Science.gov

Sample records for bubble rise characteristics

  1. Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments

    SciTech Connect

    Krishna, R.; Baten, J.M. van

    1999-10-01

    About five centuries ago, Leonardo da Vinci described the sinuous motion of gas bubbles rising in water. The authors have attempted to simulate the rise trajectories of bubbles of 4, 5, 7, 8, 9, 12, and 20 mm in diameter rising in a 2D rectangular column filled with water. The simulations were carried out using the volume-of-fluid (VOF) technique developed by Hirt and Nichols (J. Computational Physics, 39, 201--225 (1981)). To solve the Navier-Stokes equations of motion the authors used a commercial solver, CFX 4.1c of AEA Technology, UK. They developed their own bubble-tracking algorithm to capture sinuous bubble motions. The 4 and 5 mm bubbles show large lateral motions observed by Da Vinci. The 7, 8 and 9 mm bubble behave like jellyfish. The 12 mm bubble flaps its wings like a bird. The extent of lateral motion of the bubbles decreases with increasing bubble size. Bubbles larger than 20 mm in size assume a spherical cap form and simulations of the rise characteristics match experiments exactly. VOF simulations are powerful tools for a priori determination of the morphology and rise characteristics of bubbles rising in a liquid. Bubble-bubble interactions are also properly modeled by the VOF technique.

  2. An Experimental Investigation of Bubble Rise Characteristics in a Crystal Suspended Non—Newtonian Fluid

    NASA Astrophysics Data System (ADS)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.; Rackemann, D. W.

    2008-07-01

    An experimental study of the bubble rise characteristics in non-Newtonian fluid with crystal suspension is presented in this paper. The suspension was made of different concentration of xanthan gum solutions with 0.23 mm polystyrene crystal particle. Different percentage of crystal content (by weight) was used to vary rheological properties. The effect of crystal particles and bubble volumes on the bubble rise velocity and bubble trajectory is analysed. The results show that the average bubble velocity increases with the increase in bubble volume for crystal suspended xanthan gum solution. In trajectory analysis, it is seen that the small bubbles experienced less horizontal motion in crystal suspended xanthan gum solution while larger bubbles followed a spiral motion. Experimentally determined data for the drag coefficient at high Reynolds number are compared with the results of other analytical and experimental studies available in the literature. The reported experimental data of drag co-efficient increases in crystal suspended xanthan gum solution for corresponding bubble volume and was found to be consistent with published data.

  3. Modelling of Air Bubble Rising in Water and Polymeric Solution

    NASA Astrophysics Data System (ADS)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.; Subaschandar, N.

    2010-06-01

    This study investigates a Computational Fluid Dynamics (CFD) model for a single air bubble rising in water and xanthan gum solution. The bubble rise characteristics through the stagnant water and 0.05% xanthan gum solution in a vertical cylindrical column is modelled using the CFD code Fluent. Single air bubble rise dispersed into the continuous liquid phase has been considered and modelled for two different bubble sizes. Bubble velocity and vorticity magnitudes were captured through a surface-tracking technique i.e. Volume of Fluid (VOF) method by solving a single set of momentum equations and tracking the volume fraction of each fluid throughout the domain. The simulated results of the bubble flow contours at two different heights of the cylindrical column were validated by the experimental results and literature data. The model developed is capable of predicting the entire flow characteristics of different sizes of bubble inside the liquid column.

  4. Cusped Bubbles Rising through Polyelectrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Belmonte, Andrew; Sostarecz, Michael

    2000-11-01

    It is well known that a bubble rising in a polymer fluid can have a cusp-like tail. We report on an experimental study of bubbles rising through solutions of glycerol/water with the addition of the polymer xanthan gum, a polyelectrolyte which becomes more rigid as the free ion concentration is increased. The addition of salt also decreases the elasticity of the xanthan gum solutions, and we observe its effects on the velocity and shape of the cusped bubble.

  5. Dynamics of Bubbles Rising in Finite and Infinite Media

    SciTech Connect

    C.C. Maneri; P.F. Vassallo

    2000-10-27

    The dynamic behavior of single bubbles rising in quiescent liquid Suva (R134a) in a duct has been examined through the use of a high speed video system. Size, shape and velocity measurements obtained with the video system reveal a wide variety of characteristics for the bubbles as they rise in both finite and infinite media. This data, coupled with previously published data for other working fluids, has been used to assess and extend a rise velocity model given by Fan and Tsuchiya. As a result of this assessment, a new rise velocity model has been developed which maintains the physically consistent characteristics of the surface tension in the distorted bubbly regime. In addition, the model is unique in that it covers the entire range of bubble sizes contained in the spherical, distorted and planar slug regimes.

  6. Bubble growth and rise in soft sediments

    NASA Astrophysics Data System (ADS)

    Boudreau, Bernard P.; Algar, Chris; Johnson, Bruce D.; Croudace, Ian; Reed, Allen; Furukawa, Yoko; Dorgan, Kelley M.; Jumars, Peter A.; Grader, Abraham S.; Gardiner, Bruce S.

    2005-06-01

    The mechanics of uncemented soft sediments during bubble growth are not widely understood and no rheological model has found wide acceptance. We offer definitive evidence on the mode of bubble formation in the form of X-ray computed tomographic images and comparison with theory. Natural and injected bubbles in muddy cohesive sediments are shown to be highly eccentric oblate spheroids (disks) that grow either by fracturing the sediment or by reopening preexisting fractures. In contrast, bubbles in soft sandy sediment tend to be spherical, suggesting that sand acts fluidly or plastically in response to growth stresses. We also present bubble-rise results from gelatin, a mechanically similar but transparent medium, that suggest that initial rise is also accomplished by fracture. Given that muddy sediments are elastic and yield by fracture, it becomes much easier to explain physically related phenomena such as seafloor pockmark formation, animal burrowing, and gas buildup during methane hydrate melting.

  7. Bubble Rise and Break-Up in Volcanic Conduits

    NASA Astrophysics Data System (ADS)

    Soldati, A.; Cashman, K. V.; Rust, A.; Rosi, M.

    2013-12-01

    The continual passive degassing occurring at open-vent mafic volcanoes is often punctuated by bursts of active degassing. The latter are generally thought to be the result of slug flow: large, conduit-filling bubbles periodically rising up the feeder conduit and bursting at the magma-air interface. Existing models of volcanic degassing systems make the simplifying assumption that the conduit is cylindrical; however, while this may be true at shallow levels, a flaring probably connects it to a dyke-like geometry at depth. The overall goal of this research is to assess the influence of conduit geometry on the speed and stability of bubbles rising in open-vent systems, and ultimately to devise a model to infer conduit shape from emerging bubbles size. In order to do that an analogue experimental approach was used. All of the experiments were two-phase (melt+volatiles); the analogue materials of choice were golden syrup-water mixtures ranging in viscosity from 10-1 to 104 Pa*s and air. Two experimental apparatuses were used: a bi-dimensional and a tri-dimensional one. The bi-dimensional set-up is a cell made of two flat transparent PVC plates (44x23cm) 10mm or 5mm apart (the front one having a hole at the bottom permitting bubble injection) containing a variety of parallelepipeds apt to outline different plumbing system geometries. The tri-dimensional one consists of a cylindrical tube (r=1,5cm; l=7cm) allowing bubble injection through the bottom rubber tap and terminating into a square tank (l=22cm). Results indicate that conduit geometry directly controls the slug rise velocity and the surrounding liquid descending speed, which in turn control the slug stability. Small enough bubbles simply deform as they go through the flaring, while bigger ones split into two daughter bubbles. A regime diagram has been constructed, illustrating the bubble break-up threshold dependence on the flare geometry and initial slug size, the two main controlling factors. The phenomenon of bubble break-up implies that there is a maximum size a system of a certain shape and size can deliver. The size of the upper daughter bubble has been measured in a variety of experiments, and it has been found to be independent of the original slug size, but related to the conduit-upper reservoir transition geometry. It has therefore been possible to establish a relation between conduit geometry and first emerging daughter bubble size. Under the reasonable assumption of a non-limiting supply of gas, this allowed to successfully design the envisaged model of conduit geometry inferral from delivered bubbles size. Data on the size of emerging bubbles, necessary to feed the model, can be obtained through infrasound techniques, as a bursting over-pressurized gas bubble produces a characteristic seismoacoustic signal, from which it is possible to infer its size.

  8. Rise of Air Bubbles in Aircraft Lubricating Oils

    NASA Technical Reports Server (NTRS)

    Robinson, J. V.

    1950-01-01

    Lubricating and antifoaming additives in aircraft lubricating oils may impede the escape of small bubbles from the oil by forming shells of liquid with a quasi-solid or gel structure around the bubbles. The rates of rise of small air bubbles, up to 2 millimeters in diameter, were measured at room temperature in an undoped oil, in the same oil containing foam inhibitors, and in an oil containing lubricating additives. The apparent diameter of the air bubbles was measured visually through an ocular micrometer on a traveling telescope. The bubbles in the undoped oil obeyed Stokes' Law, the rate of rise being proportional to the square of the apparent diameter and inversely proportional to the viscosity of the oil. The bubbles in the oils containing lubricating additives or foam inhibitors rose more slowly than the rate predicted by Stokes 1 Law from the apparent diameter, and the rate of rise decreased as the length of path the bubbles traveled increased. A method is derived to calculate the thickness of the liquid shell which would have to move with the bubbles in the doped oils to account for the abnoi'I!l8.lly slow velocity. The maximum thickness of this shell, calculated from the velocities observed, was equal to the bubble radius.

  9. Dynamics of rising bubble inside a viscosity-stratified medium

    NASA Astrophysics Data System (ADS)

    Premlata, A. R.; Tripathi, Manoj Kumar; Sahu, Kirti Chandra

    2015-07-01

    The rising bubble dynamics in an unconfined quiescent viscosity-stratified medium has been numerically investigated. This is frequently encountered in industrial as well as natural phenomena. In spite of the large number of studies carried out on bubbles and drops, very few studies have examined the influence of viscosity stratification on bubble rise dynamics. To the best of our knowledge, none of them have isolated the effects of viscosity-stratification alone, even though it is known to influence the dynamics extensively, which is the main objective of the present study. By conducting time-dependent simulations, we present a library of bubble shapes in the Galilei and the Eötvös numbers plane. Our results demonstrate some counter-intuitive phenomena for certain range of parameters due to the presence of viscosity stratification in the surrounding fluid. We found that in a linearly increasing viscosity medium, for certain values of parameters, bubble undergoes large deformation by forming an elongated skirt, while the skirt tends to physically separate the wake region from the rest of the surrounding fluid. This peculiar dynamics is attributed to the migration of less viscous fluid that is carried in the wake of the bubble as it rises, and thereby creating an increasingly larger viscosity contrast between the fluid occupied in the wake region and the surrounding fluid, unlike that observed in a constant viscosity medium. It is also observed that the effect of viscosity stratification is qualitatively different for different regimes of the dimensionless parameters. In future, it will be interesting to investigate this problem in three-dimensions.

  10. Modelling bubble rise and interaction with a glass surface q Rogerio Manica a,

    E-print Network

    Chan, Derek Y C

    are compared with experimental data obtained using synchronised high-speed cameras. Video recording of bubble to analyse bubble rise in water and subsequent impact and bounce against a horizontal glass plate-dependent thickness of the thin water film trapped between the deformed bubble and the glass plate. Bubble rise

  11. Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment

    NASA Astrophysics Data System (ADS)

    Tsamopoulos, J.; Dimakopoulos, Y.; Chatzidai, N.; Karapetsas, G.; Pavlidis, M.

    We examine the buoyancy-driven rise of a bubble in a Newtonian or a viscoplastic fluid assuming axial symmetry and steady flow. Bubble pressure and rise velocity are determined, respectively, by requiring that its volume remains constant and its centre of mass remains fixed at the centre of the coordinate system. The continuous constitutive model suggested by Papanastasiou is used to describe the viscoplastic behaviour of the material. The flow equations are solved numerically using the mixed finite-element/Galerkin method. The nodal points of the computational mesh are determined by solving a set of elliptic differential equations to follow the often large deformations of the bubble surface. The accuracy of solutions is ascertained by mesh refinement and predictions are in very good agreement with previous experimental and theoretical results for Newtonian fluids. We determine the bubble shape and velocity and the shape of the yield surfaces for a wide range of material properties, expressed in terms of the Bingham Bn=tau_y(*}/rho({*}g^{*)) R_b(*) Bond Bo =rho(*}g({*)) R_b({*) 2}/gamma(*) and Archimedes Ar=rho(*2}g({*)) R_b(*3}/mu_o({*2)) numbers, where *o the viscosity, *y the yield stress of the material, g* the gravitational acceleration and R*b the radius of a spherical bubble of the same volume. If the fluid is viscoplastic, the material will not be deforming outside a finite region around the bubble and, under certain conditions, it will not be deforming either behind it or around its equatorial plane in contact with the bubble. As Bn increases, the yield surfaces at the bubble equatorial plane and away from the bubble merge and the bubble becomes entrapped. When Bo is small and the bubble cannot deform from the spherical shape the critical Bn is 0.143, i.e. it is a factor of 3/2 higher than the critical Bn for the entrapment of a solid sphere in a Bingham fluid, in direct correspondence with the 3/2 higher terminal velocity of a bubble over that of a sphere under the same buoyancy force in Stokes flow. As Bo increases allowing the bubble to squeeze through the material more easily, the critical Bingham number increases as well, but eventually it reaches an asymptotic value. Ar affects the critical Bn value much less.

  12. Advances in the Rising Bubble Technique for discharge measurement

    NASA Astrophysics Data System (ADS)

    Hilgersom, Koen; Luxemburg, Willem; Willemsen, Geert; Bussmann, Luuk

    2014-05-01

    Already in the 19th century, d'Auria described a discharge measurement technique that applies floats to find the depth-integrated velocity (d'Auria, 1882). The basis of this technique was that the horizontal distance that the float travels on its way to the surface is the image of the integrated velocity profile over depth. Viol and Semenov (1964) improved this method by using air bubbles as floats, but still distances were measured manually until Sargent (1981) introduced a technique that could derive the distances from two photographs simultaneously taken from each side of the river bank. Recently, modern image processing techniques proved to further improve the applicability of the method (Hilgersom and Luxemburg, 2012). In the 2012 article, controlling and determining the rising velocity of an air bubble still appeared a major challenge for the application of this method. Ever since, laboratory experiments with different nozzle and tube sizes lead to advances in our self-made equipment enabling us to produce individual air bubbles with a more constant rising velocity. Also, we introduced an underwater camera to on-site determine the rising velocity, which is dependent on the water temperature and contamination, and therefore is site-specific. Camera measurements of the rising velocity proved successful in a laboratory and field setting, although some improvements to the setup are necessary to capture the air bubbles also at depths where little daylight penetrates. References D'Auria, L.: Velocity of streams; A new method to determine correctly the mean velocity of any perpendicular in rivers and canals, (The) American Engineers, 3, 1882. Hilgersom, K.P. and Luxemburg, W.M.J.: Technical Note: How image processing facilitates the rising bubble technique for discharge measurement, Hydrology and Earth System Sciences, 16(2), 345-356, 2012. Sargent, D.: Development of a viable method of stream flow measurement using the integrating float technique, Proceedings of the Institution of Civil Engineers (London), Part 2, 71, 1-15, 1981. Viol, V. and Semenov, V.: Experiments in measuring discharges in canals by the photo-integration method, Soviet Hydrol. Selected Pap, 2, 198-199, 1964.

  13. On the bubble rise velocity of a continually released bubble chain in still water and with crossflow

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Socolofsky, Scott A.

    2015-10-01

    The rise velocities of in-chain bubbles continually released from a single orifice in still water with and without crossflow are investigated in a series of laboratory experiments for wobbling ellipsoidal bubbles with moderate Reynolds number. For the limiting case in still water, that is, crossflow velocity = 0, the theoretical turbulent wake model correctly predicts the in-chain bubble rise velocity. In this case, the bubble rise velocities VB are enhanced compared to the terminal velocities of the isolated bubbles V0 due to wake drafting and are scaled with flow rate Q and bubble diameter D. Here, we also derive an updated wake model with consideration of the superposition of multiple upstream bubble wakes, which removes the nonlinear behavior of the non-distant (i.e., local) wake model. For the cases with crossflow, the enhancement of the in-chain bubble rise velocity can be significantly reduced, and imaging of the experiments shows very organized paring and grouping trajectories of rising bubbles not observed in still water under different crossflow velocities. The in-chain bubble rise velocities in crossflow are described by two models. First, an empirical model is used to correct the still-water equation for the crossflow effect. In addition, a semi-theoretical model considering the turbulent wake flow and the crossflow influence is derived and used to develop a theoretical normalization of bubble rise velocity, crossflow velocity, and the released bubble flow rate. The theoretical model suggests there are two different regimes of bubble-bubble interaction, with strong interaction occurring for the non-dimensional crossflow velocity Uc + = ? Uc 3 D 3 V 0 / ( 18 g ? Q 2 ) less than 0.06 and weaker interaction occurring for Uc + greater than 0.06, where Uc is the crossflow velocity, g is the acceleration of gravity, and ? is the mixing length coefficient.

  14. The singularity at the tip of the rising plane bubble: The case of nonzero surface tension

    E-print Network

    Daripa, Prabir

    The singularity at the tip of the rising plane bubble: The case of nonzero surface tension Prabir pointed bubble in the presenceof surface tension. These bubbles have been recently obtained by Vanden to find the apexangle as a function of the speedof the bubbles for a fixed value of surface tension

  15. Force Balance Model for Bubble Rise, Impact, and Bounce from Solid Rogerio Manica,*,

    E-print Network

    Chan, Derek Y C

    Force Balance Model for Bubble Rise, Impact, and Bounce from Solid Surfaces Rogerio Manica,*, Evert, Australia ABSTRACT: A force balance model for the rise and impact of air bubbles in a liquid against rigid horizontal surfaces that takes into account effects of buoyancy and hydrodynamic drag forces, bubble

  16. Effects of gravity level on bubble formation and rise in low-viscosity liquids

    NASA Astrophysics Data System (ADS)

    Suñol, Francesc; González-Cinca, Ricard

    2015-05-01

    We present an experimental analysis of the effects of gravity level on the formation and rise dynamics of bubbles. Experiments were carried out with millimeter-diameter bubbles in the hypergravity environment provided by the large-diameter centrifuge of the European Space Agency. Bubble detachment from a nozzle is determined by buoyancy and surface tension forces regardless of the gravity level. Immediately after detachment, bubble trajectory is deviated by the Coriolis force. Subsequent bubble rise is dominated by inertial forces and follows a zig-zag trajectory with amplitude and frequency dependent on the gravity level. Vorticity production is enhanced as gravity increases, which destabilizes the flow and therefore the bubble path.

  17. Behavior of bubbles in glassmelts. III - Dissolution and growth of a rising bubble containing a single gas

    NASA Technical Reports Server (NTRS)

    Onorato, P. I. K.; Weinberg, M. C.; Uhlmann, D. R.

    1981-01-01

    Finite difference solutions of the mass transport equations governing the dissolution (growth) of a rising gas bubble, containing a single gas, in a glassmelt were obtained. These solutions were compared with those obtained from an approximate procedure for a range of the controlling parameters. Applications were made to describe various aspects of O2 and CO2 gas-bubble behavior in a soda-lime-silicate melt.

  18. Effect of compressibility on the rise velocity of an air bubble in porous media

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Corapcioglu, M. Yavuz

    2008-04-01

    The objective of this study is to develop a theoretical model to analyze the effect of air compressibility on air bubble migration in porous media. The model is obtained by combining the Newton's second law of motion and the ideal gas law assuming that the air phase in the bubble behaves as an ideal gas. Numerical and analytical solutions are presented for various cases of interest. The model results compare favorably with both experimental data and analytical solutions reported in the literature obtained for an incompressible air bubble migration. The results show that travel velocity of a compressible air bubble in porous media strongly depends on the depth of air phase injection. A bubble released from greater depths travels with a slower velocity than a bubble with an equal volume injected at shallower depths. As an air bubble rises up, it expands with decreasing bubble pressure with depth. The volume of a bubble injected at a 1-m depth increases 10% as the bubble reaches the water table. However, bubble volume increases almost twofold when it reaches to the surface from a depth of 10 m. The vertical rise velocity of a compressible bubble approaches that of an incompressible one regardless of the injection depth and volume as it reaches the water table. The compressible bubble velocity does not exceed 18.8 cm/s regardless of the injection depth and bubble volume. The results demonstrate that the effect of air compressibility on the motion of a bubble cannot be neglected except when the air is injected at very shallow depths.

  19. Effects of gravity level on bubble formation and rise in low-viscosity liquids.

    PubMed

    Suñol, Francesc; González-Cinca, Ricard

    2015-05-01

    We present an experimental analysis of the effects of gravity level on the formation and rise dynamics of bubbles. Experiments were carried out with millimeter-diameter bubbles in the hypergravity environment provided by the large-diameter centrifuge of the European Space Agency. Bubble detachment from a nozzle is determined by buoyancy and surface tension forces regardless of the gravity level. Immediately after detachment, bubble trajectory is deviated by the Coriolis force. Subsequent bubble rise is dominated by inertial forces and follows a zig-zag trajectory with amplitude and frequency dependent on the gravity level. Vorticity production is enhanced as gravity increases, which destabilizes the flow and therefore the bubble path. PMID:26066251

  20. The stability of a two-dimensional rising bubble

    SciTech Connect

    Nie, Q.; Tanveer, S.

    1995-06-01

    The stability of an inviscid two-dimensional bubble subject to two-dimensional disturbances is considered and the bubbles are found to be linearly stable for all Weber numbers, for which a steady solution is known. Certain aspects of the nonlinear initial value problem are also studied. An initial condition that consists of a superposition of a suitable symmetric eigenmode (of the linear stability operator) on a steady state is found to result in pinching of the bubble neck as it tends to oscillate about the steady state. An estimate of the threshold amplitude of such a disturbance needed to cause breakup of a large aspect ratio bubble is obtained. The presence of gravity appears to inhibit this pinching process.

  1. Measurements of radiation characteristics of fused quartz containing bubbles

    E-print Network

    Pilon, Laurent

    Measurements of radiation characteristics of fused quartz containing bubbles Dominique Baillis of radiation characteristics of fused quartz containing bubbles over the spectral region from 1.67 to 3.5 m characteristics of fused quartz. © 2004 Optical Society of America OCIS codes: 160.0160, 290.0290, 060.2290, 160

  2. Forces on aligned rising spherical bubbles at low-to-moderate Reynolds number

    NASA Astrophysics Data System (ADS)

    Ramírez-Muñoz, J.; Baz-Rodríguez, S.; Salinas-Rodríguez, E.; Castellanos-Sahagún, E.; Puebla, H.

    2013-09-01

    In this paper, the dynamic of a pair of equal-sized spherical gas bubbles rising in vertical line within a Newtonian liquid at low-to-moderate Reynolds numbers (Re ? 50) is studied. The dynamic momentum balance includes buoyancy, quasi-steady, and unsteady (history) drag, as well as inertial and added-mass body acceleration forces acting on the trailing bubble. This equation has been obtained under the following assumptions: (i) the bubble interaction occurs through the steady non-uniform wake induced by the leading bubble and (ii) the flow structure behind the leading bubble is known, so that proper expressions for the trailing bubble hydrodynamic force and its rising velocity can be derived. We propose an approximate analytical model for predicting the hydrodynamic force and the rise velocity of the trailing bubble. For this aim, we first use the well-known asymptotic far wake velocity solution (AWVS) for an axisymmetric body complementing it with an adequate drag expression. Then, the AWVS is modified via a Galilean transformation by introducing an artificial origin whose position is determined by fitting numerical data of known velocity profiles. Comparisons between the proposed models predictions with those reported experimental and numerical data for dimensionless distance between bubbles s/d in the interval 2 ? s/d ? 12.5 are presented. The results show that the added-mass body acceleration and the history forces are negligible compared to the other considered forces.

  3. Oscillatory Rise of Bubbles in Wormlike Micellar Fluids with Different Microstructures

    NASA Astrophysics Data System (ADS)

    Handzy, Nestor Z.; Belmonte, Andrew

    2004-03-01

    Previous observations of the nontransient oscillations of rising bubbles and falling spheres in wormlike micellar fluids were limited to a single surfactant system. We present an extensive survey of rising bubbles in another system, an aqueous solution of cetylpyridinium chloride and sodium salicylate, with and without NaCl, across a range of concentrations and temperatures. Two different types of oscillations are seen in different concentration ranges, each with its own temperature dependence. Rheological data identify these different hydrodynamic states with different fluid microstructures.

  4. Oscillatory Motion of Rising Bubbles in Wormlike Micellar Fluids with Different Microstructures

    E-print Network

    Handzy, N Z

    2003-01-01

    Previous observations of the nontransient oscillations of rising bubbles and falling spheres in wormlike micellar fluids were limited to a single surfactant system. We present an extensive survey of rising bubbles in another system, an aqueous solution of cetylpyridinium chloride and sodium salicylate, with and without NaCl, across a range of concentrations and temperatures. Two different types of oscillation are seen in different concentration ranges, each with its own temperature dependence. Rheological data allows for the identification of these different hydrodynamic states with different fluid microstructures.

  5. Dynamic evolution of topological defects around drops and bubbles rising in a nematic liquid crystal.

    PubMed

    Khullar, Siddharth; Zhou, Chunfeng; Feng, James J

    2007-12-01

    We report observations of topological defects around drops and bubbles that rise through a vertically aligned nematic liquid crystal. We provide direct evidence for downstream convection of the Saturn-ring defect and its transformation to a hyperbolic point defect. The point defect is convected further in the wake of the drop or bubble as the rising velocity increases. In equilibrium, both defect configurations may persist for long times in the narrow cell. But the point defect sometimes spontaneously opens into a Saturn ring, indicating the latter as the globally stable configuration in the presence of tight wall confinement. PMID:18233413

  6. Lattice Boltzmann simulation of rising bubble dynamics using an effective buoyancy method

    NASA Astrophysics Data System (ADS)

    Ngachin, Merlin; Galdamez, Rinaldo G.; Gokaltun, Seckin; Sukop, Michael C.

    2015-08-01

    This study describes the behavior of bubbles rising under gravity using the Shan and Chen-type multicomponent multiphase lattice Boltzmann method (LBM) [X. Shan and H. Chen, Phys. Rev. E47, 1815 (1993)]. Two-dimensional (2D) single bubble motions were simulated, considering the buoyancy effect for which the topology of the bubble was characterized by the nondimensional Eötvös (Eo), and Morton (M) numbers. In this study, a new approach based on the "effective buoyancy" was adopted and proven to be consistent with the expected bubble shape deformation. This approach expands the range of effective density differences between the bubble and the liquid that can be simulated. Based on the balance of forces acting on the bubble, it can deform from spherical to ellipsoidal shape with skirts appearing at high Eo number. A benchmark computational case for qualitative and quantitative validation was performed using COMSOL Multiphysics based on the level set method. Simulations were conducted for 1 ? Eo ? 100 and 3 × 10-6 ? M ? 2.73 × 10-3. Interfacial tension was checked through simulations without gravity, where Laplace's law was satisfied. Finally, quantitative analyses based on the terminal rise velocity and the degree of circularity was performed for various Eo and M values. Our results were compared with both the theoretical shape regimes given in literature and available simulation results.

  7. Numerical investigation of bubble nonlinear dynamics characteristics

    NASA Astrophysics Data System (ADS)

    Shi, Jie; Yang, Desen; Zhang, Haoyang; Shi, Shengguo; Jiang, Wei; Hu, Bo

    2015-10-01

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  8. Velocity of a freely rising gas bubble in a soda-lime silicate glass melt

    NASA Technical Reports Server (NTRS)

    Hornyak, E. J.; Weinberg, M. C.

    1984-01-01

    A comparison is conducted between measured velocities for the buoyant rise of single bubbles of varying size and composition, in a soda-lime silicate glass melt, with the steady state velocities predicted by the Stokes and Hadamard-Rybczynski formulas. In all cases, the data are noted to fit the Hadamard-Rybczynski expression for steady state rise speed considerably better than the Stokes formula.

  9. Why a falling drop does not in general behave like a rising bubble

    PubMed Central

    Tripathi, Manoj Kumar; Sahu, Kirti Chandra; Govindarajan, Rama

    2014-01-01

    Is a settling drop equivalent to a rising bubble? The answer is known to be in general a no, but we show that when the density of the drop is less than 1.2 times that of the surrounding fluid, an equivalent bubble can be designed for small inertia and large surface tension. Hadamard's exact solution is shown to be better for this than making the Boussinesq approximation. Scaling relationships and numerical simulations show a bubble-drop equivalence for moderate inertia and surface tension, so long as the density ratio of the drop to its surroundings is close to unity. When this ratio is far from unity, the drop and the bubble are very different. We show that this is due to the tendency for vorticity to be concentrated in the lighter fluid, i.e. within the bubble but outside the drop. As the Galilei and Bond numbers are increased, a bubble displays underdamped shape oscillations, whereas beyond critical values of these numbers, over-damped behavior resulting in break-up takes place. The different circulation patterns result in thin and cup-like drops but bubbles thick at their base. These shapes are then prone to break-up at the sides and centre, respectively. PMID:24759766

  10. Dynamic Evolution of Topological Defects around Drops and Bubbles Rising in a Nematic Liquid Crystal

    E-print Network

    Feng, James J.

    Dynamic Evolution of Topological Defects around Drops and Bubbles Rising in a Nematic Liquid a vertically aligned nematic liquid crystal. We provide direct evidence for downstream convection of the Saturn confinement. DOI: 10.1103/PhysRevLett.99.237802 PACS numbers: 61.30.Jf, 47.55.Dÿ, 47.57.Lj Liquid crystal

  11. Visualization of gas–liquid mass transfer and wake structure of rising bubbles using pH-sensitive PLIF

    E-print Network

    Stohr, M.

    A planar laser-induced fluorescence (PLIF) technique for visualizing gas–liquid mass transfer and wake structure of rising gas bubbles is described. The method uses an aqueous solution of the pH-sensitive dye Naphthofluorescein ...

  12. Prediction of micro-bubble dissolution characteristics in water and seawater

    SciTech Connect

    Kawahara, Akimaro; Sadatomi, Michio; Matsuura, Hidetoshi; Tominaga, Mayo; Noguchi, Masanori; Matsuyama, Fuminori

    2009-07-15

    This paper is concerned with the prediction of micro-bubble dissolution characteristics in water and seawater when microbubbles are generated by a Sadatomi-type micro-bubble generator (2003) with a spherical body in a flowing liquid tube. In the experiments, in order to know the effects of the salinity on the characteristics, tap water and an artificial seawater with different salt concentrations of 1 and 3 wt% were used as the test liquids. Parameters measured were the Sauter mean diameter of bubbles, d{sub BS}, the void fraction, {alpha}, the rising velocity of bubbles, u{sub G}, the interfacial area concentration, a, the volumetric mass transfer coefficient, K{sub L}a, and the liquid-side mass transfer coefficient, K{sub L}. In the analysis, for predicting {alpha}, K{sub L}a and K{sub L}, some correlations in the literatures were tested against the present data. Furthermore, in order to improve the predictability, new correlations were developed based on the present data. The prediction of K{sub L}a with the new correlation agreed well with Nishino et al.'s [T. Nishino, K. Terasaka, M. Ishida, Application for several micro-bubble generators for gas absorber, in: Proceedings of the Annual Meeting of the Japanese Society for Multiphase Flow, 2006, pp. 276-277 (in Japanese)] and Li and Tsuge's [P. Li, H. Tsuge, Water treatment by induced air flotation using microbubbles, Journal of Chemical Engineering of Japan 39 (2006) 896-903; P. Li, H. Tsuge, Ozone transfer in a new gas-induced contactor with microbubbles, Journal of Chemical Engineering of Japan 39 (2006) 1213-1220] data for different aeration systems using several different micro-bubble generators. (author)

  13. Analysis of Temperature Rise Induced by High-Intensity Focused Ultrasound in Tissue-Mimicking Gel Considering Cavitation Bubbles

    NASA Astrophysics Data System (ADS)

    Asai, Ayumu; Okano, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-07-01

    High-intensity focused ultrasound (HIFU) causes a selective temperature rise in tissue and is used as a noninvasive method for tumor treatment. However, there is a problem in that it typically takes several hours to treat a large tumor. The development of a highly efficient method is required to shorten the treatment time. It is known that cavitation bubbles generated by HIFU enhance HIFU heating. In this study, the enhancement of the heating effect by cavitation was estimated in a numerical simulation solving a bio-heat transfer equation (BHTE) by increasing the absorption coefficients in and out of the volume of cavitation bubbles. The absorption coefficients were obtained by a curve fitting the temperature rise near the focal point between experiment and simulation. The results show that cavitation bubbles caused the increase in ultrasonic absorption not only in but also near the volume of cavitation bubbles.

  14. Flow in the negative wake of a Taylor bubble rising in viscoelastic carboxymethylcellulose solutions: particle image velocimetry measurements

    NASA Astrophysics Data System (ADS)

    Sousa, Renato G.; Nogueira, S.; Pinto, A. M. F. R.; Riethmuller, M. L.; Campos, J. B. L. M.

    2004-07-01

    A simultaneous technique employing particle image velocimetry (PIV) and shadowgraphy was used to study vertical slug flow in non-Newtonian fluids. Two aqueous solutions of 0.8 and 1.0 wt% carboxymethylcellulose (CMC) were studied and the flow field around individual Taylor bubbles fully characterized. The rheological fluid properties and pipe dimension yielded Reynolds numbers of 8 and 4 and Deborah numbers of 0.2 and 0.4. A negative wake was found downstream of the Taylor bubbles in both fluids. Below the bubble trailing edge, along the axis region, the fluid flows in the opposite direction to the bubble (negative wake), originating rotational liquid movements in adjacent regions. Even far downward from the bubble, rotational liquid movements are clearly seen and measured. In the 1.0 wt% CMC solution, the bubble trailing edge has the shape of a two-dimensional cusp. This two-dimensional cusp, of small dimensions, is seen in different orientations during the bubble rise-indicating a fast rotational movement. The asymmetrical shape of the trailing edge is responsible for small asymmetries in the flow in the wake region (three-dimensional flow). The asymmetrical shape associated with the rotational movement is responsible for an unsteady flow of small amplitude. In the 0.8 wt% CMC solution, the shape of the trailing edge changes during the bubble rise. An axisymmetric axial oscillation a continuous expansion and contraction of the trailing edge, is the origin of this behaviour. This oscillatory movement is responsible for an unsteady flow of small amplitude in the wake region.

  15. [Preliminary Research on Bubble Characteristics of Ancient Glaze Using OCT Technology].

    PubMed

    Yan, Xin; Dong, Jun-qing; Li, Qing-hui; Guo, Mu-sen; Bu, Gong; Hu, Yong-qing

    2015-08-01

    The bubble is one of the most common feature in ancient glaze. The size and distribution of bubbles are closely associated with recipes of the raw materials for the body and glaze and the making process. To characterize the bubbles is essential for the study of ceramic production process, production places, times characteristics and so on. In order to explore the possibility of using the optical coherence tomography (OCT) imaging technology to characterize the bubbles and the bubble distribution characteristic in glaze of ancient porcelain, sweep frequency OCT imaging system is used to detect five different types ancient porcelain chips. According to the two dimensional sectional images and three dimensional tomographic images of the transparent layer of glaze obtained by the OCT imaging system, the two dimensional sectional images characteristics and three dimensional slices characteristics of the bubbles in glaze are studied. The bubble characteristics in the glaze and its possible causes that gases in the body of the ceramic overflow to the glaze layer in the firing process are comprehensively analyzed. Meantime, the size of bubble is calculated according to the two dimensional sectional images based on pixel, and the result is compared with the traditional microscopic test result. The bubble size, two dimensional sectional characteristics and three dimensional tomographic image characteristics of opaque glaze are also studied. Experimental results show that the bubble characteristics in glaze of different ancient porcelain chips are obvious difference, the result of the bubble size calculated based on pixel coincides with the result of the bubble size observed by traditional microscope with ten times magnification, slices of the body near the body-glaze binding region based on OCT imaging technology three dimensional tomography can effectively reflect the bubble characteristics in glaze. The measurement of using OCT imaging technology to characterize bubble characteristics of the glaze is proposed, and the feasibility and the validity of the measurement are certified, and the nondestructive detection of bubble characteristics in ancient porcelain glaze is realized. Especially for the analysis of bubble characteristics of opaque glaze, the OCT imaging technology overcomes the limitations of using the traditional microscope technology to study the distribution of bubble in glaze in the past, and provides a novel, reliable analysis method for the analysis of ceramic glaze bubble characteristics. PMID:26672308

  16. Characteristics of an underwater direct current discharge in bubbles and the temperature distribution in the bubbles

    NASA Astrophysics Data System (ADS)

    Xiong, Ranhua; Nikiforov, Anton Yu.; Vanraes, Patrick; Leys, Christophe

    2012-02-01

    An underwater direct current (DC) discharge in artificially produced air bubbles is investigated. Electrical and optical emission properties of the plasma and temperature distribution in bubbles evaluated by using computational fluid dynamics (CFD) are presented. The behavior of plasma inside a bubble significantly depends on the bubble size. The discharge with water as a cathode is characterized by streamer nature, whereas the plasma with water as an anode appears diffuse and homogenous. The gas temperature is estimated from emission of the plasma, and it is much higher when water is a cathode. Bubble dynamics is investigated by CFD simulation, and results are in good agreement with experimental data. It shows the temperature distribution in bubbles strongly depends on the bubble dynamics, and gas-water interface has a sharp temperature gradient and acts as an efficient heat sink.

  17. Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2004-06-01

    Vanitas vanitatum et omnia vanitas: bubbles are emptiness, non-liquid, a tiny cloud shielding a mathematical singularity. Born from chance, a violent and brief life ending in the union with the (nearly) infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise, sonoluminescence, boiling, and many others. Some recent results on a "blinking bubble" micropump and vapor bubbles in sound fields are outlined. The last section describes Leonardo da Vinci's observation of the non-rectlinear ascent of buoyant bubbles and justifies the name Leonardo's paradox recently attributed to this phenomenon.

  18. Methane rising from the Deep: Hydrates, Bubbles, Oil Spills, and Global Warming

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Rehder, G. J.; Solomon, E. A.; Kastner, M.; Asper, V. L.; Joye, S. B.

    2011-12-01

    Elevated methane concentrations in near-surface waters and the atmosphere have been reported for seepage from depths of nearly 1 km at the Gulf of Mexico hydrate observatory (MC118), suggesting that for some methane sources, deepsea methane is not trapped and can contribute to atmospheric greenhouse gas budgets. Ebullition is key with important sensitivity to the formation of hydrate skins and oil coatings, high-pressure solubility, bubble size and bubble plume processes. Bubble ROV tracking studies showed survival to near thermocline depths. Studies with a numerical bubble propagation model demonstrated that consideration of structure I hydrate skins transported most methane only to mid-water column depths. Instead, consideration of structure II hydrates, which are stable to far shallower depths and appropriate for natural gas mixtures, allows bubbles to survive to far shallower depths. Moreover, model predictions of vertical methane and alkane profiles and bubble size evolution were in better agreement with observations after consideration of structure II hydrate properties as well as an improved implementation of plume properties, such as currents. These results demonstrate the importance of correctly incorporating bubble hydrate processes in efforts to predict the impact of deepsea seepage as well as to understand the fate of bubble-transported oil and methane from deepsea pipeline leaks and well blowouts. Application to the DWH spill demonstrated the importance of deepsea processes to the fate of spilled subsurface oil. Because several of these parameters vary temporally (bubble flux, currents, temperature), sensitivity studies indicate the importance of real-time monitoring data.

  19. Mixing in a swarm of bubbles rising in a confined cell measured by mean of PLIF with two different dyes

    NASA Astrophysics Data System (ADS)

    Bouche, Emmanuella; Cazin, Sébastien; Roig, Véronique; Risso, Frédéric

    2013-06-01

    The present contribution reports an experimental study of the mixing of a passive scalar of very low diffusivity in a homogeneous swarm of inertial bubbles rising in a thin gap. A patch of fluorescent dye is injected within the swarm, and we observe the evolution of its mass in a given region of observation. We analyse the effect of the liquid agitation on the mixing mechanisms varying the gas volume fraction from 1.3 to 7.5 %, while the Reynolds number of the bubbles, Re = 450, their Weber number, We = 0.7, and the gap-to-bubble diameter ratio, w/ d = 0.25, are kept approximately constant. Here, the in-plane local mass of dye is measured by using a two-dyes planar laser-induced fluorescence (PLIF) technique that has been adapted to fix the problem of multiple light reflections at the bubble interfaces. Indeed, they induce both temporal and spatial variations of the captured light intensity that are superimposed to the effective fluorescence signal and prevent from using a standard PLIF technique. The analysis of the instantaneous concentration fields reveals the dominant role of the bubble wakes in the scalar transport. It is shown that mixing in this planar confined geometry is very efficient and enhanced by the increasing gas volume fraction. The present study also highlights that the mixing is not governed by a Fickian law of diffusion.

  20. On the turbulent structure in the wake of Taylor bubbles rising in vertical pipes

    NASA Astrophysics Data System (ADS)

    Shemer, L.; Gulitski, A.; Barnea, D.

    2007-03-01

    The development of gas-liquid slug flow along pipes is governed by the interaction between consecutive elongated bubbles. It is commonly accepted that the trailing bubble's shape and velocity are affected by the flow field in the liquid phase ahead of it. Particle image velocimetry (PIV) measurements of the velocity field in the wake of an elongated Taylor bubble are performed for different pipe diameters and various Reynolds numbers. Experiments are carried out in both laminar and turbulent background flows. Ensemble-averaged quantities in the frame of reference moving with the Taylor bubble are calculated. Peculiarities regarding the variation of the mean velocity distributions, as well as of the normal and shear Reynolds stresses, with the distance from the Taylor bubble bottom are discussed.

  1. Numerical simulation of the water bubble rising in a liquid column using the combination of level set and moving mesh methods in the collocated grids

    E-print Network

    Frey, Pascal

    Numerical simulation of the water bubble rising in a liquid column using the combination of level in revised form 25 February 2012 Accepted 10 April 2012 Available online 14 May 2012 Keywords: Level set and heat transfer. In this paper, the bubble behaviours are studied using the combination of Level Set

  2. Interpreting the Dynamic Interaction between a Very Small Rising Bubble and a Hydrophilic Titania Surface

    E-print Network

    Chan, Derek Y C

    horizontal titania plate. The experimental data were in the form of high-speed recordings (1000 frames per with a hydrodynamic force arising from the drainage of the thin water film between the bubble and the titania surface

  3. Unfolded optical glory of spheroids: backscattering of laser light from freely rising spheroidal air bubbles in water.

    PubMed

    Arnott, W P; Marston, P L

    1991-08-20

    Enhancement in backscattering known as glory scattering results from geometric and material properties of spherically symmetric scatterers. The wave-front shape near the spherical scatterer is locally a circular torus. Radiation from a toroidal wave front is axially focused on the backward-directed axis. It is shown that the axial point caustic unfolds to an astroid caustic as the scatterer's shape changes from spherical to slightly spheroidal. The wave front pertinent for slightly spheroidal scatterers was modeled as a toroidal wave front with a superimposed harmonic angular perturbation. Experimental observations are displayed for cross-polarized backscattering by freely vertical rising, slightly oblate spheroidal air bubbles in water illuminated by a horizontally propagating laser beam. These patterns were recorded with a camera for two different incident-beam polarization directions relative to the axis of rotational symmetry of the bubble. Angular scattering patterns were also computed using a perturbation analysis based on use of the harmonically perturbed toroidal wave front and physical optics. Bubble oblateness was estimated from features of the angular scattering pattern and from hydrodynamic relations. PMID:20706408

  4. How sea level rise and storm climate impact the looming morpho-economic bubble in coastal property value.

    NASA Astrophysics Data System (ADS)

    McNamara, D.; Keeler, A.; Smith, M.; Gopalakrishnan, S.; Murray, A.

    2012-12-01

    In the United States, the coastal region is now the most densely populated zone in the country and as a result has become a significant source of tax revenue and has some of the highest property values in the country. The loss of land at the coastline from erosion and damage to property from storms has always been a source of vulnerability to coastal economies. To manage this vulnerability, humans have long engaged in the act of nourishing the coastline - placing sand, typically from offshore sources, onto the beach to widen the beach and increase the height of dunes. As humans alter natural coastal dynamics by nourishing, the altered natural dynamics then influence future beach management decisions. In this way human-occupied coastlines are a strongly coupled dynamical system and because of this coupling, the act of nourishment has become an intrinsic part of the economic value of a coastline. Predictions of increased rates of sea level rise and changing storminess suggest that coastal vulnerability is likely to increase. The evolving vulnerability of the coast has already caused changes to occur in the way humans manage the coastline. For example, the federal government has recently reduced subsidies to help coastal communities nourish their beaches. With a future of changing environmental forcing from sea level and storms, the prospect of changes in nourishment cost could have profound consequences on coastal value and sustainability. We utilize two modeling approaches to investigate how disappearing nourishment subsidies reduce coastal property value and to explore the potential for a bubble and subsequent crash in coastal property value as subsidies dwindle and vulnerability rises. The first model is an optimal control model that couples a cost benefit analysis to coastline dynamics. In the second model, we couple a numerical coastline model with an agent-based model for real estate markets. Results from both models suggest the total present value of coastal property is significantly reduced with the removal of nourishment subsidies, creating a temporary bubble in coastal property value. In both models, results show the extent to which rising sea level and changing storminess impact the size of the property value bubble. The utility of the optimal control model is that it provides an empirically grounded parameterization of the coupled human coastal system. The coupled agent-based physical coastline model is more difficult to constrain with current data, however the model provides insight into the dynamics of subjective beliefs about coastal risk, which depend on the weight agents place on scientific predictions and on the way they process signals from previous climate events. Results from this model illustrate how the dynamics of the property bubble burst depend on agent beliefs about their changing environment.

  5. CHARACTERISTICS OF THE SECONDARY BUBBLE CLUSTER PRODUCED BY AN ELECTROHYDRAULIC SHOCK WAVE LITHOTRIPTER

    PubMed Central

    Zhou, Yufeng; Qin, Jun; Zhong, Pei

    2013-01-01

    This study investigated the characteristics of the secondary bubble cluster produced by an electrohydraulic lithotripter using high-speed imaging and passive cavitation detection techniques. The results showed that (i) the discrepancy of the collapse time between near a flat rigid boundary and in a free field of the secondary bubble cluster was not as significant as that by the primary one; (ii) the secondary bubble clusters were small but in a high bubble density and nonuniform in distribution, and they did not expand and aggregate significantly near a rigid boundary; and (iii) the corresponding bubble collapse was weaker with few microjet formation and bubble rebound. By applying a strong suction flow near the electrode tip, the production of the secondary shock wave (SW) and induced bubble cluster could be disturbed significantly, but without influence on the primary ones. Consequently, stone fragmentation efficiency was reduced from 41.2 ± 7.1% to 32.2 ± 3.5% after 250 shocks (p <0.05). Altogether, these observations suggest that the secondary bubble cluster produced by an electrohydraulic lithotripter may contribute to its ability for effective stone fragmentation. PMID:22390990

  6. Radiation Characteristics of Glass Containing Gas Bubbles Laurent Pilon*

    E-print Network

    Pilon, Laurent

    Lafayette, Indiana 47907 In many materials processing and manufacturing situations such as steel, aluminum of soda­lime silicate glass containing bubbles are discussed. Particular attention is paid to the effect of the continuous phase are small. I. Introduction IN MANY materials processing and manufacturing situations

  7. Characteristic microwave background distortions from collapsing domain wall bubbles

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1990-01-01

    The magnitude and angular pattern of distortions of the microwave background are analyzed by collapsing spherical domain walls. A characteristic pattern of redshift distortions of red or blue spikes surrounded by blue discs was found. The width and height of a spike is related to the diameter and magnitude of the disc. A measurement of the relations between these quantities thus can serve as an unambiguous indicator for a collapsing spherical domain wall. From the redshift distortion in the blue discs an upper bound was found on the surface energy density of the walls sigma is less than or approximately 8 MeV cubed.

  8. Characteristics and detecting of laser-induced single bubble collapse noise

    NASA Astrophysics Data System (ADS)

    Liu, Xiumei; He, Jie; Li, Wenhua; Jiao, Mingli; Liu, Xiaochen; Wang, Haibing; Wang, Bingyang; Li, Beibei

    2015-05-01

    Shock waves emission after collapse of a laser-induced bubble in the liquid was studied experimentally by using a PTZ hydrophone. An experimental method and a Cavitation detection system was designed to investigate bubble collapse noise in this article. When a focused short laser pulse was focused in a liquid near a solid wall, it induced optical breakdown, the emission of shock waves and the generation of cavitation bubbles. A PZT hydrophone was used to detect the shock wave emitted during bubble oscillations. In addition, a software based on MATLAB was designed for analyzing cavitation noise. The software system had multiple functionalities, namely signal reading, noise reduction, signal analysis in frequency domain, and display. The results showed that the software can not only reflect the spectral characteristics of the noise quickly but also can interpret the current cavitation station according to the changing rules of different cavitation station. The results of the research have strong implications for cavitation phenomena analysis and cavitation warning systems in turbines, propellers, and other irrigation machinery.

  9. Experimental evidence for seismically initiated gas bubble nucleation and growth in groundwater as a mechanism for coseismic borehole water level rise and remotely triggered seismicity

    NASA Astrophysics Data System (ADS)

    Crews, Jackson B.; Cooper, Clay A.

    2014-09-01

    Changes in borehole water levels and remotely triggered seismicity occur in response to near and distant earthquakes at locations around the globe, but the mechanisms for these phenomena are not well understood. Experiments were conducted to show that seismically initiated gas bubble growth in groundwater can trigger a sustained increase in pore fluid pressure consistent in magnitude with observed coseismic borehole water level rise, constituting a physically plausible mechanism for remote triggering of secondary earthquakes through the reduction of effective stress in critically loaded geologic faults. A portion of the CO2 degassing from the Earth's crust dissolves in groundwater where seismic Rayleigh and P waves cause dilational strain, which can reduce pore fluid pressure to or below the bubble pressure, triggering CO2 gas bubble growth in the saturated zone, indicated by a spontaneous buildup of pore fluid pressure. Excess pore fluid pressure was measured in response to the application of 0.1-1.0 MPa, 0.01-0.30 Hz confining stress oscillations to a Berea sandstone core flooded with initially subsaturated aqueous CO2, under conditions representative of a confined aquifer. Confining stress oscillations equivalent to the dynamic stress of the 28 June 1992 Mw 7.3 Landers, California, earthquake Rayleigh wave as it traveled through the Long Valley caldera, and Parkfield, California, increased the pore fluid pressure in the Berea core by an average of 36 ± 15 cm and 23 ± 15 cm of equivalent freshwater head, respectively, in agreement with 41.8 cm and 34 cm rises recorded in wells at those locations.

  10. Some hydrodynamic characteristics of bubbly mixtures flowing vertically upward in tubes

    E-print Network

    Rose, Sewell C.

    1964-01-01

    An investigation of bubbly flow has been conducted in vertical plexiglass tubes using air and water at atmospheric pressure. The bubbly flow pattern is an entrance condition or a non-fully developed flow. A spontaneous ...

  11. Cap Bubble Drift Velocity in a Confined Test Section

    SciTech Connect

    Xiaodong Sun; Seungjin Kim; Mamoru Ishii; Frank W. Lincoln; Stephen G. Beus

    2002-10-09

    In the two-group interfacial area transport equation, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as group 1 and cap/slug/churn-turbulent bubbles as group 2. The bubble rise velocities for both groups of bubbles may be estimated by the drift flux model by applying different distribution parameters and drift velocities for both groups. However, the drift velocity for group 2 bubbles is not always applicable (when the wall effect becomes important) as in the current test loop of interest where the flow channel is confined by two parallel flat walls, with a dimension of 200-mm in width and 10-mm in gap. The previous experiments indicated that no stable slug flow existed in this test section, which was designed to permit visualization of the flow patterns and bubble characteristics without the distortion associated with curved surfaces. In fact, distorted cap bubbly and churn-turbulent flow was observed. Therefore, it is essential to developed a correlation for cap bubble drift velocity in this confined flow channel. Since the rise velocity of a cap bubble depends on its size, a high-speed movie camera is used to capture images of cap bubbles to obtain the bubble size information. Meanwhile, the rise velocity of cap and elongated bubbles (called cap bubbles hereafter) is investigated by examining the captured images frame by frame. As a result, the conventional correlation of drift velocity for slug bubbles is modified and acceptable agreements between the measurements and correlation estimation are achieved.

  12. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM, a computational model developed at Glenn, that simulates the cavitational collapse of a single bubble in a liquid (water) and the subsequent combustion of the gaseous contents inside the bubble. The model solves the time-dependent, compressible Navier-Stokes equations in one-dimension with finite-rate chemical kinetics using the CHEMKIN package. Specifically, parameters such as frequency, pressure, bubble radius, and the equivalence ratio were varied while examining their effect on the maximum temperature, radius, and chemical species. These studies indicate that the radius of the bubble is perhaps the most critical parameter governing bubble combustion dynamics and its efficiency. Based on the results of the parametric studies, we plan on conducting experiments to study the effect of ultrasonic perturbations on the bubble generation process with respect to the bubble radius and size distribution.

  13. The effect of fine bubble aeration intensity on membrane bioreactor sludge characteristics and fouling.

    PubMed

    De Temmerman, L; Maere, T; Temmink, H; Zwijnenburg, A; Nopens, I

    2015-06-01

    While most membrane bioreactor (MBR) research focuses on improving membrane filtration through air scour, backwashing and chemical cleaning to physically counteract fouling, relatively few studies have dealt with fouling prevention, e.g. minimizing the impact of operational settings that negatively impact sludge filterability. To evaluate the importance of those settings, the effects of bioreactor aeration intensity variations on membrane fouling have been studied in a lab-scale MBR setup while simultaneously monitoring a unique set of key sludge parameters. In particular, this paper focuses on the impact of shear dynamics resulting from fine air bubbles on the activated sludge quality and flocculation state, impacting membrane fouling. When augmenting the fine bubble aeration intensity both the total and irreversible fouling rate increased. Major indications for sludge filterability deterioration were found to be a shift in the particle size distribution (PSD) in the 3-300 ?m range towards smaller sludge flocs, and increasing concentrations of submicron particles (10-1000 nm), soluble microbial products and biopolymers. When lowering the aeration intensity, both the sludge characteristics and fouling either went back to background values or stabilized, respectively indicating a temporary or more permanent effect, with or without time delay. The shift in PSD to smaller flocs and fragments likely increased the total fouling through the formation of a less permeable cake layer, while high concentrations of submicron particles were likely causing increased irreversible fouling through pore blocking. The insights from the performed fouling experiments can be used to optimize system operation with respect to influent dynamics. PMID:25794465

  14. Airflow Characteristics of Direct-Type Kitchen Hood Systems in High-Rise Apartment Buildings 

    E-print Network

    Park, M.

    2011-01-01

    characteristics of direct-type kitchen hood systems in high-rise apartment buildings 1 10.19. 2011 Myungsig Park* , Joseph Jun Kim Innovations Optima LLC Bonggil Jeon Dept of Architectural Engineering, Purdue University Geontae Lee, Samsung C&T, South Korea... Acknowledgments The authors would like to acknowledge that this study was made possible by a consulting grant from Samsung C&T in South Korea. Thermal environmental Engineering, 3rd edition, Thomas H. Kuelhn Example 18.9 Validity verification Terminal 1...

  15. Seismically Initiated Carbon Dioxide Gas Bubble Growth in Groundwater: A Mechanism for Co-seismic Borehole Water Level Rise and Remotely Triggered Secondary Seismicity

    NASA Astrophysics Data System (ADS)

    Crews, Jackson B.

