Science.gov

Sample records for bubble column bioreactors

  1. Effect of polymer additives on hydrodynamics and oxygen transfer in a bubble column bioreactor.

    PubMed

    Kawase, Y

    1993-01-01

    The influence of polymer additives (polyethylene oxide and polyacrylamide) on the hydrodynamics and oxygen transfer in a bubble column bioreactor was examined. The addition of small amounts of these polymers has been known to cause significant drag reduction in turbulent flow circumstances. The gas hold-up was slightly decreased and the liquid-phase mixing was somewhat enhanced due to the addition of the polymers. The addition of polymer additives brought about a reduction of the volumetric oxygen transfer coefficient by about 40%. In dilute polymer solutions, large bubbles formed by bubble coalescence moved with high rise velocities in the presence of many small bubbles and the bubble size distributions were less uniform compared with those in water. The complicated changes in bubble hydrodynamic characteristics were examined to give possible explanations for oxygen transfer reduction. PMID:7763940

  2. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors.

    PubMed

    Tirunehe, Gossaye; Norddahl, B

    2016-04-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U G) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K La) by a factor of 1.2-1.9 compared to the flat sheet membrane. PMID:26857370

  3. Experimental Investigation and Simulation of Ferrous Biooxidation and Flow Hydrodynamics in a Bubble Column Bioreactor Using CFD Approach

    NASA Astrophysics Data System (ADS)

    Mousavi, S. M.; Jafari, A.; Yaghmaei, S.; Vossoughi, M.; Turunen, I.

    2008-05-01

    In the present attempt a set of experiments and a 3D simulation using a commercially available computational fluid dynamics package (FLUENT) were adopted to investigate complex behavior involving hydrodynamics and ferrous biological oxidation in a gas-liquid bubble column reactor. By combining the hydrodynamics and chemical species transport equations, the velocity field, air volume fraction and ferrous biooxidation rate in the column were simulated. The kinetic model proposed by Nemati and Webb (1998) was used to simulate the biooxidation rate in the column. Gas-liquid interactions were modeled using an Eulerian model in three dimensions. The effects of inlet air velocity and initial substrate (Fe+2) concentration on the velocity field, air volume fraction and biooxidation rate of ferrous iron in the column were investigated. To validate the model, simulation was compared with the experimental data in the presence of Acidithiobacillus ferrooxidans in an aerated column where the superficial gas velocity was adjusted between 0 and 0.5 m/s. It was found that the initial ferrous concentration and the inlet air velocity had a pronounced effect on the ferrous biooxidation rate. The results indicated that the maximum biooxidation rate can be obtained at superficial air velocity of 0.1 m/s and initial ferrous concentration of 6.7 g/L.

  4. Slurry bubble column hydrodynamics

    NASA Astrophysics Data System (ADS)

    Rados, Novica

    Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids

  5. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments.

    PubMed

    Rasoulnia, P; Mousavi, S M

    2016-09-01

    Spent-medium bioleaching of V and Ni from a power plant residual ash (PPR ash) was conducted using organic acids produced by Aspergillus niger. The production of organic acids in a bubble column bioreactor was optimized through selecting three most influencing factors. Under optimum condition of aeration rate of 762.5(ml/min), sucrose concentration of 101.9(g/l) and inoculum size of 40(ml/l), respectively 17,185, 4539, 1042 and 502(ppm) of oxalic, gluconic, citric and malic acids were produced. Leaching experiments were carried out using biogenic produced organic acids under leaching environment temperature of 60°C and rotary shaking speed of 135rpm, with various pulp densities of 1, 2, 3, 5, 7 and 9(%w/v). The results showed that biogenic produced organic acids leached V much more efficiently than Ni so that even at high pulp density of 9(%w/v), 83% of V was recovered while Ni recovery yield was 30%. PMID:27295250

  6. A parallel bubble column system for the cultivation of phototrophic microorganisms.

    PubMed

    Havel, Jan; Franco-Lara, Ezequiel; Weuster-Botz, Dirk

    2008-07-01

    An incubator with up to 16 parallel bubble columns was equipped with artificial light sources assuring a light supply with a homogenous light spectrum directly above the bioreactors. Cylindrical light reflecting tubes were positioned around every single bubble column to avoid light scattering effects and to redirect the light from the top onto the cylindrical outer glass surface of each bubble column. The light reflecting tubes were equipped with light intensity filters to control the total light intensity for every single photo-bioreactor. Parallel cultivations of the unicellular obligate phototrophic cyanobacterium, Synechococcus PCC7942, were studied under different constant light intensities ranging from 20 to 102 microE m(-2)s(-1) at a constant humidified air flow rate supplemented with CO(2). PMID:18488151

  7. Cometabolic degradation of trichloroethylene in a bubble column bioscrubber.

    PubMed

    Hecht, V; Brebbermann, D; Bremer, P; Deckwer, W D

    1995-08-20

    A bubble column bioreactor was used as bioscrubber to carry out a feasibility study for the cometabolic degradation of trichloroethylene (TCE). Phenol was used as cosubstrate and inducer. The bioreactor was operated like a conventional chemostat with regard to the cosubstrate and low dilution rates were used to minimize the liquid outflow. TCE degradation measurements were carried out using superficial gas velocities between 0.47and 4.07 cm s(-1) and TCE gas phase loads between 0.07 and 0.40 mg L(-1) Depending on the superficial gas velocity used, degrees of conversion between 30% and 80% were obtained. A simplified reactor model using plug flow for the gas phase, mixed flow for the liquid phase, and pseudo first order reaction kinetics for the conversionof TCE was established. The model is able to give a reasonable approximation of the experimental data. TCE degradation at the used experimental conditions is mainly limited by reaction rate rather than by mass transfer rate. The model can be used to calculate the reactor volume and the biomass concentration for a required conversion. (c) 1995 John Wiley & Sons Inc. PMID:18623422

  8. Novel techniques for slurry bubble column hydrodynamics

    SciTech Connect

    Dudukovic, M.P.

    1999-05-14

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.

  9. Optimization of bubble column performance for nanoparticle collection.

    PubMed

    Cadavid-Rodriguez, M C; Charvet, A; Bemer, D; Thomas, D

    2014-04-30

    Fibrous media embody the most effective and widely used method of separating ultrafine particles from a carrier fluid. The main problem associated with them is filter clogging, which induces an increasingly marked pressure drop with time and thus imposes regular media cleaning or replacement. This context has prompted the idea of investigating bubble columns, which operate at constant pressure drop, as alternatives to fibrous filters. This study examines the influence of different operating conditions, such as liquid height, air flow rate, bubble size and presence of granular beds on ultrafine particle collection. Experimental results show that bubble columns are characterised by high collection efficiency, when they feature a large liquid height and small diameter bubbling orifices, while their efficiencies remain lower than those of fibrous filters. Gas velocity does not greatly influence collection efficiency, but the inclusion of a granular bed, composed of beads, increases the bubble residence time in the column, thereby increasing the column collection efficiency. PMID:24584069

  10. Propagation and Dissolution of CO2 bubbles in Algae Photo-bioreactors

    NASA Astrophysics Data System (ADS)

    Kosaraju, Srinivas

    2015-11-01

    Research grade photo-bioreactors are used to study and cultivate different algal species for biofuel production. In an attempt to study the growth properties of a local algal species in rain water, a custom made bioreactor is designed and being tested. Bio-algae consumes dissolved CO2 in water and during its growth cycle, the consumed CO2 must be replenished. Conventional methods use supply of air or CO2 bubbles in the growth medium. The propagation and dissolution of the bubbles, however, are strongly dependent on the design parameters of the photo-bioreactor. In this paper, we discuss the numerical modeling of the air and CO2 bubble propagation and dissolution in the photo-bioreactor. Using the results the bioreactor design will be modified for maximum productivity.

  11. INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED SALT BRINE TO MAKE BICARBONATE OF SODA. - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY

  12. Heat transfer and bubble dynamics in slurry bubble columns for Fischer-Tropsch clean alternative energy

    NASA Astrophysics Data System (ADS)

    Wu, Chengtian

    With the increasing demand for alternative energy resources, the Fischer-Tropsch (FT) process that converts synthesis gas into clean liquid fuels has attracted more interest from the industry. Slurry bubble columns are the most promising reactors for FT synthesis due to their advantages over other reactors. Successful operation, design, and scale-up of such reactors require detailed knowledge of hydrodynamics, bubble dynamics, and transport characteristics. However, most previous studies have been conducted at ambient pressure or covered only low superficial gas velocities. The objectives of this study were to experimentally investigate the heat transfer coefficient and bubble dynamics in slurry bubble columns at conditions that can mimic FT conditions. The air-C9C 11-FT catalysts/glass beads systems were selected to mimic the physical properties of the gas, liquid, and solid phases at commercial FT operating conditions. A heat transfer coefficient measurement technique was developed, and for the first time, this technique was applied in a pilot scale (6-inch diameter) high pressure slurry bubble column. The effects of superficial gas velocity, pressure, solids loading, and liquid properties on the heat transfer coefficients were investigated. Since the heat transfer coefficient can be affected by the bubble properties (Kumar et al., 1992), in this work bubble dynamics (local gas holdup, bubble chord length, apparent bubble frequency, specific interfacial area, and bubble velocity) were studied using the improved four-point optical probe technique (Xue et al., 2003; Xue, 2004). Because the four-point optical technique had only been successfully applied in a churn turbulent flow bubble column (Xue, 2004), this technique was first assessed in a small scale slurry bubble column in this study. Then the bubble dynamics were studied at the same conditions as the heat transfer coefficient investigation in the same pilot scale column. The results from four-point probe

  13. Mathematical modeling of three-phase slurry bubble column reactors

    SciTech Connect

    Gamwo, I.K.; Soong, Y.; Schehl, R.R.; Zarochak, M.F.

    1994-12-31

    The behavior of gas-solid-liquid flow in a slurry bubble column reactor was simulated using a well-posed hydrodynamic model. The three phases under study are nitrogen, 5-{mu}m iron oxide, and SASOL wax. The phases volume fractions at various axial and radial positions in the column were computed. Preliminary results of axial solid volume fractions are consistent with experimental observations and demonstrate the potential of this method for design of such reactors. The overall objective of this study is to develop experimentally verified hydrodynamic and Fisher-Tropsch reaction models for slurry bubble column reactors.

  14. Investigation of Gas Holdup in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2015-11-01

    Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.

  15. Hydrodynamic models for slurry bubble column reactors

    SciTech Connect

    Gidaspow, D.

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  16. Pressure effects on bubble-column flow characteristics

    SciTech Connect

    Adkins, D.R.; Shollenberger, K.A.; O`Hern, T.J.; Torczynski, J.R.

    1996-03-01

    Bubble-column reactors are used in the chemical processing industry for two-phase and three-phase chemical reactions. Hydrodynamic effects must be considered when attempting to scale these reactors to sizes of industrial interest, and diagnostics are needed to acquire data for the validation of multiphase scaling predictions. This paper discusses the use of differential pressure (DP) and gamma- densitometry tomography (GDT) measurements to ascertain the gas distribution in a two-phase bubble column reactor. Tests were performed on an industrial scale reactor (3-m tall, 0.48-m inside diameter) using a 5-Curie cesium-137 source with a sodium-iodide scintillation detector. GDT results provide information on the time- averaged cross-sectional distribution of gas in the liquid, and DP measurements provide information on the time and volume averaged axial distribution of gas. Close agreement was observed between the two methods of measuring the gas distribution in the bubble column. The results clearly show that, for a fixed volumetric flowrate through the reactor, increasing the system pressure leads to an increase in the gas volume fraction or ``gas holdup`` in the liquid. It is also shown from this work that GDT can provide useful diagnostic information on industrial scale bubble-column reactors.

  17. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland

    2001-03-31

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors. Washington University's work for the quarter involved the study of the dynamic simulations of bubble columns in three dimensions. Work was also done in dynamic simulations of two-phase transient flow using CFDLIB. Ohio State measured the axial dispersion coefficients of the liquid phase. The steady-state thermal dispersion method was used to obtain the measurements. Iowa State followed the last quarter's work by using CFDLIB to simulate conditions described in the literature, with the objective of validating the simulation result. The group's work also led to a determination of the adequacy of periodic boundary conditions in representing small columns.

  18. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland, Ph.D.

    2000-01-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  19. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland

    2002-09-30

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  20. Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology

    SciTech Connect

    Toseland, B.A.

    1998-10-29

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  1. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland, Ph.D.

    2000-06-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column 0reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  2. Microgravity Experiments on Bubble Removal in the Hydrodynamic Focusing Bioreactor - Space (HFB-S)

    NASA Technical Reports Server (NTRS)

    Nahra, H. K.; Niederhaus, C. E.; Robinson, S.; Hudson, E.; Geffert, S. K.; Lupo, P. J.; Gonda, S. R.; Kleis, S. J.; Kizito, J. P.

    2005-01-01

    The Hydrodynamic Focusing Bioreactor-Space (HFB-S) is being developed as a possible replacement for the Rotating Wall Perfused Vessel (RWPV) bioreactor currently planned for use on the International Space Station (ISS). The HFB-S is being developed with the ability to remove gas bubbles that may inadvertently enter the system during long duration experiments (approx. 1-3 months). The RWPV has been used in the past with great success on Shuttle flights and Mir missions, but has occasionally experienced problems with gas bubbles entering the fluid-filled vessel. These bubbles are harmful to the cell science, and bubble removal in the RWPV is problematic. The HFB-S has an access port on the rotation axis that allows for bubble removal under specific operating conditions without detrimentally affecting the cell tissue. Experiments on bubble removal with the HFB-S were conducted in the microgravity environment on NASA's KC-135 Reduced Gravity Aircraft. The first set of flights provided useful data on bubble trajectories that are validating computational predictions. The second set of flights free-floated the apparatus and tested the most recent configuration of the bioreactor while focusing on the bubble removal process itself. These experiments have shown that gas bubbles can successfully be driven to the removal port and purged in microgravity. The last day's experiments had an excellent microgravity environment due to calm air, and the experience gained in previous flights allowed successful bubble removal 18 out of 35 tries, remarkable given the microgravity time constraints and g-jitter on the KC-135.

  3. Gas holdup in slurry bubble columns: Effect of column diameter and slurry concentrations

    SciTech Connect

    Krishna, R.; Swart, J.W.A. de; Ellenberger, J.; Martina, G.B.; Maretto, C.

    1997-02-01

    In processes for converting natural gas to liquid fuels, bubble-column reactors are finding increasing application. To study the influence of particle concentration on the hydrodynamics of bubble-column slurry reactors operating in the heterogeneous flow regime, experiments were carried out in 0.10, 0.19, and 0.38-m-dia. columns using paraffinic oil as the liquid phase and slurry concentrations of up to 36 vol. %. To interpret experimental results a generalization of the two-phase model for gas-solid fluid beds was used to describe bubble hydrodynamics. The two phases identified are: a dilute phase consisting of fast-rising large bubbles that traverse the column virtually in plug flow and a dense phase that is identified with the liquid phase along with solid particles and entrained small bubbles. The dense phase suffers backmixing considerably. Dynamic gas disengagement was experimented in the heterogeneous flow regime to determine the gas voidage in dilute and dense phases. Experimental data show that increasing the solid concentration decreases the total gas holdup significantly, but the influence on the dilute-phase gas holdup is small. The dense-phase gas voidage significantly decreases gas holdup due to enhanced coalescence of small bubbles resulting from introduction of particles. The dense-phase gas voidage is practically independent of the column diameter. The dilute-phase gas holdup, on the other hand, decreases with increasing column diameter, and this dependence could be described adequately with a slight modification of the correlation of Krishna and Ellenberger developed for gas-liquid systems.

  4. Bubble column apparatus for separating wax from catalyst slurry

    SciTech Connect

    Neathery, James K.; Davis, Burtron H.

    2004-07-13

    Novel methods and devices for production of liquid hydrocarbon products from gaseous reactants are disclosed. In one aspect, a method for separating a liquid hydrocarbon, typically a wax, from a catalyst containing slurry is provided, comprising passing the slurry through at least one downcomer extending from an overhead separation chamber and discharging into the bottom of a slurry bubble column reactor. The downcomer includes a cross-flow filtration element for separating a substantially particle-free liquid hydrocarbon for downstream processing. In another aspect, a method for promoting plug-flow movement in a recirculating slurry bubble column reactor is provided, comprising discharging the recirculating slurry into the reactor through at least one downcomer which terminates near the bottom of the reactor. Devices for accomplishing the above methods are also provided.

  5. Bubble Experiments on the Hydrodynamic Focusing Bioreactor-Space (HFB-S)

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles; Nahra, Henry; Gonda, Steve; Lupo, Pamela; Kleis, Stanley; Geffert, Sandra; Kizito, John; Robinson, Stewart

    2002-01-01

    The Hydrodynamic Focusing Bioreactor-Space (HFB-S) is being developed as a drop-in replacement for the Rotating Wall Perfused Vessel (RWPV) bioreactor currently planned for use on the International Space Station (ISS). Only the vessel itself is proposed for change, the supporting hardware will remain the same. These bioreactors are used for the growth of three-dimensional tissue culture that cannot be done in normal gravity labs. The bioreactors provide a continual supply of oxygen for cell growth, as well as periodic replacement of cell culture media with nutrients. The RWPV has had many successful flights on the space shuttle, but longer duration missions onboard the Mir Space Station resulted in bubbles inside the vessel that were detrimental to the science. It is believed that procedural changes can prevent bubble formation, but the HFB-S must not only provide a mechanism of bubble removal, but must also meet strict requirements for a low-shear environment and uniform oxygen concentration distribution for optimum cell tissue growth. A detailed technical objective (DTO) flight on the space shuttle to fully evaluate the HFB-S is currently in the planning stages. Ground-based activities are also underway to quanitify the characteristics of the HFB-S. Computational studies are being used to predict the internal fluid flow and cell trajectories. These computations will be compared to ground-based flow visualization experiments. Comparative studies of ground-based cell growth between the RWPV and the HFB-S are also in progress. These studies have shown that the HFB-S functions well as a bioreactor in normal gravity. Bubble motion and bubble removal are being studied using computational predictions as well as experimental validation.

  6. The cultivation of Anabaena variabilis in a bubble column operating under bubbly and slug flows.

    PubMed

    Yoon, Jong Hyun; Choi, Shin Sik; Park, Tai Hyun

    2012-04-01

    In a bubble column reactor with an inner diameter of 6cm and a height of 63cm for the culture of cyanobacteria two different shapes of bubbles can be generated, resulting in bubbly flow or slug flow. Growth of Anabaena variabilis under slug flow (1.9g/l/day) was 1.73 times higher than that under bubbly flow (1.1g/l/day) when the specific irradiation rate was maintained above 10μmol/s/g dry cell. Although a stepwise increase in superficial gas velocity enhanced the average cell growth rate under bubbly flow by 1.57 times, the average cell growth rate during the deceleration phase under bubbly flow (1.98g/l/day) was 0.61 times smaller than that under slug flow (3.22g/l/day). These results demonstrate that the bubble shape in the slug flow was advantageous in regards to the radial circulation of cells. PMID:22326115

  7. Analysis of cell-to-bubble attachment in sparged bioreactors in the presence of cell-protecting additives.

    PubMed

    Michaels, J D; Nowak, J E; Mallik, A K; Koczo, K; Wasan, D T; Papoutsakis, E T

    1995-08-20

    To investigate the mechanisms of cell protection provided by medium additives against animal cell injury in sparged bioreactors, we have analyzed the effect of various additives on the cell-to-bubble attachment process using CHO cells in suspension. Cell-to-bubble attachment was examined using three experimental techniques: (1) cell-bubble induction time analysis (cell-to-bubble attachment times); (2) forming thin liquid films and observing the movement and location of cells in the thin films; and (3) foam flotation experiments. The induction times we measured for the various additives are as follows: no additive (50 to 500 ms), polyvinyl pyrrolidone (PVP: 20 to 500 ms), polyethylene glycol (PEG: 200 to 1000 ms), 3% serum (500 to 1000 ms), polyvinyl alcohol (PVA: 2 to 10 s), Pluronic F68 (5 to 20 s), and Methocel (20 to 60 s). In the thin film formation experiments, cells in medium with either F68, PVA, or Methocel quickly flowed out of draining thin liquid films and entered the plateau border. When using media with no additive or with serum, the flow of cells out of the thin liquid film and film drainage were slower than for media containing Pluronic F68. PVA, or Methocel. With PVP and PEG, the thin film drainage was much slower and cells remained trapped in the film. For the foam flotation experiments, a separation factor (ratio of cell concentration in the foam catch to that in the bubble column) was determined for the various additives. In the order of increasing separation factors (i.e., increasing cell attachment to bubbles), the additives are as follows: Methocel, PVA, Pluronic F68, 3% serum, serum-free medium with no additives, PEG, and PVP. Based on the results of these three different cell-to-bubble attachment experiments, we have classified the cell-protecting additives into three groups: (1) Pluronic F68, PVA, and Methocel (reduced cell-to-bubble attachment); (2) PEG and PVP (high or increased cell-to-bubble attachment); and (3) FBS (reduced cell

  8. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    PubMed

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  9. Ultrasonic characterizations of slurries in a bubble column reactor

    SciTech Connect

    Soong, Y.; Gamwo, I.K.; Blackwell, A.G.; Harke, F.W.; Ladner, E.P.

    1999-05-01

    An indirect method (ultrasonic) and a direct technique were used to measure solid holdup in a bubble-column reactor. Nitrogen, water, and fine glass beads were used as the gas, liquid, and solid phases, respectively. The solid particle concentration in the slurry was varied from 5 to 30 wt %, and the gas superficial velocity was increased from 0.5 to 12 cm/s. The solid holdup measurements by the ultrasonic technique compared reasonably well with results obtained by the direct sampling technique.

  10. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    SciTech Connect

    Paul C.K. Lam; Isaac K. Gamwo; Dimitri Gidaspow

    2002-05-01

    The objective of this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed and is appended in this report. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The details are presented in the attached paper titled ''CFD Simulation of Flow and Turbulence in a Slurry Bubble Column''. This phase of the work is in press in a referred journal (AIChE Journal, 2002) and was presented at the Fourth International Conference on Multiphase Flow (ICMF 2001) in New Orleans, May 27-June 1, 2001 (Paper No. 909). The computed time averaged particle velocities and concentrations agree with Particle Image Velocimetry (PIV) measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. To better understand turbulence we studied fluidization in a liquid-solid bed. This work was also presented at the Fourth International Conference on Multiphase Flow (ICMF 2001, Paper No. 910). To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. This report

  11. Hydrodynamic characterization of a column-type prototype bioreactor.

    PubMed

    Espinosa-Solares, Teodoro; Morales-Contreras, Marcos; Robles-Martínez, Fabián; García-Nazariega, Melvin; Lobato-Calleros, Consuelo

    2008-03-01

    Agro-food industrial processes produce a large amount of residues, most of which are organic. One of the possible solutions for the treatment of these residues is anaerobic digestion in bioreactors. A novel 18-L bioreactor for treating waste water was designed based on pneumatic agitation and semispherical baffles. Flow patterns were visualized using the particle tracer technique. Circulation times were measured with the particle tracer and the thermal technique, while mixing times were measured using the thermal technique. Newtonian fluid and two non-Newtonian fluids were used to simulate the operational conditions. The results showed that the change from Newtonian to non-Newtonian properties reduces mixed zones and increases circulation and mixing times. Circulation time was similar when evaluated with the thermal and the tracer particle methods. It was possible to predict dimensionless mixing time (theta (m)) using an equivalent Froude number (Fr (eq)). PMID:18401759

  12. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    SciTech Connect

    Paul Lam; Dimitri Gidaspow

    2000-09-01

    The objective if this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The computed time averaged particle velocities and concentrations agree with PIV measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. This phase of the work was presented at the Chemical Reaction Engineering VIII: Computational Fluid Dynamics, August 6-11, 2000 in Quebec City, Canada. To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. The results together with simulations will be presented at the annual meeting of AIChE in November 2000.

