Science.gov

Sample records for bubble trauma special

  1. Progression and severity of gas bubble trauma in juvenile salmonids

    USGS Publications Warehouse

    Mesa, M.G.; Weiland, L.K.; Maule, A.G.

    2000-01-01

    We conducted laboratory experiments to assess the progression and to quantify the severity of signs of gas bubble trauma (GBT) in juvenile chinook salmon Oncorhynchus tshawytscha and steelhead Oncorhynchus mykiss exposed to different levels of total dissolved gas (TDG), and we attempted to relate these signs to the likelihood of mortality. When fish were exposed to 110% TDG for up to 22 d, no fish died, and there were few signs of GBT in the lateral line or gills. Bubbles in the fins, however, were relatively common, and they progressively worsened over the experimental period. When fish were exposed to 120% TDG for up to 140 h, chinook salmon had an LT20 (time necessary to kill 20% of the fish) ranging from 40 to 120 h, whereas steelhead had LT20s ranging from 20 to 35 h. In steelhead, bubbles in the lateral line, fins, and gills displayed poor trends of worsening over time, showed substantial interindividual variability, and were poorly related to mortality. In chinook salmon, only bubbles in the lateral line showed a distinct worsening over time, and the severity of bubbles in the lateral line was highly correlated with mortality. When fish were exposed to 130% TDG for up to 11 h, LT20s for chinook salmon ranged from 3 to 6 h, whereas those for steelhead ranged from 5 to 7 h. In chinook salmon, bubbles in the lateral line and fins, but not those in the gills, showed distinct trends of worsening over time. In steelhead, bubbles in the lateral line displayed the most significant trend of progressive severity. In both species at 130% TDG, the severity of all GBT signs was highly correlated with mortality. The progressive nature of GBT and the methods we developed to examine fish for GBT may be useful for monitoring programs that aim to assess the severity of dissolved gas supersaturation exposures experienced by fish in the wild. However, the efficacy of such programs seems substantially hindered by problems associated with (1) the variable persistence of GBT signs

  2. Special Considerations in Trauma Patients.

    PubMed

    Abraham, Michael K; Aquino, Patrick R; Kuo, Dick C

    2015-11-01

    The emergent management of a traumatic injury can be an extremely intense situation. These assessments can be even more difficult when patients have an underlying psychiatric condition. After a protocoled evaluation of the traumatic injuries, the psychological manifestation of diseases can be addressed. The appropriate use of physical or chemical restraints to facilitate the work-up is paramount in the ability of the provider to protect patients and staff from agitated and traumatized patients. The emergency medicine provider should have a low threshold for including psychiatry in the treatment plans, as the long-term sequelae of these entities require specialized treatment. PMID:26493528

  3. Rate of disappearance of gas bubble trauma signs in juvenile salmonids

    USGS Publications Warehouse

    Hans, K.M.; Mesa, M.G.; Maule, A.G.

    1999-01-01

    To assess the rate of disappearance of gas bubble trauma (GBT) signs in juvenile salmonids, we exposed spring chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss to water containing high levels of dissolved gas supersaturation (DGS) for a time period sufficient to induce signs of GBT, reduced the DGS to minimal levels, and then sampled fish through time to document changes in severity of GBT. Because of the tendency of GBT signs to dissipate at different rates, we conducted trials focusing on emboli (bubbles) in the gill filaments and lateral line and separate trials that focused on bubbles in the external surfaces (fins, eyes, and opercula). Bubbles in gill filaments dissipated almost completely within 2 h after transfer of fish to water of nearly normal DGS (104%), whereas bubbles in the lateral line dissipated to negligible levels within 5 h. Bubbles on external surfaces were more persistent through time than they were in gill filaments and the lateral line. Although typically dissipating to low levels within 48 h, external bubbles sometimes remained for 4 d. Assuming a direct relation exists between easily observable signs and direct mortality, our results suggest that fish can recover quickly from the potentially lethal effects of DGS once they move from water with high DGS to water of almost normal gas saturation. These results should be of fundamental importance to fishery managers interpreting the results of monitoring for the severity and prevalence of GBT in juvenile salmonids in the Columbia River system and perhaps elsewhere.

  4. Gas Bubble Trauma Monitoring and Research of Juvenile Salmonids, 1994-1995 Progress Report.

    SciTech Connect

    Hans, Karen M.