    Visualization experiments, core-scale laboratory experiments, and numerical simulations were conducted to examine the transient effect of dilational seismic wave propagation on pore fluid pressure in aquifers hosting groundwater that is near saturation with respect to dissolved carbon dioxide (CO2) gas. Groundwater can become charged with dissolved CO2 through contact with gas-phase CO2 in the Earth's crust derived from magma degasing, metamorphism, and biogenic processes. The propagation of dilational seismic waves (e.g., Rayleigh and p-waves) causes oscillation of the mean normal confining stress and pore fluid pressure. When the amplitude of the pore fluid pressure oscillation is large enough to drive the pore fluid pressure below the bubble pressure, an aqueous-to-gas-phase transition can occur in the pore space, which causes a buildup of pore fluid pressure and reduces the inter-granular effective stress under confined conditions. In visualization experiments conducted in a Hele-Shaw cell representing a smooth-walled, vertically oriented fracture, millisecond-scale pressure perturbations triggered bubble nucleation and growth lasting tens of seconds, with resulting pore fluid overpressure proportional to the magnitude of the pressure perturbation. In a Berea sandstone core flooded with initially under-saturated aqueous CO2 under conditions representative of a confined aquifer, rapid reductions in confining stress triggered transient pore pressure rise up to 0.7 MPa (100 psi) overpressure on a timescale of ~10 hours. The rate of pore pressure buildup in the first 100 seconds was proportional to the saturation with respect to dissolved CO 2 at the pore pressure minimum. Sinusoidal confining stress oscillations on a Berea sandstone core produced excess pore fluid pressure after the oscillations were terminated. Confining stress oscillations in the 0.1-0.4 MPa (15-60 psi) amplitude range and 0.05-0.30 Hz frequency band increased the pore fluid pressure by 13-60 cm of freshwater. Co-seismic borehole water level increases of the same magnitude were observed in Parkfield, California, and Long Valley caldera, California, in response to the propagation of a Rayleigh wave in the same amplitude and frequency range produced by the June 28, 1992 MW 7.3 Landers, California, earthquake. Co-seismic borehole water level rise is well documented in the literature, but the mechanism is not well understood, and the results of core-scale experiments indicate that seismically initiated CO2 gas bubble nucleation and growth in groundwater is a reasonable mechanism. Remotely triggered secondary seismicity is also well documented, and the reduction of effective stress due to CO2 bubble nucleation and growth in critically loaded faults may potentially explain how, for example, the June 28, 1992 MW 7.3 Landers, California, earthquake triggered seismicity as far away as Yellowstone, Wyoming, 1250 km from the hypocenter. A numerical simulation was conducted using Euler's method and a first-order kinetic model to compute the pore fluid pressure response to confining stress excursions on a Berea sandstone core flooded with initially under-saturated aqueous CO2. The model was calibrated on the pore pressure response to a rapid drop and later recovery of the confining stress. The model predicted decreasing overpressure as the confining stress oscillation frequency increased from 0.05 Hz to 0.30 Hz, in contradiction with the experimental results and field observations, which exhibit larger excess pore fluid pressure in response to higher frequency oscillations. The limitations of the numerical model point to the important influence of non-ideal behavior arising from a discontinuous gas phase and complex dynamics at the gas-liquid interface.

  16. Aerator Combined With Bubble Remover

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.

    1993-01-01

    System produces bubble-free oxygen-saturated water. Bubble remover consists of outer solid-walled tube and inner hydrophobic, porous tube. Air bubbles pass from water in outer tube into inner tube, where sucked away. Developed for long-term aquaculture projects in space. Also applicable to terrestrial equipment in which entrained bubbles dry membranes or give rise to cavitation in pumps.

  17. The influence of initial pressure on the characteristics of conical bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    He, Shoujie; Ha, Jing; Duan, Pingguang

    2015-12-01

    Based on a conical bubble U-tube, conical bubble sonoluminescence was investigated by using pure water as the working medium. Intense cavitation luminescence can be obtained. With the decrease in initial pressure inside the bubble, the intensity and duration of light emission increased. The spectrum is mainly composed of the spectral bands of H2O at the initial pressure of 1000 Pa. With the decrease in initial pressure, a broad continuum background spectrum that is well fitted by blackbody radiation can be detected, on which several spectral bands emitted by water molecules are superimposed. A higher temperature inside the bubble can be obtained with the decrease in initial pressure. Moreover, the intensity of the continuum background spectrum becomes more dominant compared with that of H2O emission bands. Finally, we conclude that blackbody radiation and molecular emission contribute to luminescence of conical bubble cavitation. Moreover, the initial pressure inside the conical bubble significantly affects the emission mechanism of conical bubble sonoluminescence.

  18. A characteristic size of approximately 10 Mpc for the ionized bubbles at the end of cosmic reionization.

    PubMed

    Wyithe, J Stuart B; Loeb, Abraham

    2004-11-11

    The first galaxies to appear in the Universe at redshifts z > 20 created ionized bubbles in the intergalactic medium of neutral hydrogen left over from the Big Bang. The ionized bubbles grew with time, surrounding clusters of dwarf galaxies and eventually overlapped quickly throughout the Universe over a narrow redshift interval near z approximately 6. This event signalled the end of the reionization epoch when the Universe was a billion years old. Measuring the size distribution of the bubbles at their final overlap phase is a focus of forthcoming programmes to observe highly redshifted radio emission from atomic hydrogen. Here we show that the combined constraints of cosmic variance and light travel time imply an observed bubble size at the end of the overlap epoch of approximately 10 physical Mpc, and a scatter in the observed redshift of overlap along different lines-of-sight of approximately 0.15. This scatter is consistent with observational constraints from recent spectroscopic data on the farthest known quasars. This implies that future radio experiments should be tuned to a characteristic angular scale of 0.5 degrees and have a minimum frequency bandwidth of approximately 8 MHz for an optimal detection of 21-cm flux fluctuations near the end of reionization. PMID:15538361

  19. Dynamics of Rear Stagnant Cap formation at the surface of spherical bubbles rising in surfactant solutions at large Reynolds numbers under conditions of small Marangoni number and slow sorption kinetics.

    PubMed

    Dukhin, S S; Kovalchuk, V I; Gochev, G G; Lotfi, M; Krzan, M; Malysa, K; Miller, R

    2015-08-01

    On the surface of bubbles rising in a surfactant solution the adsorption process proceeds and leads to the formation of a so called Rear Stagnant Cap (RSC). The larger this RSC is the stronger is the retardation of the rising velocity. The theory of a steady RSC and steady retarded rising velocity, which sets in after a transient stage, has been generally accepted. However, a non-steady process of bubble rising starting from the initial zero velocity represents an important portion of the trajectory of rising, characterized by a local velocity profile (LVP). As there is no theory of RSC growth for large Reynolds numbers Re » 1 so far, the interpretation of LVPs measured in this regime was impossible. It turned out, that an analytical theory for a quasi-steady growth of RSC is possible for small Marangoni numbers Ma « 1, i.e. when the RSC is almost completely compressed, which means a uniform surface concentration ?(?)=?(?) within the RSC. Hence, the RSC angle ?(t) is obtained as a function of the adsorption isotherm parameters and time t. From the steady velocity v(st)(?), the dependence of non-steady velocity on time is obtained by employing v(st)[?(t)] via a quasi-steady approximation. The measurement of LVP creates a promising new opportunity for investigation of the RSC dynamics and adsorption kinetics. While adsorption and desorption happen at the same localization in the classical methods, in rising bubble experiments desorption occurs mainly within RSC while adsorption on the mobile part of the bubble surface. The desorption flux from RSC is proportional to ??(?), while it is usually ??. The adsorption flux at the mobile surface above RSC can be assumed proportional to ?C0, while it is usually ?C0(1-?/?(?)). These simplifications may become favorable in investigations of the adsorption kinetics for larger molecules, in particular for globular proteins, which essentially stay at an interface once adsorbed. PMID:25455807

  20. Understanding the plasma and power characteristics of a self-generated steam bubble discharge

    NASA Astrophysics Data System (ADS)

    Garcia, Maria C.; Gucker, Sarah N.; Foster, John E.

    2015-09-01

    Plasma formation in a self-generated steam bubble is studied using a coaxial discharge tube with an axial powered electrode (nominal peak operating voltage 2000?V) and an external ground lead without any gas flow. The discharge is potentially attractive for water purification applications in that the production of reactive nitrogen species and the associated water acidification is avoided. The discharge was found to form after a finite delay, which is attributed to the vapor bubble formation necessary for plasma ignition. Steam bubble composition was confirmed using emission spectra. Plasma properties and power dissipated in the self-generated steam bubble were characterized using emission spectroscopy and Lissajous methods. Discharge density and gas temperature were found to vary significantly over the applied ac voltage cycle. The power dissipated as inferred from the Lissajous method was found to scale inversely with frequency over the low frequency range investigated (4?kHz and 5?kHz).

  1. A modelling and experimental study of the bubble trajectory in a non-Newtonian crystal suspension

    NASA Astrophysics Data System (ADS)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.

    2010-12-01

    This paper presents an experimental and computational study of air bubbles rising in a massecuite-equivalent non-Newtonian crystal suspension. The bubble trajectory inside the stagnant liquid of a 0.05% xanthan gum crystal suspension was investigated and modelled using the computational fluid dynamics (CFD) model to gain an insight into the bubble flow characteristics. The CFD code FLUENT was used for numerical simulation, and the bubble trajectory calculations were performed through a volume of fluid (VOF) model. The influences of the Reynolds number (Re), the Weber number (We) and the bubble aspect ratio (E) on the bubble trajectory are discussed. The conditions for the bubbles' path oscillations are identified. The experimental results showed that the path instability for the crystal suspension was less rapid than in water. The trajectory analysis indicated that 5.76 mm diameter bubbles followed a zigzag motion in the crystal suspension. Conversely, the smaller bubbles (5.76 mm) followed a path of least horizontal movement and larger bubbles (21.21 mm) produced more spiral motion within the crystal suspension. Path instability occurred for bubbles of 15.63 and 21.21 mm diameter, and they induced both zigzag and spiral trajectories within the crystal suspension. At low Re and We, smaller bubbles (5.76 mm) produced a zigzag trajectory, whereas larger bubbles (15.63 and 21.21 mm) showed both zigzag and spiral trajectories at intermediate and moderately high Re and We in the crystal suspension. The simulation results illustrated that a repeating pattern of swirling vortices was created for smaller bubbles due to the unstable wake and unsteady flow of these bubbles. This is the cause of the smaller bubbles moving in a zigzag way. Larger bubbles showed two counter-rotating trailing vortices at the back of the bubble. These vortices induced a velocity component to the gas-liquid interface and caused a deformation. Hence, the larger bubbles produced a path transition.

  2. DNS studies of bubbly flows

    NASA Astrophysics Data System (ADS)

    Tryggvason, Gretar; Esmaeeli, Asghar; Biswas, Souvik

    2004-11-01

    Recent stuies of bubbly flows, using direct numerical simulations, are discussed. The goal of this study is to examine the collective behavior of many bubbles as the rise Reynolds number is increased and and a single bubble rises unsteadily, as well as to examine the motion of bubbles in channels. A front-tracking/finite volume method is used to fully resolve all flow scales, including the bubbles and the flow around them. Two cases are simulated, for one the bubbles remain nearly spherical and for the other case the bubbles are deformable and wobble. The wobbly bubbles remains relatively uniformly distributed and are not susceptible to the streaming instability found by Bunner and Tryggvason (2003) for deformable bubbles at lower rise Reynolds numbers. The more spherical bubbles, on the other hand, form transients ``rafts'' somewhat similar to those seen in potential flow simulation of many bubbles. For channel flow we compare results from direct numerical simulations of bubbly flow with prediction of the steady-state two-fluid model of Antal, Lahey, and Flaherty (1991). The simulations are done assuming a two-dimensional system and the model coefficients are adjusted slightly to match the data for upflow. The results generally agree reasonably well, even though the simulated void fraction is considerably higher than the one assumed in the derivation of the model. Research supported by DOE.

  3. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Young; Kang, In Man; Shon, Chae-Hwa; Lee, Se-Hee

    2015-05-01

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. To improve accuracy, the B-H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.

  4. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors.

    PubMed

    Kumar, Kanhaiya; Das, Debabrata

    2012-07-01

    The present study investigated the feasibility of bioCO(2) sequestration using Chlorella sorokiniana. It was found that 5% CO(2) (v/v) in air was the most suitable concentration for the growth of this organism. At this concentration, the maximum rate of CO(2) sequestered and the biomass obtained were found to be 1.21 g L(-1)d(-1) and 4.4 g L(-1) respectively. Modeling and simulation of the growth profile was obtained using the logistic equation. Further, at higher CO(2) concentrations, pH drop in the growth media, TAP [-acetate], was prevented by replacing NH(4)Cl by NaNO(3.) Additionally, the study evaluated the performance of two reactors namely: bubble column and airlift reactor based on their growth profile and transport properties like K(L)a and mixing time. The growth profile was better in airlift reactor and it provides cyclic axial mixing of media. K(L)a of downcomer was significantly lower than the riser in airlift reactor. PMID:22525259

  5. Power Laws in Real Estate Prices during Bubble Periods

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takaaki; Mizuno, Takayuki; Shimizu, Chihiro; Watanabe, Tsutomu

    How can we detect real estate bubbles? In this paper, we propose making use of information on the cross-sectional dispersion of real estate prices. During bubble periods, prices tend to go up considerably for some properties, but less so for others, so that price inequality across properties increases. In other words, a key characteristic of real estate bubbles is not the rapid price hike itself but a rise in price dispersion. Given this, the purpose of this paper is to examine whether developments in the dispersion in real estate prices can be used to detect bubbles in property markets as they arise, using data from Japan and the U.S. First, we show that the land price distribution in Tokyo had a power-law tail during the bubble period in the late 1980s, while it was very close to a lognormal before and after the bubble period. Second, in the U.S. data we find that the tail of the house price distribution tends to be heavier in those states which experienced a housing bubble. We also provide evidence suggesting that the power-law tail observed during bubble periods arises due to the lack of price arbitrage across regions.

  6. Characteristics of air pollutant dispersion around a high-rise building.

    PubMed

    Zhang, Y; Kwok, K C S; Liu, X-P; Niu, J-L

    2015-09-01

    A numerical wind tunnel model was proposed. The computed results of the pollutant diffusion around a typical Hong Kong high-rise building model (at a linear scale of 1:30), were found to show a similar trend to the outcomes of self-conducted experimental measurements that the pathways of pollutant migration for windward and leeward pollutant emission are different. For the case with windward pollutant emission at the 3rd floor within a re-entry, the pollutant migrated downwards due to the downwash created by the wind. In contrast, for the case with leeward pollution emission, dispersion is dominated by intense turbulent mixing in the near wake and characterized by the upward migration of the pollutant in the leeward re-entry. The simulated results of haze-fog (HF) studies confirm that the pathway of pollutant migration is dominated by wind-structure interaction and buoyancy effect only plays a minor role in the dispersion process. PMID:25989454

  7. Numerical study of the influence of geometrical characteristics of a vertical helical coil on a bubbly flow

    NASA Astrophysics Data System (ADS)

    Saffari, H.; Moosavi, R.

    2014-11-01

    In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ? turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.

  8. The Temporal and Spectral Characteristics of "Fast Rise and Exponential Decay" Gamma-ray Burst Pulses

    NASA Astrophysics Data System (ADS)

    Peng, Z. Y.; Yin, Y.; Bi, X. W.; Zhao, X. H.; Fang, L. M.; Bao, Y. Y.; Ma, L.

    2010-08-01

    In this paper, we have analyzed the temporal and spectral behavior of 52 fast rise and exponential decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in the long-lag pulses. In contrast to the long-lag pulses, only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least four parameters are needed to model burst temporal and spectral behavior. In addition, our studies reveal that these FRED pulses have the following correlated properties: (1) long-duration pulses have harder spectra and are less luminous than short-duration pulses and (2) the more asymmetric the pulses are, the steeper are the evolutionary curves of the peak energy (Ep ) in the ?f ? spectrum within the pulse decay phase. Our statistical results give some constraints on the current GRB models.

  9. THE TEMPORAL AND SPECTRAL CHARACTERISTICS OF 'FAST RISE AND EXPONENTIAL DECAY' GAMMA-RAY BURST PULSES

    SciTech Connect

    Peng, Z. Y.; Ma, L.; Yin, Y.; Bi, X. W.; Zhao, X. H.; Bao, Y. Y. E-mail: astromali@126.co

    2010-08-01

    In this paper, we have analyzed the temporal and spectral behavior of 52 fast rise and exponential decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in the long-lag pulses. In contrast to the long-lag pulses, only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least four parameters are needed to model burst temporal and spectral behavior. In addition, our studies reveal that these FRED pulses have the following correlated properties: (1) long-duration pulses have harder spectra and are less luminous than short-duration pulses and (2) the more asymmetric the pulses are, the steeper are the evolutionary curves of the peak energy (E{sub p}) in the {nu}f{sub {nu}} spectrum within the pulse decay phase. Our statistical results give some constraints on the current GRB models.

  10. IODP Expedition 345: Geochemical Characteristics of Fast Spread Lower East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Meyer, R.; Godard, M.; Saha, A.; Gillis, K. M.; Snow, J. E.; Klaus, A.

    2013-12-01

    Drilling by the Integrated Ocean Drilling Program (IODP) at the Hess Deep Rift recovered young (ca. 1Ma) primitive gabbroic rocks that formed at the fast-spreading East Pacific Rise. Olivine gabbro and troctolite are the dominant rock types recovered at Site U1415, with minor gabbro, clinopyroxene oikocryst-bearing troctolite, clinopyroxene oikocryst-bearing gabbro, and gabbronorite.Two rock series were identified, a layered series with simple layers to diffuse bands of gabbroic rock types and a troctolite series. Olivine gabbros, gabbros and gabbronorites from the layered series have high Mg-numbers (Mg/Mg+Fe) = 79-87), high Ni (130-570 ppm), and low TiO2 (0.1-0.3 wt.%)and incompatible element (e.g., Y <11 ppm) contents. The troctolite series overlaps the gabbroic compositions but are, on average, more primitive with high Mg-numbers (81-89), Ni (260-1500 ppm),and Cr (365-1100 ppm) concentrations,and low TiO2 (<0.1 wt.%)and incompatible element (e.g., Y <3 ppm) contents. The most primitive troctolites sampled have compositions overlapping the field of impregnated mantle peridotites, including those from the Hess Deep Rift. However, these samples are low in Ni relative to their high Mg-number, indicating formation by a dominantly cumulate process. The gabbroic rocks at Site U1415 are far more primitive than the shallow-level gabbros at the Hess Deep Rift and are similar in bulk composition to gabbros from the shallow gabbros from Pito Deep where fast-spreading EPR crust is exposed (Perk et al., 2007). These primitive rock types fall within the range of primitive oceanic gabbros from fast-spreading crust.The preliminary geochemical data are consistent with a petrogenesis as a cumulate sequence from parental mid-ocean ridge basaltic (MORB) melt. However, the occurrence of orthopyroxene in highly primitive rocks challenges current models for melt extraction and MORB crystallization, where orthopyroxene is believed to be only stable within a more evolved MORB crystallization sequence. Perk et al. Contrib. Mineral. Petrol., 154(5):575-590, 2007

  11. Recalcitrant bubbles.

    PubMed

    Shanahan, Martin E R; Sefiane, Khellil

    2014-01-01

    We demonstrate that thermocapillary forces may drive bubbles against liquid flow in 'anomalous' mixtures. Unlike 'ordinary' liquids, in which bubbles migrate towards higher temperatures, we have observed vapour bubbles migrating towards lower temperatures, therefore against the flow. This unusual behaviour may be explained by the temperature dependence of surface tension of these binary mixtures. Bubbles migrating towards their equilibrium position follow an exponential trend. They finally settle in a stationary position just 'downstream' of the minimum in surface tension. The exponential trend for bubbles in 'anomalous' mixtures and the linear trend in pure liquids can be explained by a simple model. For larger bubbles, oscillations were observed. These oscillations can be reasonably explained by including an inertial term in the equation of motion (neglected for smaller bubbles). PMID:24740256

  12. Recalcitrant bubbles

    PubMed Central

    Shanahan, Martin E. R.; Sefiane, Khellil

    2014-01-01

    We demonstrate that thermocapillary forces may drive bubbles against liquid flow in ‘anomalous' mixtures. Unlike ‘ordinary' liquids, in which bubbles migrate towards higher temperatures, we have observed vapour bubbles migrating towards lower temperatures, therefore against the flow. This unusual behaviour may be explained by the temperature dependence of surface tension of these binary mixtures. Bubbles migrating towards their equilibrium position follow an exponential trend. They finally settle in a stationary position just ‘downstream' of the minimum in surface tension. The exponential trend for bubbles in ‘anomalous' mixtures and the linear trend in pure liquids can be explained by a simple model. For larger bubbles, oscillations were observed. These oscillations can be reasonably explained by including an inertial term in the equation of motion (neglected for smaller bubbles). PMID:24740256

  13. CHARACTERISTICS OF A FAST RISE TIME POWER SUPPLY FOR A PULSED PLASMA REACTOR FOR CHEMICAL VAPOR DESTRUCTION

    EPA Science Inventory

    Rotating spark gap devices for switching high-voltage direct current (dc) into a corona plasma reactor can achieve pulse rise times in the range of tens of nanoseconds. The fast rise times lead to vigorous plasma generation without sparking at instantaneous applied voltages highe...

  14. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Daniele, M.; Renggli, C.; Perugini, D.; De Campos, C.; Hess, K. U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2014-12-01

    Rising bubbles may significantly affect magma mixing paths as has been demonstrated by analogue experiments in the past. Here, bubble-advection experiments are performed for the first time employing natural materials at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears as efficient mechanism to mingle contrasting melt compositions. MicroCT imaging shows bubbles trailing each other and trails of multiple bubbles having converged. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that subsequent bubbles rising are likely to follow the same pathways that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Fundamental implications for the concept of bubble advection in magma mixing are thus a) an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and b) non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a filament. Inside these filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments are likely to have experienced multiple bubbles passing through. Whenever bubbles were essential for magma mixing, standard diffusion calculus may thus be inapplicable for constraining timescales. However, data analysis employing concentration variance allows distinguishing conventional single-pulse filaments from multiple bubble ascent advection in natural samples.

  15. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics. PMID:26486337

  16. Bubble, Bubble, Toil and Trouble.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2001

    2001-01-01

    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  17. Petrological characteristics of Opx-bearing primitive gabbros from the East Pacific Rise and the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Python, Marie; Akizawa, Norikatsu; Godard, Marguerite; Ildefonse, Benoît; Koepke, Jürgen

    2014-05-01

    The Hess Deep rift is located at the junction between the fast spreading East Pacific Rise and the Cocos-Nazca Ridge. Lower crust is exposed along the southern slope of the intrarift ridge between 4675 and 4800 m depth and was sampled during IODP Expedition 345. Primitive troctolites and olivine-rich gabbros are the dominant recovered lithologies and shipboard data showed a high Mg# whole rock chemistry in concordance with their primitive nature. In a MOR system, olivine is a typical primitive mineral and orthoyroxene (Opx) usually appear late in the crystallisation sequence, when the magma already reached a significant degree of differentiation. In spite Opx is not expected in any primitive lithology, this mineral is commonly present in Hess Deep gabbros and may be associated with olivine. This curious association of cumulate Opx with olivine and other primitive minerals was also observed at a lower extent in some gabbros from ODP/IODP Hole 1256D, in the upper Hess Deep crustal section (ODP Hole 894G), and in the crustal section of the Oman ophiolite (Kahwad massif) where, in particular, Opx-bearing troctolites coexist with clinopyroxene oikocrysts-bearing troctolites and amphibole-bearing primitive olivine gabbros. Three types of Opx textures may be distinguished in Opx-bearing olivine gabbros and troctolites: (1) recrystallised coronæ around olivine, (2) exsolution within clinopyroxene and (3) large prismatic or poikilitic grains. Prismatic or poikilitic Opx are present at all level of the gabbroic crust, while exsolutions and coronæ were observed only in the lower crust. The mineral chemical compositions vary more with the structural level than with the lithological type and (Opx-bearing) olivine gabbros from Holes 894G, 1256D and from the upper crust of the Oman ophiolite show more differentiated characteristics than the same lithology in the Site 1415 and in the Oman lower crust. Pyroxenes in all samples from the lower crust show a relatively narrow range of Mg# (from 84 to 86% for Opx and 86 to 89% for Cpx) with large variation of minor elements (Ti, Al, Cr) suggesting a strong influence of melt-rock reaction during their formation. On the other hand, the upper crust samples show a large variation in their ferro-magnesian Mg# (72-87% for Cpx and 70-85% for Opx) together with a relatively weak scatter in minor elements. Magmatic crystallisation were then the dominant event in the upper crust, so that Opx is likely to be directly crystallised from magma. In contrast, in the lower crust, magmatic processes were dominated by melt-rock reaction, and the chemical composition and habitus of Opx show that they have been probably formed by reaction between previously abundant olivine and melt.

  18. Bubble diagnostics

    DOEpatents

    Visuri, Steven R. (Livermore, CA); Mammini, Beth M. (Walnut Creek, CA); Da Silva, Luiz B. (Danville, CA); Celliers, Peter M. (Berkeley, CA)

    2003-01-01

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  19. Kinetic Model of Gas Bubble Dissolution in Groundwater and Its

    E-print Network

    Aeschbach-Hertig, Werner

    of a discrete gas phase that bubbles through either liquid or liquid-solid reactors is an important application diffusivities. Introduction The interaction of gas bubbles with a surrounding liquid is an essential part. Factors controlling the flux of gas into the liquid are the rising velocity of the gas bubbles

  20. Magnetism. Blowing magnetic skyrmion bubbles.

    PubMed

    Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; Yu, Guoqiang; Jungfleisch, M Benjamin; Fradin, Frank Y; Pearson, John E; Tserkovnyak, Yaroslav; Wang, Kang L; Heinonen, Olle; te Velthuis, Suzanne G E; Hoffmann, Axel

    2015-07-17

    The formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally "blow" magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of these dynamically created skyrmions, including depinning and motion. The demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics. PMID:26067256

  1. Study of CO2 bubble dynamics in seawater from QICS field Experiment

    NASA Astrophysics Data System (ADS)

    Chen, B.; Dewar, M.; Sellami, N.; Stahl, H.; Blackford, J.

    2011-12-01

    One of the concerns of employing CCS at engineering scale is the risk of leakage of storage CO2 on the environment and especially on the marine life. QICS, a scientific research project was launched with an aim to study the effects of a potential leak from a CCS system on the UK marine environment [1]. The project involves the injection of CO2 from a shore-based lab into shallow marine sediments. One of the main objectives of the project is to generate experimental data to be compared with the developed physical models. The results of the models are vital for the biogeochemical and ecological models in order to predict the impact of a CO2 leak in a variety of situations. For the evaluation of the fate of the CO2 bubbles into the surrounding seawater, the physical model requires two key parameters to be used as input which are: (i) a correlation of the drag coefficient as function of the CO2 bubble Reynolds number and (ii) the CO2 bubble size distribution. By precisely measuring the CO2 bubble size and rising speed, these two parameters can be established. For this purpose, the dynamical characteristics of the rising CO2 bubbles in Scottish seawater were investigated experimentally within the QICS project. Observations of the CO2 bubbles plume rising freely in the in seawater column were captured by video survey using a ruler positioned at the leakage pockmark as dimension reference. This observation made it possible, for the first time, to discuss the dynamics of the CO2 bubbles released in seawater. [1] QICS, QICS: Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage. (Accessed 15.07.13), http://www.bgs.ac.uk/qics/home.html

  2. Study of CO2 bubble dynamics in seawater from QICS field Experiment

    NASA Astrophysics Data System (ADS)

    Chen, B.; Dewar, M.; Sellami, N.; Stahl, H.; Blackford, J.

    2013-12-01

    One of the concerns of employing CCS at engineering scale is the risk of leakage of storage CO2 on the environment and especially on the marine life. QICS, a scientific research project was launched with an aim to study the effects of a potential leak from a CCS system on the UK marine environment [1]. The project involves the injection of CO2 from a shore-based lab into shallow marine sediments. One of the main objectives of the project is to generate experimental data to be compared with the developed physical models. The results of the models are vital for the biogeochemical and ecological models in order to predict the impact of a CO2 leak in a variety of situations. For the evaluation of the fate of the CO2 bubbles into the surrounding seawater, the physical model requires two key parameters to be used as input which are: (i) a correlation of the drag coefficient as function of the CO2 bubble Reynolds number and (ii) the CO2 bubble size distribution. By precisely measuring the CO2 bubble size and rising speed, these two parameters can be established. For this purpose, the dynamical characteristics of the rising CO2 bubbles in Scottish seawater were investigated experimentally within the QICS project. Observations of the CO2 bubbles plume rising freely in the in seawater column were captured by video survey using a ruler positioned at the leakage pockmark as dimension reference. This observation made it possible, for the first time, to discuss the dynamics of the CO2 bubbles released in seawater. [1] QICS, QICS: Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage. (Accessed 15.07.13), http://www.bgs.ac.uk/qics/home.html

  3. Bubbles in graphene - a computational study

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Power, Stephen R.; Lin, Jun; Petersen, Dirch H.; Jauho, Antti-Pekka

    2015-10-01

    Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sharp-edged bubbles are found to induce Friedel-type oscillations which can envelope pseudo-Landau level features in certain regions of the bubble. However, bubbles which minimise interference effects are also unsuitable for pseudo-Landau level formation due to more spatially varying field profiles.

  4. Release of multiple bubbles from cohesive sediments

    NASA Astrophysics Data System (ADS)

    Algar, Christopher K.; Boudreau, Bernard P.; Barry, Mark A.

    2011-04-01

    Methane is a strong greenhouse gas, and marine and wetland sediments constitute significant sources to the atmosphere. This flux is dominated by the release of bubbles, and quantitative prediction of this bubble flux has been elusive because of the lack of a mechanistic model. Our previous work has shown that sediments behave as elastic fracturing solids during bubble growth and rise. We now further argue that bubbles can open previously formed, partially annealed, rise tracts (fractures) and that this mechanism can account for the observed preferential release at low tides in marine settings. When this mechanical model is applied to data from Cape Lookout Bight, NC (USA), the results indicate that methanogenic bubbles released at this site do indeed follow previously formed rise tracts and that the calculated release rates are entirely consistent with the rise of multiple bubbles on tidal time scales. Our model forms a basis for making predictions of future bubble fluxes from warming sediments under the influence of climate change.

  5. Cosmic ray confinement in fossil cluster bubbles

    NASA Astrophysics Data System (ADS)

    Ruszkowski, M.; Enßlin, T. A.; Brüggen, M.; Begelman, M. C.; Churazov, E.

    2008-02-01

    Most cool core clusters of galaxies possess active galactic nuclei (AGN) in their centres. These AGN inflate buoyant bubbles containing non-thermal radio-emitting particles. If such bubbles efficiently confine cosmic rays (CRs) then this could explain `radio relics' seen far from cluster centres. We simulate the diffusion of CRs from buoyant bubbles inflated by AGN. Our simulations include the effects of the anisotropic particle diffusion introduced by magnetic fields. Our models are consistent with the X-ray morphology of AGN bubbles, with disruption being suppressed by the magnetic draping effect. We conclude that for such magnetic field topologies, a substantial fraction of CRs can be confined inside the bubbles on buoyant rise time-scales even when the parallel diffusivity coefficient is very large. For isotropic diffusion at a comparable level, CRs would leak out of the bubbles too rapidly to be consistent with radio observations. Thus, the long confinement times associated with the magnetic suppression of CRs diffusion can explain the presence of radio relics. We show that the partial escape of CRs is mostly confined to the wake of the rising bubbles and speculate that this effect could: (i) account for the excitation of the H? filaments trailing behind the bubbles in the Perseus cluster, (ii) inject entropy into the metal-enriched material being lifted by the bubbles and, thus, help to displace it permanently from the cluster centre and (iii) produce observable ?-rays via the interaction of the diffusing CRs with the thermal intracluster medium.

  6. Fuel system bubble dissipation device

    SciTech Connect

    Iseman, W.J.

    1987-11-03

    This patent describes a bubble dissipation device for a fuel system wherein fuel is delivered through a fuel line from a fuel tank to a fuel control with the pressure of the fuel being progressively increased by components including at least one pump stage and an ejector in advance of the pump state. The ejector an ejector casing with a wall defining an elongate tubular flow passage which forms a portion of the fuel line to have all of the fuel flow through the tubular flow passage in flowing from the fuel tank to the fuel control, a nozzle positioned entirely within the tubular flow passage and spaced from the wall to permit fuel flow. The nozzle has an inlet and an outlet with the inlet connected to the pump stage to receive fuel under pressure continuously from the pump stage, a bubble accumulation chamber adjoining and at a level above the ejector casing and operatively connected to the fuel line in advance of the ejector casing. The bubble accumulation chamber is of a size to function as a fuel reservoir and hold an air bubble containing vapor above the level of fuel therein and having an outlet adjacent the bottom thereof operatively connected to the tubular flow passage in the ejector casing at an inlet end, a bubble accumulation chamber inlet above the level of the bubble accumulation chamber outlet whereby fuel can flow through the bubble accumulation chamber from the inlet to the outlet thereof with a bubble in the fuel rising above the fuel level in the bubble accumulation chamber.

  7. Tiny Bubbles.

    ERIC Educational Resources Information Center

    Kim, Hy

    1985-01-01

    A simple oxygen-collecting device (easily constructed from glass jars and a lid) can show bubbles released by water plants during photosynthesis. Suggestions are given for: (1) testing the collected gas; (2) using various carbon dioxide sources; and (3) measuring respiration. (DH)

  8. Ring Bubbles of Dolphins

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since centrifugal force has to be balanced by a lift-like force. She then re-traces her path and injects air into the vortex from her blowhole. She can even make a ring reconnect from the helix. In the second technique, demonstrated a few times, she again swims in a curved path, releases a cloud or group of bubbles from her blowhole and turns sharply away (Which presumably strengthens the vortex). As the bubbles encounter the vortex, they travel to the center of the vortex, merge and, in a flash, elongate along the core of the vortex. In all the three types, the air-water interface is shiny smooth and stable because the pressure gradient in the vortex flow around the bubble stabilizes it. A lot of the interesting physics still remains to be explored.

  9. Effect of fine bubbles on electric discharge in water

    NASA Astrophysics Data System (ADS)

    Hayashi, Yui; Takada, Noriharu; Kanda, Hideki; Goto, Motonobu

    2015-10-01

    Ar or O2 fine bubbles of diameter??<80 ?m were introduced in water and a pulsed discharge plasma was generated between cylinder electrodes in water. Fine bubbles in water affected discharge ignition and caused low inception voltage and suppression of rising temperature. The contamination from electrodes was suppressed in the case of fine bubbles addition because fine bubbles assisted plasma generation. In addition, discharge with fine bubbles enhanced plasma emission with high electron density compared to the no-bubbling case. Discharge with fine bubbles at low-pH conditions generated intense plasma emission compared to neutral and high-pH conditions owing to the electric charge of the fine bubbles.

  10. Bubble mobility in mud and magmatic volcanoes

    NASA Astrophysics Data System (ADS)

    Tran, Aaron; Rudolph, Maxwell L.; Manga, Michael

    2015-03-01

    The rheology of particle-laden fluids with a yield stress, such as mud or crystal-rich magmas, controls the mobility of bubbles, both the size needed to overcome the yield stress and their rise speed. We experimentally measured the velocities of bubbles and rigid spheres in mud sampled from the Davis-Schrimpf mud volcanoes adjacent to the Salton Sea, Southern California. Combined with previous measurements in the polymer gel Carbopol, we obtained an empirical model for the drag coefficient and bounded the conditions under which bubbles overcome the yield stress. Yield stresses typical of mud and basaltic magmas with sub-mm particles can immobilize millimeter to centimeter sized bubbles. At Stromboli volcano, Italy, a vertical yield stress gradient in the shallow conduit may immobilize bubbles with diameter ? 1 cm and hinder slug coalescence.

  11. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Renggli, C.; Perugini, D.; De Campos, C. P.; Hess, K.-U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2015-04-01

    That rising bubbles may significantly affect magma mixing paths has already been demon strated by analogue experiments. Here, for the first time, bubble-advection experiments are performed employing volcanic melts at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears to be an efficient mechanism for mingling volcanic melts of highly contrasting compositions and properties. MicroCT imaging reveals bubbles trailing each other and multiple filaments coalescing into bigger ones. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that bubbles rising successively are likely to follow this pathway of low resistance that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Inevitable implications for the concept of bubble advection in magma mixing include thereby both an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a material. Inside the filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments are likely to have experienced multiple bubbles passages. In cases where bubbles have been essential for magma mixing, standard diffusion analysis may thus be inadequate for constraining timescales. However, data analysis employing concentration variance relaxation permits the distinction of conventional single-pulse filaments from multiple bubble ascent advection in natural samples, demonstrating yet another powerful application of this novel petrological tool.

  12. Dynamics of Bubble Ascent in Mud Volcanoes

    NASA Astrophysics Data System (ADS)

    Tran, A.; Rudolph, M. L.; Manga, M.

    2011-12-01

    Bubble ascent controls the eruption style of both magmatic and mud volcanoes, and is influenced by the rheology of the continuous phase. Mud and some magmas are non-Newtonian, and bubble ascent in non-Newtonian fluids remains incompletely characterized. We performed laboratory experiments using mud obtained from mud volcanoes adjacent to the Salton Sea, in Southern California. The erupting mud is well-described as a Herschel-Bulkley (shear-thinning, yield stress) fluid. We measured the rise speed of bubbles with volumes between 5 and 20 cc, varied the conduit diameter, and controlled for hysteresis in the mud to estimate upper and lower bounds on terminal velocity. Bubbles smaller than about 6 cc are unable to rise due to the mud's yield strength. We made rheological measurements (power-law exponent, yield strength, and consistency index) of the mud to compare the observed bubble rise speed to several empirical fits to laboratory data. We also quantify the rate of coalescence of bubbles as a function of their concentration and hence gas mass flux.

  13. Rising River

    USGS Multimedia Gallery

    On April 9, 2014 a visit to the USGS gaging station on Libby Brook near Northfield, Maine showed that while runoff had caused a large rise in the small brook, there still remained a significant snowpack in the area....

  14. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Renggli, C. J.; Perugini, D.; De Campos, C. P.; Hess, K.-U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2015-08-01

    In order to explore the materials' complexity induced by bubbles rising through mixing magmas, bubble-advection experiments have been performed, employing natural silicate melts at magmatic temperatures. A cylinder of basaltic glass was placed below a cylinder of rhyolitic glass. Upon melting, bubbles formed from interstitial air. During the course of the experimental runs, those bubbles rose via buoyancy forces into the rhyolitic melt, thereby entraining tails of basaltic liquid. In the experimental run products, these plume-like filaments of advected basalt within rhyolite were clearly visible and were characterised by microCT and high-resolution EMP analyses. The entrained filaments of mafic material have been hybridised. Their post-experimental compositions range from the originally basaltic composition through andesitic to rhyolitic composition. Rheological modelling of the compositions of these hybridised filaments yield viscosities up to 2 orders of magnitude lower than that of the host rhyolitic liquid. Importantly, such lowered viscosities inside the filaments implies that rising bubbles can ascend more efficiently through pre-existing filaments that have been generated by earlier ascending bubbles. MicroCT imaging of the run products provides textural confirmation of the phenomenon of bubbles trailing one another through filaments. This phenomenon enhances the relevance of bubble advection in magma mixing scenarios, implying as it does so, an acceleration of bubble ascent due to the decreased viscous resistance facing bubbles inside filaments and yielding enhanced mass flux of mafic melt into felsic melt via entrainment. In magma mixing events involving melts of high volatile content, bubbles may be an essential catalyst for magma mixing. Moreover, the reduced viscosity contrast within filaments implies repeated replenishment of filaments with fresh end-member melt. As a result, complex compositional gradients and therefore diffusion systematics can be expected at the filament-host melt interface, due to the repetitive nature of the process. However, previously magmatic filaments were tacitly assumed to be of single-pulse origin. Consequently, the potential for multi-pulse filaments has to be considered in outcrop analyses. As compositional profiles alone may remain ambiguous for constraining the origin of filaments, and as 3-D visual evidence demonstrates that filaments may have experienced multiple bubbles passages even when featuring standard diffusion gradients, therefore, the calculation of diffusive timescales may be inadequate for constraining timescales in cases where bubbles have played an essential role in magma mixing. Data analysis employing concentration variance relaxation in natural samples can distinguish conventional single-pulse filaments from advection via multiple bubble ascent advection in natural samples, raising the prospect of yet another powerful application of this novel petrological tool.

  15. Bubbles and Superbubbles

    E-print Network

    Y. -H. Chu; M. A. Guerrero; R. A. Gruendl

    2003-10-10

    An isolated massive star can blow a bubble, while a group of massive stars can blow superbubbles. In this paper, we examine three intriguing questions regarding bubbles and superbubbles: (1) why don't we see interstellar bubbles around every O star? (2) how hot are the bubble interiors? and (3) what is going on at the hot/cold gas interface in a bubble?

  16. Gunderson RISEs

    ERIC Educational Resources Information Center

    Sleight, Ralph H.

    1978-01-01

    Described are efforts of the Gunderson Senior High School (San Jose, California) in developing improved instruction with the aid of active community participation. Relevance of its efforts to the mandate of the California Commission on Reform in Intermediate and Secondary Education (RISE) is noted. (MJB)

  17. Vortex Formation in Ellipsoidal Thermal Bubbles.

    NASA Astrophysics Data System (ADS)

    Shapiro, Alan; Kanak, Katharine M.

    2002-07-01

    The rise of an isolated dry thermal bubble in a quiescent unstratified environment is a prototypical natural convective flow. This study considers the rise of an isolated dry thermal bubble of ellipsoidal shape (elliptical in both horizontal and vertical cross sections). The azimuthal asymmetry of the bubble allows the vorticity tilting mechanism to operate without an environmental wind. The dry Boussinesq equations of motion are solved analytically as a Taylor series in time for the early time behavior of the bubble (involving derivatives of up to the third order in time). The analytic results are supplemented with numerical simulations to examine the longer-time behavior. The first nonzero term in the Taylor expansion for the vertical vorticity is a third-order term, and appears as a four-leaf clover pattern with lobes of alternating sign. The horizontal flow associated with this vorticity pattern first appears as a sheared stagnation point-type flow, but eventually organizes into vertical vortices that fill the bubble. The vortices induce large structural changes to the bubble and eventually reverse the sense of the azimuthal asymmetry.

  18. {sup 226}Ra and {sup 231}Pa systematics of axial MORB, crustal residence ages, and magma chamber characteristics at 9--10{degree}N East Pacific Rise

    SciTech Connect

    Goldstein, S.J.; Murrell, M.T.; Perfit, M.R.; Batiza, R.; Fornari, D.J.

    1994-06-01

    Mass spectrometric measurements of {sup 30}Th-22{sup 226}Ra and {sup 235}-U{sup 231}Pa disequilibria for axial basalts are used to determine crustal residence ages for MORB magma and investigate the temporal and spatial characteristics of axial magma chambers (AMC) at 9--10{degrees}N East Pacific Rise (EPR). Relative crustal residence ages can be calculated from variations in {sup 226}Ra/{sup 230}Th and {sup 231}Pa/{sup 235}U activity ratios for axial lavas, if (1) mantle sources and melting are uniform, and mantle transfer times are constant or rapid for axial N-MORB, and (2) {sup 231}Pa/{sup 235}U and {sup 226}Ra/{sup 230}Th in the melt are unaffected by shallow level fractional crystallization. Uniform Th, Sr, and Nd isotopic systematics and incompatible element ratios for N-MORB along the 9--10{degrees}N segment indicate that mantle sources and transfer times are similar. In addition, estimated bulk solid/melt partition coefficients for U, Th, and Pa are small, hence effects of fractional crystallization on {sup 231}Pa/{sup 235}U ratios for the melt are expected to be negligible. However, fractional crystallization of plagioclase in the AMC would lower {sup 226}Ra/{sup 230}Th ratios in the melt and produce a positive bias in {sup 226}Ra crustal residence ages for fractionated lavas.

  19. Ignition modes of nanosecond discharge with bubbles in distilled water

    NASA Astrophysics Data System (ADS)

    Hamdan, Ahmad; Cha, Min Suk

    2015-10-01

    Here, we present the microscopic physical characteristics of nanosecond discharges with an array of bubbles in distilled water. In particular, applying a single high-voltage pulse, four delayed intensified charge-coupled device cameras successfully visualized four successive images during a single discharge event. We identified three distinctive modes of ignition inside a bubble, depending on the relative location of the bubble with respect to pin-to-hollow needle electrodes when a single bubble was located in an inter-electrode gap of 1 mm: anode-driven ignition, cathode-driven ignition, and co-ignition near both electrodes. Anode- and cathode-driven ignitions evolved into either a complete propagation of the streamer or an incomplete propagation, which were limited in location by proximity to an ignition location, while co-ignitions consistently showed complete propagation. When we increased the gap to 2?mm to accommodate multiple bubbles in the gap, an ignited bubble near the cathode was able to cause the ignition of an upper adjacent bubble. Bubble-bubble interface zones can also be spots of ignition, such that we observed simultaneous co-ignitions in the zones of bubble-bubble interfaces and near electrodes with triple bubbles. We compared the experimental results of discharge propagation with different ignition modes between Ar, He, and N2 bubbles. In addition, numerical simulations for static electric fields reasonably supported observed ignition behavior such that field intensity was locally enhanced.

  20. Rising equity

    SciTech Connect

    Burr, M.T.

    1992-09-01

    This article reports on the results of a financial rankings survey of the independent energy industry indicating that lenders and investors provided more than five billion dollars in capital for new, private power projects during the first six months of 1992. The topics of the article include rising equity requirements, corporate finance, mergers and acquisitions, project finance investors, revenue bonds, project finance lenders for new projects, project finance lenders for restructurings, and project finance advisors.

  1. Near-wall measurements of the bubble- and Lorentz-force-driven convection at gas-evolving electrodes

    NASA Astrophysics Data System (ADS)

    Baczyzmalski, Dominik; Weier, Tom; Kähler, Christian J.; Cierpka, Christian

    2015-08-01

    Chemical energy storage systems, e.g., in the form of hydrogen or methanol, have a great potential for the establishment of volatile renewable energy sources due to the large energy density. The efficiency of hydrogen production through water electrolysis is, however, limited by gas bubbles evolving at the electrode's surface and can be enhanced by an accelerated bubble detachment. In order to characterize the complex multi-phase flow near the electrode, simultaneous measurements of the fluid velocities and the size and trajectories of hydrogen bubbles were performed in a water electrolyzer. The liquid phase velocity was measured by PIV/PTV, while shadowgraphy was used to determine the bubble trajectories. Special measurement and evaluation techniques had to be applied as the measurement uncertainty is strongly affected by the high void fraction close to the wall. In particular, the application of an advanced PTV scheme allowed for more precise fluid velocity measurements closer to electrode. Based on these data, stability characteristics of the near-wall flow were evaluated and compared to that of a wall jet. PTV was used as well to investigate the effect of Lorentz forces on the near-wall fluid velocities. The results show a significantly increased wall parallel liquid phase velocity with increasing Lorentz forces. It is presumed that this enhances the detachment of hydrogen bubbles from the electrode surface and, consequently, decreases the fractional bubble coverage and improves the efficiency. In addition, the effect of large rising bubbles with path oscillations on the near-wall flow was investigated. These bubbles can have a strong impact on the mass transfer near the electrode and thus affect the performance of the process.

  2. Measuring bubbles in a bubbly wake flow

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Kawakami, Ellison; Arndt, Roger E. A.

    2012-11-01

    This paper presents measurements of the velocity and size distribution of bubbles in a bubbly wake. This was carried out by utilizing particle shadow velocimetry (PSV). This technique is a non-scattering approach that relies on direct in-line volume illumination by a pulsed source such as a light-emitting diode (LED). A narrow depth-of-field (DoF) is required for imaging a 2-dimensional plane within a flow volume. Shadows of the bubbles were collected by a high-speed camera. Once a reference image, taken when no bubbles were present in the flow, was subtracted from the images, the image was segmented using an edge detection technique. The Canny algorithm was determined to be best suited for this application. A curvature profile method was employed to distinguish individual bubbles within a cluster of highly overlapping bubbles. The utilized algorithm was made to detect partly overlapping bubbles and reconstruct the missing parts. The movement of recognized individual bubbles was tracked on a two dimensional plane within a flow volume. In order to obtain quantitative results, the wake of a ventilated hydrofoil was investigated by applying the shadowgraphy technique and the described bubble detection algorithm. These experiments were carried out in the high speed cavitation tunnel at Saint Anthony Falls Laboratory (SAFL) of the University of Minnesota. This research is jointly sponsored by the Office of Naval Re- search, Dr. Ron Joslin, program manager, and the Department of Energy, Golden Field Office.

  3. Dye-bubble interactions in an open channel flow

    NASA Astrophysics Data System (ADS)

    Crepeau, John C.; McIlroy, Hugh M.

    2005-12-01

    An innovative technique has been developed to visualize the effect that a localized surface reaction has in an open channel flow field. The working fluid is hexanoic acid mixed with mineral oil, and it flows over an aluminum plate embedded with sodium metal. Hexanoic acid and sodium metal react to form hydrogen gas and hexanoic salt. The hydrogen gas forms bubbles that rise to the surface and are convected downstream by the fluid. The rising bubbles induce the formation of counter-rotating vortices that straddle the reaction site. Bubble entrainment stretches and bends the dye filaments, and buoyancy transports the bubbles away from the reaction. The products of the reaction introduce velocity fluctuations into an otherwise laminar flow, inducing what has been described by some researchers as pseudoturbulence. Downstream of the reaction, far away from the disturbances caused by the buoyant bubbles, the velocity fluctuations dampen out and the flow relaminarizes.

  4. Emergence of Granular-sized Magnetic Bubbles through the Solar Atmosphere. I. Spectropolarimetric Observations and Simulations

    NASA Astrophysics Data System (ADS)

    Ortiz, Ada; Bellot Rubio, Luis R.; Hansteen, Viggo H.; de la Cruz Rodríguez, Jaime; Rouppe van der Voort, Luc

    2014-02-01

    We study a granular-sized magnetic flux emergence event that occurred in NOAA 11024 in 2009 July. The observations were made with the CRISP spectropolarimeter at the Swedish 1 m Solar Telescope achieving a spatial resolution of 0.''14. Simultaneous full Stokes observations of the two photospheric Fe I lines at 630.2 nm and the chromospheric Ca II 854.2 nm line allow us to describe in detail the emergence process across the solar atmosphere. We report here on three-dimensional (3D) semi-spherical bubble events, where instead of simple magnetic footpoints, we observe complex semi-circular feet straddling a few granules. Several phenomena occur simultaneously, namely, abnormal granulation, separation of opposite-polarity legs, and brightenings at chromospheric heights. However, the most characteristic signature in these events is the observation of a dark bubble in filtergrams taken in the wings of the Ca II 854.2 nm line. There is a clear coincidence between the emergence of horizontal magnetic field patches and the formation of the dark bubble. We can infer how the bubble rises through the solar atmosphere as we see it progressing from the wings to the core of Ca II 854.2 nm. In the photosphere, the magnetic bubble shows mean upward Doppler velocities of 2 km s-1 and expands at a horizontal speed of 4 km s-1. In about 3.5 minutes it travels some 1100 km to reach the mid chromosphere, implying an average ascent speed of 5.2 km s-1. The maximum separation attained by the magnetic legs is 6.''6. From an inversion of the observed Stokes spectra with the SIR code, we find maximum photospheric field strengths of 480 G and inclinations of nearly 90° in the magnetic bubble interior, along with temperature deficits of up to 250 K at log ? = -2 and above. To aid the interpretation of the observations, we carry out 3D numerical simulations of the evolution of a horizontal, untwisted magnetic flux sheet injected in the convection zone, using the Bifrost code. The computational domain spans from the upper convection zone to the lower corona. In the modeled chromosphere, the rising flux sheet produces a large, cool, magnetized bubble. We compare this bubble with the observed ones and find excellent agreement, including similar field strengths and velocity signals in the photosphere and chromosphere, temperature deficits, ascent speeds, expansion velocities, and lifetimes.

  5. Emergence of granular-sized magnetic bubbles through the solar atmosphere. I. Spectropolarimetric observations and simulations

    SciTech Connect

    Ortiz, Ada; Hansteen, Viggo H.; Van der Voort, Luc Rouppe; Bellot Rubio, Luis R.; De la Cruz Rodríguez, Jaime

    2014-02-01

    We study a granular-sized magnetic flux emergence event that occurred in NOAA 11024 in 2009 July. The observations were made with the CRISP spectropolarimeter at the Swedish 1 m Solar Telescope achieving a spatial resolution of 0.''14. Simultaneous full Stokes observations of the two photospheric Fe I lines at 630.2 nm and the chromospheric Ca II 854.2 nm line allow us to describe in detail the emergence process across the solar atmosphere. We report here on three-dimensional (3D) semi-spherical bubble events, where instead of simple magnetic footpoints, we observe complex semi-circular feet straddling a few granules. Several phenomena occur simultaneously, namely, abnormal granulation, separation of opposite-polarity legs, and brightenings at chromospheric heights. However, the most characteristic signature in these events is the observation of a dark bubble in filtergrams taken in the wings of the Ca II 854.2 nm line. There is a clear coincidence between the emergence of horizontal magnetic field patches and the formation of the dark bubble. We can infer how the bubble rises through the solar atmosphere as we see it progressing from the wings to the core of Ca II 854.2 nm. In the photosphere, the magnetic bubble shows mean upward Doppler velocities of 2 km s{sup –1} and expands at a horizontal speed of 4 km s{sup –1}. In about 3.5 minutes it travels some 1100 km to reach the mid chromosphere, implying an average ascent speed of 5.2 km s{sup –1}. The maximum separation attained by the magnetic legs is 6.''6. From an inversion of the observed Stokes spectra with the SIR code, we find maximum photospheric field strengths of 480 G and inclinations of nearly 90° in the magnetic bubble interior, along with temperature deficits of up to 250 K at log ? = –2 and above. To aid the interpretation of the observations, we carry out 3D numerical simulations of the evolution of a horizontal, untwisted magnetic flux sheet injected in the convection zone, using the Bifrost code. The computational domain spans from the upper convection zone to the lower corona. In the modeled chromosphere, the rising flux sheet produces a large, cool, magnetized bubble. We compare this bubble with the observed ones and find excellent agreement, including similar field strengths and velocity signals in the photosphere and chromosphere, temperature deficits, ascent speeds, expansion velocities, and lifetimes.

  6. Satellites in the inviscid breakup of bubbles.

    PubMed

    Gordillo, J M; Fontelos, M A

    2007-04-01

    In this Letter, we stress the essential role played by gas inertia in the breakup of gas bubbles. Our results reveal that, whenever the gas to liquid density ratio Lambda=rhog/rhol is different from zero, tiny satellite bubbles may be formed as a result of the large gas velocities that are reached close to pinch-off. Moreover, we provide a closed expression for the characteristic satellite diameter, which decreases when decreasing Lambda and which shows order of magnitude agreement with the micron-sized satellite bubbles observed experimentally. PMID:17501278

  7. Rising seas

    SciTech Connect

    Schneider, D.

    1997-03-01

    Predicting exactly how - or whether - sea level will shift in response to global warming remains a significant challenge. Scientists trained in many separate disciplines are attempting to glean answers using a variety of experimental approaches, ranging from drilling into the Antarctic ice cap to bouncing radar off the ocean from space. With such efforts, investigators have learned a great deal about how sea level has varied in the past and how it is currently changing. For example, most of these scientists agree that the ocean has been creeping upward by two millimeters a year for at least the past several decades. But determining whether a warmer climate will lead to a sudden acceleration in the rate of sea level rise remains an outstanding question. This article discusses the uncertainties, historical data, and possibilities regarding this issue.

  8. Characteristics of equatorial plasma bubble zonal drift velocity and tilt based on Hong Kong GPS CORS network: From 2001 to 2012

    NASA Astrophysics Data System (ADS)

    Ji, Shengyue; Chen, Wu; Weng, Duojie; Wang, Zhenjie

    2015-08-01

    Hong Kong (22.3°N, 114.2°E, dip: 30.5°N; geomagnetic 15.7°N, 173.4°W, declination: 2.7°W) is a low-latitude area, and the Hong Kong Continuously Operating Reference Station (CORS) network has been developed and maintained by Lands Department of Hong Kong government since 2001. Based on the collected GPS observations of a whole solar cycle from 2001 to 2012, a method is proposed to estimate the zonal drift velocity as well as the tilt of the observed plasma bubbles, and the estimated results are statistically analyzed. It is found that although the plasma bubbles are basically vertical within the equatorial plane, the tilt can be as big as more than 60° eastward or westward sometimes. And, the tilt and the zonal drift velocity are correlated. When the velocity is large, the tilt is also large generally. Another finding is that large velocity and tilt generally occur in spring and autumn and in solar active years.

  9. Europa Rising

    NASA Technical Reports Server (NTRS)

    2007-01-01

    New Horizons took this image of the icy moon Europa rising above Jupiter's cloud tops with its Long Range Reconnaissance Imager (LORRI) at 11:48 Universal Time on February 28, 2007, six hours after the spacecraft's closest approach to Jupiter.

    The picture was one of a handful of the Jupiter system that New Horizons took primarily for artistic, rather than scientific, value. This particular scene was suggested by space enthusiast Richard Hendricks of Austin, Texas, in response to an Internet request by New Horizons scientists for evocative, artistic imaging opportunities at Jupiter.

    The spacecraft was 2.3 million kilometers (1.4 million miles) from Jupiter and 3 million kilometers (1.8 million miles) from Europa when the picture was taken. Europa's diameter is 3,120 kilometers (1,939 miles). The image is centered on Europa coordinates 5 degrees south, 6 degrees west. In keeping with its artistic intent - and to provide a more dramatic perspective - the image has been rotated so south is at the top.

  10. Copernicus Rising

    NASA Astrophysics Data System (ADS)

    Rose, Michael A.