  13. The Bubble Transport Mechanism: Indications for a bubble-mediated transfer of microorganisms from the sediment into the water column

    NASA Astrophysics Data System (ADS)

    Schmale, Oliver; Stolle, Christian; Schneider von Deimling, Jens; Leifer, Ira; Kießlich, Katrin; Krause, Stefan; Frahm, Andreas; Treude, Tina

    2015-04-01

    Gas releasing seep areas are known to impact the methane biogeochemistry in the surrounding sediment and water column. Due to microbial processes most of the methane is oxidized under anaerobic and aerobic conditions before the greenhouse gas can escape into the atmosphere. However, methane gas bubbles can largely bypass this microbial filter mechanism, enabling highly efficient transport of methane from the sediment towards the sea surface. Studies in the water column surrounding hydrocarbon seeps indicated an elevated abundance of methanotrophic microorganism in the near field of gas bubble plumes. The enhanced methane concentration in the seep-affected water column stimulates the activity of methane oxidizers and leads to a rapid rise in the abundance of methane-oxidizing microorganisms in the aging plume water. In our study we hypothesized that a bubble-mediated transport mechanisms between the benthic and pelagic habitats represents an exchange process, which transfers methanotrophic microorganisms from the sediment into the water column, a process we termed the "Bubble Transport Mechanism". This mechanism could eventually influence the pelagic methanotrophic community, thereby indirectly providing feedback mechanisms for dissolved methane concentrations in the water column and thus impacting the sea/atmosphere methane flux. To test our hypothesis, field studies were conducted at the "Rostocker Seep" site (Coal Oil Point seep area, California, USA). Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was a newly developed "Bubble Catcher" used to collect naturally emanating gas bubbles at the sea floor together with particles attached to the

  14. Heat transfer and bubble dynamics in bubble and slurry bubble columns with internals for Fischer-Tropsch synthesis of clean alternative fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Kagumba, Moses Odongo O.

    Synthesis gas, a mixture of CO and H2 obtained from coal, natural gas and biomass are increasingly becoming reliable sources of clean synthetic fuels and chemicals and via Fischer-Tropsch (F-T) synthesis process. Slurry bubble column reactor is the reactor of choice for the commercialization of the F-T synthesis. Even though the slurry bubble column reactors and contactors are simple in structures, their design, scale-up, operation, and performance prediction are still challenging and not well understood due to complex interaction of phases. All the studies of heat transfer have been performed without simultaneously investigating the bubble dynamics adjacent to the heat transfer surfaces, particularly in slurry with dense internals. This dissertation focuses on enhancing the understanding of the role of local and overall gas holdup, bubble passage frequency, bubble sizes and bubble velocity on the heat transfer characteristics by means of a hybrid measurement technique comprising an advanced four-point optical probe and a fast response heat transfer probe used simultaneously, in the presence and absence of dense internals. It also seeks to advance a mechanistic approach for estimating the needed parameters for predicting the heat transfer rate in two phase and three phase systems. The results obtained suggest that the smaller diameter internals gives higher heat transfer coefficient, higher local and overall gas holdup, bubble passage frequency and specific interfacial area but smaller bubble sizes and lower axial bubble velocities. The presence of dense internals enhances the heat transfer coefficient in both the large and smaller columns, while increased column diameter increases the heat transfer coefficient, axial bubble velocity, local and overall gas holdup, bubble chord lengths and specific interfacial area. Addition of solids (glass beads) leads to increased bubble chord lengths and increase in axial bubble velocity, but a decrease in local and overall gas

  15. Bubble size and gas-liquid interfacial area measurements using molten paraffin waxes in bubble columns

    SciTech Connect

    Bukur, D.B.; Patel, S.A.; Daly, J.G.; Raphael, M.L.

    1987-01-01

    Experiments were conducted in 0.05 m ID and 0.23 m ID by 3 m tall bubble columns with different types of molten waxes as the liquid medium and nitrogen as the gas, under processing conditions typical or Fischer-Tropsch synthesis over iron catalysts (i.e. gas velocities up to 0.15 m s, and temperatures between 200 and 270/sup 0/C) to estimate gas liquid interfacial area from measured values of average gas hold-up and Sauter mean bubble diameter. The gas hold-up was estimated from visual observations of the expanded and static liquid heights, and the Sauter was estimated from bubble size measurements obtained by photography and dynamic gas disengagement. The paraffin wax (FT-300) used in the authors' studies is non-coalescing and has a tendency to foam. The amount of foam is greater for runs conducted in the order of increasing gas velocities, than in runs with decreasing velocities. Thus, two values of hold-up are possible and the start-up procedure determines which one will be attained. At higher gas velocities (> 0.05 m/s) the foam disappears and a transition to the slug flow, churn-turbulent regime takes place. Reactor waxes are coalescing in nature and do not produce foam. Despite similar hold-ups for the different waxes at higher gas velocities, the Sauters are significantly different and this is reflected in the specific gas-liquid interfacial areas, with larger values obtained with the paraffin wax compared to values with reactor waxes.

  16. Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments

    SciTech Connect

    Krishna, R.; Baten, J.M. van

    1999-10-01

    About five centuries ago, Leonardo da Vinci described the sinuous motion of gas bubbles rising in water. The authors have attempted to simulate the rise trajectories of bubbles of 4, 5, 7, 8, 9, 12, and 20 mm in diameter rising in a 2D rectangular column filled with water. The simulations were carried out using the volume-of-fluid (VOF) technique developed by Hirt and Nichols (J. Computational Physics, 39, 201--225 (1981)). To solve the Navier-Stokes equations of motion the authors used a commercial solver, CFX 4.1c of AEA Technology, UK. They developed their own bubble-tracking algorithm to capture sinuous bubble motions. The 4 and 5 mm bubbles show large lateral motions observed by Da Vinci. The 7, 8 and 9 mm bubble behave like jellyfish. The 12 mm bubble flaps its wings like a bird. The extent of lateral motion of the bubbles decreases with increasing bubble size. Bubbles larger than 20 mm in size assume a spherical cap form and simulations of the rise characteristics match experiments exactly. VOF simulations are powerful tools for a priori determination of the morphology and rise characteristics of bubbles rising in a liquid. Bubble-bubble interactions are also properly modeled by the VOF technique.

  17. A novel potential source of β-carotene: Eustigmatos cf. polyphem (Eustigmatophyceae) and pilot β-carotene production in bubble column and flat panel photobioreactors.

    PubMed

    Li, Zhen; Ma, Xiaoqin; Li, Aifen; Zhang, Chengwu

    2012-08-01

    Carotenoids profile of the unicellular Eustigmatos cf. polyphem (Eustigmatophyceae) and β-carotene production of the microalga in bubble column and large flat panel bioreactors were studied. The microalga which contained β-carotene, violaxanthin and vaucheriaxanthin as the major carotenoids accumulated large amount of β-carotene. The β-carotene production of this microalga in the bubble column bioreactor was considerable, with the maximum intracellular β-carotene content reaching 60.76 mg g(-1), biomass reaching 9.2 g L(-1), and β-carotene yield up to 470.2 mg L(-1). The β-carotene productions in two large flat panel bioreactors were relatively lower, whereas over 100 mg β-carotene L(-1) was achieved. Besides, high light intensity helped to accumulate intracellular β-carotene and biomass. Deficient nitrate supply inhibited biomass growth, though it helped to accumulate β-carotene. Our results first proved that E. cf. polyphem was a potential source and producer of β-carotene, making it an interesting subject for further β-carotene study or commercial exploration. PMID:22617035

  18. Production of cellulase and xylanase in a bubble gum column using immobilized Aspergillus niger KKS

    SciTech Connect

    Kang, Seong-Woo; Kim, Seung-Woo; Lee, Jin-Suk

    1995-05-01

    Aspergillus niger KKS, isolated from a farmland near Suwon, was immobilized on Celite and polyurethane foams. Enzyme activities produced by the immobilized cell system in a bubble column were higher than that of shake-flask culture. The enzyme productivities were twice as high. {Beta}-Glucosidase, {Beta}-xylosidase, and xylanase activities obtained in a bubble column were significant when the ground rice straw was used as a substrate. 9 refs., 2 figs., 3 tabs.

  19. Hydrodynamics of the three-phase slurry Fischer-Tropsch bubble column reactors

    SciTech Connect

    Bukur, D.B.; Daly, J.G.; Patel, S.A.

    1990-09-01

    This report describes results of a study on hydrodynamics of three-phase bubble columns for Fischer-Tropsch synthesis. Experiments were conducted in two stainless bubble columns of 0.05 m and 0.21 m in diameter and 3 m tall, at 265{degrees}C and atmospheric pressure using nitrogen gas and two types of liquid medium (hydrotreated reactor wax designated FT-300, and raw reactor wax from fixed bed rectors at SASOL). The effects of solids types (iron oxide and silica), concentration (0--30 wt %), size (0--5 {mu}m and 20--44 {mu}m), slurry (liquid) velocity (up to 0.02 m/s) on the gas holdup and axial solids concentration profiles, were investigated. Phase volume fractions were determined using conventional (differential pressure measurements together with determination of slurry concentration along the column) and novel (dual energy nuclear density gauge) experimental techniques. Bubble size distribution and the Sauter mean bubble diameter were obtained using the dynamic gas disengagement (DGD) method. Flow regime transitions in both columns were determined using statistical analysis of both pressure and density fluctuations. Correlations for prediction of gas holdups and axial solids dispersion coefficient have been developed from experimental data obtained in this study. Data needed for calculation of the gas-liquid interfacial area (average gas holdup and Sauter mean bubble diameter) have been presented and can be used to estimate the mass transfer rate in slurry bubble column reactors. 105 refs., 19 figs., 38 tabs.

  20. Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  1. Comparing the effect of biosurfactant and chemical surfactant on bubble hydrodynamics in a flotation column.

    PubMed

    Wang, Huanran; Yang, Jingjing; Lei, Shaomin; Wang, Xinbing

    2013-01-01

    Bubble hydrodynamics is fundamental to the performance of the flotation process widely used in the separation industry. To compare the effect of biosurfactants and chemical synthetic surfactants on bubble hydrodynamics in the flotation process, the motion of a single bubble and the size distribution of bubble swarms in various surfactants (rhamnolipid, tea saponin and Triton X-100) solutions were observed directly using a high-speed video camera in a laboratory scale flotation column. Bubble trajectory, dimensions, velocity and size distribution were then determined through image analysis. The results indicated that the addition of biosurfactants had the same significant effects on bubble motion and size distribution as chemosynthetic surfactants. The biosurfactant effect on bubble behavior was also found to depend on their type and concentration. In general, the effect of tea saponin was stronger than another biosurfactant (rhamnolipid) used in the present study. The present findings implied that some biosurfactants like tea saponin can replace chemosynthetic surfactants in controlling bubble behavior in flotation operation. This will contribute to promoting the use of green environmentally friendly flotation agents in the separation industry. PMID:23985507

  2. Experimental investigation of bubble column hydrodynamics: Effect of elevated pressure and superficial gas velocity

    NASA Astrophysics Data System (ADS)

    Ong, Booncheng

    Bubble column reactors are widely used in the chemical and biochemical industries. They were reactors of choice in syngas conversion to clean fuels and chemicals. Most of the current applications of bubble column reactors in the chemical process industry require operation at high-pressure conditions. Further, to enhance the volumetric productivity, high gas flow rates are employed. The fundamental description of bubble column hydrodynamics under these conditions is very complex and complete understanding has not yet been established in spite of concerted research efforts. In order to improve our ability to quantify phenomena in bubble columns, it is essential that precise and quality experimental information is available to advance the state of the art in bubble column design and operation. In this study, measurements of gas holdup from Computed Tomography, and of time-averaged liquid velocity and turbulence from Computer Automated Radioactive Particle Tracking are obtained in a 6.4″ diameter stainless steel bubble column at elevated pressure and at high superficial gas velocity with different gas spargers. It is shown quantitatively that deep in the churn-turbulent regime, gas holdup and liquid recirculation increase with pressure and superficial gas velocity while sparger effects are predominantly confined to the distributor zone. Additionally, an increase in pressure results in the reduction of turbulent normal stresses and eddy diffusivities most likely due to a reduction in bubble size. Based on the experimental data obtained from this study, a correction factor to the correlation of Zehner (1986) for predicting the centerline liquid velocity is developed to account for pressure effect on liquid recirculation. The correction factor indicates an one-eighth power dependency on gas density. Comparison of the experimentally estimated eddy viscosity with the model of Ohnuki and Akimoto (2001) suggests that the contribution of bubble-induced turbulence to the

  3. A novel methodology to measure methane bubble sizes in the water column

    NASA Astrophysics Data System (ADS)

    Hemond, H.; Delwiche, K.; Senft-Grupp, S.; Manganello, T.

    2014-12-01

    The fate of methane ebullition from lake sediments is dependent on initial bubble size. Rising bubbles are subject to dissolution, reducing the fraction of methane that ultimately enters the atmosphere while increasing concentrations of aqueous methane. Smaller bubbles not only rise more slowly, but dissolve more rapidly larger bubbles. Thus, understanding methane bubble size distributions in the water column is critical to predicting atmospheric methane emissions from ebullition. However, current methods of measuring methane bubble sizes in-situ are resource-intensive, typically requiring divers, video equipment, sonar, or hydroacoustic instruments. The complexity and cost of these techniques points to the strong need for a simple, autonomous device that can measure bubble size distributions and be deployed unattended over long periods of time. We describe a bubble sizing device that can be moored in the subsurface and can intercept and measure the size of bubbles as they rise. The instrument uses a novel optical measurement technique with infrared LEDs and IR-sensitive photodetectors combined with a custom-designed printed circuit board. An on-board microcomputer handles raw optical signals and stores the relevant information needed to calculate bubble volume. The electronics are housed within a pressure case fabricated from standard PVC fittings and are powered by size C alkaline batteries. The bill of materials cost is less than $200, allowing us to deploy multiple sensors at various locations within Upper Mystic Lake, MA. This novel device will provide information on how methane bubble sizes may vary both spatially and temporally. We present data from tests under controlled laboratory conditions and from deployments in Upper Mystic Lake.

  4. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS (SBCR)

    SciTech Connect

    M.H. Al-Dahhan; M.P. Dudukovic; L.S. Fan

    2001-07-25

    This report summarizes the accomplishment made during the second year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. The technical difficulties that were encountered in implementing Computer Automated Radioactive Particle Tracking (CARPT) in high pressure SBCR have been successfully resolved. New strategies for data acquisition and calibration procedure have been implemented. These have been performed as a part of other projects supported by Industrial Consortium and DOE via contract DE-2295PC95051 which are executed in parallel with this grant. CARPT and Computed Tomography (CT) experiments have been performed using air-water-glass beads in 6 inch high pressure stainless steel slurry bubble column reactor at selected conditions. Data processing of this work is in progress. The overall gas holdup and the hydrodynamic parameters are measured by Laser Doppler Anemometry (LDA) in 2 inch slurry bubble column using Norpar 15 that mimic at room temperature the Fischer Tropsch wax at FT reaction conditions of high pressure and temperature. To improve the design and scale-up of bubble column, new correlations have been developed to predict the radial gas holdup and the time averaged axial liquid recirculation velocity profiles in bubble columns.

  5. A New Statistical Parameter for Identifying the Main Transition Velocities in Bubble Columns*

    PubMed Central

    Nedeltchev, Stoyan; Rabha, Swapna; Hampel, Uwe; Schubert, Markus

    2015-01-01

    The identification of the main flow regime boundaries in bubble columns is essential since the degrees of mixing and mass and heat transfer vary with the flow regime. In this work, a new statistical parameter was extracted from the time series of the cross-sectional averaged gas holdup. The measurements were performed in bubble columns by means of conductivity wire-mesh sensors at very high sampling frequency. The columns were operated with an air/deionized water system under ambient conditions. As a flow regime indicator, a new dimensionless statistical parameter called “relative maximum number of visits in a region” was introduced. This new parameter is a function of the difference between the maximum numbers of visits in a region, calculated from two different division schemes of the signal range. PMID:27570374

  6. Lagrangian coherent structures analysis of gas-liquid flow in a bubble column

    NASA Astrophysics Data System (ADS)

    Wu, Qin; Wang, GuoYu; Huang, Biao; Bai, ZeYu

    2014-06-01

    The objective of this paper is to apply a new identifying method to investigating the gas-liquid two-phase flow behaviors in a bubble column with air injected into water. In the numerical simulations, the standard k- ɛ turbulence model is employed to describe the turbulence phenomenon occurring in the continuous fluid. The Finite-Time Lyapunov Exponent (FTLE) and Lagrangian Coherent Structures (LCS) are applied to analyze the vortex structures in multiphase flow. Reasonable agreements are obtained between the numerical and experimental data. The numerical results show that the evolution of gas-liquid in the column includes initial and periodical developing stages. During the initial stage, the bubble hose is forming and extending along the vertical direction with the vortex structures formed symmetrically. During the periodical developing stage, the bubble hose starts to oscillate periodically, and the vortexes move along the bubble hose to the bottom of column alternately. Compared to the Euler-system-based identification criterion of a vortex, the FTLE field presents the boundary of a vortex without any threshold defined and the LCS represents the divergence extent of infinite neighboring particles. During the initial stage, the interfaces between the forward and backward flows are highlighted by the LCS. As for the periodical developing stage, the LCS curls near the vortex centers, providing a method of analyzing a flow field from a dynamical system perspective.

  7. Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology

    SciTech Connect

    Puneet Gupta

    2002-07-31

    This report summarizes the procedures used and results obtained in determining radial gas holdup profiles, via gamma ray scanning, and in assessing liquid and gas mixing parameters, via radioactive liquid and gas tracers, during Fischer Tropsch synthesis. The objectives of the study were (i) to develop a procedure for detection of gas holdup radial profiles in operating reactors and (ii) to test the ability of the developed, previously described, engineering models to predict the observed liquid and gas mixing patterns. It was shown that the current scanning procedures were not precise enough to obtain an accurate estimate of the gas radial holdup profile and an improved protocol for future use was developed. The previously developed physically based model for liquid mixing was adapted to account for liquid withdrawal from the mid section of the column. The ability of our engineering mixing models for liquid and gas phase to predict both liquid and gas phase tracer response was established and illustrated.

  8. Gas holdup in cyclone-static micro-bubble flotation column.

    PubMed

    Li, Xiaobing; Zhu, Wei; Liu, Jiongtian; Zhang, Jian; Xu, Hongxiang; Deng, Xiaowei

    2016-01-01

    The present work has been carried out to investigate the effect of process variables on gas holdup and develop an empirical equation and a neural network model for online process control of the gas holdup based on the operating variables. In this study, the effect of process variables (nozzle diameter, circulation pressure, aeration rate, and frother dosage) on gas holdup in a cyclone-static micro-bubble flotation column of an air/oily wastewater system was investigated. Gas holdup was estimated using a pressure difference method and an empirical equation was proposed to predict gas holdup. A general regression neural network (GRNN) model was also introduced to predict gas holdup for the cyclone-static micro-bubble flotation column. The predictions from the empirical equation and the GRNN are in good agreement with the experiment data for gas holdup, while the GRNN provides higher accuracy and stability compared with that of the empirical equation. PMID:26293176

  9. Performance evaluation and effect of biogas circulation rate of a bubble column for biological desulfurization.

    PubMed

    Kobayashi, Takuro; Xu, Kai-Qin; Li, Yu-You; Inamori, Yuhei

    2012-01-01

    Biological desulfurization using a bubble column reactor was investigated in a continuous biogas treatment. Rapid biogas circulation between the digester and the bubble column for biological desulfurization was used to stimulate the gas-liquid mass transfer of H(2)S. A positive correlation between the biogas circulation rate and H(2)S removal rate was observed. Moreover, the increase in the circulation rate stimulated the O(2) mass transfer, eventually translating into an increase in sulfate production from the oxidation of H(2)S. Throughout the continuous experiment, the reactor retained sufficient levels of sulfide-oxidizing bacteria. A comparison of the results of the continuous biogas treatment and batch tests suggests that the gas-liquid mass transfer rate of H(2)S was the rate-limiting step in the biological desulfurization in the reactor, indicating that the mass transfer efficiency of H(2)S needs to be improved to enhance the desulfurization performance. PMID:22925864

  10. Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    1999-01-01

    Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.

  11. Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor

    DOEpatents

    Singleton, A.H.; Oukaci, R.; Goodwin, J.G.

    1999-08-17

    Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.

  12. Evaluation of parallel operated small-scale bubble columns for microbial process development using Staphylococcus carnosus.

    PubMed

    Dilsen, S; Paul, W; Herforth, D; Sandgathe, A; Altenbach-Rehm, J; Freudl, R; Wandrey, C; Weuster-Botz, D

    2001-06-01

    Shake flasks and pH-controlled small-scale bubble columns were compared with respect to their usefulness as a basic tool for process development for human calcitonin precursor fusion-protein production with Staphylococcus carnosus. Parallel control of the pH (and making use of the base addition data) is necessary to study the effects of medium composition, to identify pH-optima and to develop a medium, which minimizes the acid excretion of S. carnosus. This medium with glycerol as energy source and yeast extract as carbon and nitrogen source resulted in cell dry weight concentration in shake flasks of 5 g l(-1), which were thus improved by a factor of 10. Cell dry weight concentrations of up to 12.5 g l(-1) were measured in the batch process with pH-controlled small-scale bubble columns due to their higher oxygen transfer capability. In contrast to shake flasks it was demonstrated, that the batch process performance of recombinant S. carnosus secreting the human calcitonin precursor fusion-protein was identical within the estimation error in pH-controlled small-scale bubble columns compared to the stirred-tank reactor. PMID:11377767

  13. An advanced LIF-PLV system for analysing the hydrodynamics in a laboratory bubble column at higher void fractions

    NASA Astrophysics Data System (ADS)

    Bröder, D.; Sommerfeld, M.

    2002-08-01

    Bubble columns are widely used in the chemical industry and biotechnology. Flow and turbulence in such an apparatus are induced by the bubble rise, and the bubble behaviour is strongly affected by swarm effects (i.e. the interaction between bubbles). For analysing the bubble swarm behaviour and simultaneously evaluating the flow structure and bubble-induced turbulence, a bubble column of 140 mm diameter and a height of 650 mm or 1,400 mm (initial water level) were considered. The bubble column was aerated with relatively fine bubbles having a mean size between about 0.5 and 4.0 mm. The gas hold-up was varied in the range between 0.5 and 19%. A two-phase pulsed-light velocimetry (PLV) system was developed to evaluate instantaneous flow fields of both rising bubbles and the continuous phase. The measurement of the liquid velocities in the bubble swarm was achieved by adding fluorescing seed particles. Images of bubbles and fluorescing tracer particles were acquired by two CCD cameras. Hence, the images from tracers and bubbles were easily separated by optical interference filters with a bandwidth corresponding to the emitting wavelength of the fluorescing tracer particles and the wavelength of the applied Nd-YAG pulsed laser, respectively. To improve the phase separation of the system, the CCD cameras were additionally placed in a non-perpendicular arrangement with respect to the light sheet. The acquired images were evaluated with the minimum-quadratic-difference algorithm. The potential of this technique for the analysis of bubbly flows with higher void fraction was explored. In order to obtain averaged velocity maps of bubble and fluid within the entire column, about 1,000 image pairs were recorded and evaluated for each phase. In addition, turbulence intensities of the fluid were deduced from the measurements. The turbulence properties were used to characterise bubble-induced turbulence for various bubble mean diameters and gas hold-ups. Moreover, the

  14. Bubble Shuttle: A newly discovered transport mechanism, which transfers microorganisms from the sediment into the water column

    NASA Astrophysics Data System (ADS)

    Schmale, O.; Stolle, C.; Leifer, I.; Schneider von Deimling, J.; Kiesslich, K.; Krause, S.; Frahm, A.; Treude, T.