    1997-07-01

    This report describes laboratory and field monitoring studies of gas bubble trauma (GBT) in migrating juvenile salmonids in the Snake and Columbia rivers. The first chapter describes laboratory studies of the progression of GBT signs leading to mortality and the use of the signs for GBT assessment. The progression and severity of GBT signs in juvenile salmonids exposed to different levels of total dissolved gas (TDG) and temperatures was assessed and quantified. Next, the prevalence, severity, and individual variation of GBT signs was evaluated to attempt to relate them to mortality. Finally, methods for gill examination in fish exposed to high TDG were developed and evaluated. Primary findings were: (1) no single sign of GBT was clearly correlated with mortality, but many GBT signs progressively worsened; (2) both prevalence and severity of GBT signs in several tissues is necessary; (3) bubbles in the lateral line were the earliest sign of GBT, showed progressive worsening, and had low individual variation but may develop poorly during chronic exposures; (4) fin bubbles had high prevalence, progressively worsened, and may be a persistent sign of GBT; and (5) gill bubbles appear to be the proximate cause of death but may only be relevant at high TDG levels and are difficult to examine. Chapter Two describes monitoring results of juvenile salmonids for signs of GBT. Emigrating fish were collected and examined for bubbles in fins and lateral lines. Preliminary findings were: (1) few fish had signs of GBT, but prevalence and severity appeared to increase as fish migrated downstream; (2) there was no apparent correlation between GBT signs in the fins, lateral line, or gills; (3) prevalence and severity of GBT was suggestive of long-term, non-lethal exposure to relatively low level gas supersaturated water; and (4) it appeared that GBT was not a threat to migrating juvenile salmonids. 24 refs., 26 figs., 3 tabs.

  5. Gas Bubble Trauma Monitoring in the Clearwater River Drainage, Idaho 1998.

    SciTech Connect

    Cochnauer, Tim

    1998-12-01

    Select portions of the Clearwater and North Fork of the Clearwater rivers were electroshocked to estimate the incidence of gas bubble trauma (GBT) occurring in resident fish populations for the spring and summer months of 1998. The study area was divided into four sections and sampled weekly during periods of spill and non-spill from Dworshak Dam. Five thousand five hundred and forty one fish, representing 22 different species, were captured and examined for GBT. Two fish were detected with signs of GBT; exhibiting the lowest incidence of GBT in the last four years (0.04%). Reduced discharge and lower levels of total dissolved gases may have resulted in lower incidence of GBT in the 1998 monitoring period.

  6. Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2004-06-01

    Vanitas vanitatum et omnia vanitas: bubbles are emptiness, non-liquid, a tiny cloud shielding a mathematical singularity. Born from chance, a violent and brief life ending in the union with the (nearly) infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise, sonoluminescence, boiling, and many others. Some recent results on a "blinking bubble" micropump and vapor bubbles in sound fields are outlined. The last section describes Leonardo da Vinci's observation of the non-rectlinear ascent of buoyant bubbles and justifies the name Leonardo's paradox recently attributed to this phenomenon.

  7. Lateral line pore diameters correlate with the development of gas bubble trauma signs in several Columbia River fishes

    USGS Publications Warehouse

    Morris, R.G.; Beeman, J.W.; VanderKooi, S.P.; Maule, A.G.

    2003-01-01

    Gas bubble trauma (GBT) caused by gas supersaturation of river water continues to be a problem in the Columbia River Basin. A common indicator of GBT is the percent of the lateral line occluded with gas bubbles; however, this effect has never been examined in relation to lateral line morphology. The effects of 115, 125 and 130% total dissolved gas levels were evaluated on five fish species common to the upper Columbia River. Trunk lateral line pore diameters differed significantly (P<0.0001) among species (longnose sucker>largescale sucker>northern pikeminnow???chinook salmon???redside shiner). At all supersaturation levels evaluated, percent of lateral line occlusion exhibited an inverse correlation to pore size but was not generally related to total dissolved gas level or time of exposure. This study suggests that the differences in lateral line pore diameters between species should be considered when using lateral line occlusion as an indicator of gas bubble trauma. ?? 2003 Elsevier Science Inc. All rights reserved.

  8. Trauma.

    PubMed

    Huisman, Thierry A G M; Poretti, Andrea

    2016-01-01

    Traumatic brain and spine injury (TBI/TSI) is a leading cause of death and lifelong disability in children. The biomechanical properties of the child's brain, skull, and spine, the size of the child, the age-specific activity pattern, and variance in trauma mechanisms result in a wide range of age-specific traumas and patterns of brain and spine injuries. A detailed knowledge about the various types of primary and secondary pediatric head and spine injuries is essential to better identify and understand pediatric TBI/TSI, which enhances sensitivity and specificity of diagnosis, will guide therapy, and may give important information about the prognosis. The purposes of this chapter are to: (1) discuss the unique epidemiology, mechanisms, and characteristics of TBI/TSI in children; (2) review the anatomic and functional imaging techniques that can be used to study common and rare pediatric TBI/TSI and their complications; (3) comprehensively review frequent primary and secondary brain injuries; and (4) to give a short overview of two special types of pediatric TBI/TSI: birth-related and nonaccidental injuries. PMID:27430465

  9. Influence of infection with Renibacterium salmoninarum on susceptibility of juvenile spring chinook salmon to gas bubble trauma

    USGS Publications Warehouse

    Weiland, L.K.; Mesa, M.G.; Maule, A.G.