    2007-08-01

    Copernicus Rising began as a historical biography when it was first conceived, but as the writing progressed it quickly became a rather absurd play that took historical research and twisted it through the lens of my own wit, philosophy and personal affection for the characters. When working with historical figures--characters who existed in a very tangible way in our own history--the playwriting process opens a dialogue between different points in time and space. The difficulty lies in finding a unique and clear voice amongst the discordant personalities involved in this time and space overlap, both in the writing and production processes, in order to get to the heart of what the play is really all about. This thesis follows the journey of the play from its historical roots through the creation of an absurd journey both insides and outside time, space and the human mind. The first part of the thesis explains the beginnings of the concept and outlines much of the research and development that went into the play. The next part outlines the process of production and integrating the world on paper with that of moving bodies on stage. In the final part, post-production discussions and audience feedback sessions shape the play into the draft included in this thesis.

  11. Modeling radiation characteristics of semitransparent media

    E-print Network

    Pilon, Laurent

    Modeling radiation characteristics of semitransparent media containing bubbles or particles Jaona 65921) Modeling of radiation characteristics of semitransparent media containing particles or bubbles in the indepen- dent scattering limit is examined. The existing radiative properties models of a single particle

  12. Bubble-induced cave collapse.

    PubMed

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor. PMID:25849088

  13. Bubble-Induced Cave Collapse

    PubMed Central

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned “natural” instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a “collapse”. We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor. PMID:25849088

  14. Scaling model for laser-produced bubbles in soft tissue

    SciTech Connect

    London, R. A., LLNL

    1998-03-12

    The generation of vapor-driven bubbles is common in many emerging laser-medical therapies involving soft tissues. To successfully apply such bubbles to processes such as tissue break-up and removal, it is critical to understand their physical characteristics. To complement previous experimental and computational studies, an analytic mathematical model for bubble creation and evolution is presented. In this model, the bubble is assumed to be spherically symmetric, and the laser pulse length is taken to be either very short or very long compared to the bubble expansion timescale. The model is based on the Rayleigh cavitation bubble model. In this description, the exterior medium is assumed to be an infinite incompressible fluid, while the bubble interior consists of a mixed liquid-gas medium which is initially heated by the laser. The heated interior provides the driving pressure which expands the bubble. The interior region is assumed to be adiabatic and is described by the standard water equation-of-state, available in either tabular, or analytic forms. Specifically, we use adiabats from the equation-of-state to describe the evolution of the interior pressure with bubble volume. Analytic scaling laws are presented for the maximum size, the duration, and the energy of bubbles as functions of the laser energy and initially heated volume. Of particular interest, is the efficiency of converting laser energy into bubble motion.

  15. In situ study on growth behavior of interfacial bubbles and its effect on interfacial reaction during a soldering process

    NASA Astrophysics Data System (ADS)

    Qu, L.; Ma, H. T.; Zhao, H. J.; Kunwar, Anil; Zhao, N.

    2014-06-01

    The growth behavior of interfacial bubbles and the effect of bubbles on interfacial reaction during a soldering process were in situ studied by the synchrotron radiation real-time imaging technology. It was found that the bubbles at the solid/liquid interface were heterogeneous nucleation. The heterogeneous nucleation energy of bubbles at the interface was one-tenth of the homogeneity nucleation energy at 250 °C. At the interface, each bubble grew into spherical finally and its volume increased with the rise of temperature. Annexations between adjacent bubbles occurred, during which the bigger bubbles moved toward the smaller ones. The bubbles at the solid/liquid interface affected the dissolution behavior of Cu substrate greatly, i.e., the closer to the bubble bottom the less the Cu dissolution was, since the less the solder and the easier the saturation were. Moreover, the effect of bubbles on the growth behavior of interfacial intermetallic compound (IMC) was also discussed.

  16. Test and evaluation of bubble memories

    NASA Technical Reports Server (NTRS)

    Bahm, E.

    1978-01-01

    A description is presented of a test program which has shown that well-constructed bubble memories can operate reliably over long periods of time and at low error rates. Even the relatively high error rate of one memory during burn-in can be considered acceptable if compared with tape recorder standards. No wear-out mechanism or aging could be detected. Bubble memories are now considered suitable for long-duration space missions and certainly are suitable for many military and commercial applications. It must be recognized, however, that bubble memories are complex devices and not yet fully understood. While the particular memory tested may never find practical applications, it nevertheless has provided insight into performance characteristics considered typical of bubble memories.

  17. Bernoulli excitation and detection of gas bubbles.

    PubMed

    Telling, R H; Walton, A J

    2001-10-01

    A simple method is proposed for detecting and sizing bubbles in pipeline fluid flow. This is based on changing the pressure of the fluid, which in turn excites volume oscillations in the bubble. If the change in pressure is of sufficient brevity and magnitude, the transient distortion results in excitation of the bubble into radiative oscillation at its natural frequency. In a moving fluid, the Bernoulli equation predicts that such a pressure change can be achieved through a suitable gradient in the flow velocity. In the experiments described here, this is achieved by altering the cross-sectional area of the pipe in which the fluid is flowing. We demonstrate the efficacy of this excitation method and, by detecting the radiated sound using a nearby hydrophone, determine the size of individual bubbles from their characteristic oscillation frequency. PMID:11775661

  18. BUBBLE ENTRAINMENT AND LIQUID-BUBBLE INTERACTION UNDER UNSTEADY BREAKING

    E-print Network

    Kirby, James T.

    BUBBLE ENTRAINMENT AND LIQUID-BUBBLE INTERACTION UNDER UNSTEADY BREAKING WAVES BY MORTEZA DERAKHTI And Enstrophy . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6 Reynolds Stress- and bubble-induced dissipation . . . . . . . . . . . . . 58 4.7.2 Time dependent breaking parameter, b

  19. Gas bubble detector

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)

    1995-01-01

    A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.

  20. Sonochemistry and bubble dynamics.

    PubMed

    Mettin, Robert; Cairós, Carlos; Troia, Adriano

    2015-07-01

    The details of bubble behaviour in chemically active cavitation are still not sufficiently well understood. Here we report on experimental high-speed observations of acoustically driven single-bubble and few-bubble systems with the aim of clarification of the connection of their dynamics with chemical activity. Our experiment realises the sonochemical isomerization reaction of maleic acid to fumaric acid, mediated by bromine radicals, in a bubble trap set-up. The main result is that the reaction product can only be observed in a parameter regime where a small bubble cluster occurs, while a single trapped bubble stays passive. Evaluations of individual bubble dynamics for both cases are given in form of radius-time data and numerical fits to a bubble model. A conclusion is that a sufficiently strong collapse has to be accompanied by non-spherical bubble dynamics for the reaction to occur, and that the reason appears to be an efficient mixing of liquid and gas phase. This finding corroborates previous observations and literature reports on high liquid phase sonochemical activity under distinct parameter conditions than strong sonoluminescence emissions. PMID:25194210

  1. Oscillating plasma bubbles. I. Basic properties and instabilities

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.

    2012-08-15

    Plasma bubbles are created in an ambient discharge plasma. A bubble is a plasma volume of typically spherical shape, which is separated from the ambient plasma by a negatively biased grid of high transparency. Ions and electrons from the ambient plasma flow into the bubble volume. In steady state the flow of particles and currents is divergence-free, which is established by the plasma potential inside the bubble. The grid has two sheaths, one facing the ambient plasma, the other the bubble plasma. The inner sheath is observed to become unstable, causing the plasma potential in the bubble to oscillate. The instability arises from an excess of ions and a deficiency of electrons. Its frequency is in the range of the ion plasma frequency but depends on all parameters which influence the charge density in the sheath. When the grid voltage is very negative, electrons cannot enter the outer sheath, and the inner sheath becomes a virtual anode which reflects ions such that the bubble interior is empty. When an electron source is placed into the bubble it can neutralize the ions and the bubble refills. Without plasma sources or sinks the bubble plasma is extremely sensitive to perturbations by probes. Modified current-voltage characteristics of Langmuir and emissive probes are demonstrated. A sequence of papers first describes the basic steady-state properties, then the time evolution of bubbles, the effects of electron sources in bubbles, and the role of the grid and bubble geometry. The physics of plasma bubbles is important to several fields of basic plasma physics such as sheaths, sheath instabilities, diagnostic probes, electrostatic confinement, and current and space charge neutralization of beams.

  2. Explicit characteristics of evolutionary-type plasma bubbles observed from Equatorial Atmosphere Radar during the low to moderate solar activity years 2010-2012

    NASA Astrophysics Data System (ADS)

    Ajith, K. K.; Ram, S. Tulasi; Yamamoto, M.; Yokoyama, T.; Gowtam, V. Sai; Otsuka, Y.; Tsugawa, T.; Niranjan, K.

    2015-02-01

    Using the fan sector backscatter maps of 47 MHz Equatorial Atmosphere Radar (EAR) at Kototabang (0.2°S geographic latitude, 100.3°E geographic longitude, and 10.4°S geomagnetic latitude), Indonesia, the spatial and temporal evolution of equatorial plasma bubbles (EPBs) were examined to classify the evolutionary-type EPBs from those which formed elsewhere and drifted into the field of view of radar. A total of 535 EPBs were observed during the low to moderate solar activity years 2010-2012, out of which about 210 (~39%) are of evolving type and the remaining 325 (~61%) are drifting-in EPBs. In general, both the evolving-type and drifting-in EPBs exhibit predominance during the postsunset hours of equinoxes and December solstices. Interestingly, a large number of EPBs were found to develop even a few minutes prior to the apex sunset during equinoxes. Further, the occurrence of evolving-type EPBs exhibits a clear secondary peak around midnight (2300-0100 LT), primarily, due to higher rate of occurrence during the postmidnight hours of June solstices. A significant number (~33%) of postmidnight EPBs generated during June solstices did not exhibited any clear zonal drift, while about 14% of EPBs drifted westward. Also, the westward drifting EPBs are confined only to June solstices. The responsible mechanisms for the genesis of fresh EPBs during postmidnight hours were discussed in light of equatorward meridional winds in the presence of weak westward electric fields.

  3. Topographic Rise in the Northern Smooth Plains of Mercury: Characteristics from Messenger Image and Altimetry Data and Candidate Modes of Origin

    NASA Technical Reports Server (NTRS)

    Dickson, James L.; Head, James W.; Whitten, Jennifer L.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Phillips, Roger J.

    2012-01-01

    MESSENGER observations from orbit around Mercury have revealed that a large contiguous area of smooth plains occupies much of the high northern latitudes and covers an area in excess of approx.6% of the surface of the planet [1] (Fig. 1). Smooth surface morphology, embayment relationships, color data, candidate flow fronts, and a population of partly to wholly buried craters provide evidence for the volcanic origin of these plains and their emplacement in a flood lava mode to depths at least locally in excess of 1 km. The age of these plains is similar to that of plains associated with and postdating the Caloris impact basin, confirming that volcanism was a globally extensive process in the post-heavy bombardment history of Mercury [1]. No specific effusive vent structures, constructional volcanic edifices, or lava distributary features (leveed flow fronts or sinuous rilles) have been identified in the contiguous plains, although vent structures and evidence of high-effusion-rate flood eruptions are seen in adjacent areas [1]. Subsequent to the identification and mapping of the extensive north polar smooth plains, data from the Mercury Laser Altimeter (MLA) on MESSENGER revealed the presence of a broad topographic rise in the northern smooth plains that is 1,000 km across and rises more than 1.5 km above the surrounding smooth plains [2] (Fig. 2). The purpose of this contribution is to characterize the northern plains rise and to outline a range of hypotheses for its origin.

  4. Prospects for bubble fusion

    SciTech Connect

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  5. Numerical Study of Taylor Bubble Dynamics

    NASA Astrophysics Data System (ADS)

    Lou, Jing; Quan, Shaoping; Kang, Changwei

    2010-11-01

    Taylor bubble rising is numerically investigated using a front tracking/finite difference method, with systematic studies of bubble shape, the effects of the Reynolds number (ReT), the Weber number (WeT), and the Froude number (Fr), the thin liquid film thickness (w) and the wake length (lw). The effects of density ratio (?), viscosity ratio (?), Eötv ös number (Eo) and Archimedes number (Ar) are examined in detail. The results show that the density ratio and the viscosity ratio have minimal effect on the dynamics of the Taylor bubble. Eötvös number and Archimedes number influence the elongation of the tail and the wake structures, where higher Eo and Ar result in longer lw. A critical value of unity of locally defined Weber number (Wel) is found to represent the sudden extension of the bubble tail. The Archimedes number drastically affects the final shape of Taylor bubble, the terminal velocity, the thickness of thin liquid film as well as the wall shear stress. A correlation between thin film thickness (w/D) and Archimedes number (Ar) is obtained as: w/D=0.32Ar-0.1.

  6. Cavitation inception by the backscattering of pressure waves from a bubble interface

    NASA Astrophysics Data System (ADS)

    Takahira, Hiroyuki; Ogasawara, Toshiyuki; Mori, Naoto; Tanaka, Moe

    2015-10-01

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t0 to a characteristic time of wave propagation tS, ? = t0/ts, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  7. Gases in Tektite Bubbles.

    PubMed

    O'keefe, J A; Lowman, P D; Dunning, K L

    1962-07-20

    Spectroscopic analysis of light produced by electrodeless discharge in a tektite bubble showed the main gases in the bubble to be neon, helium, and oxygen. The neon and helium have probably diffused in from the atmosphere, while the oxygen may be atmospheric gas incorporated in the tektite during its formation. PMID:17801113

  8. Let Them Blow Bubbles.

    ERIC Educational Resources Information Center

    Korenic, Eileen

    1988-01-01

    Describes a series of activities and demonstrations involving the science of soap bubbles. Starts with a recipe for bubble solution and gives instructions for several activities on topics such as density, interference colors, optics, static electricity, and galaxy formation. Contains some background information to help explain some of the effects.…

  9. The Vacuum Bubble Nucleation

    SciTech Connect

    Lee, Bum-Hoon; Lee, Wonwoo

    2009-07-10

    We study the nucleation of a vacuum bubble via the vacuum-to-vacuum tunneling transition in curved spacetime. We consider Coleman-de Luccia's semiclassical approximation at zero temperature in pure Einstein theory of gravity and the theory with nonminimal coupling. We discuss the dynamics of a nucleated vacuum bubble.

  10. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  11. Evidence for liquid phase reactions during single bubble acoustic cavitation.

    PubMed

    Troia, A; Madonna Ripa, D; Lago, S; Spagnolo, R

    2004-07-01

    We extended the recent experiment by Lepoint et al. [Sonochemistry and Sonoluminescence, NATO ASI Series, Series C 524, Kluwer Academic Publishers, Dordrecht/Boston/London, 1999, p. 285], involving a so-called single bubble sonochemistry process, to a three-phase system. We have found experimental evidence that a single cavitating bubble can activate the oxidation of I- ions after the injection of a CCl4 liquid drop in the bubble trapping apparatus. The solvent drop (CCl4 is almost water insoluble) is pushed towards the bubble position and forms a thin film on the bubble surface. When the acoustic pressure drive is increased above 100 kPa, the three-phase system gives rise to a dark filament, indicating the complexation reaction between starch (added to the water phase) and I2. I2 species is the product of surface reactions involving bubble-induced decomposition of CCl4. Further increase of the acoustic drive causes the thin CCl4 film to separate from the bubble and stops I2 production. The study of the chemical activity of this three-phase system could give new advances on dynamics of the bubble collapse. PMID:15157862

  12. Tribonucleation of bubbles

    PubMed Central

    Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2014-01-01

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold. Direct observation through a transparent solid shows that each bubble in the trail results from the early coalescence of several microscopic bubbles, themselves detaching from microscopic gas pockets forming between the solids. From a detailed study of the wear tracks, with atomic force and scanning electron microscopy imaging, we conclude that these microscopic gas pockets originate from a local fracturing of the surface asperities, possibly enhanced by chemical reactions at the freshly created surfaces. Our findings will be useful either for preventing undesired bubble formation or, on the contrary, for “writing with bubbles,” i.e., creating controlled patterns of microscopic bubbles. PMID:24982169

  13. Combined effect of viscosity and vorticity on single mode Rayleigh-Taylor instability bubble growth

    SciTech Connect

    Banerjee, Rahul; Mandal, Labakanta; Roy, S.; Khan, M.; Gupta, M. R.

    2011-02-15

    The combined effect of viscosity and vorticity on the growth rate of the bubble associated with single mode Rayleigh-Taylor instability is investigated. It is shown that the effect of viscosity on the motion of the lighter fluid associated with vorticity accumulated inside the bubble due to mass ablation may be such as to reduce the net viscous drag on the bubble exerted by the upper heavier fluid as the former rises through it.

  14. A level set numerical method to determine the dynamics of gas bubbles in inclined channels

    NASA Astrophysics Data System (ADS)

    Norman, Catherine Eleanor

    2005-07-01

    The dynamics of a gas bubble rising in vertical and inclined channels is investigated. The solution of this free boundary problem is determined numerically by using a level set method coupled with a finite difference solution of the Navier-Stokes equations. The numerical method is second order in space. Both two- and three-dimensional results will be discussed as a function of Reynolds number, Bond number, and inclination angle. Steady solutions are found for small values of all these parameters, and path and shape oscillations are observed as these parameters are increased. The effect of inclination angle is investigated for freely rising bubbles and for bubbles initially attached to the channel wall. In the latter case, the contact line problem is solved by introducing a Navier slip boundary condition along with a fixed contact angle. The bubble is observed to rupture at high Bond numbers. At high Reynolds numbers, when the inclination angle is also above a critical value, the steady solution is found to bifurcate into a time-periodic oscillation. The results presented here parallel experimental work that has found a critical inclination angle at which the dynamics changes from steadily rising bubbles to bouncing bubbles. Three-dimensional simulations have been conducted for bubbles in vertical channels. At higher Reynolds number, the initially spherical bubble deforms into an oblate ellipsoidal shape, and a path instability is found when the bubble's aspect ratio exceeds a critical threshold. The density and viscosity ratios between the bubble and the suspending fluid are varied and are found to affect the bubble dynamics. In addition, the bubble's wake is visualized, and a double-threaded wake of counter-rotating vortex filaments is observed behind a zigzagging bubble.

  15. Bubble visualization in a simulated hydraulic jump

    E-print Network

    Witt, Adam; Shen, Lian

    2013-01-01

    This is a fluid dynamics video of two- and three-dimensional computational fluid dynamics simulations carried out at St. Anthony Falls Laboratory. A transient hydraulic jump is simulated using OpenFOAM, an open source numerical solver. A Volume of Fluid numerical method is employed with a realizable k-epsilon turbulence model. The goal of this research is to model the void fraction and bubble size in a transient hydraulic jump. This fluid dynamics video depicts the air entrainment characteristics and bubble behavior within a hydraulic jump of Froude number 4.82.

  16. The role of colloidal particles on the migration of air bubbles in porous media 

    E-print Network

    Han, Ji-seok

    2009-05-15

    was also conducted to provide a more generalized methodology to evaluate the effect of individual forces acting on an air bubble. The results indicate that the proposed model can predict the terminal velocity of a rising bubble without or with colloidal...

  17. Chemistry in Soap Bubbles.

    ERIC Educational Resources Information Center

    Lee, Albert W. M.; Wong, A.; Lee, H. W.; Lee, H. Y.; Zhou, Ning-Huai

    2002-01-01

    Describes a laboratory experiment in which common chemical gases are trapped inside soap bubbles. Examines the physical and chemical properties of the gases such as relative density and combustion. (Author/MM)

  18. What's in a Bubble?

    ERIC Educational Resources Information Center

    Saunderson, Megan

    2000-01-01

    Describes a unit on detergents and bubbles that establishes an interest in the properties of materials and focuses on active learning involving both hands- and minds-on learning rather than passive learning. (ASK)

  19. 2012 Problem 8: Bubbles

    NASA Astrophysics Data System (ADS)

    Zhu, Kejing; Xia, Qing; Wang, Sihui; Zhou, Huijun

    2015-10-01

    When a large number of bubbles exist in the water, an object may float on the surface or sink. The assumption of equivalent density is proposed in this article to explain the concrete example. According to the assumption, an object is floatable only if its density is less than the equivalent density of the water-bubble mixture. This conclusion is supported by the floating experiment and by measuring the pressure underwater to a satisfactory approximation.

  20. Bubble coalescence in magmas

    NASA Technical Reports Server (NTRS)

    Herd, Richard A.; Pinkerton, Harry

    1993-01-01

    The most important factors governing the nature of volcanic eruptions are the primary volatile contents, the ways in which volatiles exsolve, and how the resulting bubbles grow and interact. In this contribution we assess the importance of bubble coalescence. The degree of coalescence in alkali basalts has been measured using Image Analysis techniques and it is suggested to be a process of considerable importance. Binary coalescence events occur every few minutes in basaltic melts with vesicularities greater than around 35 percent.

  1. Heat transport in bubbling turbulent convection.

    PubMed

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-06-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection. PMID:23696657

  2. Fast bubble dynamics and sizing

    NASA Astrophysics Data System (ADS)

    Czarnecki, Krzysztof; Fouan, Damien; Achaoui, Younes; Mensah, Serge

    2015-11-01

    Single bubble sizing is usually performed by measuring the resonant bubble response using the Dual Frequency Ultrasound Method. However, in practice, the use of millisecond-duration chirp-like waves yields nonlinear distortions of the bubble oscillations. In comparison with the resonant curve obtained under harmonic excitation, it was observed that the bubble dynamic response shifted by up to 20 percent of the resonant frequency with bubble radii of less than 100 ?m. In the case of low pressure waves (P < 5 kPa), an approximate formula for the apparent frequency shift is derived. Simulated and experimental bubble responses are analyzed in the time-frequency domain using an enhanced concentrated (reassigned) spectrogram. The difference in the resonant frequency resulted from the persistence of the resonant mode in the bubble response. Numerical simulations in which these findings are extended to pairs of coupled bubbles and to bubble clouds are also presented.

  3. Characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter concentrations in high-rise and manure-belt layer hen houses

    NASA Astrophysics Data System (ADS)

    Ni, Ji-Qin; Chai, Lilong; Chen, Lide; Bogan, Bill W.; Wang, Kaiying; Cortus, Erin L.; Heber, Albert J.; Lim, Teng-Teeh; Diehl, Claude A.

    2012-09-01

    Indoor air pollutants at high concentrations in poultry houses can potentially affect workers' health, and animal welfare and productivity. This paper presents research results of a 2-year continuous monitoring of ammonia (NH3), carbon dioxide (CO2), hydrogen sulfide (H2S), and particulate matter (PM) concentrations from to date the most comprehensive study on a single farm in two 180,000-bird high-rise (HR) and two 200,000-bird manure-belt (MB) layer hen houses located in Indiana, USA. Air was sampled at ventilation fans of the mechanically-ventilated houses. Concentrations of NH3 and CO2 were measured with photoacoustic multi-gas monitors. Concentrations of H2S and PM10 were monitored with pulsed fluorescence analyzers and Tapered Element Oscillating Microbalances (TEOM), respectively. The 2-year mean ± standard deviation concentrations at ventilation fans of the four layer hen houses were 48.9 ± 39 and 51.9 ± 40.7 ppm in HR, and 13.3 ± 9.1 and 12.9 ± 10.5 ppm in MB for NH3; 26.4 ± 17.6 and 24.9 ± 19 ppb in HR, 40.0 ± 21.1 and 41.2 ± 31.5 ppb in MB for H2S; 1755 ± 848 and 1804 ± 887 ppm in HR, and 2295 ± 871 and 2285 ± 946 ppm in MB for CO2; and 540 ± 303 and 552 ± 338 ?g m-3 in HR, and 415 ± 428 and 761 ± 661 ?g m-3 in MB for PM10. Compared with the MB houses, concentrations of the HR houses were higher for NH3, and lower for CO2, H2S, and PM10 (P < 0.05). High concentrations of NH3 detected in winter represent potential challenges to workers' health and animal welfare. Variations in pollutant concentrations at the exhaust fans were affected by outdoor temperature, ventilation, bird condition, and farm operation. A new weekly variation, characterized by significantly lower PM10 concentrations on Sundays, was identified and was related to the weekly schedule of house operational activities.

  4. Temperature rise in superfluid helium pumps

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1988-01-01

    The temperature rise of a fountain effect pump (FEP) and of a centrifugal pump (CP) are compared. Calculations and estimates presented here show that under the operating conditions expected during the resupply of superfluid helium in space, a centrifugal pump will produce a smaller temperature rise than will a fountain effect pump. The temperature rise for the FEP is calculated assuming an ideal pump, while the temperature rise of the CP is estimated from the measured performance of a prototype pump. As a result of this smaller temperature rise and of the different operating characteristics of the two types of pumps, transfers will be more effective using a centrifugal pump.

  5. Temperature rise in superfluid helium pumps

    SciTech Connect

    Kittel, P.

    1988-07-01

    The temperature rise of a fountain effect pump (FEP) and of a centrifugal pump (CP) are compared. Calculations and estimates presented here show that under the operating conditions expected during the resupply of superfluid helium in space, a centrifugal pump will produce a smaller temperature rise than will a fountain effect pump. The temperature rise for the FEP is calculated assuming an ideal pump, while the temperature rise of the CP is estimated from the measured performance of a prototype pump. As a result of this smaller temperature rise and of the different operating characteristics of the two types of pumps, transfers will be more effective using a centrifugal pump.

  6. BURST OF STAR FORMATION DRIVES BUBBLE IN GALAXY'S CORE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These NASA Hubble Space Telescope snapshots reveal dramatic activities within the core of the galaxy NGC 3079, where a lumpy bubble of hot gas is rising from a cauldron of glowing matter. The picture at left shows the bubble in the center of the galaxy's disk. The structure is more than 3,000 light-years wide and rises 3,500 light-years above the galaxy's disk. The smaller photo at right is a close-up view of the bubble. Astronomers suspect that the bubble is being blown by 'winds' (high-speed streams of particles) released during a burst of star formation. Gaseous filaments at the top of the bubble are whirling around in a vortex and are being expelled into space. Eventually, this gas will rain down upon the galaxy's disk where it may collide with gas clouds, compress them, and form a new generation of stars. The two white dots just above the bubble are probably stars in the galaxy. The close-up reveals that the bubble's surface is lumpy, consisting of four columns of gaseous filaments that tower above the galaxy's disk. The filaments disperse at a height of 2,000 light-years. Each filament is about 75 light-years wide. Velocity measurements taken by the Canada-France-Hawaii Telescope in Hawaii show that the gaseous filaments are ascending at more than 4 million miles an hour (6 million kilometers an hour). According to theoretical models, the bubble formed when ongoing winds from hot stars mixed with small bubbles of very hot gas from supernova explosions. Observations of the core's structure by radio telescopes indicate that those processes are still active. The models suggest that this outflow began about a million years ago. They occur about every 10 million years. Eventually, the hot stars will die, and the bubble's energy source will fade away. Astronomers have seen evidence of previous outbursts from radio and X-ray observations. Those studies show rings of dust and gas and long plumes of material, all of which are larger than the bubble. NGC 3079 is 50 million light-years from Earth in the constellation Ursa Major. The colors in this image accentuate important details in the bubble. Glowing gas is red and starlight is blue/green. Hubble's Wide Field and Planetary Camera 2 snapped this picture in 1998. The results appear in the July 1, 2001 issue of the Astrophysical Journal. Credits: NASA, Gerald Cecil (University of North Carolina), Sylvain Veilleux (University of Maryland), Joss Bland-Hawthorn (Anglo-Australian Observatory), and Alex Filippenko (University of California at Berkeley).

  7. Colliding with a crunching bubble

    SciTech Connect

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  8. The Dueling Bubble Experiment

    NASA Astrophysics Data System (ADS)

    Roy, Anshuman; Borrell, Marcos; Felts, John; Leal, Gary; Hirsa, Amir

    2007-11-01

    When two drops or bubbles are brought into close proximity to each other, the thin film of the fluid between them drains as they are squeezed together. If the film becomes thin enough that intermolecular forces of attraction overwhelm capillary forces, the drops/bubbles coalesce and the time it takes for this to happen, starting from the point of apparent contact is referred to as the drainage time. One practical version of this scenario occurs during the formation of foams, when the thin film forms between gas bubbles that are growing in volume with time. We performed an experimental study that is intended to mimic this process in which the two drops (or bubbles) in the size range of 50-100 microns diameter are created by oozing a liquid/gas out of two capillaries of diameter less than 100 microns directly facing each other and immersed in a second fluid. We present measurements of drainage times for the cases of very low viscosity ratios PDMS drops in Castor oil (less than 0.05) and bubbles of air in PDMS, and highlight the differences that arise in part due to the different boundary conditions for thin film drainage for liquid-liquid versus gas-liquid systems, and in part due to the different Hamaker constants for the two systems.

  9. Fermi Bubbles with HAWC

    E-print Network

    Solares, H A Ayala; Hüntemeyer, P

    2015-01-01

    The Fermi Bubbles, which comprise two large and homogeneous regions of spectrally hard gamma-ray emission extending up to $55^{o}$ above and below the Galactic Center, were first noticed in GeV gamma-ray data from the Fermi Telescope in 2010. The mechanism or mechanisms which produce the observed hard spectrum are not understood. Although both hadronic and lep- tonic models can describe the spectrum of the bubbles, the leptonic model can also explain similar structures observed in microwave data from the WMAP and Planck satellites. Recent publications show that the spectrum of the Fermi Bubbles is well described by a power law with an exponential cutoff in the energy range of 100MeV to 500GeV. Observing the Fermi Bubbles at higher gamma-ray energies will help constrain the origin of the bubbles. A steeper cutoff will favor a leptonic model. The High Altitude Water Cherenkov (HAWC) Observatory, located 4100m above sea level in Mexico, is designed to measure high-energy gamma rays between 100GeV to 100TeV. With...

  10. A Bubble Bursts

    NASA Technical Reports Server (NTRS)

    2005-01-01

    RCW 79 is seen in the southern Milky Way, 17,200 light-years from Earth in the constellation Centaurus. The bubble is 70-light years in diameter, and probably took about one million years to form from the radiation and winds of hot young stars.

    The balloon of gas and dust is an example of stimulated star formation. Such stars are born when the hot bubble expands into the interstellar gas and dust around it. RCW 79 has spawned at least two groups of new stars along the edge of the large bubble. Some are visible inside the small bubble in the lower left corner. Another group of baby stars appears near the opening at the top.

    NASA's Spitzer Space Telescope easily detects infrared light from the dust particles in RCW 79. The young stars within RCW 79 radiate ultraviolet light that excites molecules of dust within the bubble. This causes the dust grains to emit infrared light that is detected by Spitzer and seen here as the extended red features.

  11. Bubble bursting mediated aerosols

    NASA Astrophysics Data System (ADS)

    Lhuissier, Henri; Villermaux, Emmanuel

    2009-11-01

    Wave breaking over the ocean in the surf zone is responsible for a substantial amount of atmospheric aerosols production. The objects mediating their formation are bubbles entrained below breaking waves, and bursting at the sea surface. We describe the mechanisms by which the liquid shell constitutive of a bubble ultimately results into small drops, also called film drops. A bubble bursts when a hole nucleates through the liquid shell. The hole grows at the Culick velocity balancing inertia with surface tension and is bordered by a rim collecting the shell liquid. This initially smooth toroidal rim corrugates when the centripetal acceleration caused by the recession motion is strong enough to trigger a Rayleigh-Taylor destabilization. Ligaments then emerge from corrugations crests and resolve by a Plateau-Rayleigh mechanism into droplets. The final myst properties are thus solely determined by the shell geometry at the bursting onset. It depends on the ratio of the bubble radius to the capillary length, and on the slow gravity drainage of the liquid on which are superimposed rearrangements due to the marginal regeneration at the bubble foot. Our findings will be discussed in connexion with know facts in that context.

  12. A multi-functional bubble-based microfluidic system

    PubMed Central

    Khoshmanesh, Khashayar; Almansouri, Abdullah; Albloushi, Hamad; Yi, Pyshar; Soffe, Rebecca; Kalantar-zadeh, Kourosh

    2015-01-01

    Recently, the bubble-based systems have offered a new paradigm in microfluidics. Gas bubbles are highly flexible, controllable and barely mix with liquids, and thus can be used for the creation of reconfigurable microfluidic systems. In this work, a hydrodynamically actuated bubble-based microfluidic system is introduced. This system enables the precise movement of air bubbles via axillary feeder channels to alter the geometry of the main channel and consequently the flow characteristics of the system. Mixing of neighbouring streams is demonstrated by oscillating the bubble at desired displacements and frequencies. Flow control is achieved by pushing the bubble to partially or fully close the main channel. Patterning of suspended particles is also demonstrated by creating a large bubble along the sidewalls. Rigorous analytical and numerical calculations are presented to describe the operation of the system. The examples presented in this paper highlight the versatility of the developed bubble-based actuator for a variety of applications; thus providing a vision that can be expanded for future highly reconfigurable microfluidics. PMID:25906043

  13. Theory of microwave effects on bubble dosimeters

    NASA Astrophysics Data System (ADS)

    Swandic, J. R.

    1993-07-01

    Bubble dosimeters measure a neutron flux by its effect upon microscopic droplets of superheated liquid encased in a polymer gel. It has been observed that a microwave field can also induce bubble formation in some of the droplets. This article considers the theory of this phenomenon as an effect of a microwave-induced temperature increase. Although the droplets are superheated, their confinement by a smooth gel surface and lack of impurities such as dust particles allow only homogeneous nucleation to occur. At room temperature the thermal fluctuations that give rise to critical size bubbles are very rare; the dosimeter thus has a long shelf life and a low spontaneous noise level. In the presence of a microwave field, the gel and droplets absorb energy and can be heated by 1-2 K for moderate powers; a high-power microwave field is needed to produce an observable nucleation rate. The electromagnetic properties of the dosimeter determine the internal field and the microwave absorption. Then the microwave heating and thermal properties of the dosimeter lead to an elevated steady-state temperature for the droplets. Finally, the nucleation rate is obtained from classical homogeneous nucleation theory, while the number of bubbles formed in an ensemble of droplets is found by a simple statistical argument. Although a special case is considered and several approximations are invoked, the qualitative results show this effect could lead to spurious neutron readings only for intense microwave fields or for an ambient temperature close to the nucleation temperature. For microwave bubble dosimetry, some nonthermal mechanism would be much more useful.

  14. Effect of direct bubble-bubble interactions on linear-wave propagation in bubbly liquids

    NASA Astrophysics Data System (ADS)

    Fuster, D.; Conoir, J. M.; Colonius, T.

    2014-12-01

    We study the influence of bubble-bubble interactions on the propagation of linear acoustic waves in bubbly liquids. Using the full model proposed by Fuster and Colonius [J. Fluid Mech. 688, 253 (2011), 10.1017/jfm.2011.380], numerical simulations reveal that direct bubble-bubble interactions have an appreciable effect for frequencies above the natural resonance frequency of the average size bubble. Based on the new results, a modification of the classical wave propagation theory is proposed. The results obtained are in good agreement with previously reported experimental data where the classical linear theory systematically overpredicts the effective attenuation and phase velocity.

  15. Ethnic diversity deflates price bubbles

    E-print Network

    Levine, Sheen S.

    Markets are central to modern society, so their failures can be devastating. Here, we examine a prominent failure: price bubbles. Bubbles emerge when traders err collectively in pricing, causing misfit between market prices ...

  16. Mechanics of collapsing cavitation bubbles.

    PubMed

    van Wijngaarden, Leen

    2016-03-01

    A brief survey is given of the dynamical phenomena accompanying the collapse of cavitation bubbles. The discussion includes shock waves, microjets and the various ways in which collapsing bubbles produce damage. PMID:25890856

  17. Hadron bubble evolution into the quark sea

    SciTech Connect

    Freese, K. ); Adams, F.C. )

    1990-04-15

    A solution is presented for the evolution of hadron bubbles which nucleate in the quark sea if there is a first-order quark-hadron phase transition at a temperature {ital T}{sub {ital c}} on the order of 100 MeV. We make three assumptions: (1) the dominant mechanism for transport of latent heat is radiative, e.g., neutrinos; (2) the distance between nucleation sites is greater than the neutrino mean free path; and (3) the effects of hydrodynamic flow can be neglected. Bubbles nucleate with a characteristic radius 1 fm/{Delta}, where {Delta} is a dimensionless parameter for the undercooling (we take {Delta}{ge}10{sup {minus}4}, so that the expansion of the Universe can be neglected). We argue that bubbles grow stably and remain spherical until the radius becomes as large as the neutrino mean free path, {ital l}{congruent}10 cm. The growth then becomes diffusion limited and the bubbles become unstable to formation of dendrites, or fingerlike structures, because latent heat can diffuse away more easily from long fingers than from spheres. We study the nonlinear evolution of structure with a geometrical model'' and argue that the hadron bubbles ultimately look like stringy seaweed. The percolation of seaweed-shaped bubbles can leave behind regions of quark phase that are quite small. In fact, one might expect the typical scale to be {ital L}{sub {ital Q}}={ital l}{congruent}10 cm. Protons can easily diffuse out of such small regions (and neutrons back in). Thus, these instabilities can lead to important modifications of inhomogeneous nucleosynthesis, which requires {ital L}{sub {ital Q}}{approx gt}1 m.

  18. Bubble Formation at a Submerged Orifice in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1994-01-01

    The dynamic regime of gas injection through a circular plate orifice into an ideally wetting liquid is considered, when successively detached bubbles may be regarded as separate identities. In normal gravity and at relatively low gas flow rates, a growing bubble is modeled as a spherical segment touching the orifice perimeter during the whole time of its evolution. If the flow rate exceeds a certain threshold value, another stage of the detachment process takes place in which an almost spherical gas envelope is connected with the orifice by a nearly cylindrical stem that lengthens as the bubble rises above the plate. The bubble shape resembles then that of a mushroom and the upper envelope continues to grow until the gas supply through the stem is completely cut off. Such a stage is always present under conditions of sufficiently low gravity, irrespective of the flow rate. Two major reasons make for bubble detachment: the buoyancy force and the force due to the momentum inflow into the bubble with the injected gas. The former force dominates the process at normal gravity whereas the second one plays a key role under negligible gravity conditions. It is precisely this fundamental factor that conditions the drastic influence on bubble growth and detachment that changes in gravity are able to cause. The frequency of bubble formation is proportional to and the volume of detached bubbles is independent of the gas flow rate in sufficiently low gravity, while at normal and moderately reduced gravity conditions the first variable slightly decreases and the second one almost linearly increases as the flow rate grows. Effects of other parameters, such as the orifice radius, gas and liquid densities, and surface tension are discussed.

  19. Fluid Dynamics of Bubbly Liquids

    NASA Technical Reports Server (NTRS)

    Tsang, Y. H.; Koch, D. L.; Zenit, R.; Sangani, A.; Kushch, V. I.; Spelt, P. D. M.; Hoffman, M.; Nahra, H.; Fritz, C.; Dolesh, R.

    2002-01-01

    Experiments have been performed to study the average flow properties of inertially dominated bubbly liquids which may be described by a novel analysis. Bubbles with high Reynolds number and low Weber number may produce a fluid velocity disturbance that can be approximated by a potential flow. We studied the behavior of suspensions of bubbles of about 1.5 mm diameter in vertical and inclined channels. The suspension was produced using a bank of 900 glass capillaries with inner diameter of about 100 microns in a quasi-steady fashion. In addition, salt was added to the suspension to prevent bubble-bubble coalescence. As a result, a nearly monodisperse suspension of bubble was produced. By increasing the inclination angle, we were able to explore an increasing amount of shear to buoyancy motion. A pipe flow experiment with the liquid being recirculated is under construction. This will provide an even larger range of shear to buoyancy motion. We are planning a microgravity experiment in which a bubble suspension is subjected to shearing in a couette cell in the absence of a buoyancy-driven relative motion of the two phases. By employing a single-wire, hot film anemometer, we were able to obtain the liquid velocity fluctuations. The shear stress at the wall was measured using a hot film probe flush mounted on the wall. The gas volume fraction, bubble velocity, and bubble velocity fluctuations were measured using a homemade, dual impedance probe. In addition, we also employed a high-speed camera to obtain the bubble size distribution and bubble shape in a dilute suspension. A rapid decrease in bubble velocity for a dilute bubble suspension is attributed to the effects of bubble-wall collisions. The more gradual decrease of bubble velocity as gas volume fraction increases, due to subsequent hindering of bubble motion, is in qualitative agreement with the predictions of Spelt and Sangani for the effects of potential-flow bubble-bubble interactions on the mean velocity. The ratio of the bubble velocity variance to the square of the mean is 0(0.1). For these conditions Spelt and Sangani predicted that the homogeneous suspension would be unstable and clustering into horizontal rafts will take place. Evidence for bubble clustering is obtained by analysis of video images. The liquid velocity variance is larger than would be expected for a homogeneous suspension and the liquid velocity frequency spectrum indicates the presence of velocity fluctuations that are slow compared with the time for the passage of an individual bubble. These observations provide further evidence for bubble clustering.

  20. A novel methodology to measure methane bubble sizes in the water column

    NASA Astrophysics Data System (ADS)

    Hemond, H.; Delwiche, K.; Senft-Grupp, S.; Manganello, T.

    2014-12-01

    The fate of methane ebullition from lake sediments is dependent on initial bubble size. Rising bubbles are subject to dissolution, reducing the fraction of methane that ultimately enters the atmosphere while increasing concentrations of aqueous methane. Smaller bubbles not only rise more slowly, but dissolve more rapidly larger bubbles. Thus, understanding methane bubble size distributions in the water column is critical to predicting atmospheric methane emissions from ebullition. However, current methods of measuring methane bubble sizes in-situ are resource-intensive, typically requiring divers, video equipment, sonar, or hydroacoustic instruments. The complexity and cost of these techniques points to the strong need for a simple, autonomous device that can measure bubble size distributions and be deployed unattended over long periods of time. We describe a bubble sizing device that can be moored in the subsurface and can intercept and measure the size of bubbles as they rise. The instrument uses a novel optical measurement technique with infrared LEDs and IR-sensitive photodetectors combined with a custom-designed printed circuit board. An on-board microcomputer handles raw optical signals and stores the relevant information needed to calculate bubble volume. The electronics are housed within a pressure case fabricated from standard PVC fittings and are powered by size C alkaline batteries. The bill of materials cost is less than $200, allowing us to deploy multiple sensors at various locations within Upper Mystic Lake, MA. This novel device will provide information on how methane bubble sizes may vary both spatially and temporally. We present data from tests under controlled laboratory conditions and from deployments in Upper Mystic Lake.

  1. Hysteresis of inertial cavitation activity induced by fluctuating bubble size distribution.

    PubMed

    Muleki Seya, Pauline; Desjouy, Cyril; Béra, Jean-Christophe; Inserra, Claude

    2015-11-01

    Amongst the variety of complex phenomena encountered in nonlinear physics, a hysteretic effect can be expected on ultrasound cavitation due to the intrinsic nonlinearity of bubble dynamics. When applying successive ultrasound shots for increasing and decreasing acoustic intensities, a hysteretic behaviour is experimentally observed on inertial cavitation activity, with a loop area sensitive to the inertial cavitation threshold. To get a better insight of the phenomena underlying this hysteretic effect, the evolution of the bubble size distribution is studied numerically by implementing rectified diffusion, fragmentation process, rising and dissolution of bubbles from an initial bubble size distribution. When applying increasing and decreasing acoustic intensities, the numerical distribution exhibits asymmetry in bubble number and distribution. The resulting inertial cavitation activity is assessed through the numerical broadband noise of the emitted acoustic radiation of the bubble cloud dynamics. This approach allows obtaining qualitatively the observed hysteretic effect and its interest in terms of control is discussed. PMID:26186844

  2. Study of bubble behavior in weightlessness (effects of thermal gradient and acoustic stationary wave) (M-16)

    NASA Technical Reports Server (NTRS)

    Azuma, H.

    1993-01-01

    The aim of this experiment is to understand how bubbles behave in a thermal gradient and acoustic stationary wave under microgravity. In microgravity, bubble or bubbles in a liquid will not rise upward as they do on Earth but will rest where they are formed because there exists no gravity-induced buoyancy. We are interested in how bubbles move and in the mechanisms which support the movement. We will try two ways to make bubbles migrate. The first experiment concerns behavior of bubbles in a thermal gradient. It is well known than an effect of surface tension which is masked by gravity on the ground becomes dominant in microgravity. The surface tension on the side of the bubble at a lower temperature is stronger than at a higher temperature. The bubble migrates toward the higher temperature side due to the surface tension difference. The migration speed depends on the so-called Marangoni number, which is a function of the temperature difference, the bubble diameter, liquid viscosity, and thermal diffusivity. At present, some experimental data about migration speeds in liquids with very small Marangoni numbers were obtained in space experiments, but cases of large Marangoni number are rarely obtained. In our experiment a couple of bubbles are to be injected into a cell filled with silicon oil, and the temperature gradient is to be made gradually in the cell by a heater and a cooler. We will be able to determine migration speeds in a very wide range of Marangoni numbers, as well as study interactions between the bubbles. We will observe bubble movements affected by hydrodynamical and thermal interactions, the two kinds of interactions which occur simultaneously. These observation data will be useful for analyzing the interactions as well as understanding the behavior of particles or drops in materials processing. The second experiment concerns bubble movement in an acoustic stationary wave. It is known that a bubble in a stationary wave moves toward the node or the loop according to whether its diameter is larger or smaller than that of the main resonant radius. In our experiment fine bubbles will be observed to move according to an acoustic field formed in a cylindrical cell. The existence of bubbles varies the acoustic speed, and the interactive force between bubbles will make the bubble behavior collective and complicated. This experiment will be very useful to development of bubble removable technology as well as to the understanding of bubble behavior.

  3. Double Bubble? No Trouble!

    ERIC Educational Resources Information Center

    Shaw, Mike I.; Smith, Greg F.

    1995-01-01

    Describes a soap-solution activity involving formation of bubbles encasing the students that requires only readily available materials and can be adapted easily for use with various grade levels. Discusses student learning outcomes including qualitative and quantitative observations and the concept of surface tension. (JRH)

  4. The Liberal Arts Bubble

    ERIC Educational Resources Information Center

    Agresto, John

    2011-01-01

    The author expresses his doubt that the general higher education bubble will burst anytime soon. Although tuition, student housing, and book costs have all increased substantially, he believes it is still likely that the federal government will continue to pour billions into higher education, largely because Americans have been persuaded that it…

  5. Remobilizing the Interfaces of Thermocapillary Driven Bubbles Retarded by the Adsorption of a Surfactant Impurity on the Bubble Surface

    NASA Technical Reports Server (NTRS)

    Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is applied to the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow which propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillarity to direct the movement of bubbles in space is the fact that surfactant impurities which are unavoidably present in the continuous phase can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature tension gradient, and decreases to near zero the thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have been retarded by the adsorption onto the bubble surface of a surfactant impurity, Our remobilization theory proposes to use surfactant molecules which kinetically rapidly exchange between the bulk and the surface and are at high bulk concentrations. Because the remobilizing surfactant is present at much higher concentrations than the impurity, it adsorbs to the bubble much faster than the impurity when the bubble is formed, and thereby prevents the impurity from adsorbing onto the surface. In addition the rapid kinetic exchange and high bulk concentration maintain a saturated surface with a uniform surface concentrations. This prevents retarding surface tension gradients and keeps the velocity high. In our first report last year, we detailed experimental results which verified the theory of remobilization in ground based experiments in which the steady velocity of rising bubbles was measured in a continuous phase consisting of a glycerol/water mixture containing a polyethylene glycol surfactant C12E6 (CH3(CH2)11(OCH2CH2)6OH). In our report this year, we detail our efforts to describe theoretically the remobilization observed. We construct a model in which a bubble rises steadily by buoyancy in a continuous (Newtonian) viscous fluid containing surfactant with a uniform far field bulk concentration. We account for the effects of inertia as well as viscosity in the flow in the continuous phase caused by the bubble motion (order one Reynolds number), and we assume that the bubble shape remains spherical (viscous and inertial forces are smaller than capillary forces, i e. small Weber and capillary numbers). The surfactant distribution is calculated by solving the mass transfer equations including convection and diffusion in the bulk, and finite kinetic exchange the bulk and the surface. Convective effects dominate diffusive mass transfer in the bulk of the liquid (high Peclet numbers) except in a thin boundary layer near the surface. A finite volume method is used to numerically solve the hydrodynamic and mass transfer equations on a staggered grid which accounts specifically for the thin boundary layer. We present the results of the nondimensional drag as a function of the bulk concentration of surfactant for different rates of kinetic exchange, from which we develop criteria for the concentration necessary to develop a prescribed degree of remobilization. The criteria c

  6. A statistical study of air bubbles on athletic shoesoles.

    PubMed

    Champod, C; Voisard, R; Girod, A

    2000-03-27

    Comparisons of a shoemark with a shoesole (and standards) sometimes lead to associations based on air bubbles (among other manufacturing or acquired characteristics). Today, the assessment of the evidential value of air bubbles coincidences relies largely upon the examiner's experience and/or follows sometimes a verification based on the examination of a small number of analogous pairs collected for the case at hand. Statistical data related to the occurrence and characteristics of air bubbles on shoesoles in an attempt to model the potential variability have been gathered. Seventy-one pairs of shoes with the same design, brand, model and size were obtained. Right and left soles were photographed. An image-processing algorithm was developed to allow the systematic acquisition of data such as: (1) the number of air bubbles on the sole and around given structural elements; (2) the measure of air bubbles characteristics such as their surface and position. These data allow a discussion of the assessment of the probability of finding on shoesoles (same design, brand, model and size) a certain number of air bubbles on a surface with the same positions and morphology. PMID:10704814

  7. Bubbly Little Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this processed Spitzer Space Telescope image, baby star HH 46/47 can be seen blowing two massive 'bubbles.' The star is 1,140 light-years away from Earth.

    The infant star can be seen as a white spot toward the center of the Spitzer image. The two bubbles are shown as hollow elliptical shells of bluish-green material extending from the star. Wisps of green in the image reveal warm molecular hydrogen gas, while the bluish tints are formed by starlight scattered by surrounding dust.

    These bubbles formed when powerful jets of gas, traveling at 200 to 300 kilometers per second, or about 120 to 190 miles per second, smashed into the cosmic cloud of gas and dust that surrounds HH 46/47. The red specks at the end of each bubble show the presence of hot sulfur and iron gas where the star's narrow jets are currently crashing head-on into the cosmic cloud's gas and dust material.

    Whenever astronomers observe a star, or snap a stellar portrait, through the lens of any telescope, they know that what they are seeing is slightly blurred. To clear up the blurring in Spitzer images, astronomers at the Jet Propulsion Laboratory developed an image processing technique for Spitzer called Hi-Res deconvolution.

    This process reduces blurring and makes the image sharper and cleaner, enabling astronomers to see the emissions around forming stars in greater detail. When scientists applied this image processing technique to the Spitzer image of HH 46/47, they were able to see winds from the star and jets of gas that are carving the celestial bubbles.

    This infrared image is a three-color composite, with data at 3.6 microns represented in blue, 4.5 and 5.8 microns shown in green, and 24 microns represented as red.

  8. Experimental study of nonstationary regimes of ascent of a single bubble

    NASA Astrophysics Data System (ADS)

    Arkhipov, V. A.; Vasenin, I. M.; Usanina, A. S.

    2013-09-01

    Results of experimental study of the dynamics of ascent of a single spherical bubble in a viscous fluid at small Reynolds numbers (Re < 1) have been presented. A refined empirical dependence has been obtained for the resistance coefficient in a stationary regime of motion of the bubble. The influence of nonstationary and "hereditary" effects on the dynamics of ascent of the bubble has been evaluated. A substantial influence of the Basset force on the characteristic of a nonstationary regime of motion of the bubble, in particular, on the characteristic time of dynamic relaxation, in the region of small Reynolds numbers has been shown.

  9. On the effects of scintillation of low-latitude bubbles on transionospheric paths of propagation

    NASA Astrophysics Data System (ADS)

    Zernov, Nikolay N.; Gherm, Vadim E.; Strangeways, Hal J.

    2009-02-01

    A previously developed scintillation propagation model for L band signals on transionospheric paths has been further extended to describe the effects caused by the localized structure of plasma bubbles in the low-latitude ionosphere. This takes into account quasi-deterministic and random structures typical of bubbles. The model can produce signal statistical moments (power spectra, correlation functions, scintillation index, etc.) and generate random time series including the case of through bubble propagation. The simulated random time series of the field demonstrate the characteristic nonstationary behavior caused by the presence and motion of the bubble structures through the path of propagation, showing that strong enhancements of the scintillation index (S4) can occur depending on the parameters of the bubble and the path. Modeling results are compared with scintillation records due to bubbles passing through GPS signal paths to a receiver at Douala, Cameroon. This shows good agreement providing validation for the bubble and propagation model.

  10. DNA denaturation bubbles at criticality

    E-print Network

    Theodorakopoulos, Nikos

    2008-01-01

    The equilibrium statistical properties of DNA denaturation bubbles are examined in detail within the framework of the Peyrard-Bishop-Dauxois model. Bubble formation in homogeneous DNA is found to depend crucially on the presence of nonlinear base-stacking interactions. Small bubbles extending over less than 10 base pairs are associated with much larger free energies of formation per site than larger bubbles. As the critical temperature is approached, the free energy associated with further bubble growth becomes vanishingly small. An analysis of average displacement profiles of bubbles of varying sizes at different temperatures reveals almost identical scaled shapes in the absence of nonlinear stacking; nonlinear stacking leads to distinct scaled shapes of large and small bubbles.

  11. The Fermi Bubbles: Possible Nearby Laboratory for AGN Jet Activity

    NASA Astrophysics Data System (ADS)

    Yang, Hsiang-Yi Karen; Ruszkowski, M.; Zweibel, E. G.; Ricker, P. M.

    2013-04-01

    The two giant gamma-ray bubbles discovered by the Fermi Gamma-ray Space Telescope are nearly symmetric about the Galactic plane, suggesting some episode of energy injection from the Galactic center, such as a nuclear starburst or active galactic nucleus (AGN) jet activity. Using three-dimensional magnetohydrodynamic simulations that self-consistently include the dynamical interaction between cosmic rays (CR) and thermal gas, and anisotropic CR diffusion along magnetic field lines, we show that the key characteristics of the observed bubbles can be successfully reproduced by a recent jet activity from the central AGN. This implies that the Fermi bubbles could be a unique laboratory for studying AGN jet-inflated bubbles. Our simulations allow us to generate maps of the distribution of the magnetic field, radio polarization, and synchrotron, X-ray, and gamma-ray emission. While the source of pressure support of extragalactic AGN bubbles is still poorly known due to observational limitations, we are able to derive constraints on the composition of the Fermi bubbles by comparing our model predictions with the spatially resolved gamma-ray bubble and microwave haze observations.

  12. The dynamics of the extraordinary mass-loss bubble G2. 4 + 1. 4

    SciTech Connect

    Dopita, M.A.; Lozinskaia, T.A. Moskovskii Gosudarstvennyi Universitet, Moscow )

    1990-08-01

    High-resolution forbidden O III observations of the nebula G2.4 + 1.4, a highly reddened, photoionized, mass-loss bubble of very high excitation powered by the most extreme oxygen sequence Wolf-Rayet star known, are presented. These data and the morphology of the nebula prove that the filamentary shell of G2.4 + 1.4 is roughly hemispherical and is blowing out from the near surface of a dense cloud located to the southeast. This emits mainly by photoionization by the central star. Expansion down the strong density gradient has encouraged the development of a Rayleigh-Taylor instability which gives rise to the characteristically scalloped appearance of this nebula. The energy input required to produce this structure is estimated and compared with the properties of the central star. 25 refs.

  13. Bubble Eliminator Based on Centrifugal Flow

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The fluid bubble eliminator (FBE) is a device that removes gas bubbles from a flowing liquid. The FBE contains no moving parts and does not require any power input beyond that needed to pump the liquid. In the FBE, the buoyant force for separating the gas from the liquid is provided by a radial pressure gradient associated with a centrifugal flow of the liquid and any entrained bubbles. A device based on a similar principle is described in Centrifugal Adsorption Cartridge System (MSC- 22863), which appears on page 48 of this issue. The FBE was originally intended for use in filtering bubbles out of a liquid flowing relatively slowly in a bioreactor system in microgravity. Versions that operate in normal Earth gravitation at greater flow speeds may also be feasible. The FBE (see figure) is constructed as a cartridge that includes two concentric cylinders with flanges at the ends. The outer cylinder is an impermeable housing; the inner cylinder comprises a gas-permeable, liquid-impermeable membrane covering a perforated inner tube. Multiple spiral disks that collectively constitute a spiral ramp are mounted in the space between the inner and outer cylinders. The liquid enters the FBE through an end flange, flows in the annular space between the cylinders, and leaves through the opposite end flange. The spiral disks channel the liquid into a spiral flow, the circumferential component of which gives rise to the desired centrifugal effect. The resulting radial pressure gradient forces the bubbles radially inward; that is, toward the inner cylinder. At the inner cylinder, the gas-permeable, liquid-impermeable membrane allows the bubbles to enter the perforated inner tube while keeping the liquid in the space between the inner and outer cylinders. The gas thus collected can be vented via an endflange connection to the inner tube. The centripetal acceleration (and thus the radial pressure gradient) is approximately proportional to the square of the flow speed and approximately inversely proportional to an effective radius of the annular space. For a given FBE geometry, one could increase the maximum rate at which gas could be removed by increasing the rate of flow to obtain more centripetal acceleration. In experiments and calculations oriented toward the original microgravitational application, centripetal accelerations between 0.001 and 0.012 g [where g normal Earth gravitation (.9.8 m/s2)] were considered. For operation in normal Earth gravitation, it would likely be necessary to choose the FBE geometry and the rate of flow to obtain centripetal acceleration comparable to or greater than g.