    2013-12-01

    The diversity and abundance of methanotrophic microorganisms is well studied in the aquatic environment, indicating their importance in biogeochemical cycling of methane in the sediment and the water column. However, whether methanotrophs are distinct populations in these habitats or are exchanged between benthic and pelagic environments, remains an open question. Therefore, field studies were conducted at the 'Rostocker Seep' site (Coal Oil Point seep area, California, USA) to test our hypothesis that methane-oxidizing microorganisms can be transported by gas bubbles from the sediment into the water column. The natural methane emanating location 'Rostocker Seep' showed a strong surface water oversaturation in methane with respect to the atmospheric equilibrium. Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was the newly developed "Bubble Catcher" used to collect naturally emanating gas bubbles at the sea floor together with particles attached to the bubble surface rim. Bubble Catcher experiments were carried out directly above a natural bubble release spot and on a reference site at which artificially released gas bubbles were caught, which had no contact with the sediment. CARD-FISH analyzes showed that aerobic methane oxidizing bacteria were transported by gas bubbles from the sediment into the water column. In contrast anaerobic methanotrophs were not detected in the bubble catcher. Further results indicate that this newly discovered Bubble Shuttle transport mechanism might influence the distribution pattern of methanotrophic microorganisms in the water column and even at the air-sea interface. Methane seep areas are often characterized

  15. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS(SBCR)

    SciTech Connect

    M.H. Al-Dahhan; L.S. Fan; M.P. Dudukovic

    2002-07-25

    This report summarizes the accomplishment made during the third year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. Data processing of the performed Computer Automated Radioactive Particle Tracking (CARPT) experiments in 6 inch column using air-water-glass beads (150 {micro}m) system has been completed. Experimental investigation of time averaged three phases distribution in air-Therminol LT-glass beads (150 {micro}m) system in 6 inch column has been executed. Data processing and analysis of all the performed Computed Tomography (CT) experiments have been completed, using the newly proposed CT/Overall gas holdup methodology. The hydrodynamics of air-Norpar 15-glass beads (150 {micro}m) have been investigated in 2 inch slurry bubble column using Dynamic Gas Disengagement (DGD), Pressure Drop fluctuations, and Fiber Optic Probe. To improve the design and scale-up of bubble column reactors, a correlation for overall gas holdup has been proposed based on Artificial Neural Network and Dimensional Analysis.

  16. Production of biohydrogen from crude glycerol in an upflow column bioreactor.

    PubMed

    Dounavis, Athanasios S; Ntaikou, Ioanna; Lyberatos, Gerasimos

    2015-12-01

    A continuous attached growth process for the production of biohydrogen from crude glycerol was developed. The process consisted of an anaerobic up-flow column bioreactor (UFCB), packed with cylindrical ceramic beads, which constituted the support matrix for the attachment of bacterial cells. The effect of crude glycerol concentration, pH and hydraulic retention time on glycerol conversion, hydrogen yield and metabolite distribution was investigated. It was shown that the most critical parameter for the efficient bioconversion was the pH of the influent, whereas the hydrogen yield increased with an increase in feed glycerol concentration and a decrease in the hydraulic retention time. The main soluble metabolite detected was 1,3-propanediol in all cases, followed by butyric and hexanoic acids. The latter is reported to be produced from glycerol for the first time. Acidification of the waste reached 38.5%, and the maximum H2 productivity was 107.3 ± 0.7 L/kg waste glycerol at optimal conditions. PMID:26441027

  17. Hydrodynamics of Fischer-Tropsch synthesis in slurry bubble column reactors: Final report

    SciTech Connect

    Bukur, D.B.; Daly, J.G.; Patel, S.A.; Raphael, M.L.; Tatterson, G.B.

    1987-06-01

    This report describes studies on hydrodynamics of bubble columns for Fischer-Tropsch synthesis. These studies were carried out in columns of 0.051 m and 0.229 m in diameter and 3 m tall to determine effects of operating conditions (temperature and gas flow rate), distributor type (sintered metal plate and single and multi-hole perforated plates) and liquid media (paraffin and reactor waxes) on gas hold-up and bubble size distribution. In experiments with the Fischer-Tropsch (F-T) derived paraffin wax (FT-300) for temperatures between 230 and 280/sup 0/C there is a range of gas velocities (transition region) where two values of gas hold-up (i.e., two flow regimes) are possible. Higher hold-ups were accompanied by the presence of foam (''foamy'' regime) whereas lower values were obtained in the absence of foam (''slug flow'' in the 0.051 m column, or ''churn-turbulent'' flow regime in the 0.229 m column). This type of behavior has been observed for the first time in a system with molten paraffin wax as the liquid medium. Several factors which have significant effect on foaming characteristics of this system were identified. Reactor waxes have much smaller tendency to foam and produce lower hold-ups due to the presence of larger bubbles. Finally, new correlations for prediction of the gas hold-up and the specific gas-liquid interfacial area were developed on the basis of results obtained in the present study. 49 refs., 99 figs., 19 tabs.

  18. Transient discharge of solid particles from upper outlet of vertical bubble columns

    SciTech Connect

    Hidaka, Nobuyuki; Kakoi, Kazuhiro; Matsumoto, Toshitatsu; Morooka, Shigeharu

    1995-08-01

    Three-phase fluidization is an important technique for contacting gas, liquid, and solid particles and is widely used in petroleum and biochemical processes. Sieved glass beads of 230, 280 and 470 {micro}m dia. were steadily suspended by upward concurrent gas and liquid flows in vertical bubble columns of 7 cm dia. and 4.85 m height or 15 cm dia. and 2.7 m height. The liquid velocity was suddenly increased to a higher value, which caused an unsteady-state discharge of solid particles from the top of the column. The transient discharge rate was determined by collecting solid particles in the effluent, and transient axial distributions of gas and solid holdups along the column length were measured by sectioning the column with horizontal shutter plates just after stopping gas and liquid flows. A 1-D sedimentation-dispersion model was applied to describe the unsteady-state discharge rate of solid particles as well as the change in gas and solid holdups in the columns. The model developed successfully expressed the transient behavior of solid particles over entire columns consisting of dense and dilute regions.

  19. Effect of surfactants on gas holdup of two-phase bubble columns

    SciTech Connect

    Estevez, L.A. ); Saez, E.; Pachino, J.; Cavicchioli, I. )

    1988-01-01

    Two-phase experiments have been carried out using organic liquids with a surfactant and air in a bubble column 30 (cm) inside diameter and 3 (m) tall. Under the presence of the surfactant, two distinct regions are observed: a bubbling region is the lower part, and a froth zone in the upper part of the column. Intrinsic gas holdups were measured in each region. Results showed that intrinsic gas holdup did not change significantly with surfactant concentration. However, the position of the limiting surface separating the two regions varied considerably with surfactant concentration, thus affecting strongly the overall gas holdup. Based on the described experimental observations, correlations for intrinsic and overall gas holdups have been proposed. Intrinsic gas holdups have been correlated and a function of gas and liquid superficial velocities, and not as functions of surfactant concentration. Overall gas holdups have been expressed in terms of intrinsic gas holdup and of the fraction PHI of the column that is occupied by the froth region. The variable PHI is the one that has been correlated in terms of the surfactant concentration.

  20. Flow patterns in a slurry-bubble-column reactor under reaction conditions

    SciTech Connect

    Toselane, B.A.; Brown, D.M.; Zou, B.S.; Dudukovic, M.P.

    1995-12-31

    The gas and liquid radioactive tracer response curves obtained in an industrial bubble column reactor of height to diameter ratio of 10 are analyzed and the suitability of the axial dispersion model for interpretation of the results is discussed. The relationship between the tracer concentration distribution and measured detector response of the soluble gas tracer (Ar-41) is possibly dominated by the dissolved gas. The one dimensional axial dispersion model cannot match all the experimental observations well and the flow pattern of the undissolved gas cannot be determined with certainty.

  1. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  2. A bubble column evaporator with basic flat-plate condenser for brackish and seawater desalination.

    PubMed

    Schmack, Mario; Ho, Goen; Anda, Martin

    2016-01-01

    This paper describes the development and experimental evaluation of a novel bubble column-based humidification-dehumidification system, for small-scale desalination of saline groundwater or seawater in remote regions. A bubble evaporator prototype was built and matched with a simple flat-plate type condenser for concept assessment. Consistent bubble evaporation rates of between 80 and 88 ml per hour were demonstrated. Particular focus was on the performance of the simple condenser prototype, manufactured from rectangular polyvinylchlorid plastic pipe and copper sheet, a material with a high thermal conductivity that quickly allows for conduction of the heat energy. Under laboratory conditions, a long narrow condenser model of 1500 mm length and 100 mm width achieved condensate recovery rates of around 73%, without the need for external cooling. The condenser prototype was assessed under a range of different physical conditions, that is, external water cooling, partial insulation and aspects of air circulation, via implementing an internal honeycomb screen structure. Estimated by extrapolation, an up-scaled bubble desalination system with a 1 m2 condenser may produce around 19 l of distilled water per day. Sodium chloride salt removal was found to be highly effective with condensate salt concentrations between 70 and 135 µS. Based on findings and with the intent to reduce material cost of the system, a shorter condenser length of 750 mm for the non-cooled (passive) condenser and of 500 mm for the water-cooled condenser was considered to be equally efficient as the experimentally evaluated prototype of 1500 mm length. PMID:26086612

  3. PROGRESS TOWARDS MODELING OF FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gandrik; Steven P. Antal

    2010-11-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  4. Sparger Effects on Gas Volume Fraction Distributions in Vertical Bubble-Column Flows as Measured by Gamma-Densitometry Tomography

    SciTech Connect

    GEORGE,DARIN L.; SHOLLENBERGER,KIM ANN; TORCZYNSKI,JOHN R.

    2000-01-18

    Gamma-densitometry tomography is applied to study the effect of sparger hole geometry, gas flow rate, column pressure, and phase properties on gas volume fraction profiles in bubble columns. Tests are conducted in a column 0.48 m in diameter, using air and mineral oil, superficial gas velocities ranging from 5 to 30 cm s{sup -1}, and absolute column pressures from 103 to 517 kPa. Reconstructed gas volume fraction profiles from two sparger geometries are presented. The development length of the gas volume fraction profile is found to increase with gas flow rate and column pressure. Increases in gas flow rate increase the local gas volume fraction preferentially on the column axis, whereas increases in column pressure produce a uniform rise in gas volume fraction across the column. A comparison of results from the two spargers indicates a significant change in development length with the number and size of sparger holes.

  5. Hydrodynamic models for slurry bubble column reactors. Seventh technical progress report, January--March 1996

    SciTech Connect

    Gidaspow, D.

    1996-04-01

    The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.

  6. Mathematical modeling of Fischer-Tropsch synthesis in an industrial slurry bubble column - article no. A 23

    SciTech Connect

    Nasim Hooshyar; Shohreh Fatemi; Mohammad Rahmani

    2009-07-01

    The increase in society's need for fuels and decrease in crude oil resources are important reasons to make more interest for both academic and industry in converting gas to liquids. Fischer-Tropsch synthesis is one of the most attractive methods of Gas-to-Liquids (GTL) processes and the reactor in which, this reaction occurs, is the heart of this process. This work deals with modeling of a commercial size slurry bubble column reactor by two different models, i.e. single bubble class model (SBCM) and double bubble class model (DBCM). The reactor is assumed to work in a churn-turbulent flow regime and the reaction kinetic is a Langmuir-Hinshelwood type. Cobalt-based catalyst is used for this study as it plays an important role in preparing heavy cuts and the higher yield of the liquid products. Parameter sensitivity analysis was carried out for different conditions such as catalyst concentration, superficial gas velocity, H{sub 2} over CO ratio, and column diameter. The results of the SBCM and DBCM revealed that there is no significant difference between single and double bubble class models in terms of temperature, concentration and conversion profiles in the reactor, so the simpler SBCM with less number of model parameters can be a good and reliable model of choice for analyzing the slurry bubble column reactors.

  7. Heat transfer and hydrodynamic investigations of a baffled slurry bubble column

    NASA Astrophysics Data System (ADS)

    Saxena, S. C.; Chen, Z. D.

    1992-09-01

    Heat transfer and hydrodynamic investigations have been conducted in a 0.108 m internal diameter bubble column at ambient conditions. The column is equipped with seven 19mm diameter tubes arranged in an equilateral triangular pitch of 36.5 mm. A Monsanto synthetic heat transfer fluid, Therminol-66 having a viscosity of 39.8 cP at 303 K, is used as a liquid medium. Magnetite powders, average diameters 27.7 and 36.6 µm, in five concentrations up to 50 weight percent in the slurry, are used. As a gas phase, industrial grade nitrogen of purity 99.6 percent is employed. Gas holdup in different operating modes and regimes have been measured for the two- and three-phase systems over a superficial gas velocity range up to 0.20 m/s in the semi-batch mode. Heat transfer coefficients are measured at different tube locations in the bundle at different radial and vertical locations over a range of operating conditions. All these data are compared with the existing literature correlations and models. New correlations are proposed.

  8. Study of a Novel Method for the Thermolysis of Solutes in Aqueous Solution Using a Low Temperature Bubble Column Evaporator.

    PubMed

    Shahid, Muhammad; Xue, Xinkai; Fan, Chao; Ninham, Barry W; Pashley, Richard M

    2015-06-25

    An enhanced thermal decomposition of chemical compounds in aqueous solution has been achieved at reduced solution temperatures. The technique exploits hitherto unrecognized properties of a bubble column evaporator (BCE). It offers better heat transfer efficiency than conventional heat transfer equipment. This is obtained via a continuous flow of hot, dry air bubbles of optimal (1-3 mm) size. Optimal bubble size is maintained by using the bubble coalescence inhibition property of some salts. This novel method is illustrated by a study of thermal decomposition of ammonium bicarbonate (NH4HCO3) and potassium persulfate (K2S2O8) in aqueous solutions. The decomposition occurs at significantly lower temperatures than those needed in bulk solution. The process appears to work via the continuous production of hot (e.g., 150 °C) dry air bubbles, which do not heat the solution significantly but produce a transient hot surface layer around each rising bubble. This causes the thermal decomposition of the solute. The decomposition occurs due to the effective collision of the solute with the surface of the hot bubbles. The new process could, for example, be applied to the regeneration of the ammonium bicarbonate draw solution used in forward osmosis. PMID:26067442

  9. Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2004-06-01

    Vanitas vanitatum et omnia vanitas: bubbles are emptiness, non-liquid, a tiny cloud shielding a mathematical singularity. Born from chance, a violent and brief life ending in the union with the (nearly) infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise, sonoluminescence, boiling, and many others. Some recent results on a "blinking bubble" micropump and vapor bubbles in sound fields are outlined. The last section describes Leonardo da Vinci's observation of the non-rectlinear ascent of buoyant bubbles and justifies the name Leonardo's paradox recently attributed to this phenomenon.

  10. Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology: Final quarterly technical progress no. 2, 1 July - 30 September 1995

    SciTech Connect

    Toseland, B.A.; Tischer, R.E.

    1997-12-31

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  11. Effect of dense heat exchanging internals on the hydrodynamics of bubble column reactors using non-invasive measurement techniques

    NASA Astrophysics Data System (ADS)

    Al Mesfer, Mohammed Khloofh

    Given their efficiency and capital cost reduction, bubble/slurry bubble column reactors are the reactors of choice for Fischer-Tropsch (FT) synthesis, offering clean alternative fuels and chemicals. FT synthesis is an exothermic process that requires many heat exchanging tubes in order to remove heat efficiently and maintain the desired temperature and isothermal operating condition. The impact of the heat exchanging tubes (internals) on the hydrodynamics is not fully understood. Reliably designing and scaling up bubble column reactors requires proper understanding of hydrodynamics, as well as heat and mass transfer parameters. The main objective of this work is to advance the understanding of the effect of internals (25% covered cross-sectional area to meet FT needs) on hydrodynamics (gas holdup distribution, 3D liquid velocity, Reynolds stresses, turbulent kinetic energy, eddy diffusivity, etc.) in bubble columns. Single-source gamma-ray Computed Tomography (CT) and Radioactive Particle Tracking (RPT) were used for the first time to study the effect of dense internals and gas velocity on the phase holdup distribution and radial profiles, liquid velocity field and turbulent parameter profiles. The main findings obtained for the first time in this study can be summarized as follows: The presence of internals at a given superficial gas velocity causes: An increase in gas holdup and the axial centerline liquid velocity. A sharp decrease in turbulence parmeters. The increase in superficial gas velocity in the presence of internals causes: An increase in gas holdup, axial centerline liquid velocity and turbulent parameters.

  12. Detached eddy simulations of Taylor bubbles rising in stagnant liquid columns

    NASA Astrophysics Data System (ADS)

    Shaban, Hassan; Tavoularis, Stavros

    2015-11-01

    The rise of a single air Taylor bubble in a vertical circular tube filled with stagnant water was investigated numerically using the Volume Of Fluid (VOF) method to model the phase distribution and the Detached Eddy Simulation (DES) method for turbulence modelling. The predictions were in good quantitative agreement with previous experimental results. The simulation results provided insight into bubble shedding in the wake of the Taylor bubble, frictional pressure drop along the tube and scalar dispersion caused by the passage of the Taylor bubble. The interaction between adjacent Taylor bubbles and the process of Taylor bubble coalescence were also examined in detail. Supported by NSERC and UNENE.

  13. Numerical simulation of bubble induced shear in membrane bioreactors: effects of mixed liquor rheology and membrane configuration.

    PubMed

    Liu, Xuefei; Wang, Yuan; Waite, T David; Leslie, Greg

    2015-05-15

    A CFD model, incorporating an empirically determined rheology model and a porous media model, was developed to simulate bubble induced surface shear in membrane bioreactors configured with hollow fibre membranes with outer diameters ranging from 1.3 to 2.4 mm, arranged in vertically orientated modules with packing density from 200 to 560 m(2)/m(3). The rheology model was developed for mixed liquor suspended solids (MLSS) concentrations of 3 to 16 gL(-1) in the presence and absence of coagulant (generated by addition of a ferrous salt) for shear rates ranging from 0 to 500 s(-1). Experimentally determined particle relaxation times for the biological flocs in the mixed liquor, both in the absence and presence of iron, were negligible, consistent with an environment where positive buoyancy forces were greater than negative settling forces thereby allowing the sludge mixture to be modelled as a single continuous phase. The non-Newtonian behaviour of the mixed liquor was incorporated into the CFD simulations using an Ostwald-de Waele rheology model. Interactions between mixed liquor and hollow fibre membranes of different fibre size and packing density were described using a porous media model that was calibrated by empirical measurement of inertial loss coefficients over a range of viscosities (0.8 × 10(-3) to 2.1 × 10(-3) Pa.s) and velocities (0 to 0.35 m/s) typically encountered in full scale MBRs. Experimental results indicated that addition of iron salts resulted in an increase in MLSS and sludge viscosity. Shear stress is affected by both velocity and viscosity. The increase in sludge viscosity resulted in an increase in resistance to flow through the hollow fibre membrane bundles and, as a result, decreased the liquid flow velocities. CFD simulations provided insight on the effects of point of coagulant addition and MLSS concentration on bubble-induced shear over a range of industrially relevant conditions. A 12% increase in shear stress was observed when

  14. From cheese whey to carotenes by Blakeslea trispora in a bubble column reactor.

    PubMed

    Roukas, Triantafyllos; Varzakakou, Maria; Kotzekidou, Parthena

    2015-01-01

    The effect of the aeration rate on carotene production from deproteinized hydrolyzed whey by Blakeslea trispora in a bubble column reactor was investigated. Aeration rate significantly affected carotene concentration and morphology of the fungus. Enhanced aeration caused change of the morphology of B. trispora from pellets with large projected area to pellets with small projected area. This morphological differentiation of the fungus was associated with a significant increase in carotene production. When deproteinized hydrolyzed whey was supplemented with 30 g/l Tween 80, 30 g/l Span 80, and 0.2 % (v/v) β-ionone, the highest carotene productivity (55.5 mg/g dry biomass/day or 405.0 mg/l/day) was obtained at an aeration rate of 4 vvm. This is the highest carotene productivity that has been reported among the agro-industrial by-products up to date. In this case, the carotenes produced consisted of β-carotene (67 %), γ-carotene (15 %), and lycopene (18 %). PMID:25248995

  15. Control of CO₂ input conditions during outdoor culture of Chlorella vulgaris in bubble column photobioreactors.

    PubMed

    Guo, Zhi; Phooi, Wei Boon Alfred; Lim, Zi Jian; Tong, Yen Wah

    2015-06-01

    A study on the optimization of CO2 usage during outdoor microalgae cultivation in order to further maximize the CO2 to biomass conversion efficiency is presented. A constant supply of CO2 was found to be non-essential for culturing microalgae outdoors in 80 L (8 L×10 sets) bubble columns. Among the different CO2 input conditions that were studied, 2% CO2 with intermittent supply and 2%+4% CO2 alternation did not affect the algal growth as compared to having a constant supply of 2% CO2. However, during both input conditions, the CO2 to biomass conversion efficiency was doubled while the amount of CO2 used was reduced by 50%. The algal biomass obtained was found to have a higher carbohydrate yield but a lower protein yield as compared to previously published studies. The findings from this study could be applied for large-scale microalgae production so as to minimize cultivation and energy costs. PMID:25817035

  16. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors.

    PubMed

    Kumar, Kanhaiya; Das, Debabrata

    2012-07-01

    The present study investigated the feasibility of bioCO(2) sequestration using Chlorella sorokiniana. It was found that 5% CO(2) (v/v) in air was the most suitable concentration for the growth of this organism. At this concentration, the maximum rate of CO(2) sequestered and the biomass obtained were found to be 1.21 g L(-1)d(-1) and 4.4 g L(-1) respectively. Modeling and simulation of the growth profile was obtained using the logistic equation. Further, at higher CO(2) concentrations, pH drop in the growth media, TAP [-acetate], was prevented by replacing NH(4)Cl by NaNO(3.) Additionally, the study evaluated the performance of two reactors namely: bubble column and airlift reactor based on their growth profile and transport properties like K(L)a and mixing time. The growth profile was better in airlift reactor and it provides cyclic axial mixing of media. K(L)a of downcomer was significantly lower than the riser in airlift reactor. PMID:22525259

  17. Effect of electrolytes on bubble coalescence in columns observed with visualization techniques.

    PubMed

    Aguilera, María Eugenia; Ojeda, Antonieta; Rondón, Carolina; López De Ramos, Aura

    2002-10-01

    Bubble coalescence and the effect of electrolytes on this phenomenon have been previously studied. This interfacial phenomenon has attracted attention for reactor design/operation and enhanced oil recovery. Predicting bubble coalescence may help prevent low yields in reactors and predict crude oil recovery. Because of the importance of bubble coalescence, the objectives of this work were to improve the accuracy of measuring the percentage of coalescing bubbles and to observe the interfacial gas-liquid behavior. An experimental setup was designed and constructed. Bubble interactions were monitored with a visualization setup. The percentage of air bubble coalescence was 100% in distilled water, about 50% in 0.1 M sodium chloride (NaCl) aqueous solution, and 0% in 0.145 M NaCl aqueous solution. A reduction of the contact gas-liquid area was observed in distillate water. The volume of the resulting bubble was the sum of the original bubble volumes. Repulsion of bubbles was observed in NaCl solutions exceeding 0.07 M. The percentage of bubble coalescence diminishes as the concentration of NaCl chloride increases. High-speed video recording is an accurate technique to measure the percentage of bubble coalescence, and represents an important advance in gas-liquid interfacial studies. PMID:12496024

  18. Zirconia promotion of Fischer-Tropsch cobalt catalysts: Behavior in fixed bed and slurry bubble column reactors

    SciTech Connect

    Oukaci, R.; Goodwin, J.G. Jr.; Marcelin, G.; Singleton, A.