    1999-01-01

    During experiments in our laboratory to assess the progression and severity of gas bubble trauma (GBT) in juvenile spring chinook salmon Oncorhynchus tshawytscha, we had the opportunity to assess the influence of Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease, on the susceptibility of salmon to GBT. We exposed fish with an established infection of Rs to 120% total dissolved gas (TDG) for 96 h and monitored severity of GBT signs in the fins and gills, Rs infection level in kidneys by using an enzyme-linked immunosorbent assay (ELISA), and mortality. Mortality occurred rapidly after exposure to 120% TDG, with a LT20 (time necessary to kill 20% of the population) of about 37 h, which is at a minimum about 16% earlier than other bioassays we have conducted using fish that had no apparent signs of disease. Fish that died early (from 31 to 36 h and from 49 to 52 h) had significantly higher infection levels (mean ?? SE ELISA absorbance = 1.532 ?? 0.108) than fish that survived for 96h (mean ?? SE ELISA absorbance = 0.828 ?? 0.137). Fish that died early also had a significantly greater number of gill filaments occluded with bubbles than those that survived 96 h. Conversely, fish that survived for 96 h had a significantly higher median fin severity ranking than those that died early. Our results indicate that fish with moderate to high levels of Rs infection are more vulnerable to the effects of dissolved gas supersaturation (DGS) and die sooner than fish with lower levels of Rs infection. However, there is a substantial amount of individual variation in susceptibility to the apparent cumulative effects of DGS and Rs infection. Collectively, our findings have important implications to programs designed to monitor the prevalence and severity of GBT in juvenile salmonids in areas like the Columbia River basin and perhaps elsewhere.

  10. Successful treatment of self-inflicted tongue trauma patient using a special oral appliance.

    PubMed

    Kwon, Ik Jae; Kim, Soung Min; Park, Hee Kyung; Myoung, Hoon; Lee, Jong Ho; Lee, Suk Keun

    2015-11-01

    A 7-year-old male presented with a painful ulcerative lesion on the right lateral tongue and left lower buccal mucosa due to self-inflicted trauma. Antibiotic medication and use of a mouthwash agent were not effective. We made a special oral appliance to cover the maxillary arch and teeth to protect the tongue. The patient showed immediate improvement and did not suffer from any complications. Invasive procedures such as biopsy were not needed. We believe that accurate clinical diagnosis is important and treatment with an oral appliance is effective in self-inflicted oral trauma in children. PMID:26315926

  11. Responses of a Sample of Practicing Psychologists to Questions About Clinical Work With Trauma and Interest in Specialized Training

    PubMed Central

    Cook, Joan M.; Rehman, Omar; Bufka, Lynn; Dinnen, Stephanie; Courtois, Christine

    2013-01-01

    This study reports on selected findings from a survey conducted by the American Psychological Association Practice Organization, which assessed the number of hours per month that practicing psychologists estimated they spent treating trauma survivors and their interest in additional clinical training on trauma-related issues and topics. Respondents reported 14.3 mean number of hours spent working with trauma survivors over the past month. Of the 76% of the sample who treated any trauma patients, the mean was 16.9 hours. Although trauma psychology is not currently an integral component of the standard curricula in graduate-level education, generalist psychology practitioners are treating trauma-related concerns in their clinical practices. It is imperative therefore to ascertain if they are adequately trained in specialized trauma recognition, assessment, and treatment. The fact that almost 64% of survey respondents expressed interest in participating in educational endeavors to learn more about trauma-related clinical topics suggests that such a need exists and that more training opportunities, including ongoing continuing education offerings, should be organized. PMID:23741532

  12. Review of Current Literature and Research on Gas Supersaturation and Gas Bubble Trauma: Special Publication Number 1, 1986.

