorption kinetics by replacing pyridine by cyanophenyl moieties. PMID:26871757

  12. Use of halophytic plants for recycling NaCl in human liquid waste in a bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Nikolai, Myasoedov; Larisa, Popova; Alexander, Tikhomirov; Sofya, Ushakova; Christophe, Lasseur; Jean-Bernard, Gros

    2010-09-01

    The purpose of this work was to develop technology for recycling NaCl containing in human liquid waste as intrasystem matter in a bioregenerative life support system (BLSS). The circulation of Na + and Cl - excreted in urine is achieved by inclusion of halophytes, i.e. plants that naturally inhabit salt-rich soils and accumulate NaCl in their organs. A model of Na + and Cl - recycling in a BLSS was designed, based on the NaCl turnover in the human-urine-nutrient solution-halophytic plant-human cycle. The study consisted of (i) selecting a halophyte suitable for inclusion in a BLSS, and (ii) determining growth conditions supporting maximal Na + and Cl - accumulation in the shoots of the halophyte growing in a nutrient solution simulating mineralized urine. For the selected halophytic plant, Salicornia europaea, growth rate under optimal conditions, biomass production and quantities of Na + and Cl - absorbed were determined. Characteristics of a plant production conveyor consisting of S.europaea at various ages, and allowing continuity of Na + and Cl - turnover, were estimated. It was shown that closure of the NaCl cycle in a BLSS can be attained if the daily ration of fresh Salicornia biomass for a BLSS inhabitant is approximately 360 g.

  13. Membrane supported liquid-liquid-liquid microextraction combined with field-amplified sample injection CE-UV for high-sensitivity analysis of six cardiovascular drugs in human urine sample.

    PubMed

    Zhou, Xiaoqing; He, Man; Chen, Beibei; Yang, Qing; Hu, Bin

    2016-05-01

    An effective dual preconcentration method involving off-line membrane supported liquid-liquid-liquid microextraction (MS-LLLME) and on-line field-amplified sample injection (FASI) was proposed for the extraction of six cardiovascular drugs, including mexiletine, xylocaine, propafenone, propranolol, metoprolol, and carvedilol from aqueous solution prior to CE-UV. In MS-LLLME, the analytes were extracted from 9 mL sample solution into toluene, and then back extracted into a drop of acceptor phase of 10 μL 20 mmol/L acetic acid. After that, the acceptor phase was directly introduced into CE for FASI without any modification. In FASI process, water plug was hydrodynamically injected (50 mbar, 3 s) into the capillary prior to sample injection (+6 kV, 18 s). Six target analytes were separated in less than 10 min at 25°C with a BGE consisting of 70 mmol/L Tris-H3 PO4 (pH 2.2) containing 10% v/v methanol. Under the optimized conditions, LODs obtained by the proposed MS-LLLME-FASI-CE-UV method were in the range of 0.02-0.82 μg/L (based on S/N = 3) with enrichment factors of 546- to 7300-fold for the target analytes. The RSDs of the developed method were in the range of 6.7-12.9% (n = 7). Good linearity (R(2) = 0.9928-0.9997) was obtained in concentration range of 0.1-100 μg/L for mexiletine and propranolol, 0.2-100 μg/L for xylocaine and metoprolol, 0.5-100 μg/L for propafenone and 2.0-100 μg/L for carvedilol, respectively. The developed method was successfully applied for real-time determination of metoprolol in human urine samples within 26 h after uptake. PMID:26763094

  14. Novel analytical procedure using a combination of hollow fiber supported liquid membrane and dispersive liquid-liquid microextraction for the determination of aflatoxins in soybean juice by high performance liquid chromatography - Fluorescence detector.

    PubMed

    Simão, Vanessa; Merib, Josias; Dias, Adriana N; Carasek, Eduardo

    2016-04-01

    This study describes a combination between hollow fiber membrane and dispersive liquid-liquid microextraction for determination of aflatoxins in soybean juice by HPLC. The main advantage of this approach is the use of non-chlorinated solvent and small amounts of organic solvents. The optimum extraction conditions were 1-octanol as immobilized solvent; toluene and acetone at 1:5 ratio as extraction and disperser solvents (100 μL), NaCl at 2% of the sample volume and extraction time of 60 min. The optimal condition for the liquid desorption was 150 μL acetonitrile:water (50:50 v/v) and desorption time of 20 min. The linear range varied from 0.03 to 21 μg L(-1), with R(2) coefficients ranging from 0.9940 to 0.9995. The limits of detection and quantification ranged from 0.01 μg L(-1) to 0.03 μg L(-1) and from 0.03 μg L(-1) to 0.1 μg L(-1), respectively. Recovery tests ranged from 72% to 117% and accuracy between 12% and 18%. PMID:26593494

  15. Determination of organochlorine pesticides in water using solvent cooling assisted dynamic hollow-fiber-supported headspace liquid-phase microextraction.

    PubMed

    Huang, Shih-Pin; Huang, Shang-Da

    2007-12-28

    The organic solvent film formed within a hollow fiber was used as an extraction interface in the headspace liquid-phase microextraction (HS-LPME) of organochlorine pesticides. Some common organic solvents with different vapor pressures (9.33-12,918.9 Pa) were studied as extractants. The results indicated that even the solvent with the highest vapor pressure (cyclohexane) can be used to carry out the extraction successfully. However, those compounds (analytes) with low vapor pressures could not be extracted successfully. In general, the large surface area of the hollow fiber can hasten the extraction speed, but it can increase the risk of solvent loss. Lowering the temperature of the extraction solvent could not only reduce solvent loss (by lowering its vapor pressure) but also extend the feasible extraction time to improve extraction efficiency. In this work, a solvent cooling assisted dynamic hollow-fiber-supported headspace liquid-phase microextraction (SC-DHF-HS-LPME) approach was developed. By lowering the temperature of the solvent, the evaporation can be decreased, the extraction time can be lengthened, and, on the contrary, the equilibrium constant between headspace phase and extraction solvent can be increased. In dynamic LPME, the extracting solvent is held within a hollow fiber, affixed to a syringe needle and placed in the headspace of the sample container. The extracting solvent within the fiber is moved to-and-fro by using a programmable syringe pump. The movement facilitates mass transfer of analyte(s) from the sample to the solvent. Analysis of the extract was carried out by gas chromatography-mass spectrometry (GC-MS). The effects of identity of extraction solvent, extraction temperature, sample agitation, extraction time, and salt concentration on extraction performance were also investigated. Good enrichments were achieved (65-211-fold) with this method. Good repeatabilities of extraction were obtained, with RSD values below 15.2%. Detection limits were 0.209 microg/l or lower. PMID:18001752

  16. Supported Ionic Liquid Membranes and Ion-Jelly® Membranes with [BMIM][DCA]: Comparison of Its Performance for CO2 Separation

    PubMed Central

    Couto, Ricardo; Neves, Luísa; Simões, Pedro; Coelhoso, Isabel

    2015-01-01

    In this work, a supported ionic liquid membrane (SILM) was prepared by impregnating a PVDF membrane with 1-butyl-3-methylimidazolium dicyanamide ([BMIM][DCA]) ionic liquid. This membrane was tested for its permeability to pure gases (CO2, N2 and O2) and ideal selectivities were calculated. The SILM performance was also compared to that of Ion-Jelly® membranes, a new type of gelled membranes developed recently. It was found that the PVDF membrane presents permeabilities for pure gases similar or lower to those presented by the Ion-Jelly® membranes, but with increased ideal selectivities. This membrane presents also the highest ideal selectivity (73) for the separation of CO2 from N2 when compared with SILMs using the same PVDF support but with different ionic liquids. PMID:25594165

  17. Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125° C

    SciTech Connect

    Ilconich, J.B.; Myers, C.R.; Pennline, H.W.; Luebke, D.R.

    2007-07-01

    Supported liquid membranes have been prepared by impregnation of commercial porous polymer films with the ionic liquid 1-n-hexyl-3- methylimidazolium bis(trifluoromethanesulfonyl)imide. The ionic liquid has been characterized, and the membranes have been tested to determine performance in the selective separation of CO2 from He. Experiments were conducted in a constant pressure system, and pure gas permeability/selectivity data are reported. Membranes prepared with polysulfone supports have been found to be stable to 125 °C. The CO2 permeability of the membranes increases from 744 to 1200 barrer as the temperature increases from 37 to 125 °C. The CO2/He selectivity decreased from 8.7 to 3.1 over the same temperature range.

  18. Immobilization of Candida rugosa lipase onto an eco-friendly support in the presence of ionic liquid.

    PubMed

    Cabrera-Padilla, Rebeca Y; Lisboa, Milena C; Pereira, Matheus M; Figueiredo, Renan T; Franceschi, Elton; Fricks, Alini T; Lima, Álvaro S; Silva, Daniel P; Soares, Cleide M F

    2015-05-01

    Candida rugosa lipase (CRL) was immobilized on an eco-friendly support poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV), by physical adsorption, using different ionic liquids (ILs) as immobilization additives. This was to investigate the influence of cationic core ([C4mpy]Cl, [C4min]Cl), of anions ([C4min]Cl, [C4min]N(CN)2, [C4min]Tf2N), and of cation chain length ([C2min]Tf2N, [C4min]Tf2N) in the immobilization process. The immobilized biocatalysts (IB) were characterized with respect to the morphological, physico-chemical properties, total activity recovery yield (Ya), and biochemical properties of more efficient IB were evaluated. Initially, it was found that the change of cationic core did not influence in Ya compared to the control. With change of anions, it was seen that the best result was obtained for the more hydrophobic anion (Tf2N), and finally increasing the cation chain length increased Ya. IB most efficient with [C4min]Tf2N obtained 78 % of Ya, more than twice the control value (30 %) and a considerable enhancement of operational stability compared with the control. PMID:25391807

  19. Tank 241-C-103 organic vapor and liquid characterization and supporting activities, Hanford Site, Richland, Washington. Environmental Assessment

    SciTech Connect

    Not Available

    1993-08-10

    The action proposed is to sample the vapor space and liquid waste and perform other supporting activities in Tank 241-C-103 located in the 241-C Tank Farm on the Hanford Site. Operations at Tank 241-C-103 are curtailed because of an unreviewed safety question (USQ) concerning flammability issues of the organic waste in the tank. This USQ must be resolved before normal operation and surveillance of the tank can resume. In addition to the USQ, Tank 241-C-103 is thought to be involved in several cases of exposure of individuals to noxious vapors. This safety issue requires the use of supplied air for workers in the vicinity of the tank. Because of the USQ, the US Department of Energy proposes to characterize the waste in the vapor space and the organic and aqueous layers, to determine the volume of the organic layer. This action is needed to: (1) assess potential risks to workers, the public, and the environment from continued routine tank operations and (2) provide information on the waste material in the tank to facilitate a comprehensive safety analysis of this USQ. The information would be used to determine if a flammable condition within the tank is credible. This information would be used to prevent or mitigate an accident during continued waste storage and future waste characterization. Alternatives to the proposed activities have been considered in this analysis.

  20. Determination of selected pharmaceutical compounds in biosolids by supported liquid extraction and gas chromatography-tandem mass spectrometry.

    PubMed

    Albero, Beatriz; Sánchez-Brunete, Consuelo; Miguel, Esther; Aznar, Ramón; Tadeo, José L

    2014-04-01

    In this work, an analytical method was developed for the determination of pharmaceutical drugs in biosolids. Samples were extracted with an acidic mixture of water and acetone (1:2, v/v) and supported liquid extraction was used for the clean-up of extracts, eluting with ethyl acetate:methanol (90:10, v/v). The compounds were determined by gas chromatography-tandem mass spectrometry using matrix-match calibration after silylation to form their t-butyldimethylsilyl derivatives. This method presents various advantages, such as a fairly simple operation for the analysis of complex matrices, the use of inexpensive glassware and low solvent volumes. Satisfactory mean recoveries were obtained with the developed method ranging from 70 to 120% with relative standard deviations (RSDs) ≤ 13%, and limits of detection between 0.5 and 3.6 ng g(-1). The method was then successfully applied to biosolids samples collected in Madrid and Catalonia (Spain). Eleven of the sixteen target compounds were detected in the studied samples, at levels up to 1.1 μg g(-1) (salicylic acid). Ibuprofen, caffeine, paracetamol and fenofibrate were detected in all of the samples analyzed. PMID:24582395

  1. Supported phospholipid bilayer interaction with components found in typical room-temperature ionic liquids - a QCM-D and AFM study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quartz crystal microbalance with dissipation monitoring and atomic force microscopy were combined to evaluate the defects created by room-temperature ionic liquid anion and cation in a supported phospholipid bilayer composed of Zwitterionic lipids on a silica surface. The cation 1-octyl-3-methyl im...

  2. Utilization of liquid human wastes and introduction into the material cycling in biological life-support systems

    NASA Astrophysics Data System (ADS)

    Kovaleva, N. P.>; Ushakova, S. A.; Gribovskaya, I. V.; Kudenko, U. A.

    The possibilities of step-by-step utilization of liquid human wastes in biological life-support systems on long-functioning space stations have been considered in this work. Utilization involves "wet" urine incineration with hydrogen peroxide at normal pressure and 90 - 95°C temperature, urease-enzymic decomposition of urine and biological desalination in the higher plant link. The soybean flour was used as a source of urease. Growing soya plants as a component of the higher plant link would give a steady source of urease to the system. To decompose urea (9-15g) contained in 1l of incinerated urine we used 0.5 - 1 g of soy flour. The duration of hydrolysis of daily urea excreted by a human is 70 - 95 hours. It is supposed that ammonia excreted in the reaction of urea decomposition will be processed by nitrifying bacteria. The concentration of total nitrogen in urine after urea hydrolysis and removal of ammonia formed during the reaction constituted 0.6 - 1.2 g/l. Further biological desalination was carried out in the higher plant link, for that the edible salt-accumulating halophytes Salicornia europaea were used. To grow this plant under the aqueous culture conditions, the urine was additionally mineralized at 180 °C after incineration and decomposition of urea. The process of additional mineralization was related to the necessity of removal of organic materials and nitrogen residues, which higher concentration under the aqueous culture conditions has negative effect on plants. The volume of the nutrient solution for growing 6 plants of Salicornia europaea was 1.5 l (daily norm of urine excreted by human), the planting area was 0.032 m2. By the end of vegetation the productivity and mineral composition of Salicornia europaea plants were analyzed. The productivity of plants grown on liquid human wastes (the experiment) practically was not different from the productivity of plants grown on the mineral solution with sodium chloride (checkout). In experimental plants the content of potassium increased on 30% and the sodium content decreased on 30% as compared to the check plants. As a result the NaCl content constituted 23% of dry plant mass. The variant making the additional mineralization of urine at 180 °C avoidable has been considered in this work as well. For this purpose the technology of substrate growing of Salicornia europaea plants and intermittent introduction of urine during vegetation after "wet" incineration and urease-enzymatic decomposition of urea has been introduced.

  3. Influence of the extractant on strontium transport from reprocessing concentrate solutions through flat-sheet supported liquid membranes

    SciTech Connect

    Dozol, J.F.; Casas, J.; Sastre, A.M.

    1994-10-01

    The influence of the extractant on strontium transport through a flat-sheet-supported liquid membrane from nuclear fuel reprocessing concentrate solutions to demineralized water has been studied using two crown ethers of different lipophilicity: dicyclohexano-18-crown-6 (DC18C6) and di-tert-butylcyclohexano-18-crown-6 (DtBuC18C6). The distribution coefficients of strontium showed that DC18C6 is a better strontium extractant than DtBuC18C6 in the entire range of crown-ether concentration studied. No effect of association between the DC18C6 molecules was observed even at high concentrations. However, the strong lipophilic character of DtBuC18C6 led to a distribution coefficient of this extractant 10 times higher than the distribution coefficient of DC18C6. Thus, the membrane concentration of DtBuC18C6 was approximately 10 times higher than that of DC18C6. This leads to greater strontium permeability for DtBuC18C6, even though DC18C6 had a greater capacity for strontium extraction and a higher diffusion coefficient in the membrane due to the smaller molar volume of this crown ether. The precipitation of a white solid was observed when the synthetic concentrate was mixed with an organic phase containing DtBuC18C6 dissolved in n-hexylbenzene (0.7 mol{center_dot}L{sup {minus}1} isotridecanol), causing a decrease of strontium permeability. In this case, DC18C6 had the greatest strontium permeability.

  4. Pumice-supported Pd-Pt bimetallic catalysts: Synthesis, structural characterization, and liquid-phase hydrogenation of 1,3-cyclooctadiene

    SciTech Connect

    Deganello, G.; Duca, D.; Liotta, L.F.; Martorana, A.; Venezia, M.; Benedetti, A.; Fagherazz, G.

    1995-01-01

    A series of pumice-supported palladium-platinum bimetallic catalysts were prepared and investigated by X-ray scattering (WAXS and SAXS) and XPS techniques. An alloy Pd-Pt was formed. The less abundant metal was found to segregate to the surface. The catalysts were tested in the liquid-phase hydrogenation of 1,3-cyclooctadiene to cyclooctene, and compared with similarly prepared pumice-supported palladium and platinum catalysts and other supported Pd-Pt catalysts reported in the literature. The addition of platinum reduces the activity and the selectivity of the palladium catalysts. Differences between the activity of these pumice-supported catalysts and the activity of previously described Pd and Pd-Pt catalysts on other supports, are attributed to the presence, in the latter, of diffusional processes. 50 refs., 4 figs. 2 tabs.

  5. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation.

    PubMed

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar

    2015-12-15

    Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of "sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil" was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na2CO3) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals. PMID:26252994

  6. Analysis of the organic liquid produced from catalytic cracking of crude palm oil in the presence of alumina supported catalysts

    NASA Astrophysics Data System (ADS)

    Ramli, Anita; Razak, Rozlina Abdul

    2012-09-01

    Catalytic cracking of crude palm oil (CPO) was studied in the presence of alumina, 1% Pt/Al2O3 and 1% Pd/Al2O3 as catalyst. The CPO to catalyst weight ratio used was 1:0.05. The experiment was carried out in a simple liquid-phase batch reactor at atmospheric pressure where the sample was heated to 300-350 δC. Products formed were organic liquid products (OLP) and gaseous product with the solid residue remains in the reactor. The total conversion of CPO was only between 25 - 31% where the residue is suggested to be mainly of polimerised CPO. The OLP was analysed using a gas chromatography with FID detector. Analyses show that the selectivity to liquid fuel is influence by the catalyst used whereby Al2O3 gives the highest selectivity to gasoline while 1% Pt/Al2O3 has the highest selectivity to diesel. However, 1% Pd/Al2O3 is not a suitable catalyst for catalytic cracking of CPO to liquid fuel where less than 17.5% of OLP produced could be classified as liquid fuel.

  7. Design, testing, fabrication and launch support of a liquid chemical barium release payload (utilizing the liquid fluorine-barium salt/hydrazine system)

    NASA Technical Reports Server (NTRS)

    Stokes, C. S.; Smith, E. W.; Murphy, W. J.

    1972-01-01

    A payload was designed which included a cryogenic oxidizer tank, a fuel tank, and burner section. Release of 30 lb of chemicals was planned to occur in 2 seconds at the optimum oxidizer to fuel ratio. The chemicals consisted of 17 lb of liquid fluorine oxidizer and 13 lb of hydrazine-barium salt fuel mixture. The fuel mixture was 17% barium chloride, 16% barium nitrate, and 67% hydrazine, and contained 2.6 lb of available barium. Two significant problem areas were resolved during the program: explosive valve development and burner operation. The release payload was flight tested, from Wallops Island, Virginia. The release took place at an altitude of approximately 260 km. The release produced a luminous cloud which expanded very rapidly, disappearing to the human eye in about 20 seconds. Barium ion concentration slowly increased over a wide area of sky until measurements were discontinued at sunrise (about 30 minutes).

  8. Influence of the reaction conditions and catalytic properties on the liquid-phase hydrodechlorination of chlorobenzene over palladium-supported catalysts: Activity and deactivation

    SciTech Connect

    Aramendia, M.A.; Borau, V.; Garcia, I.M.; Jimenez, C.; Lafont, F.; Marinas, A.; Marinas, J.M.; Urbano, F.J.

    1999-10-25

    The liquid-phase hydrodechlorination of chlorobenzene with molecular hydrogen was studied over palladium-supported catalysts. The reaction takes place at a gradually decreasing rate through progressive poisoning of the active phase by chloride ions. It is found that the correct choice of the metallic precursor (free of chloride ions) is crucial for the optimum performance of the final solid obtained. In addition, a better resistance to chlorine is observed when the size of the metallic particle increases. The supports tested, viz. SiO{sub 2}/AlPO{sub 4}, ZrO{sub 2}, and MgO, significantly affected catalyst deactivation. Thus, supports that can capture chloride species (e.g., ZrO{sub 2}) allow the reaction to finalize within relatively short times. The reaction appeared to be structure-sensitive in regard to the initial activity. Changing dispersion from 54 to 7% was accompanied by an increase in catalytic activity by a factor of 20.

  9. Data supporting the rat brain sample preparation and validation assays for simultaneous determination of 8 neurotransmitters and their metabolites using liquid chromatography-tandem mass spectrometry.

    PubMed

    Wojnicz, Aneta; Ortiz, José Avendaño; Casas, Ana I; Freitas, Andiara E; López, Manuela G; Ruiz-Nuño, Ana

    2016-06-01

    The data presented in this article supports the rat brain sample preparation procedure previous to its injection into the liquid chromatography-tandem mass spectrometry (LC-MS/MS) system to monitor levels of adrenaline, noradrenaline, glutamic acid, γ-aminobutyric acid, dopamine, 5-hydroxytryptamine, 5-hydroxyindole acetic acid, and 3-methoxy-4-hydroxyphenylglycol. In addition, we describe the method validation assays (such as calibration curve, lower limit of quantification, precision and accuracy intra- and inter-day, selectivity, extraction recovery and matrix effect, stability, and carry-over effect) according to the United States Food and Drug Administration and European Medicine Agency to measure in one step different neurotransmitters and their metabolites. The data supplied in this article is related to the research study entitled: "Simultaneous determination of 8 neurotransmitters and their metabolite levels in rat brain using liquid chromatography in tandem with mass spectrometry: application to the murine Nrf2 model of depression" (Wojnicz et al. 2016) [1]. PMID:27054183

  10. Comparative Study on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Hydrocarbon Fuel

    SciTech Connect

    Xie, Chao; Chen, Yongsheng; Engelhard, Mark H.; Song, Chunshan

    2012-04-18

    This work was conducted to clarify the influence of the type of metal and support on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbons. Al2O3-supported noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalysts on different supports (Al2O3, CeO2, SiO2, and MgO), and Pt catalyst supported on CeO2 and Al2O3, were examined for steam reforming of a liquid hydrocarbon fuel (Norpar13 from Exxon Mobil) at 800 C for 55 h. The results indicate that (1) Rh/Al2O3 shows higher sulfur tolerance than the Ru, Pt, and Pd catalysts on the same support; (2) both Al2O3 and CeO2 are promising supports for Rh catalyst to process sulfur-containing hydrocarbons; and (3) Pt/CeO2 exhibits better catalytic performance than Pt/Al2O3 in the reaction with sulfur. TEM results demonstrate that the metal particles in Rh/Al2O3 were better dispersed (mostly in 1-3 nm) compared with the other catalysts after reforming the sulfur-containing feed. As revealed by XPS, the binding energy of Rh 3d for Rh/Al2O3 is notably higher than that for Rh/CeO2, implying the formation of electron-deficient Rh particles in the former. The strong sulfur tolerance of Rh/Al2O3 may be related to the formation of well-dispersed electron-deficient Rh particles on the Al2O3 support. Sulfur K-edge XANES illustrates the preferential formation of sulfonate and sulfate on Rh/Al2O3, which is believed to be beneficial for improving its sulfur tolerance as their oxygen-shielded sulfur structure may hinder direct Rh-S interaction. Due to its strong sulfur tolerance, the carbon deposition on Rh/Al2O3 was significantly lower than that on the Al2O3-supported Ru, Pt, and Pd catalysts after the reaction with sulfur. The superior catalytic performance of CeO2-supported Rh and Pt catalysts in the presence of sulfur can be ascribed mainly to the promotion effect of CeO2 on carbon gasification, leading to much lower carbon deposition compared with the Rh/Al2O3, Rh/MgO, Rh/SiO2 and Pt/Al2O3 catalysts.

  11. Gold nanoparticles in an ionic liquid phase supported in a biopolymeric matrix applied in the development of a rosmarinic acid biosensor.

    PubMed

    Brondani, Daniela; Zapp, Eduardo; Vieira, Iolanda Cruz; Dupont, Jairton; Scheeren, Carla Weber

    2011-06-21

    Gold nanoparticles dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (Au-BMI·PF(6)) were supported in chitin (CTN) chemically crosslinked with glyoxal and epichlorohydrin to obtain a new supported ionic liquid phase (SILP) catalyst with high catalytic activity, and providing an excellent environment for enzyme immobilization. This modified biopolymer matrix (Au-BMI·PF(6)-CTN) was used as a support for the immobilization of the enzyme peroxidase (PER) from pea (Pisum sativum), and employed to develop a new biosensor for rosmarinic acid (RA) determination in pharmaceutical samples by square-wave voltammetry. In the presence of hydrogen peroxide, the PER catalyzes the oxidation of RA to the corresponding o-quinone, which is electrochemically reduced at a potential of +0.14 V vs. Ag/AgCl. Under optimized conditions, the resulting peak current increased linearly for the RA concentration range of 0.50 to 23.70 μM with a detection limit of 70.09 nM. The biosensor demonstrated high sensitivity, good repeatability and reproducibility, and long-term stability (15% decrease in response over 120 days). The method was successfully applied to the determination of RA content in pharmaceutical samples, with recovery values being in the range of 98.3 to 106.2%. The efficient analytical performance of the proposed biosensor can be attributed to the effective immobilization of the PER enzyme in the modified CTN matrix, the significant contribution of the high conductivity of the ionic liquid, the facilitation of electron transfer promoted by gold nanoparticles, and the inherent catalytic ability of these materials. PMID:21519593

  12. Voltammetric and reference microelectrodes with integrated microchannels for flow through microvoltammetry. 2. Coupling the microcell to a supported liquid membrane preconcentration technique

    PubMed

    Keller; Buffle

    2000-03-01

    The paper describes the assembly and functioning of the microvoltammetric cell described in Part 1, with a hollow Fiber Supported Liquid Membrane (HFSLM), for trace metal analysis. Membrane stability, working-electrode behavior, mercury-film lifetime inside the HFSLM, hydrodynamic conditions, as well as transport kinetics of the metal through the SLM have been studied in detail. System calibrations have been performed in the range 5-120 nM Pb(II). The reproducibility and sensitivity of the whole microsystem is discussed as well as limitations and possible improvements. PMID:10739196

  13. Separation of CO{sub 2} from CO{sub 2}/N{sub 2} mixture using supported polymeric liquid membranes at elevated temperatures

    SciTech Connect

    Jeong, S.H.; Lee, K.H.

    1999-09-01

    Novel supported polymeric liquid (SPL) membranes have been prepared and shown to be applicable for the separation of CO{sub 2} from mixtures with N{sub 2} at the elevated temperature encountered in flue gas. The membranes were fabricated by immobilizing polystyrene, polyethylene, and polydimethylsiloxane into the pores of borosilicate glass supports. At 250 C, the CO{sub 2} permeability and CO{sub 2}/N{sub 2} separation factors were 3000--9000 barrer and 1.7--3.7, respectively. It was shown that polymers which have a lower T{sub g} or melting temperature than the operating temperature can be used as SPL membrane materials at elevated temperatures.

  14. Role of diluent on the separation of 90Y from 90Sr by solvent extraction and supported liquid membrane using T2EHDGA as the extractant.

    PubMed

    Dutta, S; Raut, D R; Mohapatra, P K

    2012-04-01

    The separation behaviour of (90)Y from (90)Sr was investigated by diluent variation using solvent extraction and supported liquid membrane techniques employing N,N,N',N'-tetra-2-ethylhexyldiglycolamide (T2EHDGA) as the extractant. Both D(Y) (distribution ratio of Y(III)) and S.F. (separation factor) were found to be high in the solvent extraction studies when chloroform was used as the diluent. Subsequent supported liquid membrane (SLM) studies using PTFE flat sheet membranes containing 0.2M T2EHDGA in various diluents indicated the trend of Y transport as xylene>hexone>chloroform>carbon tetrachloride>n-dodecane+30% iso-decanol mixture. However, the Sr(II) transport rates were also high with xylene, hexone, and carbon tetrachloride as the diluents which led us to carry out subsequent studies using chloroform and n-dodecane+30% iso-decanol mixture. Acid variation studies in chloroform system indicated an interesting phenomena of increasing Y(III) transport and decreasing Sr(II) transport with increasing acid concentration. Separation of (90)Y from a mixture of (90)Sr and (90)Y was also attempted. PMID:22309631

  15. MEASUREMENTS TAKEN IN SUPPORT OF QUALIFICATION OF PROCESSING SAVANNAH RIVER SITE LOW-LEVEL LIQUID WASTE INTO SALTSTONE

    SciTech Connect

    Reigel, M.; Bibler, N.; Diprete, C.; Cozzi, A.; Staub, A.; Ray, J.

    2010-01-27

    The Saltstone Facility at the Savannah River Site (SRS) immobilizes low-level liquid waste into Saltstone to be disposed of in the Z-Area Saltstone Disposal Facility, Class Three Landfill. In order to meet the permit conditions and regulatory limits set by the South Carolina Department of Health and Environmental Control (SCDHEC), the Resource Conservation and Recovery Act (RCRA) and the Environmental Protection Agency (EPA), both the low-level salt solution and Saltstone samples are analyzed quarterly. Waste acceptance criteria (WAC) are designed to confirm the salt solution sample from the Tank Farm meets specific radioactive and chemical limits. The toxic characteristic leaching procedure (TCLP) is used to confirm that the treatment has immobilized the hazardous constituents of the salt solution. This paper discusses the methods used to characterize the salt solution and final Saltstone samples from 2007-2009.

  16. LIQUID PHASE SELECTIVE OXIDATION OF ETHYLBENZENE OVER ACTIVATED AL2O3 SUPPORTED V2O5 CATALYST

    EPA Science Inventory

    Acetophenone, a very useful industrial chemical for fragrance and flavoring agent and a solvent for plastics and resins, is usually produced as a byproduct of phenol production from cumeme. Aluminia supported vandium oxide catalyst is now explored for the selective oxidation of e...

  17. Partial oxidation of liquid hydrocarbons in the presence of oxygen-conducting supports: Effect of catalyst layer deposition

    SciTech Connect

    Smith, M.; Berry, D.; Shekhawt, D.; Haynes, D.; Spivey, J.

    2010-01-01

    Ni-substituted barium hexaaluminate (BNHA) catalysts supported onto gadolinium-doped ceria (GDC), an oxygen-conductor, were prepared using two different methods: (1) conventional incipient wetness impregnation (IWI), in which a non-porous GDC support was impregnated in the conventional manner with aqueous precursors, then dried and calcined to form a supported hexaaluminate, and (2) solid-state mixing (SSM), in which solid hexaaluminate and GDC particles were mechanically ground together and thermally treated to produce a final catalyst. These catalysts were compared to bulk, unsupported BNHA; 3 wt% Ni/alumina; and 3 wt% Ni/GDC (the latter two prepared by conventional impregnation) for the partial oxidation (POX) of n-tetradecane. The reaction studies included examining the effect of 50 ppm S as dibenzothiophene (DBT) and 5 wt% 1-methylnaphthalene (MN) on the product yield under POX conditions. Temperature programmed oxidation (TPO) was used to characterize carbon formation in the reactor. The materials were characterized by BET, ICP-OES, XRD, and SEM/EDS prior to the reaction tests. Characterization of the two GDC-supported BNHA catalysts prior to the reaction studies indicated no significant differences in the bulk composition, surface area, and crystal structure. However, SEM images showed a larger amount of exposed GDC support surface area for the material prepared by IWI. Both of the GDC-supported BNHA materials demonstrated greatly reduced deactivation, with significantly reduced carbon formation compared to bulk BNHA. This was attributed to the oxygen-conducting property of the GDC, which reduced the rate of deactivation of the reaction sites by DBT and MN. The material prepared by IWI demonstrated more stable hydrogen and carbon monoxide yield than the material prepared by SSM. Although both catalysts deactivated in the presence of DBT and MN, the activity of the catalyst prepared by IWI recovered activity more quickly after the contaminants were removed. This material also maintained >50% of its initial hydrogen yield for more than 4 h after exposure to DBT and MN, while the hydrogen for the material prepared by SSM dropped to this same level within 2 h. Incipient wetness impregnation appears to provide a higher degree of interaction between the oxygenconducting GDC support and the hexaaluminate, resulting in less rapid deactivation, which appears to be due primarily to carbon deposition.

  18. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports.

    PubMed

    Alexovi?, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Jn

    2016-02-11

    A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given. PMID:26802999

  19. Liquid-Phase Synthesis of 2′-Methyl-RNA on a Homostar Support through Organic-Solvent Nanofiltration

    PubMed Central

    Gaffney, Piers R J; Kim, Jeong F; Valtcheva, Irina B; Williams, Glynn D; Anson, Mike S; Buswell, Andrew M; Livingston, Andrew G

    2015-01-01

    Due to the discovery of RNAi, oligonucleotides (oligos) have re-emerged as a major pharmaceutical target that may soon be required in ton quantities. However, it is questionable whether solid-phase oligo synthesis (SPOS) methods can provide a scalable synthesis. Liquid-phase oligo synthesis (LPOS) is intrinsically scalable and amenable to standard industrial batch synthesis techniques. However, most reported LPOS strategies rely upon at least one precipitation per chain extension cycle to separate the growing oligonucleotide from reaction debris. Precipitation can be difficult to develop and control on an industrial scale and, because many precipitations would be required to prepare a therapeutic oligonucleotide, we contend that this approach is not viable for large-scale industrial preparation. We are developing an LPOS synthetic strategy for 2′-methyl RNA phosphorothioate that is more amenable to standard batch production techniques, using organic solvent nanofiltration (OSN) as the critical scalable separation technology. We report the first LPOS-OSN preparation of a 2′-Me RNA phosphorothioate 9-mer, using commercial phosphoramidite monomers, and monitoring all reactions by HPLC, 31P NMR spectroscopy and MS. PMID:26012874

  20. A novel support for laccase immobilization: cellulose acetate modified with ionic liquid and application in biosensor for methyldopa detection.