    1995-12-01

    A series of cobalt-based F-T catalysts supported on alumina and silica were prepared with different loadings of Zr and with different sequences of impregnation of Co and Zr. All catalysts were extensively characterized by different methods. The catalysts were evaluated in terms of their activity and selectivity both in fixed bed and slurry bubble column reactors. Addition of ZrO{sub 2} to both Co/SiO{sub 2} and Co/Al{sub 2}O{sub 3} catalysts resulted in at least a two-to-threefold increase in the catalyst activity for F-T synthesis in the fixed bed reactor, depending on the sequence of impregnation of Co and Zr. In the slurry bubble column reactor the promotion effect was observed only for the SiO{sub 2}-supported catalyst.

  19. Zirconia promotion of Fischer-Tropsch cobalt catalysts: Behavior in fixed-bed and slurry bubble column reactors

    SciTech Connect

    Oukaci, R.; Goodwin, J.G. Jr.; Marcelin, G.; Singleton, A.

    1995-12-31

    A series of cobalt-based F-T catalysts supported on alumina and silica were prepared with different loadings of Zr and different sequence of impregnation of Co and Zr. All catalysts were extensively characterized by different methods. The catalysts were evaluated in terms of their activity and selectivity both in fixed bed and slurry bubble column reactors. Addition of ZrO{sub 2} to both CO/SO{sub 2} and Co/Al{sub 2}O{sub 3} catalysts resulted in at least a twofold increase in the catalyst activity for F-T synthesis in the fixed bed reactor. In the slurry bubble column reactor, a similar promotion effect was observed for the SO{sub 2}-supported catalysts, while the addition of Zr to a cobalt/alumina catalyst had a less significant effect.

  20. Influence of electrolyte concentration on holdup, flow regime transition and local flow properties in a large scale bubble column

    NASA Astrophysics Data System (ADS)

    Besagni, Giorgio; Inzoli, Fabio

    2015-11-01

    We experimentally investigate the influence of the electrolyte concentration on holdup, flow regime transition and local flow properties in a large scale bubble column, with air and water as working fluids. The column is 0.24 m inner diameter, 5.3 m height and the air is introduced by a spider sparger up to a superficial gas velocity of 0.2 m/s. The influence of five NaCl concentrations are investigated by using gas holdup and optical probe measurements. The gas holdup measurements are used for analysing the flow regime transition between the homogeneous and the transition regime and the optical probe is used for studying the local flow characteristics at different radial positions. The presence of NaCl - up to a critical concentration - increases the gas holdup. The increase in the gas holdup is due to the inhibition of the coalescence between the bubbles and, thus, the extension of the homogeneous regime. The results are in agreement with the previous literature on smaller bubble columns.

  1. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    NASA Astrophysics Data System (ADS)

    Hagiwara, S.; Nabetani, H.; Nakajima, M.

    2015-04-01

    -edible lipids by use of the SMV reactor has not been examined yet. Therefore, this study aims to investigate the productivity of biodiesel produced from waste vegetable oils using the SMV reactor. Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is generally produced as a FAME derived from vegetable oil by using alkaline catalyzed alcoholysis process. This alkaline method requires deacidification process prior to the reaction process and the alkaline catalyst removal process after the reaction. Those process increases the total cost of biodiesel fuel production. In order to solve the problems in the conventional alkaline catalyzed alcoholysis process, the authors proposed a non-catalytic alcoholysis process called the Superheated Methanol Vapor (SMV) method with bubble column reactor. So, this study aims to investigate the productivity of biodiesel produced from vegetable oils and other lipids using the SMV method with bubble column reactor.

  2. Quantifying Methane Flux from a Prominent Seafloor Crater with Water Column Imagery Filtering and Bubble Quantification Techniques

    NASA Astrophysics Data System (ADS)

    Mitchell, G. A.; Gharib, J. J.; Doolittle, D. F.

    2015-12-01

    Methane gas flux from the seafloor to atmosphere is an important variable for global carbon cycle and climate models, yet is poorly constrained. Methodologies used to estimate seafloor gas flux commonly employ a combination of acoustic and optical techniques. These techniques often use hull-mounted multibeam echosounders (MBES) to quickly ensonify large volumes of the water column for acoustic backscatter anomalies indicative of gas bubble plumes. Detection of these water column anomalies with a MBES provides information on the lateral distribution of the plumes, the midwater dimensions of the plumes, and their positions on the seafloor. Seafloor plume locations are targeted for visual investigations using a remotely operated vehicle (ROV) to determine bubble emission rates, venting behaviors, bubble sizes, and ascent velocities. Once these variables are measured in-situ, an extrapolation of gas flux is made over the survey area using the number of remotely-mapped flares. This methodology was applied to a geophysical survey conducted in 2013 over a large seafloor crater that developed in response to an oil well blowout in 1983 offshore Papua New Guinea. The site was investigated by multibeam and sidescan mapping, sub-bottom profiling, 2-D high-resolution multi-channel seismic reflection, and ROV video and coring operations. Numerous water column plumes were detected in the data suggesting vigorously active vents within and near the seafloor crater (Figure 1). This study uses dual-frequency MBES datasets (Reson 7125, 200/400 kHz) and ROV video imagery of the active hydrocarbon seeps to estimate total gas flux from the crater. Plumes of bubbles were extracted from the water column data using threshold filtering techniques. Analysis of video images of the seep emission sites within the crater provided estimates on bubble size, expulsion frequency, and ascent velocity. The average gas flux characteristics made from ROV video observations is extrapolated over the number

  3. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2011-12-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory at the Idaho National Laboratory was established to develop and test hybrid energy systems with the principal objective of reducing dependence on imported fossil fuels. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions are performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. These SBCRs operate in the churn-turbulent flow regime, which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer. Our team is developing a research tool to aid in understanding the physicochemical processes occurring in the SBCR. A robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) consisting of thirteen species, which are CO reactant, H2 reactant, hydrocarbon product, and H2O product in small bubbles, large bubbles, and the bulk fluid plus catalyst is outlined. Mechanistic submodels for interfacial momentum transfer in the churn-turbulent flow regime are incorporated, along with bubble breakup/coalescence and two-phase turbulence submodels. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield. The model includes heat generation produced by the exothermic chemical reaction, as well as heat removal from a constant temperature heat exchanger. A property method approach is employed to incorporate vapor-liquid equilibrium (VLE) in a robust manner. Physical and thermodynamic properties as functions of changes in both pressure and temperature are obtained from VLE calculations performed external to the CMFD solver. The novelty of this approach is in its simplicity, as well as its

  4. Gas-Liquid flow characterization in bubble columns with various gas-liquid using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Jin, Haibo; Yuhuan, Han; Suohe, Yang

    2009-02-01

    Electrical resistance tomography (ERT) is an advanced and new detecting technique that can measure and monitor the parameters of two-phase flow on line, such as gas-liquid bubble column. It is fit for the industrial process where the conductible medium serves as the disperse phase to present the key bubble flow characteristics in multi-phase medium. Radial variation of the gas holdup and mean holdups are investigated in a 0.160 m i. d. bubble column using ERT with two axial locations (Plane 1 and Plane 2). In all the experiments, air was used as the gas phase, tap water as liquid phase, and a series of experiments were done by adding KCl, ethanol, oil sodium, and glycerol to change liquid conductivity, liquid surface tension and viscosity. The superficial gas velocity was varied from 0.02 to 0.2 m/s. The effect of conductivity, surface tension, viscosity on the mean holdups and radial gas holdup distribution is discussed. The results showed that the gas holdup decrease with the increase of surface tension and increase with the increase of viscosity. Meanwhile, the settings of initial liquid conductivity slightly influence the gas holdup values, and the experimental data increases with the increase of the initial setting values in the same conditions.

  5. Hydrodynamic and mass transfer parameters in a large-scale slurry bubble column reactor with high solid loading

    SciTech Connect

    Behkish, A.; Men, Z.; Inga, J.R.; Morsi, B.I.

    1999-07-01

    The effects of pressure (P), superficial gas velocity (UG) and solid concentration (CV) on the equilibrium Solubility (C*), gas holdup (eG), volumetric gas-liquid mass transfer coefficient (kLa) and bubble size distribution for methane (CH{sub 4}) in a liquid mixture of decanes were statistically studied in a large-scale (1-ft diameter, 10-ft high) slurry bubble column reactor (SBCR). Glass beads with volumetric concentrations of 0, 7.6%, 18%, 28.4% and 36% were used. The experiments were selected following the central composite statistical design approach. The kLa values were determined using the transient physical absorption technique; the gas holdup was measured using the manometric method and the bubble size distributions were measured using the Dynamic Gas Disengagement technique (DGD). The equilibrium solubility values appeared to follow Henry's Law in the 1--15 bar range. The eG values were found to increase with superficial gas velocity and pressure due to the increase of the volume fraction of the small and large gas bubbles. The eG values, however, decreased with solid concentration due to the increase of slurry viscosity. The kLa values appeared to have the same trend as eG values indicting that the mass transfer behavior in the SBCR was mainly controlled by the gas-liquid interfacial area. Also, statistical correlations relating kLa and eG to the main process variables were proposed.

  6. Tapered bed bioreactor

    DOEpatents

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  7. A Phase-Field Approach to Modeling Hydrate Formation on Methane Gas Bubbles in a Water Column

    NASA Astrophysics Data System (ADS)

    Fu, X.; Cueto-Felgueroso, L.; Waite, W. F.; Ruppel, C. D.; Juanes, R.

    2014-12-01

    Methane hydrates are water-based crystalline solids, where gas molecules are trapped inside the lattice structure formed by water. Most commonly found in deep ocean floors where low temperature and high pressure are primal conditions for hydrate to form, gas hydrates contain most of the world's mobile carbon and yet it remains an important and open question how methane leakage from gas hydrate impacts ocean and the atmosphere. While current work focus on the breakdown of gas hydrate in marine environment and the the release of methane from seafloor, few studies explore the fate of a single or a plume of methane bubbles when entering the water column after the release. We propose to study the fate of an individual and a series of methane bubbles through mathematical modeling, specifically using a phase-field approach. Phase-field modeling is a mathematical framework that describes systems that are out of thermodynamic equilibrium. First introduced in the context of solidification process and phase transitions, it has since been adopted in the field of multiphase flow. In this work, we present a new phase-field formulation for multiphase/multicomponent flows that allows us to model the fate of methane bubbles in the water system as a nonequilibrium process.

  8. Environmentally friendly efficient coupling of n-heptane by sulfated tri-component metal oxides in slurry bubble column reactor.

    PubMed

    Ma, Hongzhu; Xiao, Jing; Wang, Bo

    2009-07-30

    SO(4)(2-)/M(x)O(y) is of the greatest interest in solid catalysts and green catalysts. Slurry bubble column reactors are of considerable interest in industrial processes and various biochemical processes. The cetane number (CN) has widely used diesel fuel quality parameter related to the ignition delay time (and combustion quality) of a fuel. CN improvement of diesel fuels is a difficult task that refiners will face in the near future. For that purpose, the tests were designed in which n-heptane is used as the reactant in the air or ozone atmosphere at room temperature (RT) and local atmospheric pressure (LAP) using different catalysts of sulfated tri-component metal oxides SO(4)(2-)/Fe(2)O(3)-TiO2-SnO(2) (SFTSn) and SO(4)(2-)/MnO(2)-TiO2-SnO(2) (SMTSn) in slurry bubble column reactor. The products distribution was analyzed by gas chromatography-mass spectrometry (GC-MS) method and the results show that the relative selectivity of long linear alkane (C(12)-C(28)) reaches the maximum (87.330%) when SMTSn is used as catalyst in flow air at 60 min. Diesel fuel components with higher cetane numbers can be easily obtained from this study. PMID:19124196

  9. Dynamic Modeling of Hydro- Formylation of 1-Decene on Rh/C Catalyst in Bubble Column Slurry Reactor

    NASA Astrophysics Data System (ADS)

    Upkare, Makarand M.; Rajurkar, Kalpendra B.; Das, Samir K.; Jaganathan, R.

    2010-10-01

    A dynamic model has been developed for the bubble column slurry reactor operating under non-isothermal conditions. The model consists of mass and heat balance equations for the gas and liquid phases and the catalyst particle. The model equations consisted of partial differential equations (PDE) which were converted to ordinary differential equations (ODE) by using finite difference relationships for the spatial derivatives and the ordinary differential equations for the time derivatives (Numerical Method of Lines-NMoL). The model was applied to describe the dynamic behaviour of bubble column slurry reactor during the hydroformylation of 1-decene on Rh/C catalyst. Model simulations were performed to obtain a meaningful path to steady state and to reproduce the other characteristics of the dynamic behaviour of the reactor. Under given conditions, the reaction required approximately 3750 seconds to reach the steady state concentrations at various reactor positions. It was observed with increase in the fluid velocities, the dynamics of the system was altered to 2500 seconds to reach the steady state condition. The effect of axial dispersion on the substrate concentration and the temperature rise along the reactor was further studied and discussed.

  10. Time-series measurements of bubble plume variability and water column methane distribution above Southern Hydrate Ridge, Oregon

    NASA Astrophysics Data System (ADS)

    Philip, Brendan T.; Denny, Alden R.; Solomon, Evan A.; Kelley, Deborah S.

    2016-03-01

    An estimated 500-2500 gigatons of methane carbon is sequestered in gas hydrate at continental margins and some of these deposits are associated with overlying methane seeps. To constrain the impact that seeps have on methane concentrations in overlying ocean waters and to characterize the bubble plumes that transport methane vertically into the ocean, water samples and time-series acoustic images were collected above Southern Hydrate Ridge (SHR), a well-studied hydrate-bearing seep site ˜90 km west of Newport, Oregon. These data were coregistered with robotic vehicle observations to determine the origin of the seeps, the plume rise heights above the seafloor, and the temporal variability in bubble emissions. Results show that the locations of seep activity and bubble release remained unchanged over the 3 year time-series investigation, however, the magnitude of gas release was highly variable on hourly time scales. Bubble plumes were detected to depths of 320-620 m below sea level (mbsl), in several cases exceeding the upper limit of hydrate stability by ˜190 m. For the first time, sustained gas release was imaged at the Pinnacle site and in-between the Pinnacle and the Summit area of venting, indicating that the subseafloor transport of fluid and gas is not restricted to the Summit at SHR, requiring a revision of fluid-flow models. Dissolved methane concentrations above background levels from 100 to 300 mbsl are consistent with long-term seep gas transport into the upper water column, which may lead to the build-up of seep-derived carbon in regional subsurface waters and to increases in associated biological activity.

  11. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2010-09-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  12. A comparative study of two-phase flow models relevant to bubble column dynamics

    NASA Astrophysics Data System (ADS)

    Minev, P. D.; Lange, U.; Nandakumar, K.

    1999-09-01

    Multiphase flow modelling is still a major challenge in fluid dynamics and, although many different models have been derived, there is no clear evidence of their relevance to certain flow situations. That is particularly valid for bubbly flows, because most of the studies have considered the case of fluidized beds. In the present study we give a general formulation to five existing models and study their relevance to bubbly flows. The results of the linear analysis of those models clearly show that only two of them are applicable to that case. They both show a very similar qualitative linear stability behaviour. In the subsequent asymptotic analysis we derive an equation hierarchy which describes the weakly nonlinear stability of the models. Their qualitative behaviour up to first order with respect to the small parameter is again identical. A permanent-wave solution of the first two equations of the hierarchy is found. It is shown, however, that the permanent-wave (soliton) solution is very unlikely to occur for the most common case of gas bubbles in water. The reason is that the weakly nonlinear equations are unstable due to the low magnitude of the bulk modulus of elasticity. Physically relevant stabilization can eventually be achieved using some available experimental data. Finally, a necessary condition for existence of a fully nonlinear soliton is derived.

  13. Bubble Plumes at NW Rota-1 Submarine Volcano, Mariana Arc: Visualization and Analysis of Multibeam Water Column Data

    NASA Astrophysics Data System (ADS)

    Merle, S. G.; Chadwick, W. W.; Embley, R. W.; Doucet, M.

    2012-12-01

    During a March 2010 expedition to NW Rota-1 submarine volcano in the Mariana arc a new EM122 multibeam sonar system on the R/V Kilo Moana was used to repeatedly image bubble plumes in the water column over the volcano. The EM122 (12 kHz) system collects seafloor bathymetry and backscatter data, as well as acoustic return water column data. Previous expeditions to NW Rota-1 have included seafloor mapping / CTD tow-yo surveys and remotely operated vehicle (ROV) dives in 2004, 2005, 2006 and 2009. Much of the focus has been on the one main eruptive vent, Brimstone, located on the south side of the summit at a depth of ~440m, which has been persistently active during all ROV visits. Extensive degassing of CO2 bubbles have been observed by the ROV during frequent eruptive bursts from the vent. Between expeditions in April 2009 and March 2010 a major eruption and landslide occurred at NW Rota-1. ROV dives in 2010 revealed that after the landslide the eruptive vent had been reorganized from a single site to a line of vents. Brimstone vent was still active, but 4 other new eruptive vents had also emerged in a NW/SE line below the summit extending ~100 m from the westernmost to easternmost vents. During the ROV dives, the eruptive vents were observed to turn on and off from day to day and hour to hour. Throughout the 2010 expedition numerous passes were made over the volcano summit to image the bubble plumes above the eruptive vents in the water column, in order to capture the variability of the plumes over time and to relate them to the eruptive output of the volcano. The mid-water sonar data set totals >95 hours of observations over a 12-day period. Generally, the ship drove repeatedly over the eruptive vents at a range of ship speeds (0.5-4 knots) and headings. In addition, some mid-water data was collected during three ROV dives when the ship was stationary over the vents. We used the FMMidwater software program (part of QPS Fledermaus) to visualize and analyze the data

  14. Design of slurry bubble column reactors: novel technique for optimum catalyst size selection contractual origin of the invention

    SciTech Connect

    Gamwo, Isaac K.; Gidaspow, Dimitri; Jung, Jonghwun

    2009-11-17

    A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.

  15. Pilot-scale bubble column photobioreactor culture of a marine dinoflagellate microalga illuminated with light emission diodes.

    PubMed

    López-Rosales, L; García-Camacho, F; Sánchez-Mirón, A; Martín Beato, E; Chisti, Yusuf; Molina Grima, E

    2016-09-01

    Production of biomass of the shear-sensitive marine algal dinoflagellate Karlodinium veneficum was successfully scaled-up to 80L using a bubble column photobioreactor. The scale factor exceeded 28,500. Light-emission diodes were used as the light source. The diel irradiance profile mimicked the outdoor profile of natural sunlight. The final cell concentration in the absence of nutrient limitation in the scaled-up photobioreactor was nearly 12×10(5)cellsmL(-1), or the same as in laboratory culture systems. The pH-controlled culture (pH=8.5) was always carbon-sufficient. The culture was mixed pneumatically by using a superficial air velocity of 1.9×10(-3)ms(-1) and the temperature was controlled at 21±1°C. PMID:27318163

  16. Incorporation of Reaction Kinetics into a Multiphase, Hydrodynamic Model of a Fischer Tropsch Slurry Bubble Column Reactor

    SciTech Connect

    Donna Guillen, PhD; Anastasia Gribik; Daniel Ginosar, PhD; Steven P. Antal, PhD

    2008-11-01

    This paper describes the development of a computational multiphase fluid dynamics (CMFD) model of the Fischer Tropsch (FT) process in a Slurry Bubble Column Reactor (SBCR). The CMFD model is fundamentally based which allows it to be applied to different industrial processes and reactor geometries. The NPHASE CMFD solver [1] is used as the robust computational platform. Results from the CMFD model include gas distribution, species concentration profiles, and local temperatures within the SBCR. This type of model can provide valuable information for process design, operations and troubleshooting of FT plants. An ensemble-averaged, turbulent, multi-fluid solution algorithm for the multiphase, reacting flow with heat transfer was employed. Mechanistic models applicable to churn turbulent flow have been developed to provide a fundamentally based closure set for the equations. In this four-field model formulation, two of the fields are used to track the gas phase (i.e., small spherical and large slug/cap bubbles), and the other two fields are used for the liquid and catalyst particles. Reaction kinetics for a cobalt catalyst is based upon values reported in the published literature. An initial, reaction kinetics model has been developed and exercised to demonstrate viability of the overall solution scheme. The model will continue to be developed with improved physics added in stages.

  17. Molten salt rolling bubble column, reactors utilizing same and related methods

    SciTech Connect

    Turner, Terry D.; Benefiel, Bradley C.; Bingham, Dennis N.; Klinger, Kerry M.; Wilding, Bruce M.

    2015-11-17

    Reactors for carrying out a chemical reaction, as well as related components, systems and methods are provided. In accordance with one embodiment, a reactor is provided that includes a furnace and a crucible positioned for heating by the furnace. The crucible may contain a molten salt bath. A downtube is disposed at least partially within the interior crucible along an axis. The downtube includes a conduit having a first end in communication with a carbon source and an outlet at a second end of the conduit for introducing the carbon material into the crucible. At least one opening is formed in the conduit between the first end and the second end to enable circulation of reaction components contained within the crucible through the conduit. An oxidizing material may be introduced through a bottom portion of the crucible in the form of gas bubbles to react with the other materials.

  18. Novel techniques for slurry bubble column hydrodynamics. Annual technical progress report No. 1, July 1, 1995--June 30, 1996

    SciTech Connect

    Dudukovic, M.P.; Fan, L.S.; Chang, Min

    1997-05-01

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research and Engineering Company is to improve the basis for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. The first year of this three year program was spent on developing and tuning the experimental tools that can provide accurate measurement of pertinent hydrodynamic quantities, such as velocity field and holdup distribution, for validation of hydrodynamic models. Advances made in preparing the unique Computer Automated Radioactive Particle Tracing (CARPT) technique for use in high pressure systems are described in this report The work done on developing a reliable beat transfer coefficient measurement probe at operating conditions of interest is also described. Finally, the work done in preparing the Exxon pilot plant facilities for high pressure runs and pertinent hydrodynamic measurements is outlined together with preliminary studies of matching the fluid dynamics program predictions and data in a two dimensional column.

  19. Nanoemulsions obtained via bubble-bursting at a compound interface

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Roché, Matthieu; Vigolo, Daniele; Arnaudov, Luben N.; Stoyanov, Simeon D.; Gurkov, Theodor D.; Tsutsumanova, Gichka G.; Stone, Howard A.

    2014-08-01

    Bursting of bubbles at an air/liquid interface is a familiar occurrence relevant to foam stability, cell cultures in bioreactors and ocean-atmosphere mass transfer. In the latter case, bubble-bursting leads to the dispersal of sea-water aerosols in the surrounding air. Here we show that bubbles bursting at a compound air/oil/water-with-surfactant interface can disperse submicrometre oil droplets in water. Dispersal results from the detachment of an oil spray from the bottom of the bubble towards water during bubble collapse. We provide evidence that droplet size is selected by physicochemical interactions between oil molecules and the surfactants rather than by hydrodynamics. We demonstrate the unrecognized role that this dispersal mechanism may play in the fate of the sea surface microlayer and of pollutant spills by dispersing petroleum in the water column. Finally, our system provides an energy-efficient route, with potential upscalability, for applications in drug delivery, food production and materials science.