    SciTech Connect

    Colt, John; Bouck, Gerald R.; Fidler, Larry

    1986-12-01

    This report presents recently published information and on-going research on the various areas of gas supersaturation. Growing interest in the effects of chronic gas supersaturation on aquatic animals has been due primarily to heavy mortality of salmonid species under hatchery conditions. Extensive examination of affected animals has failed to consistently identify pathogenic organisms. Water quality sampling has shown that chronic levels of gas supersaturation are commonly present during a significant period of the year. Small marine fish larvae are significantly more sensitive to gas supersaturation than salmonids. Present water quality criteria for gas supersaturation are not adequate for the protection of either salmonids under chronic exposure or marine fish larvae, especially in aquaria or hatcheries. To increase communication between interested parties in the field of gas supersaturation research and control, addresses and telephone numbers of all people responding to the questionnaire are included. 102 refs.

  13. An Inquiry of the Lived Experiences and Contextual Understandings of Early Childhood Special Educators Related to Children's Trauma

    ERIC Educational Resources Information Center

    DuBois, Alison L.

    2010-01-01

    Secondary trauma stress, compassion fatigue, and vicarious trauma are terms rarely found in educational literature. Studies have shown the significant and lasting ramifications of these constructs within the realm of counseling and psychology. Professionals working in educational settings with high risk populations encounter multiple exposures to…

  14. Bubble dielectrophoresis

    NASA Technical Reports Server (NTRS)

    Jones, T. B.; Bliss, G. W.

    1977-01-01

    The theoretical principles related to bubble dielectrophoresis are examined, taking into account the polarization force, aspects of bubble deformation, the electrostatic bubble levitation theorem, and the equation of motion. The measurement of the dielectrophoretic force on static and dynamic bubbles represents a convenient experimental method for the study of the general problem of dielectrophoresis. The experiments reported include static-force measurements, static-levitation experiments, and dynamic-force measurements.

  15. Blunt thoracic trauma.

    PubMed

    Weyant, Michael J; Fullerton, David A

    2008-01-01

    Blunt thoracic trauma represents a significant portion of trauma admissions to hospitals in the United States. These injuries are encountered by physicians in many specialities such as emergency medicine, pediatrics, general surgery and thoracic surgery. Accurate diagnosis and treatment improves the chances of favorable outcomes and it is desirable for all treating physicians to have current knowledge of all aspects of blunt thoracic trauma. Cardiothoracic surgeons often treat the most severe forms of blunt thoracic injuries and we review the aspects of blunt thoracic trauma that are pertinent to the practicing cardiothoracic surgeon. PMID:18420123

  16. Recalcitrant bubbles

    PubMed Central

    Shanahan, Martin E. R.; Sefiane, Khellil

    2014-01-01

    We demonstrate that thermocapillary forces may drive bubbles against liquid flow in ‘anomalous' mixtures. Unlike ‘ordinary' liquids, in which bubbles migrate towards higher temperatures, we have observed vapour bubbles migrating towards lower temperatures, therefore against the flow. This unusual behaviour may be explained by the temperature dependence of surface tension of these binary mixtures. Bubbles migrating towards their equilibrium position follow an exponential trend. They finally settle in a stationary position just ‘downstream' of the minimum in surface tension. The exponential trend for bubbles in ‘anomalous' mixtures and the linear trend in pure liquids can be explained by a simple model. For larger bubbles, oscillations were observed. These oscillations can be reasonably explained by including an inertial term in the equation of motion (neglected for smaller bubbles). PMID:24740256

  17. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  18. Silent bubbles - Their effects and detection

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.

    1990-01-01

    This paper discusses the concept of the 'silent bubble' (a phenomenon due to gas phase formation in tissues, which does not lead to frank decompression sickness). Special attention is given to the conditions for silent bubbles formation, the methods of their detecton, and to their pathophysiology. Data relating the gas formation in blood and the symptoms of decompression sickness indicate that the distinction between the silent bubbles and clinical ones is often vague and that a bubble-free decompression never existed.

  19. Bubble, Bubble, Toil and Trouble.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2001

    2001-01-01

    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  20. Exploring Bubbles

    NASA Astrophysics Data System (ADS)

    O'Geary, Melissa A.

    Bubbles provide an enjoyable and festive medium through which to teach many concepts within the science topics of light, color, chemistry, force, air pressure, electricity, buoyancy, floating, density, among many others. In order to determine the nature of children's engagement within a museum setting and the learning opportunities of playing with bubbles, I went to a children's interactive museum located in a metropolitan city in the Northeastern part of the United States.

  1. Bubble diagnostics

    DOEpatents

    Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.

    2003-01-01

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  2. Facial trauma

    MedlinePlus

    Maxillofacial injury; Midface trauma; Facial injury; LeFort injuries ... Kellman RM. Maxillofacial trauma. In: Flint PW, Haughey BH, Lund LJ, et al, eds. Cummings Otolaryngology: Head & Neck Surgery . 6th ed. Philadelphia, PA: ...