    PubMed

    Moccelini, Sally K; Franzoi, Ana C; Vieira, Iolanda C; Dupont, Jairton; Scheeren, Carla W

    2011-04-15

    A material based on cellulose acetate (CA) and the room temperature ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI·N(Tf)(2)) was developed and characterized by scanning electron microscopy, electron dispersive spectroscopy and infrared analysis. Laccase (Lac) from Aspergillus oryzae was immobilized in this material to investigate the behavior of methyldopa by square-wave voltammetry. Under optimized conditions, the Lac biosensor based on CA/BMI·N(Tf)(2) exhibited an excellent electrocatalytic performance: the analytical curve showed good linear range for methyldopa concentrations from 34.8 to 370.3 μM with a detection limit of 5.5 μM. This sensor demonstrated acceptable stability (ca. 60 days; at least 350 determinations), good repeatability and reproducibility (relative standard deviations of 1.5 and 4.3%, respectively). The recovery study of methyldopa in pharmaceutical formulations ranged from 94.1 to 105.9%. The determination of this substance using the biosensor compared favorably with that using a spectrophotometry procedure at the 95% confidence level, and indicated potential application to methyldopa determination in pharmaceutical samples. PMID:21353521

  1. Liquid-Phase Synthesis of 2'-Methyl-RNA on a Homostar Support through Organic-Solvent Nanofiltration.

    PubMed

    Gaffney, Piers R J; Kim, Jeong F; Valtcheva, Irina B; Williams, Glynn D; Anson, Mike S; Buswell, Andrew M; Livingston, Andrew G

    2015-06-22

    Due to the discovery of RNAi, oligonucleotides (oligos) have re-emerged as a major pharmaceutical target that may soon be required in ton quantities. However, it is questionable whether solid-phase oligo synthesis (SPOS) methods can provide a scalable synthesis. Liquid-phase oligo synthesis (LPOS) is intrinsically scalable and amenable to standard industrial batch synthesis techniques. However, most reported LPOS strategies rely upon at least one precipitation per chain extension cycle to separate the growing oligonucleotide from reaction debris. Precipitation can be difficult to develop and control on an industrial scale and, because many precipitations would be required to prepare a therapeutic oligonucleotide, we contend that this approach is not viable for large-scale industrial preparation. We are developing an LPOS synthetic strategy for 2'-methyl RNA phosphorothioate that is more amenable to standard batch production techniques, using organic solvent nanofiltration (OSN) as the critical scalable separation technology. We report the first LPOS-OSN preparation of a 2'-Me RNA phosphorothioate 9-mer, using commercial phosphoramidite monomers, and monitoring all reactions by HPLC, (31)P NMR spectroscopy and MS. PMID:26012874

  2. Derivatization of ethylene dibromide with silica-supported silver picrate for improved high-performance liquid chromatographic detection

    SciTech Connect

    Colgan, S.T.; Krull, I.S.; Dorschel, C.; Bidlingmeyer, B.

    1986-10-01

    Silica-supported silver picrate was used as an off-line, precolumn derivatization reagent for ethylene dibromide (EDB). Two products were obtained, the ratio of which, as a function of reaction conditions, is characteristic of EDB. The derivatives were monitored with UV, reductive electrochemical, and photolysis/oxidative electrochemical detection. Sub-parts-per-billion detection limits were obtained. The method was used to quantitate EDB in leaded gasoline, and the results were confirmed with gas chromatography with electron capture detection (GC/ECD). The method was further validated with a single blind analysis of spiked EDB in gasoline. This is the first report of an HPLC method for EDB.

  3. Core-shell diamond as a support for solid-phase extraction and high-performance liquid chromatography.

    PubMed

    Saini, Gaurav; Jensen, David S; Wiest, Landon A; Vail, Michael A; Dadson, Andrew; Lee, Milton L; Shutthanandan, V; Linford, Matthew R

    2010-06-01

    We report the formation of core-shell diamond particles for solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) made by layer-by-layer (LbL) deposition. Their synthesis begins with the amine functionalization of microdiamond by its immersion in an aqueous solution of a primary amine-containing polymer (polyallylamine (PAAm)). The amine-terminated microdiamond is then immersed in an aqueous suspension of nanodiamond, which leads to adsorption of the nanodiamond. Alternating (self-limiting) immersions in the solutions of the amine-containing polymer and the suspension of nanodiamond are continued until the desired number of nanodiamond layers is formed around the microdiamond. Finally, the core-shell particles are cross-linked with 1,2,5,6-diepoxycyclooctane or reacted with 1,2-epoxyoctadecane. Layer-by-layer deposition of PAAm and nanodiamond is also studied on planar Si/SiO(2) surfaces, which were characterized by scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). Core-shell particles are characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), environmental scanning electron microscopy (ESEM), and Brunauer-Emmett-Teller (BET) surface area and pore size measurements. Larger (ca. 50 microm) core-shell diamond particles have much higher surface areas and analyte loading capacities in SPE than nonporous solid diamond particles. Smaller (ca. 3 microm), normal and reversed-phase, core-shell diamond particles have been used for HPLC, with 36,300 plates/m for mesitylene in a separation of benzene and alkyl benzenes and 54,800 plates/m for diazinon in a similar separation of two pesticides on a C(18) adsorbent. PMID:20446670

  4. Core-Shell Diamond as a Support for Solid-Phase Extraction and High-Performance Liquid Chromatography

    SciTech Connect

    Saini, Gaurav; Jensen, David S.; Wiest, Landon A.; Vail, Michael A.; Dadson, Andrew; Lee, Milton L.; Shutthanandan, V.; Linford, Matthew R.

    2010-06-01

    We report the formation of core-shell diamond particles for solid phase extraction (SPE) and high performance liquid chromatography (HPLC) made by layer-by-layer (LbL) deposition. Their synthesis begins with the amine functionalization of microdiamond by its immersion in an aqueous solution of a primary amine-containing polymer (polyallylamine (PAAm)). The amine-terminated microdiamond is then immersed in an aqueous suspension of nanodiamond, which leads to adsorption of the nanodiamond. Alternating (self-limiting) immersions in the solutions of the amine-containing polymer and the suspension of nanodiamond are continued until the desired number of nanodiamond layers is formed around the microdiamond. Finally, the core-shell particles are cross-linked with 1,2,5,6-diepoxycyclooctane or reacted with 1,2-epoxyoctadecane. Layer-by-layer deposition of PAAm and nanodiamond is also studied on planar Si/SiO2 surfaces, which were characterized by SEM, Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Core-shell particles are characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), environmental scanning electron microscopy (ESEM), and Brunauer Emmett Teller (BET) surface area and pore size measurements. Larger (ca. 50 μm) core-shell diamond particles have much higher surface areas, and analyte loading capacities in SPE than nonporous solid diamond particles. Smaller (ca. 3 μm), normal and reversed phase, core-shell diamond particles have been used for HPLC, with 36,300 plates per meter for mesitylene in a separation of benzene and alkyl benzenes on a C18 adsorbent, and 54,800 plates per meter for diazinon in a similar separation of two pesticides.

  5. Data supporting the rat brain sample preparation and validation assays for simultaneous determination of 8 neurotransmitters and their metabolites using liquid chromatography–tandem mass spectrometry

    PubMed Central

    Wojnicz, Aneta; Ortiz, José Avendaño; Casas, Ana I.; Freitas, Andiara E.; López, Manuela G.; Ruiz-Nuño, Ana

    2016-01-01

    The data presented in this article supports the rat brain sample preparation procedure previous to its injection into the liquid chromatography–tandem mass spectrometry (LC–MS/MS) system to monitor levels of adrenaline, noradrenaline, glutamic acid, γ-aminobutyric acid, dopamine, 5-hydroxytryptamine, 5-hydroxyindole acetic acid, and 3-methoxy-4-hydroxyphenylglycol. In addition, we describe the method validation assays (such as calibration curve, lower limit of quantification, precision and accuracy intra- and inter-day, selectivity, extraction recovery and matrix effect, stability, and carry-over effect) according to the United States Food and Drug Administration and European Medicine Agency to measure in one step different neurotransmitters and their metabolites. The data supplied in this article is related to the research study entitled: “Simultaneous determination of 8 neurotransmitters and their metabolite levels in rat brain using liquid chromatography in tandem with mass spectrometry: application to the murine Nrf2 model of depression” (Wojnicz et al. 2016) [1]. PMID:27054183

  6. Permeation of mixtures of four phenols through a supported liquid membrane in NaCl 1.0 mol/dm{sup 3} medium

    SciTech Connect

    Arana, G.; Borge, G.; Etxebarria, N.; Fernandez, L.A.

    1999-02-01

    The permeation of four phenols (phenol, 2-chlorophenol, 2-nitrophenol, and 2,4-dichlorophenol) through a supported liquid membrane has been studied in NaCl 1.0 mol/dm{sup 3} medium. The flux of each phenol was determined by measuring in real time the change of their concentration in the strip phase by making use of a fiber optic spectrophotometer and a multivariate calibration. The model for the permeation of phenol alone was first developed by making permeation experiments of a phenol, and then permeation studies of the mixture were carried out and the model was extended to those phenols. It was found that the permeation of a phenol is interfered with by the presence of other phenols.

  7. Automatic Supported Liquid Extraction (SLE) Coupled with HILIC-MS/MS: An Application to Method Development and Validation of Erlotinib in Human Plasma

    PubMed Central

    Pan, Jiongwei; Jiang, Xiangyu; Chen, Yu-Luan

    2010-01-01

    A novel bioanalytical method was developed and validated for the quantitative determination of erlotinib in human plasma by using the supported liquid extraction (SLE) sample cleanup coupled with hydrophilic interaction liquid chromatography and tandem mass spectrometric detection (HILIC-MS/MS). The SLE extract could be directly injected into the HILIC-MS/MS system for analysis without the solvent evaporation and reconstitution steps. Therefore, the method is simple and rapid. In the present method, erlotinib-d6 was used as the internal standard. The SLE extraction recovery was 101.3%. The validated linear curve range was 2 to 2,000 ng/mL based on a sample volume of 0.100-mL, with a linear correlation coefficient of > 0.999. The validation results demonstrated that the present method gave a satisfactory precision and accuracy: intra-day CV < 5.9% (<8.4% for the lower limit of quantitation, LLOQ) with n = 6 and the accuracy of 98.0–106.0%; inter-day CV < 3.2% (<1.5% for LLOQ) with n = 18 and the accuracy of 100.0–103.2%. A dilution factor of 10 with blank plasma was validated for partial volume analysis. The stability tests indicated that the erlotinib in human plasma is stable for three freeze-thaw cycles (100.0–104.5% of the nominal values), or 24-h ambient storage (100.0–104.8% of the nominal values), or 227-day frozen storage at both -20 °C (91.5–94.5% of the nominal values) and -70 °C (93.3–93.8% of the nominal values). The results also showed no significant matrix effect (<6.3%) even with direct injection of organic extract into the LC-MS/MS system. The validated method has been successfully applied to support a clinical study.

  8. Microfunnel-supported liquid-phase microextraction: application to extraction and determination of Irgarol 1051 and diuron in the Persian Gulf seawater samples.

    PubMed

    Saleh, Abolfazl; Sheijooni Fumani, Neda; Molaei, Saeideh

    2014-08-22

    In the present work, microfunnel-supported liquid-phase microextraction method (MF-LPME) based on applying low density organic solvent was developed for the determination of antifoulings (Irgarol 1051, diuron and 3,4-dichloroaniline) from seawater samples. In this method, home-designed MF device was used for facile loading and retrieving of organic solvent during the extraction procedure. The extraction was carried out with introduction of 400 μL of toluene via syringe into the MF device placed on the surface of sample solution (300 mL) containing analytes. After the extraction, extractant layer was narrowed into the capillary part of MF by pushing the device inside the sample and withdrawn by using a syringe to evaporate by nitrogen purging. The residual redissolved into 50 μL methanol, diluted to 100 μL with deionized water and injected into the high performance liquid chromatography with UV detection (HPLC-UV). Several factors influencing the extraction such as the type and volume of extraction solvent, sample pH, extraction time and ionic strength were investigated and optimized. Under the optimized conditions, the limits of detection in seawater were 1.4, 4.8 and 1.0 ng L(-1) for 3,4-dichloroaniline (DCA), diuron and Irgarol 1051, respectively. Enrichment factors were obtained 333, 150 and 373 for DCA, diuron and Irgarol 1051, respectively. The precision of the technique was evaluated in terms of repeatability which was less than 12.0% (n=5). The applicability of the proposed method was evaluated by the extraction and determination of antifoulings from seawater samples collected from harbors of Bushehr located in northern Persian Gulf coast. PMID:25016323

  9. Influence of Sulfur on the Carbon Deposition in Liquid Hydrocarbon Steam Reforming over CeO2-Al2O3 supported Ni and Rh Catalysts

    SciTech Connect

    C Xie; Y Chen; Y Li; X Wang; C Song

    2011-12-31

    This study was performed to elucidate the influence of sulfur on the carbon deposition in steam reforming of liquid hydrocarbons over CeO{sub 2}-Al{sub 2}O{sub 3} supported Ni and Rh catalysts at 800 C. The characteristics of the carbon deposits on the used catalysts after the reactions without and with sulfur were investigated by temperature-programmed oxidation (TPO), transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM), temperature-programmed hydrogenation (TPH), X-ray absorption near edge structure (XANES), and scanning electron microscopy (SEM). Though abundant carbon deposits can accumulate on the pure CeO{sub 2}-Al{sub 2}O{sub 3} support due to fuel thermal cracking, the addition of Ni or Rh metal greatly reduced the carbon deposition in the sulfur-free reaction. The presence of sulfur increased the carbon deposition on both catalysts, which has a much more significant impact for the Ni catalyst. Carbon XANES study on the used catalysts revealed that graphitic carbon was dominant in the presence of sulfur, while oxidized carbon species (quinone-like carbon, carboxyl and carbonate) prevailed without sulfur. Meanwhile, the formation of carboxyl and carbonate more dramatically dropped on the Ni catalyst than that on the Rh catalyst. Our results strongly suggest that (I) the presence of sulfur can suppress carbon gasification and promote the formation of graphitic carbon on reforming catalysts due mainly to its poisoning effect on metals, and (II) Rh catalyst possesses stronger capability to maintain carbon gasification activity than Ni catalyst in the presence of sulfur.

  10. An ultrasensitive lysozyme chemiluminescence biosensor based on surface molecular imprinting using ionic liquid modified magnetic graphene oxide/β-cyclodextrin as supporting material.

    PubMed

    Duan, Huimin; Wang, Xiaojiao; Wang, Yanhui; Sun, Yuanling; Li, Jianbo; Luo, Chuannan

    2016-04-28

    In this work, ionic liquid modified Fe3O4@dopamine/graphene oxide/β-cyclodextrin (ILs-Fe3O4@DA/GO/β-CD) was used as supporting material to synthesize surface molecularly imprinted polymer (SMIP) which then was introduced into chemiluminescence (CL) to achieve an ultrasensitive and selective biosensor for determination of lysozyme (Lys). ILs and β-CD was applied to provide multiple binding sites to prepare Lys SMIP and Fe3O4@DA was designed to make the product separate easily and prevent the aggregation of GO which could improve absorption capacity for its large specific surface area. The ILs-Fe3O4@DA/GO/β-CD-SMIP showed high adsorption capacity (Q = 101 mg/g) to Lys in the adsorption isotherm assays. The adsorption equilibrium was reached within 10 min for all the concentrations, attributing to the binding sites situated exclusively at the surface, and the adsorption model followed Langmuir isotherm. Under the suitable CL conditions, the proposed biosensor could response Lys linearly in the range of 1.0 × 10(-9)-8.0 × 10(-8) mg/mL with a detection limit of 3.0 × 10(-10) mg/mL. When used in practical samples in determination of Lys, the efficient biosensor exhibited excellent result with the recoveries ranging from 94% to 112%. PMID:27046214

  11. Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC).

    PubMed

    Kuligowski, Julia; Sánchez-Illana, Ángel; Sanjuán-Herráez, Daniel; Vento, Máximo; Quintás, Guillermo

    2015-11-21

    Instrumental developments in sensitivity and selectivity boost the application of liquid chromatography-mass spectrometry (LC-MS) in metabolomics. Gradual changes in the LC-MS instrumental response (i.e. intra-batch effect) are often unavoidable and they reduce the repeatability and reproducibility of the analysis, decrease the power to detect biological responses and hinder the interpretation of the information provided. Because of that, there is interest in the development of chemometric techniques for the post-acquisition correction of batch effects. In this work, the use of quality control (QC) samples and support vector regression (QC-SVRC) and a radial basis function kernel is proposed to correct intra-batch effects. The repeated analysis of a single sample is used for the assessment of both the correction accuracy and the effect of the distribution of QC samples throughout the batch. The QC-SVRC method is evaluated and compared with a recently developed method based on QC samples and robust cubic smoothing splines (QC-RSC). The results show that QC-SVRC slightly outperformed QC-RSC and allows a straightforward fitting of the SVRC parameters to the instrument performance by using the ε-insensitive loss parameter. PMID:26462549

  12. A biological method of including mineralized human liquid and solid wastes into the mass exchange of bio-technical life support systems

    NASA Astrophysics Data System (ADS)

    Ushakova, S. A.; Tikhomirov, A. A.; Tikhomirova, N. A.; Kudenko, Yu. A.; Litovka, Yu. A.; Anishchenko, O. V.

    2012-10-01

    The main obstacle to using mineralized human solid and liquid wastes as a source of mineral elements for plants cultivated in bio-technical life support systems (BLSS) is that they contain NaCl. The purpose of this study is to determine whether mineralized human wastes can be used to prepare the nutrient solution for long-duration conveyor cultivation of uneven-aged wheat and Salicornia europaea L. plant community. Human solid and liquid wastes were mineralized by the method of "wet incineration" developed by Yu. Kudenko. They served as a basis for preparing the solutions that were used for conveyor-type cultivation of wheat community represented by 5 age groups, planted with a time interval of 14 days. Wheat was cultivated hydroponically on expanded clay particles. To reduce salt content of the nutrient solution, every two weeks, after wheat was harvested, 12 L of solution was removed from the wheat irrigation tank and used for Salicornia europaea cultivation in water culture in a conveyor mode. The Salicornia community was represented by 2 age groups, planted with a time interval of 14 days. As some portion of the nutrient solution used for wheat cultivation was regularly removed, sodium concentration in the wheat irrigation solution did not exceed 400 mg/L, and mineral elements contained in the removed portion were used for Salicornia cultivation. The experiment lasted 4 months. The total wheat biomass productivity averaged 30.1 g · m-2 · day-1, and the harvest index amounted to 36.8%. The average productivity of Salicornia edible biomass on a dry weight basis was 39.3 g · m-2 · day-1, and its aboveground mass contained at least 20% of NaCl. Thus, the proposed technology of cultivation of wheat and halophyte plant community enables using mineralized human wastes as a basis for preparing nutrient solutions and including NaCl in the mass exchange of the BLSS; moreover, humans are supplied with additional amounts of leafy vegetables.

  13. Liquid level sensing device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A liquid level sensing device comprising a load cell supporting a column or stack of segments freely resting on one another. The density of each element is substantially identical to that of the surrounding liquid. The elements are freely guided within a surrounding tube. As each element is exposed above the liquid level, its weight will be impressed through the column to the load cell, thereby providing a signal at the load cell directly proportional to the liquid level elevation.

  14. Speciation Analysis of Labile and Total Silver(I) in Nanosilver Dispersions and Environmental Waters by Hollow Fiber Supported Liquid Membrane Extraction.

    PubMed

    Chao, Jing-Bo; Zhou, Xiao-Xia; Shen, Mo-Hai; Tan, Zhi-Qiang; Liu, Rui; Yu, Su-Juan; Wang, Xiao-Wei; Liu, Jing-Fu

    2015-12-15

    Hollow fiber supported liquid membrane (HFSLM) extraction was coupled with ICP-MS for speciation analysis of labile Ag(I) and total Ag(I) in dispersions of silver nanoparticles (AgNPs) and environmental waters. Ag(I) in aqueous samples was extracted into the HFSLM of 5%(m/v) tri-n-octylphosphine oxide in n-undecane, and stripped in the acceptor of 10 mM Na2S2O3 and 1 mM Cu(NO3)2 prepared in 5 mM NaH2PO4-Na2HPO4 buffer (pH 7.5). Negligible depletion and exhaustive extraction were conducted under static and 250 rpm shaking to extract the labile Ag(I) and total Ag(I), respectively. The extraction equilibration was reached in 8 h for both extraction modes. The extraction efficiency and detection limit were (2.97 ± 0.25)% and 0.1 μg/L for labile Ag(I), and (82.3 ± 2.0)% and 0.5 μg/L for total Ag(I) detection, respectively. The proposed method was applied to determine labile Ag(I) and total Ag(I) in different sized AgNP dispersions and real environmental waters, with spiked recoveries of total Ag(I) in the range of 74.0-98.1%. With the capability of distinguishing labile and total Ag(I), our method offers a new approach for evaluating the bioavailability and understanding the fate and toxicity of AgNPs in aquatic systems. PMID:26580982

  15. In silico and in vitro metabolism studies support identification of designer drugs in human urine by liquid chromatography/quadrupole-time-of-flight mass spectrometry.

    PubMed

    Tyrkkö, Elli; Pelander, Anna; Ketola, Raimo A; Ojanperä, Ilkka

    2013-08-01

    Human phase I metabolism of four designer drugs, 2-desoxypipradrol (2-DPMP), 3,4-dimethylmethcathinone (3,4-DMMC), α-pyrrolidinovalerophenone (α-PVP), and methiopropamine (MPA), was studied using in silico and in vitro metabolite prediction. The metabolites were identified in drug abusers’ urine samples using liquid chromatography/quadrupole-time-of-flight mass spectrometry (LC/Q-TOF/MS). The aim of the study was to evaluate the ability of the in silico and in vitro methods to generate the main urinary metabolites found in vivo. Meteor 14.0.0 software (Lhasa Limited) was used for in silico metabolite prediction, and in vitro metabolites were produced in human liver microsomes (HLMs). 2-DPMP was metabolized by hydroxylation, dehydrogenation, and oxidation, resulting in six phase I metabolites. Six metabolites were identified for 3,4-DMMC formed via N-demethylation, reduction, hydroxylation, and oxidation reactions. α-PVP was found to undergo reduction, hydroxylation, dehydrogenation, and oxidation reactions, as well as degradation of the pyrrolidine ring, and seven phase I metabolites were identified. For MPA, the nor-MPA metabolite was detected. Meteor software predicted the main human urinary phase I metabolites of 3,4-DMMC, α-PVP, and MPA and two of the four main metabolites of 2-DPMP. It assisted in the identification of the previously unreported metabolic reactions for α-PVP. Eight of the 12 most abundant in vivo phase I metabolites were detected in the in vitro HLM experiments. In vitro tests serve as material for exploitation of in silico data when an authentic urine sample is not available. In silico and in vitro designer drug metabolism studies with LC/Q-TOF/MS produced sufficient metabolic information to support identification of the parent compound in vivo. PMID:23797910

  16. Halophytic plants as a component of a bioregenerative life support system for recycling of NaCl contained in human liquid waste.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    Currently, the closure of matter turnover is one of the urgent problems of bioregenerative life support system (BLSS) designing. The important aspect of the problem is involving of substances contained in liquid and solid exometabolites of humans inhabiting BLSS into intrasystem matter turnover. Recycling of Na+ and Cl- contained in human liquid exometabolites, i.e. urine is acknowledged to be among the main tasks of the matter turnover in BLSS. The ions excreted with urine may be returned to human organism with food. A way to allow this is including edible halophytic plants into the phototrophic compartment of BLSS. Halophytes are defined as plants which can grow on saline soils and produce high biomass under these conditions. Some halophytes can take up high quantities of Na+ and Cl- and accumulate the ions in the shoots or extrude them to leaf surface by means of salt glands. To allow Na+ and Cl- recycling through halophyte utilization, the following principal steps should be accomplished: (i) mineralization of the exometabolites by physicochemical methods; (ii) oxidation of ammonia formed during the exometabolite mineralization to nitrate by nitrifying bacteria, (iii) growing the halophyte on the nutrient solution prepared on the basis of the mineralized exometabolites, (iv) introducing the halophyte green biomass into human food. The present work is devoted to the following problems: (i) selection of a salt-accumulating/extruding halophytic plant suitable for Na+ and Cl- recycling in BLSS and (ii) parameter evaluation of a plant conveyor containing the halophytic plants at various ages. Halophytic plants selected for BLSS should meet the following criteria: (i) ability to grow under 24-hour-illumination, (ii) high productivity, (iii) ability to accumulate Na+ and Cl- in high quantities in shoots or to excrete salts to leaf surface, (iv) edibility, and (v) high nutritive value of the biomass. Relying on these criteria, salt-accumulating halophyte Salicornia europaea was selected from seven halophytic plant candidates, preliminary chosen from observations in their natural habitats, from our previous investigations and literature data. Characterization of the plant performance was obtained in the experiments on plants grown in water culture in a cultivation chamber under controlled conditions. A model nutrient solution simulating mineralized urine was used for halophyte growing. Under the experimental conditions, S.europaea exhibited high productivity and accumulated Na+ and Cl- in the shoots in high quantities. It has been shown that above-ground organs of S.europaea exhibit high nutritive value, the proteins are enriched with the essential amino acids and displayed high abundance of leucine, aspartic and glutamic acids. The results demonstrate that it is feasible to put into practice permanent Na+ and Cl- recycling in BLSS by a various-aged S.europaea conveyor. Relying on data on distribution of Na+ and Cl- between the plant and growth medium, parameters of the conveyor for permanent ion turnover in the system humans - exometabolites - nutrient solution - S.europaea - humans have been evaluated.

  17. High-Surface-Area CO2 Sponge: High Performance CO2 Scrubbing Based on Hollow Fiber-Supported Designer Ionic Liquid Sponges

    SciTech Connect

    2010-09-01

    IMPACCT Project: The team from ORNL and Georgia Tech is developing a new technology that will act like a sponge, integrating a new, alcohol-based ionic liquid into hollow fibers (magnified image, right) to capture CO2 from the exhaust produced by coal-fired power plants. Ionic liquids, or salts that exist in liquid form, are promising materials for carbon capture and storage, but their tendency to thicken when combined with CO2 limits their efficiency and poses a challenge for their development as a cost-effective alternative to current-generation solutions. Adding alcohol to the mix limits this tendency to thicken in the presence of CO2 but can also make the liquid more likely to evaporate, which would add significantly to the cost of CO2 capture. To solve this problem, ORNL is developing new classes of ionic liquids with high capacity for absorbing CO2. ORNL’s sponge would reduce the cost associated with the energy that would need to be diverted from power plants to capture CO2 and release it for storage.

  18. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of the conveyor. Thus, during the first 56-d period, the plants grew only in the fresh nutrient solution, whereas during the second 56-d period, the worked out nutrient solutions were being returned into the cycle having been added to the growth vessels along with the fresh SSMU. Growth characteristics, water and ionic relations of S. europaea plants, balance of nutrients between organs and growth media for the first and second 56-d periods of the conveyor operation are presented. There was no significant difference in the rates of shoot biomass production during the first and the second periods. The plants were producing shoot biomass with the rates close to those observed under optimal conditions. However, substantial increase in root biomass production (by 50% on the dry mass basis) was observed in the second period as compared with the first one. Decrease in organ water contents on the dry mass basis (by 13% and 30% for shoots and roots, respectively) and transpiration rates (by 25%) occurred also in the second period as compared with the first one. Measurements of Na+ , Cl- and nutrient contents in the growth media and plant organs and calculation of their balances showed that the plants did not suffer from a deficiency of nutrients during the 112 days of the conveyor operation while accumulating required NaCl amounts. Observed root proliferation and deterioration of water relations in the second 56-d period of the conveyor operation may be caused by toxic plant metabolites exuded by roots into the growth medium.

  19. Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids

    SciTech Connect

    Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Brown, G.N.; Bryan, S.A.; Carlson, C.D.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kim, A.Y.

    1994-12-01

    Hanford`s 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of {sup 137}Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve {sup 137}Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m{sup 3} and (2) 1/10th of the NRC Class A limit of 1 Ci/m{sup 3} i.e., 0.1/m{sup 3}. The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified.

  20. Ionic liquid supported on an electrodeposited polycarbazole film for the headspace solid-phase microextraction and gas chromatography determination of aromatic esters.

    PubMed

    Feng, Yuanyuan; Zhao, Faqiong; Zeng, Baizhao

    2015-05-01

    A polycarbazole film was electrodeposited on a stainless-steel wire from a solution of N,N-dimethylformamide/propylene carbonate (1:9 v/v) containing 0.10 M carbazole and 0.10 M tetrabutylammonium perchlorate. The obtained polycarbazole fiber was immersed into an ionic liquid (1-hydroxyethyl-3-methyl imidazolium bis[(trifluoromethyl)sulfonyl]imide) solution (in dimethylsulfoxide) for 30 min, followed by drying under an infrared lamp. The resulting polycarbazole/ionic liquid fiber was applied to the headspace solid-phase microextraction and determination of aromatic esters by coupling with gas chromatography and flame ionization detection. Under the optimized conditions, the limits of detection were below 61 ng/L (S/N = 3) and the linear ranges were 0.061-500 μg/L with correlation coefficients above 0.9876. The relative standard deviations were below 4.8% (n = 5) for a single fiber, and below 9.9% for multi-fiber (n = 4). This fiber also exhibited good stability. It could be used for more than 160 times of headspace solid-phase microextraction and could withstand a high temperature up to 350°C. PMID:25676087

  1. An Improved Method for the Separation of Lead-210 from Ra-DEF for Radioactive Equilibrium Experiments: Microscale Liquid-Liquid Extraction Using a Polymer-Supported Crown Ether

    NASA Astrophysics Data System (ADS)

    Dietz, Mark L.; Horwitz, E. Philip

    1996-02-01

    A novel extraction chromatographic material, comprised of a solution of a lead-selective macrocyclic polyether (di-t-butylcyclohexano-18-crown-6) in isodecanol sorbed on an inert polymeric support, is shown to provide a rapid and simple means for the separation of lead-210 from its daughter products for subsequent radiochemical experimentation.

  2. 3D-printed polylactic acid supports for enhanced ionization efficiency in desorption electrospray mass spectrometry analysis of liquid and gel samples.

    PubMed

    Elviri, Lisa; Foresti, Ruben; Bianchera, Annalisa; Silvestri, Marco; Bettini, Ruggero

    2016-08-01

    The potential of 3D printing technology was here exploited to prepare tailored polylactic acid (PLA) supports for desorption electrospray ionization (DESI) experiments. PLA rough solid supports presenting wells of different shape (i.e. cylindrical, cubic and hemispherical cavities) were designed to accommodate samples of different physical state. The potentials of such supports in terms of sample loading capacity, sensitivity, signal stability were tested by analysing a peptide (i.e. insulin) and an aminoglycoside antibiotic (i.e. gentamicin sulphate) from solution and a chitosan-based gel. The results obtained were compared with those obtained by using a traditional polytetrafluoroethylene (PTFE) support and discussed. By using PLA support on the flat side, signal intensity improved almost twice with respect to PTFE support, whereas with spherical wells a five times improved signal sensitivity and good stability (RSD<6%) were obtained for the analysis of two model molecules. Limits of detection were in the 3-10nM range and linearity was demonstrated for both analytes in the 0.05-0.5μM range for semi-quantitative or quantitative purposes. The use of a well and the set-up of optimal source parameters allowed the analysis of samples in a gel state with good precision (RSD<10%) and accuracy (86±6-102±9%), otherwise difficult to analyse on a flat smooth surface. These findings are of great interest and stimulus to exploit the advantages of 3D printing technology for the development of devices for a DESI source, presenting different shapes or configuration as a function of the sample types. PMID:27216689

  3. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    SciTech Connect

    MACKEY TC; ABBOTT FG; CARPENTER BG; RINKER MW

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  4. Interionic Interactions in Imidazolium-Based Ionic Liquids: The Role of the C2-Position Revealed by Raman Scattering and Supported by IR and NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Noack, Kristina; Paape, Natalia; Kiefer, Johannes; Wasserscheid, Peter; Leipertz, Alfred

    2010-08-01

    Intermolecular interactions determine the state of aggregation of a substance at given temperature. Based on that, changes in intermolecular interactions can lead to microscopic reordering which may be observed macroscopically in terms of altered physicochemical properties. Especially, when chemicals are employed in technical processes, it is important to control and regulate their properties to guarantee product quality. A special group of chemical substances increasingly gaining interest in the field of chemical and process engineering are room temperature ionic liquids (RTILs). In general, RTILs are organic salts with melting points "below the boiling point of water". The variety of possible combinations of cations and anions lead to a wide range of chemical and thermo-physical properties. In fact, it is possible to tune their properties by adjusting the ratio of Coulomb and van der Waals interactions. However, because it is hardly possible to investigate a reasonable fraction of the potential cation-anion combinations, a molecular-based understanding of their properties is crucial to make a rational design possible. In this regard vibrational spectroscopy has proven to be very beneficial for structural analysis and the investigation of interionic and intermolecular interactions. Therein, especially Raman spectroscopy shows a significant advantage of being insensitive to water interference and it is widely applied in the field of ionic liquids. Among others the 1-alkyl-3-methylimidazolium [RMIM] based ILs have been employed as model ILs in structural analysis, and most vibrational studies available in literature have been carried out investigating this kind of ILs. In contrast, spectroscopic data and calculations of C2-methylated 1,2-dialkyl-3-methylimidazolium based ILs, are available to a much lesser extend. The substitution in the C2 position in those ILs disrupts the main hydrogen-bonding interaction between the cation and the anion and is expected to lead to lower melting points and reduced viscosities. However, in contrast to the intuitively expected behavior, e.g., in the case of 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, [EMMIM][Tf2N], the viscosity turned out to be about three times higher than that of [EMIM][Tf2N]. This emphasizes the need for further investigation.