  20. REVIEW OF EXPERIMENTAL CAPABILITIES AND HYDRODYNAMIC DATA FOR VALIDATION OF CFD-BASED PREDICTIONS FOR SLURRY BUBBLE COLUMN REACTORS

    SciTech Connect

    Donna Post Guillen; Daniel S. Wendt; Steven P. Antal; Michael Z. Podowski

    2007-11-01

    The purpose of this paper is to document the review of several open-literature sources of both experimental capabilities and published hydrodynamic data to aid in the validation of a Computational Fluid Dynamics (CFD) based model of a slurry bubble column (SBC). The review included searching the Web of Science, ISI Proceedings, and Inspec databases, internet searches as well as other open literature sources. The goal of this study was to identify available experimental facilities and relevant data. Integral (i.e., pertaining to the SBC system), as well as fundamental (i.e., separate effects are considered), data are included in the scope of this effort. The fundamental data is needed to validate the individual mechanistic models or closure laws used in a Computational Multiphase Fluid Dynamics (CMFD) simulation of a SBC. The fundamental data is generally focused on simple geometries (i.e., flow between parallel plates or cylindrical pipes) or custom-designed tests to focus on selected interfacial phenomena. Integral data covers the operation of a SBC as a system with coupled effects. This work highlights selected experimental capabilities and data for the purpose of SBC model validation, and is not meant to be an exhaustive summary.

  1. REVIEW OF EXPERIMENTAL CAPABILITIES AND HYDRODYNAMIC DATA FOR VALIDATION OF CFD BASED PREDICTIONS FOR SLURRY BUBBLE COLUMN REACTORS

    SciTech Connect

    Donna Post Guillen; Daniel S. Wendt

    2007-11-01

    The purpose of this paper is to document the review of several open-literature sources of both experimental capabilities and published hydrodynamic data to aid in the validation of a Computational Fluid Dynamics (CFD) based model of a slurry bubble column (SBC). The review included searching the Web of Science, ISI Proceedings, and Inspec databases, internet searches as well as other open literature sources. The goal of this study was to identify available experimental facilities and relevant data. Integral (i.e., pertaining to the SBC system), as well as fundamental (i.e., separate effects are considered), data are included in the scope of this effort. The fundamental data is needed to validate the individual mechanistic models or closure laws used in a Computational Multiphase Fluid Dynamics (CMFD) simulation of a SBC. The fundamental data is generally focused on simple geometries (i.e., flow between parallel plates or cylindrical pipes) or custom-designed tests to focus on selected interfacial phenomena. Integral data covers the operation of a SBC as a system with coupled effects. This work highlights selected experimental capabilities and data for the purpose of SBC model validation, and is not meant to be an exhaustive summary.

  2. Enhancing gas-liquid mass transfer rates in non-newtonian fermentations by confining mycelial growth to microbeads in a bubble column

    SciTech Connect

    Gbewonyo, K.; Wang, D.I.C.

    1983-12-01

    The performance of a penicillin fermentation was assessed in a laboratory-scale bubble column fermentor, with mycelial growth confined to the pore matrix of celite beads. Final cell densities of 29 g/L and penicillin titres of 5.5 g/L were obtained in the confined cell cultures. In comparison, cultures of free mycelial cells grown in the absence of beads experienced dissolved oxygen limitations in the bubble column, giving only 17 g/L final cell concentrations with equally low penicillin titres of 2 g/L. The better performance of the confined cell cultures was attributed to enhanced gas liquid mass transfer rates, with mass transfer coefficients (k /SUB L/ a) two to three times higher than those determined in the free cell cultures. Furthermore, the confined cell cultures showed more efficient utilization of power input for mass transfer, providing up to 50% reduction in energy requirements for aeration.

  3. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.

    PubMed

    Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J

    2012-01-01

    Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3). PMID:22233912

  4. Effect of operating variables on the gas holdup in a large-scale slurry bubble column reactor operating with an organic liquid mixture

    SciTech Connect

    Inga, J.R.; Morsi, B.I.

    1999-03-01

    The effects of gas velocity, system pressure, and catalyst loading on gas holdup of H{sub 2}, N{sub 2}, CO, and CH{sub 4} in an organic mixture of hexanes were investigated in a 0.316 m diameter, 2.8 m height slurry bubble column reactor operating with a commercial Fischer-Tropsch iron-based catalyst. The data were obtained in the churn-turbulent flow regime with catalyst loading up to 50 wt % and a system pressure up to 8 bar. The hydrostatic pressure head method and the dynamic gas disengagement technique were employed to obtain the gas holdup profile and the values corresponding to different gas bubble sizes in the reactor. The experimental data showed that the gas holdup consists mainly of two classes of gas bubbles, small and large. The gas holdup data for the gases used were found to increase with pressure and superficial gas velocity due to the increase of the volume fraction of the small and large gas bubbles, respectively. The increase of catalyst loading, however, appeared to decrease the gas holdup values, due to the decrease of the volume fraction of the small gas bubbles. Statistical and empirical correlations for gas holdup data were proposed.

  5. Data Pre-Processing Method to Remove Interference of Gas Bubbles and Cell Clusters During Anaerobic and Aerobic Yeast Fermentations in a Stirred Tank Bioreactor

    NASA Astrophysics Data System (ADS)

    Princz, S.; Wenzel, U.; Miller, R.; Hessling, M.

    2014-11-01

    One aerobic and four anaerobic batch fermentations of the yeast Saccharomyces cerevisiae were conducted in a stirred bioreactor and monitored inline by NIR spectroscopy and a transflectance dip probe. From the acquired NIR spectra, chemometric partial least squares regression (PLSR) models for predicting biomass, glucose and ethanol were constructed. The spectra were directly measured in the fermentation broth and successfully inspected for adulteration using our novel data pre-processing method. These adulterations manifested as strong fluctuations in the shape and offset of the absorption spectra. They resulted from cells, cell clusters, or gas bubbles intercepting the optical path of the dip probe. In the proposed data pre-processing method, adulterated signals are removed by passing the time-scanned non-averaged spectra through two filter algorithms with a 5% quantile cutoff. The filtered spectra containing meaningful data are then averaged. A second step checks whether the whole time scan is analyzable. If true, the average is calculated and used to prepare the PLSR models. This new method distinctly improved the prediction results. To dissociate possible correlations between analyte concentrations, such as glucose and ethanol, the feeding analytes were alternately supplied at different concentrations (spiking) at the end of the four anaerobic fermentations. This procedure yielded low-error (anaerobic) PLSR models for predicting analyte concentrations of 0.31 g/l for biomass, 3.41 g/l for glucose, and 2.17 g/l for ethanol. The maximum concentrations were 14 g/l biomass, 167 g/l glucose, and 80 g/l ethanol. Data from the aerobic fermentation, carried out under high agitation and high aeration, were incorporated to realize combined PLSR models, which have not been previously reported to our knowledge.

  6. Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor.

    PubMed

    Liu, Yangxian; Wang, Qian

    2014-10-21

    In this article, a novel technique on removal of elemental mercury (Hg(0)) from flue gas by thermally activated ammonium persulfate ((NH4)(2)S(2)O(8)) has been developed for the first time. Some experiments were carried out in a bubble column reactor to evaluate the effects of process parameters on Hg(0) removal. The mechanism and kinetics of Hg(0) removal are also studied. The results show that the parameters, (NH4)(2)S(2)O(8) concentration, activation temperature and solution pH, have significant impacts on Hg(0) removal. The parameters, Hg(0), SO2 and NO concentration, only have small effects on Hg(0) removal. Hg(0) is removed by oxidations of (NH4)(2)S(2)O(8), sulfate and hydroxyl free radicals. When (NH4)(2)S(2)O(8) concentration is more than 0.1 mol/L and solution pH is lower than 9.71, Hg(0) removal by thermally activated (NH4)(2)S(2)O(8) meets a pseudo-first-order fast reaction with respect to Hg(0). However, when (NH4)(2)S(2)O(8) concentration is less than 0.1 mol/L or solution pH is higher than 9.71, the removal process meets a moderate speed reaction with respect to Hg(0). The above results indicate that this technique is a feasible method for emission control of Hg(0) from flue gas. PMID:25251199

  7. Hydrocarbon-oil encapsulated bubble flotation of fine coal using 3-in. ID flotation column. Technical progress report for the eleventh quarter, April 1--June 30, 1993

    SciTech Connect

    Peng, F.F.

    1996-05-01

    There are four modes of the collector dispersion techniques. They are (1) direct liquid additions and stirring, (2) ultrasonic energy collector dispersion, (3) atomized collector dispersion, and (4) gasified collector transported in air stream. Among those collector dispersion techniques, the technique using the gasified collector transported in air phase can be used to enhance the flotation performance with substantial reduction in collector usage and selectivity, compared to the flotation using direct liquid addition (and mechanical agitation) technique. In this phase of study, two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. The 1-in. ID flotation column was used to scale-up to 3-in. ID flotation column. The initial starting point to operate the 3-in ID flotation column were determined using both 1-in. and 3-in. flotation columns based on the three phases of work plans and experiment design. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal.

  8. Oxygen transfer in a pressurized airlift bioreactor.

    PubMed

    Campani, Gilson; Ribeiro, Marcelo Perencin Arruda; Horta, Antônio Carlos Luperni; Giordano, Roberto Campos; Badino, Alberto Colli; Zangirolami, Teresa Cristina

    2015-08-01

    Airlift bioreactors (ALBs) offer advantages over conventional systems, such as simplicity of construction, reduced risk of contamination, and efficient gas-liquid dispersion with low power consumption. ALBs are usually operated under atmospheric pressure. However, in bioprocesses with high oxygen demand, such as high cell density cultures, oxygen limitation may occur even when operating with high superficial gas velocity and air enriched with oxygen. One way of overcoming this drawback is to pressurize the reactor. In this configuration, it is important to assess the influence of bioreactor internal pressure on the gas hold-up, volumetric oxygen transfer coefficient (k(L)a), and volumetric oxygen transfer rate (OTR). Experiments were carried out in a concentric-tube airlift bioreactor with a 5 dm(3) working volume, equipped with a system for automatic monitoring and control of the pressure, temperature, and inlet gas flow rate. The results showed that, in disagreement with previous published results for bubble column and external loop airlift reactors, overpressure did not significantly affect k(L)a within the studied ranges of pressure (0.1-0.4 MPa) and superficial gas velocity in the riser (0.032-0.065 m s(-1)). Nevertheless, a positive effect on OTR was observed: it increased up to 5.4 times, surpassing by 2.3 times the oxygen transfer in a 4 dm(3) stirred tank reactor operated under standard cultivation conditions. These results contribute to the development of non-conventional reactors, especially pneumatic bioreactors operated using novel strategies for oxygen control. PMID:25903476

  9. A Laboratory Experiment To Measure Henry's Law Constants of Volatile Organic Compounds with a Bubble Column and a Gas Chromatography Flame Ionization Detector (GC-FID)

    ERIC Educational Resources Information Center

    Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda

    2013-01-01

    An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…

  10. Miniature bioreactors: current practices and future opportunities

    PubMed Central

    Betts, Jonathan I; Baganz, Frank

    2006-01-01

    This review focuses on the emerging field of miniature bioreactors (MBRs), and examines the way in which they are used to speed up many areas of bioprocessing. MBRs aim to achieve this acceleration as a result of their inherent high-throughput capability, which results from their ability to perform many cell cultivations in parallel. There are several applications for MBRs, ranging from media development and strain improvement to process optimisation. The potential of MBRs for use in these applications will be explained in detail in this review. MBRs are currently based on several existing bioreactor platforms such as shaken devices, stirred-tank reactors and bubble columns. This review will present the advantages and disadvantages of each design together with an appraisal of prototype and commercialised devices developed for parallel operation. Finally we will discuss how MBRs can be used in conjunction with automated robotic systems and other miniature process units to deliver a fully-integrated, high-throughput (HT) solution for cell cultivation process development. PMID:16725043

  11. HYDRODYNAMIC MODELS FOR SLURRY BUBBLE COLUMN REACTORS. FINAL TECHNICAL REPORT ALSO INCLUDES THE QUARTERLY TECHNICAL REPORT FOR THE PERIOD 01/01/1997 - 03/31/1997.

    SciTech Connect

    DIMITRI GIDASPOW

    1997-08-15

    The objective of this study is to develop a predictive experimentally verified computational fluid dynamic (CFD) three phase model. It predicts the gas, liquid and solid hold-ups (volume fractions) and flow patterns in the industrially important bubble-coalesced (churn-turbulent) regime. The input into the model can be either particulate viscosities as measured with a Brookfield viscometer or effective restitution coefficient for particles. A combination of x-ray and {gamma}-ray densitometers was used to measure solid and liquid volume fractions. There is a fair agreement between the theory and the experiment. A CCD camera was used to measure instantaneous particle velocities. There is a good agreement between the computed time average velocities and the measurements. There is an excellent agreement between the viscosity of 800 {micro}m glass beads obtained from measurement of granular temperature (random kinetic energy of particles) and the measurement using a Brookfield viscometer. A relation between particle Reynolds stresses and granular temperature was found for developed flow. Such measurement and computations gave a restitution coefficient for a methanol catalyst to be about 0.9. A transient, two-dimensional hydrodynamic model for production of methanol from syn-gas in an Air Products/DOE LaPorte slurry bubble column reactor was developed. The model predicts downflow of catalyst at the walls and oscillatory particle and gas flow at the center, with a frequency of about 0.7 Hertz. The computed temperature variation in the rector with heat exchangers was only about 5 K, indicating good thermal management. The computed slurry height, the gas holdup and the rate of methanol production agree with LaPorte's reported data. Unlike the previous models in the literature, this model computes the gas and the particle holdups and the particle rheology. The only adjustable parameter in the model is the effective particle restitution coefficient.

  12. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  13. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  14. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  15. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  16. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  19. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Refrigerator (BTR) holds fixed tissue culture bags at 4 degrees C to preserve them for return to Earth and postflight analysis. The cultures are used in research with the NASA Bioreactor cell science program. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  2. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  3. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  5. Aluminum colloid formation and its effect on co-precipitation of zinc during acid rock drainage remediation with clinoptilolite in a slurry bubble column

    NASA Astrophysics Data System (ADS)

    Xu, W.; Li, L. Y.; Grace, J. R.

    2012-04-01

    Zinc and other metal ions were adsorbed in a laboratory slurry bubble column (SBC) by natural clinoptilolite sorbent particles. During the remediation process, significant white precipitates were sometimes observed. Both zinc and aluminum were detected in the colloidal mixtures. It is shown that Al leached from clinoptilolite during the agitation, contributing to the precipitate. As a result of the Al leaching and increase of pH during the remediation process, the formation of an Al colloid and zinc adsorption onto it could significantly improve ARD remediation, given the high adsorption capacity of the colloid. Sorption of cations increased with increasing colloid formation. Various conditions were tested to investigate their impact on (a) dealumination of clinoptilolite; (b) Al hydrolysis/colloid formation; and (c) adsorption onto the colloidal mixture. The test results indicate that dealumination contributes to the excess aluminum in the aqueous phase and to precipitates. The excess dealumination varies with pH and agitation time. Al hydrolysis occurs with increasing pH due to the neutralization effect of clinoptilolite. A significant proportion of zinc adsorbed onto the collectible aluminum precipitates.

  6. Production of Diacylglycerol-enriched Oil by Glycerolysis of Soybean Oil using a Bubble Column Reactor in a Solvent-free System.

    PubMed

    Zhang, Ning; Yang, Xue; Fu, Junning; Chen, Qiong; Song, Ziliang; Wang, Yong

    2016-03-01

    In this study, diacylglycerol-enriched soybean oil (DESO) was synthesized through Lipozyme 435-catalyzed glycerolysis of soybean oil (SO) in a solvent-free system using a modified bubble column reactor. The effects of enzyme load, mole ratio of glycerol to soybean oil, reaction temperature, gas flow and reaction time on DAG production were investigated. The selected conditions were established as being enzyme load of 4 wt% (mass of substrates), glycerol/soybean oil mole ratio of 20:1, reaction temperature of 80°C, gas flow of 10.6 cm/min, and a reaction time of 2.5 h, obtaining the DAG content of 49.4±0.5 wt%. The reusability of Lipozyme 435 was evaluated by monitoring the contents of DAG, monoacylglycerol (MAG) and triacylglycerol (TAG) in 10 consecutive runs. After purified by one-step molecular distillation, the DAG content of 63.5±0.3 wt% was achieved in DESO. The mole ratio of 1, 3-DAG to 1, 2-DAG was 2:1 and the fatty acid composition had no significant difference from that of soybean oil. However, the thermal properties of DESO and SO had considerable differences. Polymorphic form of DESO were mainly the β form and minor amounts of the β' form. Granular aggregation and round-shaped crystals were detected in DESO. PMID:26876674

  7. Modelling of microalgal growth and lipid production in Dunaliella tertiolecta using nitrogen-phosphorus-potassium fertilizer medium in sintered disk chromatographic glass bubble column.

    PubMed

    Kumar, Anup; Guria, Chandan; Chitres, G; Chakraborty, Arunangshu; Pathak, A K

    2016-10-01

    A comprehensive mathematical model involving NPK-10:26:26 fertilizer, NaCl, NaHCO3, light and temperature operating variables for Dunaliella tertiolecta cultivation is formulated to predict microalgae-biomass and lipid productivity. Proposed model includes Monod/Andrews kinetics for the absorption of essential nutrients into algae-biomass and Droop model involving internal nutrient cell quota for microalgae growth, assuming algae-biomass is composed of sugar, functional-pool and neutral-lipid. Biokinetic model parameters are determined by minimizing the residual-sum-of-square-errors between experimental and computed microalgae-biomass and lipid productivity using genetic algorithm. Developed model is validated with the experiments of Dunaliella tertiolecta cultivation using air-agitated sintered-disk chromatographic glass-bubble column and the effects of operating variables on microalgae-biomass and lipid productivity is investigated. Finally, parametric sensitivity analysis is carried out to know the sensitivity of model parameters on the obtained results in the input parameter space. Proposed model may be helpful in scale-up studies and implementation of model-based control strategy in large-scale algal cultivation. PMID:27450983

  8. KINETIC MODELING OF A FISCHER-TROPSCH REACTION OVER A COBALT CATALYST IN A SLURRY BUBBLE COLUMN REACTOR FOR INCORPORATION INTO A COMPUTATIONAL MULTIPHASE FLUID DYNAMICS MODEL

    SciTech Connect

    Anastasia Gribik; Doona Guillen, PhD; Daniel Ginosar, PhD

    2008-09-01

    Currently multi-tubular fixed bed reactors, fluidized bed reactors, and slurry bubble column reactors (SBCRs) are used in commercial Fischer Tropsch (FT) synthesis. There are a number of advantages of the SBCR compared to fixed and fluidized bed reactors. The main advantage of the SBCR is that temperature control and heat recovery are more easily achieved. The SBCR is a multiphase chemical reactor where a synthesis gas, comprised mainly of H2 and CO, is bubbled through a liquid hydrocarbon wax containing solid catalyst particles to produce specialty chemicals, lubricants, or fuels. The FT synthesis reaction is the polymerization of methylene groups [-(CH2)-] forming mainly linear alkanes and alkenes, ranging from methane to high molecular weight waxes. The Idaho National Laboratory is developing a computational multiphase fluid dynamics (CMFD) model of the FT process in a SBCR. This paper discusses the incorporation of absorption and reaction kinetics into the current hydrodynamic model. A phased approach for incorporation of the reaction kinetics into a CMFD model is presented here. Initially, a simple kinetic model is coupled to the hydrodynamic model, with increasing levels of complexity added in stages. The first phase of the model includes incorporation of the absorption of gas species from both large and small bubbles into the bulk liquid phase. The driving force for the gas across the gas liquid interface into the bulk liquid is dependent upon the interfacial gas concentration in both small and large bubbles. However, because it is difficult to measure the concentration at the gas-liquid interface, coefficients for convective mass transfer have been developed for the overall driving force between the bulk concentrations in the gas and liquid phases. It is assumed that there are no temperature effects from mass transfer of the gas phases to the bulk liquid phase, since there are only small amounts of dissolved gas in the liquid phase. The product from the

  9. Technology development for cobalt F-T catalysts. Topical report No.3, Zirconia promotion of Fischer-Tropsch cobalt catalysts: Behavior in fixed-bed and slurry bubble column reactors

    SciTech Connect

    Oukaci, R.; Marcelin, G.; Goodwin, J.G. Jr.

    1995-01-17

    A series of cobalt-based F-T catalysts supported on alumina and silica were prepared with different loadings of Zr and different sequences of impregnation of Co and Zr. All catalysts were extensively characterized by different methods. The catalysts were evaluated in terms of their activity and selectivity both in fixed bed and slurry bubble column reactors. Addition of ZrO{sub 2} to both Co/SiO{sub 2} and Co/Al{sub 2}O{sub 3} catalysts resulted in at least a twofold increase in the catalyst activity for F-T synthesis in the fixed bed reactor. In the slurry bubble column reactor, a similar promotion effect was observed for the SiO{sub 2}-supported catalysts, while the addition of Zr to a cobalt/alumina catalyst had a less significant effect.

  10. Bioreactor principles

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  11. Bubble stimulation efficiency of dinoflagellate bioluminescence.

    PubMed

    Deane, Grant B; Stokes, M Dale; Latz, Michael I

    2016-02-01

    Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors. PMID:26061152

  12. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101816 for a version without labels, and No. 0103180 for an operational schematic.

  13. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  14. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101823 for a version without labels, and No. 0103180 for an operational schematic.

  15. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101824 for a version with labels, and No. 0103180 for an operational schematic.

  16. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 degreesC (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. Oscillating Cell Culture Bioreactor

    NASA Technical Reports Server (NTRS)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  19. Multimembrane Bioreactor

    NASA Technical Reports Server (NTRS)

    Cho, Toohyon; Shuler, Michael L.

    1989-01-01

    Set of hydrophilic and hydrophobic membranes in bioreactor allows product of reaction to be separated, while nutrients fed to reacting cells and byproducts removed from them. Separation process requires no externally supplied energy; free energy of reaction sufficient. Membranes greatly increase productivity of metabolizing cells by continuously removing product and byproducts, which might otherwise inhibit reaction, and by continuously adding oxygen and organic nutrients.

  20. Global performance parameters for different pneumatic bioreactors operating with water and glycerol solution: experimental data and CFD simulation.

    PubMed

    Rodriguez, G Y; Valverde-Ramírez, M; Mendes, C E; Béttega, R; Badino, A C

    2015-11-01

    Global variables play a key role in evaluation of the performance of pneumatic bioreactors and provide criteria to assist in system selection and design. The purpose of this work was to use experimental data and computational fluid dynamics (CFD) simulations to determine the global performance parameters gas holdup ([Formula: see text]) and volumetric oxygen transfer coefficient (k L a), and conduct an analysis of liquid circulation velocity, for three different geometries of pneumatic bioreactors: bubble column, concentric-tube airlift, and split tube airlift. All the systems had 5 L working volumes and two Newtonian fluids of different viscosities were used in the experiments: distilled water and 10 cP glycerol solution. Considering the high oxygen demand in certain types of aerobic fermentations, the assays were carried out at high flow rates. In the present study, the performances of three pneumatic bioreactors with different geometries and operating with two different Newtonian fluids were compared. A new CFD modeling procedure was implemented, and the simulation results were compared with the experimental data. The findings indicated that the concentric-tube airlift design was the best choice in terms of both gas holdup and volumetric oxygen transfer coefficient. The CFD results for gas holdup were consistent with the experimental data, and indicated that k L a was strongly influenced by bubble diameter and shape. PMID:26227509

  1. Gas holdup in three-phase immobilized cell bioreactors

    SciTech Connect

    Bajpai, R.; Thompson, J.E.; Davison, B.