  3. Facial trauma

    MedlinePlus

    Kellman RM. Maxillofacial trauma. In: Flint PW, Haughey BH, Lund LJ, et al, eds. Cummings Otolaryngology: Head & Neck Surgery . 6th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 23. Mayersak RJ. Facial trauma. In: Marx JA, Hockberger RS, ...

  4. Trauma in the geriatric population.

    PubMed

    Maxwell, Cathy A

    2015-06-01

    Injury in older adults is a looming public health crisis. This article provides a broad overview of geriatric trauma across the continuum of care. After a review of the epidemiology of geriatric trauma, optimal approaches to patient care are presented for triage and transport, trauma team activation and initial assessment, inpatient management, and injury prevention. Special emphasis is given to assessment of frailty, advanced care planning, and transitions of care. PMID:25981722

  5. Imaging in orbital trauma

    PubMed Central

    Lin, Ken Y.; Ngai, Philip; Echegoyen, Julio C.; Tao, Jeremiah P.

    2012-01-01

    Orbital trauma is one of the most common reasons for ophthalmology specialty consultation in the emergency department setting. We survey the literature from 1990 to present to describe the role of computed tomography (CT), magnetic resonance imaging (MRI) and their associated angiography in some of the most commonly encountered orbital trauma conditions. CT orbit can often detect certain types of foreign bodies, lens dislocation, ruptured globe, choroidal or retinal detachments, or cavernous sinus thrombosis and thus complement a bedside ophthalmic exam that can sometimes be limited in the setting of trauma. CT remains the workhorse for acute orbital trauma owing to its rapidity and ability to delineate bony abnormalities; however MRI remains an important modality in special circumstances such as soft tissue assessment or with organic foreign bodies. PMID:23961028

  6. Systemic trauma.

    PubMed

    Goldsmith, Rachel E; Martin, Christina Gamache; Smith, Carly Parnitzke

    2014-01-01

    Substantial theoretical, empirical, and clinical work examines trauma as it relates to individual victims and perpetrators. As trauma professionals, it is necessary to acknowledge facets of institutions, cultures, and communities that contribute to trauma and subsequent outcomes. Systemic trauma-contextual features of environments and institutions that give rise to trauma, maintain it, and impact posttraumatic responses-provides a framework for considering the full range of traumatic phenomena. The current issue of the Journal of Trauma & Dissociation is composed of articles that incorporate systemic approaches to trauma. This perspective extends conceptualizations of trauma to consider the influence of environments such as schools and universities, churches and other religious institutions, the military, workplace settings, hospitals, jails, and prisons; agencies and systems such as police, foster care, immigration, federal assistance, disaster management, and the media; conflicts involving war, torture, terrorism, and refugees; dynamics of racism, sexism, discrimination, bullying, and homophobia; and issues pertaining to conceptualizations, measurement, methodology, teaching, and intervention. Although it may be challenging to expand psychological and psychiatric paradigms of trauma, a systemic trauma perspective is necessary on both scientific and ethical grounds. Furthermore, a systemic trauma perspective reflects current approaches in the fields of global health, nursing, social work, and human rights. Empirical investigations and intervention science informed by this paradigm have the potential to advance scientific inquiry, lower the incidence of a broader range of traumatic experiences, and help to alleviate personal and societal suffering. PMID:24617751

  7. Tiny Bubbles.

    ERIC Educational Resources Information Center

    Kim, Hy

    1985-01-01

    A simple oxygen-collecting device (easily constructed from glass jars and a lid) can show bubbles released by water plants during photosynthesis. Suggestions are given for: (1) testing the collected gas; (2) using various carbon dioxide sources; and (3) measuring respiration. (DH)

  8. Leverage bubble

    NASA Astrophysics Data System (ADS)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  9. Geriatric Trauma.

    PubMed

    Reske-Nielsen, Casper; Medzon, Ron

    2016-08-01

    Within the next 15 years, 1 in 5 Americans will be over age 65. $34 billion will be spent yearly on trauma care of this age group. This section covers situations in trauma unique to the geriatric population, who are often under-triaged and have significant injuries underestimated. Topics covered include age-related pathophysiological changes, underlying existing medical conditions and certain daily medications that increase the risk of serious injury in elderly trauma patients. Diagnostic evaluation of this group requires liberal testing, imaging, and a multidisciplinary team approach. Topics germane to geriatric trauma including hypothermia, elder abuse, and depression and suicide are also covered. PMID:27475011

  10. [Chest trauma].