  5. Liquid phase methanol LaPorte process development unit: Modification operation, and support studies. Task 3.6/3.7: Alternative catalyst/life run

    SciTech Connect

    Not Available

    1991-01-28

    In April 1987, Air Products started the third and final contract with the US Department of Energy to develop the Liquid Phase Methanol (LPMEOH) process. One of the objectives was to identify alternative commercial catalyst(s) for the process. This objective was strategically important as we want to demonstrate that the LPMEOH process is flexible and not catalyst selection limited. Among three commercially available catalysts evaluated in the lab, the catalyst with a designation of F21/0E75-43 was the most promising candidate. The initial judging criteria included not only the intrinsic catalyst activity but also the ability to be used effectively in a slurry reactor. The catalyst was then advanced for a 40-day life test in a laboratory 300 cc autoclave. The life test result also revealed superior stability when compared with that of a standard catalyst. Consequently, the new catalyst was recommended for demonstration in the Process Development Unit (PDU) at LaPorte, Texas. This report details the methodology of testing and selecting the catalyst.

  6. Effect of content of chiral selector and pore size of core-shell type silica support on the performance of amylose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phases in nano-liquid chromatography and capillary electrochromatography.

    PubMed

    Rocchi, Silvia; Fanali, Salvatore; Farkas, Tivadar; Chankvetadze, Bezhan

    2014-10-10

    In this study the separation performance of various chiral stationary phases (CSPs) made of polysaccharide-based chiral selectors coated onto superficially porous (core-shell or fused-core) silica supports were evaluated. The CSPs obtained by coating of various amounts of chiral selector (1-5%) onto supports of various pore size (100 and 300 Å) were studied. Their evaluation was pursued in both chiral nano-liquid chromatography (nano-LC) and chiral capillary electrochromatography (CEC). Among the goals of this study was to re-examine our previous unexpected finding of better performance of superficially porous CSP under CEC conditions compared to nano-LC conditions for a new set of chiral compounds, as well as to study the effect of varying the chiral selector content and nominal pore size of supporting silica on the performance of core-shell silica-based polysaccharide-type CSPs. Based on the results of this study it can be seen that CSPs based on superficially porous silica can successfully be used for the separation of enantiomers in both nano-LC and CEC mode. Only a slight advantage of CEC over nano-LC mode was observed in this study from the viewpoint of plate numbers, especially at higher mobile phase flow rates. It must also be noted that the optimal theoretical plate height is still too high and further optimization of superficially porous CSPs is necessary for both nano-LC and CEC applications. PMID:24908153

  7. Evaluation of the measurement of Cu(II) bioavailability in complex aqueous media using a hollow-fiber supported liquid membrane device (HFSLM) and two microalgae species (Pseudokirchneriella subcapitata and Scenedesmus acutus).

    PubMed

    Rodríguez-Morales, Erik A; Rodríguez de San Miguel, Eduardo; de Gyves, Josefina

    2015-11-01

    The environmental bioavailability of copper was determined using a hollow-fiber supported liquid membrane (HFSLM) device as a chemical surrogate and two microalgae species (Scenedesmus acutus and Pseudokirchneriella subcapitata). Several experimental conditions were studied: pH, the presence of organic matter, inorganic anions, and concomitant cations. The results indicated a strong relationship between the response given by the HFSLM and the microalgae species with free copper concentrations measured by an ion selective electrode (ISE), in accordance with the free-ion activity model (FIAM). A significant positive correlation was evident when comparing the bioavailability results measured by the HFSLM and the S. acutus microalga species, showing that the synthetic device may emulate biological uptake and, consequently, be used as a chemical test for bioavailability measurements using this alga as a biological reference. PMID:26431807

  8. A supported liquid extraction-LC-MS/MS method for determination of GDC-0980 (Apitolisib), a dual small-molecule inhibitor of class 1A phosphoinositide 3-kinase and mammalian target of rapamycin, in human plasma.

    PubMed

    Ding, X; Li, F; McKnight, J; Schmidt, C; Strooisma, K; Shimizu, H; Faber, K; Ware, J A; Dean, B

    2014-11-01

    A liquid chromatographic-tandem mass spectrometry (LC-MS/MS) method for the determination of GDC-0980 (Apitolisib) concentrations in human plasma has been developed and validated to support clinical development. Supported liquid extraction (SLE) was used to extract plasma samples (80μL) and the resulting samples were analyzed using reverse-phase chromatography and mass spectrometry coupled with a turbo-ionspray interface. The mass analysis of GDC-0980 was performed using multiple reaction monitoring (MRM) transitions in positive ionization mode. The method was validated over the calibration curve range 0.0500-25.0ng/mL using linear regression and 1/x(2) weighting. Within-run relative standard deviation (%RSD) ranged from 0.4 to 3.9%, while the between-run %RSD varied from 1.1 to 1.5% for QCs. The accuracy ranged from 96.1% to 106.7% of nominal for within-run and 96.7-106.7% of nominal for between-run at all concentrations including the LLOQ quality control at 0.0500ng/mL. Extraction recovery of GDC-0980 was between 72.4% and 75.5%. Stability of GDC-0980 was established in human plasma for 547 days at -20°C and -70°C and established in reconstituted sample extracts for 146h when stored at 2-8°C. Stable-labeled internal standard was used to minimize matrix effects. Mean pharmacokinetic parameters determined using this method for the day 1 control group in a phase I trial were: Cmax=11.1ng/mL, AUC0-inf=108ngh/mL, and T1/2=13.1h. PMID:25165011

  9. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  10. Recent development of ionic liquid stationary phases for liquid chromatography.

    PubMed

    Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang

    2015-11-13

    Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. PMID:26463427

  11. EXPERIMENTAL LIQUID METAL FUEL REACTOR

    DOEpatents

    Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.

    1962-01-23

    A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)

  12. Efficient transport of Am(III) from nitric acid medium using a new conformationally constrained (N,N,N',N'-tetra-2-ethylhexyl)7-oxabicyclo[2.2.1]heptane-2,3-dicarboxamide across a supported liquid membrane.

    PubMed

    Sharma, S; Panja, S; Ghosh, S K; Dhami, P S; Gandhi, P M

    2016-03-15

    Am(III) is one of the most hazardous radionuclide present in nuclear fuel cycle. A new conformationally constrained diamide, (N,N,N',N'-tetra-2-ethylhexyl)7-oxabicyclo[2.2.1]heptane-2,3-dicarboxamide (OBDA) was studied for Am(III) transport from HNO3 medium across a Supported Liquid Membrane. Transport rate was observed to be significantly fast with ∼95% transport of Am(III) within 1h using 0.1M OBDA in the presence of 15% isodecyl alcohol (IDA)/n-dodecane as carrier. The mechanism of transport was investigated by studying various parameters like feed HNO3/NaNO3 concentration, OBDA concentration in the membrane, membrane pore size, membrane thickness etc. From these studies, the mechanism of transport was found to be diffusion controlled with diffusion co-efficient value of 5.1×10(-6)cm(2)/s. The membrane was found to be highly selective for tri- and tetra-valent actinides, and trivalent lanthanides. OBDA based membrane was found to be stable for at least for ten consecutive cycles of operation. PMID:26685064

  13. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  14. Liquid penetrants

    NASA Technical Reports Server (NTRS)

    Pasley, R. L.

    1973-01-01

    Liquid-penetrant inspection is discussed for surface defects in solids. The principle advantages are considered to be its simplicity and economy. The techniques and penetrants are described along with the developers. Commercially available equipment is also described.

  15. PREFACE: Functionalized Liquid Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael

    2007-09-01

    Most natural processes take place at interfaces. For this reason, surface science has been a focal point of modern research. At solid-liquid interfaces one can induce various species to adsorb or react, and thus may study interactions between the substrate and adsorbates, kinetic processes, optical properties, etc. Liquid-liquid interfaces, formed by immiscible liquids such as water and oil, have a number of distinctive features. Both sides of the interface are amenable to detailed physical and chemical analysis. By chemical or electrochemical means, metal or semiconductor nanoparticles can be formed or localised at the interface. Surfactants can be used to tailor surface properties, and also to place organic molecular or supermolecular constructions at the boundary between the liquids. Electric fields can be used to drive ions from one fluid to another, or even change the shape of the interface itself. In many cases, both liquids are optically transparent, making functionalized liquid-liquid interfaces promising for various optical applications based on the transmission or reflection of light. An advantage common to most of these systems is self-assembly; because a liquid-liquid interface is not mechanically constrained like a solid-liquid interface, it can easily access its most stable state, even after it has been driven far from equilibrium. This special issue focuses on four modes of liquid-liquid interfacial functionalization: the controlled adsorption of molecules or nanoparticles, the formation of adlayers or films, electrowetting, and ion transfer or interface-localized reactions. Interfacial adsorption can be driven electrically, chemically, or mechanically. The liquid-liquid interface can be used to study how anisotropic particles orient at a surface under the influence of a field, how surfactants interact with other adsorbates, and how nanoparticles aggregate; the transparency of the interface also makes the chirality of organic adsorbates amenable to optical study. Film formation goes a step beyond adsorption; some surfactants form monolayers or multilayers at the interface. A polymer microfilm or a polymer-particle matrix can be synthesized at the liquid-liquid boundary. Such films exhibit unique adsorption and ion-intercalation properties of their own. Electrowetting refers broadly to the phenomenon in which an applied voltage modulates the shape of a liquid-liquid interface, essentially by altering the surface tension. Electric fields can be used to induce droplets on solid substrates to change shape, or to affect the structure of liquid-liquid emulsions. Various chemical reactions can be performed at the liquid-liquid boundary. Liquid-liquid microelectrodes allow detailed study of ion-transfer kinetics at the interface. Photochemical processes can also be used to control the conformations of molecules adsorbed at the interface. But how much precise control do we actually have on the state of the interfacial region? Several contributions to this issue address a system which has been studied for decades in electrochemistry, but remains essentially unfamilar to physicists. This is the interface between two immiscible electrolytic solutions (ITIES), a progressing interdisciplinary field in which condensed-matter physics and physical chemistry meet molecular electrochemistry. Why is it so exciting? The reason is simple. The ITIES is chargeable: when positioned between two electrodes it can be polarized, and back- to-back electrical double layers form on both sides of the liquid-liquid interface. Importantly, the term immiscible refers not only to oil and water but also to the electrolytes. Inorganic electrolytes, such as alkali halides, tend to stay in water, whereas organic electrolytes, such as tetrabutylammonium tetraphenylborate, stay in oil. This behaviour arises because energies of the order of 0.2-0.3 eV are needed to drive ions across the interface. As long as these free energies of transfer are not exceeded by the external potential bias, the ITIES works as an 'electrode'; there is no traffic of ions across it. Thus the interface can sustain fields of the order of 106 V/cm, which are localized in a nanoscopic layer near the interface. This gives many new options for building various kinds of electrically tunable self assembled moloecular devices. Through the years, ITIES have been considered by electrochemists as a popular biomimetic model system, or for studies of interfacial reaction kinetics; ITIES were also used in industrial phase-transfer catalysis. Recently, this system has opened up new options for nano-scale engineering of functional assemblies (for dense information storage, efficient energy conversion, light-harvesting, and miniaturized sensors), which justifies its presentation in this issue.

  16. Sulfur poisoning of CeO[subscript 2]-Al[subscript 2]O[subscript 3]-supported mono- and bi-metallic Ni and Rh catalysts in steam reforming of liquid hydrocarbons at low and high temperatures

    SciTech Connect

    Xie, Chao; Chen, Yongsheng; Li, Yan; Wang, Xiaoxing; Song, Chunshan

    2010-12-01

    In order to develop a better understanding on sulfur poisoning of reforming catalysts in fuel processing for hydrogen production, steam reforming of liquid hydrocarbons was performed over CeO{sub 2}-Al{sub 2}O{sub 3} supported monometallic Ni and Rh and bimetallic Rh-Ni catalysts at 550 and 800 C. XANES was used to identify the sulfur species in the used catalysts and to study their impacts on the metal surface properties probed by XPS. It was found that both monometallic catalysts rapidly deactivated at 550 C, and showed poor sulfur tolerance. Although ineffective for the Ni catalyst, increasing the temperature to 800 C dramatically improved the sulfur tolerance of the Rh catalyst. XANES revealed that metal sulfide and organic sulfide are the dominant sulfur species on the used Ni catalyst, while sulfonate and sulfate predominate on the used Rh catalyst. The presence of sulfur induced severe carbon deposition on the Ni catalyst at 800 C. The superior sulfur tolerance of the Rh catalyst at 800 C may be associated with its capability in sulfur oxidation. It is likely that the formation of the oxygen-shielded sulfur structure of sulfonate and sulfate can suppress the poisoning impact of sulfur on Rh by inhibiting direct rhodium-sulfur interaction. Moreover, XPS indicated that the metal surface properties of the Rh catalysts after the reaction without and with sulfur at 800 C are similar, suggesting that sulfur poisoning on Rh was mitigated under the high-temperature condition. Although the Rh-Ni catalyst exhibited better sulfur tolerance than the monometallic catalysts at 550 C, its catalytic performance was inferior compared with the Rh catalyst in the sulfur-containing reaction at 800 C probably due to the severe carbon deposition on the bimetallic catalyst.

  17. Liquid Crystals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  18. Method for treating liquid wastes

    DOEpatents

    Katti, Kattesh V.; Volkert, Wynn A.; Singh, Prahlad; Ketring, Alan R.

    1995-01-01

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

  19. Method for treating liquid wastes

    DOEpatents

    Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

    1995-12-26

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

  20. Macromolecular liquids

    SciTech Connect

    Safinya, C.R.; Safran, S.A. ); Pincus, P.A. )

    1990-01-01

    Liquids include a broad range of material systems which are of high scientific and technological interest. Generally speaking, these are partially ordered or disordered phases where the individual molecular species have organized themselves on length scales which are larger than simple fluids, typically between 10 Angstroms and several microns. The specific systems reported on in this book include membranes, microemulsions, micelles, liquid crystals, colloidal suspensions, and polymers. They have a major impact on a broad spectrum of technological industries such as displays, plastics, soap and detergents, chemicals and petroleum, and pharmaceuticals.

  1. Liquid ventilation.

    PubMed

    Sarkar, Suman; Paswan, Anil; Prakas, S

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported. PMID:25886321

  2. Steam generator support system

    DOEpatents

    Moldenhauer, James E.

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  3. Steam generator support system

    DOEpatents

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  4. Liquid-liquid driven cavity flow

    SciTech Connect

    Mansell, G.; Walter, J.; Marschall, E. )

    1994-02-01

    Liquid-liquid driven cavity flow was studied numerically. Information on [open quotes]realistic[close quotes] liquid-liquid interface conditions were obtained from photochromic flow visualization experiments. With this input, numerically obtained flow fields agreed well with experimentally observed flow fields. A parametric numerical study showed the influence of various parameters on the behavior of interface velocity and tangential shear stress gradient in the vicinity of the liquid-liquid interface. 24 refs., 16 figs.

  5. Chiral liquids

    NASA Astrophysics Data System (ADS)

    Zakharov, V. I.

    2015-05-01

    We review briefly properties of chiral liquids, or liquids with massless fermionic constituents. We concentrate on three effects, namely, the low ratio of viscosity η to entropy density s, chiral magnetic and vortical effects. We sketch standard derivations of these effects in the hydrodynamic approximation and then concentrate on possibile unifying approach which is based on consideration of the (anomalously) conserved axial current. The point is that the conservation of chirality is specific for the microscopic, field-theoretic description of massless fermions and their interactions. On the macroscopic side, the standard hydrodynamic equations are not consistent, generally speaking, with conservation of a helical macroscopic motion. Imposing extra constraints on the hydrodynamics might resolve this "clash-of-symmetries" paradox.

  6. Liquid ventilation.

    PubMed

    Sehgal, Arvind; Guaran, Robert

    2005-01-01

    Respiratory diseases are the commonest cause of morbidity and mortality in newborn babies. During the past few years several new modalities of treatment like surfactant have been introduced. One of them, and probably the most fascinating, is of liquid ventilation. Partial liquid ventilation, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using a conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. It shows further promise for lung lavaging procedures, pulmonary image enhancement, pulmonary administration of drugs and as a technique to increase functional residual capacity in lung hypoplasia syndromes. There are no long-term side effect reported. PMID:16022146

  7. Liquid filtration simulation

    SciTech Connect

    Corey, I.; Bergman, W.

    1996-06-01

    We have a developed a computer code that simulates 3-D filtration of suspended particles in fluids in realistic filter structures. This code, being the most advanced filtration simulation package developed to date, provides LLNL and DOE with new capabilities to address problems in cleaning liquid wastes, medical fluid cleaning, and recycling liquids. The code is an integrated system of commercially available and LLNL-developed software; the most critical are the computational fluid dynamics (CFD) solver and the particle transport program. For the CFD solver, we used a commercial package based on Navier-Stokes equations and a LLNL-developed package based on Boltzman-lattice gas equations. For the particle transport program, we developed a cod based on the 3-D Langevin equation of motion and the DLVO theory of electrical interactions. A number of additional supporting packages were purchased or developed to integrate the simulation tasks and to provide visualization output.

  8. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  9. Microfabricated Liquid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Epstein, Alan H.; Joppin, C.; Kerrebrock, J. L.; Schneider, Steven J. (Technical Monitor)

    2003-01-01

    Under NASA Glenn Research Center sponsorship, MIT has developed the concept of micromachined, bipropellant, liquid rocket engines. This is potentially a breakthrough technology changing the cost-performance tradeoffs for small propulsion systems, enabling new applications, and redefining the meaning of the term low-cost-access-to-space. With this NASA support, a liquid-cooled, gaseous propellant version of the thrust chamber and nozzle was designed, built, and tested as a first step. DARPA is currently funding MIT to demonstrate turbopumps and controls. The work performed herein was the second year of a proposed three-year effort to develop the technology and demonstrate very high power density, regeneratively cooled, liquid bipropellant rocket engine thrust chamber and nozzles. When combined with the DARPA turbopumps and controls, this work would enable the design and demonstration of a complete rocket propulsion system. The original MIT-NASA concept used liquid oxygen-ethanol propellants. The military applications important to DARPA imply that storable liquid propellants are needed. Thus, MIT examined various storable propellant combinations including N2O4 and hydrazine, and H2O2 and various hydrocarbons. The latter are preferred since they do not have the toxicity of N2O4 and hydrazine. In reflection of the newfound interest in H2O2, it is once again in production and available commercially. A critical issue for the microrocket engine concept is cooling of the walls in a regenerative design. This is even more important at microscale than for large engines due to cube-square scaling considerations. Furthermore, the coolant behavior of rocket propellants has not been characterized at microscale. Therefore, MIT designed and constructed an apparatus expressly for this purpose. The report details measurements of two candidate microrocket fuels, JP-7 and JP-10.

  10. Models for Liquid Impact Onboard Sloshsat FLEVO

    NASA Technical Reports Server (NTRS)

    Vreeburg, Jan P. B.; Chato, David J.

    2000-01-01

    Orbital experiments on the behavior of liquid in spacecraft are planned. The Sloshsat free-flyer is described. Preparation of the experiments, and later evaluation, are supported by models of varying complexity. The characteristics of the models are discussed. Particular attention is given to the momentum transfer between the liquid and the spacecraft, in connection with the liquid impact that may occur at the end of a reorientation maneuver of the spacecraft.

  11. Supported inorganic membranes

    DOEpatents

    Sehgal, Rakesh; Brinker, Charles Jeffrey

    1998-01-01

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  12. Transverse excitations in liquid metals

    NASA Astrophysics Data System (ADS)

    Hosokawa, S.; Munejiri, S.; Inui, M.; Kajihara, Y.; Pilgrim, W.-C.; Baron, A. Q. R.; Shimojo, F.; Hoshino, K.

    2013-02-01

    The transverse acoustic excitation modes were detected by inelastic x-ray scattering in liquid Ga, Cu and Fe in the Q range around 10 nm-1 using a third-generation synchrotron radiation facility, SPring-8, although these liquid metals are mostly described by a simple hard-sphere liquid. Ab initio molecular dynamics simulations clearly support this finding for liquid Ga. From the detailed analyses for the S(Q,ω) spectra with good statistic qualities, the lifetime of less than 1 ps and the propagating length of less than 1 nm can be estimated for the transverse acoustic phonon modes, which correspond to the lifetime and size of cages formed instantaneously in these liquid metals. The microscopic Poisson's ratio estimated from the dynamic velocities of sound is 0.42 for liquid Ga and about -0.2 for liquid transition metals, indicating a rubber-like soft and extremely hard elastic properties of the cage clusters, respectively. The origin of these microscopic elastic properties is discussed in detail.

  13. Rotating electric machine with fluid supported parts

    DOEpatents

    Smith, Jr., Joseph L.; Kirtley, Jr., James L.

    1981-01-01

    A rotating electric machine in which the armature winding thereof and other parts are supported by a liquid to withstand the mechanical stresses applied during transient overloads and the like. In particular, a narrow gap is provided between the armature winding and the stator which supports it and this gap is filled with an externally pressurized viscous liquid. The liquid is externally pressurized sufficiently to balance the static loads on the armature winding. Transient mechanical loads which deform the armature winding alter the gap dimensions and thereby additionally pressurize the viscous liquid to oppose the armature winding deformation and more nearly uniformly to distribute the resulting mechanical stresses.

  14. Rotating electric machine with fluid supported parts

    SciTech Connect

    Smith, J.L. Jr.; Kirtley, J.L. Jr.

    1981-09-22

    A rotating electric machine is described in which the armature winding thereof and other parts are supported by a liquid to withstand the mechanical stresses applied during transient overloads and the like. In particular, a narrow gap is provided between the armature winding and the stator which supports it and this gap is filled with an externally pressurized viscous liquid. The liquid is externally pressurized sufficiently to balance the static loads on the armature winding. Transient mechanical loads which deform the armature winding alter the gap dimensions and thereby additionally pressurize the viscous liquid to oppose the armature winding deformation and more nearly uniformly to distribute the resulting mechanical stresses. 10 figs.

  15. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  16. Method of forming supported doped palladium containing oxidation catalysts

    SciTech Connect

    Mohajeri, Nahid

    2014-04-22

    A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.

  17. Liquid air mixing system

    NASA Technical Reports Server (NTRS)

    Martin, Robert B. (Inventor)

    1997-01-01

    A device for mixing liquid nitrogen and liquid oxygen to form liquid air. The mixing device consists of a tube for transferring liquid oxygen positioned within a tube for transferring liquid nitrogen. Supply vessels for liquid oxygen and liquid nitrogen are equally pressurized and connected to the appropriate tubes. Liquid oxygen and nitrogen flow from the supply vessels through the respective tubes and are mixed to form liquid air upon exiting the outlets of the tube. The resulting liquid air is transferred to a holding vessel.

  18. Systems and methods for analyzing liquids under vacuum

    SciTech Connect

    Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua

    2013-10-15

    Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.

  19. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: Ab initio simulations supporting center nucleation

    SciTech Connect

    André, Yamina Lekhal, Kaddour; Hoggan, Philip; Avit, Geoffrey; Réda Ramdani, M.; Monier, Guillaume; Colas, David; Ajib, Rabih; Castelluci, Dominique; Gil, Evelyne; Cadiz, Fabian; Rowe, Alistair; Paget, Daniel; Petit, Elodie; Leroux, Christine; Trassoudaine, Agnès

    2014-05-21

    High aspect ratio, rod-like and single crystal phase GaAs nanowires (NWs) were grown by gold catalyst-assisted hydride vapor phase epitaxy (HVPE). High resolution transmission electron microscopy and micro-Raman spectroscopy revealed polytypism-free zinc blende (ZB) NWs over lengths of several tens of micrometers for a mean diameter of 50 nm. Micro-photoluminescence studies of individual NWs showed linewidths smaller than those reported elsewhere which is consistent with the crystalline quality of the NWs. HVPE makes use of chloride growth precursors GaCl of which high decomposition frequency after adsorption onto the liquid droplet catalysts, favors a direct and rapid introduction of the Ga atoms from the vapor phase into the droplets. High influxes of Ga and As species then yield high axial growth rate of more than 100 μm/h. The diffusion of the Ga atoms in the liquid droplet towards the interface between the liquid and the solid nanowire was investigated by using density functional theory calculations. The diffusion coefficient of Ga atoms was estimated to be 3 × 10{sup −9} m{sup 2}/s. The fast diffusion of Ga in the droplet favors nucleation at the liquid-solid line interface at the center of the NW. This is further evidence, provided by an alternative epitaxial method with respect to metal-organic vapor phase epitaxy and molecular beam epitaxy, of the current assumption which states that this type of nucleation should always lead to the formation of the ZB cubic phase.

  20. Changing the Electron Count in Spin Liquids

    NASA Astrophysics Data System (ADS)

    Kelly, Zachary; McQueen, Tyrel

    Materials which possess the resonating valence bond (RVB) ``spin-liquid'' state have been long sought after by scientists due to their predicted exotic properties. Several materials have been identified as potential spin liquid candidates and laboratory studies have only just begun to provide insight into the properties of these materials and their theoretical description. Recently theoretical calculations predict doping of a spin liquid could lead to a rich and unique phase diagram including complex magnetic states, Dirac metal behavior, and superconductivity. We report the results of structural and physical property characterizations of newly synthesized doped candidate spin liquids. This work was supported by a Cottrell Scholar Award.

  1. Controlled pattern formation in thin liquid layers.

    PubMed

    Borcia, Rodica; Bestehorn, Michael

    2009-02-17

    We examine the fully nonlinear behavior of a thin liquid film on a hydrophobic/hydrophilic solid support in three dimensions using a phase field model. For flat homogeneous substrates, the stability of thin liquid layers is investigated under the action of gravity. The coarsening process at the solid boundary can be controlled on inhomogeneous substrates. On substrates chemically patterned in an adequate way with hydrophobic and hydrophilic spots, one can obtain stable, regular liquid droplets and even design liquid structures (PACS numbers: 47.54.-r, 68.18.Jk, and 05.70.Np). PMID:19199742

  2. Bearing for liquid metal pump

    DOEpatents

    Dickinson, Robert J.; Wasko, John; Pennell, William E.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance.

  3. Synthesis, structural characterization and reactivity of aluminium complexes supported by benzotriazole phenoxide ligands: air-stable alumoxane as an efficient catalyst for ring-opening polymerization of L-lactide.

    PubMed

    Li, Chen-Yu; Tsai, Chen-Yen; Lin, Chia-Her; Ko, Bao-Tsan

    2011-03-01

    Aluminium complexes bearing sterically bulky benzotriazole-phenoxide ligands are synthesized and characterized structurally. The reaction of 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol ((CMe2Ph)BTP-H) or 2-(2H-benzotriazol-2-yl)-4,6-di-tert-butylphenol ((t-Bu)BTP-H) with AlMe(3) (1.2 molar equiv.) in toluene yields [((CMe2Ph)BTP)AlMe(2)] (1) or [((t-Bu)BTP)AlMe(2)] (2) as a four-coordinated monomeric aluminium complex. Compound 1 reacts further with (CMe2Ph)BTP-H in a stoichiometric proportion, affording penta-coordinated monomeric aluminium methyl complex [((CMe2Ph)BTP)(2)AlMe] (3). Complex 3 is also obtained directly upon treatment of AlMe(3) with (CMe2Ph)BTP-H (two molar equiv.) in refluxing toluene in high yield. In the presence of H(2)O (half a molar equiv.), hydrolysis of 3 in a mixed solvent of THF and toluene at ambient temperature affords [{((CMe2Ph)BTP)(2)Al}(2)(?-O)] (4), in which the oxo ligand acts as a chelating group linearly bridging two aluminium centers. Air-stable alumoxane 4 is an efficient catalyst for the ring-opening polymerization of L-lactide (L-LA) in the presence of 9-anthracenemethanol (9-AnOH). Complex 4 catalyzes the polymerization of L-LA in a controlled manner, yielding PLLAs with the expected molecular weights and narrow polydispersity indices (PDIs). PMID:21283858

  4. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  5. Liquid Crystal Inquiries.

    ERIC Educational Resources Information Center

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  6. Peer Support.

    PubMed

    Forchuk, Cheryl; Solomon, Michelle; Viran, Tazim

    2016-01-01

    The Mental Health Commission of Canada defines peer support as "a supportive relationship between people who have a lived experience in common in relation to a mental health challenge or illness related to their own mental health or that of a loved one" (Sunderland et al. 2013: 11). In Ontario, a key resource for peer support is the Ontario Peer Development Initiative (OPDI), which is an umbrella organization of mental health Consumer/Survivor Initiatives (CSIs) and peer support organizations across the province of Ontario. Member organizations are run by and for people with lived experience of a mental health or addiction issue and provide a wide range of services and activities within their communities. The central tenet of member organizations is the common understanding that people can and do recover with the proper supports in place and that peer support is integral to successful recovery. Nationally, Peer Support Accreditation and Certification Canada has recently been established. The relatively new national organization focuses on training and accrediting peer support workers. This paper focuses on a range of diverse peer support groups and CSIs that operate in London and surrounding areas. PMID:26854546

  7. Viscoelastic cushion for patient support

    NASA Technical Reports Server (NTRS)

    Sauers, D. G.

    1971-01-01

    Flexible container, filled with liquid, provides supportive device which conforms to patient's anatomy. Uniform cushion pressure prevents formation of decubitus ulcers, while the porous sponge substructure damps fluid movement through cushion response so that patient is not dumped when his weight shifts.

  8. Supporting Teachers

    ERIC Educational Resources Information Center

    Lesaux, Nonie K.; Burkhauser, Mary A.; Kelley, Joan G.

    2013-01-01

    Material resources, personalized support, time to collaborate, and strong principal leadership are necessary for making curricular and instructional shifts. The authors of this article share the lessons they learned about supporting implementation of the Common Core State Standards. They draw on interviews with teachers, as well as field notes…

  9. Family Support.

    ERIC Educational Resources Information Center

    Wieck, Colleen, Ed.; McBride, Marijo, Ed.

    1990-01-01

    This "Feature Issue" of the quarterly journal "Impact" presents 19 brief articles on family support systems in the United States for persons with developmental disabilities and their families. Emphasis is on provisions of Public Law 99-457. Articles include: "Family Support in the United States: Setting a Course for the 1990s" (James Knoll);…

  10. Liquid-liquid extraction in flow analysis: A critical review.

    PubMed

    Silvestre, Cristina I C; Santos, João L M; Lima, José L F C; Zagatto, Elias A G

    2009-10-12

    Liquid-liquid extractions (LLE) are a common sample pre-treatment in many analytical applications. This review aims at providing a critical overview of the distinct automated continuous flow-based approaches that were developed for liquid-liquid extraction with the purpose of pre-concentration and/or separation of multiple analytes, such as ultra-trace metal and metalloid species, phenolic compounds, surfactants, pharmaceuticals, etc., hyphenated with many detection technique such as UV/vis spectrophotometry, atomic spectrometric detection systems and luminescent detectors, including distinct extraction strategies and applications like single and multiple extraction schemes, wetting film extraction, supported liquid membrane extraction, back extraction, closed-loop systems and the utilisation of zone sampling, chromatomembranes and iterative reversal techniques. The analytical performance of the developed flow-based LLE methods and the influence of flow manifold components such as the segmenter, extraction coil and phase separator, is emphasised and object of discussion. An overall presentation of each system components, selectivity, advantages and shortcomings is carried out and exemplified with selected applications. PMID:19786170

  11. Thermal support for scale support

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1976-01-01

    The thermal design work completed for the Thermal Protection System (TPS) of the Space Shuttle System (TPS) of the space shuttle vehicle was documented. This work was divided into three phases, the first two of which reported in previous documents. About 22 separate tasks were completed in phase III, such as: hot gas facility (HGF) support, guarded tank support, shuttle external tank (ET) thermal design handbook support, etc.

  12. Ionic Liquids Database- (ILThermo)

    National Institute of Standards and Technology Data Gateway

    SRD 147 Ionic Liquids Database- (ILThermo) (Web, free access)   IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.

  13. Control of plasma-liquid interaction of atmospheric DC glow discharge using liquid electrode

    NASA Astrophysics Data System (ADS)

    Shirai, Naoki; Aoki, Ryuta; Nito, Aihito; Aoki, Takuya; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2014-10-01

    Atmospheric plasma in contact with liquid have a variety of interesting phenomena and applications. Previously, we investigated the fundamental characteristics of an atmospheric dc glow discharge using a liquid electrode with a miniature helium flow. We tried to control the plasma-liquid interaction by changing the plasma parameter such as gas species, liquid, and applied voltage. Sheath flow system enables another gas (N2, O2, Ar) flow to around the helium core flow. It can control the gas species around the discharge. When liquid (NaCl aq.) cathode DC discharge is generated, Na emission (588 nm) can be observed from liquid surface with increasing discharge current. Na emission strongly depends on the discharge current and liquid temperature. However, when Ar sheath flow is used, the intensity of Na becomes weak. When liquid anode DC discharge is generated, self-organized luminous pattern formation can be observed at the liquid surface. The pattern depends on existence of oxygen gas in gap. By changing the oxygen gas ratio in the gap, variety of pattern formation can be observed. The discharge in contact with liquid also can be used for synthesis of metal nanoparticles at plasma-liquid interface. Size and shape of nanoparticles depend on discharge gases. This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No 21110007) from MEXT, Japan.

  14. Conversion of cellulosic wastes to liquid hydrocarbon fuels: Vol. 2, A kinetic study of the modified Fischer-Tropsch synthesis over an alumina-supported cobalt oxide catalyst: Final report

    SciTech Connect

    Kuester, J.L.

    1986-11-01

    A modified Fischer-Tropsch reaction with the incorporation of ethylene in the synthesis gas has been studied kinetically. The feed mixture was also comprised of methane and carbon dioxide in a proportion similar to a real pyrolysis gas composition. The feed gas was provided by a manifold of compressed gas cylinders. An alumina-supported cobalt oxide catalyst was prepared by an impregnation method and used in the experimentation.

  15. Liquid metal cooled nuclear reactors

    SciTech Connect

    Scott, D.

    1984-07-03

    A liquid metal cooled nuclear reactor of the kind wherein a fuel assembly is supported on a diagrid and submerged in a pool of coolant is described. The diagrid comprises a plenum supported on a load bearing undershell and has an array of resilient spikes upstanding from the upper face of the plenum each for locating a fuel subassembly. The load of the fuel assembly is distributed over the upper face plate of the plenum and transmitted to the undershell by an array of strut members.