    1989-01-01

    A number of studies in the published literature deal with gas holdup in three-phase reactors. However, very few address the cases in which the solid density approaches that of the liquid phases and where low gas velocities are involved. These conditions are commonly encountered in immobilized-cell bubble columns and in fluidized-bed bioreactors. This paper reports the effect of gas and liquid velocity upon gas holdup and bed expansion in fluidized-bed bioreactors. For liquid-fluidization of low-density alginate beads in the absence of gas, the terminal sedimentation velocity (v/sub T/), of the particles is a constant and expansion of the bed follows Richardson and Zaki's correlation. In the presence of gas, however, the apparent terminal sedimentation velocity value is affected by the velocity of the gas and liquid phases. For gas velocities above a minimum value, the calculated value of v/sub T/ depends upon liquid velocity only and a constant bed expansion was observed for a range of gas and liquid flow rates. For the gas-liquid interactions, a modified drift-flux model was found to be valid. For superficial gas velocities between 5 and 17 cm/min, the modified drift-flux velocity was observed to be a function of gas velocity suggesting the prevalence of a coalescence regime. 21 refs., 4 figs., 1 tab.

  2. Spiral vane bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1991-01-01

    A spiral vane bioreactor of a perfusion type is described in which a vertical chamber, intended for use in a microgravity condition, has a central rotating filter assembly and has flexible membranes disposed to rotate annularly about the filter assembly. The flexible members have end portions disposed angularly with respect to one another. A fluid replenishment medium is input from a closed loop liquid system to a completely liquid filled chamber containing microcarrier beads, cells and a fluid medium. Output of spent medium is to the closed loop. In the closed loop, the output and input parameters are sensed by sensors. A manifold permits recharging of the nutrients and pH adjustment. Oxygen is supplied and carbon dioxide and bubbles are removed and the system is monitored and controlled by a microprocessor.

  3. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions.

    PubMed

    Esperança, M N; Cunha, F M; Cerri, M O; Zangirolami, T C; Farinas, C S; Badino, A C

    2014-05-01

    Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S < 10.0 g L−1 and QAIR > 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi. PMID:24078146

  4. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor.

    PubMed

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-06-01

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L-1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L-1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h-l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents. PMID:26086710

  5. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor

    PubMed Central

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-01-01

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L−1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L−1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h−l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents. PMID:26086710

  6. Rapid determination of 12 antibiotics and caffeine in sewage and bioreactor effluent by online column-switching liquid chromatography/tandem mass spectrometry.

    PubMed

    Lima Gomes, Paulo C F; Tomita, Inês N; Santos-Neto, Álvaro J; Zaiat, Marcelo

    2015-11-01

    This study presents a column-switching solid-phase extraction online-coupled to a liquid chromatography/tandem mass spectrometry (SPE-LC-MS/MS) method for simultaneous analysis of 12 antibiotics (7 sulfonamides and 5 fluoroquinolones) and caffeine detected in the sewage and effluent of a pilot anaerobic reactor used in sewage treatment. After acidification and filtration, the samples were directly injected into a simple and conventional LC system. Backflush and foreflush modes were compared based on the theoretical plates and peak asymmetry observed. The method was tested in terms of detection (MDL) and quantification limit (MQL), linearity, relative recovery, and precision intra- and inter-day in lab-made sewage samples. The method presented suitable figures of merit in terms of detection, varying from 8.00 × 10(-5) to 6.00 × 10(-2) ng (0.800 up to 600 ng L(-1); caffeine) with direct injection volume of only 100 μL and 13 min of total analysis time (sample preparation and chromatographic run). When the method was applied in the analysis of sewage and effluent of the anaerobic reactor (n = 15), six antibiotics and caffeine were detected in concentrations ranging from 0.018 to 1097 μg L(-1). To guarantee a reliable quantification, standard addition was used to overcome the matrix effect. PMID:26446896

  7. Production of galanthamine by Leucojum aestivum shoots grown in different bioreactor systems.

    PubMed

    Schumann, Anika; Berkov, Strahil; Claus, Diana; Gerth, André; Bastida, Jaume; Codina, Carles

    2012-08-01

    The production of galanthamine by shoots of Leucojum aestivum grown in different bioreactor systems (shaking and nonshaking batch culture, temporary immersion system, bubble bioreactor, continuous and discontinuous gassing bioreactor) under different culture conditions was studied. The influence of the nutrient medium, weight of inoculum, and size of bioreactor on both growth and galanthamine production was studied. The maximal yield of galanthamine (19.416 mg) was achieved by cultivating the L. aestivum shoots (10 g of fresh inoculum) in a temporary immersion system in a 1-L bioreactor vessel which was used as an airlift culture vessel, gassing 12 times per day (5 min). PMID:22639366

  8. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly

    2003-01-01

    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  9. Moving with bubbles: a review of the interactions between bubbles and the microorganisms that surround them.

    PubMed

    Walls, Peter L L; Bird, James C; Bourouiba, Lydia

    2014-12-01

    Bubbles are ubiquitous in biological environments, emerging during the complex dynamics of waves breaking in the open oceans or being intentionally formed in bioreactors. From formation, through motion, until death, bubbles play a critical role in the oxygenation and mixing of natural and artificial ecosystems. However, their life is also greatly influenced by the environments in which they emerge. This interaction between bubbles and microorganisms is a subtle affair in which surface tension plays a critical role. Indeed, it shapes the role of bubbles in mixing or oxygenating microorganisms, but also determines how microorganisms affect every stage of the bubble's life. In this review, we guide the reader through the life of a bubble from birth to death, with particular attention to the microorganism-bubble interaction as viewed through the lens of fluid dynamics. PMID:25096288

  10. Bioreactors Addressing Diabetes Mellitus

    PubMed Central

    Minteer, Danielle M.; Gerlach, Jorg C.

    2014-01-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies. PMID:25160666

  11. Bubble dielectrophoresis

    NASA Technical Reports Server (NTRS)

    Jones, T. B.; Bliss, G. W.

    1977-01-01

    The theoretical principles related to bubble dielectrophoresis are examined, taking into account the polarization force, aspects of bubble deformation, the electrostatic bubble levitation theorem, and the equation of motion. The measurement of the dielectrophoretic force on static and dynamic bubbles represents a convenient experimental method for the study of the general problem of dielectrophoresis. The experiments reported include static-force measurements, static-levitation experiments, and dynamic-force measurements.

  12. Recalcitrant bubbles

    PubMed Central

    Shanahan, Martin E. R.; Sefiane, Khellil

    2014-01-01

    We demonstrate that thermocapillary forces may drive bubbles against liquid flow in ‘anomalous' mixtures. Unlike ‘ordinary' liquids, in which bubbles migrate towards higher temperatures, we have observed vapour bubbles migrating towards lower temperatures, therefore against the flow. This unusual behaviour may be explained by the temperature dependence of surface tension of these binary mixtures. Bubbles migrating towards their equilibrium position follow an exponential trend. They finally settle in a stationary position just ‘downstream' of the minimum in surface tension. The exponential trend for bubbles in ‘anomalous' mixtures and the linear trend in pure liquids can be explained by a simple model. For larger bubbles, oscillations were observed. These oscillations can be reasonably explained by including an inertial term in the equation of motion (neglected for smaller bubbles). PMID:24740256

  13. Bio-reactor chamber

    NASA Technical Reports Server (NTRS)

    Chandler, Joseph A. (Inventor)

    1989-01-01

    A bioreactor for cell culture is disclosed which provides for the introduction of fresh medium without excessive turbulent action. The fresh medium enters the bioreactor through a filter with a backwash action which prevents the cells from settling on the filter. The bioreactor is sealed and depleted medium is forced out of the container as fresh medium is added.

  14. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  15. Bubble, Bubble, Toil and Trouble.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2001

    2001-01-01

    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  16. Conditions for static bubbles in viscoplastic fluids

    NASA Astrophysics Data System (ADS)

    Dubash, Neville; Frigaard, Ian

    2004-12-01

    We consider the slow motion of a gas bubble in a cylindrical column filled with a viscoplastic fluid, modeled here as a Herschel-Bulkley fluid. Because of the yield stress of the fluid, it is possible that a bubble will remain trapped in the fluid indefinitely. We adapt Prager's two variational principles to our problem. From these variational principles we develop two general stopping conditions, i.e., for a given bubble we can calculate a critical Bingham number above which the bubble will not move. The first condition is derived by bounding the velocity field and the second condition by bounding the stress field. We illustrate these conditions by considering specific bubble shapes, e.g., axisymmetric bubbles. We also develop a condition for bubble motion.

  17. Circulation in gas-slurry column reactors

    SciTech Connect

    Clark, N.; Kuhlman, J.; Celik, I.; Gross, R.; Nebiolo, E.; Wang, Yi-Zun.

    1990-08-15

    Circulation in bubble columns, such as those used in fischer-tropsch synthesis, detracts from their performance in that gas is carried on average more rapidly through the column, and the residence time distribution of the gas in the column is widened. Both of these factors influence mass-transfer operations in bubble columns. Circulation prediction and measurement has been undertaken using probes, one-dimensional models, laser Doppler velocimetry, and numerical modeling. Local void fraction was measured using resistance probes and a newly developed approach to determining air/water threshold voltage for the probe. A tall column of eight inch diameter was constructed of Plexiglas and the distributor plate was manufactured to distribute air evenly through the base of the column. Data were gathered throughout the volume at three different gas throughputs. Bubble velocities proved difficult to measure using twin probes with cross-correlation because of radial bubble movement. A series of three-dimensional mean and RMS bubble and liquid velocity measurements were also obtained for a turbulent flow in a laboratory model of a bubble column. These measurements have been made using a three-component laser Doppler velocimeter (LDV), to determine velocity distributions non-intrusively. Finally, the gas-liquid flow inside a vertically situated circular isothermal column reactor was simulated numerically. 74 refs., 170 figs., 5 tabs.

  18. Modelling of Air Bubble Rising in Water and Polymeric Solution

    NASA Astrophysics Data System (ADS)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.; Subaschandar, N.

    2010-06-01

    This study investigates a Computational Fluid Dynamics (CFD) model for a single air bubble rising in water and xanthan gum solution. The bubble rise characteristics through the stagnant water and 0.05% xanthan gum solution in a vertical cylindrical column is modelled using the CFD code Fluent. Single air bubble rise dispersed into the continuous liquid phase has been considered and modelled for two different bubble sizes. Bubble velocity and vorticity magnitudes were captured through a surface-tracking technique i.e. Volume of Fluid (VOF) method by solving a single set of momentum equations and tracking the volume fraction of each fluid throughout the domain. The simulated results of the bubble flow contours at two different heights of the cylindrical column were validated by the experimental results and literature data. The model developed is capable of predicting the entire flow characteristics of different sizes of bubble inside the liquid column.

  19. Exploring Bubbles

    NASA Astrophysics Data System (ADS)

    O'Geary, Melissa A.

    Bubbles provide an enjoyable and festive medium through which to teach many concepts within the science topics of light, color, chemistry, force, air pressure, electricity, buoyancy, floating, density, among many others. In order to determine the nature of children's engagement within a museum setting and the learning opportunities of playing with bubbles, I went to a children's interactive museum located in a metropolitan city in the Northeastern part of the United States.

  20. Optimization of denitrifying bioreactor performance with agricultural residue-based filter media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification bioreactors are a promising technology for mitigation of nitrate-nitrogen (NO3-N) losses in subsurface drainage water. Bioreactors are constructed with carbon substrates, typically wood chips, to provide a substrate for denitrifying microorganisms. Columns were packed with wood chips...

  1. Bubble diagnostics

    DOEpatents

    Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.

    2003-01-01

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  2. NASA Bioreactor Demonstration System

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  3. Bioreactor for continuous processing of a reactant fluid

    SciTech Connect

    Ramp, F.

    1990-02-27

    This patent describes a bioreactor for carrying out microbiological reactions. It comprises: a vertical hollow column containing column packing comprising particles classifiable by means of differential liquid settling rates. The column having a lower reaction section and an upper disengagement section. The disengagement section having a volume at least about as large as the volume of the reaction section. The packing being disposed in the column so that when a microbiological reaction is taking place in the column, the column packing is located in the reaction section, and when the column packing is being regenerated, the column packing is substantially located in the disengagement section. The column includes a reactant inlet near one end, and a product outlet near the other end.

  4. Dynamics of charged hemispherical soap bubbles

    NASA Astrophysics Data System (ADS)

    Hilton, J. E.; van der Net, A.

    2009-04-01

    Raising the potential of a charged hemispherical soap bubble over a critical limit causes deformation of the bubble into a cone and ejection of a charged liquid jet. This is followed by a mode which has not previously been observed in bubbles, in which a long cylindrical liquid film column is created and collapses due to a Rayleigh-Plateau instability creating child bubbles. We show that the formation of the column and subsequent creation of child bubbles is due to a drop in potential caused by the ejection of charge from the system via the jet. Similar dynamics may occur in microscopic charged liquid droplets (electrospray processes), causing the creation of daughter droplets and long liquid spindles.

  5. Hydrodynamic models for slurry bubble column reactors

    SciTech Connect

    Dimitri Gidaspow

    1996-10-01

    The objective of this investigation is to convert learning gas-solid-liquid fluidization model into a predictive design model. The IIT hydrodynamic model computers the phase velocities and the volume fi-actions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. As promised in the SIXTH TECHNICAL PROGRESS REPORT, January 1996, this report presents measurements of radial distribution function for 450 micron glass particles in liquid-solid fluidized bed. The report is in the form of a preliminary paper. The authors need the radial distribution function to compute the viscosity and the equation of state for particles. The principal results are as follows: (1) The measured radial distribution function, g{sub 0}, is a monotonic function of the solid volume fraction. The values of the radial distribution function g{sub 0} are in the range of the predictions from Bagnold equation and Carnahan and Starling equation. (2) The position of the first peak of the radial distribution function does not lie at r = d at contact (d is particle diameter). This differs from the predications from the hard sphere model and the measurements in the gas-solid system (Gidaspow and Huilin, 1996). This is due to a liquid film lubrication effect in the liquid-solid system.

  6. Bioreactor rotating wall vessel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  7. Bioreactors: design and operation

    SciTech Connect

    Cooney, C.L.

    1983-02-11

    The bioreactor provides a central link between the starting feedstock and the product. The reaction yield and selectivity are determined by the biocatalyst, but productivity is often determined by the process technology; as a consequence, biochemical reaction engineering becomes the interface for the biologist and engineer. Developments in bioreactor design, including whole cell immobilization, immobilized enzymes, continuous reaction, and process control, will increasingly reflect the need for cross-disciplinary interaction in the biochemical process industry. This paper examines the strategy for selection and design of bioreactors and identifies the limits and constraints in their use. 25 references, 3 figures, 3 tables.

  8. Energy consumption in terms of shear stress for two types of membrane bioreactors used for municipal wastewater treatment processes

    NASA Astrophysics Data System (ADS)

    Ratkovich, Nicolas; Bentzen, Thomas R.; Rasmussen, Michael R.

    2012-10-01

    Two types of submerged membrane bioreactors (MBR): hollow fiber (HF) and hollow sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power and the blower power demand per unit of permeate volume. Results showed that for the system geometries considered, in terms the of the blower power, the HF MBR requires less power compared to HS MBR. However, in terms of blower power per unit of permeate volume, the HS MBR requires less energy. The analysis of shear stress over the membrane surface was made using computational fluid dynamics (CFD) modelling. Experimental measurements for the HF MBR were compared with the CFD model and an error less that 8% was obtained. For the HS MBR, experimental measurements of velocity profiles were made and an error of 11% was found. This work uses an empirical relationship to determine the shear stress based on the ratio of aeration blower power to tank volume. This relationship is used in bubble column reactors and it is extrapolate to determine shear stress on MBR systems. This relationship proved to be overestimated by 28% compared to experimental measurements and CFD results. Therefore, a corrective factor is included in the relationship in order to account for the membrane placed inside the bioreactor.

  9. Leverage bubble

    NASA Astrophysics Data System (ADS)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  10. Tiny Bubbles.

    ERIC Educational Resources Information Center

    Kim, Hy

    1985-01-01

    A simple oxygen-collecting device (easily constructed from glass jars and a lid) can show bubbles released by water plants during photosynthesis. Suggestions are given for: (1) testing the collected gas; (2) using various carbon dioxide sources; and (3) measuring respiration. (DH)

  11. Space Bioreactor Science Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Editor)

    1987-01-01

    The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and a slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells. Applications of microcarrier cultures, development of the first space bioreactor flight system, shear and mixing effects on cells, process control, and methods to monitor cell metabolism and nutrient requirements are among the topics covered.

  12. Bioreactor design concepts

    NASA Technical Reports Server (NTRS)

    Bowie, William

    1987-01-01

    Two parallel lines of work are underway in the bioreactor laboratory. One of the efforts is devoted to the continued development and utilization of a laboratory research system. That system's design is intended to be fluid and dynamic. The sole purpose of such a device is to allow testing and development of equipment concepts and procedures. Some of the results of those processes are discussed. A second effort is designed to produce a flight-like bioreactor contained in a double middeck locker. The result of that effort has been to freeze a particular bioreactor design in order to allow fabrication of the custom parts. The system is expected to be ready for flight in early 1988. However, continued use of the laboratory system will lead to improvements in the space bioreactor. Those improvements can only be integrated after the initial flight series.

  13. BIOREACTOR LANDFILL DESIGN

    EPA Science Inventory

    Modern landfill design entails many elements including foundations, liner systems, leachate collection systems, stormwater control systems, slope stability considerations, leachate management systems, gas extraction systems, and capping and closure. The use of bioreactor technolo...

  14. Design and Performance of an Automated Bioreactor for Cell Culture Experiments in a Microgravity Environment

    NASA Astrophysics Data System (ADS)

    Kim, Youn-Kyu; Park, Seul-Hyun; Lee, Joo-Hee; Choi, Gi-Hyuk

    2015-03-01

    In this paper, we describe the development of a bioreactor for a cell-culture experiment on the International Space Station (ISS). The bioreactor is an experimental device for culturing mouse muscle cells in a microgravity environment. The purpose of the experiment was to assess the impact of microgravity on the muscles to address the possibility of longterm human residence in space. After investigation of previously developed bioreactors, and analysis of the requirements for microgravity cell culture experiments, a bioreactor design is herein proposed that is able to automatically culture 32 samples simultaneously. This reactor design is capable of automatic control of temperature, humidity, and culture-medium injection rate; and satisfies the interface requirements of the ISS. Since bioreactors are vulnerable to cell contamination, the medium-circulation modules were designed to be a completely replaceable, in order to reuse the bioreactor after each experiment. The bioreactor control system is designed to circulate culture media to 32 culture chambers at a maximum speed of 1 ml/min, to maintain the temperature of the reactor at 36°C, and to keep the relative humidity of the reactor above 70%. Because bubbles in the culture media negatively affect cell culture, a de-bubbler unit was provided to eliminate such bubbles. A working model of the reactor was built according to the new design, to verify its performance, and was used to perform a cell culture experiment that confirmed the feasibility of this device.

  15. NASA Bioreactor Schematic

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  16. NASA Classroom Bioreactor

    NASA Technical Reports Server (NTRS)

    Scully, Robert

    2004-01-01

    Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

  17. Gas phase acetaldehyde production in a continuous bioreactor

    SciTech Connect

    Hwang, Soon Ook . Dept. of Chemical Engineering); Trantolo, D.J. . Center for Biotechnology Engineering); Wise, D.L. . Dept. of Chemical Engineering Northeastern Univ., Boston, MA . Center for Biotechnology Engineering)

    1993-08-20

    The gas phase continuous production of acetaldehyde was studied with particular emphasis on the development of biocatalyst (alcohol oxidase on solid phase support materials) for a fixed bed reactor. Based on the experimental results in a batch bioreactor, the biocatalysts were prepared by immobilization of alcohol oxidase on Amberlite IRA-400, packed into a column, and the continuous acetaldehyde production in the gas phase by alcohol oxidase was performed. The effects of the reaction temperature, flow rates of gaseous stream, and ethanol vapor concentration on the performance of the continuous bioreactor were investigated.

  18. Bubble bath soap poisoning

    MedlinePlus

    ... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  19. Modeling particle transport by bubbles for performance guidelines in airlift fermentors.

    PubMed

    Snape, J B; Thomas, N H

    1992-07-01

    A calculation method has been developed to model the statistical transport of biological particles in bubble-driven flows, with special reference to the biokinetics of environmental excursions experienced by individual cells, aggregated cells, or immobilization beads in airlift bioreactors. Interim developments on modeling the transport of such particles in concentric tube devices are reported. The calculation is driven by user-prescribed global parameters for the bioreactor geometry, bulk air flow rate, and particle parameters (size and slip speed). The algorithm calls on empirical data correlations for void fraction, bulk liquid flow rate, and bubble sizes and slip speeds, optimally selected from a large bibliographic database. The Monte Carlo algorithm concentrates on simulating particle transport in the bubbly riser flows.The packaged family of correlations and calculations represents, in effect, an expert system augmented by a transport simulation suited to characterizing the biokinetic response of cells cultured in airlift bioreactors. PMID:18601123

  20. Discrete Bubble Modeling for Cavitation Bubbles

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Keun; Chahine, Georges; Hsiao, Chao-Tsung

    2007-03-01

    Dynaflow, Inc. has conducted extensive studies on non-spherical bubble dynamics and interactions with solid and free boundaries, vortical flow structures, and other bubbles. From these studies, emerged a simplified Surface Averaged Pressure (SAP) spherical bubble dynamics model and a Lagrangian bubble tracking scheme. In this SAP scheme, the pressure and velocity of the surrounding flow field are averaged on the bubble surface, and then used for the bubble motion and volume dynamics calculations. This model is implemented using the Fluent User Defined Function (UDF) as Discrete Bubble Model (DBM). The Bubble dynamics portion can be solved using an incompressible liquid modified Rayleigh-Plesset equation or a compressible liquid modified Gilmore equation. The Discrete Bubble Model is a very suitable tool for the studies on cavitation inception of foils and turbo machinery, bubble nuclei effects, noise from the bubbles, and can be used in many practical problems in industrial and naval applications associated with flows in pipes, jets, pumps, propellers, ships, and the ocean. Applications to propeller cavitation, wake signatures of waterjet propelled ships, bubble-wake interactions, modeling of cavitating jets, and bubble entrainments around a ship will be presented.

  1. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  2. Invasibility of resident biofilms by allochthonous communities in bioreactors.