  14. Plasma bubbles in the topside ionosphere: solar activity dependence

    NASA Astrophysics Data System (ADS)

    Sidorova, L.

    2009-04-01

    The present study deals with the He+ density depletions, observed during a high solar activity at the topside ionosphere heights. There are the indications that plasma bubbles, produced by Rayleigh-Taylor instability at the bottomside of ionosphere, could rise up to the topside ionosphere and plasmasphere. Maryama and Matuura (1984), using ISS-b spacecraft data (high solar activity - F10.7=200, 1978-80), have seen the plasma bubbles in Ne density over equator at 1100 km heights in 46 cases in 1700 passes (3%). However, there is distinctly another picture in He+ density depletions according to ISS-b spacecraft data for the same period. They occur in the topside ionosphere over low- and middle- latitudinal regions (L=1.3-3) in 11% of the cases (Karpachev, Sidorova, 2002; Sidorova, 2004, 2007). The detailed study of the He+ density depletion characteristics was done. It was noted that the He+ density depletions are mostly seen in the evening-night sector (18-05 LT) from October till May. It was like to the peculiarities of the Equatorial Spread-F (ESF), usually associated with plasma bubble. The monthly mean He+ density depletion statistics, plotted in LT versus month, was compared with the similar plots for ESF statistics, obtained by Abdu and colleagues (2000) from ground-based ionograms over Brazilian regions for the period of the same solar activity. It was revealed good enough correlation (R=0.67). Also depletion values as function of LT were compared with the vertical plasma drift velocity variations, obtained for the same period from AE-E spacecraft and IS radar (Jicamarca) data. Striking similarity in development dynamics was revealed for the different seasons. It was concluded, that the He+ density depletions should be considered as originating from equatorial plasma bubbles. It seems the plasma bubbles, reaching the topside ionosphere altitudes, are mostly seen not in electron density but in He+ density as depletions. According to publications, many cases of the He+ density depletions were revealed on OGO-4, OGO-6, Oreol-1 and DE-2 spacecraft data. The most of these cases occur during high and maximal solar activity periods, when the He+ density layer is very well developed at the topside ionosphere heights (Wilford et al., 2003). Using the model of the plasma bubble formation as suggested by Woodman and La Hoz (1976), it was shown that the topside plasma bubbles, seen in He+ density, are rather typical phenomena for the topside ionosphere for high solar activity epoch. REFERENCE Abdu, M.A., J.H.A. Sobral, I.S. Batista, Equatorial spread F statistics in the american longitudes: some problems relevant to ESF description in the IRI scheme, Adv. Space Res., vol. 25, pp. 113-124, 2000. Karpachev, A.T. and L.N. Sidorova, Occurrence probability of the light ion trough and subtrough in ??+ density on season and local time, Adv. Space Res., vol. 29, pp. 999-1008, 2002. Maryama, T. and N. Matuura, Longitudinal variability of annual changes in activity of equatorial spread F and plasma bubbles, J. Geophys. Res., 89(A12), 10,903-10,912, 1984. Sidorova, L.N., He+ density topside modeling based on ISS-b satellite data, Adv. Space Res., vol. 33, pp. 850-854, 2004. Sidorova, L.N., Plasma bubble phenomenon in the topside ionosphere, Adv. Space Res., Special issue (COSPAR), doi: 10.1016/j.asr.2007.03.067, 2007. Wilford, C.R., R.J. Moffett, J.M. Rees, G.J. Bailey, Comparison of the He+ layer observed over Arecibo during solar maximum and solar minimum with CTIP model results, J. Geophys. Res., vol. 108, A12, pp. 1452, doi:10.1029/2003JA009940, 2003. Woodman, R.F. and C. La Hoz, Radar observations of F-region equatorial irregularities, J. Geophys. Res., vol. 81, pp. 5447-5466, 1976.

  15. The Compressibility Bubble

    NASA Technical Reports Server (NTRS)

    Stack, John

    1935-01-01

    Simultaneous air-flow photographs and pressure-distribution measurements have been made of the NACA 4412 airfoil at high speeds in order to determine the physical nature of the compressibility bubble. The flow photographs were obtained by the Schlieren method and the pressures were simultaneously measured for 54 stations on the 5-inch-chord wing by means of a multiple-tube photographic manometer. Pressure-measurement results and typical Schlieren photographs are presented. The general nature of the phenomenon called the "compressibility bubble" is shown by these experiments. The source of the increased drag is the compression shock that occurs, the excess drag being due to the conversion of a considerable amount of the air-stream kinetic energy into heat at the compression shock.

  16. Mechanisms of gas bubble retention

    SciTech Connect

    Gauglitz, P.A.; Mahoney, L.A.; Mendoza, D.P.; Miller, M.C.

    1994-09-01

    Retention and episodic release of flammable gases are critical safety concerns regarding double-shell tanks (DSTs) containing waste slurries. Previous investigations have concluded that gas bubbles are retained by the slurry that has settled at the bottom of the DST. However, the mechanisms responsible for the retention of these bubbles are not well understood. In addition, the presence of retained gas bubbles is expected to affect the physical properties of the sludge, but essentially no literature data are available to assess the effect of these bubbles. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The objectives of this study are to elucidate the mechanisms contributing to gas bubble retention and release from sludge such as is in Tank 241-SY-101, understand how the bubbles affect the physical properties of the sludge, develop correlations of these physical properties to include in computer models, and collect experimental data on the physical properties of simulated sludges with bubbles. This report presents a theory and experimental observations of bubble retention in simulated sludge and gives correlations and new data on the effect of gas bubbles on sludge yield strength.

  17. Sonoluminescence, sonochemistry and bubble dynamics of single bubble cavitation

    NASA Astrophysics Data System (ADS)

    Hatanaka, Shin-ichi

    2012-09-01

    The amount of hydroxyl radicals produced from a single cavitation bubble was quantified by terephthalate dosimetry at various frequencies and pressure amplitudes, while the dynamics of the single bubble was observed by stroboscopic and light-scattering methods. Also, sonoluminescence (SL), sonochemiluminescence (SCL) of luminol, and sodium atom emission (Na*) in the cavitation field were observed. The amount of hydroxyl radicals per cycle as well as the intensity of SL was proportional to pressure amplitude at every frequency performed, and it decreased with increasing frequency. When the single bubble was dancing with a decrease in pressure amplitude, however, the amount of hydroxyl radicals was greater than that for the stable bubble at the higher pressure amplitude and did not significantly decrease with frequency. Furthermore, SCL and Na* were detected only under unstable bubble conditions. These results imply that the instability of bubbles significantly enhances sonochemical efficiency for non-volatile substances in liquid phase.

  18. A Study of Three Dimensional Bubble Velocities at Co-current Gas-liquid Vertical Upward Bubbly Flows

    E-print Network

    Kuntoro, Hadiyan Yusuf; Deendarlianto,

    2015-01-01

    Recently, experimental series of co-current gas-liquid upward bubbly flows in a 6 m-height and 54.8 mm i.d. vertical titanium pipe had been conducted at the TOPFLOW thermal hydraulic test facility, Helmholtz-Zentrum Dresden-Rossendorf, Germany. The experiments were initially performed to develop a high quality database of two-phase flows as well as to validate new CFD models. An ultrafast dual-layer electron beam X-ray tomography, named ROFEX, was used as measurement system with high spatial and temporal resolutions. The gathered cross sectional grey value image results from the tomography scanning were reconstructed, segmented and evaluated to acquire gas bubble parameters for instance bubble position, size and holdup. To assign the correct paired bubbles from both measurement layers, a bubble pair algorithm was implemented on the basis of the highest probability values of bubbles in position, volume and velocity. Hereinafter, the individual characteristics of bubbles were calculated include instantaneous th...

  19. Bubble dynamics in drinks

    NASA Astrophysics Data System (ADS)

    Brou?ková, Zuzana; Trávní?ek, Zden?k; Šafa?ík, Pavel

    2014-03-01

    This study introduces two physical effects known from beverages: the effect of sinking bubbles and the hot chocolate sound effect. The paper presents two simple "kitchen" experiments. The first and second effects are indicated by means of a flow visualization and microphone measurement, respectively. To quantify the second (acoustic) effect, sound records are analyzed using time-frequency signal processing, and the obtained power spectra and spectrograms are discussed.

  20. Gas-rise velocities during kicks

    SciTech Connect

    White, D.B. )

    1991-12-01

    This paper reports on experiments to examine gas migration rates in drilling muds that were performed in a 15-m-long, 200-mm-ID inclinable flow loop where air injection simulates gas entry during a kick. These tests were conducted using a xanthum gum (a common polymer used in drilling fluids) solution to simulate drilling muds as the liquid phase and air as the gas phase. This work represents a significant extension of existing correlations for gas/liquid flows in large pipe diameters with non- Newtonian fluids. Bubbles rise faster in drilling muds than in water despite the increased viscosity. This surprising result is caused by the change in the flow regime, with large slug-type bubbles forming at lower void fractions. The gas velocity is independent of void fraction, thus simplifying flow modeling. Results show that a gas influx will rise faster in a well than previously believed. This has major implications for kick simulation, with gas arriving at the surface earlier than would be expected and the gas outflow rate being higher than would have been predicted. A model of the two-phase gas flow in drilling mud, including the results of this work, has been incorporated into the joint Schlumberger Cambridge Research (SCR)/BP Intl. kick model.

  1. Acronical Risings and Settings

    NASA Astrophysics Data System (ADS)

    Hockey, Thomas A.

    2012-01-01

    A concept found in historical primary sources, and useful in contemporary historiography, is the acronical rising and setting of stars (or planets). Topocentric terms, they provide information about a star's relationship to the Sun and thus its visibility in the sky. Yet there remains ambiguity as to what these two phrases actually mean. "Acronical” is said to have come from the Greek akros ("point,” "summit,” or "extremity") and nux ("night"). While all sources agree that the word is originally Greek, there are alternate etymologies for it. A more serious difficulty with acronical rising and setting is that there are two competing definitions. One I call the Poetical Definition. Acronical rising (or setting) is one of the three Poetical Risings (or Settings) known to classicists. (The other two are cosmical rising/setting, discussed below, and the more familiar helical rising/setting.) The term "poetical" refers to these words use in classical poetry, e. g., that of Columella, Hesiod, Ovid, Pliny the Younger, and Virgil. The Poetical Definition of "acronical” usually is meant in this context. The Poetical Definition of "acronical” is as follows: When a star rises as the Sun sets, it rises acronically. When a star sets as the Sun sets, it sets acronically. In contrast with the Poetical Definition, there also is what I call the Astronomical Definition. The Astronomical Definition is somewhat more likely to appear in astronomical, mathematical, or navigational works. When the Astronomical Definition is recorded in dictionaries, it is often with the protasis "In astronomy, . . . ." The Astronomical Definition of "acronical” is as follows: When a star rises as the Sun sets, it rises acronically. When a star sets as the Sun rises, it sets acronically. I will attempt to sort this all out in my talk.

  2. Stable Multibubble Sonoluminescence Bubble Patterns

    SciTech Connect

    Posakony, Gerald J.; Greenwood, Lawrence R.; Ahmed, Salahuddin

    2006-06-30

    Multibubble standing wave patterns can be generated from a flat piezoceramic transducer element propagating into water. By adding a second transducer positioned at 90 degrees from the transducer generating the standing wave, a 3-dimensional volume of stable single bubbles can be established. Further, the addition of the second transducer stabilizes the bubble pattern so that individual bubbles may be studied. The size of the bubbles and the separation of the standing waves depend on the frequency of operation. Two transducers, operating at frequencies above 500 kHz, provided the most graphic results for the configuration used in this study. At these frequencies stable bubbles exhibit a bright sonoluminescence pattern. Whereas stable SBSL is well-known, stable MBSL has not been previously reported. This paper includes discussions of the acoustic responses, standing wave patterns, and pictorial results of the separation of individual bubble of sonoluminescence in a multibubble sonoluminescence environment.

  3. CHARACTERISTICS OF THE CRUSTAL MAGMA BODY IN THE 2005-2006 ERUPTION AREA AT 9°50'N ON THE EAST PACIFIC RISE FROM 3D MULTI-CHANNEL SEISMIC DATA

    NASA Astrophysics Data System (ADS)

    Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J.; Nedimovic, M. R.; Marjanovic, M.; Aghaei, O.; Xu, M.; Han, S.; Stowe, L.

    2009-12-01

    In the summer of 2008 a large 3D multi-channel seismic dataset (expedition MGL0812) was collected over the 9°50’N Integrated Study Site at the East Pacific Rise, providing insight into the architecture of the magmatic system and its relationship with hydrothermal activity and volcanic/dyking events associated with the 2005-06 eruption. The main area of 3D coverage is located between 9°42’N and 9°57’N, spanning ~28km along-axis, and was acquired along 94 (1 partial) prime lines shot across-axis and each ~24km-long. Pre-processing of the data acquired in this area is now well under way, with significant efforts targeted at amplitude spike removal. Current work focuses on setting up the 3D processing sequence up to the stack stage for a small group of inlines (axis-perpendicular grid lines spaced 37.5m apart) located over the “bull’s eye” site at 9°50’N, a sequence that will subsequently be applied to the whole dataset. At the meeting we will present stacked and migrated sections - inlines, crosslines, time slices - obtained through 3D processing. We will discuss results focusing on the characteristics of the axial magma body, whose detailed structure and along-axis segmentation will be resolved by the 3D data.

  4. Neutron detection via bubble chambers.

    PubMed

    Jordan, D V; Ely, J H; Peurrung, A J; Bond, L J; Collar, J I; Flake, M; Knopf, M A; Pitts, W K; Shaver, M; Sonnenschein, A; Smart, J E; Todd, L C

    2005-01-01

    Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography. PMID:16005238

  5. Bubble measuring instrument and method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  6. Mid-Infrared Galactic Bubbles

    NASA Astrophysics Data System (ADS)

    Corn, Tyler; Watson, C.

    2008-03-01

    Using 2MASS, GLIMPSE, MIPSGAL, and MAGPIES surveys, we analyzed three bubbles centered at G8.1238-0.47712, G9.83464-0.71713, and G353.35010-0.14083. Each bubble has a circular PAH emission surrounding hot dust. Two bubbles observed also have PAH emission surrounding ionized gas. Physical properties (stellar mass, accretion rate, disk mass, inclination, etc.) are given for each YSO using a model fitter based on radiative transfer numerical simulations and a chi-squared minimization technique. YSOs are suggestive of triggered star formation in two bubbles. Ionizing stars can also be determined.

  7. When sound slows down bubbles

    E-print Network

    Remi Dangla; Cedric Poulain

    2010-04-06

    We present experimental evidence that a bubble moving in a fluid in which a well-chosen acoustic noise is superimposed can be significantly slowed down for moderate acoustic pressures. Through mean velocity measurements, we show that a condition for this effect to occur is for the acoustic noise spectrum to match or overlap the bubble's fundamental resonant mode. By rendering the bubble's oscillations and translational movements using high speed video, we evidence that radial oscillations have no effect on the mean velocity, while above a critical sound pressure threshold, Faraday waves are triggered and are responsible for the bubble's drag increase.

  8. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer. respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  9. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  10. Rising Stars "Welcome to MIT! The Rising Stars Work-

    E-print Network

    Gabrieli, John

    EECS Rising Stars 2013 #12;"Welcome to MIT! The Rising Stars Work- shop has again brought together EECS RISING STARS From the 2013 Rising Stars Workshop Chairs Welcome to the 2013 Rising Stars in EECS universities or research positions in industry labs. The Rising Stars workshop is open to outstanding female Ph

  11. Fragmentation, nucleation and migration of crystals and bubbles in the Bishop Tuff rhyolitic magma

    SciTech Connect

    Gualda, G.; Cook, D.L.; Chopra, R.; Qin, L.; Anderson, A.T.; Rivers, M.

    2010-12-07

    The Bishop Tuff (USA) is a large-volume, high-silica pyroclastic rhyolite. Five pumice clasts from three early stratigraphic units were studied. Size distributions were obtained using three approaches: (1) crushing, sieving and winnowing (reliable for crystals >100 {micro}m); (2) microscopy of 1 mm{sup 3} fragments (preferable for crystals <100 {micro}m); and (3) computerised X-ray microtomography of {approx}1 cm{sup 3} pumice pieces. Phenocryst fragments coated with glass are common, and the size distributions for all crystals are concave-upward, indicating that crystal fragmentation is an important magmatic process. Three groups are recognised, characterised by: (1) high-density (0.759-0.902 g cm{sup -3}), high-crystal content (14.4-15.3 wt.%) and abundant large crystals (>800 {micro}m); concave-downward size distributions for whole crystals indicate late-stage growth with limited nucleation, compatible with the slow cooling of a large, gas-saturated, stably stratified magma body; (2) low-density (0.499 g cm{sup -3}), low-crystal content (6.63 wt.%) and few large crystals; the approximately linear size distribution reveals that nucleation was locally important, perhaps close to the walls; and (3) intermediate characteristics in all respects. The volumetric fraction of bubbles inversely correlates with the number of large crystals. This is incompatible with isobaric closed-system crystallisation, but can be explained by sinking of large crystals and rise of bubbles in the magma.

  12. Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow.

    PubMed

    Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi

    2013-01-01

    We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system. PMID:23378921

  13. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    NASA Astrophysics Data System (ADS)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  14. Bubble levitation and translation under single-bubble sonoluminescence conditions

    NASA Astrophysics Data System (ADS)

    Matula, Thomas J.

    2003-08-01

    Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles.

  15. Bubble levitation and translation under single-bubble sonoluminescence conditions.

    PubMed

    Matula, Thomas J

    2003-08-01

    Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles. PMID:12942960

  16. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).

    PubMed

    Rosselló, J M; Dellavale, D; Bonetto, F J

    2015-01-01

    In the present work, stable clusters made of multiple sonoluminescent bubbles are experimentally and theoretically studied. Argon bubbles were acoustically generated and trapped using bi-frequency driving within a cylindrical chamber filled with a sulfuric acid aqueous solution (SA85w/w). The intensity of the acoustic pressure field was strong enough to sustain, during several minutes, a large number of positionally and spatially fixed (without pseudo-orbits) sonoluminescent bubbles over an ellipsoidally-shaped tridimensional array. The dimensions of the ellipsoids were studied as a function of the amplitude of the applied low-frequency acoustic pressure (PAc(LF)) and the static pressure in the fluid (P0). In order to explain the size and shape of the bubble clusters, we performed a series of numerical simulations of the hydrodynamic forces acting over the bubbles. In both cases the observed experimental behavior was in excellent agreement with the numerical results. The simulations revealed that the positionally stable region, mainly determined by the null primary Bjerknes force (F?Bj), is defined as the outer perimeter of an axisymmetric ellipsoidal cluster centered in the acoustic field antinode. The role of the high-frequency component of the pressure field and the influence of the secondary Bjerknes force are discussed. We also investigate the effect of a change in the concentration of dissolved gas on the positional and spatial instabilities through the cluster dimensions. The experimental and numerical results presented in this paper are potentially useful for further understanding and modeling numerous current research topics regarding multi-bubble phenomena, e.g. forces acting on the bubbles in multi-frequency acoustic fields, transient acoustic cavitation, bubble interactions, structure formation processes, atomic and molecular emissions of equal bubbles and nonlinear or unsteady acoustic pressure fields in bubbly media. PMID:24974006

  17. THE MILKY WAY PROJECT: LEVERAGING CITIZEN SCIENCE AND MACHINE LEARNING TO DETECT INTERSTELLAR BUBBLES

    SciTech Connect

    Beaumont, Christopher N.; Williams, Jonathan P.; Goodman, Alyssa A.; Kendrew, Sarah; Simpson, Robert

    2014-09-01

    We present Brut, an algorithm to identify bubbles in infrared images of the Galactic midplane. Brut is based on the Random Forest algorithm, and uses bubbles identified by >35,000 citizen scientists from the Milky Way Project to discover the identifying characteristics of bubbles in images from the Spitzer Space Telescope. We demonstrate that Brut's ability to identify bubbles is comparable to expert astronomers. We use Brut to re-assess the bubbles in the Milky Way Project catalog, and find that 10%-30% of the objects in this catalog are non-bubble interlopers. Relative to these interlopers, high-reliability bubbles are more confined to the mid-plane, and display a stronger excess of young stellar objects along and within bubble rims. Furthermore, Brut is able to discover bubbles missed by previous searches—particularly bubbles near bright sources which have low contrast relative to their surroundings. Brut demonstrates the synergies that exist between citizen scientists, professional scientists, and machine learning techniques. In cases where ''untrained' citizens can identify patterns that machines cannot detect without training, machine learning algorithms like Brut can use the output of citizen science projects as input training sets, offering tremendous opportunities to speed the pace of scientific discovery. A hybrid model of machine learning combined with crowdsourced training data from citizen scientists can not only classify large quantities of data, but also address the weakness of each approach if deployed alone.

  18. The Milky Way Project: Leveraging Citizen Science and Machine Learning to Detect Interstellar Bubbles

    NASA Astrophysics Data System (ADS)

    Beaumont, Christopher N.; Goodman, Alyssa A.; Kendrew, Sarah; Williams, Jonathan P.; Simpson, Robert

    2014-09-01

    We present Brut, an algorithm to identify bubbles in infrared images of the Galactic midplane. Brut is based on the Random Forest algorithm, and uses bubbles identified by >35,000 citizen scientists from the Milky Way Project to discover the identifying characteristics of bubbles in images from the Spitzer Space Telescope. We demonstrate that Brut's ability to identify bubbles is comparable to expert astronomers. We use Brut to re-assess the bubbles in the Milky Way Project catalog, and find that 10%-30% of the objects in this catalog are non-bubble interlopers. Relative to these interlopers, high-reliability bubbles are more confined to the mid-plane, and display a stronger excess of young stellar objects along and within bubble rims. Furthermore, Brut is able to discover bubbles missed by previous searches—particularly bubbles near bright sources which have low contrast relative to their surroundings. Brut demonstrates the synergies that exist between citizen scientists, professional scientists, and machine learning techniques. In cases where "untrained" citizens can identify patterns that machines cannot detect without training, machine learning algorithms like Brut can use the output of citizen science projects as input training sets, offering tremendous opportunities to speed the pace of scientific discovery. A hybrid model of machine learning combined with crowdsourced training data from citizen scientists can not only classify large quantities of data, but also address the weakness of each approach if deployed alone.

  19. Measurements and Analysis of Oxygen Bubble Distributions in LiCl-KCl Molten Salt

    SciTech Connect

    Ryan W. Bezzant; Supathorn Phongikaroon; Michael F. Simpson

    2013-03-01

    Transparent system experimental studies have been performed to provide measurement and analysis of oxygen bubble distributions and mass transfer coefficients at different sparging rates ranging from 0.05 to 0.20 L/min in LiCl-KCl molten salt at 500 degrees C using a high-speed digital camera and an oxygen sensor. The results reveal that bubble sizes and rise velocities increased with an increase in oxygen sparging rate. The bubbles observed were ellipsoidal in shape, and an equivalent diameter based on the ellipsoid volume was calculated. The average equivalent bubble diameters at 500 degrees C and these oxygen sparging rates range from 2.63 to 4.07 mm. Results show that the bubble equivalent diameters at each respective sparging rate are normally distributed. A Fanning friction factor correlation was produced to predict a bubble’s rise velocity based on its equivalent diameter. The oxygen mass transfer coefficients for four sparging rates were calculated using the oxygenation model. These calculated values were within the order of magnitude of 10-2 cm/sec and followed a decreasing trend corresponding to an increasing bubble size and sparging rate. The diffusivities were calculated based on two different types of mechanisms, one based on physics of the bubbles and the other on systematic properties. The results reveal that diffusivity values calculated from bubble physics are 1.65 to 8.40 x 10-5 cm2/sec, which are within the range suggested by literature for gases in liquids of a similar viscosity.

  20. PIV measurement of a contraction flow using micro-bubble tracer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masaaki; Irabu, Kunio; Teruya, Isao; Nitta, Munehiro

    2009-02-01

    Recently, a technique using the micro-bubbles is focused. It was applied to many fields such as purification of rivers and lakes, washing the industrial parts, growth of plants and marine products. The characteristics of micro-bubbles are small size, wide surface area, low terminal velocity, and so on. If this micro-bubble is available as tracer of PIV (Particle Image Velocimetry), environment load would become lower because it doesn't need to discard particle. In this paper, we make a micro-bubble generator with Venturi type mechanism. The generated micro-bubbles are applied to a vertical channel flow with contraction. We validate about traceability of the micro-bubble tracer in comparison with the particle tracer.

  1. Simulation studies of vapor bubble generation by short-pulse lasers

    SciTech Connect

    Amendt, P.; London, R.A.; Strauss, M.

    1997-10-26

    Formation of vapor bubbles is characteristic of many applications of short-pulse lasers in medicine. An understanding of the dynamics of vapor bubble generation is useful for developing and optimizing laser-based medical therapies. To this end, experiments in vapor bubble generation with laser light deposited in an aqueous dye solution near a fiber-optic tip have been performed. Numerical hydrodynamic simulations have been developed to understand and extrapolate results from these experiments. Comparison of two-dimensional simulations with the experiment shows excellent agreement in tracking the bubble evolution. Another regime of vapor bubble generation is short-pulse laser interactions with melanosomes. Strong shock generation and vapor bubble generation are common physical features of this interaction. A novel effect of discrete absorption by melanin granules within a melanosome is studied as a possible role in previously reported high Mach number shocks.

  2. Electrons trajectories around a bubble regime in intense laser plasma interaction

    SciTech Connect

    Lu, Ding; Xie, Bai-Song; Ali Bake, Muhammad; Sang, Hai-Bo; Zhao, Xue-Yan; Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 ; Wu, Hai-Cheng

    2013-06-15

    Some typical electrons trajectories around a bubble regime in intense laser plasma interaction are investigated theoretically. By considering a modification of the fields and ellipsoid bubble shape due to the presence of residual electrons in the bubble regime, we study in detail the electrons nonlinear dynamics with or without laser pulse. To examine the electron dynamical behaviors, a set of typical electrons, which locate initially at the front of the bubble, on the transverse edge and at the bottom of the bubble respectively, are chosen for study. It is found that the range of trapped electrons in the case with laser pulse is a little narrower than that without laser pulse. The partial phase portraits for electrons around the bubble are presented numerically and their characteristic behaviors are discussed theoretically. Implication of our results on the high quality electron beam generation is also discussed briefly.

  3. An acoustic estimate of methane concentration in a water column in regions of methane bubble release

    NASA Astrophysics Data System (ADS)

    Salomatin, A. S.; Yusupov, V. I.; Vereshchagina, O. F.; Chernykh, D. V.

    2014-11-01

    A remote acoustic method is presented for estimating the methane flux into water from rising bubbles. With the proposed method and data of hydroacoustic measurements in the Sea of Okhotsk, the dissolved methane concentration profile that forms in the water column in regions of methane bubble release is estimated. Comparison of the aforementioned methane concentration profile with results of direct measurements shows good quantitative and qualitative agreement. This testifies to the fair accuracy of the proposed acoustic method and is indicative of the dominant role of bubble transport in the formation of the concentration of dissolved methane in the water column in such regions.

  4. LET dependence of bubbles evaporation pulses in superheated emulsion detectors

    NASA Astrophysics Data System (ADS)

    Di Fulvio, Angela; Huang, Jean; Staib, Lawrence; d'Errico, Francesco

    2015-06-01

    Superheated emulsion detectors are suspensions of metastable liquid droplets in a compliant inert medium. Upon interaction with ionizing radiation, the droplets evaporate, generating visible bubbles. Bubble expansion associated with the boiling of the droplets is accompanied by pressure pulses in both the sonic and ultrasonic frequency range. In this work, we analyzed the signal generated by bubble evaporation in the frequency and time domain. We used octafluoropropane (R-218) based emulsions, sensitive to both photons and neutrons. The frequency content of the detected pulses appears to extend well into the hundreds of kHz, beyond the range used in commercial devices to count bubbles as they are formed (typically 1-10 kHz). Kilohertz components characterize the early part of the waveforms, potentially containing information about the energetics of the explosive bubble initial growth phase. The power spectral density of the acoustic signal produced by neutron-induced evaporation shows a characteristic frequency pattern in the 200-400 kHz range, which is not observed when bubbles evaporate upon gamma ray-induced irradiation. For practical applications, detection of ultrasonic pulses associated with the boiling of the superheated drops can be exploited as a fast readout method, negligibly affected by mechanical ambient noise.

  5. System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1999-01-01

    The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.

  6. Optical behavior of surface bubbles

    NASA Astrophysics Data System (ADS)

    Straulino, Samuele; Gambi, Cecilia M. C.; Molesini, Giuseppe

    2015-11-01

    The observation of diamond-like light spots produced by surface bubbles obliquely illuminated is reported. The phenomenon is discussed in terms of geometrical optics, and an explanation is provided attributing the effect to the astigmatism introduced by the deformation of the liquid surface surrounding the bubble. An essential ray tracing program is outlined and used to reconstruct the observed phenomenon numerically.

  7. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1994-01-01

    Two KC-135 flight campaigns have been conducted to date which are specifically dedicated to study bubble formation in microgravity. The first flight was conducted during March 14-18, 1994, and the other during June 20-24, 1994. The results from the June 1994 flight have not been analyzed yet, while the results from the March flight have been partially analyzed. In the first flight three different experiments were performed, one with the specific aim at determining whether or not cavitation can take place during any of the fluid handling procedures adopted in the shuttle bioprocessing experiments. The other experiments were concerned with duplicating some of the procedures that resulted in bubble formation, namely the NCS filling procedure and the needle scratch of a solid surface. The results from this set of experiments suggest that cavitation did not take place during any of the fluid handling procedures. The results clearly indicate that almost all were generated as a result of the breakup of the gas/liquid interface. This was convincingly demonstrated in the scratch tests as well as in the liquid fill tests.

  8. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1996-01-01

    An extensive experimental program was initiated for the purpose of understanding the mechanisms leading to bubble generation during fluid handling procedures in a microgravity environment. Several key fluid handling procedures typical for PCG experiments were identified for analysis in that program. Experiments were designed to specifically understand how such procedures can lead to bubble formation. The experiments were then conducted aboard the NASA KC-135 aircraft which is capable of simulating a low gravity environment by executing a parabolic flight attitude. However, such a flight attitude can only provide a low gravity environment of approximately 10-2go for a maximum period of 30 seconds. Thus all of the tests conducted for these experiments were designed to last no longer than 20 seconds. Several experiments were designed to simulate some of the more relevant fluid handling procedures during protein crystal growth experiments. These include submerged liquid jet cavitation, filling of a cubical vessel, submerged surface scratch, attached drop growth, liquid jet impingement, and geysering experiments. To date, four separate KC-135 flight campaigns were undertaken specifically for performing these experiments. However, different experiments were performed on different flights.

  9. Mechanisms of single bubble cleaning.

    PubMed

    Reuter, Fabian; Mettin, Robert

    2016-03-01

    The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off ?=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at ??0.7, a roughly linear decay of the cleaned circle radius for increasing ?, and no cleaning for ?>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to ?: (I) For large stand-off, 1.8bubble collapse induced vortex flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, ?<1.1, the bubble is in direct contact with the solid. Fast liquid flows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact ?, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1bubble collapse touches the substrate, but acts with cleaning mechanisms similar to an effective small ? collapse: particles are removed by the jet flow and the flow induced by the bubble wall oscillation. Furthermore, the observations reveal that the extent of direct bubble gas phase contact to the solid is partially smaller than the cleaned area, and it is concluded that three-phase contact line motion is not a major cause of particle removal. Finally, we find a relation of cleaning area vs. stand-off ? that deviates from literature data on surface erosion. This indicates that different effects are responsible for particle removal and for substrate damage. It is suggested that a trade-off of cleaning potential and damage risk for sensible surfaces might be achieved by optimising ?. PMID:26187759

  10. Signature of anisotropic bubble collisions

    NASA Astrophysics Data System (ADS)

    Salem, Michael P.

    2010-09-01

    Our universe may have formed via bubble nucleation in an eternally inflating background. Furthermore, the background may have a compact dimension—the modulus of which tunnels out of a metastable minimum during bubble nucleation—which subsequently grows to become one of our three large spatial dimensions. When in this scenario our bubble universe collides with other ones like it, the collision geometry is constrained by the reduced symmetry of the tunneling instanton. While the regions affected by such bubble collisions still appear (to leading order) as disks in an observer’s sky, the centers of these disks all lie on a single great circle, providing a distinct signature of anisotropic bubble nucleation.

  11. Amplitude- and rise-time-compensated filters

    DOEpatents

    Nowlin, Charles H. (Oak Ridge, TN)

    1984-01-01

    An amplitude-compensated rise-time-compensated filter for a pulse time-of-occurrence (TOOC) measurement system is disclosed. The filter converts an input pulse, having the characteristics of random amplitudes and random, non-zero rise times, to a bipolar output pulse wherein the output pulse has a zero-crossing time that is independent of the rise time and amplitude of the input pulse. The filter differentiates the input pulse, along the linear leading edge of the input pulse, and subtracts therefrom a pulse fractionally proportional to the input pulse. The filter of the present invention can use discrete circuit components and avoids the use of delay lines.

  12. Micro Bubble Trapping By Acoustic Energy

    NASA Astrophysics Data System (ADS)

    Yoshiki, Yamakoshi

    2005-03-01

    Micro bubble trapping by acoustic energy is a promising technology for a future drug or gene delivery system, because the method can control the bubble dynamics using an applied ultrasonic wave. In this paper, acoustic radiation forces which are applied to the micro bubbles are reviewed as well as their applications for micro bubble manipulation. One of the problems in micro bubble trapping by acoustic energy is that the force applied to the micro bubbles is insufficient for some bubbles. This is severe problem when the bubble has a relatively hard shell. In order to increase the trapping force on the micro bubbles, a novel method is proposed. This method uses seed bubbles in order to manipulate target bubbles.

  13. The Bubble Transport Mechanism: Indications for a bubble-mediated transfer of microorganisms from the sediment into the water column

    NASA Astrophysics Data System (ADS)

    Schmale, Oliver; Stolle, Christian; Schneider von Deimling, Jens; Leifer, Ira; Kießlich, Katrin; Krause, Stefan; Frahm, Andreas; Treude, Tina

    2015-04-01

    Gas releasing seep areas are known to impact the methane biogeochemistry in the surrounding sediment and water column. Due to microbial processes most of the methane is oxidized under anaerobic and aerobic conditions before the greenhouse gas can escape into the atmosphere. However, methane gas bubbles can largely bypass this microbial filter mechanism, enabling highly efficient transport of methane from the sediment towards the sea surface. Studies in the water column surrounding hydrocarbon seeps indicated an elevated abundance of methanotrophic microorganism in the near field of gas bubble plumes. The enhanced methane concentration in the seep-affected water column stimulates the activity of methane oxidizers and leads to a rapid rise in the abundance of methane-oxidizing microorganisms in the aging plume water. In our study we hypothesized that a bubble-mediated transport mechanisms between the benthic and pelagic habitats represents an exchange process, which transfers methanotrophic microorganisms from the sediment into the water column, a process we termed the "Bubble Transport Mechanism". This mechanism could eventually influence the pelagic methanotrophic community, thereby indirectly providing feedback mechanisms for dissolved methane concentrations in the water column and thus impacting the sea/atmosphere methane flux. To test our hypothesis, field studies were conducted at the "Rostocker Seep" site (Coal Oil Point seep area, California, USA). Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was a newly developed "Bubble Catcher" used to collect naturally emanating gas bubbles at the sea floor together with particles attached to the bubble surface rim. Bubble Catcher experiments were carried out directly above a natural bubble release spot and on a reference site at which artificially released gas bubbles were caught, which had no contact with the sediment. CARD-FISH analyzes showed that aerobic methane oxidizing bacteria were transported by gas bubbles from the sediment into the water column. In contrast anaerobic methanotrophs were not detected in the bubble catcher. Based on our study we hypothesize that the Bubble Shuttle transport mechanism contributes to the pelagic methane sink by a sediment-water column transfer of methane oxidizing microorganisms. Furthermore, this Bubble Shuttle may influence the methanotrophic community in the water column after massive short-term submarine inputs of methane (e.g. release of methane from bore holes). Especially in deep-sea regions, where the abundance of methane oxidizing microorganisms in the water column is low in general, the Bubble Transport Mechanism may inject a relevant amount of methane oxidizing microorganisms into the water column during massive inputs, supporting indirectly the turnover of this greenhouse active trace gas in the submarine environment.

  14. Preferential accumulation of bubbles in Couette-Taylor flow patterns

    NASA Astrophysics Data System (ADS)

    Climent, Eric; Simonnet, Marie; Magnaudet, Jacques

    2007-08-01

    We investigate the migration of bubbles in several flow patterns occurring within the gap between a rotating inner cylinder and a concentric fixed outer cylinder. The time-dependent evolution of the two-phase flow is predicted through three-dimensional Euler-Lagrange simulations. Lagrangian tracking of spherical bubbles is coupled with direct numerical simulation of the Navier-Stokes equations. We assume that bubbles do not influence the background flow (one-way coupling simulations). The force balance on each bubble takes into account buoyancy, added-mass, viscous drag, and shear-induced lift forces. For increasing velocities of the rotating inner cylinder, the flow in the fluid gap evolves from the purely azimuthal steady Couette flow to Taylor toroidal vortices and eventually a wavy vortex flow. The migration of bubbles is highly dependent on the balance between buoyancy and centripetal forces (mostly due to the centripetal pressure gradient) directed toward the inner cylinder and the vortex cores. Depending on the rotation rate of the inner cylinder, bubbles tend to accumulate alternatively along the inner wall, inside the core of Taylor vortices or at particular locations within the wavy vortices. A stability analysis of the fixed points associated with bubble trajectories provides a clear understanding of their migration and preferential accumulation. The location of the accumulation points is parameterized by two dimensionless parameters expressing the balance of buoyancy, centripetal attraction toward the inner rotating cylinder, and entrapment in Taylor vortices. A complete phase diagram summarizing the various regimes of bubble migration is built. Several experimental conditions considered by Djéridi, Gabillet, and Billard [Phys. Fluids 16, 128 (2004)] are reproduced; the numerical results reveal a very good agreement with the experiments. When the rotation rate is increased further, the numerical results indicate the formation of oscillating bubble strings, as observed experimentally by Djéridi et al. [Exp. Fluids 26, 233 (1999)]. After a transient state, bubbles collect at the crests or troughs of the wavy vortices. An analysis of the flow characteristics clearly indicates that bubbles accumulate in the low-pressure regions of the flow field.

  15. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed experiments. However, at higher superficial,liquid velocities, the bubble neck length begins to significantly deviate from the value of the air injection nozzle diameter and thus the theory no longer predicts the experiment behavior. Effects of fluid properties, injection geometry and flow conditions on generated bubble size are investigated using the theoretical model. It is shown that bubble diameter is larger in a reduced gravity environment than in a normal gravity environment at similar flow condition and flow geometry.

  16. Thermocapillary bubble flow and coalescence in a rotating cylinder: A 3D study

    NASA Astrophysics Data System (ADS)

    Alhendal, Yousuf; Turan, A.; Al-mazidi, M.

    2015-12-01

    The process of thermocapillary bubbles rising in a rotating 3D cylinder in zero gravity was analysed and presented numerically with the aid of computational fluid dynamics (CFD) by means of the volume of fluid (VOF) method. Calculations were carried out to investigate in detail the effect of the rotational speed of the hosted liquid on the trajectory of both single and group bubbles driven by the Marangoni force in zero-gravity conditions. For rotational speeds from 0.25 to 2 rad/s, bubble displacement with angular motion was found to be directed between the hotter surface and the rotational axis. This is contrary to the conventional bubble flow from areas of high pressure to low pressure, radial direction, or from cold to hot regions, axial direction. The results demonstrate that for the ratio of rotational speeds to the thermocapillary bubble velocity larger than unity, the surface tension gradient is the dominant force and the bubble motion towards the hotter. On the other hand, for ratio less than 1, the bubble motion is dominated and is significantly affected by centrifugal force. As rotation speed increases, the amount of deflection increases and the Marangoni effect vanishes. The current study is novel in the sense that single- and multi-bubble motion incorporating thermocapillary forces in a rotating liquid in a zero-gravity environment has never been numerically investigated.

  17. Measurement and Analysis of Gas Bubbles Near a Reference Electrode in Aqueous Solutions

    SciTech Connect

    Supathorn Phongikaroon; Steve Herrmann; Shelly Li; Michael Simpson

    2005-10-01

    Bubble size distributions (BSDs) near a reference electrode (RE) in aqueous glycerol solutions of an electrolyte NaCl have been investigated under various gas superficial velocities (U{sub S}). BSD and voltage reading of the solution were measured by using a high-speed digital camera and a pH/voltage meter, respectively. The results show that bubble size (b) increases with liquid viscosity ({mu}{sub c}) and U{sub S}. Self-similarity is seen and can be described by the log-normal form of the continuous number frequency distribution. The result shows that b controls the voltage reading in each solution. As b increases, the voltage increases because of gas bubbles interrupting their electrolyte paths in the solutions. An analysis of bubble rising velocity reveals that Stokes Law should be used cautiously to describe the system. The fundamental equation for bubble formation was developed via Newton's second law of motion and shown to be the function of three dimensionless groups--Weber number, Bond number, and Capillary number. After linking an electrochemical principle in the practical application, the result indicates that the critical bubble size is {approx}177 {micro}m. Further analysis suggests that there may be 3000 to 70,000 bubbles generated on the anode surface depending on the size of initial bubbles and provides the potential cause of the efficiency drop observed in the practical application.

  18. Remobilizing the Interface of Thermocapillary Driven Bubbles Retarded By the Adsorption of a Surfactant Impurity on the Bubble Surface

    NASA Technical Reports Server (NTRS)

    Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim (Technical Monitor)

    2001-01-01

    Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow that propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillary to direct the movement of bubbles in space is the fact that surfactant impurities, which are unavoidably present in the continuous phase, can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. (This can also be the case if kinetic desorption of surfactant at the back end of the bubble is much slower than convection.) For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like and bubbles translate as solid particles). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature-induced tension gradient, and can decrease to near zero the bubble's thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have be retarded by the adsorption onto the bubble surface of a surfactant impurity. Our remobilization theory proposes to use surfactant molecules which kinetically rapidly exchange between the bulk and the surface and are at high bulk concentrations. Because the remobilizing surfactant is present at much higher concentrations than the impurity, it adsorbs to the bubble surface much faster than the impurity when the bubble is formed, and thereby prevents the impurity from adsorbing onto the surface. In addition, the rapid kinetic exchange and high bulk concentration maintain a saturated surface with uniform surface concentrations. This prevents retarding surface tension gradients and keeps the thermocapillary velocity high. In our reports over the first 2 years, we presented numerical simulations of the bubble motion and surfactant transport which verified theoretically the concept of remobilization, and the development of an apparatus to track and measure the velocity of rising bubbles in a glycerol/water surfactant solution. This year, we detail experimental observations of remobilization. Two polyethylene oxide surfactants were studied, C12E6 (CH3(CH2)11(OCH2)6OH) and C10E8 (CH3(CH2)4(OCH2CH2)8OH). Measurements of the kinetic exchange for these surfactants show that the one with the longer hydrophobe chain C12E6 has a lower rate of kinetic exchange. In addition, this surfactant is much less soluble in the glycerol/water mixture because of the shorter ethoxylate chain. As a result, we found that C12E6 had only a very limited ability to remobilize rising bubbles because of the limited kinetic exchange and reduced solubility. However, C10E8, with its higher solubility and more rapid exchange was found to dramatically remobilize rising bubbles. We also compared our theoretical calculations to the experimental measurements of velocity for both the non-remobilizing and remobilizing surfactants and found excellent agreement. We further observed that for C10E8 at high concentrations, which exceeded the critical micelle concentrations, additional remobilization was measured. In this case the rapid exchange of monomer between micelle and surfactant provides an additional mechanism for maintaining a uniform

  19. The Bubble Box: Towards an Automated Visual Sensor for 3D Analysis and Characterization of Marine Gas Release Sites.

    PubMed

    Jordt, Anne; Zelenka, Claudius; von Deimling, Jens Schneider; Koch, Reinhard; Köser, Kevin

    2015-01-01

    Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information. PMID:26690168

  20. Strings on Bubbling Geometries

    E-print Network

    Hai Lin; Alexander Morisse; Jonathan P. Shock

    2011-07-27

    We study gauge theory operators which take the form of a product of a trace with a Schur polynomial, and their string theory duals. These states represent strings excited on bubbling AdS geometries which are dual to the Schur polynomials. These geometries generically take the form of multiple annuli in the phase space plane. We study the coherent state wavefunction of the lattice, which labels the trace part of the operator, for a general Young tableau and their dual description on the droplet plane with a general concentric ring pattern. In addition we identify a density matrix over the coherent states on all the geometries within a fixed constraint. This density matrix may be used to calculate the entropy of a given ensemble of operators. We finally recover the BMN string spectrum along the geodesic near any circle from the ansatz of the coherent state wavefunction.

  1. Strings on bubbling geometries

    NASA Astrophysics Data System (ADS)

    Lin, Hai; Morisse, Alexander; Shock, Jonathan P.

    2010-06-01

    We study gauge theory operators which take the form of a product of a trace with a Schur polynomial, and their string theory duals. These states represent strings excited on bubbling AdS geometries which are dual to the Schur polynomials. These geometries generically take the form of multiple annuli in the phase space plane. We study the coherent state wavefunction of the lattice, which labels the trace part of the operator, for a general Young tableau and their dual description on the droplet plane with a general concentric ring pattern. In addition we identify a density matrix over the coherent states on all the geometries within a fixed constraint. This density matrix may be used to calculate the entropy of a given ensemble of operators. We finally recover the BMN string spectrum along the geodesic near any circle from the ansatz of the coherent state wave-function.

  2. Strings on Bubbling Geometries

    E-print Network

    Lin, Hai; Shock, Jonathan P

    2010-01-01

    We study gauge theory operators which take the form of a product of a trace with a Schur polynomial, and their string theory duals. These states represent strings excited on bubbling AdS geometries which are dual to the Schur polynomials. These geometries generically take the form of multiple annuli in the phase space plane. We study the coherent state wavefunction of the lattice, which labels the trace part of the operator, for a general Young tableau and their dual description on the droplet plane with a general concentric ring pattern. In addition we identify a density matrix over the coherent states on all the geometries within a fixed constraint. This density matrix may be used to calculate the entropy of a given ensemble of operators. We finally recover the BMN string spectrum along the geodesic near any circle from the ansatz of the coherent state wavefunction.

  3. Anatomy of bubbling solutions

    E-print Network

    Kostas Skenderis; Marika Taylor

    2008-05-23

    We present a comprehensive analysis of holography for the bubbling solutions of Lin-Lunin-Maldacena. These solutions are uniquely determined by a coloring of a 2-plane, which was argued to correspond to the phase space of free fermions. We show that in general this phase space distribution does not determine fully the 1/2 BPS state of N=4 SYM that the gravitational solution is dual to, but it does determine it enough so that vevs of all single trace 1/2 BPS operators in that state are uniquely determined to leading order in the large N limit. These are precisely the vevs encoded in the asymptotics of the LLM solutions. We extract these vevs for operators up to dimension 4 using holographic renormalization and KK holography and show exact agreement with the field theory expressions.

  4. Doughnut-shaped soap bubbles

    E-print Network

    Deison Preve; Alberto Saa

    2015-09-26

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume $V$ and with a fixed equatorial perimeter $L$. It is well known that the sphere is the solution for $V=L^3/6\\pi^2$, and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for $Vformed by the juxtaposition of two spherical caps, but rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with $Vfoams, for instance.

  5. Doughnut-shaped soap bubbles

    NASA Astrophysics Data System (ADS)

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L . It is well known that the sphere is the solution for V =L3/6 ?2 , and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V

  6. Doughnut-shaped soap bubbles.

    PubMed

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L. It is well known that the sphere is the solution for V=L^{3}/6?^{2}, and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for Vbubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V

  7. Quantitative consideration of flow structures (bubble swarms and liquid motion) and dissolved CO2 concentration transportation, in a bubbly flow

    NASA Astrophysics Data System (ADS)

    Shinohara, Daisuke; Saito, Takayuki

    2013-11-01

    The objective of the present study is to clarify the relationship between large scale flow structures (: bubble swarm and liquid motion) and dissolved CO2 concentration transportation, in a large-diameter bubble column. For this specific purpose, the time-series void fractions, dissolved CO2 concentration and liquid-phase-velocities were simultaneously measured by using a photoelectric optical fiber probe (POFP) and Laser Doppler Velocimetry. The POFP was newly developed in order to simultaneously measure bubble characteristics and dissolved CO2 concentration. We calculated the spatial scale of the bubble swarms and liquid motion based on the thinking of the integral length scale. The spatial scale of the bubble swarms and liquid motion was large in the bottom zone. Moreover, the size of this spatial scale changed with time; i.e. the flow structures changed with time in the bottom zone. The characteristics of the flow structures in the bottom zone faded out towards the upper zone of the column. The cross-correlation coefficients of dissolved CO2 concentration were calculated at several zones by height. As a result, the relationship between the flow structures and dissolved CO2 concentration transportation was found out.

  8. Bubble pump: scalable strategy for in-plane liquid routing.

    PubMed

    Oskooei, Ali; Günther, Axel

    2015-07-01

    We present an on-chip liquid routing technique intended for application in well-based microfluidic systems that require long-term active pumping at low to medium flowrates. Our technique requires only one fluidic feature layer, one pneumatic control line and does not rely on flexible membranes and mechanical or moving parts. The presented bubble pump is therefore compatible with both elastomeric and rigid substrate materials and the associated scalable manufacturing processes. Directed liquid flow was achieved in a microchannel by an in-series configuration of two previously described "bubble gates", i.e., by gas-bubble enabled miniature gate valves. Only one time-dependent pressure signal is required and initiates at the upstream (active) bubble gate a reciprocating bubble motion. Applied at the downstream (passive) gate a time-constant gas pressure level is applied. In its rest state, the passive gate remains closed and only temporarily opens while the liquid pressure rises due to the active gate's reciprocating bubble motion. We have designed, fabricated and consistently operated our bubble pump with a variety of working liquids for >72 hours. Flow rates of 0-5.5 ?l min(-1), were obtained and depended on the selected geometric dimensions, working fluids and actuation frequencies. The maximum operational pressure was 2.9 kPa-9.1 kPa and depended on the interfacial tension of the working fluids. Attainable flow rates compared favorably with those of available micropumps. We achieved flow rate enhancements of 30-100% by operating two bubble pumps in tandem and demonstrated scalability of the concept in a multi-well format with 12 individually and uniformly perfused microchannels (variation in flow rate <7%). We envision the demonstrated concept to allow for the consistent on-chip delivery of a wide range of different liquids that may even include highly reactive or moisture sensitive solutions. The presented bubble pump may provide active flow control for analytical and point-of-care diagnostic devices, as well as for microfluidic cells culture and organ-on-chip platforms. PMID:26016773

  9. Bubble Growth in Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth Planet. Sci. Lett. 181, 251. (2) Liu Y, Zhang YX, Behrens H (2005) J. Volcanol. Geotherm. Res. 143, 219. (3) Murase T, McBirney A (1970) Science 167, 1491. (4) Proussevitch AA, Sahagian DL (1998) J. Geophys. Res. 103, 18223. (5) Saal AE, Hauri EH, Cascio ML, et al. (2008) Nature 454, 192. (6) Zhang YX, Stolper EM (1991) Nature 351, 306.

  10. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Vogel, A.; Noack, J.; Chapyak, E.J.; Godwin, R.P.

    1999-06-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored by time-resolved photography and numerical simulations. The growth-collapse period of cylindrical bubbles of large aspect ratio (length:diameter {approximately}20) differs only slightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble size and energy even for aspherical bubbles. The change of the oscillation period of bubbles near solid walls and elastic (tissue-like) boundaries relative to that of isolated spherical bubbles is also investigated.

  11. The velocity-distance relation for galaxies on a bubble

    NASA Technical Reports Server (NTRS)

    Bothun, Gregory D.; Geller, Margaret J.; Kurtz, Michael J.; Huchra, John P.; Schild, Rudolph E.

    1992-01-01

    The characteristic diameter of the most prominent void in the redshift survey of de Lapparent et al. (1986) is measured. Distances and peculiar velocities to individual galaxies are derived, and it is shown that the void is approximately a 'Hubble Bubble' in which the near and far edges are separating with the general expansion of the universe. At the 3 sigma level, infall toward the Coma cluster is detected for a portion of the bubble wall. Limits on the net outflow from the void and infall into Coma are used to estimate Omega.

  12. Understanding the relation between pre-eruptive bubble size distribution and observed ash particle sizes

    NASA Astrophysics Data System (ADS)

    Proussevitch, A. A.; Sahagian, D. L.; Mulukutla, G. K.

    2011-12-01

    Recent advances in measuring pre-eruptive bubble size distributions (BSDs) from ash particle surface morphology now make it possible to calibrate ash fragmentation models for prediction of pyroclastic characteristics such as particle size distribution. The same magma bodies can generate various eruption products ranging from course bombs to fine ash, with a wide range of fractionation between these end members that in turn depends on decompression rates and the pre-eruptive bubble size distributions controlled by vesiculation dynamics. We have devised a Monte Carlo method to produce spatial models of bubble textures that match inferred BSDs of pre-fragmentation magma in the eruption column based on conditions of 1-stage bubble nucleation and random nucleation site spacing, with either of two bubble growth schemes applicable for low and high vesicularity volcanic products- (1) unconfined growth in the absence of neighboring bubbles, and (2) limited growth in a melt volume shared with neighboring bubbles. These scenarios lead to different BSDs, thus controlling fragmentation thresholds and patterns. From those alternative BSDs we have calculated the thickness distribution of bubble walls and plateau borders, so we can predict the size distribution of ash particles formed by rupture of thinnest inter-bubble films, as well as the fraction of compound fragments or clasts derived from parcels of magmatic foam containing thicker walls. As such, it is possible to parameterize the magmatic conditions that lead to eruptions with a high fraction of fine ash of concern to volcanic hazards.

  13. How does a bubble chamber work?

    SciTech Connect

    Konstantinov, D.; Homsi, W.; Luzuriaga, J.; Su, C.K.; Weilert, M.A.; Maris, H.J.

    1998-11-01

    A charged particle passing through a bubble chamber produces a track of bubbles. The way in which these bubbles are produced has been a matter of some controversy. The authors consider the possibility that in helium and hydrogen bubble chambers the production of bubbles is primarily a mechanical process, rather than a thermal process as has often been assumed. The model the authors propose gives results which are in excellent agreement with experiment.

  14. The rise and fall.

    PubMed

    Japsen, B

    1997-09-01

    By the time the government raided Columbia/HCA Healthcare Corp. facilities this summer, colleagues had been trying for years to warn the company's then-top executive, Richard Scott, about the unnerving arrogance from the executive suite in Nashville. Modern Healthcare explores key events in the rise and fall of Scott and the company he built. PMID:10170124

  15. Global sea level rise

    SciTech Connect

    Douglas, B.C. )

    1991-04-15

    Published values for the long-term, global mean sea level rise determined from tide gauge records exhibit considerable scatter, from about 1 mm to 3 mm/yr. This disparity is not attributable to instrument error; long-term trends computed at adjacent sites often agree to within a few tenths of a millimeter per year. Instead, the differing estimates of global sea level rise appear to be in large part due to authors' using data from gauges located at convergent tectonic plate boundaries, where changes of land elevation give fictitious sea level trends. In addition, virtually all gauges undergo subsidence or uplift due to postglacial rebound (PGR) from the last deglaciation at a rate comparable to or greater than the secular rise of sea level. Modeling PGR by the ICE-3G model of Tushingham and Peltier (1991) and avoiding tide gauge records in areas of converging tectonic plates produces a highly consistent set of long sea level records. The value for mean sea level rise obtained from a global set of 21 such stations in nine oceanic regions with an average record length of 76 years during the period 1880-1980 is 1.8 mm/yr {plus minus} 0.1. This result provides confidence that carefully selected long tide gauge records measure the same underlying trend of sea level and that many old tide gauge records are of very high quality.