  16. Carbon supports from natural organic materials and carbon-supported palladium catalysts

    SciTech Connect

    Kuznetsov, B.N.

    2007-07-15

    Experimental data are presented concerning the influence of preparation conditions on the pore structure of carbon supports obtained from different types of plant biomass, thermally expanded graphites, and chemically modified anthracites, on the distribution and particle size of supported palladium, and on the activity of the supported catalyst in the liquid-phase hydrogenation of hex-1-ene and cyclohexene.

  17. Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.; Hu, Shih-Yao

    2000-01-01

    This article describes how ELMs (emulsion liquid membranes) can be used for extraction. The article addresses the disadvantages of ELM extraction in a stirred contactor, and the advantages of SELMs (supported emulsion liquid membranes). The introduction of the article provides background information on liquid-liquid solvent extraction and dispersion-free solvent extraction.

  18. Inclusion of supported gold nanoparticles into their semiconductor support.

    PubMed

    Lau, Marcus; Ziefuss, Anna; Komossa, Tim; Barcikowski, Stephan

    2015-11-21

    Supported particles are easily accessible as standard materials used in heterogeneous catalysis and photocatalysis. This article addresses our exemplary studies on the integration of supported nanoparticles into their solid support, namely gold nanoparticles into zinc oxide sub-micrometer spheres, by energy controlled pulsed laser melting in a free liquid jet. This one-step, continuous flow-through processing route reverses the educt's structure, converting the ligand-free surface adsorbate into a spherical subsurface solid inclusion within its former support. The results show how a nanoparticulate surface adsorbate can be included in the form of crystalline nanoparticles into the resolidified support matrix, demonstrated by using plasmonic nanoparticles and semiconductor microparticles as reference materials. PMID:26467473

  19. Supported Employment.

    ERIC Educational Resources Information Center

    Erickson, Ron, Ed.; And Others

    1989-01-01

    This "feature issue" reports on major shifts in attitudes, practices, and policies that have led to the growth of supported employment programs for people with disabilities, with special focus on the situation in Minnesota. It contains the following articles: "To the Year 2000 and Beyond: Jobs Won't Be the Problem" (David R. Johnson); "The End of…

  20. Nutritional Support

    MedlinePlus

    Nutritional support is therapy for people who cannot get enough nourishment by eating or drinking. You may need it if you Can't swallow Have problems with your appetite Are severely ... a needle or catheter placed in your vein or with a feeding tube, which goes into your ...

  1. Differentiated Support

    ERIC Educational Resources Information Center

    Flannagan, Jenny Sue; Kelly, Mike

    2009-01-01

    Supporting teachers begins with designing professional learning that is responsive to their needs. Gone are the days of one-size-fits all professional development. Principals cannot ensure that all teachers are effective in the classroom if they don't create learning opportunities that move all teachers toward expertise with teaching. In this…

  2. Supporting Diversity.

    ERIC Educational Resources Information Center

    Horton, Betty, Ed.; And Others

    1996-01-01

    This newsletter feature issue focuses on services for persons with developmental disabilities that support the whole person by acknowledging, respecting, and incorporating aspects of identity such as race, ethnicity, religion, sexual orientation, gender, age, and class. Articles include: (1) "Serving the Whole Person: The Journey to Embracing…

  3. Mirror Support

    NASA Technical Reports Server (NTRS)

    Baron, Richard L. (Inventor)

    2013-01-01

    Disclosed herein is a method of making a mirror support comprising a composite, the composite comprising a plurality of carbon nanotubes, wherein at least two of the plurality of carbon nanotubes are bonded to each other through a bridging moiety bound to each of the two carbon nanotubes, and a laminate comprising the composite.

  4. Liquid level detector

    DOEpatents

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  5. Liquid level detector

    DOEpatents

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  6. Atmospheric Pressure Glow Discharge with Liquid Electrode

    NASA Astrophysics Data System (ADS)

    Tochikubo, Fumiyoshi

    2013-09-01

    Nonthermal atmospheric pressure plasmas in contact with liquid are widely studied aiming variety of plasma applications. DC glow discharge with liquid electrode is an easy method to obtain simple and stable plasma-liquid interface. When we focus attention on liquid-phase reaction, the discharge system is considered as electrolysis with plasma electrode. The plasma electrode will supply electrons and positive ions to the liquid surface in a different way from the conventional metal electrode. However, the phenomena at plasma-liquid interface have not been understood well. In this work, we studied physical and chemical effect in liquid induced by dc atmospheric pressure glow discharge with liquid electrode. The experiment was carried out using H-shaped Hoffman electrolysis apparatus filled with electrolyte, to separate the anodic and cathodic reactions. Two nozzle electrodes made of stainless steel are set about 2 mm above the liquid surface. By applying a dc voltage between the nozzle electrodes, dc glow discharges as plasma electrodes are generated in contact with liquid. As electrolyte, we used aqueous solutions of NaCl, Na2SO4, AgNO3 and HAuCl4. AgNO3 and HAuCl4 are to discuss the reduction process of metal ions for synthesis of nanoparticles (NPs). OH radical generation yield in liquid was measured by chemical probe method using terephthalic acid. Discharge-induced liquid flow was visualized by Schlieren method. Electron irradiation to liquid surface (plasma cathode) generated OH- and OH radical in liquid while positive ion irradiation (plasma anode) generated H+ and OH radical. The generation efficiency of OH radical was better with plasma anode. Both Ag NPs in AgNO3 and Au NPs in HAuCl4 were synthesized with plasma cathode while only Au NPs were generated with plasma anode. Possible reaction process is qualitatively discussed. The discharge-induced liquid flow such as convection pattern was strongly influenced by the gas flow on the liquid surface. This work was supported financially in part by Kakenhi (No 2111007), Japan.

  7. Tool to Prioritize Energy Efficiency Investments

    SciTech Connect

    Farese, Philip; Gelman, Rachel; Hendron, Robert

    2012-08-01

    To provide analytic support of the U.S. Department of Energy's Office of the Building Technology Program (BTP), NREL developed a Microsoft Excel-based tool to provide an open and objective comparison of the hundreds of investment opportunities available to BTP. This tool uses established methodologies to evaluate the energy savings and cost of those savings.

  8. Liquid-film electron stripper

    SciTech Connect

    Gavin, Basil F.

    1986-01-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one said of the disc's periphery and with a highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90.degree. angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  9. Floating liquid bridge charge dynamics

    NASA Astrophysics Data System (ADS)

    Teschke, Omar; Soares, David Mendez; Gomes, Whyllerson Evaristo; Valente Filho, Juracyr Ferraz

    2016-01-01

    The interaction of liquid with electric fields is investigated in a configuration where up to 13 kV are applied between electrodes resulting in a 106 V/m electric field in the capillaries and where there is the formation of a free-standing fluid bridge in the interelectrode gap. The Mott-Gurney equation was fitted to the measured ionization current vs applied voltage curve which indicates that the ionization rate at the high-voltage anode electrode dimethylsulfoxide (DMSO) interface and space charging in the interelectrode gap determine the floating liquid bridge current for a given cathode-to-anode voltage. Space charge effects were measured in the cathode becker and also at the liquid bridge since the ionized charges at the anode migrate to the bridge outer surface and decrease the interfacial tension from 43 mJ/m2 to 29 mJ/m2. Two distinct structural regions then form the bridge, a charged plastic (bulk modulus ˜100 MPa) conducting outer layer with a surface conductivity of ˜10-9 Ω-1, which shapes and supports the floating fluid structure, and an inner liquid cylinder, where DMSO molecules flow.

  10. Liquid seeding atomizer

    NASA Technical Reports Server (NTRS)

    Seegmiller, Henry L. B. (Inventor)

    1987-01-01

    An atomizer for a liquid having an air supply is described. Liquid supply tubes extend longitudinally along the air supply tube. The air supply tube has at least one air orifice extending from an inner surface of the tube through the tube. The liquid supply tubes are positioned on either side of the air orifices and the liquid tubes are sealed to the air supply tube. The liquid supply tubes with facing liquid orifices are positioned adjacent to each of the air orifices. The liquid supply tubes are laterally spaced apart at the liquid orifices at a distance less than the diameter of the air orifices to enable a beneficial venturi effect when the atomizer is in operation.

  11. Liquid seeding atomizer

    NASA Astrophysics Data System (ADS)

    Seegmiller, Henry L. B.

    1987-03-01

    An atomizer for a liquid having an air supply is described. Liquid supply tubes extend longitudinally along the air supply tube. The air supply tube has at least one air orifice extending from an inner surface of the tube through the tube. The liquid supply tubes are positioned on either side of the air orifices and the liquid tubes are sealed to the air supply tube. The liquid supply tubes with facing liquid orifices are positioned adjacent to each of the air orifices. The liquid supply tubes are laterally spaced apart at the liquid orifices at a distance less than the diameter of the air orifices to enable a beneficial venturi effect when the atomizer is in operation.

  12. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  13. Zero gravity liquid mixer

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Bruce, R. A. (Inventor)

    1973-01-01

    An apparatus for mixing liquids under conditions of zero gravity is disclosed. The apparatus is comprised of a closed reservoir for the liquids, with a means for maintaining a positive pressure on the liquids in the reservoir. A valved liquid supply line is connected to the reservoir for supplying the reservoir with the liquids to be mixed in the reservoir. The portion of the reservoir containing the liquids to be mixed is in communication with a pump which alternately causes a portion of the liquids to flow out of the pump and into the reservoir to mix the liquids. The fluids in the reservoir are in communication through a conduit with the pump which alternately causes a portion of the fluids to flow out of the pump and into the sphere. The conduit connecting the pump and sphere may contain a nozzle or other jet-forming structure such as a venturi for further mixing the fluids.

  14. Instantaneous Liquid Interfaces

    PubMed Central

    Willard, Adam P.; Chandler, David

    2010-01-01

    We describe and illustrate a simple procedure for identifying a liquid interface from atomic coordinates. In particular, a coarse grained density field is constructed, and the interface is defined as a constant density surface for this coarse grained field. In applications to a molecular dynamics simulation of liquid water, it is shown that this procedure provides instructive and useful pictures of liquid-vapor interfaces and of liquid-protein interfaces. PMID:20055377

  15. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  16. Renewable liquid reflection grating

    DOEpatents

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.

  17. Supergluing MOF liquid marbles.

    PubMed

    Chin, Jia Min; Reithofer, Michael R; Tan, Tristan Tsai Yuan; Menon, Ajay Govinda; Chen, Eric Yu; Chow, Chin Ann; Hor, Andy Tzi Sum; Xu, Jianwei

    2013-01-18

    Growth of NH(2)-MIL-53(Al) on alumina microparticles followed by post-synthetic modification with perfluorooctyl or caproic groups produces highly hydrophobic microparticles which are utilized for the formation of liquid marbles. Interfacial polymerization of ethyl-2-cyanoacrylate on the surface of the liquid marbles produces stable liquid capsules. PMID:23202539

  18. Carbon cloth supported electrode

    DOEpatents

    Lu, Wen-Tong P.; Ammon, Robert L.

    1982-01-01

    A flow-by anode is disclosed made by preparing a liquid suspension of about to about 18% by weight solids, the solids comprising about 3.5 to about 8% of a powdered catalyst of platinum, palladium, palladium oxide, or mixtures thereof; about 60 to about 76% carbon powder (support) having a particle size less than about 20 m.mu.m and about 20 to about 33% of an inert binder having a particle size of less than about 500 m.mu.m. A sufficient amount of the suspension is poured over a carbon cloth to form a layer of solids about 0.01 to about 0.05 cm thick on the carbon cloth when the electrode is completed. A vacuum was applied to the opposite side of the carbon cloth to remove the liquid and the catalyst layer/cloth assembly is dried and compressed at about 10 to about 50 MPa's. The binder is then sintered in an inert atmosphere to complete the electrode. The electrode is used for the oxidation of sulfur dioxide in a sulfur based hybrid cycle for the decomposition of water.

  19. Mo-Fe catalysts supported on activated carbon for synthesis of liquid fuels by the Fischer-Tropsch process: effect of Mo addition on reducibility, activity, and hydrocarbon selectivity

    SciTech Connect

    Wenping Ma; Edwin L. Kugler; James Wright; Dady B. Dadyburjor

    2006-12-15

    The effects of Mo loading (0-12 wt %) on the properties of activated-carbon- (AC-) supported Fe-Cu-K catalysts and their performance for Fischer-Tropsch synthesis are studied. Physicochemical properties studied include particle size, reducibility, and dispersion, and catalytic properties include activity, selectivity, and stability. Catalysts were characterized by N{sub 2} adsorption, energy-dispersive spectroscopy, X-ray diffraction (XRD), H{sub 2} temperature-programmed reduction (TPR), and CO chemisorption. Catalyst performance was studied at 310-320{sup o}C, 2.2 MPa, 3 Nl/g-cat/h, and H{sub 2}/CO = 0.9. Reaction results in a fixed-bed reactor show that addition of 6% Mo into the Fe-Cu-K/AC catalyst improves catalyst stability without sacrificing activity, but activity is suppressed dramatically on a 12% Mo-loaded catalyst. Detectable hydrocarbons of C{sub 1} to C{sub 34} are produced on the Fe-Cu-K/AC catalysts with or without Mo. However, the addition of Mo results in the production of more CH{sub 4} and less C{sub 5+} hydrocarbons. The Mo promoter greatly enhances secondary reactions of olefins, leading to a large amount of internal olefins (i.e., other than 1-olefins) in the product. TPR shows that a strong interaction between Fe and Mo oxides is present, and the extent of reduction of Fe is suppressed after addition of Mo to the Fe-Cu-K catalyst. CO-chemisorption and XRD studies show increased iron dispersion and decreased particle size of the iron carbide and iron oxide after the addition of Mo. Segregation of iron active sites, thereby preventing them from agglomerating, and a larger number of active sites on the 6% Mo catalyst are possible reasons for the improved stability and higher activity of Mo-promoted catalysts. 54 refs., 5 figs., 6 tabs.

  20. Propagation of a liquid-liquid explosion

    SciTech Connect

    Harlow, F.H.; Ruppel, H.M.

    1981-08-01

    Direct contact between two liquids, one cold and the other hot, may be precluded by the presence of a vapor film. Bridging of this film by one or both fluids results in rapid local boiling, which may initiate a propagating liquid-liquid explosion. A mechanism is discussed for the propagation that involves implosion of the film, rapid mixing of the fluids, heat exchange to warm the cold fluid above the temperature for spontaneous nucleation, and the explosive generation of vapor, which in turn continues to sustain the film implosion. Plausibility for the model is demonstrated by means of numerical studies by high-speed computer.

  1. Liquid storage tank with floating roof structure

    SciTech Connect

    Vaughn, L.G.

    1993-07-27

    In a cylindrical wall storage tank for containing a liquid, said tank is described having a floor, a floatable roof supportable by said contained liquid, said roof including a peripheral seal for engaging the cylindrical wall to maintain a fluid-tight sliding seal therewith, and support means associated with said roof including, the improvement in said tank of, at least one cylindrical guide sleeve extending downwardly from said floatable roof; a shoe depending laterally from said at least one cylindrical guide sleeve's lower end for engaging the tank floor when the level of contained liquid is insufficient to support said floatable roof, said shoe having means forming a passage there through to register a support column and, an elongated support column removably positioned in said at least one cylindrical guide sleeve, of being sufficient length to extend downward beyond the shoe to engage the tank floor, whereby to sustain the floatable roof a predetermined distance above said floor after the contained liquid has drained from the tank.

  2. Spring Support for Turbopump Rotor Bearing

    NASA Technical Reports Server (NTRS)

    Strangeland, M. L.; Ellingboe, C. T.

    1982-01-01

    Novel bearing support for liquid-oxygen turbopumps protects against impact loads while avoiding a major disadvantage of earlier flexible supports. It allows controlled axial movement necessary for proper operation of pressure-operated pump impeller. While spring-loading rotor to midpoint of the axial movement to avoid impact-load damage to turbopump components. Support is made by machining azimuthal slots in cylindrical portion. Resulting structure permits controlled axial deformations.

  3. Radiation monitor for liquids

    DOEpatents

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  4. Radiation monitor for liquids

    DOEpatents

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  5. Cosmology with liquid mirror telescopes

    NASA Technical Reports Server (NTRS)

    Hogg, David W.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.

  6. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  7. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition. PMID:27175515

  8. Industry Support

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA Glenn Research Center (GRC) is responsible for the Advanced Communications for Air Traffic Management (AC/ATM) Project, a sub-element task of the Advanced Air Transportation Technologies (AATT) Project of the NASA Aviation System Capacity Program (ASC). The AC/ATM Project is developing new communications technologies and tools that will improve throughput in the U.S. Air Traffic Control System. The goal of the AC/ATM Project is to enable a communications infrastructure providing the capacity, efficiency, and flexibility necessary to realize benefits of the future mature Free-Flight environment. The capabilities and scope of communications technologies needed to accomplish this goal depend on characteristics of the future Free-Flight environment. There are many operational concepts being proposed for a future ATM system to enable user flexibility and efficiency. GRC s focus is on developing new technologies and techniques to support the digital communication of information involving airborne and ground-based users. However, the technologies and techniques must be integrated with the systems and services that industry and the Federal Aviation Administration (FAA) are developing. Thus, GRC needs to monitor and provide input to the various industry and FAA organizations and committees that are specifying new systems and services. Adoption of technologies by the FAA is partially dependent on acceptance of the technology by the aviation community. The commercial aviation community in particular would like to adopt technologies that can be used throughout the world. As a result, the adoption of common or at least compatible technologies by European countries is a key factor in getting commitments to those technologies by the US aviation community. GRC desires to keep informed of European activities that relate to aviation communication technologies, particularly those that are being supported by Eurocontrol.

  9. Liquid secretion properties of airway submucosal glands

    PubMed Central

    Ballard, Stephen T; Inglis, Sarah K

    2004-01-01

    The tracheobronchial submucosal glands secrete liquid that is important for hydrating airway surfaces, supporting mucociliary transport, and serving as a fluid matrix for numerous secreted macromolecules including the gel-forming mucins. This review details the essential structural elements of airway glands and summarizes what is currently known regarding the ion transport processes responsible for producing the liquid component of gland secretion. Liquid secretion most likely arises from serous cells and is principally under neural control with muscarinic agonists, substance P, and vasoactive intestinal peptide (VIP) functioning as effective secretogogues. Liquid secretion is driven by the active transepithelial secretion of both Cl− and HCO3− and at least a portion of this process is mediated by the cystic fibrosis transmembrane conductance regulator (CFTR), which is highly expressed in glands. The potential role of submucosal glands in cystic fibrosis lung disease is discussed. PMID:14660706

  10. Rocking response of tanks containing two liquids

    SciTech Connect

    Tang, Y.

    1995-01-01

    A study on the dynamic response of upright circular cylindrical liquid-storage tanks containing two different liquids under a rocking base motion with an arbitrary temporal variation is presented. Only rigid tanks were studied. The response quantities examined include the hydrodynamic pressure, sloshing wave height and the associated frequencies, base shear and moments. Each of these response quantities is expressed as the sum of the so-called impulsive component and convective component. Unlike the case of tanks containing one liquid, in which the response is controlled by one parameter, height-to-radius ratio, the response of tanks containing two different liquids are controlled by three parameters: height-to-radius ratio, and mass density ratio and height ratio of the two liquids. The interrelationship of the responses of the tank-liquid system to rocking and lateral base excitations is established by examining numerical results extensively. The study shows that some of the response quantities for tank-liquid system under a rocking base motion can be determined from the available data for the response of an identical tank under a horizontal base motion. Base rocking motion can occur in a ground-supported tank or in an elevated tank under earthquake motions.

  11. Helium at elevated pressures: Quantum liquid with non-static shear rigidity

    NASA Astrophysics Data System (ADS)

    Bolmatov, D.; Brazhkin, V. V.; Trachenko, K.

    2013-03-01

    The properties of liquid helium have always been a fascinating subject to scientists. The phonon theory of liquids, taking into account liquid non-static shear rigidity, is employed here for studying internal energy and heat capacity of compressed liquid 4He. We demonstrate the good agreement of calculated and experimental heat capacity of liquid helium at elevated pressures and supercritical temperatures. Unexpectedly, helium remains a quantum liquid at elevated pressures for a wide range of temperature supporting both longitudinal and transverse-like phonon excitations. We have found that in the very wide pressure range of 5 MPa-500 MPa, liquid helium near melting temperature is both solid-like and quantum.

  12. Liquid-metal-cooled nuclear reactor. [LMFBR

    SciTech Connect

    Robin, M.

    1981-10-20

    A liquid metal cooled nuclear reactor is described which comprises a core, a main vessel comprising a first supporting means, a primary vessel mounted inside said main vessel and coaxial therewith, at least one exchanger outside said vessels. Said primary vessel comprises a core-diagrid and a second supporting means integral with the main vessel lateral wall and with the primary vessel lateral wall. These lateral walls define an annular space in which is formed a horizontal partition.

  13. Mobile impurities in ferromagnetic liquids

    NASA Astrophysics Data System (ADS)

    Kantian, Adrian; Schollwoeck, Ulrich; Giamarchi, Thierry

    2011-03-01

    Recent work has shown that mobile impurities in one dimensional interacting systems may exhibit behaviour that differs strongly from that predicted by standard Tomonaga-Luttinger liquid theory, with the appearance of power-law divergences in the spectral function signifying sublinear diffusion of the impurity. Using time-dependent matrix product states, we investigate a range of cases of mobile impurities in systems beyond the analytically accessible examples to assess the existence of a new universality class of low-energy physics in one-dimensional systems. Correspondence: Adrian.Kantian@unige.ch This work was supported in part by the Swiss SNF under MaNEP and division II.

  14. Surface orientation in ionic liquids

    NASA Astrophysics Data System (ADS)

    Law, George; Watson, Philip R.

    2001-09-01

    New surface tension data supports models of surface orientations previously derived from direct recoil spectrometry (DRS) data for the cations of 1-alkyl-3-methylimidazolium ionic liquids. For shorter-chain hexafluorophosphate compounds the favored average orientation appears to be one where the cation is oriented vertically with the N atoms uppermost, but the alkyl substituents do not protrude out of the surface. For longer chains or for compounds containing the smaller tetrafluoroborate anion the surface tension and DRS data are consistent with a shift to an average orientation embodying a rotation that moves the methyl group towards the surface.

  15. Viscosity measurements on clear liquids

    SciTech Connect

    Walker, D.D.

    1993-02-09

    During the ITP cold chemical testing program, the efficiency of the benzene strippers will be measured and evaluated. Since the stripping efficiency is partially dependent upon the dynamic viscosity of the liquid phase, this property must be measured on samples taken during the test program. A procedure to measure the dynamic viscosity of salt solutions was developed from standard American Society of Testing and materials (ASTM) methods. The SRS procedure differs from the ASTM procedure and, therefore, a test program was initiated to determine its accuracy and precision. The results of these statistically designed tests are reported elsewhere, but supporting information on the experimental procedures, standards, and equipment are given in this report.

  16. Bubbling in unbounded coflowing liquids.

    PubMed

    Gañán-Calvo, Alfonso M; Herrada, Miguel A; Garstecki, Piotr

    2006-03-31

    An investigation of the stability of low density and viscosity fluid jets and spouts in unbounded coflowing liquids is presented. A full parametrical analysis from low to high Weber and Reynolds numbers shows that the presence of any fluid of finite density and viscosity inside the hollow jet elicits a transition from an absolute to a convective instability at a finite value of the Weber number, for any value of the Reynolds number. Below that critical value of the Weber number, the absolute character of the instability leads to local breakup, and consequently to local bubbling. Experimental data support our model. PMID:16605912

  17. Importance of liquid fragility for energy applications of ionic liquids

    NASA Astrophysics Data System (ADS)

    Sippel, Pit; Lunkenheimer, Peter; Krohns, Stephan; Thoms, Erik; Loidl, Alois

    Ionic liquids (ILs) are salts that are liquid at ambient temperatures. The strong electrostatic forces between their molecular ions result, e.g., in low volatility and high stability for many members of this huge material class. For this reason they bear a high potential for new advancements in applications, e.g., as electrolytes in energy-storage devices such as supercapacitors or batteries, where the ionic conductivity is an essential figure of merit. Most ILs show dynamic properties typical for glassy matter, which dominate many of their physical properties. An important method to study these dynamical glass-properties is dielectric spectroscopy that can access relaxation times of dynamic processes and the conductivity in a broad frequency and temperature range. In the present contribution, we present results on a large variety of ionic liquids showing that the conductivity of ILs depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. This work was supported by the Deutsche Forschungsgemeinschaft via Research Unit FOR1394 and by the BMBF via ENREKON 03EK3015.

  18. Mechanical models for tanks containing two liquids

    SciTech Connect

    Tang, Y.

    1994-06-01

    The well-known Housner`s mechanical model for laterally excited rigid tanks that contain one liquid is generalized to permit consideration of tanks that contain two liquids under the horizontal and rocking base motions. Two mechanical models are developed herein; one is for rigid tanks and the other for flexible tanks. The model for rigid tanks has a rigidly attached mass and infinite number of elastically supported masses. The rigid attached mass which possesses a mass moment of inertia represents the impulsive component, whereas the elastically supported masses which do not possess mass moment of inertia represent the convective component of the response. These masses and their heights are chosen such that, under the same base motions, the base shear and base moments of the model match those of the original liquid-tank system. The spring stiffness constants for the elastically supported masses in the model are determined from the sloshing frequencies of the liquid-tank system. The model for flexible tanks, however, only represents the impulsive action of the hydrodynamic response. It has an elastically supported mass that does not possess mass moment of inertia and a member that has no mass but possesses a mass moment of inertia. This latter model is proposed for the study of the effect of the soil-structure interaction.

  19. Monogroove liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Brown, Richard F. (Inventor); Edelstein, Fred (Inventor)

    1990-01-01

    A liquid supply control is disclosed for a heat transfer system which transports heat by liquid-vapor phase change of a working fluid. An assembly (10) of monogroove heat pipe legs (15) can be operated automatically as either heat acquisition devices or heat discharge sources. The liquid channels (27) of the heat pipe legs (15) are connected to a reservoir (35) which is filled and drained by respective filling and draining valves (30, 32). Information from liquid level sensors (50, 51) on the reservoir (35) is combined (60) with temperature information (55) from the liquid heat exchanger (12) and temperature information (56) from the assembly vapor conduit (42) to regulate filling and draining of the reservoir (35), so that the reservoir (35) in turn serves the liquid supply/drain needs of the heat pipe legs (15), on demand, by passive capillary action (20, 28).

  20. Liquid level detector

    SciTech Connect

    Tshishiku, Eugene M.

    2011-08-09

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  1. Enhancing liquid jet erosion

    SciTech Connect

    Johnson V.E. Jr.

    1984-10-02

    Process and apparatus for enhancing the erosive intensity of a high velocity liquid jet when the jet is impacted against a surface for cutting, cleaning, drilling or otherwise acting on the surface. A preferred method comprises the steps of forming a high velocity liquid jet, oscillating the velocity of the jet at a preferred Strouhal number, and impinging the pulsed jet against a solid surface to be eroded. Typically the liquid jet is pulsed by oscillating the velocity of the jet mechanically or by hydrodynamic and acoustic interactions. The invention may be applied to enhance cavitation erosion in a cavitating liquid jet, or to modulate the velocity of a liquid jet, or to modulate the velocity of a liquid jet exiting in a gas, causing it to form into discrete slugs, thereby producing an intermittent percussive effect.

  2. Liquid sheet radiator apparatus

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor)

    1990-01-01

    An external flow, liquid sheet radiator apparatus adapted for space applications has as its radiating surface a thin stable liquid sheet formed by fluid flow through a very narrow slit affixed to the sheet generator. As a result of surface tension forces, the sheet has a triangular shape and is collected into a simply designed collector positioned at the apex of the triangle. The specific power for the liquid sheet is virtually the same as the droplet sheet specific power.

  3. Arsenic Removal by Liquid Membranes

    PubMed Central

    Marino, Tiziana; Figoli, Alberto

    2015-01-01

    Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs) look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III) and As(V) from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM) configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s) plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM) systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration. PMID:25826756

  4. Arsenic removal by liquid membranes.

    PubMed

    Marino, Tiziana; Figoli, Alberto

    2015-01-01

    Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs) look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III) and As(V) from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM) configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s) plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM) systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration. PMID:25826756

  5. Swimming bacteria in liquid crystal

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  6. Liquid Effluents Program mission analysis

    SciTech Connect

    Lowe, S.S.

    1994-09-27

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ``capstone`` team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan.

  7. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  8. Liquid Crystal Optofluidics

    SciTech Connect

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  9. Liquid crystal optofluidics

    NASA Astrophysics Data System (ADS)

    Vasdekis, A. E.; Cuennet, J. G.; Psaltis, D.

    2012-10-01

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  10. Liquid level detector

    DOEpatents

    Tokarz, Richard D. (West Richland, WA)

    1982-01-01

    A liquid level sensor having a pair of upright conductors spaced by an insulator defining a first high resistance path between the conductors. An electrically conductive path is interposed between the upright conductors at a discrete location at which liquid level is to be measured. It includes a liquid accessible gap of a dimension such that the electrical resistance across the conductor when the gap is filled with the liquid is detectably less than when the gap is emptied. The conductor might also be physically altered by temperature changes to serve also as an indicator of elevated temperature.

  11. PREFACE: 6th Liquid Matter Conference

    NASA Astrophysics Data System (ADS)

    Dijkstra, Marjolein; van Roij, René; Vroege, Gert Jan; Lekkerkerker, Henk; Frenkel, Daan

    2005-11-01

    This special issue of Journal of Physics: Condensed Matter contains the Proceedings of the 6th Liquid Matter Conference held in Utrecht, The Netherlands, 2-6 July 2005. The three-yearly Liquid Matter Conference is organized by the Liquids Section of the Condensed Matter Division of the European Physical Society. This series of meetings began in Lyon in 1990. The most recent meeting was held in 2003 in Konstanz. The aim of the Liquid Matter Conferences is to bring together scientists working on the liquid state of matter. This rapidly growing field includes the physics, chemistry, biology and chemical engineering of liquid matter as well as various applied research areas. In fact, the Utrecht meeting had, for the first time, a special session devoted to Fundamental Challenges in Applied Liquid Physics and Microfluidics. The Utrecht meeting had 760 registered participants from four continents. An important event at this meeting was the award of the First Liquid Matter Prize of the European Physical Society to Professor Jean-Pierre Hansen FRS, of Cambridge University. In addition to a plenary speech by the recipient of the Liquid Matter Prize, the scientific programme consisted of 10 plenary lectures, 117 symposia talks, 25 of which were keynote lectures and some 650 poster contributions. The meeting also hosted a one-day symposium of the Division of Liquids and Interfaces of the Chemical Sciences division of NWO. This special issue of Journal of Physics: Condensed Matter contains 61 of the oral communications. Liquid state physics is at the interface of many fields of research. As a consequence, many of the attendants come from adjacent fields and find in the Liquid Matter Conference a forum to meet experts from other areas of research. This aspect of the Liquid Matter Conference makes it an exciting meeting as it not only offers the participants an up-to-date picture of the status of research into the liquid state of matter, but it also allows them to establish new (and often unexpected) trans-disciplinary contacts for joint scientific endeavours. This applies in particular to the area of soft condensed matter such as colloidal suspensions, polymeric systems and biological materials. The conference was held at the Uithof, the campus of the University of Utrecht. The organizers gratefully acknowledge the generosity of the University and City of Utrecht, which enabled us to stage both the scientific part of the conference and several festive and cultural events in some of the most attractive venues of the Netherlands. We were also delighted by the substantial contributions offered by the sponsors of the 6th Liquid Matter Conference. With this support it became possible to support a large number of scientists who would otherwise not have been able to attend. Finally, we owe a great debt of gratitude to the secretarial staff of the conference and the many students, postdocs and other colleagues who helped tirelessly (and very efficiently) to make the conference run smoothly. The Board of the Liquids Section of the European Physical Society decided that the 7th Liquid Matter Conference will be held in Lund (Sweden). The tentative dates are Friday 27 June 2008 to Tuesday 1 July 2008.

  12. Experimenting with Liquid Membranes.

    ERIC Educational Resources Information Center

    Lamb, J. D.; And Others

    1980-01-01

    Outlined are two experiments using liquid membranes that illustrate carrier-facilitated transport, where chemical species are ushered across the membrane by selective "carrier" molecules residing in the membrane. The use of liquid membranes as models for studying and describing biological transport mechanisms is explored. (CS)

  13. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  14. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  15. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  16. Advanced proteomic liquid chromatography

    SciTech Connect

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-10-26

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.

  17. Liquid Chromatography in 1982.

    ERIC Educational Resources Information Center

    Freeman, David H.

    1982-01-01

    Reviews trends in liquid chromatography including apparatus, factors affecting efficient separation of a mixture (peak sharpness and speed), simplified problem-solving, adsorption, bonded phase chromatography, ion selectivity, and size exclusion. The current trend is to control chemical selectivity by the liquid phase. (Author/JN)

  18. LIGHT NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Nonaqueous phase liquids (NAPLS) are hydrocarbons that exist as a separate, immiscible phase when in contact with water and/or air. ifferences in the physical and chemical properties of water and NAPL result in the formation of a physical interface between the liquids which preve...

  19. Column Liquid Chromatography.

    ERIC Educational Resources Information Center

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  20. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  1. INEEL Liquid Effluent Inventory

    SciTech Connect

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  2. Synthesis of ionic liquids

    SciTech Connect

    Dai, Sheng; Luo, Huimin

    2011-11-01

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  3. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  4. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  5. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  6. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  7. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  8. Heat exchanger support apparatus in a fluidized bed

    DOEpatents

    Lawton, Carl W.

    1982-01-01

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  9. Evidence for Liquid Water on Comets

    NASA Technical Reports Server (NTRS)

    Sheldon, Robert; Hoover, Richard

    2005-01-01

    We have reexamined the arguments for the existence of liquid water on comets, and believe that recent cometary flybys along with pre-Giotto data support its presence on short-period comets. Liquid water would affect cometary dynamics, leaving distinct signatures in precession, orbital dynamics, and potential splitting of comets. Liquid water geysers would affect cometary atmosphere, dust evolution, and non-gravitational forces that perturb the orbit. Liquid water would affect the composition of both the interior and exterior of the comet, producing geologic effects consistent with recent flyby photographs. And most importantly, liquid water suppork the growth of lifeforms, which would make a comet a biofriendly incubator for interplanetary transport. The major objection against liquid water is the necessity of a pressure vessel to prevent sublimation into space. We discuss how such a pressure vessel could naturally evolve as a pristine comet makes its first journey inside the orbit of Mars, and suggest that this type of vessel was observed by Giotto, Deep Space I, and Stardust.