    PubMed

    Bellucci, Micol; Bernet, Nicolas; Harmand, Jérôme; Godon, Jean-Jacques; Milferstedt, Kim

    2015-09-15

    Invasion of non-native species can drastically affect the community composition and diversity of engineered and natural ecosystems, biofilms included. In this study, a molecular community fingerprinting method was used to monitor the putative establishment and colonization of allochthonous consortia in resident multi-species biofilms. To do this, biofilms inoculated with tap water or activated sludge were grown for 10 days in bubble column reactors W1 and W2, and S, respectively, before being exposed to non-native microbial consortia. These consortia consisted of fresh activated sludge suspensions for the biofilms inoculated with tap water (reactors W1 and W2) and of transplanted mature tap water biofilm for the activated sludge biofilm (reactor S). The introduction of virgin, unoccupied coupons into W1 and W2 enabled us to additionally investigate the competition for new resources (space) among the resident biofilm and the allochthonous consortia. CE-SSCP revealed that after the invasion event changes were mostly observed in the abundance of the dominant species in the native biofilms rather than their composition. This suggests that the resident communities within a bioreactor immediately outcompete the allochthonous microbes and shape the microbial community assemblage on both new coupons and already colonized surfaces for the short term. However, with time, latent members of the allochthonous community might grow up affecting the diversity and composition of the original biofilms. PMID:26072021

  3. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  4. BioReactor

    Energy Science and Technology Software Center (ESTSC)

    2003-04-18

    BioReactor is a simulation tool kit for modeling networks of coupled chemical processes (or similar productions rules). The tool kit is implemented in C++ and has the following functionality: 1. Monte Carlo discrete event simulator 2. Solvers for ordinary differential equations 3. Genetic algorithm optimization routines for reverse engineering of models using either Monte Carlo or ODE representation )i.e., 1 or 2)

  5. The Isolated Bubble Regime in Pool Nucleate Boiling

    NASA Technical Reports Server (NTRS)

    Buyevich, Y. A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

    1995-01-01

    We consider an isolated bubble boiling regime in which vapour bubbles are intermittently produced at a prearranged set of nucleation site on an upward facing overheated wall plane. In this boiling regime, the bubbles depart from the wall and move as separate entities. Except in the matter of rise velocity, the bubbles do not interfere and are independent of one another. However, the rise velocity is dependent on bubble volume concentration in the bulk. Heat transfer properties specific to this regime cannot be described without bubble detachment size, and we apply our previously developed dynamic theory of vapour bubble growth and detachment to determine this size. Bubble growth is presumed to be thermally controlled. Two limiting cases of bubble evolution are considered: the one in which buoyancy prevails in promoting bubble detachment and the one in which surface tension prevails. We prove termination of the isolated regime of pool nucleate boiling to result from one of the four possible causes, depending on relevant parameters values. The first cause consists in the fact that the upward flow of rising bubbles hampers the downward liquid flow, and under certain conditions, prevents the liquid from coming to the wall in an amount that would be sufficient to compensate for vapour removal from the wall. The second cause is due to the lateral coalescence of growing bubbles that are attached to their corresponding nucleation sites, with ensuing generation of larger bubbles and extended vapour patches near the wall. The other two causes involve longitudinal coalescence either 1) immediately in the wall vicinity, accompanied by the establishment of the multiple bubble boiling regime, or 2) in the bulk, with the formation of vapour columns. The longitudinal coalescence in the bulk is shown to be the most important cause. The critical wall temperature and the heat flux density associated with isolated bubble regime termination are found to be functions of the physical and

  6. Denitrifying Bioreactors for Nitrate Removal: A Meta-Analysis.

    PubMed

    Addy, Kelly; Gold, Arthur J; Christianson, Laura E; David, Mark B; Schipper, Louis A; Ratigan, Nicole A

    2016-05-01

    Meta-analysis approaches were used in this first quantitative synthesis of denitrifying woodchip bioreactors. Nitrate removal across environmental and design conditions was assessed from 26 published studies, representing 57 separate bioreactor units (i.e., walls, beds, and laboratory columns). Effect size calculations weighted the data based on variance and number of measurements for each bioreactor unit. Nitrate removal rates in bed and column studies were not significantly different, but both were significantly higher than wall studies. In denitrifying beds, wood source did not significantly affect nitrate removal rates. Nitrate removal (mass per volume) was significantly lower in beds with <6-h hydraulic retention times, which argues for ensuring that bed designs incorporate sufficient time for nitrate removal. Rates significantly declined after the first year of bed operation but then stabilized. Nitrogen limitation significantly affected bed nitrate removal. Categorical and linear assessments found significant nitrate removal effects with bed temperature; a of 2.15 was quite similar to other studies. Lessons from this meta-analysis can be incorporated into bed designs, especially extending hydraulic retention times to increase nitrate removal under low temperature and high flow conditions. Additional column studies are warranted for comparative assessments, as are field-based studies for assessing in situ conditions, especially in aging beds, with careful collection and reporting of design and environmental data. Future assessment of these systems might take a holistic view, reviewing nitrate removal in conjunction with other processes, including greenhouse gas and other unfavorable by-product production. PMID:27136153

  7. Design challenges for space bioreactors

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Petersen, G. R.

    1989-01-01

    The design of bioreactors for operation under conditions of microgravity presents problems and challenges. Absence of a significant body force such as gravity can have profound consequences for interfacial phenomena. Marangoni convection can no longer be overlooked. Many speculations on the advantages and benefits of microgravity can be found in the literature. Initial bioreactor research considerations for space applications had little regard for the suitability of the designs for conditions of microgravity. Bioreactors can be classified in terms of their function and type of operation. The complex interaction of parameters leading to optimal design and operation of a bioreactor is illustrated by the JSC mammalian cell culture system. The design of a bioreactor is strongly dependent upon its intended use as a production unit for cell mass and/or biologicals or as a research reactor for the study of cell growth and function. Therefore a variety of bioreactor configurations are presented in rapid summary. Following this, a rationale is presented for not attempting to derive key design parameters such as the oxygen transfer coefficient from ground-based data. A set of themes/objectives for flight experiments to develop the expertise for design of space bioreactors is then proposed for discussion. These experiments, carried out systematically, will provide a database from which engineering tools for space bioreactor design will be derived.

  8. Voronoï analysis of bubbly flows via ultrafast X-ray tomographic imaging

    NASA Astrophysics Data System (ADS)

    Lau, Yuk Man; Müller, Karolin; Azizi, Salar; Schubert, Markus

    2016-03-01

    Although clustering of bubbles plays a significant role in bubble column reactors regarding the heat and mass transfer due to bubble-bubble and flow field interactions, it has yet to be fully understood. Contrary to flows in bubble columns, most literature studies on clustering report numerical and experimental results on dilute or micro-bubbly flows. In this paper, clustering of bubbles in a cylindrical bubble column of 100 mm diameter is experimentally investigated. Ultrafast X-ray tomographic imaging is used to obtain the bubble positions within a hybrid Eulerian framework. By means of Voronoï analysis, the clustering behavior of bubbles is investigated. Experiments are performed with different superficial gas velocities, where Voronoï diagrams are constructed at several column heights. From the PDFs of the Voronoï diagrams, it is shown that the bubble structuring in terms of Voronoï cell volumes develops slower than the bubble size distribution. The latter reaches a steady state earlier with increasing column height. The measured PDFs are compared with the PDF of randomly distributed points, which showed that the amount of bubbles as part of clusters (Voronoï cells < V/overline{V}_{cluster}) as well as bubbles as part of voids (Voronoï cells > V/overline{V}_{void}) increases with the superficial gas velocity. It is found that all experiments have an approximate cluster limit V/overline{V}_{cluster} of 0.63, while the void limit V/overline{V}_{void} varies between 1.5 and 3.0.

  9. Telescoping columns

    NASA Astrophysics Data System (ADS)

    Mazur, J. T.

    1980-12-01

    An extendable column is described which consists of several axially elongated rigid structural sections nested within one another. Each section includes a number of rotatably attached screws running along its length. The next inner section includes threaded lugs oriented to threadingly engage the screws. The column is extended or retracted upon rotation of the screws. The screws of each section are selectively rotated by a motor and an engagement mechanism.

  10. Deploying Methane Bubble Traps at Varying Lake Depths to Validate Bubble Dissolution Models

    NASA Astrophysics Data System (ADS)

    Delwiche, K.; Scandella, B.; Juanes, R.; Ruppel, C. D.; Hemond, H.

    2013-12-01

    Methane is a potent greenhouse gas, and understanding environmental methane cycles is critical both to developing accurate estimates of current methane emission rates and to modeling how cycles may respond to climate change. While there are many natural sources of methane, bubbling from lake sediments, or ebullition, is considered an important emission pathway. Ebullition can transport methane directly to the atmosphere, bypassing potential chemical or biological degradation in the water column. Existing bubble models predict some methane dissolution from rising bubbles, though dissolution estimates depend on the particular equations chosen to parameterize bubble rise velocity and gas transfer rates. To test current bubble dissolution models we installed a series of bubble traps at multiple depths in Upper Mystic Lake near Boston, Massachusetts. Traps gathered bubbles continuously during the summer of 2013 and were periodically emptied for gas volume measurements and chemical composition analysis. The gathered trap data demonstrated that surface traps have a significantly reduced bubble volume and methane fraction when compared with lake-bottom traps. This difference allows us to quantify the amount of methane dissolved in the water column due to ebullition. Preliminary data suggest that dissolution from bubbles could account for approximately 5% of the previously observed hypolimnetic methane accumulation in Upper Mystic Lake. Bubble methane contents in surface traps are consistent with average bubble sizes in the 3-6 mm diameter range based on the bubble models of McGinnis et al, 2006, and suggest that on the order of 50% of methane released by ebullition in this lake is dissolved before reaching the atmosphere. Data also indicates that careful corrections may be needed to account for small amounts of potential gas losses associated with dissolution at the gas/water interface within the traps. Using the gathered data to understand bubble size distributions

  11. Preheating in bubble collisions

    SciTech Connect

    Zhang Jun; Piao Yunsong

    2010-08-15

    In a landscape with metastable minima, the bubbles will inevitably nucleate. We show that when the bubbles collide, due to the dramatic oscillation of the field at the collision region, the energy deposited in the bubble walls can be efficiently released by the explosive production of the particles. In this sense, the collision of bubbles is actually highly inelastic. The cosmological implications of this result are discussed.

  12. Microfluidic conductimetric bioreactor.

    PubMed

    Limbut, Warakorn; Loyprasert, Suchera; Thammakhet, Chongdee; Thavarungkul, Panote; Tuantranont, Adisorn; Asawatreratanakul, Punnee; Limsakul, Chusak; Wongkittisuksa, Booncharoen; Kanatharana, Proespichaya

    2007-06-15

    A microfluidic conductimetric bioreactor has been developed. Enzyme was immobilized in the microfluidic channel on poly-dimethylsiloxane (PDMS) surface via covalent binding method. The detection unit consisted of two gold electrodes and a laboratory-built conductimetric transducer to monitor the increase in the conductivity of the solution due to the change of the charges generated by the enzyme-substrate catalytic reaction. Urea-urease was used as a representative analyte-enzyme system. Under optimum conditions urea could be determined with a detection limit of 0.09 mM and linearity in the range of 0.1-10 mM (r=0.9944). The immobilized urease on the microchannel chip provided good stability (>30 days of operation time) and good repeatability with an R.S.D. lower than 2.3%. Good agreement was obtained when urea concentrations of human serum samples determined by the microfluidic flow injection conductimetric bioreactor system were compared to those obtained using the Berthelot reaction (P<0.05). After prolong use the immobilized enzyme could be removed from the PDMS microchannel chip enabling new active enzyme to be immobilized and the chip to be reused. PMID:17289366

  13. Sensing in tissue bioreactors

    NASA Astrophysics Data System (ADS)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  14. Cells growing in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. Shown here, clusters of cells slowly spin inside a bioreactor. On Earth, the cells continually fall through the buffer medium and never hit bottom. In space, they are naturally suspended. Rotation ensures gentle stirring so waste is removed and fresh nutrient and oxygen are supplied. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  15. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    NASA Astrophysics Data System (ADS)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  16. Enzymatic cascade bioreactor

    DOEpatents

    Simmons, Blake A.; Volponi, Joanne V.; Ingersoll, David; Walker, Andrew

    2007-09-04

    Disclosed is an apparatus and method for continuously converting sucrose to .beta.-D-glucose. The method comprises a three stage enzymatic reactor in which an aqueous solution of sucrose is first converted into a solution of fructose and .alpha.-D-glucose by passing it through a porous, packed column containing an inert media on which invertase is immobilized. This solution is then sent through a second packed column containing glucose isomerase and finally a third packed column containing mutarotase. Solution temperature and pH are adjusted to maximize glucose output.

  17. PULSE COLUMN

    DOEpatents

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  18. Bubble Manipulation by Self Organization of Bubbles inside Ultrasonic Wave

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Koganezawa, Masato

    2005-06-01

    Microbubble manipulation using ultrasonic waves is a promising technology in the fields of future medicine and biotechnology. For example, it is considered that bubble trapping using ultrasonic waves may play an important role in drug or gene delivery systems in order to trap the drugs or genes in the diseased tissue. Usually, when bubbles are designed so that they carry payloads, such as drug or gene, they tend to be harder than free bubbles. These hard bubbles receive a small acoustic radiation force, which is not sufficient for bubble manipulation. In this paper, a novel method of microbubble manipulation using ultrasonic waves is proposed. This method uses seed bubbles in order to manipulate target bubbles. When the seed bubbles are introduced into the ultrasonic wave field, they start to oscillate to produce a bubble aggregation of a certain size. Then the target bubbles are introduced, the target bubbles attach around the seed bubbles producing a bubble mass with bilayers (inner layer: seed bubbles, outer layer: target bubbles). The target bubbles are manipulated as a bilayered bubble mass. Basic experiments are carried out using polyvinyl chloride (PVC) shell bubbles. No target bubbles are trapped when only the target bubbles are introduced. However, they are trapped if the seed bubbles are introduced in advance.

  19. Membrane Bioreactor With Pressure Cycle

    NASA Technical Reports Server (NTRS)

    Efthymiou, George S.; Shuler, Michael L.

    1991-01-01

    Improved class of multilayer membrane bioreactors uses convention forced by differences in pressure to overcome some of diffusional limitations of prior bioreactors. In reactor of new class, flow of nutrient solution reduces adverse gradients of concentration, keeps cells supplied with fresh nutrient, and sweeps away products faster than diffusion alone. As result, overall yield and rate of reaction increased. Pressures in sweeping gas and nutrient alternated to force nutrient liquid into and out of biocatalyst layer through hyrophilic membrane.

  20. Bioreactor Mass Transport Studies

    NASA Technical Reports Server (NTRS)

    Kleis, Stanley J.; Begley, Cynthia M.

    1997-01-01

    The objectives of the proposed research efforts were to develop both a simulation tool and a series of experiments to provide a quantitative assessment of mass transport in the NASA rotating wall perfused vessel (RWPV) bioreactor to be flown on EDU#2. This effort consisted of a literature review of bioreactor mass transport studies, the extension of an existing scalar transport computer simulation to include production and utilization of the scalar, and the evaluation of experimental techniques for determining mass transport in these vessels. Since mass transport at the cell surface is determined primarily by the relative motion of the cell assemblage and the surrounding fluid, a detailed assessment of the relative motion was conducted. Results of the simulations of the motion of spheres in the RWPV under microgravity conditions are compared with flight data from EDU#1 flown on STS-70. The mass transport across the cell membrane depends upon the environment, the cell type, and the biological state of the cell. Results from a literature review of cell requirements of several scalars are presented. As a first approximation, a model with a uniform spatial distribution of utilization or production was developed and results from these simulations are presented. There were two candidate processes considered for the experimental mass transport evaluations. The first was to measure the dissolution rate of solid or gel beads. The second was to measure the induced fluorescence of beads as a stimulant (for example hydrogen peroxide) is infused into the vessel. Either technique would use video taped images of the process for recording the quantitative results. Results of preliminary tests of these techniques are discussed.

  1. A Better Method for Filling Pasteur Pipet Chromatography Columns

    ERIC Educational Resources Information Center

    Ruekberg, Ben

    2006-01-01

    An alternative method for the preparation of Pasteur pipet chromatography columns is presented that allows the column to be filled with solvent without bubbles and allows greater control of fluid flow while the materials to be separated are added. Students are required to wear gloves and goggles and caution should be used while handling glass…

  2. Bubble Velocities in Slowly Sheared Bubble Rafts

    NASA Astrophysics Data System (ADS)

    Dennin, Michael

    2004-03-01

    Many complex fluids, such as foams, emulsions, colloids, and granular matter, exhibit interesting flow behavior when subjected to slow, steady rates of strain. The flow is characterized by irregular fluctuations in the stress with corresponding nonlinear rearrangements of the individual particles. We focus on the flow behavior of a model two-dimensional system: bubble rafts. Bubble rafts consist of a single layer of soap bubbles floating on the surface of a liquid subphase, usually a soap-water solution. The bubbles are sheared using a Couette geometry, i.e. concentric cylinders. We rotate the outer cylinder at a constant rate and measure the motions of individual bubbles and the stress on the inner cylinder. We will report on the velocity profiles of the bubbles averaged over long-times and averaged over individual stress events. The long-time average velocities are well described by continuum models for fluids with the one surprising feature that there exists a critical radius at which the shear-rate is discontinuous. The individual profiles are highly nonlinear and strongly correlated with the stress fluctuations. We will discuss a number of interesting questions. Can the average profiles be understood in a simple way given the individual velocities? Is there a clear "classification" for the individual profiles, or are they purely random? What sets the critical radius for a given set of flow conditions?

  3. Electrowetting of soap bubbles

    NASA Astrophysics Data System (ADS)

    Arscott, Steve

    2013-07-01

    A proof-of-concept demonstration of the electrowetting-on-dielectric of a sessile soap bubble is reported here. The bubbles are generated using a commercial soap bubble mixture—the surfaces are composed of highly doped, commercial silicon wafers covered with nanometer thick films of Teflon®. Voltages less than 40 V are sufficient to observe the modification of the bubble shape and the apparent bubble contact angle. Such observations open the way to inter alia the possibility of bubble-transport, as opposed to droplet-transport, in fluidic microsystems (e.g., laboratory-on-a-chip)—the potential gains in terms of volume, speed, and surface/volume ratio are non-negligible.

  4. Gas bubble detector

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)

    1995-01-01

    A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.

  5. Contactless Inductive Bubble Detection in a Liquid Metal Flow.

    PubMed

    Gundrum, Thomas; Büttner, Philipp; Dekdouk, Bachir; Peyton, Anthony; Wondrak, Thomas; Galindo, Vladimir; Eckert, Sven

    2016-01-01

    The detection of bubbles in liquid metals is important for many technical applications. The opaqueness and the high temperature of liquid metals set high demands on the measurement system. The high electrical conductivity of the liquid metal can be exploited for contactless methods based on electromagnetic induction. We will present a measurement system which consists of one excitation coil and a pickup coil system on the opposite sides of the pipe. With this sensor we were able to detect bubbles in a sodium flow inside a stainless steel pipe and bubbles in a column filled with a liquid Gallium alloy. PMID:26751444

  6. Contactless Inductive Bubble Detection in a Liquid Metal Flow

    PubMed Central

    Gundrum, Thomas; Büttner, Philipp; Dekdouk, Bachir; Peyton, Anthony; Wondrak, Thomas; Galindo, Vladimir; Eckert, Sven

    2016-01-01

    The detection of bubbles in liquid metals is important for many technical applications. The opaqueness and the high temperature of liquid metals set high demands on the measurement system. The high electrical conductivity of the liquid metal can be exploited for contactless methods based on electromagnetic induction. We will present a measurement system which consists of one excitation coil and a pickup coil system on the opposite sides of the pipe. With this sensor we were able to detect bubbles in a sodium flow inside a stainless steel pipe and bubbles in a column filled with a liquid Gallium alloy. PMID:26751444

  7. Sonochemistry and bubble dynamics.

    PubMed

    Mettin, Robert; Cairós, Carlos; Troia, Adriano

    2015-07-01

    The details of bubble behaviour in chemically active cavitation are still not sufficiently well understood. Here we report on experimental high-speed observations of acoustically driven single-bubble and few-bubble systems with the aim of clarification of the connection of their dynamics with chemical activity. Our experiment realises the sonochemical isomerization reaction of maleic acid to fumaric acid, mediated by bromine radicals, in a bubble trap set-up. The main result is that the reaction product can only be observed in a parameter regime where a small bubble cluster occurs, while a single trapped bubble stays passive. Evaluations of individual bubble dynamics for both cases are given in form of radius-time data and numerical fits to a bubble model. A conclusion is that a sufficiently strong collapse has to be accompanied by non-spherical bubble dynamics for the reaction to occur, and that the reason appears to be an efficient mixing of liquid and gas phase. This finding corroborates previous observations and literature reports on high liquid phase sonochemical activity under distinct parameter conditions than strong sonoluminescence emissions. PMID:25194210

  8. Prospects for bubble fusion

    SciTech Connect

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  9. Space bioreactor: Design/process flow

    NASA Technical Reports Server (NTRS)

    Cross, John H.

    1987-01-01

    The design of the space bioreactor stems from three considerations. First, and foremost, it must sustain cells in microgravity. Closely related is the ability to take advantage of the weightlessness and microgravity. Lastly, it should fit into a bioprocess. The design of the space bioreactor is described in view of these considerations. A flow chart of the bioreactor is presented and discussed.

  10. Gases in Tektite Bubbles.

    PubMed

    O'keefe, J A; Lowman, P D; Dunning, K L

    1962-07-20

    Spectroscopic analysis of light produced by electrodeless discharge in a tektite bubble showed the main gases in the bubble to be neon, helium, and oxygen. The neon and helium have probably diffused in from the atmosphere, while the oxygen may be atmospheric gas incorporated in the tektite during its formation. PMID:17801113

  11. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  12. Let Them Blow Bubbles.

    ERIC Educational Resources Information Center

    Korenic, Eileen

    1988-01-01

    Describes a series of activities and demonstrations involving the science of soap bubbles. Starts with a recipe for bubble solution and gives instructions for several activities on topics such as density, interference colors, optics, static electricity, and galaxy formation. Contains some background information to help explain some of the effects.…

  13. Cost versus Enrollment Bubbles

    ERIC Educational Resources Information Center

    Vedder, Richard K.; Gillen, Andrew

    2011-01-01

    The defining characteristic of a bubble is unsustainable growth that eventually reverses. Bubbles typically arise when uncertainty leads to unsustainable trends, and the authors argue that there are two areas in which higher education has experienced what appear to be unsustainable trends, namely, college costs (the costs to students, parents, and…

  14. Clustering in bubbly liquids

    NASA Astrophysics Data System (ADS)

    Figueroa, Bernardo; Zenit, Roberto

    2004-11-01

    We are conducting experiments to determine the amount of clustering that occurs when small gas bubbles ascend in clean water. In particular, we are interested in flows for which the liquid motion around the bubbles can be described, with a certain degree of accuracy, using potential flow theory. This model is applicable for the case of bubbly liquids in which the Reynolds number is large and the Weber number is small. To clearly observe the formation of bubble clusters we propose the use of a Hele-Shaw-type channel. In this thin channel the bubbles cannot overlap in the depth direction, therefore the identification of bubble clusters cannot be misinterpreted. Direct video image analysis is performed to calculate the velocity and size of the bubbles, as well as the formation of clusters. Although the walls do affect the motion of the bubbles, the clustering phenomena does occur and has the same qualitative behavior as in fully three-dimensional flows. A series of preliminary measurements are presented. A brief discussion of our plans to perform PIV measurements to obtain the liquid velocity fields is also presented.