  16. Perspective Theoretical Neuroscience Rising

    E-print Network

    Abbott, Laurence

    Neuron Perspective Theoretical Neuroscience Rising L.F. Abbott1,* 1Department of Neuroscience *Correspondence: lfabbott@columbia.edu DOI 10.1016/j.neuron.2008.10.019 Theoretical neuroscience has experienced to introduce new ideas and shape directions of neuroscience research. This review presents some

  17. Dispersed Multiphase Flow: From Micro-to Macro-Scale Numerical Modelling Direct numerical simulation of high Schmidt number mass transfer from air bubbles

    E-print Network

    Bothe, Dieter

    simulation of high Schmidt number mass transfer from air bubbles rising in liquids using the Volume-of-Fluid and in order to resolve all relevant length scales for moderate Reynolds and Schmidt numbers in convection occur. These processes determine the bubble population's size distribution and, hence, influence

  18. Radial oscillation of a gas bubble in a fluid as a problem in canonical perturbation theory

    NASA Astrophysics Data System (ADS)

    Stephens, James

    2006-11-01

    The oscillation of a gas bubble is in a fluid is of interest in many areas of physics and technology. Lord Rayleigh treated the pressure developed in the collapse of cavitation bubbles and developed an expression for the collapse period. Minnaert developed a harmonic oscillator approximation to bubble oscillation in his study of the sound produced by running water. Besides recent interest in bubble oscillation in connection to sonoluminescence, an understanding of oscillating bubbles is of important to oceanographers studying the sound spectrum produced by water waves, geophysicists employing air guns as acoustic probes, mechanical engineers concerned with erosion of turbine blades, and military engineers concerned with the acoustic signatures developed by the propeller screws of ships and submarines. For the oceanographer, Minnaert's approximation is useful, for the latter two examples, Lord Rayleigh's analysis is appropriate. For the case of the airgun, a period of twice Rayleigh's period for the ``total collapse'' of the cavitation bubble is often cited as a good approximation for the period of an air bubble ejected from an air gun port, typically at ˜2000 psi), however for the geophysical example, numerical integration is employed from the outset to determine the dynamics of the bubble and the emitted acoustic energy. On the one hand, a bubble can be treated as a harmonic oscillator in the small amplitude regime, whereas even in the relatively moderate pressure regime characteristic of air guns the oscillation is strongly nonlinear and amplitude dependent. Is it possible to develop an analytic approximation that affords insight into the behavior of a bubble beyond the harmonic approximation of Minnaert? In this spirit, the free radial oscillation of a gas bubble in a fluid is treated as a problem in canonical perturbation theory. Several orders of the expansion are determined in order to explore the dependence of the oscillation frequency with bubble amplitude. The expansion to second order is inverted to express the time dependence of the oscillation.

  19. Transient bubbles, bublets and breakup

    NASA Astrophysics Data System (ADS)

    Keen, Giles; Blake, John

    1999-11-01

    The non-spherical nature of the collapse of bubbles has important ramifications in many practical situations such as ultrasonic cleaning, tanning of leather, and underwater explosions. In particular the high speed liquid jet that can thread a collapsing bubble is central to the functional performance. An impressive photographic record of a liquid jet was obtained by Crum using a bubble situated in the vicinity of a platform oscillating vertically at a frequency of 60 Hz. A boundary integral method is used to model this situation and is found to closely mimic some of the observations. However, a slight variation of parameters or a change in the phase of the driving frequency can lead to dramatically different bubble behaviour, a feature also observed by Crum.

  20. Driving bubbles out of glass

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.

    1981-01-01

    Surface tension gradient in melt forces gas bubbles to surface, increasing glass strength and transparency. Conventional chemical and buoyant fining are extremely slow in viscous glasses, but tension gradient method moves 250 um bubbles as rapidly as 30 um/s. Heat required for high temperature part of melt is furnished by stationary electrical or natural-gas heater; induction and laser heating are also possible. Method has many applications in industry processes.

  1. Doughnut-shaped soap bubbles

    E-print Network

    Preve, Deison

    2015-01-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume $V$ and with a fixed equatorial perimeter $L$. It is well known that the sphere is the solution for $V=L^3/6\\pi^2$, and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for $V<\\alpha L^3/6\\pi^2$, with $\\alpha\\approx 0.21$, such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtainin...

  2. Nanoscale patterns on micron-sized bubbles in foams

    NASA Astrophysics Data System (ADS)

    Dressaire, Emilie; Bell, David; Bee, Rodney; Lips, Alex; Stone, Howard

    2006-11-01

    The rheology and coarsening of foams is closely related to the microstructural characteristics of the small gas bubbles and their surface properties. We present experimental results of a foam formed upon shearing a mixture composed of glucose syrup and sucrose ester. Transmission Electron Microscopy reveals micron-size bubbles whose surfaces are fully covered with regular nanodimension, generally hexagonal, patterns. The influence of the shear rate during foam generation and the setting time on the development of the nanoscale patterns on the gas microcells are described. Plausible routes, driven by disproportionation of the gas from the small bubbles, for the formation of the nanoscale patterns are considered including a nucleation/crystallization pathway (Kim et al. 2003 Langmuir 19, p. 8455) and the buckling of an elastic insoluble surface film.

  3. The Formation of a Bubble from a Submerged Orifice

    E-print Network

    Simmons, Jonathan A; Shikhmurzaev, Yulii D

    2015-01-01

    The formation of a single bubble from an orifice in a solid surface, submerged in an in- compressible, viscous Newtonian liquid, is simulated. The finite element method is used to capture the multiscale physics associated with the problem and to track the evolution of the free surface explicitly. The results are compared to a recent experimental analysis and then used to obtain the global characteristics of the process, the formation time and volume of the bubble, for a range of orifice radii; Ohnesorge numbers, which combine the material parameters of the liquid; and volumetric gas flow rates. These benchmark calculations, for the parameter space of interest, are then utilised to validate a selection of scaling laws found in the literature for two regimes of bubble formation, the regimes of low and high gas flow rates.

  4. The Dynamics of Vapor Bubbles in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Prosperetti, A.

    1999-01-01

    In spite of a superficial similarity with gas bubbles, the intimate coupling between dynamical and thermal processes confers to oscillating vapor bubbles some unique characteristics. This paper examines numerically the validity of some asymptotic-theory predictions such as the existence of two resonant radii and a limit size for a given sound amplitude and frequency. It is found that a small vapor bubble in a sound field of sufficient amplitude grows quickly through resonance and continues to grow thereafter at a very slow rate, seemingly indefinitely. Resonance phenomena therefore play a role for a few cycles at most, and reaching a limit size-if one exists at all-is found to require far more than several tens of thousands of cycles. It is also found that some small bubbles may grow or collapse depending on the phase of the sound field. The model accounts in detail for the thermo-fluid-mechanic processes in the vapor. In the second part of the paper, an approximate formulation valid for bubbles small with respect to the thermal penetration length in the vapor is derived and its accuracy examined, The present findings have implications for acoustically enhanced boiling heat transfer and other special applications such as boiling in microgravity.

  5. Bursting Bubbles from Combustion of Thermoplastic Materials in Microgravity

    NASA Technical Reports Server (NTRS)

    Butler, K. B.

    1999-01-01

    Many thermoplastic materials in common use for a wide range of applications, including spacecraft, develop bubbles internally as they burn due to chemical reactions taking place within the bulk. These bubbles grow and migrate until they burst at the surface, forceably ejecting volatile gases and, occasionally, molten fuel. In experiments in normal gravity, Kashiwagi and Ohlemiller observed vapor jets extending a few centimeters from the surface of a radiatively heated polymethylmethacrylate (PMMA) sample, with some molten material ejected into the gas phase. These physical phenomena complicated the combustion process considerably. In addition to the non-steady release of volatiles, the depth of the surface layer affected by oxygen was increased, attributed to the roughening of the surface by bursting events. The ejection of burning droplets in random directions presents a potential fire hazard unique to microgravity. In microgravity combustion experiments on nylon Velcro fasteners and on polyethylene wire insulation, the presence of bursting fuel vapor bubbles was associated with the ejection of small particles of molten fuel as well as pulsations of the flame. For the nylon fasteners, particle velocities were higher than 30 cm/sec. The droplets burned robustly until all fuel was consumed, demonstrating the potential for the spread of fire in random directions over an extended distance. The sequence of events for a bursting bubble has been photographed by Newitt et al.. As the bubble reaches the fluid surface, the outer surface forms a dome while the internal bubble pressure maintains a depression at the inner interface. Liquid drains from the dome until it breaks into a cloud of droplets on the order of a few microns in size. The bubble gases are released rapidly, generating vortices in the quiescent surroundings and transporting the tiny droplets. The depression left by the escaping gases collapses into a central jet, which rises with a high velocity and may break up, releasing one or more relatively large drops (on the order of a millimeter in these experiments). A better understanding of bubble development and bursting processes, the effects of bursting behavior on burning rate of the bulk material, and the circumstances under which large droplets are expelled, as well as their trajectories, sizes, and burning rates, is sought through computer modeling compared with experiment.

  6. Modeling of Vapor Bubble Growth Under Nucleate Boiling Conditions in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1995-01-01

    A dynamic model is developed to describe the evolution of a vapor bubble growing at a nucleation site on a superheated surface under arbitrary gravity. The bubble is separated from the surface by a thin microlayer and grows due to the evaporation from the microlayer interface. The average thickness of the microlayer increases as the bubble expands along the surface if the evaporation rate is lower than some critical value. The corresponding threshold value of the surface temperature has to be associated with the burn-out crisis. Two main reasons make for bubble separation, which are the buoyancy force and a force caused by the vapor momentum that comes to the bubble with vapor molecules. The latter force is somewhat diminished if condensation takes place at the upper bubble surface in subcooled liquids. The action of the said forces is opposed by inertia of the additional mass of liquid as the bubble center rises above the surface and by inertia of liquid being expelled by the growing bubble in radial directions. An extra pressure force arises due to the liquid inflow into the microlayer with a finite velocity. The last force helps in holding the bubble close to the surface during an initial stage of bubble evolution. Two limiting regimes with distinctly different properties can be singled out, depending on which of the forces that favor bubble detachment dominates. Under conditions of moderately reduced gravity, the situation is much the same as in normal gravity, although the bubble detachment volume increases as gravity diminishes. In microgravity, the buoyancy force is negligible. Then the bubble is capable of staying near the surface for a long time, with intensive evaporation from the microlayer. It suggests a drastic change in the physical mechanism of heat removal as gravity falls below a certain sufficiently low level. Inferences of the model and conclusions pertaining to effects caused on heat transfer processes by changes in bubble hydrodynamics induced by gravity are discussed in connection with experimental evidence, both available in current and in as yet unpublished literature.

  7. Bubble Formation and Detachment in Reduced Gravity Under the Influence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Iacona, Estelle; Chang, Shinan

    2002-01-01

    The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Both uniform and nonuniform electric field configurations were considered. Bubble formation and detachment were recorded and visualized in reduced gravity (corresponding to gravity levels on Mars, on the Moon as well as microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.

  8. Bubble Detachment in Variable Gravity Under the Influence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Chang, Shinan; Iacona, Estelle

    2002-01-01

    The objective of the research is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Situations were considered with both uniform and nonuniform electric fields. Bubble formation and detachment were visualized in terrestrial gravity as well as for several levels of reduced gravity (lunar, martian and microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angles at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment in an initially uniform electric field was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. The results of the study indicate that the level of gravity and the electric field magnitude significantly affect bubble behavior as well as shape, volume and dimensions.

  9. Electric Field Effects on an Injected Air Bubble at Detachment in a Low Gravity Environment

    NASA Technical Reports Server (NTRS)

    Iacona, Estelle; Herman, Cila; Chang, Shinan

    2002-01-01

    The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static and uniform electric field. Bubble formation and detachment were visualized and recorded in microgravity using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement, and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.

  10. Dynamic Modeling of Hydro- Formylation of 1-Decene on Rh/C Catalyst in Bubble Column Slurry Reactor

    NASA Astrophysics Data System (ADS)

    Upkare, Makarand M.; Rajurkar, Kalpendra B.; Das, Samir K.; Jaganathan, R.

    2010-10-01

    A dynamic model has been developed for the bubble column slurry reactor operating under non-isothermal conditions. The model consists of mass and heat balance equations for the gas and liquid phases and the catalyst particle. The model equations consisted of partial differential equations (PDE) which were converted to ordinary differential equations (ODE) by using finite difference relationships for the spatial derivatives and the ordinary differential equations for the time derivatives (Numerical Method of Lines-NMoL). The model was applied to describe the dynamic behaviour of bubble column slurry reactor during the hydroformylation of 1-decene on Rh/C catalyst. Model simulations were performed to obtain a meaningful path to steady state and to reproduce the other characteristics of the dynamic behaviour of the reactor. Under given conditions, the reaction required approximately 3750 seconds to reach the steady state concentrations at various reactor positions. It was observed with increase in the fluid velocities, the dynamics of the system was altered to 2500 seconds to reach the steady state condition. The effect of axial dispersion on the substrate concentration and the temperature rise along the reactor was further studied and discussed.

  11. Bubble rearrangements dynamics in foams

    NASA Astrophysics Data System (ADS)

    Le Merrer, Marie; Costa, Severine; Cohen-Addad, Sylvie; Hoehler, Reinhard

    2011-11-01

    Liquid foams are jammed dispersions of gas bubbles in a surfactant solution. Their structure evolves with time because surface tension drives a diffusive gas exchange between neighboring bubbles. This coarsening leads to a build-up of stresses which are relaxed upon local intermittent bubble rearrangements. These events govern the slow viscoelastic foam response, and similar bubble rearrangements are the elementary processes of plastic flow. Thus, the rearrangement duration is a key parameter describing how the microstructure dynamics control the macroscopic rheological response. We probe the duration of coarsening-induced rearrangements in 3D foams using a multiple light scattering technique (time resolved Diffusing-Wave Spectroscopy) as a function of the surfactant chemistry and the liquid fraction. As the foam becomes wetter, the confinement pressure of the packing goes to zero and the contacts between bubbles vanish. For mobile interfaces, we find that the rearrangements slow down as the jamming point is approached. These findings are compared to scaling laws which reveal an analogy between rearrangements dynamics in foams and granular suspensions.

  12. Ethnic diversity deflates price bubbles

    PubMed Central

    Levine, Sheen S.; Apfelbaum, Evan P.; Bernard, Mark; Bartelt, Valerie L.; Zajac, Edward J.; Stark, David

    2014-01-01

    Markets are central to modern society, so their failures can be devastating. Here, we examine a prominent failure: price bubbles. Bubbles emerge when traders err collectively in pricing, causing misfit between market prices and the true values of assets. The causes of such collective errors remain elusive. We propose that bubbles are affected by ethnic homogeneity in the market and can be thwarted by diversity. In homogenous markets, traders place undue confidence in the decisions of others. Less likely to scrutinize others’ decisions, traders are more likely to accept prices that deviate from true values. To test this, we constructed experimental markets in Southeast Asia and North America, where participants traded stocks to earn money. We randomly assigned participants to ethnically homogeneous or diverse markets. We find a marked difference: Across markets and locations, market prices fit true values 58% better in diverse markets. The effect is similar across sites, despite sizeable differences in culture and ethnic composition. Specifically, in homogenous markets, overpricing is higher as traders are more likely to accept speculative prices. Their pricing errors are more correlated than in diverse markets. In addition, when bubbles burst, homogenous markets crash more severely. The findings suggest that price bubbles arise not only from individual errors or financial conditions, but also from the social context of decision making. The evidence may inform public discussion on ethnic diversity: it may be beneficial not only for providing variety in perspectives and skills, but also because diversity facilitates friction that enhances deliberation and upends conformity. PMID:25404313

  13. Dynamics in reactive bubbly flow

    NASA Astrophysics Data System (ADS)

    Sundararajan, Pavithra; Koch, Donald; Stroock, Abraham

    2010-11-01

    Multiphase flow in microfluidic channels encompasses a rich collection of phenomena of widespread interest in both fundamental and technological context. While studies on non reactive multiphase flow focus on the dynamics of bubble breakup, coalescence and stability, a reactive multiphase flow opens up a broader spectrum of dynamics, like nucleation, growth and detachment of bubbles as well as the secondary mixing in the slugs during these processes. Our interest lies in the flow in an electrochemical microfluidic fuel cell with liquid reactants reacting at catalyst walls producing gaseous products which choke the fuel cell efficiency due to uncontrolled bubbly flow. This challenge is an opportunity in itself provided the multiphase flow dynamics can be characterized to achieve a stable Taylor regime. Taylor regime allows for promisingly high efficiencies due to improved mass transfer of reactants to the concentration boundary layer of the electrodes achieved by the secondary flow in the liquid phase present between bubbles. Here, I will experimentally explore the different regimes of reactive bubbly flow in a microchannel. The phase diagram of the reactive multiphase flows would be used to identify the stable regime for efficient fuel cell operation. Further, I will study the mass transfer in the presence of multiphase flow to regimes of enhanced mass transfer, and compare it with numerical models.

  14. Ethnic diversity deflates price bubbles.

    PubMed

    Levine, Sheen S; Apfelbaum, Evan P; Bernard, Mark; Bartelt, Valerie L; Zajac, Edward J; Stark, David

    2014-12-30

    Markets are central to modern society, so their failures can be devastating. Here, we examine a prominent failure: price bubbles. Bubbles emerge when traders err collectively in pricing, causing misfit between market prices and the true values of assets. The causes of such collective errors remain elusive. We propose that bubbles are affected by ethnic homogeneity in the market and can be thwarted by diversity. In homogenous markets, traders place undue confidence in the decisions of others. Less likely to scrutinize others' decisions, traders are more likely to accept prices that deviate from true values. To test this, we constructed experimental markets in Southeast Asia and North America, where participants traded stocks to earn money. We randomly assigned participants to ethnically homogeneous or diverse markets. We find a marked difference: Across markets and locations, market prices fit true values 58% better in diverse markets. The effect is similar across sites, despite sizeable differences in culture and ethnic composition. Specifically, in homogenous markets, overpricing is higher as traders are more likely to accept speculative prices. Their pricing errors are more correlated than in diverse markets. In addition, when bubbles burst, homogenous markets crash more severely. The findings suggest that price bubbles arise not only from individual errors or financial conditions, but also from the social context of decision making. The evidence may inform public discussion on ethnic diversity: it may be beneficial not only for providing variety in perspectives and skills, but also because diversity facilitates friction that enhances deliberation and upends conformity. PMID:25404313

  15. March 15, 1997 / Vol. 22, No. 6 / OPTICS LETTERS 405 Electromagnetic bubble generation by half-cycle pulses

    E-print Network

    Kaplan, Alexander

    (EM) bubbles (EMB's), unipolar, super-short, and intense nonoscillating solitary pulses of EM investigate how EMB's characteristics (amplitude, length, formation distance, and total number) are controlled bubbles7 (EMB's), which are unipolar EM solitons propagating in a gas of two-level7,8 or classically

  16. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Godwin, R.P.; Chapyak, E.J.; Noack, J.; Vogel, A.

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  17. Radial oscillation of a gas bubble in a fluid as a problem in canonical perturbation theory

    NASA Astrophysics Data System (ADS)

    Stephens, James

    2005-11-01

    The oscillation of a gas bubble is in a fluid is of interest in many areas of physics and technology. Lord Rayleigh treated the pressure developed in the collapse of cavitation bubbles and developed an expression for the collapse period. Minnaert developed a harmonic oscillator approximation to bubble oscillation in his study of the sound produced by running water. Oscillating bubbles are important to oceanographers studying the sound spectrum produced by water waves, geophysicists employing air guns as acoustic probes, mechanical engineers concerned with erosion of turbine blades, and military engineers concerned with the acoustic signatures developed by the propeller screws of ships and submarines. For the oceanographer, Minnaert's approximation is useful, for the latter two examples, Lord Rayleigh's analysis is appropriate. On the one hand, a bubble can be treated as a harmonic oscillator in the small amplitude regime, whereas even in the relatively moderate pressure regime characteristic of air guns the oscillation is strongly nonlinear and amplitude dependent. Is it possible to develop an analytic approximation that affords insight into the behavior of a bubble beyond the harmonic approximation of Minnaert? In this spirit, the free radial oscillation of a gas bubble in a fluid is treated as a problem in canonical perturbation theory. Several orders of the expansion are determined in order to explore the dependence of the oscillation frequency with bubble amplitude. The expansion to second order is inverted to express the time dependence of the oscillation.

  18. Time and Space Resolved Heat Transfer Measurements Under Nucleate Bubbles with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2003-01-01

    Investigations into single bubble pool boiling phenomena are often complicated by the difficulties in obtaining time and space resolved information in the bubble region. This usually occurs because the heaters and diagnostics used to measure heat transfer data are often on the order of, or larger than, the bubble characteristic length or region of influence. This has contributed to the development of many different and sometimes contradictory models of pool boiling phenomena and dominant heat transfer mechanisms. Recent investigations by Yaddanapyddi and Kim and Demiray and Kim have obtained time and space resolved heat transfer information at the bubble/heater interface under constant temperature conditions using a novel micro-heater array (10x10 array, each heater 100 microns on a side) that is semi-transparent and doubles as a measurement sensor. By using active feedback to maintain a state of constant temperature at the heater surface, they showed that the area of influence of bubbles generated in FC-72 was much smaller than predicted by standard models and that micro-conduction/micro-convection due to re-wetting dominated heat transfer effects. This study seeks to expand on the previous work by making time and space resolved measurements under bubbles nucleating on a micro-heater array operated under constant heat flux conditions. In the planned investigation, wall temperature measurements made under a single bubble nucleation site will be synchronized with high-speed video to allow analysis of the bubble energy removal from the wall.

  19. Bubbles Responding to Ultrasound Pressure

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (435KB, 13-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300162.html.

  20. Bursting Bubbles and Bilayers

    PubMed Central

    Wrenn, Steven P.; Dicker, Stephen M.; Small, Eleanor F.; Dan, Nily R.; Mleczko, Micha?; Schmitz, Georg; Lewin, Peter A.

    2012-01-01

    This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol) (PEG) - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power) with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented, including those involving microbubbles to deliver cargo into a cell, and those - not necessarily involving microubbles - to release cargo from a phospholipid vesicle (or reverse sonoporation). It is shown that the rate of (reverse) sonoporation from liposomes correlates with phospholipid bilayer phase behavior, liquid-disordered phases giving appreciably faster release than liquid-ordered phases. Moreover, liquid-disordered phases exhibit evidence of two release mechanisms, which are described well mathematically by enhanced diffusion (possibly via dilation of membrane phospholipids) and irreversible membrane disruption, whereas liquid-ordered phases are described by a single mechanism, which has yet to be positively identified. The ability to tune release kinetics with bilayer composition makes reverse sonoporation of phospholipid vesicles a promising methodology for controlled drug delivery. Moreover, nesting of microbubbles inside vesicles constitutes a truly “theranostic” vehicle, one that can be used for both long-lasting, safe imaging and for controlled drug delivery. PMID:23382772

  1. From rational bubbles to crashes

    NASA Astrophysics Data System (ADS)

    Sornette, D.; Malevergne, Y.

    2001-10-01

    We study and generalize in various ways the model of rational expectation (RE) bubbles introduced by Blanchard and Watson in the economic literature. Bubbles are argued to be the equivalent of Goldstone modes of the fundamental rational pricing equation, associated with the symmetry-breaking introduced by non-vanishing dividends. Generalizing bubbles in terms of multiplicative stochastic maps, we summarize the result of Lux and Sornette that the no-arbitrage condition imposes that the tail of the return distribution is hyperbolic with an exponent ?<1. We then outline the main results of Malevergne and Sornette, who extend the RE bubble model to arbitrary dimensions d: a number d of market time series are made linearly interdependent via d× d stochastic coupling coefficients. We derive the no-arbitrage condition in this context and, with the renewal theory for products of random matrices applied to stochastic recurrence equations, we extend the theorem of Lux and Sornette to demonstrate that the tails of the unconditional distributions associated with such d-dimensional bubble processes follow power laws, with the same asymptotic tail exponent ?<1 for all assets. The distribution of price differences and of returns is dominated by the same power-law over an extended range of large returns. Although power-law tails are a pervasive feature of empirical data, the numerical value ?<1 is in disagreement with the usual empirical estimates ??3. We then discuss two extensions (the crash hazard rate model and the non-stationary growth rate model) of the RE bubble model that provide two ways of reconciliation with the stylized facts of financial data.

  2. Removal of hydrogen bubbles from nuclear reactors

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1980-01-01

    Method proposed for removing large hydrogen bubbles from nuclear environment uses, in its simplest form, hollow spheres of palladium or platinum. Methods would result in hydrogen bubble being reduced in size without letting more radioactivity outside reactor.

  3. A study of bubble wetting on surfaces

    E-print Network

    Day, Julia Katherine

    2010-01-01

    In microfluidics, the formation of bubbles within devices obstructs flow and can damage the microfluidic chip or the samples contained therein. This thesis works toward a better understand of bubble wetting on surfaces, ...

  4. Bubble memory module for spacecraft application

    NASA Technical Reports Server (NTRS)

    Hayes, P. J.; Looney, K. T.; Nichols, C. D.

    1985-01-01

    Bubble domain technology offers an all-solid-state alternative for data storage in onboard data systems. A versatile modular bubble memory concept was developed. The key module is the bubble memory module which contains all of the storage devices and circuitry for accessing these devices. This report documents the bubble memory module design and preliminary hardware designs aimed at memory module functional demonstration with available commercial bubble devices. The system architecture provides simultaneous operation of bubble devices to attain high data rates. Banks of bubble devices are accessed by a given bubble controller to minimize controller parts. A power strobing technique is discussed which could minimize the average system power dissipation. A fast initialization method using EEPROM (electrically erasable, programmable read-only memory) devices promotes fast access. Noise and crosstalk problems and implementations to minimize these are discussed. Flight memory systems which incorporate the concepts and techniques of this work could now be developed for applications.

  5. TECHNOLOGY ASSESSMENT OF FINE BUBBLE AERATORS

    EPA Science Inventory

    This technology assessment addresses design and evaluation of fine bubble aeration equipment. It discusses the associated gas transfer theory used as the basis for measuring water and wastewater oxygenation efficiency. Mixing requirements are also discussed. While bubble aeration...

  6. Behavior of Rapidly Sheared Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Sangani, A. S.; Kushch, V. I.; Hoffmann, M.; Nahra, H.; Koch, D. L.; Tsang, Y.

    2002-01-01

    An experiment to be carried out aboard the International Space Station is described. A suspension consisting of millimeter-sized bubbles in water containing some dissolved salt, which prevents bubbles from coalescing, will be sheared in a Couette cylindrical cell. Rotation of the outer cylinder will produce centrifugal force which will tend to accumulate the bubbles near the inner wall. The shearing will enhance collisions among bubbles creating thereby bubble phase pressure that will resist the tendency of the bubbles to accumulate near the inner wall. The bubble volume fraction and velocity profiles will be measured and compared with the theoretical predictions. Ground-based research on measurement of bubble phase properties and flow in vertical channel are described.

  7. Bubble-crystal aggregates promote magma chamber overturn in arc crust

    NASA Astrophysics Data System (ADS)

    Edmonds, M.; Woods, A. W.; Humphreys, M.

    2014-12-01

    Bubble nucleation in melts occurs preferentially on the surfaces of crystals. Of all phases in oxidized melts, magnetite is most favorable for the heterogeneous nucleation of bubbles owing to the high wetting angles at the bubble-crystal-melt interface. Preservation of such relationships in erupted rocks however, is rare owing to overprinting by decompression-induced degassing, shear and bubble detachment during magma ascent. We present evidence from basaltic enclaves preserved in andesite lavas from Soufriere Hills Volcano, Montserrat, for a spatial association between magnetite and bubbles that we propose is a relict of the bubble nucleation process at depth. The existence of bubble-crystal aggregates means that magnetite crystals will tend to sink more slowly, and bubbles will rise less fast than for the case of single crystals and bubbles. The behavior of bubble-crystal aggregates will be dependent on their bulk density, which depends on the relative proportion by mass of the magnetite and the bubble and the pressure. In deeper chambers, the smaller mass of exsolved volatiles leads to the prediction that many of the bubble-crystal aggregates are dense and so fall to base of the chamber (and the bubbles are wholly or partially resorbed). In shallower chambers, however, the larger volume and mass of exsolved volatiles would tend to promote buoyant aggregate formation. The presence of the aggregates has implications for the mixing/mingling process when mafic magmas underplate crystal-rich evolved magma bodies in the arc crust. For shallow magma chambers the buoyancy of the aggregates in the underplating mafic magma will either cause vapor accumulation at the magma interface and the formation of mafic inclusions rich in magnetite; or the enhanced density of the aggregates may promote magma chamber overturn and mixing of mafic magmas into the andesites bodies. Both processes may be important over different spatial and time-scales. The overturn mechanism may explain the hybrid features of the andesite, including the presence of cryptic mafic components, reverse zoning of phenocrysts and how volatiles might be sourced from the mafic magmas and distributed within andesite bodies.

  8. THE YOUNG INTERSTELLAR BUBBLE WITHIN THE ROSETTE NEBULA

    SciTech Connect

    Bruhweiler, F. C.; Bourdin, M. O.; Gull, T. R. E-mail: theodore.r.gull@nasa.go

    2010-08-20

    We use high-resolution International Ultraviolet Explorer (IUE) data and the interstellar (IS) features of highly ionized Si IV and C IV seen toward the young, bright OB stars of NGC 2244 in the core of the Rosette Nebula to study the physics of young IS bubbles. Two discrete velocity components in Si IV and C IV are seen toward stars in the 6.2 pc radius central cavity, while only a single velocity component is seen toward those stars in the surrounding H II region, at the perimeter and external to this cavity. The central region shows characteristics of a very young, windblown bubble. The shell around the central hot cavity is expanding at 56 km s{sup -1} with respect to the embedded OB stars, while the surrounding H II region of the Rosette is expanding at {approx}13 km s{sup -1}. Even though these stars are quite young ({approx}2-4 Myr), both the radius and expansion velocity of the 6.2 pc inner shell point to a far younger age; t{sub age} {approx} 6.4 x 10{sup 4} years. These results represent a strong contradiction to theory and present modeling, where much larger bubbles are predicted around individual O stars and O associations. Specifically, the results for this small bubble and its deduced age extend the 'missing wind luminosity problem' to young evolving bubbles. These results indicate that OB star winds mix the surrounding H II regions and the wind kinetic energy is converted to turbulence and radiated away in the dense H II regions. These winds do not form hot, adiabatically expanding cavities. True IS bubbles appear only to form at later evolutionary times, perhaps triggered by increased mass loss rates or discrete ejection events. Means for rectifying discrepancies between theory and observations are discussed.

  9. Day-to-day longitudinal variation of bubble occurrence over South America

    NASA Astrophysics Data System (ADS)

    de La Cruz Cueva, R.; Valladares, C. E.; Batista, I. S.; de Paula, E. R.

    2010-12-01

    VTEC GPS data from LISN Network from 2008 is being analyzed to get the ionospheric conditions that generate spread F irregularities, like bubbles, in the South American (SA) continent. Using Automatic Bubble Detection Algorithm (ABDA), it was possible to find bubble signatures (hundreds of kilometers scale size) between September and December months. The bubble occurrence pattern over SA in general follows the characteristics of bubbles detected previously with digisonde and satellite (e.g. DMSP, CHAMP) that are September-October in the west and November-December in the east. However we have observed bubbles signatures all over the continent among September to December period. Digisonde ionospheric parameters (NmF2, h'F and foF2) were measured to describe the ionospheric local conditions over Fortaleza (Brazil) and Jicamarca (Peru) that can help us to understand the characteristics of the phenomena described here. Digisonde data from Fortaleza located at 3.8S, 38W and 9S dip latitude, and Jicamarca located at 12S, 76.9W and 1N dip latitude were used to measure the day-to-day longitudinal variation. We will show the variation of NmF2, h'F and foF2 in these two stations when spread F (bubble) presence is in the east, in the west and all over the continent.

  10. Cartesian grid simulations of bubbling fluidized beds with a horizontal tube bundle

    SciTech Connect

    Li, Tingwen; Dietiker, Jean-Francois; Zhang, Yongmin; Shahnam, Mehrdad

    2011-12-01

    In this paper, the flow hydrodynamics in a bubbling fluidized bed with submerged horizontal tube bundle was numerically investigated with an open-source code: Multiphase Flow with Interphase eXchange (MFIX). A newly implemented cut-cell technique was employed to deal with the curved surface of submerged tubes. A series of 2D simulations were conducted to study the effects of gas velocity and tube arrangement on the flow pattern. Hydrodynamic heterogeneities on voidage, particle velocity, bubble fraction, and frequency near the tube circumferential surface were successfully predicted by this numerical method, which agrees qualitatively with previous experimental findings and contributes to a sounder understanding of the non-uniform heat transfer and erosion around a horizontal tube. A 3D simulation was also conducted. Significant differences between 2D and 3D simulations were observed with respect to bed expansion, bubble distribution, voidage, and solids velocity profiles. Hence, the 3D simulation is needed for quantitative prediction of flow hydrodynamics. On the other hand, the flow characteristics and bubble behavior at the tube surface are similar under both 2D and 3D simulations as far as the bubble frequency and bubble phase fraction are concerned. Comparison with experimental data showed that qualitative agreement was obtained in both 2D and 3D simulations for the bubble characteristics at the tube surface.

  11. The good, the bad and the bubbly. Micro bubble behavior under ultrasound.

    E-print Network

    Greenaway, Alan

    The good, the bad and the bubbly. Micro bubble behavior under ultrasound. Michael Conneely Division of Physics The good, the bad and the bubbly. Micro bubble behavior under ultrasound. PaLS Open Day 2013 #12 and diagnostic clinical modalities; namely targeted drug delivery and molecular imaging. The good, the bad

  12. Single-bubble sonoluminescence in microgravity

    PubMed

    Matula

    2000-03-01

    Single-bubble sonoluminescence refers to the emission of light from an acoustically trapped bubble undergoing highly nonlinear, presumably radial oscillations. The intensity of the emitted light depends strongly on the forcing pressure, and is limited by the development of instabilities that ultimately results in the extinction of the bubble. In this article, we discuss a possible contributing factor for the generation of instabilities; specifically, we examine the effect of the gravitational force on a sonoluminescence bubble. PMID:10829726

  13. Heat emission of gas bubbles in a rotating bubbling layer

    SciTech Connect

    Borisov, I.I.; Khalatov, A.A.; Ikonnikova, E.E.

    1995-08-01

    Based on an experimental study of contact heat transfer between a liquid and a gas in an eddy-generating bubbler and on results processed using the equation of nonstationary heat conduction, we obtained a dimensionless relation for calculating the coefficient that characterizes heat transfer in a gas bubble within the framework of a model based on effective coefficients of heat conduction.

  14. PHYSICAL MODELING OF THE FLOW FIELD AROUND TWIN HIGH-RISE BUILDINGS

    EPA Science Inventory

    A wind tunnel study was conducted to investigate the flow characteristics near three configurations of high-rise buildings - an isolated high-rise building, two high-rise buildings separated in the streamwise direction, and two high-rise buildings separated in the streamwise dire...

  15. The production of drops by the bursting of a bubble at an air liquid interface

    NASA Technical Reports Server (NTRS)

    Darrozes, J. S.; Ligneul, P.

    1982-01-01

    The fundamental mechanism arising during the bursting of a bubble at an air-liquid interface is described. A single bubble was followed from an arbitrary depth in the liquid, up to the creation and motion of the film and jet drops. Several phenomena were involved and their relative order of magnitude was compared in order to point out the dimensionless parameters which govern each step of the motion. High-speed cinematography is employed. The characteristic bubble radius which separates the creation of jet drops from cap bursting without jet drops is expressed mathematically. The corresponding numerical value for water is 3 mm and agrees with experimental observations.

  16. Microfluidic Actuation Using Electrochemically Generated Bubbles

    E-print Network

    Sachs, Frederick

    , a technology commonly referred to as "lab-on-a-chip".1-5 Applications range from combi- natorial and analytical with advances in microfabrication, for example, "soft" lithography.11-14 Bubble-based actuators are of interest-19 While electrochemical bubbles require low power in the microwatt range, and the bubble inflation rates

  17. Frictional drag reduction by bubble injection

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi

    2014-07-01

    The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

  18. Ground potential rise monitor

    DOEpatents

    Allen, Zachery Warren; Zevenbergen, Gary Allen

    2012-07-17

    A device and method for detecting ground potential rise (GPR) comprising a first electrode, a second electrode, and a voltage attenuator. The first electrode and the second electrode are both electrically connected to the voltage attenuator. A means for determining the presence of a dangerous ground potential is connected to the voltage attenuator. The device and method further comprises a means for enabling one or more alarms upon the detection of the dangerous ground potential. Preferably, a first transmitter/receiver is connected to the means for enabling one or more alarms. Preferably, a second transmitter/receiver, comprising a button, is electromagnetically connected to the first transmitter/receiver. Preferably, the means for determining the presence of a dangerous ground potential comprises a means for determining the true RMS voltage at the output of the voltage attenuator, a transient detector connected to the output of the voltage attenuator, or a combination thereof.

  19. Ground potential rise monitor

    DOEpatents

    Allen, Zachery W. (Mandan, ND); Zevenbergen, Gary A. (Arvada, CO)

    2012-04-03

    A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

  20. Direct numerical simulation of single gas bubbles in pure and contaminated liquids

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Peter; Ehrhard, Peter

    2008-11-01

    Disperse gas bubbles play an important role in many industrial applications. Knowing the rising velocity, the interfacial area, or the critical size for break-up or coalescence in different systems can be crucial for the process design. Hence, knowing the fundamental behaviour of a single bubble appears mandatory for the examination of bubble swarms and for the Euler-Lagrange or Euler--Euler modelling of disperse systems. In the present work a level--set--based volume--tracking method is implemented into the CFD--code OpenFOAM to follow the free interface of a single bubble. The volume-tracking method is coupled with a transport model for surfactants on the interface, including adsorption and desorption processes. The dependency of surface tension on the local surfactant concentration on the interface is modelled by a non-linear (Langmuir) equation of state. Marangoni forces, resulting from surface tension gradients, are included. The rise of a single air bubble (i) in pure water and (ii) in the presence of surfactants of different strengths is simulated. The results show good agreement with available (experimental and theoretical) correlations from literature.

  1. Solitonic bubbles and phase transitions

    SciTech Connect

    Masperi, L. , 8400 San Carlos de Bariloche, Rio Negro, )

    1990-05-15

    It is shown that the nontopological bubble-shaped classical solutions which are possible in a scalar field theory with quartic and sextic self-interactions in 1+1 dimensions are responsible for the discontinuous transition in the quantum problem between a phase with a degenerate excited level and a disordered one.

  2. Electrolysis Bubbles Make Waterflow Visible

    NASA Technical Reports Server (NTRS)

    Schultz, Donald F.

    1990-01-01

    Technique for visualization of three-dimensional flow uses tiny tracer bubbles of hydrogen and oxygen made by electrolysis of water. Strobe-light photography used to capture flow patterns, yielding permanent record that is measured to obtain velocities of particles. Used to measure simulated mixing turbulence in proposed gas-turbine combustor and also used in other water-table flow tests.

  3. Impurity bubbles in a BEC

    NASA Astrophysics Data System (ADS)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  4. Pulling bubbles from a bath

    E-print Network

    Kao, Justin C. T.

    Deposition of bubbles on a wall withdrawn from a liquid bath is a phenomenon observed in many everyday situations—the foam lacing left behind in an emptied glass of beer, for instance. It is also of importance to the many ...

  5. The Coming Law School Bubble

    ERIC Educational Resources Information Center

    Krauss, Michael I.

    2011-01-01

    In this article, the author explains how forty years of politicized hiring in the law schools has left its destructive mark. The results are potentially catastrophic: Market forces and internal law school policies may be combining to produce a legal education bubble the likes of which the country has never seen. (Contains 11 footnotes.)

  6. Neutron Detection via Bubble Chambers

    SciTech Connect

    Jordan, David V.; Ely, James H.; Peurrung, Anthony J.; Bond, Leonard J.; Collar, J. I.; Flake, Matthew; Knopf, Michael A.; Pitts, W. K.; Shaver, Mark W.; Sonnenschein, Andrew; Smart, John E.; Todd, Lindsay C.

    2005-10-06

    The results of a Pacific Northwest National Laboratory (PNNL) exploratory research project investigating the feasibility of fast neutron detection using a suitably prepared and operated, pressure-cycled bubble chamber are described. The research was conducted along two parallel paths. Experiments with a slow pressure-release Halon chamber at the Enrico Fermi Institute at the University of Chicago showed clear bubble nucleation sensitivity to an AmBe neutron source and insensitivity to the 662 keV gammas from a 137Cs source. Bubble formation was documented via high-speed (1000 frames/sec) photography, and the acoustic signature of bubble formation was detected using a piezo-electric transducer element mounted on the base of the chamber. The chamber’s neutron sensitivity as a function of working fluid temperature was mapped out. The second research path consisted of the design, fabrication, and testing of a fast pressure-release Freon-134a chamber at PNNL. The project concluded with successful demonstrations of the PNNL chamber’s AmBe neutron source sensitivity and 137Cs gamma insensitivity. The source response tests of the PNNL chamber were documented with high-speed photography.

  7. Large Volcanic Rises on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.

    1997-01-01

    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of the thermal lithospheric thickness is that they provide an explanation for the apparently modest levels of geologic activity on Venus over the last half billion years.

  8. Tiny Bubbles in my BEC

    SciTech Connect

    Blinova, Alina A.

    2012-08-01

    Ultracold atomic gases provide a unique way for exploring many-body quantum phenomena that are inaccessible to conventional low-temperature experiments. Nearly two decades ago the Bose-Einstein condensate (BEC) - an ultracold gas of bosons in which almost all bosons occupy the same single-particle state - became experimentally feasible. Because a BEC exhibits superfluid properties, it can provide insights into the behavior of low-temperature helium liquids. We describe the case of a single distinguishable atom (an impurity) embedded in a BEC and strongly coupled to the BEC bosons. Depending on the strength of impurity-boson and boson-boson interactions, the impurity self-localizes into two fundamentally distinct regimes. The impurity atom can behave as a tightly localized 'polaron,' akin to an electron in a dielectric crystal, or as a 'bubble,' an analog to an electron bubble in superfluid helium. We obtain the ground state wavefunctions of the impurity and BEC by numerically solving the two coupled Gross-Pitaevskii equations that characterize the system. We employ the methods of imaginary time propagation and conjugate gradient descent. By appropriately varying the impurity-boson and boson-boson interaction strengths, we focus on the polaron to bubble crossover. Our results confirm analytical predictions for the polaron limit and uncover properties of the bubble regime. With these results we characterize the polaron to bubble crossover. We also summarize our findings in a phase diagram of the BEC-impurity system, which can be used as a guide in future experiments.

  9. Bubble Universe Dynamics After Free Passage

    E-print Network

    Pontus Ahlqvist; Kate Eckerle; Brian Greene

    2014-12-26

    We consider bubble collisions in single scalar field theories with multiple vacua. Recent work has argued that at sufficiently high impact velocities, collisions between such bubble vacua are governed by 'free passage' dynamics in which field interactions can be ignored during the collision, providing a systematic process for populating local minima without quantum nucleation. We focus on the time period that follows the bubble collision and provide evidence that, for certain potentials, interactions can drive significant deviations from the free-passage bubble profile, thwarting the production of bubbles with different field values.

  10. Numerical simulation of dielectric bubbles coalescence under the effects of uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Hadidi, Amin; Jalali-Vahid, Davood

    2015-11-01

    In this research, the co-axial coalescence of a pair of gas bubbles rising in a viscous liquid column under the effects of an external uniform magnetic field is simulated numerically. Considered fluids are dielectric, and applied magnetic field is uniform. Effects of different strengths of magnetic field on the interaction of in-line rising bubbles and coalescence between them were investigated. For numerical modeling of the problem, a computer code was developed to solve the governing equations which are continuity, Navier-Stokes equation, magnetic field equation and level set and reinitialization of level set equations. The finite volume method is used for the discretization of the continuity and momentum equations using SIMPLE scheme where the finite difference method is used to discretization of the magnetic field equations. Also a level set method is used to capture the interface of two phases. The results are compared with available numerical and experimental results in the case of no-magnetic field effect which show a good agreement. It is found that uniform magnetic field accelerates the coalescence of the bubbles in dielectric fluids and enhances the rise velocity of the coalesced bubble.

  11. The role of bubble ascent in magma mixing

    NASA Astrophysics Data System (ADS)

    Wiesmaier, Sebastian; Morgavi, Daniele; Perugini, Diego; De Campos, Cristina; Hess, Kai-Uwe; Lavallée, Yan; Dingwell, Donald B.

    2013-04-01

    Understanding the processes that affect the rate of liquid state homogenization provides fundamental clues on the otherwise inaccessible subsurface dynamics of magmatic plumbing systems. Compositional heterogeneities detected in the matrix of magmatic rocks represent the arrested state of a chemical equilibration. Magmatic homogenization is divided into a) the mechanical interaction of magma batches (mingling) and b) the diffusive equilibration of compositional gradients, where diffusive equilibration is exponentially enhanced by progressive mechanical interaction [1]. The mechanical interaction between two distinct batches of magma has commonly been attributed to shear and folding movements between two distinct liquids. A mode of mechanical interaction scarcely invoked is the advection of mafic material into a felsic one through bubble motion. Yet, experiments with analogue materials demonstrated that bubble ascent has the potential to enhance the fluid mechanical component of magma mixing [2]. Here, we present preliminary results from bubble-advection experiments. For the first time, experiments of this kind were performed using natural materials at magmatic temperatures. Cylinders of Snake River Plain (SRP) basalt were drilled with a cavity of defined volume and placed underneath cylinders of SRP rhyolite. Upon melting, the gas pocket (=bubble) trapped within the cavity, rose into the rhyolite, and thus entraining a portion of basaltic material in the shape of a plume trail. These plume-like structures that the advected basalt formed within the rhyolite were characterized by microCT and subsequent high-resolution EMP analyses. Single protruding filaments at its bottom end show a composite structure of many smaller plume tails, which may indicate the opening of a preferential pathway for bubbles after a first bubble has passed. The diffusional gradient around the plume tail showed a progressive evolution of equilibration from bottom to top of the plume tail. Calculating the normalised variance provides an efficient statistical measure of the diffusion rate of cations at the interface of ambient rhyolite and basaltic plume tail. Bubble ascent provides an efficient mechanism for advection of contrasting melt compositions, independent from Rayleigh-Taylor instabilities [cf. 2], or convection induced by overpressure of rising magma. Interaction of volatile-bearing magmas may thus be enhanced at saturation of one or two end-members by buoyant forces exerted from free fluid phases. Future strategies involve to hone down tolerances in the experimental setup to minimise extraneous bubbles, achieve fluid dynamical constraints on the ascent of bubbles in basalt. [1] De Campos, C., D. Perugini, W. Ertel-Ingrisch, D. Dingwell, and G. Poli (2011), Enhancement of magma mixing efficiency by chaotic dynamics: an experimental study, Contrib. Mineral. Petrol. , 161(6), 863-881. [2] Thomas, N., S. Tait, and T. Koyaguchi (1993), Mixing of stratified liquids by the motion of gas bubbles: application to magma mixing, Earth Planet. Sci. Lett. , 115(1-4), 161-175.

  12. Acoustic wave equation in a bubbly liquid

    NASA Astrophysics Data System (ADS)

    Miao, Boya; An, Yu

    2015-10-01

    In certain cases, a bubbly liquid may be treated as a two-phase fluid mixture, in which acoustic waves can be described by a linear wave equation using the speed of sound in the two-phase fluid mixture. However, when there is appreciable acoustically driven bubble oscillation, treatment of the two-phase fluid mixture becomes inaccurate. A more accurate description of acoustic waves in bubbly liquids should combine the nonlinear wave equation with an equation describing the dynamics of bubble oscillation. As an example, we investigate the case of an ultrasonic wave in water passing through a bubbly liquid layer. For intense ultrasonic waves or bubbly liquids with high number density of bubble, significant differences are found between the results obtained with the different methods.

  13. Generation of Bubbly Suspensions in Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hoffmann, Monica I.; Hussey, Sam; Bell, Kimberly R.

    2000-01-01

    Generation of a uniform monodisperse bubbly suspension in low gravity is a rather difficult task because bubbles do not detach as easily as on Earth. Under microgravity, the buoyancy force is not present to detach the bubbles as they are formed from the nozzles. One way to detach the bubbles is to establish a detaching force that helps their detachment from the orifice. The drag force, established by flowing a liquid in a cross or co-flow configuration with respect to the nozzle direction, provides this additional force and helps detach the bubbles as they are being formed. This paper is concerned with studying the generation of a bubbly suspension in low gravity in support of a flight definition experiment titled "Behavior of Rapidly Sheared Bubbly Suspension." Generation of a bubbly suspension, composed of 2 and 3 mm diameter bubbles with a standard deviation <10% of the bubble diameter, was identified as one of the most important engineering/science issues associated with the flight definition experiment. This paper summarizes the low gravity experiments that were conducted to explore various ways of making the suspension. Two approaches were investigated. The first was to generate the suspension via a chemical reaction between the continuous and dispersed phases using effervescent material, whereas the second considered the direct injection of air into the continuous phase. The results showed that the reaction method did not produce the desired bubble size distribution compared to the direct injection of bubbles. However, direct injection of air into the continuous phase (aqueous salt solution) resulted in uniform bubble-diameter distribution with acceptable bubble-diameter standard deviation.

  14. Sensitivity study of Bubble diameter for prediction of flow pattern in homogeneous bubble column regime

    NASA Astrophysics Data System (ADS)

    Pourtousi, M.; Ganesan, P.; Sahu, J. N.; Redzwan, Ghufran

    2015-09-01

    Determining the bubble diameter size in a bubble column rector plays an important role to accurately predict flow pattern in a bubble column reactor. This paper employs the Eulerian-Eulerian method to numerically investigate the sensitivity study of bubble diameter size in a cylindrical bubble column reactor. Existing experimental results in the literature are used to validate the implementation of the proposed numerical method. In our simulation various bubble diameter size (i.e., 35.5mm) are used to find an appropriate bubble size inside the bubble column when the regime is homogeneous (superficial gas velocity = 0.005m/s). The result shows that bubble diameter 4mm is a reasonable size for flow pattern prediction inside the column.

  15. A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler

    PubMed Central

    Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew

    2015-01-01

    In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178

  16. Dynamic response of ducted bubbly flows to turbomachinery-induced perturbations

    SciTech Connect

    D`Auria, F.; D`Agostino, L.; Brennen, C.E.

    1996-09-01

    The present work investigates the dynamics of the three-dimensional, unsteady flow of a bubbly mixture in a cylindrical duct subject to a periodic pressure excitation at one end. One of the purposes is to investigate the bubbly or cavitating flow at inlet to or discharge from a pump whose blade motions would provide such excitation. The flow displays various regimes with radically different wave propagation characteristics. The dynamic effects due to the bubble response may radically alter the fluid behavior depending on the void fraction of the bubbly mixture, the mean bubble size, the pipe diameter, the angular speed of the turbomachine and the mean flow Mach number. This simple linearized analysis illustrates the importance of the complex interactions of the dynamics of the bubbles with the average flow, and provides information on the propagation and growth of the turbopump-induced disturbances in the feed lines operating with bubbly or cavitating liquids. Examples are presented to illustrate the influence of the relevant flow parameters. Finally, the limitations of the theory are outlined.

  17. THEMIS observations of plasma bubbles associated with energetic electron acceleration in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Tang, C. L.

    2014-12-01

    Using Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations, we study the plasma bubbles associated with a transient increase of the magnetic field Bz component in the inner magnetosphere during the substorm expansion phase. Except small electric field, the main characteristics of these plasma bubbles are similar with those associated with dipolarization front (DF) in the mid-tail and near-Earth tail. Based on the different dipolarization of the magnetic field, we defined the plasma bubble with no dipolarization phenomenon as "no dipolarization bubble" (NDB), the plasma bubble with dipolarization phenomenon as "dipolarization bubble" (DB). We find that these plasma bubbles in the inner magnetosphere accompany the energetic electron acceleration. Some pancake-type distributions of energetic electrons inside the NDB in the inner magnetosphere are caused by drift betatron acceleration, other pancake-type distributions of energetic electrons inside the NDB are caused by gyrobetatron acceleration. For the DB in the inner magnetosphere, the cigar-type distributions of energetic electrons are attributed to Fermi acceleration. Our observations suggest that the inner magnetosphere may be a very important source region for energetic electrons, except for a reconnection site in the mid-tail and the plasma sheet in the near-Earth tail.

  18. Development of an underwater laser imaging system for micro-bubbles

    NASA Astrophysics Data System (ADS)

    Wang, Yunying; Lv, Shuai; Wang, Hailu; Li, Guijuan; Guo, Yuanyuan

    2015-10-01

    Bubbles in the sea are important to the research of geography, chemical engineering, biology etc. This paper presented an underwater laser imaging system for micro-bubbles, including the design, construction and performance. The system using a series 532-nm laser for lighting, and transform a piece-source. The piece-source illumination and image an area of bubbles by a high resolution CCD. It is impossible to achievement imaging the bubbles with diameters from 10µm to 500µm at the same time, we use three different focus apertures to adapt the requirements of resolution and receiver field of view. We can change the adaptive aperture for bubbles with different diameters. The imaging capability of the system is tested in the laboratory. The solid targets of specified size have been imaged in the sink, and obtained the clear images of the target with 500µm and 10µm for three magnifications. In order to verify the reliability of the system, experiments were carried out in the marine to obtain the bubble distribution in the offshore area. The results of bubbles distribution characteristics showed that the distribution is basically according with index law.

  19. Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids.

    PubMed

    Shahalami, Mansoureh; Wang, Louxiang; Wu, Chu; Masliyah, Jacob H; Xu, Zhenghe; Chan, Derek Y C

    2015-03-01

    The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble-solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 ?m or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble-solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes-Reynolds-Young-Laplace model. The potential to use the design principles of the ITFDA for fundamental and developmental research is demonstrated. PMID:25595420

  20. Free falling and rising of spherical and angular particles

    SciTech Connect

    Rahmani, M. Wachs, A.

    2014-08-15

    Direct numerical simulations of freely falling and rising particles in an infinitely long domain, with periodic lateral boundary conditions, are performed. The focus is on characterizing the free motion of cubical and tetrahedral particles for different Reynolds numbers, as an extension to the well-studied behaviour of freely falling and rising spherical bodies. The vortical structure of the wake, dynamics of particle movement, and the interaction of the particle with its wake are studied. The results reveal mechanisms of path instabilities for angular particles, which are different from those for spherical ones. The rotation of the particle plays a more significant role in the transition to chaos for angular particles. Following a framework similar to that of Mougin and Magnaudet [“Wake-induced forces and torques on a zigzagging/spiralling bubble,” J. Fluid Mech. 567, 185–194 (2006)], the balance of forces and torques acting on particles is discussed to gain more insight into the path instabilities of angular particles.

  1. Studies on the Spring Rise Phenomenon in Ovine Helminthiasis

    PubMed Central

    Procter, B. G.; Gibbs, H. C.

    1968-01-01

    Serial ova count studies were conducted to determine some of the characteristics of the spring rise in faecal shedding of nematode ova by parasitized sheep in flocks in the Montreal area. It was discovered that substantial spring rises occurred in most ewes following their lambing but that great variation existed in the magnitude, duration, and pattern of the rises. Although rams did not display increased ova counts, a slight but well-defined rise developed in one unbred ewe. Larval studies in ewes parasitized by a variety of nematode species, revealed that Haemonchus contortus was the major contributor to the spring rise in faecal ova output. Preparturient treatment of ewes with thiabendazole1, at the rate of 100 mg./kg. of body weight, suppressed spring rise but failed to arrest completely the faecal shedding of nematode ova. PMID:15846886

  2. Slopes To Prevent Trapping of Bubbles in Microfluidic Channels

    NASA Technical Reports Server (NTRS)

    Greer, Harold E.; Lee, Michael C.; Smith, J. Anthony; Willis, Peter A.

    2010-01-01

    The idea of designing a microfluidic channel to slope upward along the direction of flow of the liquid in the channel has been conceived to help prevent trapping of gas bubbles in the channel. In the original application that gave rise to this idea, the microfluidic channels are parts of micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. It is necessary to prevent trapping of gas bubbles in these devices because uninterrupted liquid pathways are essential for sustaining the electrical conduction and flows that are essential for CE. The idea is also applicable to microfluidic devices that may be developed for similar terrestrial microCE biotechnological applications or other terrestrial applications in which trapping of bubbles in microfluidic channels cannot be tolerated. A typical microCE device in the original application includes, among other things, multiple layers of borosilicate float glass wafers. Microfluidic channels are formed in the wafers, typically by use of wet chemical etching. The figure presents a simplified cross section of part of such a device in which the CE channel is formed in the lowermost wafer (denoted the channel wafer) and, according to the present innovation, slopes upward into a via hole in another wafer (denoted the manifold wafer) lying immediately above the channel wafer. Another feature of the present innovation is that the via hole in the manifold wafer is made to taper to a wider opening at the top to further reduce the tendency to trap bubbles. At the time of reporting the information for this article, an effort to identify an optimum technique for forming the slope and the taper was in progress. Of the techniques considered thus far, the one considered to be most promising is precision milling by use of femtosecond laser pulses. Other similar techniques that may work equally well are precision milling using a focused ion beam, or a small diamond-tipped drill bit.