    PubMed

    Freixinet Gilart, Jorge; Ramírez Gil, María Elena; Gallardo Valera, Gregorio; Moreno Casado, Paula

    2011-01-01

    Chest trauma is a frequent problem arising from lesions caused by domestic and occupational activities and especially road traffic accidents. These injuries can be analyzed from distinct points of view, ranging from consideration of the most severe injuries, especially in the context of multiple trauma, to the specific characteristics of blunt and open trauma. In the present article, these injuries are discussed according to the involvement of the various thoracic structures. Rib fractures are the most frequent chest injuries and their diagnosis and treatment is straightforward, although these injuries can be severe if more than three ribs are affected and when there is major associated morbidity. Lung contusion is the most common visceral lesion. These injuries are usually found in severe chest trauma and are often associated with other thoracic and intrathoracic lesions. Treatment is based on general support measures. Pleural complications, such as hemothorax and pneumothorax, are also frequent. Their diagnosis is also straightforward and treatment is based on pleural drainage. This article also analyzes other complex situations, notably airway trauma, which is usually very severe in blunt chest trauma and less severe and even suitable for conservative treatment in iatrogenic injury due to tracheal intubation. Rupture of the diaphragm usually causes a diaphragmatic hernia. Treatment is always surgical. Myocardial contusions should be suspected in anterior chest trauma and in sternal fractures. Treatment is conservative. Other chest injuries, such as those of the great thoracic and esophageal vessels, are less frequent but are especially severe. PMID:21640287

  11. Specialization.

    ERIC Educational Resources Information Center

    Luna, Pat

    Designed for middle school students, this award winning, six-day teaching unit helped students learn about the concepts of specialization, interdependence, efficiency, and profit. At the onset of the lesson the students were already familiar with the concepts of scarcity, goods, services, profits, supply, demand, and opportunity costs. The unit's…

  12. Bubble bath soap poisoning

    MedlinePlus

    ... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  13. Discrete Bubble Modeling for Cavitation Bubbles

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Keun; Chahine, Georges; Hsiao, Chao-Tsung

    2007-03-01

    Dynaflow, Inc. has conducted extensive studies on non-spherical bubble dynamics and interactions with solid and free boundaries, vortical flow structures, and other bubbles. From these studies, emerged a simplified Surface Averaged Pressure (SAP) spherical bubble dynamics model and a Lagrangian bubble tracking scheme. In this SAP scheme, the pressure and velocity of the surrounding flow field are averaged on the bubble surface, and then used for the bubble motion and volume dynamics calculations. This model is implemented using the Fluent User Defined Function (UDF) as Discrete Bubble Model (DBM). The Bubble dynamics portion can be solved using an incompressible liquid modified Rayleigh-Plesset equation or a compressible liquid modified Gilmore equation. The Discrete Bubble Model is a very suitable tool for the studies on cavitation inception of foils and turbo machinery, bubble nuclei effects, noise from the bubbles, and can be used in many practical problems in industrial and naval applications associated with flows in pipes, jets, pumps, propellers, ships, and the ocean. Applications to propeller cavitation, wake signatures of waterjet propelled ships, bubble-wake interactions, modeling of cavitating jets, and bubble entrainments around a ship will be presented.

  14. Tailbone trauma

    MedlinePlus

    Choi SB, Cwinn AA. Pelvic trauma. In: Marx JA, Hockberger RS, Walls RM, eds. Rosen's Emergency Medicine: Concepts and Clinical Practice. 8th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 55. Vora ...

  15. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  16. Elderly trauma.

    PubMed

    Holleran, Renee Semonin

    2015-01-01

    Across the world, the population is aging. Adults 65 years and older make up one of the fastest growing segments of the US population. Trauma is a disease process that affects all age groups. The mortality and morbidity that result from an injury can be influenced by many factors including age, physical condition, and comorbidities. The management of the elderly trauma patient can present some unique challenges. This paper addresses the differences that occur in the management of elderly patient who has been injured. This paper also includes a discussion of how to prevent injury in the elderly. PMID:26039652