  15. Evaluation of a new mist-chamber bioreactor for biotechnological applications.

    PubMed

    Tscheschke, Bernd; Dreimann, Janis; von der Ruhr, Jürgen W; Schmidt, Timo; Stahl, Frank; Just, Lothar; Scheper, Thomas

    2015-06-01

    In this article we describe the development, the characterization and the evaluation of a novel bioreactor type for the cultivation of different pro- and eukaryotic cell-systems: the mist-chamber bioreactor. This innovative bioreactor meets the demand of cultivation systems for shear stress sensitive cells with high requirements for gas supply. Within the mist-chamber bioreactor the cells are cultivated inside an aerosol of vaporized medium generated by ultrasonic vaporization. In contrast to many established bioreactor systems the mist-chamber bioreactor offers an environment with an excellent gas supply without any impeller or gas bubble induced shear stress. A mist-chamber bioreactor prototype has been manufactured and characterized during this work. In the technical and chemical characterization we evaluated the vaporization process, resulting in a vaporization performance of 32 mL/h at working conditions. On this basis we calculated a biomass of 1.4 g (S. cerevisiae, qs  = 3.45 × 10-3 mol/g/h) and 3.4 g (Aspergillus niger, qs  = 1.33 × 10-3 mol/g/h) where the growth rate becomes limited by transport processes. Additionally, we determined a homogenous cultivation area to a height of 3 cm giving a total volume of 0.45 L for the cultivation. Medium components were examined according to their stability during vaporization with the result that all components are stable for at least 5 days. After the technical characterization we demonstrated the feasibility to cultivate S. cerevisiae and F. velupites in the mist-chamber bioreactor. The results demonstrated that the mist-chamber bioreactor is able to transport a sufficient amount of nutrients consistently to the cell samples and offers an excellent oxygen supply without any shear stress inducing aeration. Furthermore we successfully cultivated F. velupites in a solid state cultivation in a long term experiment. The data indicate that the new bioreactor concept can contribute to

  16. Tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Cells from kidneys lose some of their special features in conventional culture but form spheres replete with specialized cell microvilli (hair) and synthesize hormones that may be clinically useful. Ground-based research studies have demonstrated that both normal and neoplastic cells and tissues recreate many of the characteristics in the NASA bioreactor that they display in vivo. Proximal kidney tubule cells that normally have rich apically oriented microvilli with intercellular clefts in the kidney do not form any of these structures in conventional two-dimensional monolayer culture. However, when normal proximal renal tubule cells are cultured in three-dimensions in the bioreactor, both the microvilli and the intercellular clefts form. This is important because, when the morphology is recreated, the function is more likely also to be rejuvenated. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  17. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  18. Bubble Eliminator Based on Centrifugal Flow

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The fluid bubble eliminator (FBE) is a device that removes gas bubbles from a flowing liquid. The FBE contains no moving parts and does not require any power input beyond that needed to pump the liquid. In the FBE, the buoyant force for separating the gas from the liquid is provided by a radial pressure gradient associated with a centrifugal flow of the liquid and any entrained bubbles. A device based on a similar principle is described in Centrifugal Adsorption Cartridge System (MSC- 22863), which appears on page 48 of this issue. The FBE was originally intended for use in filtering bubbles out of a liquid flowing relatively slowly in a bioreactor system in microgravity. Versions that operate in normal Earth gravitation at greater flow speeds may also be feasible. The FBE (see figure) is constructed as a cartridge that includes two concentric cylinders with flanges at the ends. The outer cylinder is an impermeable housing; the inner cylinder comprises a gas-permeable, liquid-impermeable membrane covering a perforated inner tube. Multiple spiral disks that collectively constitute a spiral ramp are mounted in the space between the inner and outer cylinders. The liquid enters the FBE through an end flange, flows in the annular space between the cylinders, and leaves through the opposite end flange. The spiral disks channel the liquid into a spiral flow, the circumferential component of which gives rise to the desired centrifugal effect. The resulting radial pressure gradient forces the bubbles radially inward; that is, toward the inner cylinder. At the inner cylinder, the gas-permeable, liquid-impermeable membrane allows the bubbles to enter the perforated inner tube while keeping the liquid in the space between the inner and outer cylinders. The gas thus collected can be vented via an endflange connection to the inner tube. The centripetal acceleration (and thus the radial pressure gradient) is approximately proportional to the square of the flow speed and

  19. The Bubbling Galactic Disk

    NASA Astrophysics Data System (ADS)

    Churchwell, E.; Povich, M. S.; Allen, D.; Taylor, M. G.; Meade, M. R.; Babler, B. L.; Indebetouw, R.; Watson, C.; Whitney, B. A.; Wolfire, M. G.; Bania, T. M.; Benjamin, R. A.; Clemens, D. P.; Cohen, M.; Cyganowski, C. J.; Jackson, J. M.; Kobulnicky, H. A.; Mathis, J. S.; Mercer, E. P.; Stolovy, S. R.; Uzpen, B.; Watson, D. F.; Wolff, M. J.

    2006-10-01

    A visual examination of the images from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) has revealed 322 partial and closed rings that we propose represent partially or fully enclosed three-dimensional bubbles. We argue that the bubbles are primarily formed by hot young stars in massive star formation regions. We have found an average of about 1.5 bubbles per square degree. About 25% of the bubbles coincide with known radio H II regions, and about 13% enclose known star clusters. It appears that B4-B9 stars (too cool to produce detectable radio H II regions) probably produce about three-quarters of the bubbles in our sample, and the remainder are produced by young O-B3 stars that produce detectable radio H II regions. Some of the bubbles may be the outer edges of H II regions where PAH spectral features are excited and may not be dynamically formed by stellar winds. Only three of the bubbles are identified as known SNRs. No bubbles coincide with known planetary nebulae or W-R stars in the GLIMPSE survey area. The bubbles are small. The distribution of angular diameters peaks between 1' and 3' with over 98% having angular diameters less than 10' and 88% less than 4'. Almost 90% have shell thicknesses between 0.2 and 0.4 of their outer radii. Bubble shell thickness increases approximately linearly with shell radius. The eccentricities are rather large, peaking between 0.6 and 0.7; about 65% have eccentricities between 0.55 and 0.85.

  20. Bubbles, Bubbles: Integrated Investigations with Floating Spheres

    ERIC Educational Resources Information Center

    Reeder, Stacy

    2007-01-01

    In this article, the author describes integrated science and mathematics activities developed for fourth-grade students to explore and investigate three-dimensional geometric shapes, Bernoulli's principle, estimation, and art with and through bubbles. Students were engaged in thinking and reflection on the questions their teachers asked and were…

  1. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    PubMed

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management. PMID:27136151

  2. Tribonucleation of bubbles

    PubMed Central

    Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2014-01-01

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold. Direct observation through a transparent solid shows that each bubble in the trail results from the early coalescence of several microscopic bubbles, themselves detaching from microscopic gas pockets forming between the solids. From a detailed study of the wear tracks, with atomic force and scanning electron microscopy imaging, we conclude that these microscopic gas pockets originate from a local fracturing of the surface asperities, possibly enhanced by chemical reactions at the freshly created surfaces. Our findings will be useful either for preventing undesired bubble formation or, on the contrary, for “writing with bubbles,” i.e., creating controlled patterns of microscopic bubbles. PMID:24982169

  3. Influence of characteristics of micro-bubble clouds on backscatter lidar signal.

    PubMed

    Li, Wei; Yang, Kecheng; Xia, Min; Rao, Jionghui; Zhang, Wei

    2009-09-28

    Marine micro-bubbles are one of those important constituents that influence scattering characteristics of water column. Monte Carlo Based simulations show that a water entrained bubble cloud generate a characteristic backscatter of incident laser light [M. Xia, J. Opt. A: Pure Appl. Opt. 8, 350 (2006)]. This characteristic can be used to detect and localize bubble clouds, leading to wide ranging applications, especially in optical remote sensing. This paper describes tests of an underwater lidar system applied to detecting cloud of micro-bubbles. Laboratory experiments demonstrate that the system is capable of detecting bubbles ranging from diameter 10 microm approximately 200 microm, over a distance of 7-12 m from the detector. The dependence of the lidar return signal on size distribution of bubbles, concentration, thickness and location of bubble clouds is studied and compared with simulation results. PMID:19907564

  4. A Freon-Filled Bubble Chamber for Neutron Detection in Inertial Confinement Fusion Experiments

    SciTech Connect

    Ghilea, M.C.; Meyerhofer, D.D.; Sangster, T.C.

    2011-03-24

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron–Freon interactions were observed at neutron yields of 1013 emitted from deuterium–tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  5. A Freon-filled bubble chamber for neutron detection in inertial confinement fusion experiments

    SciTech Connect

    Ghilea, M. C.; Meyerhofer, D. D.; Sangster, T. C.

    2011-03-15

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 10{sup 13} emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  6. EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS

    SciTech Connect

    Leishear, R; Michael Restivo, M

    2008-06-26

    The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.

  7. Significance of viscoelastic effects on the rising of a bubble and bubble-to-bubble interaction

    NASA Astrophysics Data System (ADS)

    Fernandez, Arturo

    2011-11-01

    Numerical results for the rising of a bubble and the interaction between two bubbles in non-Newtonian fluids will be discussed. The computations are carried out using a multiscale method combining front-tracking with Brownian dynamics simulations. The evaluation of the material properties for the non-Newtonian fluid will be discussed firstly. The results from the computations of a single bubble show how elastic effects modify the deformation and rising of the bubble by pulling the tail of it. The relationship between the strength of the elastic forces and the discontinuity in the bubble terminal velocity, when plotted versus bubble volume, is also observed in the computations. The bubble-to-bubble interaction is dominated not only by elastic effects but also by the shear-thinning caused by the leading bubble, which leads the trailing bubble to accelerate faster and coalesce with the leading bubble.

  8. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  9. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 40 CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppo...

  10. MONITORING GUIDANCE FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  11. Aerator Combined With Bubble Remover

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.

    1993-01-01

    System produces bubble-free oxygen-saturated water. Bubble remover consists of outer solid-walled tube and inner hydrophobic, porous tube. Air bubbles pass from water in outer tube into inner tube, where sucked away. Developed for long-term aquaculture projects in space. Also applicable to terrestrial equipment in which entrained bubbles dry membranes or give rise to cavitation in pumps.

  12. Perfusion circuit concepts for hollow-fiber bioreactors used as in vitro cell production systems or ex vivo bioartificial organs.

    PubMed

    Balmert, Stephen C; McKeel, Daniel; Triolo, Fabio; Gridelli, Bruno; Zeilinger, Katrin; Bornemann, Reiner; Gerlach, Jörg C

    2011-05-01

    For the development and implementation of primary human cell- and stem cell-based applications in regenerative medicine, large amounts of cells with well-defined characteristics are needed. Such cell quantities can be obtained with the use of hollow fiber-based bioreactors. While the use of such bioreactors generally requires a perfusion circuit, the configuration and complexity of such circuits is still in debate. We evaluated various circuit configurations to investigate potential perfusate volume shifts in the arterial and venous sides of the perfusion circuit, as well as in the feed and waste lines. Volume shifts with changes in flow conditions were measured with graduated bubble traps in the circuit, and perfusion pressures were measured at three points in the circuits. The results of this study demonstrate that the bioreactor perfusion circuit configuration has an effect on system pressures and volume shifts in the circuit. During operation, spikes in post-bioreactor pressures caused detrimental, potentially dangerous volume shifts in the feed and waste lines for configurations that lacked feed pumps and/or waste line check valves. Our results indicate that a more complex tubing circuit adds to safety of operation and avoids technical challenges associated with the use of large-scale hollow fiber bioreactors (e.g., for extracorporeal liver support or erythrocyte production from hematopoietic stem cells), including volume shifts and the need for a large reservoir. Finally, to ensure safe use of bioreactors, measuring pre-, intra-, and post-bioreactor pressures, and pump operation control is also advisable, which suggests the use of specifically developed bioreactor perfusion devices. PMID:21623585

  13. What's in a Bubble?

    ERIC Educational Resources Information Center

    Saunderson, Megan

    2000-01-01

    Describes a unit on detergents and bubbles that establishes an interest in the properties of materials and focuses on active learning involving both hands- and minds-on learning rather than passive learning. (ASK)

  14. Blowing magnetic skyrmion bubbles

    NASA Astrophysics Data System (ADS)

    Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; Yu, Guoqiang; Jungfleisch, M. Benjamin; Fradin, Frank Y.; Pearson, John E.; Tserkovnyak, Yaroslav; Wang, Kang L.; Heinonen, Olle; te Velthuis, Suzanne G. E.; Hoffmann, Axel

    2015-07-01

    The formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally “blow” magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of these dynamically created skyrmions, including depinning and motion. The demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics.

  15. Chemistry in Soap Bubbles.

    ERIC Educational Resources Information Center

    Lee, Albert W. M.; Wong, A.; Lee, H. W.; Lee, H. Y.; Zhou, Ning-Huai

    2002-01-01

    Describes a laboratory experiment in which common chemical gases are trapped inside soap bubbles. Examines the physical and chemical properties of the gases such as relative density and combustion. (Author/MM)

  16. Methane gas seepage - Disregard of significant water column filter processes?

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Schmale, Oliver

    2016-04-01

    Marine methane seepage represents a potential contributor for greenhouse gas in the atmosphere and is discussed as a driver for climate change. The ultimate question is how much methane is released from the seafloor on a global scale and what fraction may reach the atmosphere? Dissolved fluxes from methane seepage sites on the seabed were found to be very efficiently reduced by benthic microbial oxidation, whereas transport of free gas bubbles from the seabed is considered to bypass the effective benthic methane filter. Numerical models are available today to predict the fate of such methane gas bubble release to the water column in regard to gas exchange with the ambient water column, respective bubble lifetime and rise height. However, the fate of rising gas bubbles and dissolved methane in the water column is not only governed by dissolution, but is also affected by lateral oceanographic currents and vertical bubble-induced upwelling, microbial oxidation, and physico-chemical processes that remain poorly understood so far. According to this gap of knowledge we present data from two study sites - the anthropogenic North Sea 22/4b Blowout and the natural Coal Oil point seeps - to shed light into two new processes gathered with hydro-acoustic multibeam water column imaging and microbial investigations. The newly discovered processes are hereafter termed Spiral Vortex and Bubble Transport Mechanism. Spiral Vortex describes the evolution of a complex vortical fluid motion of a bubble plume in the wake of an intense gas release site (Blowout, North Sea). It appears very likely that it dramatically changes the dissolution kinetics of the seep gas bubbles. Bubble Transport Mechanism prescribes the transport of sediment-hosted bacteria into the water column via rising gas bubbles. Both processes act as filter mechanisms in regard to vertical transport of seep related methane, but have not been considered before. Spiral Vortex and Bubble Transport Mechanism represent the

  17. The Speed of Axial Propagation of a Cylindrical Bubble Through a Cylindrical Vortex

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    Inspired by the rapid elongation of air columns injected into vortices by dolphins, we present an exact inviscid solution for the axial speed (assumed steady) of propagation of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The bubble is assumed to be held at constant pressure by being connected to a reservoir, the lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation rate above which steadily propagating bubbles exist. For a bubble at ambient pressure, the propagation speed of the bubble (relative to axial velocity within the vortex) varies between 0.5 and 0.6 of the maximum rotational speed of the vortex. Surprisingly, the bubble tip can propagate (almost as rapidly) even when the pressure minimum in the vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple on the nose of the bubble. A situation important for incipient vortex cavitation, and one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose internal pressure may vary. Under the assumption that the acceleration term is small (checked a posteriori), the steady solution is applied at each instant during the elongation. Three types of behavior are then possible depending on physical parameters and initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation with decreasing bubble pressure. A limit point of the steady solution is encountered at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure and indefinite creation of volume. This is made possible by the existence of propagating solutions at bubble pressures below the minimum vortex pressure. As the bubble stretches, its radius initially decreases but then becomes constant; this is also observed in experiments on incipient vortex cavitation.

  18. Bubble coalescence in magmas

    NASA Technical Reports Server (NTRS)

    Herd, Richard A.; Pinkerton, Harry

    1993-01-01

    The most important factors governing the nature of volcanic eruptions are the primary volatile contents, the ways in which volatiles exsolve, and how the resulting bubbles grow and interact. In this contribution we assess the importance of bubble coalescence. The degree of coalescence in alkali basalts has been measured using Image Analysis techniques and it is suggested to be a process of considerable importance. Binary coalescence events occur every few minutes in basaltic melts with vesicularities greater than around 35 percent.

  19. Clustering in Bubble Suspensions

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto

    2000-11-01

    A monidisperse bubble suspension is studied experimentally for the limit in which the Weber number is small and the Reynolds number is large. For this regime the suspension can be modeled using potential flow theory to describe the dynamics of the interstitial fluid. Complete theoretical descriptions have been composed (Spelt and Sangani, 1998) to model the behavior of these suspensions. Bubble clustering is a natural instability that arises from the potential flow considerations, in which bubbles tend to align in horizontal rafts as they move upwards. The appearance of bubble clusters was recently corroborated experimentally by Zenit et al. (2000), who found that although clusters did appear, their strength was not as strong as the predictions. Experiments involving gravity driven shear flows are used to explain the nature of the clustering observed in these type of flows. Balances of the bubble phase pressure (in terms of a calculated diffusion coefficient) and the Maxwell pressure (from the potential flow description) are presented to predict the stability of the bubble suspension. The predictions are compared with experimental results.

  20. Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Valluri, Jagan V.

    2011-01-01

    A methodology for growing three-dimensional plant tissue models in a hydrodynamic focusing bioreactor (HFB) has been developed. The methodology is expected to be widely applicable, both on Earth and in outer space, as a means of growing plant cells and aggregates thereof under controlled conditions for diverse purposes, including research on effects of gravitation and other environmental factors upon plant growth and utilization of plant tissue cultures to produce drugs in quantities greater and at costs lower than those of conventional methodologies. The HFB was described in Hydro focus - ing Bioreactor for Three-Dimensional Cell Culture (MSC-22358), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 66. To recapitulate: The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear liquid culture environment simultaneously with the herding of suspended cells and tissue assemblies and removal of unwanted air bubbles. The HFB includes a rotating cell-culture vessel with a centrally located sampling port and an internal rotating viscous spinner attached to a rotating base. The vessel and viscous spinner can be made to rotate at the same speed and direction or different speeds and directions to tailor the flow field and the associated hydrodynamic forces in the vessel in order to obtain low-shear suspension of cells and control of the locations of cells and air bubbles. For research and pharmaceutical-production applications, the HFB offers two major benefits: low shear stress, which promotes the assembly of cells into tissue-like three-dimensional constructs; and randomization of gravitational vectors relative to cells, which affects production of medicinal compounds. Presumably, apposition of plant cells in the absence of shear forces promotes cell-cell contacts, cell aggregation, and cell differentiation. Only gentle mixing is necessary for distributing nutrients and oxygen. It has been postulated that inasmuch as cells in the simulated

  1. Tapered fluidized bed bioreactor for environmental control and fuel production

    SciTech Connect

    Scott, C. D.; Hancher, C. W.; Arcuri, E. J.

    1980-01-01

    Fluidized bed bioreactors are under development for use in environmental control and energy production. The most effective systems utilize a tapered portion either throughout the column or at the top of the column. This taper allows a wide range of operating conditions without loss of the fluidized particulates, and in general, results in more stable operation. The system described here utilize fixed films of microorganisms that have attached themselves to the fluidized particles. Preliminary investigations of the attachment indicate that reactor performance is related to film thickness. The biological denitrification of aqueous waste streams is typical of processes under development that utilize fluidized bed bioreactors. This development has progressed to the pilot plant scale where two 20-cm-diam x 800-cm fluidized beds in series accept aqueous wastes with nitrate concentrations as high as 10,000 mg/l and denitrification rates greater than 50 g/l/day using residence times of less than 30 minutes in each reactor. Other applications include aerobic degradation of phenolic wastes at rates greater than 25 g/l/day and the conversion of glucose to ethanol.

  2. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    EPA Science Inventory

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  3. The dynamics of histotripsy bubbles

    NASA Astrophysics Data System (ADS)

    Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.

    2011-09-01

    Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.

  4. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  5. Review of nonconventional bioreactor technology

    SciTech Connect

    Turick, C.E.; Mcllwain, M.E.

    1993-09-01

    Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, and electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.

  6. Prostate tumor grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This prostate cancer construct was grown during NASA-sponsored bioreactor studies on Earth. Cells are attached to a biodegradable plastic lattice that gives them a head start in growth. Prostate tumor cells are to be grown in a NASA-sponsored Bioreactor experiment aboard the STS-107 Research-1 mission in 2002. Dr. Leland Chung of the University of Virginia is the principal investigator. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and the University of Virginia.

  7. Colliding with a crunching bubble

    SciTech Connect

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  8. Bubbles of Metamorphosis

    NASA Astrophysics Data System (ADS)

    Prakash, Manu

    2011-11-01

    Metamorphosis presents a puzzling challenge where, triggered by a signal, an organism abruptly transforms its entire shape and form. Here I describe the role of physical fluid dynamic processes during pupal metamorphosis in flies. During early stages of pupation of third instar larvae into adult flies, a physical gas bubble nucleates at a precise temporal and spatial location, as part of the normal developmental program in Diptera. Although its existence has been known for the last 100 years, the origin and control of this ``cavitation'' event has remained completely mysterious. Where does the driving negative pressure for bubble nucleation come from? How is the location of the bubble nucleation site encoded in the pupae? How do molecular processes control such a physical event? What is the role of this bubble during development? Via developing in-vivo imaging techniques, direct bio-physical measurements in live insect pupal structures and physical modeling, here I elucidate the physical mechanism for appearance and disappearance of this bubble and predict the site of nucleation and its exact timing. This new physical insight into the process of metamorphosis also allows us to understand the inherent design of pupal shell architectures in various species of insects. Milton Award, Harvard Society of Fellows; Terman Fellowship, Stanford

  9. Turbulent bubbly flow

    NASA Astrophysics Data System (ADS)

    van den Berg, Thomas H.; Luther, Stefan; Mazzitelli, Irene M.; Rensen, Judith M.; Toschi, Federico; Lohse, Detlef

    The effect of bubbles on fully developed turbulent flow is investigated numerically and experimentally, summarizing the results of our previous papers (Mazzitelli et al., 2003, Physics of Fluids15, L5. and Journal of Fluid Mechanics488, 283; Rensen, J. et al. 2005, Journal of Fluid Mechanics538, 153). On the numerical side, we simulate Navier Stokes turbulence with a Taylor Reynolds number of Re?˜60, a large large-scale forcing, and periodic boundary conditions. The point-like bubbles follow their Lagrangian paths and act as point forces on the flow. As a consequence, the spectral slope is less steep as compared to the Kolmogorov case. The slope decrease is identified as a lift force effect. On the experimental side, we do hot-film anemometry in a turbulent water channel with Re? ˜ 200 in which we have injected small bubbles up to a volume percentage of 3%. Here the challenge is to disentangle the bubble spikes from the hot-film velocity signal. To achieve this goal, we have developed a pattern recognition scheme. Furthermore, we injected microbubbles up to a volume percentage of 0.3%. Both in the counter flowing situation with small bubbles and in the co-flow situation with microbubbles, we obtain a less spectral slope, in agreement with the numerical result.

  10. A Bubble Bursts

    NASA Technical Reports Server (NTRS)

    2005-01-01

    RCW 79 is seen in the southern Milky Way, 17,200 light-years from Earth in the constellation Centaurus. The bubble is 70-light years in diameter, and probably took about one million years to form from the radiation and winds of hot young stars.

    The balloon of gas and dust is an example of stimulated star formation. Such stars are born when the hot bubble expands into the interstellar gas and dust around it. RCW 79 has spawned at least two groups of new stars along the edge of the large bubble. Some are visible inside the small bubble in the lower left corner. Another group of baby stars appears near the opening at the top.

    NASA's Spitzer Space Telescope easily detects infrared light from the dust particles in RCW 79. The young stars within RCW 79 radiate ultraviolet light that excites molecules of dust within the bubble. This causes the dust grains to emit infrared light that is detected by Spitzer and seen here as the extended red features.