  3. Sonoporation from Jetting Cavitation Bubbles

    PubMed Central

    Ohl, Claus-Dieter; Arora, Manish; Ikink, Roy; de Jong, Nico; Versluis, Michel; Delius, Michael; Lohse, Detlef

    2006-01-01

    The fluid dynamic interaction of cavitation bubbles with adherent cells on a substrate is experimentally investigated. We find that the nonspherical collapse of bubbles near to the boundary is responsible for cell detachment. High-speed photography reveals that a wall bounded flow leads to the detachment of cells. Cells at the edge of the circular area of detachment are found to be permanently porated, whereas cells at some distance from the detachment area undergo viable cell membrane poration (sonoporation). The wall flow field leading to cell detachment is modeled with a self-similar solution for a wall jet, together with a kinetic ansatz of adhesive bond rupture. The self-similar solution for the ?-type wall jet compares very well with the full solution of the Navier-Stokes equation for a jet of finite thickness. Apart from annular sites of sonoporation we also find more homogenous patterns of molecule delivery with no cell detachment. PMID:16950843

  4. Etiology of gas bubble disease

    SciTech Connect

    Bouck, G.R.

    1980-11-01

    Gas bubble disease is a noninfectious, physically induced process caused by uncompensated hyperbaric pressure of total dissolved gases. When pressure compensation is inadequate, dissolved gases may form emboli (in blood) and emphysema (in tissues). The resulting abnormal physical presence of gases can block blood vessels (hemostasis) or tear tissues, and may result in death. Population mortality is generally skewed, in that the median time to death occurs well before the average time to death. Judged from mortality curves, three stages occur in gas bubble disease: (1) a period of gas pressure equilibrium, nonlethal cavitation, and increasing morbidity; (2) a period of rapid and heavy mortality; and (3) a period of protracted survival, despite lesions, and dysfunction that eventually terminates in total mortality. Safe limits for gas supersaturation depend on species tolerance and on factors that differ among hatcheries and rivers, between continuous and intermittent exposures, and across ranges of temperature and salinity.

  5. Unsteady thermocapillary migration of bubbles

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Balasubramaniam, R.

    1988-01-01

    Upon the introduction of a gas bubble into a liquid possessing a uniform thermal gradient, an unsteady thermo-capillary flow begins. Ultimately, the bubble attains a constant velocity. This theoretical analysis focuses upon the transient period for a bubble in a microgravity environment and is restricted to situations wherein the flow is sufficiently slow such that inertial terms in the Navier-Stokes equation and convective terms in the energy equation may be safely neglected (i.e., both Reynolds and Marangoni numbers are small). The resulting linear equations were solved analytically in the Laplace domain with the Prandtl number of the liquid as a parameter; inversion was accomplished numerically using a standard IMSL routine. In the asymptotic long-time limit, the theory agrees with the steady-state theory of Young, Goldstein, and Block. The theory predicts that more than 90 percent of the terminal steady velocity is achieved when the smallest dimensionless time, i.e., the one based upon the largest time scale-viscous or thermal-equals unity.

  6. Pulsed electrical discharge in gas bubbles in water

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia

    A phenomenological picture of pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying one microsecond long 5 to 20 kilovolt pulses between the needle and disk electrodes submerged in water. A gas bubble is generated at the tip of the needle electrode. The study includes detailed experimental investigation of the discharge in argon bubbles and a brief look at the discharge in oxygen bubbles. Imaging, electrical characteristics, and time-resolved optical emission data point to a fast streamer propagation mechanism and formation of a plasma channel in the bubble. Spectroscopic methods based on line intensity ratios and Boltzmann plots of line intensities of argon, atomic hydrogen, and argon ions and the examination of molecular emission bands from molecular nitrogen and hydroxyl radicals provide evidence of both fast beam-like electrons and slow thermalized ones with temperatures of 0.6 -- 0.8 electron-volts. The collisional nature of plasma at atmospheric pressure affects the decay rates of optical emission. Spectroscopic study of rotational-vibrational bands of hydroxyl radical and molecular nitrogen gives vibrational and rotational excitation temperatures of the discharge of about 0.9 and 0.1 electron-volt, respectively. Imaging and electrical evidence show that discharge charge is deposited on the bubble wall and water serves as a dielectric barrier for the field strength and time scales of this experiment. Comparing the electrical and imaging information for consecutive pulses applied at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from long-lived chemical species, such as ozone and oxygen. Intermediate values for the discharge gap and pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique compared to the traditional corona or dielectric barrier discharges. These conditions make the experimental evidence presented in this work valuable for the advancement of modeling and the theoretical understanding of the discharge in bubbles in water.

  7. Empirical concentration bounds for compressive holographic bubble imaging based on a Mie scattering model.

    PubMed

    Chen, Wensheng; Tian, Lei; Rehman, Shakil; Zhang, Zhengyun; Lee, Heow Pueh; Barbastathis, George

    2015-02-23

    We use compressive in-line holography to image air bubbles in water and investigate the effect of bubble concentration on reconstruction performance by simulation. Our forward model treats bubbles as finite spheres and uses Mie scattering to compute the scattered field in a physically rigorous manner. Although no simple analytical bounds on maximum concentration can be derived within the classical compressed sensing framework due to the complexity of the forward model, the receiver operating characteristic (ROC) curves in our simulation provide an empirical concentration bound for accurate bubble detection by compressive holography at different noise levels, resulting in a maximum tolerable concentration much higher than the traditional back-propagation method. PMID:25836508

  8. Numerical study on ring bubble dynamics in a narrow cylinder with a compliant coating

    NASA Astrophysics Data System (ADS)

    Farhangmehr, V.; Shervani-Tabar, M. T.; Parvizi, R.; Ohl, S. W.; Khoo, B. C.

    2015-04-01

    In this paper, the ring bubble contraction inside a narrow vertical rigid cylinder with a compliant coating filled with water is studied numerically. To simulate ring bubble dynamics numerically, in addition to computing the pressure and velocity fields of the surrounding fluid, an axisymmetric boundary integral equation approach is adopted alongside a finite difference method. The compliant boundary is modeled as a membrane with a spring foundation. During the ring bubble contraction and under the attraction of the cylinder wall due to the Bjerknes force, a horizontal ring jet is initiated and develops towards the cylinder wall. The numerical results represent the effects of the cylinder radius and two compliant coating characteristics, including its mass per unit area and the spring constant, on the ring bubble behavior. This investigation is motivated by the possibility of utilizing the ring jet in therapeutic cardiovascular applications.

  9. Manipulating bubbles with secondary Bjerknes forces

    E-print Network

    Lanoy, Maxime; Tourin, Arnaud; Leroy, Valentin

    2015-01-01

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in details this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scattering into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for non contact manipulation in microfluidic devices.

  10. Manipulating bubbles with secondary Bjerknes forces

    E-print Network

    Maxime Lanoy; Caroline Derec; Arnaud Tourin; Valentin Leroy

    2015-10-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in details this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scattering into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for non contact manipulation in microfluidic devices.

  11. Mechanism of bubble detachment from vibrating walls

    SciTech Connect

    Kim, Dongjun; Park, Jun Kwon Kang, Kwan Hyoung; Kang, In Seok

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  12. BUBBLE DYNAMICS AT GAS-EVOLVING ELECTRODES

    SciTech Connect

    Sides, Paul J.

    1980-12-01

    Nucleation of bubbles, their growth by diffusion of dissolved gas to the bubble surface and by coalescence, and their detachment from the electrode are all very fast phenomena; furthermore, electrolytically generated bubbles range in size from ten to a few hundred microns; therefore, magnification and high speed cinematography are required to observe bubbles and the phenomena of their growth on the electrode surface. Viewing the action from the front side (the surface on which the bubbles form) is complicated because the most important events occur close to the surface and are obscured by other bubbles passing between the camera and the electrode; therefore, oxygen was evolved on a transparent tin oxide "window" electrode and the events were viewed from the backside. The movies showed that coalescence of bubbles is very important for determining the size of bubbles and in the chain of transport processes; growth by diffusion and by coalescence proceeds in series and parallel; coalescing bubbles cause significant fluid motion close to the electrode; bubbles can leave and reattach; and bubbles evolve in a cycle of growth by diffusion and different modes of coalescence. An analytical solution for the primary potential and current distribution around a spherical bubble in contact with a plane electrode is presented. Zero at the contact point, the current density reaches only one percent of its undisturbed value at 30 percent of the radius from that point and goes through a shallow maximum two radii away. The solution obtained for spherical bubbles is shown to apply for the small bubbles of electrolytic processes. The incremental resistance in ohms caused by sparse arrays of bubbles is given by {Delta}R = 1.352 af/kS where f is the void fraction of gas in the bubble layer, a is the bubble layer thickness, k is the conductivity of gas free electrolyte, and S is the electrode area. A densely populated gas bubble layer on an electrode was modeled as a hexagonal array of dielectric spheres. Accurately machined lucite spheres were placed one at a time in one end of a hexagonal cell which simulated the unit cell of such an array. The resistance as a function of gas bubble layer packing density sharply increased as close packing was approached. Because the interaction of the fields around bubbles closely spaced in the direction perpendicular to the current dominates the added resistance, and because there is a tri-modal distribution of bubble sizes in a bubble layer, the Distribution Model of Meredith and Tobias (16), derived for three dimensional gas dispersions, approximately predicted the conductivity of a bubble layer at void fractions greater than 0.3. At moderate-to-high current densities, the bubble layer in a cell having an interelectrode gap of half a centimeter could increase the ohmic resistance by as much as 20 percent.

  13. Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system

    NASA Astrophysics Data System (ADS)

    Ma, Ming; Lu, Jiacai; Tryggvason, Gretar

    2015-09-01

    Direct numerical simulations of bubbly multiphase flows are used to find closure terms for a simple model of the average flow, using Neural Networks (NNs). The flow considered consists of several nearly spherical bubbles rising in a periodic domain where the initial vertical velocity and the average bubble density are homogeneous in two directions but non-uniform in one of the horizontal directions. After an initial transient motion the average void fraction and vertical velocity become approximately uniform. The NN is trained on a dataset from one simulation and then used to simulate the evolution of other initial conditions. Overall, the resulting model predicts the evolution of the various initial conditions reasonably well.

  14. Bubble chamber spectroscopy for chemical analysis: A new concept

    SciTech Connect

    Atencio, J.H.; Luo, Xin; McCreary, E.I.; McCown, A.W.; Sander, R.K.

    1995-02-01

    A new technique for the detection of trace concentrations of molecules in solution has been developed. This system utilizes the amplification characteristics of a bubble chamber in which energy deposition from laser absorption is monitored. In the experimental set-up, a trace quantity of solute is introduced into liquid propane that is contained in a small (10 ml) stainless steel cell at 120 psi. The propane is superheated by sudden reduction of the cell pressure. Before wall nucleated boiling occurs, target solute molecules are energized by a laser pulse. Absorption of pump laser energy results in the formation of nucleation centers which develop into bubbles and which in turn are detected by CCD camera. Preliminary experiments with crystal violet used as a test absorber have demonstrated detection sensitivity of 10 parts per trillion (ppt).

  15. Efficient manipulation of microparticles in bubble streaming flows

    PubMed Central

    Wang, Cheng; Jalikop, Shreyas V.; Hilgenfeldt, Sascha

    2012-01-01

    Oscillating microbubbles of radius 20–100??m driven by ultrasound initiate a steady streaming flow around the bubbles. In such flows, microparticles of even smaller sizes (radius 1–5??m) exhibit size-dependent behaviors: particles of different sizes follow different characteristic trajectories despite density-matching. Adjusting the relative strengths of the streaming flow and a superimposed Poiseuille flow allows for a simple tuning of particle behavior, separating the trajectories of particles with a size resolution on the order of 1??m. Selective trapping, accumulation, and release of particles can be achieved. We show here how to design bubble microfluidic devices that use these concepts to filter, enrich, and preconcentrate particles of selected sizes, either by concentrating them in discrete clusters (localized both stream- and spanwise) or by forcing them into narrow, continuous trajectory bundles of strong spanwise localization. PMID:22662069

  16. Basaltic scoria plates at Llaima volcano, Chile; preserved bubble walls from large strombolian bubble bursts

    NASA Astrophysics Data System (ADS)

    Ruth, D. C.; Calder, E. S.

    2012-12-01

    Textural characteristics of tephra provide constraints on both eruptive and degassing processes during explosive volcanic eruptions. Implicit in such studies is the understanding that information regarding the largest bubble populations is usually lost during the eruptive process. This is particularly the case for Strombolian type eruptions where large (>> 1m) gas slugs or coarse foam clots are ruptured during fragmentation and for, which the preserved tephra do not provide much information. The tephra deposit produced during the 2008-2009 violent Strombolian eruption of Llaima volcano, Chile, is characterized by scoria with bimodal densities: a low density, highly-vesicular brown scoria and a higher density, moderately-vesicular black scoria. The deposit also comprises ~ 10-15% vol of unusual basaltic plates. These plates are typically angular tabular pieces of vesicular lava, which apart from their shape, are similar to the dense scoria population in terms of mineralogy (35% plagioclase ± rare olivine). The plates range in size from 2-12 cm and have a relatively uniform thickness of 2-5 mm and are found as far as 9 km from the summit. Plate surface features include striations, pull-apart fractures, and scoriaceous material tacked to the surface. Often the plates are curved and sometimes folded and/or tacked together. Internal fabrics reveal strongly aligned plagioclase crystals and strained enclaves. The small (mostly < 2mm) vesicles do not show evidence of significant strain. Based on the uniformity of plate thickness, plagioclase alignment, and surface features, we propose that these tephra originate during the violent Strombolian phase of the eruption from discrete large bubble bursts and therefore represent remnant bubble films. The concomitant presence of the plates with the scoria at great distances from the vent suggests 1) bubble rupture occurred simultaneously or was followed closely by the fire fountaining that formed the majority of the deposit and 2) they were transported in the volcanic plume alongside the principal scoria and do not represent a separate population of ballistic clasts. Somewhat similar tephra have been observed, though not described in detail, in other deposits from violent Strombolian eruptions, namely the 'cinertic' activity at Paricutin volcano, Mexico and the great fissural eruption of Tolbachick volcano, Kamchatka. The presence of the plate tephra in other deposits suggests that the process by which they form may be important during violent strombolian eruptions in terms of fragmentation mechanisms and plume energetics. For preservation at distal locations from the vent, we infer these bubbles fragmented at significant heights (10-100's m) above the vent, implying especially large bubbles/slugs. Moreover, the plume must be energetic enough to entrain the plates to allow for transport. These distinctive clasts can therefore help to complete our understanding of violent Strombolian activity at basaltic andesite volcanoes.

  17. Sea Level Rise Media Release

    E-print Network

    Hu, Aixue

    Sea Level Rise Media Release Coverage Report 07/06/2009 Melting Ice Could Lead to Massive Waves Federal News Service 06/30/2009 Sea-Level Greatest Threat to Northeast U.S., Canada U.S. News & World 06/11/2009 Rising sea levels could see U.S. Atlantic coast cities make hard choices; Where to let

  18. Choices for a Rising Generation

    ERIC Educational Resources Information Center

    Obama, Barack

    2008-01-01

    This article presents an essay by the 2008 Democratic Party Presidential Nominee. This essay focuses on the role of the rising generation in bringing about real change in America. The author contends that, at this historic moment, Americans must ask their rising generation to serve their country as Americans always have--by working on a political…

  19. Preliminary study of the effects of a reversible chemical reaction on gas bubble dissolution. [for space glass refining

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.

    1982-01-01

    A preliminary investigation is carried out of the effects of a reversible chemical reaction on the dissolution of an isolated, stationary gas bubble in a glass melt. The exact governing equations for the model system are formulated and analyzed. The approximate quasi-steady-state version of these equations is solved analytically, and a calculation is made of bubble dissolution rates. The results are then compared with numerical solutions obtained from the finite difference form of the exact governing equations. It is pointed out that in the microgravity condition of space, the buoyant rise of a gas bubble in a glass melt will be negligible on the time scale of most experiments. For this reason, a determination of the behavior of a stationary gas bubble in a melt is relevant for an understanding of glass refining in space.

  20. Constraining bubbling of methane from thermokarst lakes

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-08-01

    In northern thermokarst lakes, which form in depressions left as permafrost thaws, methane, a greenhouse gas, can be released from lake sediments to the atmosphere through bubbling, or ebullition. Constraining the amount of methane released through bubbling would help scientists understand the role of thawing permafrost in the carbon cycle and global climate change. However, bubbling is highly variable in both space and time and thus difficult to measure accurately, so there are large uncertainties in estimates of methane emissions from northern ecosystems.

  1. Collapse of vacuum bubbles in a vacuum

    SciTech Connect

    Ng, Kin-Wang; Wang, Shang-Yung

    2011-02-15

    We revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications for the creation of a baby universe in the laboratory, the string landscape where the bubble nucleation takes place among a plenitude of metastable vacua, and the inflationary physics.

  2. DNA Bubble Life Time in Denaturation

    E-print Network

    Zh. S. Gevorkian; Chin-Kun Hu

    2010-10-11

    We have investigated the denaturation bubble life time for a homogeneous as well as for a heterogeneous DNA within a Poland-Scheraga model. It is shown that at criticality the bubble life time for a homogeneous DNA is finite provided that the loop entropic exponent c>2 and has a scaling dependence on DNA length for c<2. Heterogeneity in the thermodynamical limit makes the bubble life time infinite for any entropic exponent.

  3. An experimental study of bubble mediated gas exchange for a single bubble

    NASA Astrophysics Data System (ADS)

    Mori, Nobuhito; Imamura, Masahiro; Yamamoto, Ryosuke

    An experimental study of bubble mediated gas exchange for a single bubble was performed. Medium sized air bubbles were generated into a water column by a computer-controlled electromagnetic valve. Temporal variations of gas concentration were analyzed by a gas chromatography with a head space method. The total amount of gas exchange for a single bubble with several radii are compared with the experimental results and theory.

  4. Some problems of the theory of bubble growth and condensation in bubble chambers

    NASA Technical Reports Server (NTRS)

    Tkachev, L. G.

    1988-01-01

    This work is an attempt to explain the reasons for the discrepancies between the theoretical and experimental values of bubble growth rate in an overheated liquid, and to provide a brief formulation of the main premises of the theory on bubble growth in liquid before making a critical analysis. To simplify the problem, the floating upward of bubbles is not discussed; moreover, the study is based on the results of the theory of the behavior of fixed bubbles.

  5. Study of a Novel Method for the Thermolysis of Solutes in Aqueous Solution Using a Low Temperature Bubble Column Evaporator.

    PubMed

    Shahid, Muhammad; Xue, Xinkai; Fan, Chao; Ninham, Barry W; Pashley, Richard M

    2015-06-25

    An enhanced thermal decomposition of chemical compounds in aqueous solution has been achieved at reduced solution temperatures. The technique exploits hitherto unrecognized properties of a bubble column evaporator (BCE). It offers better heat transfer efficiency than conventional heat transfer equipment. This is obtained via a continuous flow of hot, dry air bubbles of optimal (1-3 mm) size. Optimal bubble size is maintained by using the bubble coalescence inhibition property of some salts. This novel method is illustrated by a study of thermal decomposition of ammonium bicarbonate (NH4HCO3) and potassium persulfate (K2S2O8) in aqueous solutions. The decomposition occurs at significantly lower temperatures than those needed in bulk solution. The process appears to work via the continuous production of hot (e.g., 150 °C) dry air bubbles, which do not heat the solution significantly but produce a transient hot surface layer around each rising bubble. This causes the thermal decomposition of the solute. The decomposition occurs due to the effective collision of the solute with the surface of the hot bubbles. The new process could, for example, be applied to the regeneration of the ammonium bicarbonate draw solution used in forward osmosis. PMID:26067442

  6. An experimental investigation of throughflow velocities in two-dimensional fluidized bed bubbles: Laser Doppler anemometer measurements

    SciTech Connect

    Gautam, M. . Dept. of Mechanical and Aerospace Engineering); Jurewicz, J.T. ); Kale, S.R. . Dept. of Mechanical Engineering)

    1994-09-01

    Detailed nonintrusive measurements have been made to determine the throughflow velocity in isolated fluidized bed bubbles. In air-fluidized beds, the throughflow component has been rather neglected and measurements of the visible bubbleflow alone have, therefore, failed to clarify the overall distribution of gas flow between the phases. A single component fiber optic laser Doppler anemometer was used to map the fluid flow through a bubble rising in a two-dimensional bed. The bed was fluidized at a superficial velocity slightly than incipient. The conditioned sampling technique developed to characterize the periodic nature of the bubble phase flow revealed that the throughflow velocity in two-dimensional beds increases linearly with increasing distance from the distributor, thereby enhancing the convective component in the interphase mass transfer process. Bubble growth was accounted for and the end-effects were minimized. Dependence of the bubble throughflow on the elongation of the bubble was observed thus confirming the theoretical analysis of some previous investigators. However, experimental evidence presented in this paper showed that the existing models fail to accurately predict the convective component in the bubble phase of two-dimensional fluidized beds.

  7. Multiple Spark-Generated Bubble Interactions

    NASA Astrophysics Data System (ADS)

    Khoo, Boo Cheong; Adikhari, Deepak; Fong, Siew Wan; Klaseboer, Evert

    The complex interactions of two and three spark-generated bubbles are studied using high speed photography. The corresponding simulations are performed using a 3D Boundary Element Method (BEM) code. The bubbles generated are between 3 to 5 mm in radius, and they are either in-phase or out-of-phase with one another. The possible interaction phenomena between two identically sized bubbles are summarized. Depending on their relative distances and phase differences, they can coalesce, jet towards or away from one another, split into smaller bubbles, or 'catapult' away from one another. The 'catapult' effect can be utilized to generated high speed jet in the absence of a solid boundary or shockwave. Also three bubble interactions are highlighted. Complicated phenomena such as bubble forming an elliptical shape and bubble splitting are observed. The BEM simulations provide insight into the physics of the phenomena by providing details such as detailed bubble shape changes (experimental observations are limited by the temporal and spatial resolution), and jet velocity. It is noted that the well-tested BEM code [1,2] utilized here is computationally very efficient as compared to other full-domain methods since only the bubble surface is meshed.

  8. Bubble departure radii at solidification interfaces

    NASA Technical Reports Server (NTRS)

    Cole, R.; Papazian, J. M.; Wilcox, W. R.

    1980-01-01

    A model has been developed for the prediction of bubble departure radii from flat solidification interfaces, including the effect of thermocapillary forces. Under normal gravity conditions, the necessary gas bubble radius required for departure from a CBr4 solidification interface is predicted to be approximately 1/2 mm in agreement with measured values. Under microgravity conditions, however, where surface forces predominate, the model predicts a seemingly prohibitive value of 40 mm. This result is at least in agreement with the microgravity tests conducted on the NASA SPAR I and SPAR III sounding rockets (1978) where the bubbles were not larger than 2 mm in radius and no bubble detachment was observed.

  9. Modeling bubble clusters in compressible liquids

    NASA Astrophysics Data System (ADS)

    Fuster, Daniel; Colonius, Tim

    2010-11-01

    We present a new model to simulate the behaviour of bubble clouds in compressible liquids. The method uses a volume-averaged approach and defines the pressure and void fraction relative to a computational cell. Inside the cell, a generalisation of the Keller-Miksis equation is derived in order to take into account the presence of (one or more) nearby spherical bubbles as well as liquid compressibility effect on the bubble interface motion. The method converges to previous models in two distinct limits. First, it reproduces the bubble radius evolution and pressure disturbances induced by a single bubble subjected to a given far field pressure, irrespective of the relative size of the bubble compared to the grid size. Second, it converges to continuum models based on Ensemble-averaged equations when there are many bubbles in a cell. The main advantage of the model is that it allows to access to the instantaneous pressure profiles in the liquid rather than the averaged behaviour. The local pressures generated and scattered by bubble dynamics is important for predicting the peak pressures that can be locally achieved in some points of the liquid when violent bubble collapses are encountered.

  10. Fluid mechanics of bubble capture by the diving bell spider

    E-print Network

    Brooks, Alice (Alice P.)

    2010-01-01

    The water spider, a unique member of its species, is used as inspiration for a bubble capture mechanism. Bubble mechanics are studied in the pursuit of a biomimetic solution for transporting air bubbles underwater. Careful ...

  11. Neural basis of economic bubble behavior.

    PubMed

    Ogawa, A; Onozaki, T; Mizuno, T; Asamizuya, T; Ueno, K; Cheng, K; Iriki, A

    2014-04-18

    Throughout human history, economic bubbles have formed and burst. As a bubble grows, microeconomic behavior ceases to be constrained by realistic predictions. This contradicts the basic assumption of economics that agents have rational expectations. To examine the neural basis of behavior during bubbles, we performed functional magnetic resonance imaging while participants traded shares in a virtual stock exchange with two non-bubble stocks and one bubble stock. The price was largely deflected from the fair price in one of the non-bubble stocks, but not in the other. Their fair prices were specified. The price of the bubble stock showed a large increase and battering, as based on a real stock-market bust. The imaging results revealed modulation of the brain circuits that regulate trade behavior under different market conditions. The premotor cortex was activated only under a market condition in which the price was largely deflected from the fair price specified. During the bubble, brain regions associated with the cognitive processing that supports order decisions were identified. The asset preference that might bias the decision was associated with the ventrolateral prefrontal cortex and the dorsolateral prefrontal cortex (DLPFC). The activity of the inferior parietal lobule (IPL) was correlated with the score of future time perspective, which would bias the estimation of future price. These regions were deemed to form a distinctive network during the bubble. A functional connectivity analysis showed that the connectivity between the DLPFC and the IPL was predominant compared with other connectivities only during the bubble. These findings indicate that uncertain and unstable market conditions changed brain modes in traders. These brain mechanisms might lead to a loss of control caused by wishful thinking, and to microeconomic bubbles that expand, on the macroscopic scale, toward bust. PMID:24468106

  12. The effect of wind-generated bubbles on sea-surface backscattering at 940 Hz.

    PubMed

    van Vossen, Robbert; Ainslie, Michael A

    2011-11-01

    Reliable predictions of sea-surface backscattering strength are required for sonar performance modeling. These are, however, difficult to obtain as measurements of sea-surface backscattering are not available at small grazing angles relevant to low-frequency active sonar (1-3 kHz). Accurate theoretical predictions of scattering strength require a good understanding of physical mechanisms giving rise to the scattering and the relative importance of these. In this paper, scattering from individual resonant bubbles is introduced as a potential mechanism and a scattering model is derived that incorporates the contribution from these together with that of rough surface scattering. The model results are fitted to Critical Sea Test (CST) measurements at a frequency of 940 Hz, treating the number of large bubbles, parameterized through the spectral slope of the size spectrum for bubbles whose radii exceed 1 mm, as a free parameter. This procedure illustrates that the CST data can be explained by scattering from a small number of large resonant bubbles, indicating that these provide an alternative mechanism to that of scattering from bubble clouds. PMID:22088015

  13. Study on the spatial distribution of the liquid temperature near a cavitation bubble wall.

    PubMed

    Shen, Yang; Yasui, Kyuichi; Sun, Zhicheng; Mei, Bin; You, Meiyan; Zhu, Tong

    2016-03-01

    A simple new model of the spatial distribution of the liquid temperature near a cavitation bubble wall (Tli) is employed to numerically calculate Tli. The result shows that Tli is almost same with the ambient liquid temperature (T0) during the bubble oscillations except at strong collapse. At strong collapse, Tli can increase to about 1510K, the same order of magnitude with that of the maximum temperature inside the bubble, which means that the chemical reactions occur not only in gas-phase inside the collapsing bubble but also in liquid-phase just outside the collapsing bubble. Four factors (ultrasonic vibration amplitude, ultrasonic frequency, the surface tension and the viscosity) are considered to study their effects for the thin liquid layer. The results show that for the thin layer, the thickness and the temperature increase as the ultrasonic vibration amplitude rise; conversely, the thickness and the temperature decrease with the increase of the ultrasonic frequency, the surface tension or the viscosity. PMID:26585020

  14. Bubbling in unbounded coflowing liquids.

    PubMed

    Gañán-Calvo, Alfonso M; Herrada, Miguel A; Garstecki, Piotr

    2006-03-31

    An investigation of the stability of low density and viscosity fluid jets and spouts in unbounded coflowing liquids is presented. A full parametrical analysis from low to high Weber and Reynolds numbers shows that the presence of any fluid of finite density and viscosity inside the hollow jet elicits a transition from an absolute to a convective instability at a finite value of the Weber number, for any value of the Reynolds number. Below that critical value of the Weber number, the absolute character of the instability leads to local breakup, and consequently to local bubbling. Experimental data support our model. PMID:16605912

  15. Dynamics of Vapour Bubbles in Nucleate Boiling. 2; Evolution of Thermally Controlled Bubbles

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

    1995-01-01

    The previously developed dynamic theory of growth and detachment of vapour bubbles under conditions of nucleate pool boiling is applied to study motion and deformation of a bubble evolving at a single nucleation site. The bubble growth is presumed to be thermally controlled, and two components of heat transfer to the bubble are accounted of: the one from the bulk of surrounding liquid and the one due to heat conduction across a liquid microlayer formed underneath the bubble. Bubble evolution is governed by the buoyancy and an effective surface tension force, both the forces making the bubble centre of mass move away from the wall and, thus, assisting its detachment. Buoyancy-controlled and surface-tension-controlled regimes are considered separately in a meticulous way. The duration of the whole process of bubble evolution till detachment, the rate of growth, and the bubble departure size are found as functions of time and physical and operating parameters. Some repeatedly observed phenomena, such as an influence of gravity on the growth rate, are explained. Inferences of the model agree qualitatively with available experimental evidence, and conclusions pertaining to the dependence on gravity of the bubble radius at detachment and the whole time of the bubble development when being attached to the wall are confirmed quantitatively.

  16. Rising Food Prices: Who's Responsible?

    ERIC Educational Resources Information Center

    Brown, Lester R.

    1973-01-01

    Rise in food prices can be partially attributed to the high food consumption level throughout Europe and North America, coupled with failure to evolve systems for more production of cattle, soybeans, and fisheries at lower cost. (PS)

  17. Surface Tension and Capillary Rise

    ERIC Educational Resources Information Center

    Walton, Alan J.

    1972-01-01

    Discussion of the shortcomings of textbook explanations of surface tension, distinguishing between concepts of tension and capillary rise. The arguments require only a clear understanding of Newtonian mechanics, notably potential energy. (DF)

  18. Snowball cooling after algal rise

    NASA Astrophysics Data System (ADS)

    Feulner, Georg; Hallmann, Christian; Kienert, Hendrik

    2015-09-01

    The Earth underwent two snowball glaciation events between 720 and 635 million years ago. The preceding expansion of eukaryotic algae and a consequent rise in emissions of organic cloud condensation nuclei may have contributed to the dramatic cooling.

  19. Moon Rise - Duration: 67 seconds.

    NASA Video Gallery

    Aboard the International Space Station in May 2012, Expedition 31 astronaut Don Pettit opened the shutters covering the cupola observation windows in time to watch the moon rise. The time-lapse sce...

  20. Effects of gas bubble production on heat transfer from a volumetrically heated liquid pool

    NASA Astrophysics Data System (ADS)

    Bull, Geoffrey R.

    Aqueous solutions of uranium salts may provide a new supply chain to fill potential shortfalls in the availability of the most common radiopharmaceuticals currently in use worldwide, including Tc99m which is a decay product of Mo99. The fissioning of the uranium in these solutions creates Mo99 but also generates large amounts of hydrogen and oxygen from the radiolysis of the water. When the dissolved gases reach a critical concentration, bubbles will form in the solution. Bubbles in the solution affect both the fission power and the heat transfer out of the solution. As a result, for safety and production calculations, the effects of the bubbles on heat transfer must be understood. A high aspect ratio tank was constructed to simulate a section of an annulus with heat exchangers on the inner and outer steel walls to provide cooling. Temperature measurements via thermocouples inside the tank and along the outside of the steel walls allowed the calculation of overall and local heat transfer coefficients. Different air injection manifolds allowed the exploration of various bubble characteristics and patterns on heat transfer from the pool. The manifold type did not appear to have significant impact on the bubble size distributions in water. However, air injected into solutions of magnesium sulfate resulted in smaller bubble sizes and larger void fractions than those in water at the same injection rates. One dimensional calculations provide heat transfer coefficient values as functions of the superficial gas velocity in the pool.

  1. Bubbles, Gating, and Anesthetics in Ion Channels

    PubMed Central

    Roth, Roland; Gillespie, Dirk; Nonner, Wolfgang; Eisenberg, Robert E.

    2008-01-01

    We suggest that bubbles are the bistable hydrophobic gates responsible for the on-off transitions of single channel currents. In this view, many types of channels gate by the same physical mechanism—dewetting by capillary evaporation—but different types of channels use different sensors to modulate hydrophobic properties of the channel wall and thereby trigger and control bubbles and gating. Spontaneous emptying of channels has been seen in many simulations. Because of the physics involved, such phase transitions are inherently sensitive, unstable threshold phenomena that are difficult to simulate reproducibly and thus convincingly. We present a thermodynamic analysis of a bubble gate using morphometric density functional theory of classical (not quantum) mechanics. Thermodynamic analysis of phase transitions is generally more reproducible and less sensitive to details than simulations. Anesthetic actions of inert gases—and their interactions with hydrostatic pressure (e.g., nitrogen narcosis)—can be easily understood by actions on bubbles. A general theory of gas anesthesia may involve bubbles in channels. Only experiments can show whether, or when, or which channels actually use bubbles as hydrophobic gates: direct observation of bubbles in channels is needed. Existing experiments show thin gas layers on hydrophobic surfaces in water and suggest that bubbles nearly exist in bulk water. PMID:18234836

  2. Videotaping the Lifespan of a Soap Bubble.

    ERIC Educational Resources Information Center

    Ramme, Goran

    1995-01-01

    Describes how the use of a videotape to record the history of a soap bubble allows a study of many interesting events in considerable detail including interference fringes, convection and turbulence patterns on the surface, formation of black film, and the ultimate explosion of the bubble. (JRH)

  3. The Minnaert Bubble: An Acoustic Approach

    ERIC Educational Resources Information Center

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude; Leroy, Valentin

    2008-01-01

    We propose an "ab initio" introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian…

  4. Gravity Wave Seeding of Equatorial Plasma Bubbles

    NASA Technical Reports Server (NTRS)

    Singh, Sardul; Johnson, F. S.; Power, R. A.

    1997-01-01

    Some examples from the Atmosphere Explorer E data showing plasma bubble development from wavy ion density structures in the bottomside F layer are described. The wavy structures mostly had east-west wavelengths of 150-800 km, in one example it was about 3000 km. The ionization troughs in the wavy structures later broke up into either a multiple-bubble patch or a single bubble, depending upon whether, in the precursor wavy structure, shorter wavelengths were superimposed on the larger scale wavelengths. In the multiple bubble patches, intrabubble spacings vaned from 55 km to 140 km. In a fully developed equatorial spread F case, east-west wavelengths from 690 km down to about 0.5 km were present simultaneously. The spacings between bubble patches or between bubbles in a patch appear to be determined by the wavelengths present in the precursor wave structure. In some cases, deeper bubbles developed on the western edge of a bubble patch, suggesting an east-west asymmetry. Simultaneous horizontal neutral wind measurements showed wavelike perturbations that were closely associated with perturbations in the plasma horizontal drift velocity. We argue that the wave structures observed here that served as the initial seed ion density perturbations were caused by gravity waves, strengthening the view that gravity waves seed equatorial spread F irregularities.

  5. The Physics of Foams, Droplets and Bubbles

    ERIC Educational Resources Information Center

    Sarker, Dipak K.

    2013-01-01

    Foams or bubble dispersions are common to milkshakes, bread, champagne froth, shaving mousse, shampoo, crude oil extraction systems, upholstery packing and bubble wrap, whereas the term droplet is often synonymous with either a small drop of water or a drop of oil--a type of coarse dispersion. The latter are seen in butter and milk, household…

  6. Measuring the surface tension of soap bubbles

    NASA Technical Reports Server (NTRS)

    Sorensen, Carl D.

    1992-01-01

    The objectives are for students to gain an understanding of surface tension, to see that pressure inside a small bubble is larger than that inside a large bubble. These concepts can be used to explain the behavior of liquid foams as well as precipitate coarsening and grain growth. Equipment, supplies, and procedures are explained.

  7. Simple improvements to classical bubble nucleation models

    NASA Astrophysics Data System (ADS)

    Tanaka, Kyoko K.; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ?0.3 ? independently of the temperature for argon bubble nucleation, where ? is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  8. Bubble Boy Disease History of SCID

    E-print Network

    Brutlag, Doug

    Bubble Boy Disease Oz Hasbún #12;History of SCID v It was between the years of 1968 and 1973 Disease became widely known during the 1970s and 1980s, and was dubbed the "Bubble Boy Disease" because of the widely-publicized case of David Veter, a boy with X-linked SCID, who lived for 12 years in a plastc, germ

  9. Structure of nanoscale gas bubbles in metals

    SciTech Connect

    Caro, A. Schwen, D.; Martinez, E.

    2013-11-18

    A usual way to estimate the amount of gas in a bubble inside a metal is to assume thermodynamic equilibrium, i.e., the gas pressure P equals the capillarity force 2?/R, with ? the surface energy of the host material and R the bubble radius; under this condition there is no driving force for vacancies to be emitted or absorbed by the bubble. In contrast to the common assumption that pressure inside a gas or fluid bubble is constant, we show that at the nanoscale this picture is no longer valid. P and density can no longer be defined as global quantities determined by an equation of state (EOS), but they become functions of position because the bubble develops a core-shell structure. We focus on He in Fe and solve the problem using both continuum mechanics and empirical potentials to find a quantitative measure of this effect. We point to the need of redefining an EOS for nanoscale gas bubbles in metals, which can be obtained via an average pressure inside the bubble. The resulting EOS, which is now size dependent, gives pressures that differ by a factor of two or more from the original EOS for bubble diameters of 1?nm and below.

  10. Controlled transport of captive bubbles on plastrons.

    PubMed

    Huynh, So Hung; Lau, Chun Yat; Cheong, Brandon Huey-Ping; Muradoglu, Murat; Liew, Oi Wah; Ng, Tuck Wah

    2015-10-14

    Captive bubbles that reside on superhydrophobic surfaces with plastrons move uncontrollably when tilted. A system based on creating moveable local apexes on flexible superhydrophobic foils is shown to allow controlled transport. Simulations done reveal that specific bubble transport speeds are needed to form concentration gradients suited for aerotaxis study and sensing. PMID:26305149

  11. Particle Motion Induced by Bubble Cavitation

    NASA Astrophysics Data System (ADS)

    Poulain, Stéphane; Guenoun, Gabriel; Gart, Sean; Crowe, William; Jung, Sunghwan

    2015-05-01

    Cavitation bubbles induce impulsive forces on surrounding substrates, particles, or surfaces. Even though cavitation is a traditional topic in fluid mechanics, current understanding and studies do not capture the effect of cavitation on suspended objects in fluids. In the present work, the dynamics of a spherical particle due to a cavitation bubble is experimentally characterized and compared with an analytical model. Three phases are observed: the growth of the bubble where the particle is pushed away, its collapse where the particle approaches the bubble, and a longer time scale postcollapse where the particle continues to move toward the collapsed bubble. The particle motion in the longer time scale presumably results from the asymmetric cavitation evolution at an earlier time. Our theory considering the asymmetric bubble dynamics shows that the particle velocity strongly depends on the distance from the bubble as an inverse-fourth-power law, which is in good agreement with our experimentation. This study sheds light on how small free particles respond to cavitation bubbles in fluids.

  12. Morphology study of methane-propane clathrate hydrates on the bubble surface in the presence of SDS or PVCap

    NASA Astrophysics Data System (ADS)

    Lee, So Young; Kim, Hyoung Chan; Lee, Ju Dong

    2014-09-01

    The characteristics of methane-propane hydrate crystal growth on the surface of gas bubble in pure water were investigated using optical microscope and compared with those in aqueous solutions of sodium dodecyl sulfate (SDS) or poly-N-vinylcaprolactam (PVCap). Most of morphology works in literature mainly focused on the hydrate crystal growth at the gas/water interface or surface of water droplets. However, this study monitors crystal growth at the bubble surface. In the case of pure water, smooth hydrate film was formed initially and the film surface on the bubble became rough as experiment proceeded. It was also observed that the hydrate crystals developed as the dendritic shape from the surface of hydrate film. In the presence of SDS, drastic changes in morphology were observed in that smoke-like crystals appeared from the top of the bubble. Besides, the gas bubble was not fully covered by hydrate film when the SDS concentration increased. In the PVCap solution, seed-like or small spot of hydrate crystals occurred sparsely on the bubble surface and spread out the whole surface as experiment progressed. The experimental results showed that the presence of SDS or PVCap affect morphological characteristics of methane-propane hydrate crystal on the surface of gas bubble.

  13. Assessment of bubble-borne methane emissions in the East Siberian Arctic Shelf via interpretation of sonar data

    NASA Astrophysics Data System (ADS)

    Chernykh, D.; Leifer, I.; Shakhova, N. E.; Semiletov, I. P.

    2014-12-01

    Arctic warming is proposed to increase methane emissions from submerged permafrost driving a positive feedback. Where emissions are from shallow seas, bubbles transport much of the methane directly, while frequent Arctic storms sparge much of the remaining dissolved methane before microbes can oxidize it. Complexity arises where emissions are small bubbles or from deeper water due to dissolution below the storm-mixed layer. Given that these emissions span a wide geographic area, a promising remote sensing technology that has been used to map and estimate emissions; however, significant uncertainties exist in sonar data interpretation due to a range of parameters affecting sonar return including bubble size distribution and spatial distribution, vertical velocity, and temperature all of which are closely inter-related in a complex and at best poorly understood manner, and change as the bubble plume rises. This process was illustrated in a series of in situ calibration experiments in the East Siberian Arctic Sea (ESAS) where controlled air bubble plumes were created and observed with sonar to quantify the relationship between sonar return and bubble plume flux for a first calibration of in situ sonar bubble plume observations in the ESAS. Results highlight the importance of bubble plume dynamics to sonar return and the absence of a simple relationship between sonar return and bubble flux. Instead sonar return related to height above seabed, even accounting for dissolution and changing hydrostatic pressure, confirming earlier laboratory studies for a deeper water column. Calibrations then were applied to field data of an area of ESAS natural seepage.

  14. Kinetics of Bubble Generation in Mafic Enclaves

    NASA Astrophysics Data System (ADS)

    Jackson, B. A.; Gardner, J. E.

    2014-12-01

    Volcanically erupted mafic enclaves are typically vesicular, with the bubbles forming when the mafic magma cools after it is injected and disaggregated into a cooler silicic magma. This study uses hydrothermal experiments to investigate the kinetics of pre-eruptive bubble nucleation and growth within mafic magmas, focused on the efficiency of nucleation on different minerals, and to quantify the growth rate of bubbles with varying cooling rates. Starting materials are natural mafic enclaves from Southwest Trident, Alaska. Experiments were initially equilibrated with H2O at 85 MPa and 1065 °C for 2 hours, producing a melt with blocky crystals of plagioclase and pyroxene, and spherical bubbles with a mean 30 ?m diameter and number density (Nv) of 7.2x104 cm-3. Upon cooling to 1015 °C at 2 °C/h, the mineralogy and Nv did not change (although total crystallinity increased), while the mean bubble diameter increased to 90 ?m. Cooling further to 985 °C at 2 °C/h, resulted in the crystallization of Fe-Ti oxides, along with an abrupt Nv increase (3.0x105 cm-3) of bubbles with a mean diameter of 60 ?m. This abrupt bubble nucleation event, coinciding with the formation of Fe-Ti oxides, suggests that plagioclase and pyroxene are poor bubble nucleation sites in mafic melts, and that Fe-Ti oxides are good bubble nucleation sites, similar to previous results using rhyolite melts. Additionally, the occurrence of this nucleation event suggests that cooling related diffusive growth of bubbles in mafic enclaves, under magma chamber conditions, is too slow to keep up with increasing volatile saturation in the melt, and that the melt may become supersaturated until nucleation sites for new bubbles become available. Rapid cooling (1065-985 °C at 110 °C/h) produced abundant acicular plagioclase and pyroxene crystals (no Fe-Ti oxides), and bubbles with a nearly identical mean diameter and Nv to experiments equilibrated at 1065 °C. It is therefore likely that bubbles will not nucleate or grow significantly during rapid cooling and crystallization of mafic enclaves until Fe-Ti oxide nucleation sites are available. Overall, these experimental results indicate that cooling and crystallization induced pre-eruptive bubble generation in mafic enclaves is strongly controlled by the availability of Fe-Ti oxide nucleation sites.

  15. A signature of anisotropic bubble collisions

    E-print Network

    Michael P. Salem

    2010-06-04

    Our universe may have formed via bubble nucleation in an eternally-inflating background. Furthermore, the background may have a compact dimension---the modulus of which tunnels out of a metastable minimum during bubble nucleation---which subsequently grows to become one of our three large spatial dimensions. When in this scenario our bubble universe collides with other ones like it, the collision geometry is constrained by the reduced symmetry of the tunneling instanton. While the regions affected by such bubble collisions still appear (to leading order) as disks in an observer's sky, the centers of these disks all lie on a single great circle, providing a distinct signature of anisotropic bubble nucleation.

  16. Bubble chamber as a trace chemical detector

    SciTech Connect

    Luo, X.; McCreary, E.I.; Atencio, J.H.; McCown, A.W.; Sander, R.K.

    1998-08-01

    A novel concept for trace chemical analysis in liquid has been demonstrated. The technique utilizes light absorption in a superheated liquid. Although a superheated liquid is thermodynamically unstable, a high degree of superheating can be dynamically achieved for a short period of time. During this time the superheated liquid is extremely sensitive to boiling at nucleation sites produced by energy deposition. Observation of bubbles in the superheated liquid in some sense provides amplification of the initial energy deposition. Bubble chambers containing superheated liquids have been used to detect energetic particles; now a bubble chamber is used to detect a trace chemical in superheated liquid propane by observing bubble formation initiated by optical absorption. Crystal violet is used as a test case and can be detected at the subpart-per-10{sup 12} level by using a Nd:YAG laser. The mechanism for bubble formation and ideas for further improvement are discussed. {copyright} 1998 Optical Society of America

  17. Air bubble migration rates as a proxy for bubble pressure distribution in ice cores

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Schneebeli, Martin; Bertler, Nancy

    2015-04-01

    Air bubble migration can be used as a proxy to measure the pressure of individual bubbles and can help constrain the gradual close-off of gas bubbles and the resulting age distribution of gases in ice cores. The close-off depth of single bubbles can vary by tens of meters, which leads to a distribution of pressures for bubbles at a given depth. The age distribution of gases (along with gas-age-ice-age differences) decreases the resolution of the gas level reconstructions from ice cores and limits our ability to determine the phase relationship between gas and ice, and thus, the impact of rapid changes of greenhouse gases on surface temperatures. For times of rapid climate change, including the last 150 years, and abrupt climate changes further back in the past, knowledge of the age distribution of the gases trapped in air bubbles will enable us to refine estimates of atmospheric changes. When a temperature gradient is applied to gas bubbles in an ice sample, the bubbles migrate toward warmer ice. This motion is caused by sublimation from the warm wall and subsequent frost deposition on the cold wall. The migration rate depends on ice temperature and bubble pressure and is proportional to the temperature gradient. The spread in migration rates for bubbles in the same samples at given temperatures should therefore reflect the variations in bubble pressures within a sample. Air bubbles with higher pressures would have been closed off higher in the firn column and thus have had time to equilibrate with the surrounding ice pressure, while air bubbles that have been closed off recently would have pressures that are similar to todays atmospheric pressure above the firn column. For ice under pressures up to ~13-16 bar, the pressure distribution of bubbles from a single depth provides a record of the trapping function of air bubbles in the firn column for a certain time in the past. We will present laboratory experiments on air bubble migration, using Antarctic ice core samples from a range of depths, to show that air bubble migration is a valid proxy for bubble pressure and can thus be used to determine the trapping function of air bubbles and gas age distribution for past conditions.

  18. Claritas rise, Mars: Pre-Tharsis magmatism?

    USGS Publications Warehouse

    Dohm, J.M.; Anderson, R.C.; Williams, J.-P.; Ruiz, J.; McGuire, P.C.; Buczkowski, D.L.; Wang, R.; Scharenbroich, L.; Hare, T.M.; Connerney, J.E.P.; Baker, V.R.; Wheelock, S.J.; Ferris, J.C.; Miyamoto, H.

    2009-01-01

    Claritas rise is a prominent ancient (Noachian) center of tectonism identified through investigation of comprehensive paleotectonic information of the western hemisphere of Mars. This center is interpreted to be the result of magmatic-driven activity, including uplift and associated tectonism, as well as possible hydrothermal activity. Coupled with its ancient stratigraphy, high density of impact craters, and complex structure, a possible magnetic signature may indicate that it formed during an ancient period of Mars' evolution, such as when the dynamo was in operation. As Tharsis lacks magnetic signatures, Claritas rise may pre-date the development of Tharsis or mark incipient development, since some of the crustal materials underlying Tharsis and older parts of the magmatic complex, respectively, could have been highly resurfaced, destroying any remanent magnetism. Here, we detail the significant characteristics of the Claritas rise, and present a case for why it should be targeted by the Mars Odyssey, Mars Reconnaissance Orbiter, and Mars Express spacecrafts, as well as be considered as a prime target for future tier-scalable robotic reconnaissance. ?? 2009 Elsevier B.V.

  19. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland

    2000-12-31

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large-diameter reactors. Washington University's work during the reporting period involved the implementation of the automated calibration device, which will provide an advanced method of determining liquid and slurry velocities at high pressures. This new calibration device is intended to replace the original calibration setup, which depended on fishing lines and hooks to position the radioactive particle. The report submitted by Washington University contains a complete description of the new calibration device and its operation. Improvements to the calibration program are also discussed. Iowa State University utilized air-water bubble column simulations in an effort to determine the domain size needed to represent all of the flow scales in a gas-liquid column at a high superficial velocity. Ohio State's report summarizes conclusions drawn from the completion of gas injection phenomena studies, specifically with respect to the characteristics of bubbling-jetting at submerged single orifices in liquid-solid suspensions.

  20. Role of metabolic gases in bubble formation during hypobaric exposures

    NASA Technical Reports Server (NTRS)

    Foster, P. P.; Conkin, J.; Powell, M. R.; Waligora, J. M.; Chhikara, R. S.

    1998-01-01

    Our hypothesis is that metabolic gases play a role in the initial explosive growth phase of bubble formation during hypobaric exposures. Models that account for optimal internal tensions of dissolved gases to predict the probability of occurrence of venous gas emboli were statistically fitted to 426 hypobaric exposures from National Aeronautics and Space Administration tests. The presence of venous gas emboli in the pulmonary artery was detected with an ultrasound Doppler detector. The model fit and parameter estimation were done by using the statistical method of maximum likelihood. The analysis results were as follows. 1) For the model without an input of noninert dissolved gas tissue tension, the log likelihood (in absolute value) was 255.01. 2) When an additional parameter was added to the model to account for the dissolved noninert gas tissue tension, the log likelihood was 251.70. The significance of the additional parameter was established based on the likelihood ratio test (P < 0.012). 3) The parameter estimate for the dissolved noninert gas tissue tension participating in bubble formation was 19. 1 kPa (143 mmHg). 4) The additional gas tissue tension, supposedly due to noninert gases, did not show an exponential decay as a function of time during denitrogenation, but it remained constant. 5) The positive sign for this parameter term in the model is characteristic of an outward radial pressure of gases in the bubble. This analysis suggests that dissolved gases other than N2 in tissues may facilitate the initial explosive bubble-growth phase.

  1. Magma mixing enhanced by bubble ascent

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Perugini, D.; De Campos, C. P.; Hess, K.; Lavallee, Y.; Dingwell, D. B.

    2012-12-01

    Understanding the processes that affect the rate of liquid state homogenization provides fundamental clues on the otherwise inaccessible subsurface dynamics of magmatic plumbing systems. Compositional heterogeneities detected in the matrix of magmatic rocks represent the arrested state of a chemical equilibration. Magmatic homogenization has been divided into a) the mechanical interaction of magma batches (mingling) and b) the diffusive equilibration of compositional gradients, where diffusive equilibration is exponentially enhanced by progressive mechanical interaction [1]. The mechanical interaction between two distinct batches of magma has commonly been attributed to shear and folding movements between two liquids of distinct viscosities. A mode of mechanical interaction scarcely invoked is the advection of mafic material into a felsic one through bubble motion. Yet, experiments with analogue materials demonstrated that bubble ascent has the potential to enhance the fluid mechanical component of magma mixing [2]. Here, we present preliminary results from bubble-advection experiments. For the first time, experiments of this kind were performed using natural materials at magmatic temperatures. Cylinders of Snake River Plain (SRP) basalt were drilled with a cavity of defined volume and placed underneath cylinders of SRP rhyolite. Upon melting, the gas pocket, or bubble trapped within the cavity, rose into the rhyolite, so entraining a layer of basalt. Successive iterations of the same experiment at progressive intervals ensured a time series of magmatic interaction caused by bubble segregation. Variations in initial bubble size allowed the tracking of bubble volume to advected material ratio at defined viscosity contrast. The resulting plume-like structures that the advected basalt formed within the rhyolite were characterized by microCT and subsequent high-resolution EMP analyses. The mass of advected material per bubble correlated positively with bubble size. The progressive loss of advected basalt during bubble motion was quantified by microCT for defined viscosity couples. The diffusional gradient around the plume tail showed a progressive evolution of equilibration from bottom to top of the plume tail. A future aim is to compute the impact of bubble motion on the efficiency of magma mixing in dependence of volatile solubilities and pressure and viscosity variations. This has implications for the capacity of magma to produce bubbles in e.g. stratified magma chambers. [1] De Campos, C., D. Perugini, W. Ertel-Ingrisch, D. Dingwell, and G. Poli (2011), Enhancement of magma mixing efficiency by chaotic dynamics: an experimental study, Contrib. Mineral. Petrol., 161(6), 863-881. [2] Thomas, N., S. Tait, and T. Koyaguchi (1993), Mixing of stratified liquids by the motion of gas bubbles: application to magma mixing, Earth Planet. Sci. Lett., 115(1-4), 161-175.

  2. Effect of surfactants on single bubble sonoluminescence behavior and bubble surface stability

    NASA Astrophysics Data System (ADS)

    Leong, Thomas; Yasui, Kyuichi; Kato, Kazumi; Harvie, Dalton; Ashokkumar, Muthupandian; Kentish, Sandra

    2014-04-01

    The effect of surfactants on the radial dynamics of a single sonoluminescing bubble has been investigated. Experimentally, it is observed that an increase in the surfactant concentration leads to a decline in the oscillation amplitude and hence light emission intensity. Numerical simulations support this result, showing that under the driving pressures required to achieve single bubble sonoluminescence (SBSL), the surface properties, namely, the surface elasticity and dilatational viscosity, contribute to the damping of the radial amplitude in the bubble oscillation. In most cases this stabilizes the bubble surface, and contributes to a decreased light intensity. A stronger driving pressure is necessary to achieve equivalent light emission to a surfactant-free bubble. However, as the driving pressure is increased, the surface stability also decreases, making it practically very difficult for a bubble to achieve high SBSL intensities in concentrated surfactant solutions. Although more stable owing to more mild pulsations, the instability mechanism for a surfactant-coated bubble at higher ambient radii is more likely to be of the Rayleigh-Taylor type than that of a clean bubble at the same given acoustic parameters, which can lead to bubble disintegration before correcting mechanisms can bring the bubble back into the stable sonoluminescence regime.

  3. Effect of bubble's arrangement on the viscous torque in bubbly Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Fokoua, G. Ndongo; Gabillet, C.; Aubert, A.; Colin, C.

    2015-03-01

    An experimental investigation of the interactions between bubbles, coherent motion, and viscous drag in a Taylor-Couette flow with the outer cylinder at rest is presented. The cylinder radii ratio ? is 0.91. Bubbles are injected inside the gap through a needle at the bottom of the apparatus. Different bubbles sizes are investigated (ratio between the bubble diameter and the gap width ranges from 0.05 to 0.125) for very small void fraction (? ? 0.23%). Different flow regimes are studied corresponding to Reynolds number Re based on the gap width and velocity of the inner cylinder, ranging from 6 × 102 to 2 × 104. Regarding these Re values, Taylor vortices are persistent leading to an axial periodicity of the flow. A detailed characterization of the vortices is performed for the single-phase flow. The experiment also develops bubbles tracking in a meridian plane and viscous torque of the inner cylinder measurements. The findings of this study show evidence of the link between bubbles localisation, Taylor vortices, and viscous torque modifications. We also highlight two regimes of viscous torque modification and various types of bubbles arrangements, depending on their size and on the Reynolds number. Bubbles can have a sliding and wavering motion near the inner cylinder and be either captured by the Taylor vortices or by the outflow areas near the inner cylinder. For small buoyancy effect, bubbles are trapped, leading to an increase of the viscous torque. When buoyancy induced bubbles motion is increased by comparison to the coherent motion of the liquid, a decrease in the viscous torque is rather observed. The type of bubble arrangement is parameterized by the two dimensionless parameters C and H introduced by Climent et al. ["Preferential accumulation of bubbles in Couette-Taylor flow patterns," Phys. Fluids 19, 083301 (2007)]. Phase diagrams summarizing the various types of bubbles arrangements, viscous torque modifications, and axial wavelength evolution are built.