  10. Are There Two Forms of Liquid Water?

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.

    We will introduce some of the 73 documented anomalies of the most complex of liquids, water--focusing on recent progress in understanding these anomalies by combining information provided by recent experiments and simulations on water in bulk, nanoconfined and biological environments designed to test the hypothesis that liquid water has behavior consistent with the novel phenomenon of ``liquid polymorphism'' in that water can exist in two distinct phases [1]. We will also discuss very recent work on nanoconfined water anomalies as well as the apparently related, and highly unusual, behavior of water in biological environments. Finally, we will discuss how the general concept of liquid polymorphism is proving useful in understanding anomalies in other liquids, such as silicon, silica, and carbon, as well as metallic glasses, which have in common that they are characterized by two characteristic length scales in their interactions.This work has been supported by the NSF Chemistry Division grant CHE-1213217 and was performed in collaboration with, among others, C. A. Angell, S. V. Buldyrev, S.-H. Chen, D. Corradini, P. G. Debenedetti, G. Franzese, P. Kumar, E. Lascaris, F. Mallamace, O. Mishima, P. H. Poole, S. Sastry, F. Sciortino, and L. Xu. H. E. Stanley, Editor, Liquid Polymorphism, Vol. 152 in Advances in Chemical Physics, S. A. Rice, Series Editor (Wiley, New York, 2013).

  11. Chiral separation by enantioselective liquid-liquid extraction.

    PubMed

    Schuur, Boelo; Verkuijl, Bastiaan J V; Minnaard, Adriaan J; de Vries, Johannes G; Heeres, Hero J; Feringa, Ben L

    2011-01-01

    The literature on enantioselective liquid-liquid extraction (ELLE) spans more than half a century of research. Nonetheless, a comprehensive overview has not appeared during the past few decades. Enantioselective liquid-liquid extraction is a technology of interest for a wide range of chemists and chemical engineers in the fields of fine chemicals, pharmaceuticals, agrochemicals, fragrances and foods. In this review the principles and advances of resolution through enantioselective liquid-liquid extraction are discussed, starting with an introduction on the principles of enantioselective liquid-liquid extraction including host-guest chemistry, extraction and phase transfer mechanisms, and multistage liquid-liquid extraction processing. Then the literature on enantioselective liquid-liquid extraction systems is reviewed, structured on extractant classes. The following extractant classes are considered: crown ether based extractants, metal complexes and metalloids, extractants based on tartrates, and a final section with all other types of chiral extractants. PMID:21107491

  12. Free vibration analysis of partially filled liquid storage tanks

    SciTech Connect

    Tang, Yu; Chang, Y.W.

    1993-05-01

    A study on the free vibration analysis of partially filled liquid storage tanks is presented. The tanks considered are the upright circular cylindrical tanks that are rigidly supported at the base. The top of the tanks are either free or constrained. Two types of constraints are considered, namely, hinged and roller support. The governing differential equations for the tank-liquid system are obtained by application of the Rayleigh-Ritz procedure in combination with Lagrange`s equation. The response functions examined include the frequency of the fundamental mode of vibration of the tank-liquid system and the associated modal pressure.

  13. Free vibration analysis of partially filled liquid storage tanks

    NASA Astrophysics Data System (ADS)

    Tang, Yu; Chang, Y. W.

    A study on the free vibration analysis of partially filled liquid storage tanks is presented. The tanks considered are the upright circular cylindrical tanks that are rigidly supported at the base. The top of the tanks are either free or constrained. Two types of constraints are considered, namely, hinged and roller support. The governing differential equations for the tank-liquid system are obtained by application of the Rayleigh-Ritz procedure in combination with Lagrange's equation. The response functions examined include the frequency of the fundamental mode of vibration of the tank-liquid system and the associated modal pressure.

  14. Tunable liquid crystal lasers

    NASA Astrophysics Data System (ADS)

    Woltman, Scott J.

    Liquid crystal lasers are dye-doped distributed feedback lasing systems. Fabricated by coupling the periodic structure of a liquid crystal medium with a fluorescent dye, the emission from these systems is tunable by controlling the liquid crystal system---be it through electric or thermal field effects, photochemical reactions, mechanical deformations, etc. The laser action arises from an extended interaction time between the radiation field, the laser emission, and the matter field, the periodic liquid crystal medium, at the edge of the photonic band gap. In this thesis, several tunable liquid crystal laser systems are investigated: cholesteric liquid crystals, holographic-polymer dispersed liquid crystals and liquid crystal polarization gratings. The primary focus has been to fabricate systems that are tunable through electrical means, as applications requiring mechanical or thermal changes are often difficult to control. Cholesteric liquid crystal lasers are helical Bragg reflectors, with a band gap for circularly polarized light of equivalent handedness to their helix. These materials were doped with a laser dye and laser emission was observed. The use of an in-plane electric field tends to unwind the helical pitch of the film and in doing so tunable emission was demonstrated for ˜15 nm. Holographic-polymer dispersed liquid crystals (H-PDLCs) are grating structures consisting of alternating layers of polymer and liquid crystal, with different indices of refraction. The application of an electric field index matches these layers and switches off the grating. Thus, laser emission can be switched on and off through the use of an electric field. Spatially tunable H-PDLC lasers were fabricated by creating chirped gratings, formed by divergent beams. The emission was shown to tune ˜5 nm as the pump beam was translated across a 1 inch film. Liquid crystal polarization gratings use photo-patterned alignment layers, through a polarization holography exposure, to induce an alignment in a liquid crystal film. Electrically tunable emission was demonstrated in these systems. Applications of liquid crystal lasers include emissive substrates or backplanes for displays or tunable emission sources for biology and medicine. The potential for such applications are discussed.

  15. Liquid metal enabled pump

    PubMed Central

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2014-01-01

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485

  16. Fluorinated monolayers at liquid-liquid and liquid-vapor interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongjian

    Microscopic structure of several fluorinated monolayers at water-vapor and water-oil interfaces were examined using x-ray specular reflectivity and grazing incidence diffraction (GID) techniques. Grazing incidence x-ray diffraction measurements of monolayers of perfluoro-n-eicosane (F(CFsb2)sb{20}F) and F(CFsb2)sb{m}(CHsb2)sb{n}H (denoted as Fsb{m}Hsb{n}) supported at the air-water interface demonstrated that even without the conventional polar head group, the surfactant molecules are capable of forming ordered in-plane structures defined by hexagonal close packing of the fluorinated blocks of adsorbed molecules due to the stronger chain-chain interaction between fluorocarbon chains than the corresponding hydrocarbons. The specular reflectivity data reveals a hydrocarbon-down, fluorocarbon-up orientation for Fsb{12}Hsb{18}. In contrast to the conventional expectation that soluble surfactants form disordered monolayers at the liquid-liquid interface, the studies on a fluoroalcohol (F(CFsb2)sb{10}(CHsb2)sb2OH) monolayer at water-hexane interface indicate that the surfactants are in a close packed hexagonal phase, similar to the in-plane structure of other fluorocarbon molecules at water-air interface. Above a transition temperature the monolayer is in a low density gas phase. Preliminary study shows that hysteresis effect occurs around the transition temperature. The first measurements of microscopic structure at common high interfacial tension liquid-liquid interfaces such as a simple oil-water (hexane-water) interface is also reported. Thermal expansion coefficient measurements indicate subtle structural differences in these monolayers.

  17. Rotor-Liquid-Fundament System's Oscillation

    NASA Astrophysics Data System (ADS)

    Kydyrbekuly, A.

    The work is devoted to research of oscillation and sustainability of stationary twirl of vertical flexible static dynamically out-of-balance rotor with cavity partly filled with liquid and set on relative frame fundament. The accounting of such factors like oscillation of fundament, liquid oscillation, influence of asymmetry of installation of a rotor on a shaft, anisotropism of shaft support and fundament, static and dynamic out-of-balance of a rotor, an external friction, an internal friction of a shaft, allows to settle an invoice more precisely kinematic and dynamic characteristics of system.

  18. Ionic conductivity of imidazole-functionalized liquid crystal mesogens

    NASA Astrophysics Data System (ADS)

    Roddecha, Supacharee; Anthamatten, Mitchell

    2012-02-01

    Imidazole has been investigated as a novel anhydrous proton conducting functional group that could enable higher temperature operation (> 120 ^oC) of polymer electrolyte fuel cells. Its amphoteric behavior can support Grotthuss-like proton transport; however molecular mobility and a high concentration of imidazole groups are needed to achieve high ionic conductivity. Our hypothesis is that liquid crystal ordering, particularly in layered smectic phase, can facilitate formation of 2D proton transport and promote proton conductivity. We have designed and synthesized two imidazole-terminated liquid crystal mesogens, and the ionic conductivities in the liquid crystalline and isotropic states have been measured. Here we report on synthesis and characterization of diacylhydrazine liquid crystals bearing imidazole terminal groups. The proton conductivity of products is compared to pure liquid imidazole and to liquid crystal mesogens without imidazole groups.

  19. Liquid cryobrines and habitability in the subsurface of Mars

    NASA Astrophysics Data System (ADS)

    Möhlmann, Diedrich

    Undercooled liquid interfacial water is shown to necessarily exist in the upper surface of Mars, at least temporarily with diurnal and seasonal variations. Thus, there must in case of a given local presence of soluble salt grains in the soil also evolve liquid brines ("cryobrines"). These liquid aqueous salty solutions can have their eutectic temperature far below 0 C and will remain liquid above that temperature. Liquid cryobrines are therefore expected to, also at present, exist at appropriate sites in the subsurface of Mars. Phase diagrams, water activity and stability of "Mars-relevant" salts and related cryobrines in the subsurface of Mars are presented and discussed. The presence of at least temporarily liquid cryobrines in the subsurface soil may, in analogy to terrestrial halophilic bacteria, give conditions, which could support life processes on present Mars. Related "habitability-aspects" and resulting current challenges to "cryobrine-microbiology" are discussed.

  20. Liquid detection trial with x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Harding, G.; Fleckenstein, H.; Olesinski, S.; Zienert, G.

    2010-08-01

    SALOME (an acronym for Small Angle Lab Operation Measuring Equipment) is a versatile, energy-dispersive x-ray diffraction imaging (XDi) test-bed facility commissioned and supported by the Transportation Security Laboratory, Atlantic City, USA. In work presented here, the Inverse Fan-beam (IFB) topology has been realized on SALOME and used to investigate the liquids identification capability of x-ray diffraction (XRD). Liquids were investigated from four classes of materials of relevance to security screening of aircraft passenger luggage; namely: dilute aqueous liquids; concentrated aqueous liquids; hydrocarbon fuels; and oxidizers. A set of features associated with the Molecular Interference Function (MIF) were used to classify the liquids. Within the limited scope of this investigation, XRD proved to have excellent capability for discriminating liquids from one another; in particular, for isolating the threat materials without raising false alarms from either household or innocuous substances. Consequences for XRD-based screening of air passenger luggage are summarized.

  1. Renewable liquid reflecting zone plate

    DOEpatents

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  2. Noncavitating Pump For Liquid Helium

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael; Swift, Walter; Sixsmith, Herbert

    1996-01-01

    Immersion pump features high efficiency in cryogenic service. Simple and reliable centrifugal pump transfers liquid helium with mass-transfer efficiency of 99 percent. Liquid helium drawn into pump by helical inducer, which pressurizes helium slightly to prevent cavitation when liquid enters impeller. Impeller then pressurizes liquid. Purpose of pump to transfer liquid helium from supply to receiver vessel, or to provide liquid helium flow for testing and experimentation.

  3. Dynamical and structural heterogeneities close to liquid-liquid phase transitions: The case of gallium

    NASA Astrophysics Data System (ADS)

    Antonelli, Alex; Cajahuaringa, Samuel; de Koning, Maurice

    2013-03-01

    Liquid-liquid phase transitions (LLPT) have been proposed in order to explain the thermodynamic anomalies exhibited by some liquids. Recently, it was found, through molecular dynamics simulations, that liquid elemental gallium, described by a modified embedded-atom model, exhibits a LLPT between a high-density liquid (HDL) and a low-density liquid (LDL), about 60 K below the melting temperature. In this work, we studied the dynamics of supercooled liquid gallium close to the LLPT. Our results show a large increase in the plateau of the self-intermediate scattering function (β-relaxation process) and in the non-Gaussian parameter, indicating a pronounced dynamical heterogeneity upon the onset of the LLPT. The dynamical heterogeneity of the LDL is closely correlated to its structural heterogeneity, since the fast diffusing atoms belong to high-density domains of predominantly 9-fold coordinated atoms, whereas the slow diffusing ones are mostly in low-density domains of 8-fold coordinated atoms. The energetics suggests that the reason for the sluggish dynamics of LDL is due to its larger cohesive energy as compared to that of the HDL. Work supported by FAPESP, CNPq, CAPES, and FAEPEX/UNICAMP

  4. Pulsating-gliding transition in the dynamics of levitating liquid nitorgen droplets.

    SciTech Connect

    Snezhko, A.; Jacob, E. B.; Aranson, I. S.; Materials Science Division; Tel-Aviv Univ.

    2008-04-21

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  5. Thermotropic liquid crystalline drugs.

    PubMed

    Bunjes, Heike; Rades, Thomas

    2005-07-01

    Crystalline solids are characterized by long-range positional and orientational order in three dimensions, whereas amorphous liquids lack long-range order in any dimension. Liquid crystals (mesophases) show structural, mechanical and optical properties intermediate to those of crystalline solids and the amorphous, liquid state of matter. There are two principle types of liquid crystals: thermotropic liquid crystals (TLCs) and lyotropic liquid crystals (LLCs). TLCs can be formed by heating a crystalline solid or by cooling an isotropic melt of a TLC-forming molecule (mesogen). In the first part of this review the types of liquid crystals are defined and classified and the structural properties of mesogens are explained. In the second part, ten case studies of thermotropic mesomorphous drugs and pharmaceutically relevant molecules (arsphenamine, nafoxidine hydrochloride, L-660711, palmitoyl propranolol hydrochloride, penbutolol sulfate, itraconazole hydrochloride, fenoprofen sodium, fenoprofen calcium, ciclosporin and cholesteryl esters) are presented and their thermotropic mesomorphism is described. The review closes with a brief discussion of the unusual properties of drug mesophases and a potential use of drugs and excipients in this fourth state of matter. PMID:15969938

  6. Liquid sampling system

    DOEpatents

    Larson, Loren L.

    1987-01-01

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

  7. Liquid sampling system

    DOEpatents

    Larson, L.L.

    1984-09-17

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

  8. Liquid metal drop ejection

    NASA Technical Reports Server (NTRS)

    Khuri-Yakub, B. T.

    1993-01-01

    The aim of this project was to demonstrate the possibility of ejecting liquid metals using drop on demand printing technology. The plan was to make transducers for operation in the 100 MHz frequency range and to use these transducers to demonstrate the ability to eject drops of liquid metals such as gallium. Two transducers were made by indium bonding piezoelectric lithium niobate to quartz buffer rods. The lithium niobate plates were thinned by mechanical polishing to a thickness of 37 microns for operation at 100 MHz. Hemispherical lenses were polished in the opposite ends of the buffer rods. The lenses, which focus the sound waves in the liquid metal, had an F-number equals 1. A mechanical housing was made to hold the transducers and to allow precise control over the liquid level above the lens. We started by demonstrating the ability to eject drops of water on demand. The drops of water had a diameter of 15 microns which corresponds to the wavelength of the sound wave in the water. A videotape of this ejection was made. We then used a mixture of Gallium and Indium (used to lower the melting temperature of the Gallium) to demonstrate the ejection of liquid metal drops. This proved to be difficult because of the oxide skin which forms on the surface of the liquid. In some instances, we were able to eject metal drops, however, this was not consistent and reproducible. An experiment was set up at NASA-Lewis to stabilize the process of drop on demand liquid metal ejection. The object was to place the transducer and liquid metal in a vacuum station so that no oxide would form on the surface. We were successful in demonstrating that liquid metals could be ejected on demand and that this technology could be used for making sheet metal in space.

  9. Liquid-feeding strategy of the proboscis of butterflies

    NASA Astrophysics Data System (ADS)

    Lee, Seung Chul; Lee, Sang Joon; CenterBiofluid; Biomimic Research Team

    2015-11-01

    The liquid-feeding strategy of the proboscis of butterflies was experimentally investigated. Firstly, the liquid uptake from a pool by the proboscis of a nectar-feeding butterfly, cabbage white (Pieris rapae) was tested. Liquid-intake flow phenomenon at the submerged proboscis was visualized by micro-particle image velocimetry. The periodic liquid-feeding flow is induced by the systaltic motion of the cibarial pump. Reynolds number and Womersley number of the liquid-intake flow in the proboscis are low enough to assume quasi-steady laminar flow. Next, the liquid feeding from wet surfaces by the brush-tipped proboscis of a nymphalid butterfly, Asian comma (Polygonia c-aureum) was investigated. The tip of the proboscis was observed especially brush-like sensilla styloconica. The liquid-feeding flow between the proboscis and wet surfaces was also quantitatively visualized. During liquid drinking from the wet surface, the sensilla styloconica enhance liquid uptake rate with accumulation of liquid. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  10. Liquid Nicotine Toxicity.

    PubMed

    Kim, Ji Won; Baum, Carl R

    2015-07-01

    E-cigarettes, also known as electronic nicotine delivery systems and electronic cigarettes, are advertised as a healthier alternative product to tobacco cigarettes despite limited data on the consequences of e-cigarette use. Currently, there are no US Food and Drug Administration or other federal regulations of e-cigarettes, and calls to poison control centers regarding liquid nicotine toxicity, especially in children, are on the rise. This article presents the background and mechanism of action of e-cigarettes as well as up-to-date details of the toxicity of liquid nicotine. We also present management strategies in the setting of liquid nicotine toxicity. PMID:26148101

  11. Liquid rising near walls

    NASA Astrophysics Data System (ADS)

    Khorrami, Mohammad; Aghamohammadi, Amir

    2016-03-01

    The rise of a liquid in a region confined with walls is studied. This is done for the case of a liquid between two vertical parallel walls, as well as a liquid rising inside or outside a cylinder of circular cross section. Limiting cases of small distances between the walls, or tubes of small cross sections, as well as large distances between the walls, or tubes of large cross sections, are also investigated. For the limiting cases, tubes of arbitrary (but uniform) cross sections are also studied.

  12. Liquid-level detector

    DOEpatents

    Not Available

    1981-01-29

    Aliquid level sensor is described which has a pair of upright conductors spaced by an insulator defining a first high resistance path between the conductors. An electrically conductive path is interposed between the upright conductors at a discrete location at which liquid level is to be measured. It includes a liquid accessible gap of a dimension such that the electrical resistance across the conductor when the gap is filled with the liquid is detectably less than when the gap is emptied. The conductor might also be physically altered by temperature changes to serve also as an indicator of elevated temperature.

  13. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  14. Liquid metal electric pump

    DOEpatents

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  15. Encapsulated liquid sorbents for carbon dioxide capture.

    PubMed

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-01-01

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture. PMID:25652243

  16. Maintenance evaluation for space station liquid systems

    NASA Technical Reports Server (NTRS)

    Flugel, Charles

    1987-01-01

    Many of the thermal and environmental control life support subsystems as well as other subsystems of the space station utilize various liquids and contain components which are either expendables or are life-limited in some way. Since the space station has a 20-year minimum orbital lifetime requirement, there will also be random failures occurring within the various liquid-containing subsystems. These factors as well as the planned space station build-up sequence require that maintenance concepts be developed prior to the design phase. This applies to the equipment which needs maintenance as well as the equipment which may be required at a maintenance work station within the space station. This paper presents several maintenance concepts for liquid-containing items and a flight experiment program which would allow for evaluation and improvement of these concepts so they can be incorporated in the space station designs at the outset of its design phase.

  17. Encapsulated liquid sorbents for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Vericella, John J.; Baker, Sarah E.; Stolaroff, Joshuah K.; Duoss, Eric B.; Hardin, James O.; Lewicki, James; Glogowski, Elizabeth; Floyd, William C.; Valdez, Carlos A.; Smith, William L.; Satcher, Joe H.; Bourcier, William L.; Spadaccini, Christopher M.; Lewis, Jennifer A.; Aines, Roger D.

    2015-02-01

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  18. Direct liquid injection of liquid petroleum gas

    SciTech Connect

    Lewis, D.J.; Phipps, J.R.

    1984-02-14

    A fuel injector and injection system for injecting liquified petroleum gas (LPG) into at least one air/fuel mixing chamber from a storage means that stores pressurized LPG in its liquid state. The fuel injector (including a body), adapted to receive pressurized LPG from the storage means and for selectively delivering the LPG to the air/fuel mixing chamber in its liquified state. The system including means for correcting the injector activation signal for pressure and density variations in the fuel.

  19. Extensible automated dispersive liquid-liquid microextraction.

    PubMed

    Li, Songqing; Hu, Lu; Chen, Ketao; Gao, Haixiang

    2015-05-01

    In this study, a convenient and extensible automated ionic liquid-based in situ dispersive liquid-liquid microextraction (automated IL-based in situ DLLME) was developed. 1-Octyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide ([C8MIM]NTf2) is formed through the reaction between [C8MIM]Cl and lithium bis[(trifluoromethane)sulfonyl]imide (LiNTf2) to extract the analytes. Using a fully automatic SPE workstation, special SPE columns packed with nonwoven polypropylene (NWPP) fiber, and a modified operation program, the procedures of the IL-based in situ DLLME, including the collection of a water sample, injection of an ion exchange solvent, phase separation of the emulsified solution, elution of the retained extraction phase, and collection of the eluent into vials, can be performed automatically. The developed approach, coupled with high-performance liquid chromatography-diode array detection (HPLC-DAD), was successfully applied to the detection and concentration determination of benzoylurea (BU) insecticides in water samples. Parameters affecting the extraction performance were investigated and optimized. Under the optimized conditions, the proposed method achieved extraction recoveries of 80% to 89% for water samples. The limits of detection (LODs) of the method were in the range of 0.16-0.45 ng mL(-1). The intra-column and inter-column relative standard deviations (RSDs) were <8.6%. Good linearity (r>0.9986) was obtained over the calibration range from 2 to 500 ng mL(-1). The proposed method opens a new avenue for automated DLLME that not only greatly expands the range of viable extractants, especially functional ILs but also enhances its application for various detection methods. Furthermore, multiple samples can be processed simultaneously, which accelerates the sample preparation and allows the examination of a large number of samples. PMID:25892068

  20. Liquid-Cooled Garment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.

  1. Liquid cooled garments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Liquid cooled garments employed in several applications in which severe heat is encountered are discussed. In particular, the use of the garments to replace air line cooling units in a variety of industrial processing situations is discussed.

  2. Liquid level controller

    DOEpatents

    Mangus, J.D.; Redding, A.H.

    1975-07-15

    A system for maintaining two distinct sodium levels within the shell of a heat exchanger having a plurality of J-shaped modular tube bundles each enclosed in a separate shell which extends from a common base portion. A lower liquid level is maintained in the base portion and an upper liquid level is maintained in the shell enwrapping the long stem of the J-shaped tube bundles by utilizing standpipes with a notch at the lower end which decreases in open area the distance from the end of the stand pipe increases and a supply of inert gas fed at a constant rate to produce liquid levels, which will remain generally constant as the flow of liquid through the vessel varies. (auth)

  3. Liquid sample processor

    NASA Technical Reports Server (NTRS)

    Jahnsen, V. J.; Campen, C. F., Jr.

    1975-01-01

    Processor is automatic and includes series of extraction tubes packed with fibrous absorbent material of large surface area. When introduced into these tubes, liquid test samples become completely absorbed by packing material as thin film.

  4. Lacerations - liquid bandage

    MedlinePlus

    ... painless to apply. Skin adhesives, or liquid bandages, seal the cut closed after only one application. There ... scrub the site. Doing so may loosen the seal or even remove the adhesive completely. The seal ...

  5. Liquid metal boiling inception

    NASA Technical Reports Server (NTRS)

    Sabin, C. M.; Poppendiek, H. F.; Mouritzen, G.; Meckel, P. T.; Cloakey, J. E.

    1972-01-01

    An experimental study of the inception of boiling in potassium in forced convection is reported. The boiler consisted of a 0.19-inch inside diameter, niobium-1% zirconium boiler tube approximately six feet long. Heating was accomplished by direct electrical tube wall conduction. Experiments were performed with both all-liquid fill and two-phase fill startup sequences and with a range of flow rates, saturation temperatures, inert gas levels, and fill liquid temperatures. Superheat of the liquid above the equilibrium saturation temperature was observed in all the experiments. Incipient boiling liquid superheat ranged from a few degrees to several hundred. Comparisons of these data with other data and with several analytical treatments are presented.

  6. Safer Liquid Natural Gas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    After the disaster of Staten Island in 1973 where 40 people were killed repairing a liquid natural gas storage tank, the New York Fire Commissioner requested NASA's help in drawing up a comprehensive plan to cover the design, construction, and operation of liquid natural gas facilities. Two programs are underway. The first transfers comprehensive risk management techniques and procedures which take the form of an instruction document that includes determining liquid-gas risks through engineering analysis and tests, controlling these risks by setting up redundant fail safe techniques, and establishing criteria calling for decisions that eliminate or accept certain risks. The second program prepares a liquid gas safety manual (the first of its kind).

  7. Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed

    NASA Technical Reports Server (NTRS)

    Flynn, Howard; Lusby, Brian; Villemarette, Mark

    2011-01-01

    In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.

  8. Ionic Liquid Membranes for Carbon Dioxide Separation

    SciTech Connect

    Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

    2008-07-12

    Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on amine interactions. The hypothesis is that the performance at the elevated temperatures could be improved by allowing a facilitated transport mechanism to become dominant. Several amine-based ionic liquids were tested on the cross-linked nylon support. It was found that using the amine-based ionic liquid did improve selectivity and permeability at higher temperature. The hypothesis was confirmed, and it was determined that the type of amine used also played a role in facilitated transport. Given the appropriate aminated ionic liquid with the cross-linked nylon support, it is possible to have a membrane capable of separating CO2 at IGCC conditions. With this being the case, the research has expanded to include separation of other constituents besides CO2 (CO, H2S, etc.) and if they play a role in membrane poisoning or degradation. This communication will discuss the operation of the recently fabricated ionic liquid membranes and the impact of gaseous components other than CO2 on their performance and stability.

  9. Gas/liquid separation device

    SciTech Connect

    Takeyama, Masaki; Igashira, Toshihiko; Yoshinaga, Toru; Takigawa, Masahiro.

    1993-08-31

    A gas/liquid separation apparatus is described comprising: first passage means for passing there through a gas carrying a liquid component; swirl generator means, disposed on an upstream side said first passage means, for separating said liquid component from said gas with a swirl flow of said gas, thereby generating a vacuum pressure; first liquid accumulation means, disposed on said first passage means and on a downstream side of said swirl generator means, for trapping and accumulating said separated liquid component, said first liquid accumulation means having an annular groove surrounding said first passage means which traps and accumulates said separated liquid component, such that said liquid component does not pass through said first liquid accumulation means; second liquid accumulation means for drawing in and accumulating said separated liquid component accumulated in said annular groove of said first liquid accumulation means based on a difference in said vacuum pressure between said first liquid accumulation means and said second liquid accumulation means; second passage means, connecting said annular groove to said second liquid accumulation means, for passing there through said accumulated separated liquid component; and third passage means, connecting said second liquid accumulation means to a center portion of said swirl flow for communicating there through said vacuum pressure.

  10. 114. WEST SIDE OF LIQUID OXYGEN CONTROL ROOM (205). LIQUID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. WEST SIDE OF LIQUID OXYGEN CONTROL ROOM (205). LIQUID NITROGEN (LN2) SUBCOOLER ON LEFT; SKID 8, LIQUID OXYGEN CONTROLLER FOR SWITCHING BETWEEN RAPID-LOAD AND TOPPING ON RIGHT. LIQUID OXYGEN LINE FROM SKID 9A AT RIGHT EDGE OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. Consolidated incineration facility technical support

    SciTech Connect

    Burns, D.; Looper, M.G.

    1993-12-31

    In 1996, the Savannah River Site plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. The Savannah River Technology Center (SRTC) leads an extensive technical support program designed to obtain incinerator and air pollution control equipment performance data to support facility start-up and operation. Key components of this technical support program include recently completed waste burn tests at both EPA`s Incineration Research Facility and at Energy and Environmental Research Corporation`s Solid Waste Incineration Test Facility. The main objectives for these tests were determining the fate of heavy metals, measuring organics destruction and removal efficiencies, and quantifying incinerator offgas particulate loading and size distribution as a function of waste feed characteristics and incineration conditions. In addition to these waste burning tests, the SRTC has recently completed installations of the Offgas Components Test Facility (OCTF), a 1/10 scale CIF offgas system pilot plant. This pilot facility will be used to demonstrate system operability and maintainability, evaluate and optimize equipment and instrument performance, and provide direct CIF start-up support. Technical support programs of this type are needed to resolve technical issues related with treatment and disposal of combustible hazardous, mixed, and low-level radioactive waste. Implementation of this program will minimize facility start-up problems and help insure compliance with all facility performance requirements.

  12. Applications of ionic liquids.

    PubMed

    Patel, Divia Dinesh; Lee, Jong-Min

    2012-06-01

    Ionic liquids have recently gained popularity in the scientific community owing to their special properties and characteristics. One of the reasons why ionic liquids have been termed "green solvents" is due to their negligible vapour pressure. Their use in electrochemical, biological and metal extraction applications is discussed. Wide research has been carried out for their use in batteries, solar panels, fuel cells, drug deliveries and biomass pretreatments. This work aims to consolidate the various findings from previous works in these areas. PMID:22711528

  13. Liquid blocking check valve

    DOEpatents

    Merrill, John T.

    1984-01-01

    A liquid blocking check valve useful particularly in a pneumatic system utilizing a pressurized liquid fill chamber. The valve includes a floatable ball disposed within a housing defining a chamber. The housing is provided with an inlet aperture disposed in the top of said chamber, and an outlet aperture disposed in the bottom of said chamber in an offset relation to said inlet aperture and in communication with a cutaway side wall section of said housing.

  14. Advanced proteomic liquid chromatography

    PubMed Central

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-01-01

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput. PMID:22840822

  15. Compact Liquid Deaerator

    NASA Technical Reports Server (NTRS)

    Yamauchi, S. T.

    1982-01-01

    Gases are removed from liquids by a new deaerator that takes up only 5 inches (12.7 cm) at top of a medium-sized storage tank. Deaerator has a multiple cascading header that exposes more fluid at lower pressures than typical commercial deaerators. Potential applications are in hydraulic systems for aircraft and heavy machinery, in cooling systems where deaerated liquid is needed to prevent cavitation of pump.

  16. Liquid cooled helmet

    NASA Technical Reports Server (NTRS)

    Elkins, William (Inventor); Williams, Bill A. (Inventor)

    1979-01-01

    Liquid cooled helmet comprising a cap of flexible material adapted to fit the head of a person, cooling panels mounted inside the cap forming passageways for carrying a liquid coolant, the panels being positioned to engage the cranium and neck of a person wearing the helmet, inlet and outlet lines communicating with the passageways, and releasable straps for securing the helmet about the neck of the wearer.

  17. Liquid Level Sensing System

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)

    2014-01-01

    A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.

  18. Bifunctional organophosphorus liquid-liquid extraction reagents: development and applications

    SciTech Connect

    Schulz, W.W.; Navratil, J.D.

    1985-01-01

    American and Russian workers have evidenced great interest in the last decade in the potential application of certain neutral and acidic bifunctional organophosphorus compounds in solvent extraction processes. Triggering this interest is the ability of some carbamoylmethylenephosphorus (CMP) and carbamoylmethylenephosphine oxide (CMPO) compounds to extract trivalent actinides and lanthanides from strong HNO/sub 3/ (>1 M) solutions, a property which distinguishes them from monofunctional organophosphorus reagents. Investigators at several US Department of Energy laboratories have concentrated on synthesis of novel CMP and CMPO reagents and on reactions and mechanisms involved in extraction of metal ions from aqueous nitrate media; application of selected CMP and CMPO reagents in solvent extraction and supported liquid membrane recovery of metal values from nuclear waste solutions have been proposed. This paper, based upon a book now in preparation, provides a brief overview of the current status of the development and application of bifunctional organophosphorus extractants. 44 references, 4 tables.

  19. Bifunctional organophosphorus liquid-liquid extraction reagents: development and applications

    SciTech Connect

    Schulz, W.W.; Navratil, J.D.

    1984-03-13

    American and Russian workers have evidenced great interest in the last decade in the potential application of certain neutral and acidic bifunctional organophosphorus compounds in solvent extraction processes. Triggering this interest is the ability of some carbamoylmethylenephosphorus (CMP) and carbamoylmethylenephosphine oxide (CMPO) compounds to extract trivalent actinides and lanthanides from strong HNO/sub 3/ (>1M) solutions, a property which distinguishes them from monofunctional organophosphorus reagents. Investigators at several US Department of Energy laboratories have concentrated on synthesis of novel CMP and CMPO reagents and on reactions and mechanisms involved in extraction of metal ions from aqueous nitrate media; application of selected CMP and CMPO reagents in solvent extraction and supported liquid membrane recovery of metal values from nuclear waste solutions have been proposed. This paper, based upon a book now in preparation, provides a brief overview of the current status of the development and application of bifunctional organophosphorus extractants. 42 references, 4 tables.

  20. Atmospheric Pressure Plasmas Incident onto Thin Liquid Layers

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Norberg, Seth; Babaeva, Natalia Yu.; Kushner, Mark J.