  17. Shock trauma.

    PubMed

    Trunkey, D D

    1984-09-01

    Trauma - accidental or intentional injury - is a major health and social problem. It is still the chief cause of death in people between the ages of 1 and 38 years. In the United States, the mortality due to trauma between the ages of 15 and 24 years increased by 13% from 1960 to 1978. During the same period, the mortality for people aged 25 to 64 years declined by 16%. Murders have increased from 8464 in 1960, to 26 000 in 1982. The overall death rate of American teenagers and young adults is 50% higher than that of their counterparts in Britain, Sweden and Japan. Trauma affects young, productive citizens, and the estimated costs for death, disability and loss of productivity exceed $230 million a day. The most tragic statistic is that at least 40% of the deaths are needless and preventable if better treatment and prevention programs were available. Trauma deaths that might be prevented are those due to motor vehicle accidents, homicide, burns, and alcohol and drug abuse. In this paper suggestions for prevention are made. They include improved crash worthiness of motor vehicles, revocation of drunk drivers' licences, use of devices that limit drunk drivers, increased tax on alcohol and random breathalyser tests, and the use of seat belts and motorcycle helmets. Control of hand-guns and burn characteristics of cigarettes could also reduce deaths. The problems and issues in trauma care can be divided into two broad categories: system and professional. System problems include prehospital care, in-hospital care, rehabilitation and prevention. Professional problems include education, research, economics, and quality.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6478325

  18. Penetrating trauma

    PubMed Central

    Kuhajda, Ivan; Zarogoulidis, Konstantinos; Kougioumtzi, Ioanna; Huang, Haidong; Li, Qiang; Dryllis, Georgios; Kioumis, Ioannis; Pitsiou, Georgia; Machairiotis, Nikolaos; Katsikogiannis, Nikolaos; Papaiwannou, Antonis; Lampaki, Sofia; Zaric, Bojan; Branislav, Perin; Dervelegas, Konstantinos; Porpodis, Konstantinos

    2014-01-01

    Pneumothorax occurs when air enters the pleural space. Currently there is increasing incidence of road traffic accidents, increasing awareness of healthcare leading to more advanced diagnostic procedures, and increasing number of admissions in intensive care units are responsible for traumatic (non iatrogenic and iatrogenic) pneumothorax. Pneumothorax has a clinical spectrum from asymptomatic patient to life-threatening situations. Diagnosis is usually made by clinical examination and imaging techniques. In our current work we focus on the treatment of penetrating trauma. PMID:25337403

  19. Penetrating trauma.

    PubMed

    Kuhajda, Ivan; Zarogoulidis, Konstantinos; Kougioumtzi, Ioanna; Huang, Haidong; Li, Qiang; Dryllis, Georgios; Kioumis, Ioannis; Pitsiou, Georgia; Machairiotis, Nikolaos; Katsikogiannis, Nikolaos; Papaiwannou, Antonis; Lampaki, Sofia; Zaric, Bojan; Branislav, Perin; Dervelegas, Konstantinos; Porpodis, Konstantinos; Zarogoulidis, Paul

    2014-10-01

    Pneumothorax occurs when air enters the pleural space. Currently there is increasing incidence of road traffic accidents, increasing awareness of healthcare leading to more advanced diagnostic procedures, and increasing number of admissions in intensive care units are responsible for traumatic (non iatrogenic and iatrogenic) pneumothorax. Pneumothorax has a clinical spectrum from asymptomatic patient to life-threatening situations. Diagnosis is usually made by clinical examination and imaging techniques. In our current work we focus on the treatment of penetrating trauma. PMID:25337403

  20. Preheating in bubble collisions

    SciTech Connect

    Zhang Jun; Piao Yunsong

    2010-08-15

    In a landscape with metastable minima, the bubbles will inevitably nucleate. We show that when the bubbles collide, due to the dramatic oscillation of the field at the collision region, the energy deposited in the bubble walls can be efficiently released by the explosive production of the particles. In this sense, the collision of bubbles is actually highly inelastic. The cosmological implications of this result are discussed.

  1. Dielectrophoretic levitation of droplets and bubbles

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1982-01-01

    Uncharged droplets and bubbles can be levitated dielectrophoretically in liquids using strong, nonuniform electric fields. The general equations of motion for a droplet or bubble in an axisymmetric, divergence-free electrostatic field allow determination of the conditions necessary and sufficient for stable levitation. The design of dielectrophoretic (DEP) levitation electrode structures is simplified by a Taylor-series expansion of cusped axisymmetric electrostatic fields. Extensive experimental measurements on bubbles in insulating liquids verify the simple dielectrophoretic model. Other have extended dielectrophoretic levitation to very small particles in aqueous media. Applications of DEP levitation to the study of gas bubbles, liquid droplets, and solid particles are discussed. Some of these applications are of special interest in the reduced gravitational field of a spacecraft.