  4. Bubbles in live-stranded dolphins

    PubMed Central

    Dennison, S.; Moore, M. J.; Fahlman, A.; Moore, K.; Sharp, S.; Harry, C. T.; Hoppe, J.; Niemeyer, M.; Lentell, B.; Wells, R. S.

    2012-01-01

    Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber–muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness. PMID:21993505

  5. Bubbly Suspension Generated in Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    2000-01-01

    Bubbly suspensions are crucial for mass and heat transport processes on Earth and in space. These processes are relevant to pharmaceutical, chemical, nuclear, and petroleum industries on Earth. They are also relevant to life support, in situ resource utilization, and propulsion processes for long-duration space missions such as the Human Exploration and Development of Space program. Understanding the behavior of the suspension in low gravity is crucial because of factors such as bubble segregation, which could result in coalescence and affect heat and mass transport. Professors A. Sangani and D. Koch, principal investigators in the Microgravity Fluid Physics Program managed by the NASA Glenn Research Center at Lewis Field, are studying the physics of bubbly suspension. They plan to shear a bubbly suspension in a couette cell in microgravity to study bubble segregation and compare the bubble distribution in the couette gap with the one predicted by the suspension-averaged equations of motion. Prior to the Requirement Definition Review of this flight experiment, a technology for generating a bubbly suspension in microgravity has to be established, tested, and verified.

  6. Numerical modeling of bubble dynamics in magmas

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Su, Yanqing; Parmigiani, Andrea

    2014-05-01

    Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.

  7. Dynamics of two-dimensional bubbles.

    PubMed

    Piedra, Saúl; Ramos, Eduardo; Herrera, J Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps. PMID:26172798

  8. Radio Bubbles in Clusters of Galaxies

    SciTech Connect

    Dunn, Robert J.H.; Fabian, A.C.; Taylor, G.B.; /NRAO, Socorro /KIPAC, Menlo Park

    2005-12-14

    We extend our earlier work on cluster cores with distinct radio bubbles, adding more active bubbles, i.e. those with GHz radio emission, to our sample, and also investigating ''ghost bubbles'', i.e. those without GHz radio emission. We have determined k, which is the ratio of the total particle energy to that of the electrons radiating between 10MHz and 10GHz. Constraints on the ages of the active bubbles confirm that the ratio of the energy factor, k, to the volume filling factor, f lies within the range 1 {approx}< k/f {approx}< 1000. In the assumption that there is pressure equilibrium between the radio-emitting plasma and the surrounding thermal X-ray gas, none of the radio lobes has equipartition between the relativistic particles and the magnetic field. A Monte-Carlo simulation of the data led to the conclusion that there are not enough bubbles present in the current sample to be able to determine the shape of the population. An analysis of the ghost bubbles in our sample showed that on the whole they have higher upper limits on k/f than the active bubbles, especially when compared to those in the same cluster. A study of the Brightest 55 cluster sample shows that 17, possibly 20, clusters required some form of heating as they have a short central cooling time, t{sub cool} {approx}< 3 Gyr, and a large central temperature drop, T{sub centre}/T{sub outer} < 1/2. Of these between 12 (70 per cent) and 15 (75 per cent), contain bubbles. This indicates that the duty cycle of bubbles is large in such clusters and that they can play a major role in the heating process.

  9. MAGNETIC TOPOLOGY OF BUBBLES IN QUIESCENT PROMINENCES

    SciTech Connect

    Dudik, J.; Aulanier, G.; Schmieder, B.; Zapior, M.; Heinzel, P.

    2012-12-10

    We study a polar-crown prominence with a bubble and its plume observed in several coronal filters by the SDO/AIA and in H{alpha} by the MSDP spectrograph in Bialkow (Poland) to address the following questions: what is the brightness of prominence bubbles in EUV with respect to the corona outside of the prominence and the prominence coronal cavity? What is the geometry and topology of the magnetic field in the bubble? What is the nature of the vertical threads seen within prominences? We find that the brightness of the bubble and plume is lower than the brightness of the corona outside of the prominence, and is similar to that of the coronal cavity. We constructed linear force-free models of prominences with bubbles, where the flux rope is perturbed by inclusion of parasitic bipoles. The arcade field lines of the bipole create the bubble, which is thus devoid of magnetic dips. Shearing the bipole or adding a second one can lead to cusp-shaped prominences with bubbles similar to the observed ones. The bubbles have complex magnetic topology, with a pair of coronal magnetic null points linked by a separator outlining the boundary between the bubble and the prominence body. We conjecture that plume formation involves magnetic reconnection at the separator. Depending on the viewing angle, the prominence can appear either anvil-shaped with predominantly horizontal structures, or cusp-shaped with predominantly vertical structuring. The latter is an artifact of the alignment of magnetic dips with respect to the prominence axis and the line of sight.

  10. The Minnaert bubble: an acoustic approach

    NASA Astrophysics Data System (ADS)

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude; Leroy, Valentin

    2008-11-01

    We propose an ab initio introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian variables. In unbounded water, the air-water system has a continuum of eigenmodes, some of them correspond to regular Fabry-Pérot resonances. A singular resonance, the lowest one, is shown to coincide with that of Minnaert. In bounded water, the eigenmodes spectrum is discrete, with a finite fundamental frequency. A spectacular quasi-locking of the latter occurs if it happens to exceed the Minnaert frequency, which provides an unforeseen one-bubble alternative version of the famous 'hot chocolate effect'. In the (low) frequency domain in which sound propagation inside the bubble reduces to a simple 'breathing' (i.e. inflation/deflation), the light air bubble can be 'dressed' by the outer water pressure forces, and is turned into the heavy Minnaert bubble. Thanks to this unexpected renormalization process, we demonstrate that the Minnaert bubble definitely behaves like a true harmonic oscillator of the spring-bob type, but with a damping term and a forcing term in apparent disagreement with those commonly admitted in the literature. Finally, we underline the double role played by the water. In order to tell the water motion associated with water compressibility (i.e. the sound) from the simple incompressible accompaniment of the bubble breathing, we introduce a new picture analogous to the electromagnetic radiative picture in Coulomb gauge, which naturally leads us to split the water displacement in an instantaneous and a retarded part. The Minnaert renormalized mass of the dressed bubble is then automatically recovered.

  11. Dynamics of two-dimensional bubbles

    NASA Astrophysics Data System (ADS)

    Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  12. Single Bubble Sonoluminescence in Low Gravity and Optical Radiation Pressure Positioning of the Bubble

    NASA Technical Reports Server (NTRS)

    Thiessen, D. B.; Young, J. E.; Marr-Lyon, M. J.; Richardson, S. L.; Breckon, C. D.; Douthit, S. G.; Jian, P. S.; Torruellas, W. E.; Marston, P. L.

    1999-01-01

    Several groups of researchers have demonstrated that high frequency sound in water may be used to cause the regular repeated compression and luminescence of a small bubble of gas in a flask. The phenomenon is known as single bubble sonoluminescence (SBSL). It is potentially important because light emitted by the bubble appears to be associated with a significant concentration of energy within the volume of the bubble. Unfortunately, the detailed physical mechanisms causing the radiation of light by oscillating bubbles are poorly understood and there is some evidence that carrying out experiments in a weightless environment may provide helpful clues. In addition, the radiation pressure of laser beams on the bubble may provide a way of simulating weightless experiments in the laboratory. The standard model of SBSL attributes the light emission to heating within the bubble by a spherically imploding shock wave to achieve temperatures of 50,000 K or greater. In an alternative model, the emission is attributed to the impact of a jet of water which is required to span the bubble and the formation of the jet is linked to the buoyancy of the bubble. The coupling between buoyancy and jet formation is a consequence of the displacement of the bubble from a velocity node (pressure antinode) of the standing acoustic wave that drives the radial bubble oscillations. One objective of this grant is to understand SBSL emission in reduced buoyancy on KC-135 parabolic flights. To optimize the design of those experiments and for other reasons which will help resolve the role of buoyancy, laboratory experiments are planned in simulated low gravity in which the radiation pressure of laser light will be used to position the bubble at the acoustic velocity node of the ultrasonic standing wave. Laser light will also be used to push the bubble away from the velocity node, increasing the effective buoyancy. The original experiments on the optical levitation and radiation pressure on bubbles in water by Unger and Marston noted above were carried out using a continuous wave (CW) beam of an Argon laser. For lateral stability the beam had a intensity minimum along its axis. Calculations of the optical radiation force on an SBSL bubble indicate that ion laser technology is a poor choice for providing the magnitude of the average optical radiation force required. Consequently it is necessary to examine various diode-pumped solid state laser technologies. The approach for this part of the research will be to achieve optical levitation of a quiescent bubble based on contemporary laser technology and then to strobe the laser synchronously with the SBSL bubble oscillations.

  13. Bubble growth in rhyolitic melt Yang Liu, Youxue Zhang *

    E-print Network

    Zhang, Youxue

    Bubble growth in rhyolitic melt Yang Liu, Youxue Zhang * The Department of Geological Sciences rhyolitic melt with 1.4^2.0 wt% initial total H2O at 0.1 MPa and 500^600³C. Growth of many bubbles. The average growth rate for bubbles growing in an infinite rhyolitic melt at a bubble radius of 25 Wm is V0

  14. Interactions of multiple spark-generated bubbles with phase differences

    NASA Astrophysics Data System (ADS)

    Fong, Siew Wan; Adhikari, Deepak; Klaseboer, Evert; Khoo, Boo Cheong

    2009-04-01

    This paper aims to study the complex interaction between multiple bubbles, and to provide a summary and physical explanation of the phenomena observed during the interaction of two bubbles. High-speed photography is utilized to observe the experiments involving multiple spark-generated bubbles. Numerical simulations corresponding to the experiments are performed using the Boundary Element Method (BEM). The bubbles are typically between 3 and 5 mm in radius and are generated either in-phase (at the same time) or with phase differences. Complex phenomena are observed such as bubble splitting, and high-speed jetting inside a bubble caused by another collapsing bubble nearby (termed the ‘catapult’ effect). The two-bubble interactions are broadly classified in a graph according to two parameters: the relative inter-bubble distance and the phase difference (a new parameter introduced). The BEM simulations provide insight into the physics, such as bubble shape changes in detail, and jet velocities. Also presented in this paper are the experimental results of three bubble interactions. The interesting and complex observations of multiple bubble interaction are important for a better understanding of real life applications in medical ultrasonic treatment and ultrasonic cleaning. Many of the three bubble interactions can be explained by isolating bubble pairs and classifying their interaction according to the graph for the two bubble case. This graph can be a useful tool to predict the behavior of multiple bubble interactions.

  15. Cosmic structure from radiation-blown bubbles

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1989-01-01

    Absorbing material in an expanding universe filled with sources of radiation is subject to an instability driven by radiation pressure. In the optically thick limit, this instability takes the form of rapidly growing cavities or bubbles in the absorbing material. No matter how small they are when they begin, such bubbles grow to approach a limiting size which depends only on the ratio of photon pressure to absorber inertia. For a nonprimordial submillimeter radiation background as strong as that recently detected by the Berkely-Nagoya group, the bubbles grow to a comoving radius of about 20 Mpc, comparable in scale to the voids seen in the large-scale galaxy distribution.

  16. Water temperature dependence of single bubble sonoluminescence

    E-print Network

    Sascha Hilgenfeldt; Detlef Lohse; Willy Moss

    1998-01-11

    The strong dependence of the intensity of single bubble sonoluminescence (SBSL) on water temperature observed in experiment can be accounted for by the temperature dependence of the material constants of water, most essentially of the viscosity, of the argon solubility in water, and of the vapor pressure. The strong increase of light emission at low water temperatures is due to the possibility of applying higher driving pressures, caused by increased bubble stability. The presented calculations combine the Rayleigh-Plesset equation based hydrodynamical/chemical approach to SBSL and full gas dynamical calculations of the bubble's interior.

  17. Optical emissions in a sonoluminescing bubble

    NASA Astrophysics Data System (ADS)

    Chen, T. W.; Leung, P. T.; Chu, M.-C.

    2000-11-01

    We study how the mechanism of spontaneous decay of atoms (or molecules) in a sonoluminescing bubble (SLB) can be affected by the high density and high temperature environment resulting from the rapid collapse of the gas bubble immediately prior to light emission. We present a detailed study of the density of states of photons in multiple-layered spheres, which mimic various stages of a SLB. In particular, we found that the spontaneous decay rate could be strongly enhanced in the presence of a thin plasma shell inside the bubble, which was predicted recently in numerical hydrodynamic simulations of a SLB.

  18. Thermal migration of bubbles in zero gravity

    SciTech Connect

    Esmaeeli, A.; Tryggvason, G.; Arpaci, V.

    1996-12-31

    Thermocapillary migration of two-dimensional, deformable, interacting bubbles toward an initially flat fluid interface in zero gravity is studied. The full Navier-Stokes equations and the thermal energy equation are solved for the fluids inside and outside the bubbles using a front tracking/finite difference method. The boundaries of the domain are taken to be periodic in the horizontal direction and wall-bounded in the vertical direction. The temperatures of the walls are fixed such that an upward temperature gradient is imposed. Interactions of coalescing bubbles with different initial conditions are investigated.

  19. Co-operative oscillations of bubbles

    NASA Technical Reports Server (NTRS)

    Snyder, H. A.; Mord, A. J.

    1990-01-01

    A closed cryogenic storage tank in space may contain several bubbles. It is shown that these bubbles can oscillate in volume with n-1 resonant frequencies for n bubbles. The resonances can be excited by a sudden change in pressure, such as withdrawing fluid or venting, or by motion of the vehicle. In situations in which the ac accelerations dominate, such as in large space structures, the potential for harmful coupling of these oscillations to the spacecraft structure must be examined. Experimental data are presented which support the theoretical predictions.

  20. On thermonuclear processes in cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Nigmatulin, R. I.; Lahey, R. T., Jr.; Taleyarkhan, R. P.; West, C. D.; Block, R. C.

    2014-09-01

    The theoretical and experimental foundations of so-called bubble nuclear fusion are reviewed. In the nuclear fusion process, a spherical cavitation cluster ˜ 10-2 m in diameter is produced of spherical bubbles at the center of a cylindrical chamber filled with deuterated acetone using a focused acoustic field having a resonant frequency of about 20 kHz. The acoustically-forced bubbles effectuate volume oscillations with sharp collapses during the compression stage. At the final stages of collapse, the bubble cluster emits 2.5 MeV D-D fusion neutron pulses at a rate of ˜ 2000 per second. The neutron yield is ˜ 10^5 s -1. In parallel, tritium nuclei are produced at the same yield. It is shown numerically that, for bubbles having sufficient molecular mass, spherical shock waves develop in the center of the cluster and that these spherical shock waves (microshocks) produce converging shocks within the interior bubbles, which focus energy on the centers of the bubbles. When these shock waves reflect from the centers of the bubbles, extreme conditions of temperature ( ˜ 10^8 K) and density ( ˜ 10^4 kg m -3) arise in a (nano)spherical region ( ˜ 10-7 m in size) that last for ˜ 10-12 s, during which time about ten D-D fusion neutrons and tritium nuclei are produced in the region. A paradoxical result in our experiments is that it is bubble cluster (not streamer) cavitation and the sufficiently high molecular mass of (and hence the low sound speed in) D-acetone ( C3D6O) vapor (as compared, for example, to deuterated water D2O) which are necessary conditions for the formation of convergent spherical microshock waves in central cluster bubbles. It is these waves that allow the energy to be sufficiently focused in the nanospherical regions near the bubble centers for fusion events to occur. The criticism to which the concept of 'bubble fusion' has been subjected in the literature, in particular, most recently in Uspekhi Fizicheskikh Nauk (Physics - Uspekhi) journal, is discussed.

  1. Screening of liquids for thermocapillary bubble movement

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Subramanian, R. S.; Papazian, J. M.; Smith, H. D.; Mattox, D. M.

    1979-01-01

    Ground-based methods for pretesting qualitatively the thermocapillary movement of gas bubbles in a liquid to be used in space processing are discussed. Theoretical considerations are shown to require the use of a thin, enclosed, horizontal liquid film in order that the bubbles move faster than the bulk convection of the liquid, with insulating boundaries to prevent the onset of instabilities. Experimental realizations of horizontal cells in which to test the thermocapillary movement of bubbles in sheets of molten glass heated from below and organic melts in tubes heated from both ends are briefly described and the results of experiments are indicated.

  2. Initiation of breakdown in bubbles immersed in liquids: pre-existed charges versus bubble size

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu; Tereshonok, Dmitry V.; Naidis, George V.

    2015-09-01

    In this paper we report on results from a computational investigation of streamer evolution in bubbles immersed in liquids. We show that avalanche-to-streamer transition and streamer formation in the uniform electric field are determined by the applied external field, the parameter pR (pressure times bubble size), as well as by the location and amount of initial free charges inside the bubble. We found that streamers are not formed in bubbles with a rather small size, unless pre-existed or injected charges are large enough to initiate the breakdown. The present investigation relates the bubble size and the applied field to the minimal possible amount of charge in a bubble.

  3. Influence of liquid density on the parametric shape instability of sonoluminescence bubbles in water and sulfuric acid

    NASA Astrophysics Data System (ADS)

    Godínez, F. A.; Navarrete, M.

    2011-07-01

    Parametric shape instability of sonoluminescing argon bubbles in water and aqueous H2SO4 was numerically analyzed considering gas and liquid density variations. The employed model couples Gilmore, Tait (liquid) and van der Waals (gas) equations to simulate radial dynamics and density changes, respectively. Shape stability-instability zones in the Pa-R0 space resulted from a linear stability analysis. For the argon-water and argon-water-acid systems, numerical results indicate a rapid rise in both gas and liquid densities during final stages of bubble implosion which result in a stabilizing effect on the parametric instability.

  4. Wetting of soap bubbles on hydrophilic, hydrophobic and superhydrophobic surfaces

    E-print Network

    Steve Arscott

    2013-03-26

    Wetting of sessile bubbles on solid and liquid surfaces has been studied. A model is presented for the contact angle of a sessile bubble based on a modified Young equation - the experimental results agree with the model. A hydrophilic surface results in a bubble contact angle of 90 deg whereas on a superhydrophobic surface one observes 134 deg. For hydrophilic surfaces, the bubble angle diminishes with bubble radius - whereas on a superhydrophobic surface, the bubble angle increases. The size of the Plateau borders governs the bubble contact angle - depending on the wetting of the surface.

  5. Wetting of soap bubbles on hydrophilic, hydrophobic and superhydrophobic surfaces

    E-print Network

    Arscott, Steve

    2013-01-01

    Wetting of sessile bubbles on solid and liquid surfaces has been studied. A model is presented for the contact angle of a sessile bubble based on a modified Young equation - the experimental results agree with the model. A hydrophilic surface results in a bubble contact angle of 90 deg whereas on a superhydrophobic surface one observes 134 deg. For hydrophilic surfaces, the bubble angle diminishes with bubble radius - whereas on a superhydrophobic surface, the bubble angle increases. The size of the Plateau borders governs the bubble contact angle - depending on the wetting of the surface.

  6. Bubbles, Bubbles, Tremors & Trouble: The Bayou Corne Sinkhole

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.

    2013-12-01

    In May 2012, thermogenic methane bubbles were first observed in Bayou Corne in Assumption Parish, Louisiana. As of July 2013, ninety one bubbling sites have been identified. Gas was also found in the top of the Mississippi River Alluvial Aquifer (MRAA) about 125 ft below the surface. Vent wells drilled into the MRAA have flared more 16 million SCF of gas. Trace amounts of hydrogen sulfide also have been detected. Bayou Corne flows above the Napoleonville salt dome which has been an active area for oil and gas exploration since the 1920s. The dome is also a site of dissolution salt mining which has produced large caverns with diameters of up to 300 ft and heights of 2000 ft. Some caverns are used for storage of natural gas. Microseismic activity was confirmed by an Earthscope seismic station in White Castle, LA in July 2012. An array of microseismic stations set up in the area recorded more than 60 microseismic events in late July and early August, 2012. These microseismic events were located on the western side of the dome. Estimated focal depths are just above the top of salt. In August 2012, a sinkhole developed overnight just to the northwest of a plugged and abandoned brine filled cavern (see figure below). The sinkhole continues to grow in area to more than 20 acres and has consumed a pipeline right of way. The sinkhole is more than 750 ft deep at its center. Microseismic activity was reduced for several months following the formation of the sinkhole. Microseismic events have reoccurred episodically since then with periods of frequent events preceding slumping of material into the sinkhole or a 'burp' where fluid levels in the sinkhole drop and then rebound followed by a decrease in microseismic activity. Some gas and/or oil may appear at the surface of the sinkhole following a 'burp'. Very long period events also have been observed which are believed to be related to subsurface fluid movement. A relief well drilled into the abandoned brine cavern found that it was filling with sediment. From September 2012 to March 2013 the floor of the cavern rose 600 ft and was 90% filled. However, the sediment fill level dropped more than 300 ft in June 2013. A 2007 seismic survey suggests that the bottom of the abandon cavern is close to the edge of the salt dome potentially allowing direct contact with permeable formations. A 3D seismic survey was shot in 2013 to better characterize the subsurface. Long term microseismic, subsidence, water quality and air quality monitoring programs have been established. Ground level photograph of Bayou Corne sinkhole. Note degraded hydrocarbons in water.

  7. Synchrotron Radiation from a Laser Plasma Accelerator in the Bubble Regime

    SciTech Connect

    Kneip, S.; McGuffey, C.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Maksimchuk, T.; Matsuoka, T.; Thomas, A. G. R.; Krushelnick, K.; Mangles, S. P. D.; Nagel, S. R.; Palmer, C. A. J.; Schreiber, J.; Najmudin, Z.; Ta Phuoc, K.

    2010-11-04

    A laser wakefield accelerator is shown to operate in the highly non-linear bubble regime, following the characteristic scaling of energy gain with density and leading to monoenergetic electron beams with up to 400 MeV and hundreds of pC charge. The bubble acts at the same time as a miniature undulator, causing the electrons to give off a beam of betatron x-rays with milliradian divergence, {mu}m source size, 1-100 keV photon energy and 10{sup 22} ph/mm{sup 2}/mrad{sup 2}s/0.1% BW.

  8. Capillary Rise in a Wedge

    ERIC Educational Resources Information Center

    Piva, M.

    2009-01-01

    In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…

  9. Slow viscous gravity-driven interaction between a bubble and a free surface with unequal surface tensions

    NASA Astrophysics Data System (ADS)

    Guémas, Marine; Sellier, Antoine; Pigeonneau, Franck

    2015-04-01

    The axisymmetric gravity-driven dynamics of a bubble rising toward a free surface is addressed for gas-liquid interfaces having unequal surface tensions. The liquid flow is governed by the Stokes equations which are here solved using a boundary element method in axisymmetric configuration. Within this framework, two dimensionless numbers arise: the Bond number Bo1 based on the surface tension of the bubble interface and the surface tension ratio ? ˆ comparing the free surface and bubble surface tensions. Under a careful and discussed selection of the code key settings (number of boundary elements, initial bubble location, and distance beyond which the free surface is truncated), it has been possible to numerically and accurately track in time the bubble and free surface shapes for several values of ( Bo 1 , ? ˆ ) . The long-time shapes are found to deeply depend upon both Bo1 and ? ˆ and also to compare well with the shapes predicted in Princen and Mason ["Shape of a fluid drop at a fluid-liquid interface. II. Theory for three-phase systems," J. Colloid. Sci. 20, 246-266 (1965)] using a hydrostatic model in which both surfaces are touching. Similarly, the drainage dynamics of the liquid film thickness between the bubble and the free surface depends on ( Bo 1 , ? ˆ ) . The long-time film thickness exponentially decays in time and a so-called thinning rate ? for which the numerical behaviors and a simple model reveal two basic behaviors: (i) at small Bond number, ? behaves as 1/Bo1 and (ii) at large Bond number, ? is nearly constant. In addition, it is found that in the entire range of the quantity ? = ( 1 + ? ˆ ) Bo 1 / ( 2 ? ˆ ) , the thinning rate ? is well approximated by the function 1/(18?) + ?? with ?? ? 0.158. Such a result also permits one to estimate the typical drainage time versus the initial bubble radius a, the liquid density ? and viscosity ?, the gravity and the free surface, and bubble surface tensions.

  10. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help astronomers understand the similarity between small black holes formed from exploded stars and the supermassive black holes at the centres of galaxies. Very powerful jets have been seen from supermassive black holes, but are thought to be less frequent in the smaller microquasar variety. The new discovery suggests that many of them may simply have gone unnoticed so far. The gas-blowing black hole is located 12 million light-years away, in the outskirts of the spiral galaxy NGC 7793 (eso0914b). From the size and expansion velocity of the bubble the astronomers have found that the jet activity must have been ongoing for at least 200 000 years. Notes [1] Astronomers do not have yet any means of measuring the size of the black hole itself. The smallest stellar black hole discovered so far has a radius of about 15 km. An average stellar black hole of about 10 solar masses has a radius of about 30 km, while a "big" stellar black hole may have a radius of up to 300 km. This is still much smaller than the jets, which extend out to several hundreds light years on each side of the black hole, or about several thousand million million km! More information This result appears in a paper published in this week's issue of the journal Nature (A 300 parsec long jet-inflated bubble around a powerful microquasar in the galaxy NGC 7793, by Manfred W. Pakull, Roberto Soria and Christian Motch). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO

  11. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help astronomers understand the similarity between small black holes formed from exploded stars and the supermassive black holes at the centres of galaxies. Very powerful jets have been seen from supermassive black holes, but are thought to be less frequent in the smaller microquasar variety. The new discovery suggests that many of them may simply have gone unnoticed so far. The gas-blowing black hole is located 12 million light-years away, in the outskirts of the spiral galaxy NGC 7793 (eso0914b). From the size and expansion velocity of the bubble the astronomers have found that the jet activity must have been ongoing for at least 200 000 years. Note: [1] Astronomers do not have yet any means of measuring the size of the black hole itself. The smallest stellar black hole discovered so far has a radius of about 15 km. An average stellar black hole of about 10 solar masses has a radius of about 30 km, while a "big" stellar black hole may have a radius of up to 300 km. This is still much smaller than the jets, which extend out to 1000 light-years, or about 9000 million million km! More Information: This result appears in a paper published in this week's issue of the journal Nature (A 300 parsec long jet-inflated bubble around a powerful microquasar in the galaxy NGC 7793, by Manfred W. Pakull, Roberto Soria and Christian Motch). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in C

  12. Sonochemical effects on single-bubble sonoluminescence

    E-print Network

    Yuan, L

    2005-01-01

    A refined hydro-chemical model for single-bubble sonoluminescence is presented. The processes of water vapor evaporation and condensation, mass diffusion, and chemical reactions are taken into account. Numerical simulations of Xe-, Ar- and He-filled bubbles are carried out. The results show that the trapped water vapor in conjunction with its endothermic chemical reactions significantly reduces the temperature within the bubble so that the degrees of ionization are generally very low. The chemical radicals generated from water vapor are shown to play an increasingly important role in the light emission from Xe to He bubbles. Light spectra and pulses computed from an optically thin model and from an essentially blackbody model are compared with recent experimental results. It is found that the results of the blackbody model generally match better with the experiment ones than those of the optically thin model. Suggestions on how to reconcile the conflict are given.

  13. Using sound to study bubble coalescence.

    PubMed

    Kracht, W; Finch, J A

    2009-04-01

    Frothers are surfactants used in flotation to aid generation of small bubbles, an effect attributed to coalescence prevention. Studying coalescence at the moment of bubble creation is a challenge because events occur over a time frame of milliseconds. This communication introduces a novel acoustic technique to study coalescence as bubbles are generated at a capillary. The sound signal was linked to bubble formation and coalescence events using high-speed cinematography. The technique has the resolution to detect events that occur within 1-2 ms. The results show that for common flotation frothers and n-alcohols (C(4)-C(8)) coalescence prevention is not simply related to surface activity. A total stress model is used to give a qualitative explanation to the action observed. Results for salt (sodium chloride) are included for comparison. PMID:19128806

  14. Jumping acoustic bubbles on lipid bilayers.

    PubMed

    Der Loughian, Christelle; Muleki Seya, Pauline; Pirat, Christophe; Inserra, Claude; Béra, Jean-Christophe; Rieu, Jean-Paul

    2015-05-01

    In the context of sonoporation, we use supported lipid bilayers as a model for biological membranes and investigate the interactions between the bilayer and microbubbles induced by ultrasound. Among the various types of damage caused by bubbles on the surface, our experiments exhibit a singular dynamic interaction process where bubbles are jumping on the bilayer, forming a necklace pattern of alteration on the membrane. This phenomenon was explored with different time and space resolutions and, based on our observations, we propose a model for a microbubble subjected to the combined action of van der Waals, acoustic and hydrodynamic forces. Describing the repeated jumps of the bubble, this model explains the lipid exchanges between the bubble and bilayer. PMID:25799328

  15. Bubble collisions and measures of the multiverse

    E-print Network

    Michael P. Salem

    2011-12-13

    To compute the spectrum of bubble collisions seen by an observer in an eternally-inflating multiverse, one must choose a measure over the diverging spacetime volume, including choosing an "initial" hypersurface below which there are no bubble nucleations. Previous calculations focused on the case where the initial hypersurface is pushed arbitrarily deep into the past. Interestingly, the observed spectrum depends on the orientation of the initial hypersurface, however one's ability observe the effect rapidly decreases with the ratio of inflationary Hubble rates inside and outside one's bubble. We investigate whether this conclusion might be avoided under more general circumstances, in particular placing the observer's bubble near the initial hypersurface. We find that it is not. As a point of reference, a substantial appendix reviews relevant aspects of the measure problem of eternal inflation.

  16. Bubble collisions and measures of the multiverse

    SciTech Connect

    Salem, Michael P.

    2012-01-01

    To compute the spectrum of bubble collisions seen by an observer in an eternally-inflating multiverse, one must choose a measure over the diverging spacetime volume, including choosing an ''initial'' hypersurface below which there are no bubble nucleations. Previous calculations focused on the case where the initial hypersurface is pushed arbitrarily deep into the past. Interestingly, the observed spectrum depends on the orientation of the initial hypersurface, however one's ability observe the effect rapidly decreases with the ratio of inflationary Hubble rates inside and outside one's bubble. We investigate whether this conclusion might be avoided under more general circumstances, including placing the observer's bubble near the initial hypersurface. We find that it is not. As a point of reference, a substantial appendix reviews relevant aspects of the measure problem of eternal inflation.

  17. Bubble Behavior in a Taylor Vortex

    E-print Network

    Deng, Rensheng

    We present an experimental study on the behavior of bubbles captured in a Taylor vortex. The gap between a rotating inner cylinder and a stationary outer cylinder is filled with a Newtonian mineral oil. Beyond a critical ...

  18. Universe out of a breathing bubble

    SciTech Connect

    Guendelman, Eduardo I.; Sakai, Nobuyuki

    2008-06-15

    We consider the model of a false-vacuum bubble with a thin wall where the surface energy density is composed of two different components, 'domain-wall' type and 'dust' type, with opposite signs. We find stably oscillating solutions, which we call 'breathing bubbles'. By decay to a lower mass state, such a breathing bubble could become either (i) a child universe or ii) a bubble that 'eats up' the original universe, depending on the sign of the surface energy of the domain-wall component. We also discuss the effect of the finite-thickness corrections to the thin-wall approximation and possible origins of the energy contents of our model.

  19. Motion of an intravascular axisymmetric bubble

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Eckmann, David M.; Ayyaswamy, Portonovo S.

    2003-11-01

    The motion of a gas bubble in an arteriolar blood vessel or microvessel is investigated numerically. An imposed pressure gradient drives blood flow. The full Navier-Stokes equations are solved numerically using a front tracking method. Comparative behaviors of bubbles of various ratios (effective diameter/vessel diameter) are ascertained. Effects of vessel size, magnitude of the applied pressure gradient, presence of a soluble surfactant, variations in the values of the density ratio (?_g/?_l) and viscosity ratio (?_g/?_l) on the motion and interfacial shape of the bubble are determined. The results obtained have significance in the study of activation of blood clotting, initiation of inflammation, cellular injury, and adhesion of gas bubbles to the vessel wall occurring in intravascular gas embolism. Supported by NIH R01 HL67986.

  20. A microfluidic bubble trap and oscillator.

    PubMed

    Stucki, Janick D; Guenat, Olivier T

    2015-12-01

    A new approach to trap air bubbles before they enter microfluidic systems is presented. The bubble trap is based on the combined interaction of surface tension and hydrodynamic forces. The design is simple, easy to fabricate and straightforward to use. The trap is made of tubes of different sizes and can easily be integrated into any microfluidic setup. We describe the general working principle and derive a simple theoretical model to explain the trapping. Furthermore, the natural oscillations of trapped air bubbles created in this system are explained and quantified in terms of bubble displacement over time and oscillation frequency. These oscillations may be exploited as a basis for fluidic oscillators in future microfluidic systems. PMID:26500046

  1. Shapes of Bubbles and Drops in Motion.

    ERIC Educational Resources Information Center

    O'Connell, James

    2000-01-01

    Explains the shape distortions that take place in fluid packets (bubbles or drops) with steady flow motion by using the laws of Archimedes, Pascal, and Bernoulli rather than advanced vector calculus. (WRM)

  2. Fabrication of magnetic bubble memory overlay

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Self-contained magnetic bubble memory overlay is fabricated by process that employs epitaxial deposition to form multi-layered complex of magnetically active components on single chip. Overlay fabrication comprises three metal deposition steps followed by subtractive etch.

  3. Universe out of a breathing bubble

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo I.; Sakai, Nobuyuki

    2008-06-01

    We consider the model of a false-vacuum bubble with a thin wall where the surface energy density is composed of two different components, “domain-wall” type and “dust” type, with opposite signs. We find stably oscillating solutions, which we call “breathing bubbles.” By decay to a lower mass state, such a breathing bubble could become either (i) a child universe or ii) a bubble that “eats up” the original universe, depending on the sign of the surface energy of the domain-wall component. We also discuss the effect of the finite-thickness corrections to the thin-wall approximation and possible origins of the energy contents of our model.

  4. Interaction effects in thermocapillary bubble migration

    NASA Technical Reports Server (NTRS)

    Meyyappan, M.; Wilcox, W. R.; Subramanian, R. S.

    1982-01-01

    Two bubbles migrating along their line of centers under the influence of an imposed thermal gradient are considered in the quasi-static limit. Results are reported for representative values of the governing parameters.

  5. Methane bubbling: from speculation to quantification

    NASA Astrophysics Data System (ADS)

    Grinham, A. R.; Dunbabin, M.; Yuan, Z.

    2013-12-01

    Rates of methane bubbling (ebullition) represent a notoriously difficult emission pathway to quantify with highly variable spatial and temporal changes. However, the importance of bubbling fluxes in terms of total emissions is increasingly recognised from a number of different globally relevant natural systems including lakes, reservoirs and wetlands. This represents a critical challenge to current survey efforts to quantify greenhouse gas emissions and reduce the uncertainty associated with bubbling fluxes. A number of different methods have been proposed to overcome this challenge including bubble traps, floating chambers, echo sounders, laser spectrography and camera systems. Each method has relative merits and deficiencies with all trading-off the ability to directly quantify methane and provide spatial and temporal coverage. Here we present a novel method that allows direct measurement of methane bubble concentration as well as the ability to persistently monitor a wide spatial area. Central to the monitoring system is an Autonomous Surface Vessel (ASV) and an Optical Methane Detector (OMD). The ASV is equipped with solar panels and uses electric motors for propulsion to allow persistent environmental monitoring. The OMD has a path length of 1.3 m and 7 Hz sampling so a typical mission of 3 hours at 1 m s-1 covers an area in excess of 10 000 m2 and over 65 000 data points. The system was assessed on four sub-tropical freshwater reservoirs of varying surface area (0.5 to 100 km2), age (2 to 65 y) and catchment land use (40 to 90% natural vegetation cover). Each reservoir had unique challenges in terms of navigation and field conditions to test feasibility of this method. Deployment length varied from a single day to over 4 months to test method durability. In addition to ASV bubble surveys, floating static chambers were deployed to determine diffusive fluxes. Localised instantaneous bubble flux rates within a single reservoir ranged over three orders of magnitude from 500 to 100 000 mg m-2 d-1 depending on time of day and water depth. Average storage bubble flux rates between reservoirs varied by two orders of magnitude from 1 200 to 15 000 mg m-2 d-1, with the primary driver likely to be catchment forest cover. The relative contribution of bubbling to total fluxes varied from 10% to more than 90% depending on the reservoir and time of sampling. This method was consistently shown to greatly improve the spatial mapping and quantification of methane bubbling rates from reservoir surfaces and reduces the uncertainty associated with the determining the relative contribution of bubbling to total flux.

  6. Interaction of Two Differently Sized Bubbles in a Free Field

    NASA Astrophysics Data System (ADS)

    Chew, Lup Wai; Khoo, Boo Cheong; Klaseboer, Evert; Ohl, Siew-Wan

    The interaction between two different sized (spark created, non-equilibrium) bubbles is studied by using high speed photography. The bubble size ranges from 2 to 7 mm. The experimental results are compared to that of the similar sized bubbles reported in the literature. Interestingly, all the four major behaviors of bubble-bubble interactions (i.e. 'bubble-collapsed' induced liquid jets directed away from each other, liquid jets directed towards each other, bubble coalescence and the 'catapult' effect) are observed which bear much similarity to that found for similar sized bubbles' interaction. The main parameters studied/varied are the size of the bubbles, the dimensionless separation distance and the phase difference between the two bubbles. The results obtained are consistent with the cases of similar sized bubbles reported in the literature, with each type of behavior occupying a distinct region in the graphical plot. This indicates that the results for the (special) similar sized bubbles can be generalized to cases with different sized bubbles. Many of the real life applications such as cavitations corrosions often involve bubbles with significant size difference, thus the present findings are useful in predicting the behavior of multiple bubbles in many situations.

  7. Quantum nucleation of false-vacuum bubbles

    SciTech Connect

    Fischler, W.; Morgan, D.; Polchinski, J. )

    1990-04-15

    We show that a small bubble of false vacuum can tunnel to the critical size for inflation, and calculate the amplitude in leading WKB approximation. An initially nonsingular space becomes an exterior space plus a baby universe (which contains the bubble), joined by a black-hole singularity. We work in a Hamiltonian formalism; the corresponding Euclidean bounce is shown to have a degenerate vierbein.

  8. Acoustic waves in polydispersed bubbly liquids

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Gubaidullina, D. D.; Fedorov, Yu V.

    2014-11-01

    The propagation of acoustic waves in polydispersed mixtures of liquid with two sorts of gas bubbles each of which has its own bubble size distribution function is studied. The system of the differential equations of the perturbed motion of a mixture is presented, the dispersion relation is obtained. Equilibrium speed of sound, low-frequency and high-frequency asymptotes of the attenuation coefficient are found. Comparison of the developed theory with known experimental data is presented.

  9. Gravity waves from cosmic bubble collisions

    SciTech Connect

    Salem, Michael P.; Saraswat, Prashant; Shaghoulian, Edgar E-mail: ps88@stanford.edu

    2013-02-01

    Our local Hubble volume might be contained within a bubble that nucleated in a false vacuum with only two large spatial dimensions. We study bubble collisions in this scenario and find that they generate gravity waves, which are made possible in this context by the reduced symmetry of the global geometry. These gravity waves would produce B-mode polarization in the cosmic microwave background, which could in principle dominate over the inflationary background.

  10. Topside sounder observations of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Dyson, P. L.; Benson, R. F.

    1978-01-01

    Large scale regions of depleted equatorial ionospheric plasma, called equatorial bubbles, are investigated using topside sounder data. The sounder's unique remote measuring capability enables the magnetic field-aligned nature of the bubbles to be investigated. A search of all available Alouette 2 and ISIS 1 ionograms during nighttime perigee passes near the magnetic equator has revealed a variety of echo signatures associated with bubbles. In addition to a sudden drop in electron density, these signatures usually include in situ spread F and ducted traces. The ducted traces have been used to determine the electron density distribution and to infer changes in ion composition along the magnetic field line within the duct associated with the bubble. In some cases it can be determined that the bubble is asymmetric with respect to the magnetic equator. Even though such features require 3 dimensional models for their explanation, the great field-aligned extent of the bubbles (relative to their cross section) suggests that current theories, which ignore variations along the magnetic field, are still applicable.

  11. Understanding air-gun bubble behavior

    SciTech Connect

    Johnson, D.T. )

    1994-11-01

    An air-gun bubble behaves approximately as a spherical bubble of an ideal gas in an infinite volume of practically incompressible water. With this simplification, the equation of bubble motion and its far-field signature is more understandable than with the more exact theory commonly cited in the literature. The terms of the equation of bubble motion are explained using elementary physics and mathematics, computation of numerical results is outlined, and an example signature is shown. An air-gun bubble is analogous to a simple harmonic oscillator consisting of a mass on a spring, with an equivalent mass equal three times that of the water displaced by the bubble, and air pressure following an ideal gas law corresponding to a spring. With this understanding, one is prepared to deal with the effects of interactions among air guns and with the high-order terms and other features that must be included to model the air-gun signature of actual seismic source arrays.

  12. Integral momentum balance on a growing bubble

    NASA Astrophysics Data System (ADS)

    Siedel, S.; Cioulachtjian, S.; Robinson, A. J.; Bonjour, J.

    2013-12-01

    The integral momentum balance on a growing boiling bubble is investigated. All forces acting on the bubble are detailed, and the methods and assumptions used to calculate their integral resultants are discussed. The momentum balance computation is then performed using experimental data of bubbles growing on an artificial nucleation site in a controlled environment. The relative magnitude of each force component is compared, showing negligible dynamic forces, upwards forces composed mainly of the buoyancy and contact pressure components, and downwards forces being exclusively due to surface tension and adhesion. The difficulty encountered in measuring the apparent contact angle due to mirage effects has been highlighted; a new method, fitting numerically simulated bubble profile to the contour measurements has been proposed and used to correct the effects of refraction on the bubble profile determination. As all forces acting on the bubble were measured, it was possible to estimate the residuals of the momentum balance. Their small value validated both the expressions used for the forces and the methodology to evaluate their value.

  13. An Inside Out View of Bubbles

    E-print Network

    You-Hua Chu; Robert A. Gruendl; Martin A. Guerrero

    2002-12-06

    Fast stellar winds can sweep up ambient media and form bubbles. The evolution of a bubble is largely controlled by the content and physical conditions of the shocked fast wind in its interior. This hot gas was not clearly observed until the recent advent of Chandra and XMM-Newton X-ray observatories. To date, diffuse X-ray emission has been unambiguously detected from two circumstellar bubbles blown by WR stars, four planetary nebulae, and two superbubbles blown by young clusters. Model fits to the X-ray spectra show that the circumstellar bubbles are dominated by hot gas with low temperatures (= 5x10^6 K). In all cases, large discrepancies in the X-ray luminosity are found between observations and conventional models of bubbles. Future theoretical models of bubbles need to re-examine the validity of heat conduction and take into account realistic microscopic processes such as mass loading from dense clumps/knots and turbulent mixing. Chandra ACIS-S observation of NGC 6888 will shed light on these astrophysical processes.

  14. Nonlinear Photon Bubbles Driven by Buoyancy

    E-print Network

    Mitchell C. Begelman

    2005-09-13

    We derive an analytic model for nonlinear "photon bubble" wave trains driven by buoyancy forces in magnetized, radiation pressure-dominated atmospheres. Continuous, periodic wave solutions exist when radiative diffusion is slow compared to the dynamical timescale of the atmosphere. We identify these waves with the saturation of a linear instability discovered by Arons - therefore, these wave trains should develop spontaneously. The buoyancy-driven waves are physically distinct from photon bubbles in the presence of rapid diffusion, which evolve into trains of gas pressure-dominated shocks as they become nonlinear. Like the gas pressure-driven shock trains, buoyancy-driven photon bubbles can exhibit very large density contrasts, which greatly enhance the flow of radiation through the atmosphere. However, steady-state solutions for buoyancy-driven photon bubbles exist only when an extra source of radiation is added to the energy equation, in the form of a flux divergence. We argue that this term is required to compensate for the radiation flux lost via the bubbles, which increases with height. We speculate that an atmosphere subject to buoyancy-driven photon bubbles, but lacking this compensating energy source, would lose pressure support and collapse on a timescale much shorter than the radiative diffusion time in the equivalent homogeneous atmosphere.

  15. Dramatic improvement of membrane performance for microalgae harvesting with a simple bubble-generator plate.

    PubMed

    Hwang, Taewoon; Oh, You-Kwan; Kim, Bohwa; Han, Jong-In

    2015-06-01

    To overcome fouling issue in membrane-based algae harvesting and thus make an otherwise promising harvesting option more competitive, a bubble-generator plate was developed. According to computational fluid dynamics analysis, the plate generated substantial hydrodynamic power in terms of high pressure, velocity, and shear stress. When installed in a membrane filtration system with membranes of different surface and structural characteristics (one prepared by the phase inversion method, and a commercial one) the bubble-generator was indeed effective in reducing fouling. Without the plate, the much cheaper homemade membrane had the similar performance as the commercial one. Use of the bubble-generator considerably improved the performance of both membranes, and revealed a valuable synergy with the asymmetrical structure of the homemade membrane. This result clearly showed that the ever-problematic fouling could be mitigated in a rather easy manner, and in so doing, that membrane technology could indeed become a practical option for algae harvesting. PMID:25870035

  16. The use of micropores for fine bubble creation in the removal of PCE in groundwater

    SciTech Connect

    Kerfoot, W.B.; McCulloch, W.; Connors, J.

    1996-12-01

    The use of microporous Spargepoint{reg_sign} to create fine bubbles, which easily penetrate sandy formations to allow fluid flow, has unexpected benefits when used with multiple gas systems. Microfine bubbles accelerate the transfer rate of PCE from aqueous to gaseous state. The bubble rise transfers the PCE to the vadose zone. The ten-fold difference in surface-to-volume ratio of Spargepoint{reg_sign} microbubbles compared to bubbles from well screens results in a three-fold improvement in transfer rates. To block the gaseous state from reverting to surface dissolved state in the vadose (unsaturated) zone, a microprocessor system shuttles an oxidizing gas through the vadose zone to chemically degrade the transported PCE. Destruction of the PCE and vacuum extraction of gaseous byproducts eliminates reflux of the contaminant under rainfall conditions in the unsaturated zone. Use of a 50 CFM sparge system at the Crossroads Mall site in Carson City, Nevada resulted in extremely rapid removal of PCE.

  17. Vibration and Nonlinear Resonance in the Break-up of an Underwater Bubble

    E-print Network

    Lai, Lipeng; Fezzaa, Kamel; Zhang, Wendy W; Nagel, Sidney R

    2013-01-01

    We use high-speed X-ray phase-contrast imaging, weakly nonlinear analysis and boundary integral simulations to characterize the final stage of underwater bubble break-up. The X-ray imaging study shows that an initial azimuthal perturbation to the shape of the bubble neck gives rise to oscillations that increasingly distort the cross-section shape. These oscillations terminate in a pinch-off where the bubble surface develops concave regions that contact similar to what occurs when two liquid drops coalesce. We also present a weakly nonlinear analysis that shows that this coalescence-like mode of pinch-off occurs when the initial shape oscillation interferes constructively with the higher harmonics it generates and thus reinforce each other's effects in bringing about bubble break-up. Finally we present numerical results that confirm the weakly nonlinear analysis scenario as well as provide insight into observed shape reversals. They demonstrate that when the oscillations interfere destructively, a qualitativel...

  18. Airglow-imaging observation of plasma bubble disappearance at geomagnetically conjugate points

    NASA Astrophysics Data System (ADS)

    Shiokawa, Kazuo; Otsuka, Yuichi; Lynn, Kenneth JW; Wilkinson, Philip; Tsugawa, Takuya

    2015-12-01

    We report the first observation of the disappearance of a plasma bubble over geomagnetically conjugate points. It was observed by airglow imagers at Darwin, Australia (magnetic latitude: -22°N) and Sata, Japan (21°N) on 8 August 2002. The plasma bubble was observed in 630-nm airglow images from 1530 (0030 LT) to 1800 UT (0300 LT) and disappeared equatorward at 1800 to 1900 UT (0300 to 0400 LT) in the field of view. The ionograms at Darwin and Yamagawa (20 km north of Sata) show strong spread-F signatures at approximately 16 to 21 UT. At Darwin, the F-layer virtual height suddenly increased from approximately 200 to approximately 260 km at the time of bubble disappearance. However, a similar F-layer height increase was not observed over the conjugate point at Yamagawa, indicating that this F-layer rise was caused not by an eastward electric field but by enhancement of the equatorward thermospheric wind over Darwin. We think that this enhancement of the equatorward neutral wind was caused by an equatorward-propagating large-scale traveling ionospheric disturbance, which was identified in the north-south keogram of 630-nm airglow images. We speculate that polarization electric field associated with this equatorward neutral wind drive plasma drift across the magnetic field line to cause the observed bubble disappearance.

  19. Longevity Tests of High-Sensitivity BD-PND Bubble Dosimeters

    SciTech Connect

    Radev, R; Carlberg, E

    2002-07-09

    Medium- and very-high-sensitivity neutron bubble dosimeters (BD-PNDs) made by Bubble Technology Industries (BTI) were used to study the life span of such dosimeters in a standard setup with a {sup 252}Cf source. Although data on the longevity of bubble dosimeters with low and medium sensitivity exist, such data for dosimeters with high and very high sensitivity are not readily available. The manufacturer guarantees optimum dosimeter performance for 3 months after receipt. However, it is important to know the change in the dosimeters' characteristics with time, especially after the first 3 months. The long-term performance of four sets of very high sensitivity and one set of medium-sensitivity bubble dosimeters was examined for periods of up to 13 months. During that time, the detectors were exposed and reset more than 20 times. Although departures from initial detection sensitivity were observed in several cases, the detectors indicated a significantly longer life span than stated in the manufacturer's warranty. In addition, the change in the number of bubbles and in evaluated neutron dose as a function of the time from the end of exposure until the dosimeters were read was investigated.

  20. Fermi bubbles as a source of cosmic rays above 1015 eV

    NASA Astrophysics Data System (ADS)

    Chernyshov, D. O.; Cheng, K. S.; Dogiel, V. A.; Ko, C. M.

    2014-11-01

    Fermi bubbles are giant gamma-ray structures extended north and south of the Galactic center with characteristic sizes of order of 10 kpc recently discovered by Fermi Large Area Telescope. Good correlation between radio and gamma-ray emission in the region covered by Fermi bubbles implies the presence of high-energy electrons in this region. Since it is relatively difficult for relativistic electrons of this energy to travel all the way from the Galactic sources toward Fermi bubbles one can assume that they accelerated in-situ. The corresponding acceleration mechanism should also affect the distribution of the relativistic protons in the Galaxy. Since protons have much larger lifetimes the effect may even be observed near the Earth. In our model we suggest that Fermi bubbles are created by acceleration of electrons on series of shocks born due to periodic star accretions by supermassive black hole Sgr A*. We propose that hadronic CR within the 'knee' of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Reacceleration of these particles in the Fermi Bubble produces CRs beyond the knee. This model provides a natural explanation of the observed CR flux, spectral indexes, and matching of spectra at the knee.

  1. The dynamics of Bow-shock Pulsar Wind Nebula: Reconstruction of multi-bubbles

    NASA Astrophysics Data System (ADS)

    Yoon, Doosoo; Heinz, Sebastian

    2014-08-01

    Bow-shock pulsar wind nebulae (PWNe) exhibit a characteristic cometary shape due to the supersonic motion of the pulsar interacting with the interstellar medium (ISM). One of the spectacular bow-shock is the Guitar Nebula, which is produced by the fast pulsar PSR B2224+65 (vpsr > 1000 km s-1 ), and consists of a bright head, a faint neck, a two larger bubbles. We present that the peculiar mophology arises from variations in the interstellar medium density. We perform 3-D hydrodynamic simulation to understand the evolution of the pulsar as its moves through the density discontinuity. We found that when the pulsar encounters the low-density medium, the pressure balance at the head of the bow shock begins to collapse, producing the second bubble. The expansion rate of the bubble is related to the properties of both the pulsar and the ambient medium. Assuming that the pulsar’s properties, including spin-down energy, are constant, we conclude that the ambient density around the second bubble should be 4.46 times larger than around the first bubble in the Guitar body. We further found that when the pulsar encounters the inclined density dicontinuity, it can produce the asymmetric shape of the bow shock observed in a subset of bow-shock PWNe including J2124-3358.

  2. Generation of Shock-Wave Disturbances at Plasma-Vapor Bubble Oscillation

    NASA Astrophysics Data System (ADS)

    Kuznetsova, N. S.; Yudin, A. S.; Voitenko, N. V.

    2015-11-01

    The complex physical and mathematical model describing all steps of plasma-vapor bubble evolution in the system of the water-ground condensed media is presented. Discharge circuit operation, discharge plasma channel expansion, its transformation into the vapor-plasma bubble and its pulsation, pressure wave generation and propagation of the mechanical stress waves in the ground are self-consistently considered in the model. The model allows investigation of the basic laws of stored energy transformation into the discharge plasma channel, next to the plasma-vapor bubble and transformation of this energy to the energy of pressure wave compressing the surrounding ground. Power characteristics of wave disturbances generated by gas-vapor bubble oscillation in liquid depending on the circuit parameters are analyzed for the prediction of the ground boundary displacement. The dynamics of the shock-wave propagation in water-ground condensed media depending on the rate of the plasma channel energy release is investigated. Simulation of the shock-wave phenomena at a plasma-vapor bubble oscillation in condensed media consecutively describes the physical processes underlying technology for producing piles by electro-discharge stuffing. The quantitative model verified by physical experimental tests will allow optimization of pulse generator parameters and electrode system construction of high-voltage equipment.

  3. DISCOVERY OF AN EXPANDING MOLECULAR BUBBLE IN ORION BN/KL

    SciTech Connect

    Zapata, Luis A.; Loinard, Laurent; Rodriguez, Luis F.; Schmid-Burgk, Johannes; Ho, Paul T. P.; Patel, Nimesh A.

    2011-01-01

    During their infancy, stars are well known to expel matter violently in the form of well-defined, collimated outflows. A fairly unique exception is found in the Orion Becklin-Neugebauer/Kleinmann-Low star-forming region where a poorly collimated and somewhat disordered outflow composed of numerous elongated 'finger-like' structures was discovered more than 30 years ago. In this Letter, we report the discovery in the same region of an even more atypical outflow phenomenon. Using {sup 13}CO(2-1) line observations made with the Submillimeter Array, we have identified there a 500-1000 year old, expanding, roughly spherically symmetric bubble whose characteristics are entirely different from those of known outflows associated with young stellar objects. The center of the bubble coincides with the initial position of a now defunct massive multiple stellar system suspected to have disintegrated 500 years ago and with the center of symmetry of the system of molecular fingers surrounding the Kleinmann-Low nebula. We hypothesize that the bubble is made up of gas and dust that used to be part of the circumstellar material associated with the decayed multiple system. The Orion hot core, recently proposed to be the result of the impact of a shock wave onto a massive dense core, is located toward the southeast quadrant of the bubble. The supersonic expansion of the bubble and/or the impact of some low-velocity filaments provide a natural explanation for its origin.

  4. Bubble merging in breathing DNA as a vicious walker problem in opposite potentials

    E-print Network

    Jonas Nyvold Pedersen; Mikael Sonne Hansen; Tomas Novotny; Tobias Ambjornsson; Ralf Metzler

    2009-06-04

    We investigate the coalescence of two DNA-bubbles initially located at weak domains and separated by a more stable barrier region in a designed construct of double-stranded DNA. In a continuum Fokker-Planck approach, the characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribution of coalescence positions along the barrier. Below the melting temperature, we find a Kramers-type barrier crossing behavior, while at high temperatures, the bubble corners perform drift-diffusion towards coalescence. In the calculations, we map the bubble dynamics on the problem of two vicious walkers in opposite potentials. We also present a discrete master equation approach to the bubble coalescence problem. Numerical evaluation and stochastic simulation of the master equation show excellent agreement with the results from the continuum approach. Given that the coalesced state is thermodynamically stabilized against a state where only one or a few base pairs of the barrier region are re-established, it appears likely that this type of setup could be useful for the quantitative investigation of thermodynamic DNA stability data as well as the rate constants involved in the unzipping and zipping dynamics of DNA, in single molecule fluorescence experiments.

  5. [Gas bubble disease of fish].