    2013-09-01

    The interaction of plasmas with liquids has increasing importance in advanced manufacturing and biomedical applications. Sustaining atmospheric pressure plasmas on liquids (as opposed to in liquids) can increase the chemical activity of the liquid by transferring more easily produced reactive species from the gas phase into the liquid. Often the intent is to treat the surface under the liquid layer, as in plasma medicine. The liquid then acts as a filter which modifies the fluxes of reactive species prior to reaching the underlying surface. The liquid in turn influences the plasma by evaporation which produces a saturated layer of, for example, water vapor above the liquid surface, or by the shape of liquid covered wounds and the dielectric properties of the liquid. Direct plasma exposure (e.g., a dielectric barrier discharge) enables intersection of ion and UV/VUV fluxes with the liquid surface whereas many remote plasma jets typically do not. This increases the rate of hydronium (H3O+) production which affects pH. In this paper, results from a computational investigation on the dynamics of atmospheric pressure plasmas intersecting thin water layers having dissolved gases and proteins will be discussed. Examples are taken from DBD and plasma jet exposure of water layers over a tissue-like dielectric, and plasmas sustained in bubbles in water. The mutual interaction of the plasma and liquid will be discussed based on radiation and ion transport into the water, evaporation, and transport and conversion of plasma produced reactivity through the water layer. Work supported by DOE Fusion Energy Science and NSF.

  1. Thermodynamics of liquid mixtures

    SciTech Connect

    Toghiani-Doulatabadi, H.

    1988-01-01

    In designing separation equipment, an understanding of phase equilibria and the ability to analytically interpret experimental vapor-liquid equilibrium data are extremely important. Additionally, a systematic study of binary systems of chemicals from different homologous series could increase understanding of group contribution methods and allow prediction of phase equilibria for more complicated systems. As an extension of the coal-based chemicals research carried out by the Thermodynamics Research Group at the University of Missouri-Columbia, it was undertaken to study vapor-liquid equilibria for the binary systems methanol-benzene and methanol-thiophene. Methanol exhibits association in its pure form and so these binary systems are highly non-ideal. Prediction of vapor-liquid equilibria for these systems using a single equation of state provides a severe test of the capabilities of such an analytic equation of state. A modified Swietoslawski ebulliometer of the recirculating type with continuous flow of both liquid and vapor phases was constructed. Vapor pressure data for all three pure components were measured. Both isobaric and isothermal vapor-liquid equilibrium data were obtained for each binary system. The data were subjected to thermodynamic consistency tests and then rigorously analyzed using the maximum likelihood technique. The data were also analyzed using a single equation of state developed in the present work. This equation of state is valid for both polar and apolar substances and is capable of quantitative prediction of properties for both liquid and vapor phases of a pure substance.

  2. Electrically actuated liquid iris.

    PubMed

    Xu, Miao; Ren, Hongwen; Lin, Yi-Hsin

    2015-03-01

    We report an adaptive iris using dielectric liquids and a radial-interdigitated electrode. A black liquid is confined by a circular gasket with a donut shape. The surrounding of the black liquid is filled with an immiscible liquid. In the relaxing state, the black liquid obtains the largest clear aperture. By applying a voltage, the surface of the black liquid is stretched by the generated dielectric force, resulting in a reduction of its aperture. For the demonstrated iris, the diameter of the aperture can be changed from ∼4.7  mm to ∼1.2  mm when the voltage is applied from 0 to 70  V(rms). The aperture ratio is ∼94%. Owing to the radial-interdigitated electrode, the aperture size of the iris can be effectively switched with a reasonably fast response time. The optical switch is polarization-insensitive. The potential applications of our iris are light shutters, optical attenuators, biomimicry, and wearable devices. PMID:25723444

  3. Cyrogenic Life Support Technology Development Project

    NASA Technical Reports Server (NTRS)

    Bush, David R.

    2015-01-01

    KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.

  4. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko, David J.

    2004-07-13

    The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

  5. Evaluation of a hanging core support concept for LMR application

    SciTech Connect

    Burelbach, J.P.; Cha, B.K.; Huebotter, P.R.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.; Wu, T.S.

    1985-01-01

    The paper describes an innovative design concept for a liquid metal reactor (LMR) core support structure (CSS). A hanging core support structure is described and analyzed. The design offers inherent safety features, constructability advantages, and potential cost reductions. Some safety considerations are examined which include the in-service inspection (ISI), the backup support system and the structural behavior in a hypothetical case of a broken beam in the core support structure.

  6. Data liquidity in health information systems.

    PubMed

    Courtney, Paul K

    2011-01-01

    In 2001, the Institute of Medicine report Crossing the Quality Chasm and the National Committee on Vital and Health Statistics report Information for Health were released, and they provided the context for the development of information systems used to support health-supporting processes. Both had as their goals, implicit or explicit, to ensure the right data are provided to the right person at the right time, which is one definition of "data liquidity." This concept has had some traction in recent years as a shorthand way to express a system property for health information technology, but there is not a well-defined characterization of what properties of a system or of its components give it better or worse data liquidity. This article looks at some recent work that help to identify those properties and perhaps can help to ground the concept with metrics that are assessable. PMID:21799328

  7. Beyond dispersive liquid-liquid microextraction.

    PubMed

    Leong, Mei-I; Fuh, Ming-Ren; Huang, Shang-Da

    2014-03-28

    Dispersive liquid-liquid microextraction (DLLME) and other dispersion liquid-phase microextraction (LPME) methods have been developed since the first DLLME method was reported in 2006. DLLME is simple, rapid, and affords high enrichment factor, this is due to the large contact surface area of the extraction solvent. DLLME is a method suitable for the extraction in many different water samples, but it requires using chlorinated solvents. In recent years, interest in DLLME or dispersion LPME has been focused on the use of low-toxicity solvents and more conveniently practical procedures. This review examines some of the most interesting developments in the past few years. In the first section, DLLME methods are separated in two categories: DLLME with low-density extraction solvent and DLLME with high-density extraction solvent. Besides these methods, many novel special devices for collecting low-density extraction solvent are also mentioned. In addition, various dispersion techniques with LPME, including manual shaking, air-assisted LPME (aspirating and injecting the extraction mixture by syringe), ultrasound-assisted emulsification, vortex-assisted emulsification, surfactant-assisted emulsification, and microwave-assisted emulsification are described. Besides the above methods, combinations of DLLME with other extraction techniques (solid-phase extraction, stir bar sorptive extraction, molecularly imprinted matrix solid-phase dispersion and supercritical fluid extraction) are introduced. The combination of nanotechnique with DLLME is also introduced. Furthermore, this review illustrates the application of DLLME or dispersion LPME methods to separate and preconcentrate various organic analytes, inorganic analytes, and samples. PMID:24582396

  8. Impact of Liquid Fuel Boundary Condition and Nozzle Geometry on Liquid Jet in Crossflow Atomization

    NASA Astrophysics Data System (ADS)

    Ghods, Sina; Herrmann, Marcus

    2012-11-01

    The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geometry. Detailed numerical simulations can offer better understanding of the underlying physical mechanisms that lead to the breakup of the injected liquid jet. In this work, we present detailed numerical simulation results of turbulent liquid jets injected into turbulent gaseous cross flows for different liquid fuel boundary conditions and injector geometries. We employ a finite volume, balanced force fractional step flow solver to solve the Navier-Stokes equations coupled to a Refined Level Set Grid method to follow the phase interface. To enable the simulation of atomization of high density ratio fluids, we ensure discrete consistency between the solution of the conservative momentum equation and the level set based continuity equation by employing the Rescaled Conservative Momentum method. We analyze the impact of liquid jet turbulent fluctuations and injector geometry on different jet properties such as jet penetration and generated drop sizes. This work was supported by NSF grant number CBET-0853627.

  9. Active colloids at liquid-liquid interfaces: dynamic self-assembly and functionality

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey; Aranson, Igor

    2012-02-01

    Self-assembled materials must actively consume energy and remain out of equilibrium in order to support structural complexity and functional diversity. Colloids of interacting particles suspended at liquid-liquid interfaces and maintained out of equilibrium by external alternating electromagnetic fields develop nontrivial collective dynamics and self-assembly. We use ferromagnetic colloidal micro-particles (so the magnetic moment is fixed in each particle and interactions between colloids is highly anisotropic and directional) suspended over an interface of two immiscible liquids and energized by vertical alternating magnetic fields to demonstrate novel dynamic and active self-assembled structures (``asters'') which are not accessible through thermodynamic assembly. Structures are attributed to the interplay between surface waves, generated at the liquid/liquid interface by the collective response of magnetic microparticles to the alternating magnetic field, and hydrodynamic fields induced in the boundary layers of both liquids forming the interface. Two types of magnetic order are reported. We demonstrate that asters develop self-propulsion in the presence of a small in-plane dc magnetic field. We show that asters can capture, transport, and position target microparticles.

  10. Calamitic liquid crystal elastomers swollen with bent-core liquid crystals

    NASA Astrophysics Data System (ADS)

    Chambers, M.; Gleeson, J. T.; Sprunt, S.; Jakli, A.

    2008-03-01

    Liquid crystal elastomers are composed of a chemically bonded liquid crystal mesogen and an elastomeric polymer network. They exhibit both the properties of rubber elasticity, liquid crystallinity and their interplay, giving rise to unique systems rich in physics. Additionally, bent-core (``banana'') liquid crystals are also of interest exhibiting rich phase behaviour and non-classical properties such as flexoelectricity. Here we examine the swelling of existing calamitic liquid crystal elastomers with various bent-core mesogens and the intriguing properties of the resulting system. The consequential swollen liquid crystalline elastomer systems, can imbibe many times there weight and volume in bent core mesogens until saturated. The homogenous system displays new properties (transition temperatures and phases) depending strongly on the interaction of the elastomer mesogen and bent-core mesogen. Strangely, for some bent-core mesogens this leads to higher temperature phase behaviour than both compounds originally posses. The authors would like to acknowledge support from ONR (N00014-07-1-0440) and NSF (DMR-0606160).

  11. Carbenes from ionic liquids.

    PubMed

    Hollóczki, Oldamur; Nyulászi, László

    2014-01-01

    In the last decade an explosive development has been observed in the fields of both ionic liquids (ILs) as potential chemically inert solvents with many possible technical applications, and N-heterocyclic carbenes (NHCs) as catalysts with superb performance. Since the cations of many ILs can be deprotonated by strong bases yielding NHCs, this two fields are inherently connected. It has only recently been recognized that some of the commonly used basic anions of the ILs (such as acetate) are able to deprotonate azolium cations. While the resulting NHC could clearly be observed in the vapor phase, in the liquid - where the mutual electrostatic interactions within the ion network stabilize the ion pairs - the neutral NHC cannot be detected by commonly used analytical techniques; however, from these ionic liquids NHCs can be trapped, e.g., by complex formation, or more importantly these ILs can be directly used as catalysts, since the NHC content is sufficiently large for these applications. Apart from imidazole-2-ylidenes, the formation of other highly reactive neutral species ("abnormal carbenes," 2-alkylideneimidazoles, pyridine-ylidenes or pyridinium-ylides) is feasible in highly basic ionic liquids. The cross-fertilizing overlap between the two fields may provide access to a great advance in both areas, and we give an overview here on the results published so far, and also on the remaining possibilities and challenges in the concept of "carbenes from ionic liquids." PMID:23539381

  12. Microgravity liquid propellant management

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The requirement to settle or to position liquid fluid over the outlet end of a spacecraft propellant tank prior to main engine restart, poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet without any vapor entrainment, any excessive geysering, or any other undersirable fluid motion for the space fluid management under microgravity environment. The most efficient technique is studied for propellant resettling through the minimization of propellant usage and weight penalties. Both full scale and subscale liquid propellant tank of Space Transfer Vehicle were used to simulate flow profiles for liquid hydrogen reorientation over the tank outlet. In subscale simulation, both constant and impulsive resettling acceleration were used to simulate the liquid flow reorientation. Comparisons between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for activation of propellant resettlement shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust.

  13. A liquid propulsion panorama

    NASA Astrophysics Data System (ADS)

    Caisso, Philippe; Souchier, Alain; Rothmund, Christophe; Alliot, Patrick; Bonhomme, Christophe; Zinner, Walter; Parsley, Randy; Neill, Todd; Forde, Scott; Starke, Robert; Wang, William; Takahashi, Mamoru; Atsumi, Masahiro; Valentian, Dominique

    2009-12-01

    Liquid-propellant rocket engines are widely used all over the world, thanks to their high performances, in particular high thrust-to-weight ratio. The present paper presents a general panorama of liquid propulsion as a contribution of the IAF Advanced Propulsion Prospective Group. After a brief history of its past development in the different parts of the world, the current status of liquid propulsion, the currently observed trends, the possible areas of future improvement and a summarized road map of future developments are presented. The road map includes a summary of the liquid propulsion status presented in the "Year in review 2007" of Aerospace America. Although liquid propulsion is often seen as a mature technology with few areas of potential improvement, the requirements of an active commercial market and a renewed interest for space exploration has led to the development of a family of new engines, with more design margins, simpler to use and to produce associated with a wide variety of thrust and life requirements.

  14. The liquid droplet radiator

    NASA Astrophysics Data System (ADS)

    Mattick, A. T.; Hertzberg, A.; Taussig, R.

    A new type of radiator which uses a recirculating stream of liquid droplets as a radiation element in place of the solid surfaces used in conventional tube and fin space radiators is discussed. By virtue of the large surface to volume ratio of small droplets the liquid droplet radiator (LDR) has the potential of being many times lighter than the lightest solid surface radiator yet developed (heat pipes). In addition the LDR may be much more simply and economically deployed since the radiating element is transported as a liquid. Preliminary studies of the physics and engineering of the LDR have not revealed any exceptional obstacles to development of a practical LDR based on existing technology. Generation of droplets may utilize the methods developed for ink-jet printing, and collection devices using rotation to simulate gravity appear workable. Liquids were identified which have low enough vapor pressures that evaporation losses over durations of tens of years are tolerable. Liquid tin is best for heat rejection between 500 K and 1000 K, tin eutectics between 370 K and 600 K, and silicone oils between 260 K and 400 K.

  15. Redox chemistry at liquid/liquid interfaces

    NASA Technical Reports Server (NTRS)

    Volkov, A. G.; Deamer, D. W.

    1997-01-01

    The interface between two immiscible liquids with immobilized photosynthetic pigments can serve as the simplest model of a biological membrane convenient for the investigation of photoprocesses accompanied by spatial separation of charges. As it follows from thermodynamics, if the resolvation energies of substrates and products are very different, the interface between two immiscible liquids may act as a catalyst. Theoretical aspects of charge transfer reactions at oil/water interfaces are discussed. Conditions under which the free energy of activation of the interfacial reaction of electron transfer decreases are established. The activation energy of electron transfer depends on the charges of the reactants and dielectric permittivity of the non-aqueous phase. This can be useful when choosing a pair of immiscible solvents to decrease the activation energy of the reaction in question or to inhibit an undesired process. Experimental interfacial catalytic systems are discussed. Amphiphilic molecules such as chlorophyll or porphyrins were studied as catalysts of electron transfer reactions at the oil/water interface.

  16. Communication: Protein dynamical transition vs. liquid-liquid phase transition in protein hydration water

    NASA Astrophysics Data System (ADS)

    Schir, Giorgio; Fomina, Margarita; Cupane, Antonio

    2013-09-01

    In this work, we compare experimental data on myoglobin hydrated powders from elastic neutron scattering, broadband dielectric spectroscopy, and differential scanning calorimetry. Our aim is to obtain new insights on the connection between the protein dynamical transition, a fundamental phenomenon observed in proteins whose physical origin is highly debated, and the liquid-liquid phase transition (LLPT) possibly occurring in protein hydration water and related to the existence of a low temperature critical point in supercooled water. Our results provide a consistent thermodynamic/dynamic description which gives experimental support to the LLPT hypothesis and further reveals how fundamental properties of water and proteins are tightly related.

  17. Enhanced catalyst for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  18. Catalyst for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  19. A Variational Statistical-Field Theory for Polar Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Zhuang, Bilin; Wang, Zhen-Gang

    Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.

  20. Free vibration analysis of a tank containing two liquids

    SciTech Connect

    Tang, Yu; Chang, Y.W.

    1993-05-01

    A study of the dynamic characteristics of rigidly supported upright circular cylindrical tanks containing two different liquids is presented. The governing differential equations for the tank-two liquid system are obtained by application of the Rayleigh-Ritz procedure in combination with Lagrange`s equation. The response functions examined include the fundamental natural frequency, the associated mode of vibration and hydrodynamic pressure exerted against the tank wall. Unlike the cases of tanks containing one liquid in which the dynamic response is controlled by four parameters, the dynamic response of a tank that contains two liquids is controlled by six parameters. The numerical results are presented in tabular and graphic forms, and are compared with those of the identical tank filled with one liquid. Also, a simple approximate equation for evaluating the fundamental natural frequency for preliminary design is proposed.

  1. Tracking liquid in drying colloidal fluids with polarized light microscopy

    NASA Astrophysics Data System (ADS)

    Cho, Kun; Park, Jung Soo; Kim, Joon Heon; Weon, Byung Mook

    2014-11-01

    When colloidal fluids dry, tracking liquid surfaces around colloids is difficult with conventional imaging techniques. Here we show that polarized light microscopy (PM) is very useful in tracking liquid surfaces during drying processes of colloidal fluids. In particular, the PM mode is not a new or difficult way but is able to visualize liquid films above colloids in real time. We demonstrate that when liquid films above colloidal particles are broken, the PM patterns appear clearly: this feature is useful to identify the moment of liquid film rupture above colloids in drying colloidal fluids. This result is helpful to improve relevant processes such as inkjet printing, painting, and nanoparticle patterning (K.C. and J.S.P. equally contributed). This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.

  2. Liquid Effluent Monitoring Information System (LEMIS) System Construction

    SciTech Connect

    Adams, R.T.

    1994-10-11

    The liquid effluent sampling program is part of the effort to minimize adverse environmental impact during the cleanup operation at the Hanford Site. Of the 33 Phase I and Phase II liquid effluents, all streams actively discharged to the soil column will be sampled. The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Construction document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user.

  3. Liquid lubrication in space

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1990-01-01

    The requirement for long-term, reliable operation of aerospace mechanisms has, with a few exceptions, pushed the state of the art in tribology. Space mission life requirements in the early 1960s were generally 6 months to a year. The proposed U.S. space station schedule to be launched in the 1990s must be continuously usable for 10 to 20 years. Liquid lubrication systems are generally used for mission life requirements longer than a year. Although most spacecraft or satellites have reached their required lifetimes without a lubrication-related failure, the application of liquid lubricants in the space environment presents unique challenges. The state of the art of liquid lubrication in space as well as the problems and their solutions are reviewed.

  4. Two new vortex liquids

    NASA Astrophysics Data System (ADS)

    Anderson, Philip W.

    2007-03-01

    In 1967, Reatto and Chester proposed that solid helium-4 might exhibit superfluidity, and in 1970, Leggett suggested what was thought to be a definitive experimental test: to find non-classical rotational inertia in a toroidal sample. More than three decades later, the observation by Kim and Chan of exactly that effect generated great interest and has been repeated and confirmed by a number of groups. However, many attempts to find actual superflow in truly solid samples have failed. Here, I draw an analogy with a second example of anomalous response to vorticity in a dissipative fluid, the vortex liquid phase in the pseudogap region of high-temperature superconductors, and propose that the solid helium experiments have been mischaracterized: what is observed is not supersolidity but an incompressible vortex liquid. This state is distinct from a conventional liquid in that its properties are dominated by conserved supercurrents flowing around a thermally fluctuating tangle of vortices.

  5. The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons

    PubMed Central

    Beye, Martin; Sorgenfrei, Florian; Schlotter, William F.; Wurth, Wilfried; Föhlisch, Alexander

    2010-01-01

    The basis for the anomalies of water is still mysterious. Quite generally tetrahedrally coordinated systems, also silicon, show similar thermodynamic behavior but lack—like water—a thorough explanation. Proposed models—controversially discussed—explain the anomalies as a remainder of a first-order phase transition between high and low density liquid phases, buried deeply in the “no man’s land”—a part of the supercooled liquid region where rapid crystallization prohibits any experimental access. Other explanations doubt the existence of the phase transition and its first-order nature. Here, we provide experimental evidence for the first-order-phase transition in silicon. With ultrashort optical pulses of femtosecond duration we instantaneously heat the electronic system of silicon while the atomic structure as defined by the much heavier nuclear system remains initially unchanged. Only on a picosecond time scale the energy is transferred into the atomic lattice providing the energy to drive the phase transitions. With femtosecond X-ray pulses from FLASH, the free-electron laser at Hamburg, we follow the evolution of the valence electronic structure during this process. As the relevant phases are easily distinguishable in their electronic structure, we track how silicon melts into the low-density-liquid phase while a second phase transition into the high-density-liquid phase only occurs after the latent heat for the first-order phase transition has been transferred to the atomic structure. Proving the existence of the liquid-liquid phase transition in silicon, the hypothesized liquid-liquid scenario for water is strongly supported. PMID:20805512

  6. The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons.

    PubMed

    Beye, Martin; Sorgenfrei, Florian; Schlotter, William F; Wurth, Wilfried; Fhlisch, Alexander

    2010-09-28

    The basis for the anomalies of water is still mysterious. Quite generally tetrahedrally coordinated systems, also silicon, show similar thermodynamic behavior but lack--like water--a thorough explanation. Proposed models--controversially discussed--explain the anomalies as a remainder of a first-order phase transition between high and low density liquid phases, buried deeply in the "no man's land"--a part of the supercooled liquid region where rapid crystallization prohibits any experimental access. Other explanations doubt the existence of the phase transition and its first-order nature. Here, we provide experimental evidence for the first-order-phase transition in silicon. With ultrashort optical pulses of femtosecond duration we instantaneously heat the electronic system of silicon while the atomic structure as defined by the much heavier nuclear system remains initially unchanged. Only on a picosecond time scale the energy is transferred into the atomic lattice providing the energy to drive the phase transitions. With femtosecond X-ray pulses from FLASH, the free-electron laser at Hamburg, we follow the evolution of the valence electronic structure during this process. As the relevant phases are easily distinguishable in their electronic structure, we track how silicon melts into the low-density-liquid phase while a second phase transition into the high-density-liquid phase only occurs after the latent heat for the first-order phase transition has been transferred to the atomic structure. Proving the existence of the liquid-liquid phase transition in silicon, the hypothesized liquid-liquid scenario for water is strongly supported. PMID:20805512

  7. A mechanical model for liquid sloshing in a rectangular container

    NASA Astrophysics Data System (ADS)

    Khandelwal, R. S.; Nigam, N. C.

    1989-03-01

    Simplified assumptions are used to develop a mechanical model representing the oscillation of a liquid in a rigid rectangular container moving with a constant but small horizontal acceleration and with simultaneous small amplitude periodic vertical motion. The forces and moments resulting from the sloshing of the liquid are determined using linear ideal fluid flow theory. The advantages of the proposed pendulum model over the spring-supported-mass model are briefly discussed.

  8. Evaluation of mercury in the liquid waste processing facilities

    SciTech Connect

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.; Wilmarth, William R.; Edwards, Richard E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  9. Containerless Liquid-Phase Processing of Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard (Principal Investigator); Nordine, Paul C.

    1996-01-01

    The present project builds on the results of research supported under a previous NASA grant to investigate containerless liquid-phase processing of molten ceramic materials. The research used an aero-acoustic levitator in combination with cw CO2 laser beam heating to achieve containerless melting, superheating, undercooling, and solidification of poorly-conducting solids and liquids. Experiments were performed on aluminum oxide, binary aluminum oxide-silicon dioxide materials, and oxide superconductors.

  10. Modeling of Diffusion in Liquid Ge and Its Alloys

    NASA Technical Reports Server (NTRS)

    Stroud, David G.

    1998-01-01

    This report summarizes progress made on NASA Grant NAG3-1437, Modeling of diffusion in Liquid Ge and Its Alloys, which was in effect from January 15, 1993 through July 10, 1997. It briefly describes the purpose of the grant, and the work accomplished in simulations and other studies of thermophysical properties of liquid semiconductors and related materials. A list of publications completed with the support of the grant is also given.

  11. SLD liquid argon calorimeter

    SciTech Connect

    Vella, E.

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z[sup 0] decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z[sup 0] events) is discussed.

  12. SLD liquid argon calorimeter

    SciTech Connect

    Vella, E.; SLD Collaboration

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z{sup 0} decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z{sup 0} events) is discussed.

  13. Liquid sheet radiator

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; White, K. Alan, III

    1987-01-01

    A new external flow radiator concept, the liquid sheet radiator (LSR), is introduced. The LSR sheet flow is described and an expression for the length/width (l/w), ratio is presented. A linear dependence of l/w on velocity is predicted that agrees with experimental results. Specific power for the LSR is calculated and is found to be nearly the same as the specific power of a liquid droplet radiator, (LDR). Several sheet thicknesses and widths were experimentally investigated. In no case was the flow found to be unstable.

  14. Liquid sheet radiator

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; White, K. Allan, III

    1987-01-01

    A new external flow radiator concept, the liquid sheet radiator (LSR), is introduced. The LSR sheet flow is described and an expression for the length/width (l/w) ratio is presented. A linear dependence of l/w on velocity is predicted that agrees with experimental results. Specific power for the LSR is calculated and is found to be nearly the same as the specific power of a liquid droplet radiator (LDR). Several sheet thicknesses and widths were experimentally investigated. In no case was the flow found to be unstable.

  15. Liquid air cycle engines

    NASA Technical Reports Server (NTRS)

    Rosevear, Jerry

    1992-01-01

    Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.

  16. Monogroove heat pipe design: Insulated liquid channel with bridging wick

    NASA Technical Reports Server (NTRS)

    Alario, J. P.; Brown, R. F.; Kosson, R. L. (Inventor)

    1985-01-01

    A screen mesh artery supported concentrically within the evaporator section of a heat pipe liquid channel retains liquid in the channel. Continued and uniform liquid feed to the heat pipe evaporation section (20) during periods of excessive heat transfer is assured. The overall design provides high evaporation and condensation film coefficients for the working fluid by means of the circumferential grooves in the walls of the vapor channel, while not interfering with the overall heat transport capability of the axial groove. The design has particular utility in zero-g environments.

  17. Monogroove heat pipe design: Insulated liquid channel with bridging wick

    NASA Astrophysics Data System (ADS)

    Alario, J. P.; Brown, R. F.; Kosson, R. L.

    1985-05-01

    A screen mesh artery supported concentrically within the evaporator section of a heat pipe liquid channel retains liquid in the channel. Continued and uniform liquid feed to the heat pipe evaporation section (20) during periods of excessive heat transfer is assured. The overall design provides high evaporation and condensation film coefficients for the working fluid by means of the circumferential grooves in the walls of the vapor channel, while not interfering with the overall heat transport capability of the axial groove. The design has particular utility in zero-g environments.

  18. Apparatus and method for electrochemical modification of liquids

    SciTech Connect

    James, Patrick I

    2015-04-21

    An apparatus for electrochemical modification of liquid streams employing an electrolytic cell which includes an anode compartment defined by an anode structure where oxidation is effected, containing a liquid electrolyte anolyte, and a cathode compartment defined by a cathode structure where reduction is effected containing a liquid electrolyte catholyte. In addition, the electrolytic cell includes at least one additional compartment arranged at least partially between the anode compartment and the cathode compartment and separated from the anode compartment and the cathode compartment by a separator structure arranged to supports ionic conduction of current between the anode structure and the cathode structure.

  19. Advanced machinery liquid metal wetting, cleaning and materials compatibility study

    NASA Astrophysics Data System (ADS)

    Gass, W. R.; Burrow, G. C.; Witkowski, R. E.

    1982-03-01

    Electrical machines which employ high current density liquid metal sliprings (current collectors) for current transfer often utilize alkali metals for the conducting fluids. This study was directed at identifying and solving problems associated with the use of liquid NaK78 (78 w/o potassium, 22 w/o sodium) in prototypic machine current collectors. Areas of investigation included: interfacing of recently developed from cleaning procedures with collector electrical performance and investigating collector materials/liquid metal compatibility. This study was supported by the David Taylor Naval Ship Research and Development Center.

  20. Aerobreakup of Newtonian and Viscoelastic Liquids

    NASA Astrophysics Data System (ADS)

    Theofanous, T. G.

    2011-01-01

    In this review, we consider and unify all aspects of the dynamics of Newtonian and viscoelastic liquid drops in high-speed gas flows, including shock waves. The path to understanding is opened by novel, laser-induced fluorescence visualizations at spatial resolutions of up to 200 pixels for millimeter and exposure times as low as 5 ns. The central role of the competition between Rayleigh-Taylor and Kelvin-Helmholtz instabilities is assessed in the frame of rich aerodynamics, from low subsonic to supersonic, and the multitude of characteristic length scales and timescales at play with varying liquid properties. Acceleration and liquid redistribution (drop deformation) early in the evolution set the stage for this competition, and we insist on an interpretation of the drag coefficient that is physically meaningful. Two principal breakup regimes (patterns of bodily loss of coherence) are identified depending on whether the gas finds its way through the liquid mass, causing gross disintegration, or goes around to induce, through shear, a surface-layer peeling-and-ejection action. Corresponding criticalities are quantified in terms of key physics, consistent with experiments. This covers in a unified fashion all liquids, independent of viscosity and elasticity, and the potential role of direct numerical simulations in supporting further advances is forecast. The resulting particle-size distributions (in a final equilibrium cloud) depend crucially on the pattern of breakup, although in this respect the role of elasticity obtains a special significance in terms of the underlying entangled-polymer-chain dynamics. From a more general perspective, we explain the canonical significance of this fundamental problem and summarize the wide range of its practical relevance, including the recently renewed interest in predicting shock-induced fluidization (or high-speed, atmospheric dissemination) of large masses of liquid agents (so-called weapons of mass destruction).

  1. Turbine meters for liquid measurement

    SciTech Connect

    Wass, D.J.; Allen, C.R.

    1995-12-01

    Liquid turbine meters operate in response to fundamental engineering principles, Operation with a single moving part produces excellent longevity and reliability. Liquid turbine meters display wide rangeability, high accuracy, excellent repeatability, low pressure drop and moderate cost. Liquid turbine meters may be applied to many different fluids with different physical properties and corrosive tendencies. The marriage of liquid turbine meters to electronic instruments allows instantaneous flow calculations and produces the flexibility to display data, store data, transmit data in the most convenient form. Liquid turbine meters should be the first flow measurement instrument considered for liquid measurement applications.

  2. Autothermal Processing of Renewable Liquids

    NASA Astrophysics Data System (ADS)

    Kruger, Jacob Scott

    The vast majority of petrochemicals are synthesized from just six building block molecules, but current feedstocks are an unsustainable resource with negative externalities. Biomass represents a potentially sustainable feedstock, but needs densification, preferably to a liquid form, to be a suitable replacement. Fermentation to butanol and pyrolysis to bio-oil are two promising liquid intermediates. Catalytic partial oxidation (CPO) of the liquid intermediates over noble metal catalysts, which converts the liquids primarily into syngas and light olefins, is a promising technique for processing densified biomass. The study of liquids at high temperatures requires consideration of a range of complex phenomena, including boiling behavior on hot surfaces, reactions of the feed molecules at high temperatures and on catalyst surfaces, and interactions of impurities in the liquid with the catalyst. Chapter 2 deals with the behavior of the transient liquid that forms when cellulose, a major constituent of biomass, is pyrolized. Fast photography experiments and numerical simulations are performed to show that the aerosols formed in the boiling of this liquid are capable of transporting nonvolatile fragments of biomass intact into the gas phase. These nonvolatile fragments have significant implications in the storage and downstream processing of bio-oil. Some of the behavior of bio-oil at high temperature may also be explained by the variety of molecules in the liquid. Many different functional groups are present, each with its own set of chemical reactions in combustion, pyrolysis, and partial oxidation on a metal catalyst. Chapters 3 and 4 investigate these reactions through a survey of two-carbon surrogates of the functional group classes found in bio-oil. Chapter 3 examines reactions occuring in the complete CPO system over Pt and Rh catalysts, and in the complete system absent O 2. The selectivity data from each molecule and the surface science literature of each molecule are used to propose a reaction mechanism over the catalyst surface. Chapter 4 investigates the reactions that may be occurring in the gas phase and over the alpha-Al2O3 foam monolith support. Significant gas-phase chemistry is likely present in the autothermal reactor, although different temperature gradients between the autothermal reactions and the externally heated tube makes quantification of the amount of homogeneous chemistry in the autothermal system impossible. The alpha-Al2O 3 support may serve as a heat transfer medium and radical quencher (due to its foam structure with small-diameter pores), but not likely acid catalysis, as selectivity to dehydration products was similar both with and without the foam support. Because butanol is another promising liquid intermediate in biomass processing, a series of experiments with butanol in an CPO reactor was also carried out. Chapter 5 compares the four butanol isomers in a CPO reactor over Pt, PtCe, Rh, and RhCe catalysts. The reactivity of tert-butanol was as high or higher than the other alcohols, indicating that the lack of a carbonyl decomposition path does not necessarily in uence the reactivity of the molecule. Rather, the reactivity appeared to be more a function of the initial pyrolysis temperature of the alcohol. Thus, much of the initial chemistry of the higher alcohols in a CPO reactor may be homogeneous. The main function of the catalyst may be to decompose the intermediate carbonyls and alkenes to syngas. To that end, the PtCe had significantly lower reforming activity than the other catalysts, evidenced by the lower selectivity to CO and H2 and generally higher temperatures. Selectivity to syngas and light olefins was high and tunable depending on feed ratios, indicating the potential of CPO to provide petrochemical building blocks from butanol. Chapter 6 combines CPO with a water-gas shift (WGS) stage and investigates the addition of steam to isobutanol for the production of a high-purity H2 stream. A RhCe catalyst was used in the CPO stage to convert 100% of the isobutanol feed to primarily equilibrium products, although a non-negligible fraction of intermediate isobutryaldehyde, propylene and isobutene. The use of a PtCe catalyst directly downstream allowed the incorporation of a high-temperature WGS stage with no external heat addition. Concentration of CO in the exit stream ≤ 3%, and H2 selectivity ≥ 100% (based on H from isobutanol) was achieved, similar to industrial high-temperature WGS operations. Additionally, the use of a PtCe WGS catalyst allowed conversion of intermediate products remaining from the CPO stage, indicating the robustness of the CPO-WGS system. Finally, because any feedstock intended to produce petrochemical feedstocks will contain impurities, Chapter 7 investigates the durability of a RhCe catalyst over several hundred hours with CPO of food-grade glycerol. This feedstock contains ppm levels of Fe and several other impurities. Despite several perturbations to the system and the addition of impurity levels comparable to catalyst loading by the end of the test, the catalyst maintained 100% conversion of glycerol to equilibrium products throughout the experiment, although some loss of WGS activity was observed. In Chapter 8, several experiments are proposed to strengthen the conclusions of the experiments described in the previous chapters, including co-feeding of radicalscavenging molecules, in-situ spectroscopic studies, and mechanism validation with the current data. Further study of boiling phenomena is also proposed, and some preliminary results are presented. Additionally, integration of photochemistry into a CPO reactor is proposed as a method of improving catalyst durability for processing particularly recalcitrant feedstocks. The ability of CPO to handle high-moisture feedstocks may allow for its use in processing aquatic biomass; a potential design for a photobioreactor for algae cultivation with integration of a CPO reactor is described. Finally, the study of ethanol conversion to butanol through a Guerbet-type reaction is proposed. A Guerbet stage would function particularly well downstream of a CPO reactor because it requires heat, dehydrogenated alcohols, and H 2 addition. Although a comprehensive understanding of the phenomena occuring in a CPO reactor is far from available, the diversity of applications in which sustainably produced syngas and heat find use suggests that CPO reaction engineering is an important area of research. This thesis offers preliminary insight into some of the phenomena and applications of catalytic partial oxidation.

  3. Mixed Stationary Liquid Phases for Gas-Liquid Chromatography.

    ERIC Educational Resources Information Center

    Koury, Albert M.; Parcher, Jon F.

    1979-01-01

    Describes a laboratory technique for use in an undergraduate instrumental analysis course that, using the interpretation of window diagrams, prepares a mixed liquid phase column for gas-liquid chromatography. A detailed procedure is provided. (BT)

  4. 138. LIQUID NITROGEN INSTRUMENT PANEL ON EAST WALL OF LIQUID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    138. LIQUID NITROGEN INSTRUMENT PANEL ON EAST WALL OF LIQUID NITROGEN CONTROL ROOM (115), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Liquid Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  6. Thermoelectricity in liquid crystals

    NASA Astrophysics Data System (ADS)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  7. Properties of Liquid Plutonium

    SciTech Connect

    Freibert, Franz J.; Mitchell, Jeremy N.; Schwartz, Daniel S.; Saleh, Tarik A.; Migliori, Albert

    2012-08-02

    Unalloyed polycrystalline Pu displays extreme thermal expansion behavior, i.e., {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} increases by 25% in volume and {delta} {yields} {var_epsilon} {yields} liquid decreases by 4.5% in volume. Thus, making it difficult to measure density into the liquid state. Dilatometer outfitted with CaF molten metal cell offers a proven capability to measure thermal expansion in molten metals, but has yet to be proven for Pu. Historic data from the liquid nuclear fuels program will prove extremely useful as a guide to future measurements. 3.3at% Ga changes Pu molten metal properties: 50% increase in viscosity and {approx}3% decrease in density. Fe may decrease the density by a small amount assuming an averaging of densities for Pu-Ga and Pu-Fe liquids. More recent Boivineau (2009) work needs some interpretation, but technique is being employed in (U,Pu)O{sub 2} nuclear fuels program (Pu Futures, 2012).

  8. LIQUID WASTE COMPOSTING

    EPA Science Inventory

    This research project was conducted at the Chesapeake and Ohio Canal National Historical Park to examine the feasibility of adapting and using the sludge composting technique to compost liquid waste collected in the National Parks. This study evaluated the composting of two probl...

  9. ELECTRONS IN NONPOLAR LIQUIDS.

    SciTech Connect

    HOLROYD,R.A.

    2002-10-22

    Excess electrons can be introduced into liquids by absorption of high energy radiation, by photoionization, or by photoinjection from metal surfaces. The electron's chemical and physical properties can then be measured, but this requires that the electrons remain free. That is, the liquid must be sufficiently free of electron attaching impurities for these studies. The drift mobility as well as other transport properties of the electron are discussed here as well as electron reactions, free-ion yields and energy levels, Ionization processes typically produce electrons with excess kinetic energy. In liquids during thermalization, where this excess energy is lost to bath molecules, the electrons travel some distance from their geminate positive ions. In general the electrons at this point are still within the coulombic field of their geminate ions and a large fraction of the electrons recombine. However, some electrons escape recombination and the yield that escapes to become free electrons and ions is termed G{sub fi}. Reported values of G{sub fi} for molecular liquids range from 0.05 to 1.1 per 100 eV of energy absorbed. The reasons for this 20-fold range of yields are discussed here.

  10. Liquid laser cavities

    NASA Technical Reports Server (NTRS)

    Bjorklund, S.; Filipescu, N.; Kellermeyer, G. L.; Mc Avoy, N.

    1969-01-01

    Liquid laser cavities have plenum chambers at the ends of the capillary cell which are terminated in transparent optical flats. By use of these cavities, several new europium chelates and a terbium chelate can provide laser action in solution at room temperature.

  11. Thermodynamics of liquid metal

    SciTech Connect

    Kushnirenko, A.N.

    1988-01-01

    The thermodynamics of a liquid metal based on quantum-mechanical models of the crystal, electronic, and nuclear structures of the metal are derived in this paper. The models are based on such formulations as the Bohr radius, the Boltzmann constant, the Planck Law, the Fermi surface, and the Pauli principle.

  12. Ferroelectric liquid crystal display

    NASA Technical Reports Server (NTRS)

    York, Paul K. (Inventor)

    1977-01-01

    A ferroelectric liquid crystal display device employs capacitance spoiling layers to minimize unneeded capacitances created by crossovers of X and Y address lines and to accurately define desired capacitances. The spoiler layers comprise low dielectric constant layers which space electrodes from the ferroelectric at crossover points where capacitance is not needed for device operation.

  13. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  14. Liquid rocket valve components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monograph on valves for use with liquid rocket propellant engines is presented. The configurations of the various types of valves are described and illustrated. Design criteria and recommended practices for the various valves are explained. Tables of data are included to show the chief features of valve components in use on operational vehicles.

  15. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  16. RF gauging efforts with liquid hydrogen and liquid oxygen as applicable to subcritical space vehicle systems

    NASA Technical Reports Server (NTRS)

    Thompson, H. E.; Ott, W.; Stanley, N.

    1974-01-01

    The RF gauging concept is based on the interaction between a fluid dielectric medium in an enclosed metallic cavity and electromagnetic fields set up within that cavity. In RF gauging systems, the fundamental measurement relies on the interpretation of changes in the resonant RF frequencies of an enclosed tank as the mass of the propellant contained in the tank is changed. In addition to a discussion of the basic principles of operation of these systems, the study presents a description of the current breadboard implementation with typical test arrangements, along with supporting test data. The experimental testing of the RF gauging technique for liquid cryogen mass gauging indicates that this technique is a feasible approach to liquid oxygen and liquid hydrogen gauging under all attitude or reduced gravity environments.

  17. Spontaneous liquid-liquid phase separation of water.

    PubMed

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2014-02-01

    We report a molecular dynamics simulation demonstrating a fast spontaneous liquid-liquid phase separation of water and a subsequent slow crystallization to ice. It is found that supercooled water separates rapidly into low- and high-density domains so as to reduce the surface energy in the rectangular simulation cell at certain thermodynamic states. The liquid-liquid phase separation, which is about two orders of magnitude faster than the crystallization, suggests a possibility to observe this phenomenon experimentally. PMID:25353404

  18. High CO2 solubility, permeability and selectivity in ionic liquids with the tetracyanoborate anion

    SciTech Connect

    Mahurin, SM; Hillesheim, PC; Yeary, JS; Jiang, DE; Dai, S

    2012-01-01

    Five different ionic liquids containing the tetracyanoborate anion were synthesized and evaluated for CO2 separation performance. Measured CO2 solubility values were exceptionally high compared to analogous ionic liquids with different anions and ranged from 0.128 mol L-1 atm(-1) to 0.148 mol L-1 atm(-1). In addition, CO2 permeability and CO2/N-2 selectivity values were measured using a supported ionic liquid membrane architecture and the separations performance of the ionic liquid membranes exceeded the Robeson upper bound. These results establish the distinct potential of ionic liquids with the tetracyanoborate, [B(CN)(4)], anion for the separation of CO2.

  19. Liquid metal thermoacoustic engine

    SciTech Connect

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  20. Rockets using Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Busemann, Adolf

    1947-01-01

    It is my task to discuss rocket propulsion using liquid oxygen and my treatment must be highly condensed for the ideas and experiments pertaining to this classic type of rocket are so numerous that one could occupy a whole morning with a detailed presentation. First, with regard to oxygen itself as compared with competing oxygen carriers, it is known that the liquid state of oxygen, in spite of the low boiling point, is more advantageous than the gaseous form of oxygen in pressure tanks, therefore only liquid oxygen need be compared with the oxygen carriers. The advantages of liquid oxygen are absolute purity and unlimited availability at relatively small cost in energy. The disadvantages are those arising from the impossibility of absolute isolation from heat; consequently, allowance must always be made for a certain degree of vaporization and only vented vessels can be used for storage and transportation. This necessity alone eliminates many fields of application, for example, at the front lines. In addition, liquid oxygen has a lower specific weight than other oxygen carriers, therefore many accessories become relatively larger and heavier in the case of an oxygen rocket, for example, the supply tanks and the pumps. The advantages thus become effective only in those cases where definitely scheduled operation and a large ground organization are possible and when the flight requires a great concentration of energy relative to weight. With the aim of brevity, a diagram of an oxygen rocket will be presented and the problem of various component parts that receive particularly thorough investigation in this classic case but which are also often applicable to other rocket types will be referred to.

  1. Liquid crystalline dendrimers.

    PubMed

    Donnio, Bertrand; Buathong, Saïwan; Bury, Izabela; Guillon, Daniel

    2007-09-01

    In recent years, there has been an increasing interest in the field of liquid crystalline dendrimers. Such a fast development is, among other things, driven by the multiple possibilities offered by combining the mesomorphic properties of single mesogenic subunits with the supermolecular and versatile architectures of dendrimers to yield a new class of highly functional materials. The induction and the control of the mesomorphic properties (phase type and stability) in dendrimers can be achieved by a dedicated molecular design which depends on the chemical nature and structure of both the functional groups and the dendritic matrix. In particular, the intrinsic connectivity of the dendrimer such as the multivalency of the focal core and the multiplicity of the branches, both controlling the geometrical rate of growth, or the dendritic generation, plays a crucial role and influences at various stages the subtle relationships between the supermolecular structure and the mesophase structure and stability. In this critical review article, an account of the various types of dendritic systems that form liquid-crystalline mesophases along with a description of the self-organization of representative case-study supermolecules into liquid crystalline mesophases will be discussed. Some basics of thermotropic liquid crystals and dendrimers will be given in the introduction. Then, in the following sections, selected examples including side-chain, main-chain, fullerodendrimers, shape-persistent dendrimers, supramolecular dendromesogens and metallodendrimers, as representative families of LC dendrimers, will be described. In the conclusion some further developments will be highlighted. This review will not cover liquid crystalline hyperbranched and dendronized polymers that might be considered as being somehow less structurally "perfect". PMID:17660881

  2. Dynamic Behavior of Liquids in Annuli Entrained with Gas

    NASA Astrophysics Data System (ADS)

    Gaponenko, Yuri; Mialdun, Alexander; Shevtsova, Valentina

    Heat/mass transfer on the moving gas-liquid interface is an important subject directly related to many industrial applications from crystal growth to cooling of electronic devices. In the case of non-uniform temperature in liquid the overall scenario depends on thermo-capillary convection in liquid which is affected by moving gas along the interface. Space experiment JEREMI (Japanese European Research Experiment on Marangoni Instabilities) is devoted to the study of the threshold of hydrothermal instabilities in two-phase systems. The present study is one of the first steps on the way of the experiment preparation. We report the results of numerical and experimental study of two-phase flows in annulus. The internal column consists of solid supports at the bottom and top, while the central part is a liquid zone filled with viscous liquid and kept in its position by surface tension. Gas enters into the annular duct and entrains initially quiescent liquid. The flow field in liquid is investigated for increasing gas velocity from zero up to 2m/s (correspondingly, Reynolds number in gas varies as 0¡Re¡600). The flow field is analyzed for the different viscosity ratios between liquid and gas. An excellent agreement between computed results and experimental data demonstrates that the developed experimental technique and numerical code are capable to capture the main characteristics of the phenomenon studied.

  3. Polymorphism in glassy silicon: Inherited from liquid-liquid phase transition in supercooled liquid

    NASA Astrophysics Data System (ADS)

    Zhang, Shiliang; Wang, Li-Min; Zhang, Xinyu; Qi, Li; Zhang, Suhong; Ma, Mingzhen; Liu, Riping

    2015-02-01

    Combining molecular dynamics (MD) simulation and Voronoi polyhedral analyses, we discussed the microstructure evolution in liquid and glassy silicon during cooling by focusing on the fraction of various clusters. Liquid-liquid phase transition (LLPT) is detected in supercooled liquid silicon However, freezing the high-density liquid (HDL) to the glassy state is not achieved as the quenching rate goes up to 1014 K/s. The polyamorphism in glassy silicon is found to be mainly associated with low-density liquid (LDL).

  4. Improved liquid-film electron stripper

    DOEpatents

    Gavin, B.F.

    1984-11-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one side of the disc's periphery and with highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90/sup 0/ angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  5. Liquid Acquisition Device Design Sensitivity Study

    NASA Technical Reports Server (NTRS)

    VanDyke, M. K.; Hastings, L. J.

    2012-01-01

    In-space propulsion often necessitates the use of a capillary liquid acquisition device (LAD) to assure that gas-free liquid propellant is available to support engine restarts in microgravity. If a capillary screen-channel device is chosen, then the designer must determine the appropriate combination screen mesh and channel geometry. A screen mesh selection which results in the smallest LAD width when compared to any other screen candidate (for a constant length) is desirable; however, no best screen exists for all LAD design requirements. Flow rate, percent fill, and acceleration are the most influential drivers for determining screen widths. Increased flow rates and reduced percent fills increase the through-the-screen flow pressure losses, which drive the LAD to increased widths regardless of screen choice. Similarly, increased acceleration levels and corresponding liquid head pressures drive the screen mesh selection toward a higher bubble point (liquid retention capability). After ruling out some screens on the basis of acceleration requirements alone, candidates can be identified by examining screens with small flow-loss-to-bubble point ratios for a given condition (i.e., comparing screens at certain flow rates and fill levels). Within the same flow rate and fill level, the screen constants inertia resistance coefficient, void fraction, screen pore or opening diameter, and bubble point can become the driving forces in identifying the smaller flow-loss-to-bubble point ratios.

  6. Imaging Liquids Using Microfluidic Cells

    SciTech Connect

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  7. Black Liquid Solar Collector Demonstrator.

    ERIC Educational Resources Information Center

    Weichman, F. L.; Austen, D. J.

    1979-01-01

    Describes the details of constructing, and use of, a solar collector. Uses a black liquid to absorb the energy, the thermosyphon effect to drive the liquid through the collector, and a floodlamp as a surrogate sun. (GA)

  8. Demonstrating Paramagnetism Using Liquid Nitrogen.

    ERIC Educational Resources Information Center

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  9. Surface Chemistry and Properties of Oxides as Catalyst Supports

    SciTech Connect

    DeBusk, Melanie Moses; Narula, Chaitanya Kumar; Contescu, Cristian I

    2015-01-01

    Heterogeneous catalysis relies on metal-oxides as supports for the catalysts. Catalyst supports are an indispensable component of most heterogeneous catalysts, but the role of the support is often minimized in light of the one played by the catalytically active species it supports. The active species of supported catalysts are located on the surface of the support where their contact with liquid or gas phase reactants will be greatest. Considering that support plays a major role in distribution and stability of active species, the absorption and retention of reactive species, and in some cases in catalytic reaction, the properties and chemistry that can occur at the surface of an oxide support are important for understanding their impact on the activity of a supported catalyst. This chapter examines this rich surface chemistry and properties of oxides used as catalyst supports, and explores the influence of their interaction with the active species.

  10. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  11. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko; David J.

    2007-05-08

    The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

  12. Emulsions Containing Perfluorocarbon Support Cell Cultures

    NASA Technical Reports Server (NTRS)

    Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.

    1990-01-01

    Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.

  13. Acceleration in liquids and gas'

    NASA Astrophysics Data System (ADS)

    Schröer, H.

    We dip a cuboid and a ball in a liquid. We search the force on the body. We look at an arbitrary body in a liquid. Is this result valid for all bodies in a liquid? This question can be answered with "yes". Then we view two masses under a shade. There is an english and a german edition.

  14. Coal liquefaction using liquid clathrates

    SciTech Connect

    Atwood, J.L.

    1982-03-23

    The method is disclosed for the liquefaction of a solid carbonaceous substance whereby the liquefaction takes place as a result of the addition of a liquid clathrate to said substance. The liquid clathrate layer then contains the liquified petroleum oil products which are then separated from the liquid clathrate.

  15. Liquid/Gas Flow Mixers

    NASA Technical Reports Server (NTRS)

    Fabris, Gracio

    1994-01-01

    Improved devices mix gases and liquids into bubbly or foamy flows. Generates flowing, homogeneous foams or homogeneous dispersions of small, noncoalescing bubbles entrained in flowing liquids. Mixers useful in liquid-metal magnetohydrodynamic electric-power generator, froth flotation in mining industry, wastewater treatment, aerobic digestion, and stripping hydrocarbon contaminants from ground water.

  16. Liquid lubrication for space applications

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Khonsari, Michael M.

    1992-01-01

    Reviewed here is the state of the art of liquid lubrication for space applications. The areas discussed are types of liquid lubrication mechanisms, space environmental effects on lubrication, classification of lubricants, liquid lubricant additives, grease lubrication, mechanism materials, bearing anomalies and failures, lubricant supply techniques, and application types and lubricant needs for those applications.

  17. Nutritional support of hospitalized patients.

    PubMed

    Donoghue, S

    1989-05-01

    Effective nutritional support requires sound knowledge of both basic and clinical nutrition of dogs and cats as well as familiarity with products and delivery systems. Case management includes assessment of nutritional status and estimation of fuel sources. Most starved or stressed patients use fatty acids for over 70 per cent kcalME and protein for over 20 per cent kcalME. Approximate kcal needs are calculated from maintenance energy equations. Most patients respond best to enteral nutrition. Meat-based pet foods, liquid enteral products, and nutrient modules are offered in slurries or are tube-fed. Management includes careful monitoring of patients and gradual transitions to diets with more complex nutrient sources. PMID:2658286

  18. Liquid Acquisition Device Testing with Sub-Cooled Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; McQuillen, John B.

    2008-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. Previous experimental test programs conducted at NASA have collected LAD data for a number of cryogenic fluids, including: liquid nitrogen (LN2), liquid oxygen (LOX), liquid hydrogen (LH2), and liquid methane (LCH4). The present work reports on additional testing with sub-cooled LOX as part of NASA s continuing cryogenic LAD development program. Test results extend the range of LOX fluid conditions examined, and provide insight into factors affecting predicting LAD bubble point pressures.

  19. Weyl spin liquids.

    PubMed

    Hermanns, M; O'Brien, K; Trebst, S

    2015-04-17

    The fractionalization of quantum numbers in interacting quantum many-body systems is a central motif in condensed-matter physics with prominent examples including the fractionalization of the electron in quantum Hall liquids or the emergence of magnetic monopoles in spin-ice materials. Here, we discuss the fractionalization of magnetic moments in three-dimensional Kitaev models into Majorana fermions (and a Z_{2} gauge field) and their emergent collective behavior. We analytically demonstrate that the Majorana fermions form a Weyl superconductor for the Kitaev model on the recently synthesized hyperhoneycomb structure of β-Li_{2}IrO_{3} when applying a magnetic field. We characterize the topologically protected bulk and surface features of this state, which we dub a Weyl spin liquid, including thermodynamic and transport signatures. PMID:25933336

  20. Liquid filmification from menisci

    NASA Astrophysics Data System (ADS)

    Spruijt, Evan; Le Guludec, Erwan; Lix, Clément; Wagner, Marc; Quéré, David

    2015-10-01

    A wetting liquid brought in contact with a solid covered by microtextures invades the network of textures and fills it, creating a liquid film whose thickness is fixed by the texture height. However, this process of filmification can be opposed by the presence of surrounding menisci, residing for instance in corners at the edges of the film. We discuss the nature to be given to the texture to overcome the negative Laplace pressure associated with menisci. We also describe how the dynamics of filmification is impacted by the design of the texture, focussing on micropillars, lines and grooves, and how it can be optimized for some texture density. We conclude by discussing the distribution of textures generating a constant velocity of filmification instead of the slowing-down classically observed in impregnation processes.

  1. Child Support Report, 2001.

    ERIC Educational Resources Information Center

    Sharman, Phil, Ed.

    2001-01-01

    This document comprises the 12 issues for 2001 of the "Child Support Report," which explores problems related to child support enforcement, reports on federal and state government child support enforcement initiatives, and summarizes research related to child support. Featured regularly are editorials and information on events of interest and

  2. Child Support Report, 2000.

    ERIC Educational Resources Information Center

    Sharman, Phil, Ed.

    2000-01-01

    This document comprises the 12 issues for 2000 of the "Child Support Report," which explores problems related to child support enforcement, reports on federal and state government child support enforcement initiatives, and summarizes research related to child support. Featured regularly are editorials and information on events of interest and…

  3. Child Support Report, 1998.

    ERIC Educational Resources Information Center

    Sharman, Phil, Ed.

    1998-01-01

    This document is comprised of the 12 monthly issues of the 1998 "Child Support Report," which explores problems related to child support enforcement, reports on federal and state government child support enforcement initiatives, and summarizes research related to child support. Editorials and information on events and conferences of interest and…

  4. Flowcharts as Technical Support

    ERIC Educational Resources Information Center

    Caudill, Jason

    2007-01-01

    Any time technology is employed in an organization there is a need to provide support for the users. Such support usually needs to be offered at the location where users are trying to access the technological resources. More often than not, the user who needs the support wants to get the support immediately, not at some point in the future after a…

  5. Child Support Report, 1999.

    ERIC Educational Resources Information Center

    Sharman, Phil, Ed.

    1999-01-01

    This document comprises the 12 issues for 1999 of the "Child Support Report," which explores problems related to child support enforcement, reports on federal and state government child support enforcement initiatives, and summarizes research related to child support. Editorials and information on events and conferences of interest and funding…

  6. Child Support Report, 1997.

    ERIC Educational Resources Information Center

    Sharman, Phil, Ed.

    1997-01-01

    This document consists of the twelve issues of "Child Support Report" newsletter published during 1997. Monthly issues typically explore problems related to child support enforcement, report on federal and state government child support enforcement initiatives, and summarize research related to child support. Editorials and information on events…

  7. Drop Impact on to Moving Liquid Pools

    NASA Astrophysics Data System (ADS)

    Muñoz-Sánchez, Beatriz Natividad; Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Hutchings, Ian M.

    2014-11-01

    The deposition of droplets on to moving liquid substrates is an omnipresent situation both in nature and industry. A diverse spectrum of phenomena emerges from this simple process. In this work we present a parametric experimental study that discerns the dynamics of the impact in terms of the physical properties of the fluid and the relative velocity between the impacting drop and the moving liquid pool. The behaviour ranges from smooth coalescence (characterized by little mixing) to violent splashing (generation of multiple satellite droplets and interfacial vorticity). In addition, transitional regimes such as bouncing and surfing are also found. We classify the system dynamics and show a parametric diagram for the conditions of each regime. This work was supported by the EPSRC (Grant EP/H018913/1), the Royal Society, Becas Santander Universidades and the International Relationships Office of the University of Extremadura.

  8. Liquid Crystalline Phases of Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Amini, Kiana; Abukhdeir, Nasser; Matsen, Mark

    The phase behavior of liquid-crystal polymeric brushes in solvent are investigated using self-consistent field theory. The polymers are modeled as freely-jointed chain consisting of N rigid segments. The isotropic interactions between the polymer and the solvent are treated using the standard Flory-Huggins theory, while the anisotropic liquid-crystalline (LC) interactions between rigid segments are taken into account using the Mayer-Saupe theory. For weak LC interactions, the brush exhibits the conventional parabolic-like profile, while for strong LC interactions, the polymers crystallize into a dense brush with a step-like profile. At intermediate interaction strengths, we find the microphase-segregated phase observed previously for lattice-model calculations. In this phase, the brush exhibits a crystalline layer next to the grafting surface with an external layer similar to the conventional brush. This work was supported by NSERC of Canada.

  9. The dynamics of free liquid drops

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Trinh, E. H.; Croonquist, A. P.; Elleman, D. D.

    1988-01-01

    The behavior of rotating and oscillating free liquid drops was studied by many investigators theoretically for many years. More recent numerical treatments have yielded predictions which are yet to be verified experimentally. The purpose is to report the results of laboratory work as well as that of the experiments carried out in space during the flight of Spacelab 3, and to compare it with the existing theoretical studies. Ground-based experiments were attempted as a first approximation to the ideal boundary conditions used by the theoretical treatments by neutralizing the overwhelming effects of the Earth's gravitational field with an outside supporting liquid and with the use of levitation technology. The viscous and inertial loading of such a suspending fluid was found to profoundly effect the results, but the information thus gathered has emphasized the uniqueness of the experimental data obtained in the low-gravity environment of space.

  10. Liquids with permanent porosity

    NASA Astrophysics Data System (ADS)

    Giri, Nicola; Del Pópolo, Mario G.; Melaugh, Gavin; Greenaway, Rebecca L.; Rätzke, Klaus; Koschine, Tönjes; Pison, Laure; Gomes, Margarida F. Costa; Cooper, Andrew I.; James, Stuart L.

    2015-11-01

    Porous solids such as zeolites and metal-organic frameworks are useful in molecular separation and in catalysis, but their solid nature can impose limitations. For example, liquid solvents, rather than porous solids, are the most mature technology for post-combustion capture of carbon dioxide because liquid circulation systems are more easily retrofitted to existing plants. Solid porous adsorbents offer major benefits, such as lower energy penalties in adsorption-desorption cycles, but they are difficult to implement in conventional flow processes. Materials that combine the properties of fluidity and permanent porosity could therefore offer technological advantages, but permanent porosity is not associated with conventional liquids. Here we report free-flowing liquids whose bulk properties are determined by their permanent porosity. To achieve this, we designed cage molecules that provide a well-defined pore space and that are highly soluble in solvents whose molecules are too large to enter the pores. The concentration of unoccupied cages can thus be around 500 times greater than in other molecular solutions that contain cavities, resulting in a marked change in bulk properties, such as an eightfold increase in the solubility of methane gas. Our results provide the basis for development of a new class of functional porous materials for chemical processes, and we present a one-step, multigram scale-up route for highly soluble ‘scrambled’ porous cages prepared from a mixture of commercially available reagents. The unifying design principle for these materials is the avoidance of functional groups that can penetrate into the molecular cage cavities.

  11. Cyclic phosphonium ionic liquids

    PubMed Central

    Mukhlall, Joshua A; Romeo, Alicia R; Gohdo, Masao; Ramati, Sharon; Berman, Marc; Suarez, Sophia N

    2014-01-01

    Summary Ionic liquids (ILs) incorporating cyclic phosphonium cations are a novel category of materials. We report here on the synthesis and characterization of four new cyclic phosphonium bis(trifluoromethylsulfonyl)amide ILs with aliphatic and aromatic pendant groups. In addition to the syntheses of these novel materials, we report on a comparison of their properties with their ammonium congeners. These exemplars are slightly less conductive and have slightly smaller self-diffusion coefficients than their cyclic ammonium congeners. PMID:24605146

  12. RHIC The Perfect Liquid

    ScienceCinema

    BNL

    2009-09-01

    Evidence to date suggests that gold-gold collisions the Relativistic Heavy Ion Collider at Brookhaven are indeed creating a new state of hot, dense matter, but one quite different and even more remarkable than had been predicted. Instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a "perfect" liquid.

  13. Liquids with permanent porosity.

    PubMed

    Giri, Nicola; Del Pópolo, Mario G; Melaugh, Gavin; Greenaway, Rebecca L; Rätzke, Klaus; Koschine, Tönjes; Pison, Laure; Gomes, Margarida F Costa; Cooper, Andrew I; James, Stuart L

    2015-11-12

    Porous solids such as zeolites and metal-organic frameworks are useful in molecular separation and in catalysis, but their solid nature can impose limitations. For example, liquid solvents, rather than porous solids, are the most mature technology for post-combustion capture of carbon dioxide because liquid circulation systems are more easily retrofitted to existing plants. Solid porous adsorbents offer major benefits, such as lower energy penalties in adsorption-desorption cycles, but they are difficult to implement in conventional flow processes. Materials that combine the properties of fluidity and permanent porosity could therefore offer technological advantages, but permanent porosity is not associated with conventional liquids. Here we report free-flowing liquids whose bulk properties are determined by their permanent porosity. To achieve this, we designed cage molecules that provide a well-defined pore space and that are highly soluble in solvents whose molecules are too large to enter the pores. The concentration of unoccupied cages can thus be around 500 times greater than in other molecular solutions that contain cavities, resulting in a marked change in bulk properties, such as an eightfold increase in the solubility of methane gas. Our results provide the basis for development of a new class of functional porous materials for chemical processes, and we present a one-step, multigram scale-up route for highly soluble 'scrambled' porous cages prepared from a mixture of commercially available reagents. The unifying design principle for these materials is the avoidance of functional groups that can penetrate into the molecular cage cavities. PMID:26560299

  14. Liquid fuel cells

    PubMed Central

    2014-01-01

    Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  15. Liquid fuel cells.

    PubMed

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  16. RHIC The Perfect Liquid

    SciTech Connect

    BNL

    2008-08-12

    Evidence to date suggests that gold-gold collisions the Relativistic Heavy Ion Collider at Brookhaven are indeed creating a new state of hot, dense matter, but one quite different and even more remarkable than had been predicted. Instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a "perfect" liquid.

  17. Living liquid crystals

    PubMed Central

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2014-01-01

    Collective motion of self-propelled organisms or synthetic particles, often termed “active fluid,” has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter––living liquid crystals (LLCs)––that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications. PMID:24474746

  18. Liquid crystals in tribology.

    PubMed

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-09-01

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered. PMID:19865534

  19. Liquid Crystals in Tribology

    PubMed Central

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-01-01

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered. PMID:19865534

  20. Liquid Dynamics from Neutron Spectrometry

    DOE R&D Accomplishments Database

    Brockhouse, Bertram N.; Bergsma, J.; Dasannacharya, B. A.; Pope, N. K.

    1962-10-01

    Recent experiments carried out at Chalk River on the dynamics of liquids using neutron inelastic scattering are reviewed, including one by Sakamoto et al., in which the Van Hove self-correlation functions in water at 25 and 75 deg C were determined, and another in which the correlation functions in liquid argon near its triple point were studied. The possible occurrence of short wavelength phonons in classical liquids is discussed, in analogy with their existence in the quantum liquid He4, and in connection with incomplete experiments on liquid tin. (auth)

  1. Density profiles at liquid-vapor and liquid-liquid interfaces: An integral equation study

    NASA Astrophysics Data System (ADS)

    Iatsevitch, Stanislav; Forstmann, Frank

    1997-11-01

    The structure of liquid-vapor and liquid-liquid interfaces in Lennard-Jones (LJ) fluids and mixtures is studied using integral equations. To obtain density distributions at interfaces between coexisting fluid phases we solve the Lovett-Mou-Buff-Wertheim equation. In this equation we approximate the direct correlation functions of the inhomogeneous fluid via interpolation between the direct correlation functions of the bulk phases. In the homogeneous bulk phases the system of the Ornstein-Zernike equation with the reference-hypernetted-chain closure is solved to obtain the direct correlation functions at coexisting densities. Density distributions and other interfacial properties are studied for a liquid-vapor interface in a pure LJ fluid, in an Ar-Kr mixture and for a liquid-liquid interface between two immiscible LJ fluids. The results are in good agreement with simulations and other theories. At low temperatures the liquid-vapor and liquid-liquid density profiles exhibit oscillating structures with periods near the diameters of the LJ spheres. Being quite weak at liquid-vapor interfaces these oscillations become very pronounced at a liquid-liquid interface between immiscible fluids.

  2. Solid-Liquid and Liquid-Liquid Mixing Laboratory for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Pour, Sanaz Barar; Norca, Gregory Benoit; Fradette, Louis; Legros, Robert; Tanguy, Philippe A.

    2007-01-01

    Solid-liquid and liquid-liquid mixing experiments have been developed to provide students with a practical experience on suspension and emulsification processes. The laboratory focuses on the characterization of the process efficiency, specifically the influence of the main operating parameters and the effect of the impeller type. (Contains 2…

  3. Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Kushner, Mark J.

    2013-09-01

    Tissue treated by atmospheric pressure dielectric barrier discharges in plasma medicine are often covered by a thin layer of liquid, water with dissolved gases and proteins. The liquid processes the plasma produced radicals and ions prior to their reaching the tissue. We report on a computational investigation of the interaction of DBDs with a thin liquid layer covering tissue. The simulations were performed with nonPDPSIM, a 2-D plasma hydrodynamics and radiation transport model. The liquid is treated identically to the gas as a partially ionized substance but with a higher density. Liquid evaporates into the gas with a source given by its saturated vapor pressure. Transport of gas phase species into the liquid is determined by Henry's Law considerations. The tissue is treated as a dielectric and the species fluxes onto the tissue are recorded. The liquid layer, typically hundreds of microns thick, is water containing dissolved O2 and alkane-like hydrocarbons (RH). In the model, the DBDs are operated with multiple pulses at 100 Hz followed by a 1 s afterglow. Gas phase reactive oxygen and nitrogen species (RONS) intersect the water vapor saturated air above the liquid and then solvate when reaching the liquid. The photolysis of water by plasma produced UV/VUV plays a significant role in the radical production. Without RH, O2- and hydronium (H3O+) dominate the water ions with H3O+ determining the pH. The dominant RONS in the liquid are O3, H2O2, and HNOx. With RH, ROS are largely consumed, leaving R(alkane radical) to reach the tissue. Work supported by DOE Fusion Energy Science and NSF.