    PubMed

    Bohl, M

    1997-05-01

    Gas bubble disease (GBD), a non-infectious, environmentally/physically induced trauma, is caused by an increase in the dissolved gas pressure above the ambient air pressure (supersaturation). Frequently the cause is an increased partial pressure of nitrogen-especially in spring-/groundwater. All fish species as well as amphibians and aquatic invertebrates are susceptible. Fish species and age groups are different sensitive; swim up fry is very endangered. The disease may occur in a chronic form at approximately 103% and in an acute form at above 110/115% total gas pressure (TGP). Fish, especially fry, with the chronic form die slowly without symptoms. The clinical symptoms of the acute form are disorientation, subcutaneous emphysema, embolism, exophthalmus mostly only on one side, swimming near the water surface with darkened skin, haemorrhages and high mortality. Losses increase with increased TGP. Generally, mortality in the chronic form increases by secondary infections of emphysematous tissue. As technical processes may be the cause for an increased total gas pressure, such as water pumping, heating water or mixing cold with warm water, in this context we could speak from a "technopathy". The following "therapeutic" measurement is recommended: avoid causal factors, transfer damaged fish in expanded water, turn off the cause, compensate the pressure in deeper water, if possible. PMID:9289892

  6. Density rise experiment on PLT

    SciTech Connect

    Strachan, J.D.; Bretz, N.; Mazzucato, E.

    1982-05-01

    The evolution of the density profile in PLT during intense gas puffing is documented and analyzed. Measurements of the spectrum of low energy edge neutrals and of the change in central neutral density indicate that charge-exchange processes alone cannot account for the central density rise. The transient density profile changes can be reproduced numerically by a diffusivity of approx. 10/sup 4/ cm/sup 2//s, and a spatially averaged inward flow of 10/sup 3/ cm/s. These transport coefficients are 10 ..-->.. 10/sup 2/ times larger than neoclassical. The ion energy confinement is reduced, the small scale density fluctuations are increased, and runaway electrons losses are increased during the density rise.

  7. Falling and Rising in Water

    ERIC Educational Resources Information Center

    Mohazzabi, Pirooz

    2010-01-01

    When an object is immersed in a liquid and released, it may sink to the bottom or rise to the surface and float. If the object's density is greater than that of the liquid, it sinks. If the object's density is less than the density of the liquid, it floats. In the special case when the object's density matches the density of the liquid, it will…

  8. Dynamics and switching processes for magnetic bubbles in nanoelements

    SciTech Connect

    Moutafis, C.; Bland, J. A. C.; Komineas, S.

    2009-06-01

    We study numerically the dynamics of a magnetic bubble in a disk-shaped magnetic element which is probed by a pulse of a magnetic field gradient. Magnetic bubbles are nontrivial magnetic configurations which are characterized by a topological (skyrmion) number N and they have been observed in mesoscopic magnetic elements with strong perpendicular anisotropy. For weak fields we find a skew deflection of the axially symmetric N=1 bubble and a subsequent periodic motion around the center of the dot. This gyrotropic motion of the magnetic bubble is shown here for the first time. Stronger fields induce switching of the N=1 bubble to a bubble which contains a pair of Bloch lines and has N=0. The N=0 bubble can be switched back to a N=1 bubble by applying again an external field gradient. Detailed features of the unusual bubble dynamics are described by employing the skyrmion number and the moments of the associated topological density.

  9. Dynamics of an aspherical bubble oscillating near a rigid sphere

    NASA Astrophysics Data System (ADS)

    Kurihara, Eru; Fujino, Kuninori; Hamakawa, Hiromitsu

    2015-10-01

    Behavior of a non-spherical bubble oscillating near a rigid sphere was investigated in the framework of the Lagrangian formalism and multipole expansion of the bubble boundary. In this study, shape oscillations of the bubble are taken into account up to the third oscillation mode (octupole mode) to illustrate the liquid jet formation on the bubble surface. To account for interaction between the bubble and the rigid sphere, corrections of the velocity potential in a liquid containing the bubble and the sphere will be considered up to terms of fifth order in the inverse separation distance. Derived equations describes typical bubble behavior such as volume oscillations, translation, and shape oscillations. This paper presents the motion of the bubble in the vicinity of the rigid sphere by using numerical computations of the equations. In particular, it is discussed that the dependencies of bubble behavior on the density and radius of the sphere.

  10. Optical monitoring of bubble size and shape in a pulsating bubble surfactometer

    E-print Network

    Barron, Annelise E.

    ,1 Nathan J. Brown,1 Cindy W. Wu,1 Kevin W. Germino,2 Ellen K. Kohlmeir,1 Edward P. Ingenito,3 in final form 22 March 2005 Seurynck, Shannon L., Nathan J. Brown, Cindy W. Wu, Kevin W. Germino, Ellen K monitoring of bubble size and shape in a pulsating bubble surfactom- eter. J Appl Physiol 99: 624­633, 2005

  11. Microfluidic Bubble Logic Manu Prakash

    E-print Network

    water- repelling surface that has a characteristic of directional anisotropy to fluid resistance. The discovery, made while studying the integument of water-walking insects, helps rationalize the origin of thrust and hence pro

  12. Determination of dynamical changes in sputtering and retention on bubble-growing tungsten under helium plasma irradiation by binary-collision-approximation-based simulation

    NASA Astrophysics Data System (ADS)

    Saito, Seiki; Nakamura, Hiroaki; Tokitani, Masayuki; Sakaue, Ryota; Yoshida, Kenta

    2016-01-01

    Binary-collision-approximation-based (BCA) simulation is performed for the investigation of bubble formation and the influence of the growth of bubbles on the characteristics of tungsten as a plasma-facing material. The BCA simulation provides the time evolution of the surface modification, the sputtering yield of tungsten atoms, and the absorption rate and retention of helium atoms for incident energies from 100 to 1000 eV and fluences up to 1.0 × 1022 He/m2. The following results are obtained: the tungsten material is eroded by repeated swelling and exfoliation near the surface, the sputtering yield of the bubble-formimg tungsten is lower than that of a material without bubbles, and the absorption rate increases as bubbles grow.

  13. Financial Bubbles, Real Estate Bubbles, Derivative Bubbles, and the Financial and Economic Crisis

    NASA Astrophysics Data System (ADS)

    Sornette, Didier; Woodard, Ryan

    The financial crisis of 2008, which started with an initially well-defined epicenter focused on mortgage backed securities (MBS), has been cascading into a global economic recession, whose increasing severity and uncertain duration has led and is continuing to lead to massive losses and damage for billions of people. Heavy central bank interventions and government spending programs have been launched worldwide and especially in the USA and Europe, with the hope to unfreeze credit and bolster consumption. Here, we present evidence and articulate a general framework that allows one to diagnose the fundamental cause of the unfolding financial and economic crisis: the accumulation of several bubbles and their interplay and mutual reinforcement have led to an illusion of a "perpetual money machine" allowing financial institutions to extract wealth from an unsustainable artificial process. Taking stock of this diagnostic, we conclude that many of the interventions to address the so-called liquidity crisis and to encourage more consumption are ill-advised and even dangerous, given that precautionary reserves were not accumulated in the "good times" but that huge liabilities were. The most "interesting" present times constitute unique opportunities but also great challenges, for which we offer a few recommendations.

  14. Determination of Prominence Plasma ? from the Dynamics of Rising Plumes

    NASA Astrophysics Data System (ADS)

    Hillier, Andrew; Hillier, Richard; Tripathi, Durgesh

    2012-12-01

    Observations by the Hinode satellite show in great detail the dynamics of rising plumes, dark in chromospheric lines, in quiescent prominences that propagate from large (~10 Mm) bubbles that form at the base of the prominences. These plumes present a very interesting opportunity to study magnetohydrodynamic (MHD) phenomena in quiescent prominences, but obstacles still remain. One of the biggest issues is that of the magnetic field strength, which is not easily measurable in prominences. In this paper we present a method that may be used to determine a prominence's plasma ? when rising plumes are observed. Using the classic fluid dynamic solution for flow around a circular cylinder with an MHD correction, the compression of the prominence material can be estimated. This has been successfully confirmed through simulations; application to a prominence gave an estimate of the plasma ? as ? = 0.47 ± 0.079 to 1.13 ± 0.080 for the range ? = 1.4-1.7. Using this method it may be possible to estimate the plasma ? of observed prominences, therefore helping our understanding of a prominence's dynamics in terms of MHD phenomena.

  15. Herds of methane chambers grazing bubbles

    NASA Astrophysics Data System (ADS)

    Grinham, Alistair; Dunbabin, Matthew

    2014-05-01

    Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique, localised bubbling zones on the water storage were found to produce over 50,000 mg m-2 d-1 and the areal extent ranged from 1.8 to 7% of the total reservoir area. The drivers behind these changes as well as lessons learnt from the system implementation are presented. This system exploits relatively cheap materials, sensing and computing and can be applied to a wide variety of aquatic and terrestrial systems.

  16. Solving the Mystery of the Fermi Bubbles?

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.; Cumalat, John Perry

    2015-05-01

    The Fermi Bubbles are large structures that stretch symmetrically between galactic latitudes of -55 degrees and +55 degress and between galactic longitudes of -45 degrees and +45 degrees. For almost a decade they have been under the intense scrutiny of the Fermi-Large Area Telescope, a gamma-ray detector in orbit about the earth. The Bubbles remain mysterious: Are the gamma-rays - with energies up to a few hundred GeV - produced by hadrons or do they come from Inverse Compton scattering of galactic electrons with the low energy interstellar radiation field? Why are the edges of the bubbles only 3 degree wide? How old are the bubbles.For some time we have been considering a non-Newtonian Cosinusoidal potential U=-G M Cos[ko r]/r, and its complement, a non-Coulombic electric potential U=Q Exp[-ko r]. In both cases, ko =2 pi/400 pc. In this talk we present evidence that our putative potentials acting in concert can help answer the mysteries of the Bubbles.

  17. Bubble chamber as a trace chemical detector

    SciTech Connect

    Luo, Xin; McCreary, E.I.; Atencio, J.H.

    1996-12-31

    We have developed a novel concept of trace chemical analysis by detecting optical absorption in superheated liquid. The technique exploits the fact that many common solvents can be extensively superheated for a short period of time while maintaining their liquid state. During this time, the superheated liquid is extremely sensitive to boiling at nucleation sites produced by energy deposition. A small energy deposition can initiate nucleation within the superheated liquid. The nucleation center of critical size or larger will spontaneously grow through evaporation of the superheated liquid. Observation of bubbles in the superheated liquid in some sense provides `amplification` for the initial energy deposition. Bubble chambers containing superheated liquids have been used to detect energetic particles, now we demonstrate that we can use a bubble chamber to detect trace species in superheated liquid propane by observing the bubble formation initiated by optical absorption. Crystal violet used as an initial test case can be detected at the sub-per-trillion level. The mechanism for bubble formation and ideas for further improvement will also be discussed.

  18. Facing up to sea rise.

    PubMed

    Pernetta, J

    1994-01-01

    A milder and less extreme climate, abundance of fish and mollusks, transport and communication, and fertile land at low altitudes have drawn humans to coastal areas and river valleys for centuries. More than 60% of the world's population occupy the 150 km closest to the coast. Millions of tourists come to coastlines and small tropical islands for recreation. About 80% of the global fish supply originates from the 19 km closest to the shore. Fish are the only protein source for the rapidly growing populations in many developing countries. Global climate change is increasing the sea level so much that by 2050, the mean increase will be about 38 cm (24-52 cm). The Intergovernmental Panel on Climate Change (IPCC) notes that the effects of sea level rise will differ from place to place. Direct effects are flooding of low-lying coastal areas and increased erosion rates. An indirect effect includes higher water tables and intrusion of saline water into aquifers, resulting in loss of fresh ground water resources. These effects may make coastal areas less suitable for settlement and agriculture. Coral sand settled on top of coral reefs makes up the unstable, small atoll islands of the Pacific and Indian Oceans. People on these islands depend almost entirely on the sea for their livelihood and on the small amount of fresh water with which they grow root crops and drink. Rising sea levels also threaten low lying countries, e.g., Bangladesh, and densely populated deltas, e.g., the Nile. Changes in the frequency and severity of flooding will increase Bangladesh's dependence on foreign aid. IPCC sees 3 possible responses to the rising sea level: defense, retreat, and accommodation. Accommodation is the only practical choice for many developing countries. A switch from rice cultivation to mariculture of prawns and fish is an example of accommodation. We need to more completely understand the natural processes in coastal environments to be better prepared for climate change. PMID:12287486

  19. Sea Level Rise in Tuvalu

    NASA Astrophysics Data System (ADS)

    Lin, C. C.; Ho, C. R.; Cheng, Y. H.

    2012-04-01

    Most people, especially for Pacific Islanders, are aware of the sea level change which may caused by many factors, but no of them has deeper sensation of flooding than Tuvaluan. Tuvalu, a coral country, consists of nine low-lying islands in the central Pacific between the latitudes of 5 and 10 degrees south, has the average elevation of 2 meters (South Pacific Sea Level and Climate Monitoring Project, SPSLCMP report, 2006) up to sea level. Meanwhile, the maximum sea level recorded was 3.44m on February 28th 2006 that damaged Tuvaluan's property badly. Local people called the flooding water oozes up out of the ground "King Tide", that happened almost once or twice a year, which destroyed the plant, polluted their fresh water, and forced them to colonize to some other countries. The predictable but uncontrollable king tide had been observed for a long time by SPSLCMP, but some of the uncertainties which intensify the sea level rise need to be analyzed furthermore. In this study, a span of 18 years of tide gauge data accessed from Sea Level Fine Resolution Acoustic Measuring Equipment (SEAFRAME) are compared with the satellite altimeter data accessed from Archiving Validation and Interpretation of Satellite Data in Oceanography (AVISO). All above are processed under the limitation of same time and spatial range. The outcome revealed a 9.26cm difference between both. After the tide gauge data shifted to the same base as altimeter data, the results showed the unknown residuals are always positive under the circumstances of the sea level rise above 3.2m. Apart from uncertainties in observing, the residual reflected unknown contributions. Among the total case number of sea level rise above 3.2m is 23 times, 22 of which were recorded with oceanic warm eddy happened simultaneously. The unknown residual seems precisely matched with oceanic warm eddies and illustrates a clear future approach for Tuvaluan to care for.

  20. Geyser preplay and eruption in a laboratory model with a bubble trap

    NASA Astrophysics Data System (ADS)

    Adelstein, Esther; Tran, Aaron; Saez, Carolina Muñoz; Shteinberg, Alexander; Manga, Michael

    2014-09-01

    We present visual observations and temperature measurements from a laboratory model of a geyser. Our model incorporates a bubble trap, a zone in which vapor can accumulate in the geyser's subsurface plumbing, in a vertical conduit connected to a basal chamber. Analogous features have been identified at several natural geysers. We observe three types of eruptions: 1) rising bubbles eject a small volume of liquid in a weak spout (small eruption); 2) boiling occurs in the conduit above the bubble trap (medium eruption); and 3) boiling occurs in the conduit and chamber (large eruption). In the last two cases, boiling in the conduit causes a rapid hydrostatic pressure drop that allows for the rise and eruption of liquid water in a vigorous spout. Boiling initiates at depth rather than propagating downward from the surface. In a single eruption cycle, multiple small eruptions precede every medium and large eruption. At least one eruption cycle that culminates in a medium eruption (i.e., a quiescent period followed by a series of small eruptions leading up to a medium eruption) precedes every eruption cycle that culminates in a large eruption. We find that the transfer of fluid with high enthalpy to the upper conduit during small and medium eruptions is necessary to heat the upper conduit and prepare the system for the full boiling required for a large eruption. The placement of the bubble trap midway up the conduit allows for more efficient heating of the upper conduit. Our model provides insight into the influence of conduit geometry on eruption style and the importance of heat transfer by smaller events in preparing the geyser system for eruption.

  1. Energetic feedback from the Galactic center into the halo: probing the magnetic field structure of the Fermi bubbles

    NASA Astrophysics Data System (ADS)

    Su, Meng; Hales, Christopher A.; Mao, Sui Ann

    2015-08-01

    The Fermi bubbles are giant gamma-ray structures with sharp edges discovered using data from the Fermi-LAT. They rise up & down from the Galactic center with extents of ~50 degrees (~8.5 kpc), are well centered on longitude zero and close to latitude zero, and imply the acceleration of TeV electron energy particles. They could be related to past jet or outflow activity from the Galactic center. The gamma-ray bubbles have counterparts at microwave frequencies (the WMAP haze, confirmed by Planck). Sharp edges are also observed in X-ray utilizing ROSAT data, and more recently XMM-Newton pointings. Using rotation measures of background extragalactic sources from the archival NVSS catalog, we have studied the magnetic field structure at the interface between the Fermi bubbles and the Galactic halo. We have detected interesting changes in the mean value and r.m.s. of rotation measures across the eastern edge of the northern Fermi bubble. To confirm these preliminary findings and study the magnetic field structure in closer detail, we recently performed new Jansky VLA observations of the Fermi bubbles. Here we describe our findings and discuss implications for energy injection from the inner Galaxy to the Galactic halo ISM, cosmic ray propagation, and the Galactic halo magnetic field.

  2. FERMI BUBBLES AND BUBBLE-LIKE EMISSION FROM THE GALACTIC PLANE

    SciTech Connect

    De Boer, Wim; Weber, Markus E-mail: markus.weber2@kit.edu

    2014-10-10

    The diffuse gamma-ray sky revealed ''bubbles'' of emission above and below the Galactic plane, symmetric around the center of the Milky Way, with a height of 10 kpc in both directions. At present, there is no convincing explanation for the origin. To understand the role of the Galactic center, one has to study the bubble spectrum inside the disk, a region that has been excluded from previous analyses because of the large foreground. From a novel template fit, which allows a simultaneous determination of the signal and foreground in any direction, we find that bubble-like emission is not only found in the halo, but in the Galactic plane as well, with a width in latitude coinciding with the molecular clouds. The longitude distribution has a width corresponding to the Galactic bar with an additional contribution from the Scutum-Centaurus arm. The energy spectrum of the bubbles coincides with the predicted contribution from CRs trapped in sources (SCRs). Also, the energetics fits well. Hence, we conclude that the bubble-like emission has a hadronic origin that arises from SCRs, and the bubbles in the halo arise from hadronic interactions in advected gas. Evidence for advection is provided by the ROSAT X-rays of hot gas in the bubble region.

  3. Open Universes from Finite Radius Bubbles

    E-print Network

    J. D. Cohn

    1996-08-28

    The interior of a vacuum bubble in de Sitter space may give an open universe with sufficient homogeneity to agree with observations. Here, previous work by Bucher, Goldhaber and Turok is extended to describe a thin bubble wall with nonzero radius and energy difference across the wall. The vacuum modes present before formation of the bubble propagate into the interior of open universe and the power spectrum of the resulting gauge invariant gravitational potential is calculated. It is found to become scale invariant on small scales, with onset at about the same scale as that found in the zero radius case. There is sensitivity to the radius and energy difference at large scales, but it is expected that they cannot be strongly constrained because of cosmic variance. As the prediction of a scale invariant spectrum is robust with respect to variation of these parameters at small scales, it is a generic feature of the contribution of these modes for these thin wall models.

  4. Bubbles, shocks and elementary technical trading strategies

    NASA Astrophysics Data System (ADS)

    Fry, John

    2014-01-01

    In this paper we provide a unifying framework for a set of seemingly disparate models for bubbles, shocks and elementary technical trading strategies in financial markets. Markets operate by balancing intrinsic levels of risk and return. This seemingly simple observation is commonly over-looked by academics and practitioners alike. Our model shares its origins in statistical physics with others. However, under our approach, changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. This structure leads to an improved physical and econometric model. We develop models for bubbles, shocks and elementary technical trading strategies. The list of empirical applications is both interesting and topical and includes real-estate bubbles and the on-going Eurozone crisis. We close by comparing the results of our model with purely qualitative findings from the finance literature.

  5. Bubble and Drop Nonlinear Dynamics experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (189KB JPEG, 1293 x 1460 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300163.html.

  6. Healing Length and Bubble Formation in DNA

    E-print Network

    Z. Rapti; A. Smerzi; K. O. Rasmussen; A. R. Bishop; C. H. Choi; A. Usheva

    2006-01-13

    We have recently suggested that the probability for the formation of thermally activated DNA bubbles is, to a very good approximation, proportional to the number of soft AT pairs over a length L(n) that depend on the size $n$ of the bubble and on the temperature of the DNA. Here we clarify the physical interpretation of this length by relating it to the (healing) length that is required for the effect of a base-pair defect to become neligible. This provides a simple criteria to calculate L(n) for bubbles of arbitrary size and for any temperature of the DNA. We verify our findings by exact calculations of the equilibrium statistical properties of the Peyrard-Bishop-Dauxois model. Our method permits calculations of equilibrium thermal openings with several order of magnitude less numerical expense as compared with direct evaluations.

  7. On this side of the bubble.

    PubMed

    Gaw, Christopher E

    2015-06-01

    I was told by many people that medical school would be a transformative period in my life. As I began my medical education, I started to grasp what this meant; medical school was not only an exhilarating academic experience, but a positive social one as well. However, my classmates and I soon realized that we were trapped in a bubble, one which separated the world of medicine from the world at large. Experiencing strain in some of my personal relationships, I tried to explore how the medical bubble could affect our lives not only as future physicians, but also as friends, family, and spouses. It is my hope that an awareness of the bubble will help those in medicine develop and maintain relationships with both their patients and those in their personal lives. PMID:25480842

  8. High energy neutrinos from the Fermi bubbles.

    PubMed

    Lunardini, Cecilia; Razzaque, Soebur

    2012-06-01

    Recently the Fermi-LAT data have revealed two gamma-ray emitting bubble-shaped structures at the Galactic center. If the observed gamma rays have hadronic origin (collisions of accelerated protons), the bubbles must emit high energy neutrinos as well. This new, Galactic, neutrino flux should trace the gamma-ray emission in spectrum and spatial extent. Its highest energy part, above 20-50 TeV, is observable at a kilometer-scale detector in the northern hemisphere, such as the planned KM3NeT, while interesting constraints on it could be obtained by the IceCube Neutrino Observatory at the South Pole. The detection or exclusion of neutrinos from the Fermi bubbles will discriminate between hadronic and leptonic models, thus bringing unique information on the still mysterious origin of these objects and on the time scale of their formation. PMID:23003584

  9. The effect of gas bubbles on the production of ultrasound hyperthermia at 0.75 MHz: a phantom study.

    PubMed

    Watmough, D J; Lakshmi, R; Ghezzi, F; Quan, K M; Watmough, J A; Khizhnyak, E; Pashovkin, T N; Sarvazyan, A P

    1993-01-01

    Transparent phantoms, made of bovine hide gelatine, have been constructed in order to study the consequences of the occurrence of cavitation in tissues. Gas pockets of about resonant size, physically introduced into the gel, lead to a mean temperature rise of 41 +/- 15 degrees C in 1 min, when the gel of concentration 11.4% (w/v) is sonicated in the continuous-wave (cw) mode at 1 W cm-2 (spatial average) and 0.75 MHz. Nyborg (1965) has shown that gas bubbles in a sound field can act as acoustic amplifiers and the observations reported here may be connected with this feature. A layer of gelatine foam was also used to introduce gas into the gel and in this case the temperature rise was about 12 +/- 5 degrees C under similar conditions. Without gaseous inclusions, the mean temperature rise in gel in 1 min was 2.3 +/- 0.2 degree C. At a gel/air interface, the rise per unit intensity per minute was 4.4 degrees C. It is concluded that in clinical situations, cavitation (or degassing due to supersaturation), when it does occur, is likely to be an undesirable consequence of ultrasound treatment. This finding, of large temperature rises in proximity to gas bubbles, is in broad agreement with the report by Hynynen (1991) of an excess temperature elevation of 60 degrees C in dogs' muscle in vivo during a 1 s pulse at 250 W cm-2 and 0.56 MHz. Other studies, by ter Haar and Daniels (1981) and Daniels and ter Haar (1986), of sonicated animal tissues in vivo, have found thresholds for bubble inception but no consequent temperature rise greater than 0.3 degrees C was observed. PMID:8511829

  10. Introduction to the Workshop "30 years of bubble chamber physics"

    E-print Network

    Giacomelli, G

    2006-01-01

    After some recollections of the early bubble chamber times, a brief overview of the golden age of the field is made, including its legacy and the use of bubble chamber events for the popularization of science.

  11. Turning bubbles on and off during boiling using charged surfactants

    E-print Network

    Mizerak, Jordan P.

    Boiling—a process that has powered industries since the steam age—is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase ...

  12. When Do Bubbles Cause a Floating Body To Sink?

    ERIC Educational Resources Information Center

    Denardo, Bruce; Pringle, Leonard; DeGrace, Carl; McGuire, Michael

    2001-01-01

    Describes qualitative lecture demonstrations that show that bubbles can indeed sink a body, including the case of ice in water. Presents a quantitative experiment to determine the density of bubbly water required to sink a spherical body. (Author/YDS)

  13. Blowing Bubbles: An Interdisciplinary Science and Mathematics Lab.

    ERIC Educational Resources Information Center

    Stallings, Lynn; Wimpey, Kim

    2000-01-01

    Introduces a bubble activity to teach about the nature of molecules, surface tension, light waves, and color. Explains how to make the bubble solution and includes a lab worksheet with answers to the questions. (YDS)

  14. Bubble mobility in mud and magmatic volcanoes Aaron Tran a

    E-print Network

    Manga, Michael

    volcano Herschel­Bulkley rheology Bubble Salton Sea Stromboli The rheology of particle-laden fluids of bubbles and rigid spheres in mud sampled from the Davis­Schrimpf mud volcanoes adjacent to the Salton Sea

  15. RCW 86: A Type Ia Supernova in a Wind-blown Bubble

    NASA Astrophysics Data System (ADS)

    Williams, Brian J.; Blair, William P.; Blondin, John M.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Long, Knox S.; Raymond, John C.; Reynolds, Stephen P.; Rho, Jeonghee; Winkler, P. Frank

    2011-11-01

    We report results from a multi-wavelength analysis of the Galactic supernova remnant RCW 86, the proposed remnant of the supernova of 185 A.D. We show new infrared observations from the Spitzer Space Telescope and the Wide-Field Infrared Survey Explorer, where the entire shell is detected at 24 and 22 ?m. We fit the infrared flux ratios with models of collisionally heated ambient dust, finding post-shock gas densities in the non-radiative shocks of 2.4 and 2.0 cm-3 in the southwest (SW) and northwest (NW) portions of the remnant, respectively. The Balmer-dominated shocks around the periphery of the shell, large amount of iron in the X-ray-emitting ejecta, and lack of a compact remnant support a Type Ia origin for this remnant. From hydrodynamic simulations, the observed characteristics of RCW 86 are successfully reproduced by an off-center explosion in a low-density cavity carved by the progenitor system. This would make RCW 86 the first known case of a Type Ia supernova in a wind-blown bubble. The fast shocks (>3000 km s-1) observed in the northeast are propagating in the low-density bubble, where the shock is just beginning to encounter the shell, while the slower shocks elsewhere have already encountered the bubble wall. The diffuse nature of the synchrotron emission in the SW and NW is due to electrons that were accelerated early in the lifetime of the remnant, when the shock was still in the bubble. Electrons in a bubble could produce gamma rays by inverse-Compton scattering. The wind-blown bubble scenario requires a single-degenerate progenitor, which should leave behind a companion star.

  16. Implementing a bubble memory hierarchy system

    NASA Technical Reports Server (NTRS)

    Segura, R.; Nichols, C. D.

    1979-01-01

    This paper reports on implementation of a magnetic bubble memory in a two-level hierarchial system. The hierarchy used a major-minor loop device and RAM under microprocessor control. Dynamic memory addressing, dual bus primary memory, and hardware data modification detection are incorporated in the system to minimize access time. It is the objective of the system to incorporate the advantages of bipolar memory with that of bubble domain memory to provide a smart, optimal memory system which is easy to interface and independent of user's system.

  17. Multiverse rate equation including bubble collisions

    NASA Astrophysics Data System (ADS)

    Salem, Michael P.

    2013-03-01

    The volume fractions of vacua in an eternally inflating multiverse are described by a coarse-grain rate equation, which accounts for volume expansion and vacuum transitions via bubble formation. We generalize the rate equation to account for bubble collisions, including the possibility of classical transitions. Classical transitions can modify the details of the hierarchical structure among the volume fractions, with potential implications for the staggering and Boltzmann-brain issues. Whether or not our vacuum is likely to have been established by a classical transition depends on the detailed relationships among transition rates in the landscape.

  18. Multiverse rate equation including bubble collisions

    E-print Network

    Michael P. Salem

    2013-02-19

    The volume fractions of vacua in an eternally inflating multiverse are described by a coarse-grain rate equation, which accounts for volume expansion and vacuum transitions via bubble formation. We generalize the rate equation to account for bubble collisions, including the possibility of classical transitions. Classical transitions can modify the details of the hierarchical structure among the volume fractions, with potential implications for the staggering and Boltzmann-brain issues. Whether or not our vacuum is likely to have been established by a classical transition depends on the detailed relationships among transition rates in the landscape.

  19. Large bubble rupture sparks fast liquid jet.

    PubMed

    Séon, Thomas; Antkowiak, Arnaud

    2012-07-01

    This Letter presents the novel experimental observation of long and narrow jets shooting out in disconnecting large elongated bubbles. We investigate this phenomenon by carrying out experiments with various viscosities, surface tensions, densities and nozzle radii. We propose a universal scaling law for the jet velocity, which unexpectedly involves the bubble height to the power 3/2. This anomalous exponent suggests an energy focusing phenomenon. We demonstrate experimentally that this focusing is purely gravity driven and independent of the pinch-off singularity. PMID:23031107

  20. Paleomagnetism of Igenous Rocks from Shatsky Rise 

    E-print Network

    Pueringer, Margaret

    2013-04-24

    : PALEOMAGNETIC MEASUREMENTS OF IGNEOUS ROCKS FROM SHATSKY RISE EXPEDITION 324 .............................................................................................. 2 Overview... Results??.. ....................................................................................................... 7 CHAPTER III MANUSCRIPT #2: PALEOMAGNETISM OF IGNEOUS ROCKS FROM SHATSKY RISE AND IMPLICATIONS FOR OCEANIC PLATEAU VOLCANISM...

  1. The rise of "china threat" arguments

    E-print Network

    Ueki, Chikako

    2006-01-01

    The study seeks to explain the rise of "China threat" arguments in the United States and Japan in the 1990s by using three theories of states behavior- realism, organization theory, and democratic peace theory. The rise ...

  2. Dynamics of Single Hydrogen Bubbles at a Platinum Microelectrode.

    PubMed

    Yang, Xuegeng; Karnbach, Franziska; Uhlemann, Margitta; Odenbach, Stefan; Eckert, Kerstin

    2015-07-28

    Bubble dynamics, including the formation, growth, and detachment, of single H2 bubbles was studied at a platinum microelectrode during the electrolysis of 1 M H2SO4 electrolyte. The bubbles were visualized through a microscope by a high-speed camera. Electrochemical measurements were conducted in parallel to measure the transient current. The periodic current oscillations, resulting from the periodic formation and detachment of single bubbles, allow the bubble lifetime and size to be predicted from the transient current. A comparison of the bubble volume calculated from the current and from the recorded bubble image shows a gas evolution efficiency increasing continuously with the growth of the bubble until it reaches 100%. Two different substrates, glass and epoxy, were used to embed the Pt wire. While nearly no difference was found with respect to the growth law for the bubble radius, the contact angle differs strongly for the two types of cell. Data provided for the contact point evolution further complete the image of single hydrogen bubble growth. Finally, the velocity field driven by the detached bubble was measured by means of PIV, and the effects of the convection on the subsequent bubble were evaluated. PMID:26133052

  3. Velocity Fluctuations in a Slowly Sheared Bubble Raft Michael Dennin

    E-print Network

    Dennin, Michael

    Velocity Fluctuations in a Slowly Sheared Bubble Raft Michael Dennin Department of Physics the discontinuity in and the yield stress of the bubble raft. For both general foams and the bubble raft, the yield stress is the critical stress below which flow does not occur and the system acts as an elastic solid [10

  4. Rhetoric, Risk, and Markets: The Dot-Com Bubble

    ERIC Educational Resources Information Center

    Goodnight, G. Thomas; Green, Sandy Edward, Jr.

    2010-01-01

    Post-conventional economic theories are assembled to inquire into the contingent, mimetic, symbolic, and material spirals unfolding the dot-com bubble, 1992-2002. The new technologies bubble is reconstructed as a rhetorical movement across the practices of the hybrid market-industry risk culture of communications. The legacies of the bubble task…

  5. Bubble-Free Containers For Liquids In Microgravity

    NASA Technical Reports Server (NTRS)

    Kornfeld, Dale M.; Antar, Basil L.

    1995-01-01

    Reports discuss entrainment of gas bubbles during handling of liquids in microgravity, and one report proposes containers filled with liquids in microgravity without entraining bubbles. Bubbles are troublesome in low-gravity experiments - particularly in biological experiments. Wire-mesh cage retains liquid contents without solid wall, because in microgravity, surface tension of liquid exerts sufficient confining force.

  6. Reducing bubbles in glass coatings improves electrical breakdown strength

    NASA Technical Reports Server (NTRS)

    Banks, B.

    1968-01-01

    Helium reduces bubbles in glass coatings of accelerator grids for ion thrustors. Fusing the coating in a helium atmosphere creates helium bubbles in the glass. In an argon atmosphere, entrapped helium diffuses out of the glass and the bubbles collapse. The resultant coating has a substantially enhanced electrical breakdown strength.

  7. REVIEW SUMMARY SEA-LEVEL RISE

    E-print Network

    Carlson, Anders

    REVIEW SUMMARY SEA-LEVEL RISE Sea-level rise due to polar ice-sheet mass loss during past warm have dominated global mean sea level (GMSL) rise over the last century, mass loss from the Greenland of sea level from these previous warm periods dem- onstrate geographic variability because

  8. Updating Maryland's Sea-level Rise

    E-print Network

    Boynton, Walter R.

    Updating Maryland's Sea-level Rise Projections Scientific and Technical Working Group Maryland Climate Change Commission June 26, 2013 #12;Sea-level Rise Expert Group Donald F. Boesch* , University-author of the National Assessment Scenarios report Author of paper(s) on recent sea-level rise ~ Author contributing

  9. Multi-Dimensional Analysis of the Forced Bubble Dynamics Associated with Bubble Fusion Phenomena. Final Topical Report

    SciTech Connect

    Lahey, Jr., Richard T.; Jansen, Kenneth E.; Nagrath, Sunitha

    2002-12-02

    A new adaptive grid, 3-D FEM hydrodynamic shock (ie, HYDRO )code called PHASTA-2C has been developed and used to investigate bubble implosion phenomena leading to ultra-high temperatures and pressures. In particular, it was shown that nearly spherical bubble compressions occur during bubble implosions and the predicted conditions associated with a recent ORNL Bubble Fusion experiment [Taleyarkhan et al, Science, March, 2002] are consistent with the occurrence of D/D fusion.

  10. Perennial mounds in Utopia Planitia: (HiRISE) Evidence of a Glacial Origin

    NASA Astrophysics Data System (ADS)

    Soare, R. J.; Osinski, G. R.; Thomson, L.

    2009-03-01

    Here, we use HiRISE and high-resolution MOC images to discuss sub-kilometer pingo-like mounds in Utopia Planita. The mounds show geological characteristics consistent with formation by glacial accumulation, and ablation by sublimation.

  11. Direct Measurement of the Bubble Nucleation Energy Threshold in a CF3I Bubble Chamber

    E-print Network

    COUPP Collaboration; E. Behnke; T. Benjamin; S. J. Brice; D. Broemmelsiek; J. I. Collar; P. S. Cooper; M. Crisler; C. E. Dahl; D. Fustin; J. Hall; C. Harnish; I. Levine; W. H. Lippincott; T. Moan; T. Nania; R. Neilson; E. Ramberg; A. E. Robinson; A. Sonnenschein; E. Vázquez-Jáuregui; R. A. Rivera; L. Uplegger

    2014-01-31

    We have directly measured the energy threshold and efficiency for bubble nucleation from iodine recoils in a CF3I bubble chamber in the energy range of interest for a dark matter search. These interactions cannot be probed by standard neutron calibration methods, so we develop a new technique by observing the elastic scattering of 12 GeV/c negative pions. The pions are tracked with a silicon pixel telescope and the reconstructed scattering angle provides a measure of the nuclear recoil kinetic energy. The bubble chamber was operated with a nominal threshold of (13.6+-0.6) keV. Interpretation of the results depends on the response to fluorine and carbon recoils, but in general we find agreement with the predictions of the classical bubble nucleation theory. This measurement confirms the applicability of CF3I as a target for spin-independent dark matter interactions and represents a novel technique for calibration of superheated fluid detectors.

  12. MECHANICS OF BUBBLES IN SLUDGES AND SLURRIES

    EPA Science Inventory

    Previous studies have established that the waste level of Hanford tanks responds to barometric pressure changes, the compressibility of retained bubbles accounts for the level changes, and the volume of retained gas can be determined from the measured waste level and barometric p...

  13. Bubble Evolution During Acoustic Droplet Vaporization

    NASA Astrophysics Data System (ADS)

    Qamar, Adnan; Bull, Joseph

    2009-11-01

    A first theoretical model of bubble evolution in Acoustic Droplet Vaporization (ADV) inside a circular microchannel is presented. This work is motivated by a novel gas embolotherapy technique, which is intended to treat cancers by occluding blood flow using gas bubbles. The intended therapy involves the injection of superheated Dodecafluoropentane (DDFP, C5F12, boiling point 29 C) droplets, each encapsulated in an albumin shell, into the blood stream. The blood circulation carries these droplets into the tumor region where high-intensity ultrasound is used to trigger ADV to form bubbles near the desired occlusion sites. The proposed model describes the rapid phase transition from highly superheated DDFP droplet to the vapor phase via a homogeneous nucleation within the DDFP droplet. For every time step the radial component of the Navier-Stokes equation is integrated from the nucleated bubble surface to the expanding boundary of the droplet with proper boundary conditions taking into account for the vaporization process. Further from the droplet boundary to the end of microchannel a modified unsteady Bernoulli equation with the head loss term is utilized. Close agreement with experimental data for all the acoustic parameters and different initial droplet sizes is obtained. The proposed model is expected to elucidate the role of different parameters involved in the complex ADV process. This work is supported by NIH grant R01EB006476.

  14. Is Education Facing a "Tech Bubble"?

    ERIC Educational Resources Information Center

    Davis, Michelle R.

    2013-01-01

    Educational technology companies and entrepreneurs may face the risk of a "tech bubble," similar to the massive boom-and-bust that rocked the technology market in the late 1990s, according to market analysts and a recently released paper. A relatively new focus on K-12 educational technology as an investment vehicle, a surge of investors looking…

  15. Dynamical system theory of periodically collapsing bubbles

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Yukalova, E. P.; Sornette, D.

    2015-07-01

    We propose a reduced form set of two coupled continuous time equations linking the price of a representative asset and the price of a bond, the later quantifying the cost of borrowing. The feedbacks between asset prices and bonds are mediated by the dependence of their "fundamental values" on past asset prices and bond themselves. The obtained nonlinear self-referencing price dynamics can induce, in a completely objective deterministic way, the appearance of periodically exploding bubbles ending in crashes. Technically, the periodically explosive bubbles arise due to the proximity of two types of bifurcations as a function of the two key control parameters b and g, which represent, respectively, the sensitivity of the fundamental asset price on past asset and bond prices and of the fundamental bond price on past asset prices. One is a Hopf bifurcation, when a stable focus transforms into an unstable focus and a limit cycle appears. The other is a rather unusual bifurcation, when a stable node and a saddle merge together and disappear, while an unstable focus survives and a limit cycle develops. The lines, where the periodic bubbles arise, are analogous to the critical lines of phase transitions in statistical physics. The amplitude of bubbles and waiting times between them respectively diverge with the critical exponents ? = 1 and ? = 1/2, as the critical lines are approached.

  16. Bubbles That Change the Speed of Sound

    ERIC Educational Resources Information Center

    Planinsic, Gorazd; Etkina, Eugenia

    2012-01-01

    The influence of bubbles on sound has long attracted the attention of physicists. In his 1920 book Sir William Bragg described sound absorption caused by foam in a glass of beer tapped by a spoon. Frank S. Crawford described and analyzed the change in the pitch of sound in a similar experiment and named the phenomenon the "hot chocolate effect."…

  17. Big Bubbles in Boiling Liquids: Students' Views

    ERIC Educational Resources Information Center

    Costu, Bayram

    2008-01-01

    The aim of this study was to elicit students' conceptions about big bubbles in boiling liquids (water, ethanol and aqueous CuSO[subscript 4] solution). The study is based on twenty-four students at different ages and grades. The clinical interviews technique was conducted to solicit students' conceptions and the interviews were analyzed to…

  18. Methane bubbles trapped in thermokarst lake ice

    USGS Multimedia Gallery

    When ice-rich permafrost thaws, former tundra and forest turns into a thermokarst lake as the ground subsides. The carbon stored in the formerly frozen ground is consumed by the microbial community, who release methane gas. When lake ice forms in the winter, methane gas bubbles are trapped in the ic...

  19. THE AGE OF THE LOCAL INTERSTELLAR BUBBLE

    SciTech Connect

    Abt, Helmut A.

    2011-05-15

    The Local Interstellar Bubble is an irregular region from 50 to 150 pc from the Sun in which the interstellar gas density is 10{sup -2}-10{sup -3} of that outside the bubble and the interstellar temperature is 10{sup 6} K. Evidently most of the gas was swept out by one or more supernovae. I explored the stellar contents and ages of the region from visual double stars, spectroscopic doubles, single stars, open clusters, emission regions, X-ray stars, planetary nebulae, and pulsars. The bubble has three sub-regions. The region toward the galactic center has stars as early as O9.5 V and with ages of 2-4 M yr. It also has a pulsar (PSRJ1856-3754) with a spin-down age of 3.76 Myr. That pulsar is likely to be the remnant of the supernova that drove away most of the gas. The central lobe has stars as early as B7 V and therefore an age of about 160 Myr or less. The Pleiades lobe has stars as early as B3 and therefore an age of about 50 Myr. There are no obvious pulsars that resulted from the supernovae that cleared out those areas. As found previously by Welsh and Lallement, the bubble has five B stars along its perimeter that show high-temperature ions of O VI and C II along their lines of sight, confirming its high interstellar temperature.

  20. Electromagnetic bubbles: subcycle near-femtosecond

    E-print Network

    Kaplan, Alexander

    -femtosecond or even sub- femtosecond) subcycle (nonoscillating) electromagnetic solitons [EM bubbles (EMB's)] in a gas of two-level at- oms as well as EMB's and preionization shock waves in classically nonlinear atoms. We show that EMB's can be generated by existing sources of radiation, including subpicosecond half

  1. Thermocapillary motion of bubbles and drops

    NASA Technical Reports Server (NTRS)

    Subramanian, R. S.

    1992-01-01

    An account is given of interface-driven motions of drops and bubbles. It is shown that even in the simplest cases, theory predicts exotic flow topologies. Attention is given to several unsolved problems that must be addressed both theoretically and experimentally.

  2. Bubbles with shock waves and ultrasound: a review.

    PubMed

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-01

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead. PMID:26442143

  3. Cavitation Bubble Nucleation by Energetic Particles

    SciTech Connect

    West, C.D.

    1998-12-01

    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  4. Diagnosing temperature change inside sonoluminescing bubbles by calculating line spectra

    NASA Astrophysics Data System (ADS)

    An, Yu; Li, Chaohui

    2009-10-01

    With the numerical calculation of the spectrum of single bubble sonoluminescence, we find that when the maximum temperature inside a dimly luminescing bubble is relatively low, the spectral lines are prominent. As the maximum temperature of the bubble increases, the line spectrum from the bright bubble weakens or even fades away relative to the background continuum. The calculations in this paper effectively interpret the observed phenomena, indicating that the calculated results, which are closely related to the spectrum profile, such as temperature and pressure, should be reliable. The present calculation tends to negate the existence of a hot plasma core inside a sonoluminescing bubble.

  5. Modeling of interaction between therapeutic ultrasound propagation and cavitation bubbles.

    PubMed

    Liebler, Marko; Dreyer, Thomas; Riedlinger, Rainer E

    2006-12-22

    In medical applications of high intense focused ultrasound the mechanism of interaction between ultrasound waves and cavitation bubbles is responsible for several therapeutic effects as well as for undesired side effects. Based on a two-phase continuum approach for bubbly liquids, in this paper a numerical model is presented to simulate these interactions. The numerical results demonstrate the influence of the cavitation bubble cloud on ultrasound propagation. In the case of a lithotripter pulse an increased bubble density leads to significant changes in the tensile part of the pressure waveform. The calculations are verified by measurements with a fiber optical hydrophone and by experimental results of the bubble cloud dynamics. PMID:16908041

  6. Bubble breakup in two-dimensional Stokes flow

    SciTech Connect

    Tanveer, S.; Vasconcelos, G.L. )

    1994-11-21

    A new class of exact solutions is reported for an evolving bubble in a two-dimensional slow viscous flow. It is observed that for an expanding bubble the interface grows smoother with time, whereas the contracting-bubble solutions display a tendency to form sharp corners ( near cusps'') for small values of surface tension. In the latter case, we also obtain analytic solutions that describe bubble breakup: For a large class of initial shapes, the interface will eventually develop a thin neck'' whose width goes to zero before the bubble is completely removed from the liquid.

  7. A note on the dynamics of two aligned bubbles perpendicular to and above a thin membrane

    NASA Astrophysics Data System (ADS)

    Hajizadeh Aghdam, A.; Khoo, B. C.

    2015-06-01

    The interaction of two perpendicular bubbles of a similar size (upper bubble and lower bubble) and the thin elastic membrane beneath them is studied experimentally. The dynamical behavior of the lower bubble (Bubble1), which is placed between the membrane and upper bubble (Bubble2), is rather complex. Observed phenomena such as the splitting of Bubble1 into the ‘mushroom shape’ and ‘masher shape’, the bubble-collapse induced jetting toward Bubble2 and even the coalescence effect are found and systematically categorized by the stated dimensionless parameters.

  8. Molecular gas and star formation towards the IR dust bubble S24 and its environs

    E-print Network

    Cappa, C E; Firpo, V; Vasquez, J; López-Caraballo, C H; Rubio, M; Vazzano, M M

    2015-01-01

    We present a multi-wavelength analysis of the infrared dust bubble S24, and its environs, with the aim of investigating the characteristics of the molecular gas and the interstellar dust linked to them, and analyzing the evolutionary status of the young stellar objects (YSOs) identified there. Using APEX data, we mapped the molecular emission in the CO(2-1), $^{13}$CO(2-1), C$^{18}$O(2-1), and $^{13}$CO(3-2) lines in a region of about 5'x 5' in size around the bubble. The cold dust distribution was analyzed using ATLASGAL and Herschel images. Complementary IR and radio data were also used.The molecular gas linked to the S24 bubble, G341.220-0.213, and G341.217-0.237 has velocities between -48.0 km sec$^{-1}$ and -40.0 km sec$^{-1}$. The gas distribution reveals a shell-like molecular structure of $\\sim$0.8 pc in radius bordering the bubble. A cold dust counterpart of the shell is detected in the LABOCA and Herschel images.The presence of extended emission at 24 $\\mu$m and radio continuum emission inside the b...

  9. Low threshold lasing of bubble-containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range

    NASA Astrophysics Data System (ADS)

    Kumagai, Tsutaru; Kishi, Tetsuo; Yano, Tetsuji

    2015-03-01

    Bubble-containing Nd3+-doped tellurite glass microspheres were fabricated by localized laser heating technique to investigate their optical properties for use as microresonators. Fluorescence and excitation spectra measurements were performed by pumping with a tunable CW-Ti:Sapphire laser. The excitation spectra manifested several sharp peaks due to the conventional whispering gallery mode (WGM) when the pumping laser was irradiated to the edge part of the microsphere. However, when the excitation light was irradiated on the bubble position inside the microsphere, "non-WGM excitation" was induced, giving rise to numerous peaks at a broad wavelength range in the excitation spectra. Thus, efficient excitation was achieved over a wide wavelength range. Lasing threshold excited at the bubble position was much lower than that for the excitation at the edges of the microsphere. The lowest value of the laser threshold was 34 ?W for a 4 ?m sphere containing a 0.5 ?m bubble. Efficiency of the excitation at the bubble position with broadband light was calculated to be 5 times higher than that for the edge of the microsphere. The bubble-containing microsphere enables efficient utilization of broadband light excitation from light-emitting diodes and solar light.

  10. Effects of Collapsing Bubble in Ultrasonic Field on Soft Material

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenji; Nakatani, Shintaro; Tsukamoto, Akira; Ushida, Takashi; Watanabe, Yoshiaki

    2008-05-01

    To investigate the physical effects of a collapsing bubble on a soft material, the bubble collapse phenomenon on agar gel under ultrasonic irradiation was experimentally examined. Using a high-speed video camera, we observed two effects of the bubble on the agar gel. One effect was the formation of a hole on the agar surface by “microjet generation”. It was revealed that the hole was formed under the initial condition of resonant bubble size. The other effect was the local surface fluctuation of the agar gel by “bubble vibration”. This surface fluctuation is the first observed phenomenon in our observations and indicates that a localized pressure stimulus was generated on the agar surface by bubble vibration. These revealed effects show the significant contributions of the bubble techniques in ultrasonic therapy techniques, e.g., ultrasonic drug delivery.

  11. Eternal inflation, bubble collisions, and the persistence of memory

    SciTech Connect

    Garriga, Jaume; Guth, Alan H.; Vilenkin, Alexander

    2007-12-15

    A 'bubble universe' nucleating in an eternally inflating false vacuum will experience, in the course of its expansion, collisions with an infinite number of other bubbles. In an idealized model, we calculate the rate of collisions around an observer inside a given reference bubble. We show that the collision rate violates both the homogeneity and the isotropy of the bubble universe. Each bubble has a center which can be related to 'the beginning of inflation' in the parent false vacuum, and any observer not at the center will see an anisotropic bubble collision rate that peaks in the outward direction. Surprisingly, this memory of the onset of inflation persists no matter how much time elapses before the nucleation of the reference bubble.

  12. Numerical Simulations of Bubble Dispersion over a Hydrofoil

    NASA Astrophysics Data System (ADS)

    Zhu, Shuang; Ooi, Andrew; Blackburn, Hugh; Anderson, Brendon

    2009-11-01

    The production and entrainment of bubbles in ship wakes is not completely understood despite the fact that it has many practical applications. For example, bubbles trapped in the large vortical structures in the ship wake can form clusters that are able to persist for large distances leaving a long trail of bubbles, which increases the ship's signature; an important consideration in the defence environment. The fundamental mechanisms behind the complicated bubbly flow can be understood using data from numerical simulations. The objective of the study is to investigate the accuracy of current state-of-art numerical models for simulating bubbly flows. A spectral element-Fourier code will be used to carry out direct numerical simulations (DNS) with Lagrangian particle tracking to study the interaction of the upstream bubble distribution with a hydrofoil at different angles of attack and Reynolds numbers, and the effect on the resulting downstream bubble distribution.

  13. Interaction of equal-size bubbles in shear flow.

    PubMed

    Prakash, Jai; Lavrenteva, Olga M; Byk, Leonid; Nir, Avinoam

    2013-04-01

    The inertia-induced forces on two identical spherical bubbles in a simple shear flow at small but finite Reynolds number, for the case when the bubbles are within each other's inner viscous region, are calculated making use of the reciprocal theorem. This interaction force is further employed to model the dynamics of air bubbles injected to a viscous fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that, during a long time scale, the inertial interaction between the bubbles in the primary shear flow drives them away from each other and, as a result, equal-size bubbles eventually assume an ordered string with equal separation distances between all neighbors. We report on experiments showing the dynamic evolution of various numbers of bubbles. The results of the theory are in good agreement with the experimental observations. PMID:23679508

  14. Eternal inflation, bubble collisions, and the persistence of memory

    NASA Astrophysics Data System (ADS)

    Garriga, Jaume; Guth, Alan H.; Vilenkin, Alexander

    2007-12-01

    A “bubble universe” nucleating in an eternally inflating false vacuum will experience, in the course of its expansion, collisions with an infinite number of other bubbles. In an idealized model, we calculate the rate of collisions around an observer inside a given reference bubble. We show that the collision rate violates both the homogeneity and the isotropy of the bubble universe. Each bubble has a center which can be related to “the beginning of inflation” in the parent false vacuum, and any observer not at the center will see an anisotropic bubble collision rate that peaks in the outward direction. Surprisingly, this memory of the onset of inflation persists no matter how much time elapses before the nucleation of the reference bubble.

  15. Bubble wrap for optical trapping and cell culturing.

    PubMed

    McDonald, Craig; McGloin, David

    2015-10-01

    In this paper, we demonstrate that the bubbles of bubble wrap make ideal trapping chambers for integration with low-cost optical manipulation. The interior of the bubbles is sterile and gas permeable, allowing for the bubbles to be used to store and culture cells, while the flat side of the bubble wrap is of sufficient optical quality to allow for optical trapping inside the bubbles. Through the use of a 100 W bulb to cure hanging droplets of PDMS, a low-cost optical trapping system was constructed. Effector T cells were cultured in bubble wrap for 8 days and then trapped with the PDMS droplet based optical manipulation. These techniques further demonstrate the opportunities for biophysical analysis afforded through repurposing common materials in resource-limited settings. PMID:26504627

  16. Time-evolving bubbles in two-dimensional stokes flow

    NASA Technical Reports Server (NTRS)

    Tanveer, Saleh; Vasconcelos, Giovani L.

    1994-01-01

    A general class of exact solutions is presented for a time evolving bubble in a two-dimensional slow viscous flow in the presence of surface tension. These solutions can describe a bubble in a linear shear flow as well as an expanding or contracting bubble in an otherwise quiescent flow. In the case of expanding bubbles, the solutions have a simple behavior in the sense that for essentially arbitrary initial shapes the bubble will asymptote an expanding circle. Contracting bubbles, on the other hand, can develop narrow structures ('near-cusps') on the interface and may undergo 'break up' before all the bubble-fluid is completely removed. The mathematical structure underlying the existence of these exact solutions is also investigated.

  17. Bubble wrap for optical trapping and cell culturing

    PubMed Central

    McDonald, Craig; McGloin, David

    2015-01-01

    In this paper, we demonstrate that the bubbles of bubble wrap make ideal trapping chambers for integration with low-cost optical manipulation. The interior of the bubbles is sterile and gas permeable, allowing for the bubbles to be used to store and culture cells, while the flat side of the bubble wrap is of sufficient optical quality to allow for optical trapping inside the bubbles. Through the use of a 100 W bulb to cure hanging droplets of PDMS, a low-cost optical trapping system was constructed. Effector T cells were cultured in bubble wrap for 8 days and then trapped with the PDMS droplet based optical manipulation. These techniques further demonstrate the opportunities for biophysical analysis afforded through repurposing common materials in resource-limited settings. PMID:26504627

  18. Orbital motions of bubbles in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shirota, Minori; Yamashita, Ko; Inamura, Takao

    2012-09-01

    This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion on the wall of a spherical levitator was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging technique. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along an elliptic orbit around the center of mass of the bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force.

  19. Bubble collapse as the source of tremor at Old Faithful Geyser

    NASA Astrophysics Data System (ADS)

    Kedar, Sharon; Kanamori, Hiroo; Sturtevant, Bradford

    1998-10-01

    Old Faithful Geyser, Yellowstone, was used as a natural laboratory for fluid-flow-induced seismic activity. Pressure measurements within the geyser's water column, obtained simultaneously with seismic measurements on the surface, demonstrated that the tremor observed at Old Faithful results from impulsive events in the geyser. Tremor intensity is controlled by the rate of occurrence of these impulsive events. There is no resonance observed within the water column. The impulsive events are modeled by a collapse of a spherical bubble, including the effects of residual non-condensible gas and damping. The pressure data can be explained by a collapse of a ˜5 cm radius bubble driven by a pressure difference of ?P = 0.3×105 Pa and effective viscosity ?E = 0.04 m2/s. Using a quasi-static geyser model, we treat the individual bubble collapses as cooling events that occur when the water column reaches a critical temperature. Their rate of occurrence is controlled by the heating rate dT/dt of the water column. As a result, the intensity of the hydrothermal and seismic activities is determined by the heat and mass input rate into the geyser. It is demonstrated that a sharp widening of the conduit can cause the number of events per unit time to drop (as observed) while the water level is still rising and heat is being input, and thus the tremor intensity can be modulated by variations in the conduit shape.

  20. Interaction of two differently sized oscillating bubbles in a free field

    NASA Astrophysics Data System (ADS)

    Chew, Lup Wai; Klaseboer, Evert; Ohl, Siew-Wan; Khoo, Boo Cheong

    2011-12-01

    Most real life bubble dynamics applications involve multiple bubbles, for example, in cavitation erosion prevention, ultrasonic baths, underwater warfare, and medical applications involving microbubble contrast agents. Most scientific dealings with bubble-bubble interaction focus on two similarly sized bubbles. In this study, the interaction between two oscillating differently sized bubbles (generated in tap water) is studied using high speed photography. Four types of bubble behavior were observed, namely, jetting toward each other, jetting away from each other, bubble coalescence, and a behavior termed the “catapult” effect. In-phase bubbles jet toward each other, while out-of-phase bubbles jet away from each other. There exists a critical phase difference that separates the two regimes. The behavior of the bubbles is fully characterized by their dimensionless separation distance, their phase difference, and their size ratio. It is also found that for bubbles with large size difference, the smaller bubble behaves similarly to a single bubble oscillating near a free surface.