  4. Microfluidic magnetic self-assembly at liquid-liquid interfaces.

    PubMed

    Jones, Steven G; Abbasi, Niki; Moon, Byeong-Ui; Tsai, Scott S H

    2016-03-14

    We present a microfluidic method that controllably self-assembles microparticles into clusters at an aqueous two-phase liquid-liquid interface. The liquid-liquid interface is formed between converging flows of aqueous dextran and polyethylene glycol, in a microfluidic cross-slot device. We control the size of the self-assembled particle clusters as they pass through the liquid-liquid interface, by systematically varying the applied magnetic field gradient, and the interfacial tension of the liquid-liquid interface. We find that upon penetration through the interface, the number of particles within a cluster increases with increasing interfacial tension, and decreasing magnetic field gradient. We also develop a scaling model of the number of particles within a cluster, and observe an inverse scaling of the number of particles within a cluster with the dimensionless magnetic Bond number. Upon cluster penetration across the liquid-liquid interface, we find magnetic Bond number regimes where the fluid coating drains away from the surface of the cluster, and where the clusters are encapsulated inside a thin film coating layer. This self-assembly technique may find application in controlling the size of microscale self-assemblies, and coating such assemblies; for example, in clustering and coating of cells for immunoisolated cell transplants. PMID:26854215

  5. Synthesis and Characterization of Thiazolium-Based Room Temperature Ionic Liquids for Gas Separations

    SciTech Connect

    Hillesheim, PC; Mahurin, SM; Fulvio, PF; Yeary, JS; Oyola, Y; Jiang, DE; Dai, S

    2012-09-05

    A series of novel thiazolium-bis(triflamide) based ionic liquids has been synthesized and characterized. Physicochemical properties of the ionic liquids such as thermal stability, phase transitions, and infrared spectra were analyzed and compared to the imidazolium-based congeners. Several unique classes of ancillary substitutions are examined with respect to impacts on overall structure, in addition to their carbon dioxide absorption properties in supported ionic-liquid membranes for gas separation.

  6. Reactive Species Processes in Plasma-, Gas-, and Liquid-Phase

    NASA Astrophysics Data System (ADS)

    Reuter, Stephan; Winter, Joern; Hammer, Malte; Schmidt-Bleker, Ansgar; Iseni, Sylvain; Tresp, Helena; Dünnbier, Mario; Masur, Kai; Wende, Kristian; Weltmann, Klaus-Dieter

    2013-09-01

    Especially for the field of plasma medicine, plasmas interacting with liquids are of great interest for environmental, chemical, and biomedical applications. In this work we present optical diagnostics on atmospheric pressure plasma jets interacting with liquids. Combining the diagnostic results with numerical simulations yields an understanding of fundamental processes such as air species diffusion into the jet effluents or the influence on humidity. Especially for plasma treatment of physiological liquids in ambient air, atmospheric species play a key role. To achieve a desired reactive component output, the generation processes from these ambient air species are controlled. Plasma jets are characterized by planar laser induced fluorescence spectroscopy, by absorption and emission spectroscopy, and by flow simulations. With the gained knowledge we are able to tailor the reactive component composition and to influence plasma jet-liquid interaction. We show that reactive species generation within plasma treated liquid can be tuned and apply the findings to biological cells to investigate the effect of reactive oxygen and nitrogen species (RONS). The plasma treated liquids are investigated regarding their pH value, OH radicals, nitrate and nitrite, and H2O2 content. From the tailored plasma treatment a significant insight into the relevant transport processes in plasma treatment of liquids has been gained. Support by the German BMBF 03Z2DN11&12 is acknowledged.

  7. A sliding cell technique for diffusion measurements in liquid metals

    SciTech Connect

    Geng, Yongliang; Zhu, Chunao; Zhang, Bo; Anhui Provincial Key Lab of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009

    2014-03-15

    The long capillary and shear cell techniques are the usual methods for diffusion measurements in liquid metals. Here we present a new “sliding cell technique” to measure interdiffusion in liquid alloys, which combines the merits of these two methods. Instead of a number of shear cells, as used in the shear cell method, only one sliding cell is designed to separate and join the liquid diffusion samples. Using the sliding cell technique, the influence of the heating process (which affects liquid diffusion measurements in the conventional long capillary method) can be eliminated. Time-dependent diffusion measurements at the same isothermal temperature were carried out in Al-Cu liquids. Compared with the previous results measured by in-situ X-ray radiography, the obtained liquid diffusion coefficient in this work is believed to be influenced by convective flow. The present work further supports the idea that to obtain accurate diffusion constants in liquid metals, the measurement conditions must be well controlled, and there should be no temperature gradients or other disturbances.

  8. Tubular optical microcavities of indefinite medium for sensitive liquid refractometers.

    PubMed

    Tang, Shiwei; Fang, Yangfu; Liu, Zhaowei; Zhou, Lei; Mei, Yongfeng

    2016-01-01

    Optical microcavities enable circulated light to intensively interact with a detecting liquid, thus promising high sensitivity in fluidic refractometers. Based on Mie scattering theory, we propose a tubular metamaterial device for liquid sensing, which utilizes anisotropic metamaterials with hyperbolic dispersion called indefinite media (IM). Besides traditional whispering gallery modes (WGMs), such tubular cavities can support surface plasmon polariton (SPP) WGMs, enabling high sensitivity liquid detection. Three configurations of such metamaterial tubes for sensing are discussed: tube-in-liquid, hollow-tube-in-liquid and liquid-in-tube; these are analyzed using numerical formulas and compared with dielectric and metal materials. Compared with traditional dielectric media (DM), the IM tubular cavity exhibits a higher sensitivity (S), which is close to that of a metal tubular cavity. However, compared with metal media, such an IM cavity can achieve higher quality (Q) factors similar to the DM tubular cavity. Therefore, the IM tubular cavity can offer the highest figures of merit (QS) for the sensing performance among the three types of materials. Our results suggest a novel tubular optofluidic device based on metamaterials, which could be useful for liquid refractometers. PMID:26605851

  9. Key comparison of liquid density standards

    NASA Astrophysics Data System (ADS)

    Buchner, Christian; Zelenka, Zoltan; Kajastie, Heikki; Madec, Tanguy; Wolf, Henning; Vámossy, Csilla; Lorefice, Salvatore; Garberg, Torgunn; Lenard, Elżbieta; Spohr, Isabel; Mares, Gabriela; Spurný, Robert; Lumbreras, Angel; Medina, Nieves; Y Akçadağ, Ümit; Perkin, Michael

    2015-01-01

    Hydrostatic density determination for liquids is mainly performed by laboratories to provide means for calibrating liquid density measuring instruments such as oscillation-type density meters. From 2002 to 2005 the CIPM key comparison CCM.D-K2 'comparison of liquid density standards' was carried out piloted by the PTB. The aim was to compare the results of the density determination by the participating laboratories to support entries to the CMC tables in this sub-field. To provide further laboratories the possibility to support their entries to the CMC tables at the meeting of the EUROMET Working Group on Density in 2007 this comparison was agreed on. BEV (Austria) organized the comparison supported by the PTB (Germany). For the comparison samples of pentadecane, water, tetrachloroethylene and of an oil of high viscosity were measured in the temperature range from 5 °C to 60 °C at atmospheric pressure by hydrostatic weighing. The measurements were completed in 2008. The reference values of the first reports based on the draft of the CCM.D-K2. After the official publication of the CCM.D-K2 the reference values were recalculated and the report was finalised in 2015. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. Reactor vessel support system

    DOEpatents

    Golden, Martin P.; Holley, John C.

    1982-01-01

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  11. Liquid-vapor and liquid-liquid interfaces in Ising fluids: An integral equation approach

    NASA Astrophysics Data System (ADS)

    Omelyan, I. P.; Folk, R.; Mryglod, I. M.; Fenz, W.

    2007-03-01

    The microscopic structure and thermodynamic properties of liquid-vapor and liquid-liquid interfaces in Ising fluids are studied using an integral equation approach. The calculations are performed in the absence and presence of an external magnetic field by solving the corresponding set of Lovett-Mou-Buff-Wertheim integrodifferential equations for the one-particle density distribution functions. The two-particle inhomogeneous direct correlation functions are consistently constructed by nonlinear interpolation between the bulk ones. The bulk correlation functions of the coexisting phases are obtained from the Ornstein-Zernike equations with a modified soft mean spherical approximation for the closure relation. As a result, the density and magnetization profiles at liquid-vapor and liquid-liquid interfaces as well as the surface tension and adsorption coefficients are evaluated in a wide temperature range including subcritical regions. The influence of an external magnetic field on the liquid-vapor interfaces is also considered.

  12. Liquid belt radiator design study

    NASA Technical Reports Server (NTRS)

    Teagan, W. P.; Fitzgerald, K. F.

    1986-01-01

    The Liquid Belt Radiator (LBR) is an advanced concept developed to meet the needs of anticipated future space missions. A previous study documented the advantages of this concept as a lightweight, easily deployable alternative to present day space heat rejection systems. The technical efforts associated with this study concentrate on refining the concept of the LBR as well as examining the issues of belt dynamics and potential application of the LBR to intermediate and high temperature heat rejection applications. A low temperature point design developed in previous work is updated assuming the use of diffusion pump oil, Santovac-6, as the heat transfer media. Additional analytical and design effort is directed toward determining the impact of interface heat exchanger, fluid bath sealing, and belt drive mechanism designs on system performance and mass. The updated design supports the earlier result by indicating a significant reduction in system specific system mass as compared to heat pipe or pumped fluid radiator concepts currently under consideration (1.3 kg/sq m versus 5 kg/sq m).

  13. Phase comparison technique for measuring liquid-liquid phase equilibrium

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Daridon, J. L.; Lagourette, B.; Ye, S.

    1999-04-01

    In this article, a new method is demonstrated to measure the liquid-liquid phase equilibrium for binary systems. A phase comparison technique was employed to real-time display the phase-time curve in a "wave form (time) object" of Hewlett-Packard visual engineering environment. It was found that the phase-time curve showed a distorted wave form when liquid-liquid phase transition took place. The abnormal curve can therefore be used to detect liquid-liquid phase transitions. Measurements were performed in several binary systems such as nitromethane+1-hexanol, nitromethane+butanol, and nitroethane+n-hexane. The experimental results are in good agreement with those in the literature.

  14. Dynamic control of liquid-core/liquid-cladding optical waveguides

    PubMed Central

    Wolfe, Daniel B.; Conroy, Richard S.; Garstecki, Piotr; Mayers, Brian T.; Fischbach, Michael A.; Paul, Kateri E.; Prentiss, Mara; Whitesides, George M.

    2004-01-01

    This report describes the manipulation of light in waveguides that comprise a liquid core and a liquid cladding (liq/liq waveguide). These waveguides are dynamic: Their structure and function depend on a continuous, laminar flow of the core and cladding liquids. Because they are dynamic, they can be reconfigured and adapted continuously in ways that are not possible with solid-state waveguides. The liquids are introduced into the channels of a microfluidic network designed to sandwich the flowing core liquid between flowing slabs of the cladding fluid. At low and moderate Reynolds numbers, flow is laminar, and the liq/liq interfaces are optically smooth. Small irregularities in the solid walls of the channels do not propagate into these interfaces, and liq/liq waveguides therefore exhibit low optical loss because of scattering. Manipulating the rate of flow and the composition of the liquids tunes the characteristics of these optical systems. PMID:15314232

  15. A Novel Liquid-Liquid Transition in Undercooled Ti-Zr-Ni Liquids

    NASA Technical Reports Server (NTRS)

    Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.; Bradshaw, R. C.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.

    2004-01-01

    If crystallization can be avoided, liquids enter a metastable (undercooled) state below their equilibrium liquidus temperatures, T(sub l), finally 'freezing' into a glass below a characteristic temperature called the glass transition temperature, T(sub g). In rare cases, the undercooled liquid may undergo a liquid-liquid phase transition (liquid polymorphism) before entering the glassy state. This has been suggested from experimental studies of H2O and Si. Such phase transitions have been predicted in some stable liquids, ie. above T(sub l) at atmospheric pressure, for SiO2 and BeF2, but these have not been verified experimentally. They have been observed in liquids of P, Si and C, but only under high pressure. In this letter we present the first experimental evidence for a phase transition in a low viscosity metallic liquid that is driven by an approach to a constant entropy configuration state and correlated with a growing icosahedral order in the liquid. A maximum in the specific heat at constant pressure, similar to what is normally observed near T(sub g), is reported for undercooled liquids of quasicrystal-forming Ti-Zr-Ni alloys. A two-state excitation model that includes cooperativity by incorporating a temperature-dependent excitation energy, fits the specific heat data well, signaling a phase transition. An inflection in the liquid density with decreasing temperature instead of a discontinuity indicates that this is not a typical first order phase transition; it could be a weakly first order or higher order transition. While showing many similarities to a glass transition, this liquid-liquid phase transition occurs in a mobile liquid, making it novel.

  16. Detection and characterization of liquid|solid and liquid|liquid|solid interfacial gradients of water nanodroplets in wet N-octyl-2-pyrrolidone.

    PubMed

    Hay, Christine E; Marken, Frank; Blanchard, G J

    2014-08-26

    We report on the rotational diffusion dynamics and fluorescence lifetime of lissamine rhodamine B sulfonyl chloride (LRSC) in two thin-film experimental configurations. These are liquid|solid interfaces, where N-octyl-2-pyrrolidone (NOP) containing water and ethylene glycol (EG) thin films are each supported on glass, and a liquid|liquid|solid interface where thin films of water and NOP, both supported on glass, are in contact with one another, forming an NOP|water interface. The reorientation dynamics and fluorescence lifetime of LRSC are measured as a function of distance from the NOP|glass and EG|glass interfaces and from the NOP|water and NOP|glass interfaces in the liquid|liquid|solid experimental configuration. Fluorescence anisotropy decay data from the liquid|solid systems reveal a liquid film depth-dependent gradient spanning tens of micrometers from the NOP|glass interface into the wet NOP phase, while this gradient is absent in EG. We interpret these findings in the context of a compositional gradient in the NOP phase. The spatially resolved fluorescence lifetime and anisotropy decay data for an NOP|water|glass interfacial structure exhibits the absence of a gradient in the anisotropy decay profile normal to the NOP|water interface and the presence of a fluorescence lifetime gradient as a function of distance from the NOP|water interface. The compositional heterogeneity for both interfacial systems is in the form of water nanodroplets in the NOP phase. We understand this compositional gradient in the context of the relative surface energies of the water, NOP, and glass components. PMID:25101792

  17. Liquid class predictor for liquid handling of complex mixtures

    DOEpatents

    Seglke, Brent W.; Lekin, Timothy P.

    2008-12-09

    A method of establishing liquid classes of complex mixtures for liquid handling equipment. The mixtures are composed of components and the equipment has equipment parameters. The first step comprises preparing a response curve for the components. The next step comprises using the response curve to prepare a response indicator for the mixtures. The next step comprises deriving a model that relates the components and the mixtures to establish the liquid classes.

  18. Anomalous effect of flow rate on the electrochemical behavior at a liquid|liquid interface under microfluidic conditions.

    PubMed

    Kaluza, Dawid; Adamiak, Wojciech; Kalwarczyk, Tomasz; Sozanski, Krzysztof; Opallo, Marcin; Jnsson-Niedziolka, Martin

    2013-12-23

    We have investigated the oxidation of ferrocene at a flowing organic solvent|aqueous electrolyte|solid electrode junction in a microfluidic setup using cyclic voltammetry and fluorescent laser scanning confocal microscopy. At low flow rates the oxidation current decreases with increasing flow, contrary to the Levich equation, but at higher flow rates the current increases linearly with the cube root of the flow rate. This behavior is explained using a simple model postulating a smallest effective width of the three-phase junction, which after fitting to the data comes to be ca. 20 ?m. The fluorescence microscopy reveals mixing of the two phases close to the PDMS cover, but the liquid|liquid junction is stable close to the glass support. This study shows the importance of the solid|liquid|liquid junctions for the behavior of multiphase systems under microfluidic conditions. PMID:24328179

  19. Dynamics of liquid nanojets.

    PubMed

    Eggers, Jens

    2002-08-19

    We study the breakup of a liquid jet a few nanometers in diameter, based on a stochastic differential equation derived recently by Moseler and Landman [Science 289, 1165 (2000)]. In agreement with their simulations, we confirm that noise qualitatively changes the characteristics of breakup, leading to symmetric profiles. Using the path integral description, we find a self-similar profile that describes the most probable breakup mode. As illustrated by a simple physical argument, noise is the driving force behind pinching, speeding up the breakup to make surface tension irrelevant. PMID:12190472

  20. Nanorheology of Liquid Alkanes

    SciTech Connect

    Gupta, S.A., Cochran, H.D., Cummings, P.T. ,

    1997-09-01

    We report molecular dynamics simulations of liquid alkanes, squalane and tetracosane, confined between moving walls to which butane chains are tethered, effectively screening the details of the wall. As in an experiment, heat is removed by thermostatting the tethered molecules. Results obtained at high strain rates, typical of practical applications, suggest little or no difference between the bulk rheology and confined flow, and the occurrence of a high degree of slip at the wall-fluid interface at the conditions studied. At relatively low velocities and high densities, tetracosane shows the formation of fully-extended chains at certain wall spacings.

  1. Hydrodynamics of flux liquids

    NASA Astrophysics Data System (ADS)

    Marchetti, M. Cristina; Nelson, David R.

    1990-12-01

    A hydrodynamic theory of both isotropic and hexatic flux liquids in high-Tc superconductors is presented. Weak microscopic pinning centers are described within the flux-flow model of Bardeen and Stephen, while strong macroscopic pinning centers set the boundary conditions for the flow. This model is relevant for understanding recent transport measurements by Worthington et al. in bulk Y-Ba-Cu-O single crystals. Flux-line entanglement leads to a large intrinsic viscosity, which increases at the isotropic-to-hexatic transition.

  2. Water: The Strangest Liquid

    SciTech Connect

    Nilsson, Anders

    2009-02-24

    Water, H2O, is familiar to everyone - it shapes our bodies and our planet. But despite its abundance, water has remained a mystery, exhibiting many strange properties that are still not understood. Why does the liquid have an unusually large capacity to store heat? And why is it denser than ice? Now, using the intense X-ray beams from particle accelerators, investigations into water are leading to fundamental discoveries about the structure and arrangement of water molecules. This lecture will elucidate the many mysteries of water and discuss current studies that are revolutionizing the way we see and understand one of the most fundamental substances of life.

  3. High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  4. Igniters for Liquid Oxygen/Liquid Methane Technology Development

    NASA Technical Reports Server (NTRS)

    Osborne, Robin J.; Elam, Sandra K.; Peschel, William P.

    2008-01-01

    As part of NASA's technology development of liquid methane / liquid oxygen engines for future exploration missions, two different igniters were recently studied at NASA Marshall Space Flight Center. The first igniter tested was an impinging injection, spark-initiated torch igniter, and the second was a microwave-generated plasma igniter. The purpose of the ignition tests was to define the ignition limits under vacuum conditions and characterize the transient start-up performance as a function of propellant mixture ratio (MR), mass flow rates, inlet temperatures, and pre-ignition chamber pressure. In addition, for the impinging igniter two different spark plugs were tested, and for the microwave igniter the magnetron filament warm-up time and the magnetron input power were both varied. The results gathered from these tests indicated that the impinging igniter is capable of operating over an MR range of 2 - 27, with methane and oxygen inlet temperatures as low as -161 F and -233 F, respectively. The microwave igniter was tested over an MR range of 2 - 9, with methane and oxygen inlet temperatures as low as -90 F and -200 F, respectively. The microwave igniter achieved ignition over this range, although an upper ignition limit was determined for the oxidizer mass flow rate. In general, the torch exhaust temperatures for the microwave igniter were not as high as those attained with the impinging igniter. The microwave igniter, however, was hot-fired 17 times and was still operational, whereas the impinging igniter spark plugs experienced thermal shock and erosion over nine hot-fire tests. It was concluded that for the microwave igniter better mixing of the propellants might be required in order to both raise the torch exhaust temperature and decrease the required magnetron input power, and for the impinging igniter the spark plug position within the igniter chamber should be varied in future tests to identify a more optimal location. All of the igniter tests were supported by the Propulsion & Cryogenics Advanced Development project, which is part of NASA's Exploration Technology Development Program.

  5. Novel Detection Method of Liquid-Liquid Phase Separation

    NASA Astrophysics Data System (ADS)

    Kato, Hitoshi; Katayanagi, Hideki; Koga, Yoshikata; Nishikawa, Keiko

    2004-12-01

    A novel method of determining a liquid-liquid phase boundary was developed. This method is based on our discovery that a nascent low-density phase is attracted to the center of a Rankine vortex at the onset of phase separation. Thus a liquid-liquid phase boundary is detected easily, rapidly, and accurately. The phase diagrams of the ternary systems NaCl-H2O-1-propanol and NaCl-H2O-1-butanol were obtained by this method. The results matched well with literature values.

  6. Postpartum Support International

    MedlinePlus

    ... start down your road to recovery. Find local resources Chat with an expert Join an online support group Join Us We provide direct peer support to families, train professionals, and are a bridge between the two. ...

  7. SUPERFUND TECHNICAL SUPPORT

    EPA Science Inventory

    Under this task, technical support is provided to Regional Remedial Project Managers (RPMs)/On-Scene Coordinators (OSCs) at Superfund, RCRA, and Brownfields sites contaminated with hazardous materials by the Technical Support Center (TSC) for Monitoring and Site Characterization....

  8. Giotto mission support

    NASA Technical Reports Server (NTRS)

    Stelzried, C.; Howe, T.

    1986-01-01

    Deep Space Network (DSN) support of the Giotto mission to Comet Halley is summarized. The support is described beginning with the prelaunch testing and continues through the post comet encounter period.

  9. SUPERFUND REMOTE SENSING SUPPORT

    EPA Science Inventory

    This task provides remote sensing technical support to the Superfund program. Support includes the collection, processing, and analysis of remote sensing data to characterize hazardous waste disposal sites and their history. Image analysis reports, aerial photographs, and assoc...

  10. Exercise support for therapy

    NASA Technical Reports Server (NTRS)

    Long, M. J.; Irick, S. C.

    1976-01-01

    Constant-value weight-relieving apparatus, which moves on rollers on overhead track, supports weight of walking, stooping, squatting, or standing patient with combination of multiple pulleys and spring clusters. Individually preselected support force is constant for all movements.

  11. Low heat-gain cryogenic-liquid transfer system

    NASA Technical Reports Server (NTRS)

    Hows, G. E.; Wright, B. J.

    1970-01-01

    Cryogenic-liquid transfer system, containing a ring structure with tensioned small diameter, high strength wires, provides adequate physical support for the piping, minimizes the conductive heat paths between the piping and jacket, and allows for thermal expansion and contraction of the piping.

  12. 14. VIEW OF THE LIQUID CHEMICAL STORAGE TANKS. THE FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF THE LIQUID CHEMICAL STORAGE TANKS. THE FLOOR IS SURFACED WITH STAINLESS STEEL TO CONTAIN SPILLS AND FACILITATE CLEANING. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  13. Length scales for fragile glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Mountain, Raymond D.

    1995-04-01

    Molecular dynamics simulation results are used to demonstrate the existence of a growing length in supercooled, fragile glass-forming liquids. This length is the longest wavelength, propagating shear wave the fluid can support. Explicit results are reported for an equimolar soft-sphere mixture. A possible connection between this length and the size of locally rigid clusters is discussed.

  14. Overview of supported employment.

    PubMed Central

    Rusch, F R; Hughes, C

    1989-01-01

    This article traces the emergence of supported employment as a result of philosophical changes in expectations for persons with disabilities, based on scientific developments that challenged traditional service-delivery models. Supported employment program characteristics also are reviewed, and the influence of applied behavior analysis is outlined. Finally, areas for future research in supported employment are discussed. PMID:2693427

  15. Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe

    2004-01-01

    Viewgraphs on Advanced Life Support (ALS) Systems are presented. The topics include: 1) Fundamental Need for Advanced Life Support; 2) ALS organization; 3) Requirements and Rationale; 4) Past Integrated tests; 5) The need for improvements in life support systems; 6) ALS approach to meet exploration goals; 7) ALS Projects showing promise to meet exploration goals; and 9) GRC involvement in ALS.

  16. Learner and Faculty Support

    ERIC Educational Resources Information Center

    Guan, Sharon; Stanford, Daniel

    2016-01-01

    This chapter identifies effective ways to address learner and faculty support. It introduces methods for building a successful learner support system by providing sufficient resources and proactively addressing learner motivation. It also addresses effective faculty support through institutional policies, resources, training, and course…

  17. Liquid and Gaseous Waste Operations Department annual operating report, CY 1995

    SciTech Connect

    Maddox, J.J.; Scott, C.B.

    1996-03-01

    This report describes the operating activities, upgrade activities, maintenance, and other activities regarding liquid and gaseous low level radioactive waste management at the Oak Ridge National Laboratory. Miscellaneous activities include training, audits, tours, and environmental restoration support.

  18. Portable liquid collection electrostatic precipitator

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Halverson, Justin E.

    2005-10-18

    A portable liquid collection electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a tubular collection electrode, a reservoir for a liquid, and a pump. The pump pumps the liquid into the collection electrode such that the liquid flows down the exterior of the collection electrode and is recirculated to the reservoir. An air intake is provided such that air to be analyzed flows through an ionization section to ionize analytes in the air, and then flows near the collection electrode where ionized analytes are collected. A portable power source is connected to the air intake and the collection electrode. Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the liquid. The precipitator may also have an analyzer for the liquid and may have a transceiver allowing remote operation and data collection.

  19. Liquid fuel burning torch

    SciTech Connect

    Kumasaka, H.

    1984-10-16

    A liquid fuel burning torch includes a container having a substantially barrel-shaped main portion which defines a chamber accommodating a liquid fuel during use. The top wall of the container has an upwardly upset threaded neck portion on which there is mounted a closing cap having a circumferential wall provided with external and internal threads, the internal threads meshing with the external threads of the neck portion. The closing member also has a transverse wall which has a central aperture for the passage of a wick therethrough. A snuffer cap having a circumferential wall provided with threads meshing with the external threads of the closing member can be fittingly mounted on the closing member so as to extinguish the flame by denying access of oxygen to the wick portion extending outwardly of the closing member. The closing member has an external flange which frictionally engages the top wall of the container around the neck portion upon tightening. The threads and the flange virtually prevent the fuel from escaping from the interior of the container. The snuffer cap is mounted on a mounting portion extending downwardly from the bottom wall of the container by a chain. The mounting portion has an external circumferential groove, and the chain carries a bifurcated securing element which has two resilient arms that partially embrace the mounting portion and are partially accommodated in the groove.

  20. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  1. Three-dimensional liquid display

    NASA Astrophysics Data System (ADS)

    Chekhovskiy, Aleksandr; Toshiyoshi, Hiroshi

    2007-11-01

    A displaying technique of real three-dimensional (3D) dynamic images inside a transparent liquid is demonstrated for the first time. Images were formed by micro-flashes generated by means of laser breakdown in liquid. Amongst several types of liquid tested, tap water was found to be an optimal medium for the displaying due to its lowest breakdown threshold power. Electronic color filter was exploited for dynamic coloring of flashes in synchronization with 3D steering of laser beam's focal point.

  2. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    DOEpatents

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  3. Liquid Rocket Engine Testing Overview

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  4. Solute diffusion in liquid metals

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1973-01-01

    A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.

  5. Magnetic Force Microscopy in Liquids.

    PubMed

    Ares, Pablo; Jaafar, Miriam; Gil, Adriana; Gmez-Herrero, Julio; Asenjo, Agustina

    2015-09-01

    In this work, the use of magnetic force microscopy (MFM) to acquire images of magnetic nanostructures in liquid environments is presented. Optimization of the MFM signal acquisition in liquid media is performed and it is applied to characterize the magnetic signal of magnetite nanoparticles. The ability for detecting magnetic nanostructures along with the well-known capabilities of atomic force microscopy in liquids suggests potential applications in fields such as nanomedicine, nanobiotechnology, or nanocatalysis. PMID:26150330

  6. Supercooled liquid water Estimation Tool

    Energy Science and Technology Software Center (ESTSC)

    2012-05-04

    The Cloud Supercooled liquid water Estimation Tool (SEET) is a user driven Graphical User Interface (GUI) that estimates cloud supercooled liquid water (SLW) content in terms of vertical column and total mass from Moderate resolution Imaging Supercooled liquid water Estimation Tool Spectroradiometer (MODIS) spatially derived cloud products and realistic vertical cloud parameterizations that are user defined. It also contains functions for post-processing of the resulting data in tabular and graphical form.

  7. Liquid monobenzoxazine based resin system

    SciTech Connect

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  8. Measure of equilibration in Luttinger liquids

    NASA Astrophysics Data System (ADS)

    Medvedyeva, Mariya; Kehrein, Stefan

    2015-03-01

    We consider the properties of the Luttinger liquid in the echo protocol (forward evolution in time followed by the backward evolution of slightly perturbed system) and explore the relation of the Loschmidt echo (the overlap of the initial and final wavefunctions) and the measurable properties of the system. We first study the linear Luttinger liquid as an example of an integrable system and find that the momentum distribution function exhibits almost complete recurrence while the Loschmidt echo does not, as the diagonal basis is different during the forward and backward time evolution. For a nonlinear Luttinger liquid the recurrence strength of the momentum distribution function drops as the nonlinearity of the fermion dispersion relation grows. We conclude that there is no simple relation of the Loschmidt echo to the behavior of the observables and that more work is needed to understand how to interpret the echo in the context of experiment. This work was supported through SFB 1073 (project B03) of the Deutsche Forschungsgemeinschaft (DFG).

  9. Supported microporous ceramic membranes

    DOEpatents

    Webster, E.; Anderson, M.

    1993-12-14

    A method for the formation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms. 4 figures.

  10. Supported microporous ceramic membranes

    DOEpatents

    Webster, Elizabeth; Anderson, Marc

    1993-01-01

    A method for permformation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms.

  11. Identification of support conditions

    SciTech Connect

    Simmermacher, T.; Mayes, R.; Carne, T.G.

    1998-12-31

    In this paper, a support and preload system is presented in which the frequencies and damping of the test article are affected by the stiffness and damping of the supporting structure. A dynamic model is derived for the support system that includes the damping as well as the mass and stiffness of the supports. The frequencies, damping, and mode shapes are compared with the experimentally determined parameters. It is shown that for a seemingly simple support system, deriving a predictive model is not a trival task.

  12. Neutron crosstalk between liquid scintillators

    NASA Astrophysics Data System (ADS)

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-09-01

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  13. Wicking of liquids in screens

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1974-01-01

    An investigation was conducted to determine the magnitude of the wicking rates of liquids in various screens. Evaluation of the parameters characterizing the wicking process resulted in the development of an expression which defined the wicking velocity in terms of screen and system geometry, liquid properties, and gravitational effects. Experiment data obtained both in normal gravity and in weightlessness demonstrated that the model successfully predicted the functional relation of the liquid properties and the distance from the liquid source to the wicking velocity. Because the pore geometry in the screens was complex, several screen geometric parameters were lumped into a single constant which was determined experimentally for each screen.

  14. Wetting of cholesteric liquid crystals.

    PubMed

    Silvestre, Nuno M; Figueirinhas Pereira, Maria Carolina; Bernardino, Nelson R; Telo da Gama, Margarida M

    2016-02-01

    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted, the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal. PMID:26920516

  15. #3: continuous labor support.

    PubMed

    Hotelling, Barbara; Amis, Debby; Green, Jeanne; Sakala, Carol

    2004-01-01

    In this position paper-one of six care practice papers published by Lamaze International and reprinted here with permission-the benefit of continuous labor support is discussed and presented as an evidence-based practice that helps promote, protect, and support normal birth. The paper is written for childbearing women and their families. Women with continuous support are less likely to have a cesarean, an instrument delivery, and regional anesthesia. They are also less likely to report dissatisfaction with or negatively rate their childbirth experience. The value of the doula for both the laboring woman and her labor partner is discussed. The accompanying commentary-written by a leading proponent of maternity care practices-supports evidence that promotes continuous labor support. Lamaze International encourages women to plan for a supportive birth environment that includes continuous support. PMID:17273384

  16. Mathematics Support--Support for All?

    ERIC Educational Resources Information Center

    Pell, Godfrey; Croft, Tony

    2008-01-01

    Mathematics Support Centres are to be found in various forms in the majority of UK higher education institutions. They have been established in order to ease widespread and serious difficulties that a significant number of students have with mathematics, particularly at the school-university transition. They usually offer mathematics and/or…

  17. 13 CFR 307.20 - Partial liquidation; liquidation upon termination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Partial liquidation; liquidation upon termination. 307.20 Section 307.20 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE ECONOMIC ADJUSTMENT ASSISTANCE INVESTMENTS Special Requirements...

  18. Liquid clathrate formation in ionic liquid-aromatic mixtures.

    PubMed

    Holbrey, John D; Reichert, W Matthew; Nieuwenhuyzen, Mark; Sheppard, Oonagh; Hardacre, Christopher; Rogers, Robin D

    2003-02-21

    1-Alkyl-3-methylimidazolium containing ionic liquids with hexafluorophosphate, bis(trifyl)imide, tetrafluoroborate, and chloride anions form liquid clathrates when mixed with aromatic hydrocarbons; in the system 1,3-dimethylimidazolium hexafluorophosphate-benzene, the aromatic solute could be trapped in the solid state forming a crystalline 2:1 inclusion compound. PMID:12638957

  19. DETAIL OF THE LIQUID HYDROGEN AND LIQUID OXYGEN VENT VALVES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE LIQUID HYDROGEN AND LIQUID OXYGEN VENT VALVES, SIXTH LEVEL OF THE EXTERNAL TANK CHECK-OUT CELLS, HB-2, FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  20. Large Liquid Rocket Testing: Strategies and Challenges

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim A.; Hebert, Bartt J.

    2005-01-01

    Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or development, the appropriate plan and strategy must be put in place at the outset of the development effort. A deferment of this test planning, or inattention to strategy, will compromise the ability of the development program to achieve its systems reliability requirements and/or its development milestones. It is important for the government leadership and support team, as well as the vehicle and propulsion development team, to give early consideration to this aspect of space propulsion and space transportation work.