  2. Bubble Manipulation by Self Organization of Bubbles inside Ultrasonic Wave

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Koganezawa, Masato

    2005-06-01

    Microbubble manipulation using ultrasonic waves is a promising technology in the fields of future medicine and biotechnology. For example, it is considered that bubble trapping using ultrasonic waves may play an important role in drug or gene delivery systems in order to trap the drugs or genes in the diseased tissue. Usually, when bubbles are designed so that they carry payloads, such as drug or gene, they tend to be harder than free bubbles. These hard bubbles receive a small acoustic radiation force, which is not sufficient for bubble manipulation. In this paper, a novel method of microbubble manipulation using ultrasonic waves is proposed. This method uses seed bubbles in order to manipulate target bubbles. When the seed bubbles are introduced into the ultrasonic wave field, they start to oscillate to produce a bubble aggregation of a certain size. Then the target bubbles are introduced, the target bubbles attach around the seed bubbles producing a bubble mass with bilayers (inner layer: seed bubbles, outer layer: target bubbles). The target bubbles are manipulated as a bilayered bubble mass. Basic experiments are carried out using polyvinyl chloride (PVC) shell bubbles. No target bubbles are trapped when only the target bubbles are introduced. However, they are trapped if the seed bubbles are introduced in advance.

  3. Bubble Velocities in Slowly Sheared Bubble Rafts

    NASA Astrophysics Data System (ADS)

    Dennin, Michael

    2004-03-01

    Many complex fluids, such as foams, emulsions, colloids, and granular matter, exhibit interesting flow behavior when subjected to slow, steady rates of strain. The flow is characterized by irregular fluctuations in the stress with corresponding nonlinear rearrangements of the individual particles. We focus on the flow behavior of a model two-dimensional system: bubble rafts. Bubble rafts consist of a single layer of soap bubbles floating on the surface of a liquid subphase, usually a soap-water solution. The bubbles are sheared using a Couette geometry, i.e. concentric cylinders. We rotate the outer cylinder at a constant rate and measure the motions of individual bubbles and the stress on the inner cylinder. We will report on the velocity profiles of the bubbles averaged over long-times and averaged over individual stress events. The long-time average velocities are well described by continuum models for fluids with the one surprising feature that there exists a critical radius at which the shear-rate is discontinuous. The individual profiles are highly nonlinear and strongly correlated with the stress fluctuations. We will discuss a number of interesting questions. Can the average profiles be understood in a simple way given the individual velocities? Is there a clear "classification" for the individual profiles, or are they purely random? What sets the critical radius for a given set of flow conditions?

  4. Ventilatory strategies in trauma patients.

    PubMed

    Arora, Shubhangi; Singh, Preet Mohinder; Trikha, Anjan

    2014-01-01

    Lung injury in trauma patients can occur because of direct injury to lung or due to secondary effects of injury elsewhere for example fat embolism from a long bone fracture, or due to response to a systemic insult such as; acute respiratory distress syndrome (ARDS) secondary to sepsis or transfusion related lung injury. There are certain special situations like head injury where the primary culprit is not the lung, but the brain and the ventilator strategy is aimed at preserving the brain tissue and the respiratory system takes a second place. The present article aims to delineate the strategies addressing practical problems and challenges faced by intensivists dealing with trauma patients with or without healthy lungs. The lung protective strategies along with newer trends in ventilation are discussed. Ventilatory management for specific organ system trauma are highlighted and their physiological base is presented. PMID:24550626

  5. Trends in trauma: a rural experience.

    PubMed

    Gupta, Gaurav C; Golhar, K B; Mehta, V K; Swapnil, D

    2014-08-01

    In last 20 years a progressive increase in the cases of road traffic accidents is seen in the institution. In this study efforts have been made to study epidemiology of trauma & how to help the trauma victims in a better way. To study the changing trends in incidence & presentation of trauma victims. To recommend preventive measures based on the analysis. The present study was carried out in MGIMS, Sewagram, Wardha from 2001 to 2003. For this study which is retrospective and prospective, a total of 986 cases of surgical trauma were studied. Present study showed that in this rural area accidents account for maximum trauma admissions & major trauma only in 20 %. Out of 986 patients, 78.8 % required repair of wounds, 3.8 % required exploratory laparotomy and 16.3 % had orthopedic interventions. Overall mortality rate was 2.9 %. It was found that general care in wards was good in terms of trauma results of rural areas. These results may vary when compared with specialized trauma centers in cities; however after a period of few years cost effectiveness of trauma centers in terms of benefits needs an assessment*. PMID:25278648

  6. Electrowetting of soap bubbles

    NASA Astrophysics Data System (ADS)

    Arscott, Steve

    2013-07-01

    A proof-of-concept demonstration of the electrowetting-on-dielectric of a sessile soap bubble is reported here. The bubbles are generated using a commercial soap bubble mixture—the surfaces are composed of highly doped, commercial silicon wafers covered with nanometer thick films of Teflon®. Voltages less than 40 V are sufficient to observe the modification of the bubble shape and the apparent bubble contact angle. Such observations open the way to inter alia the possibility of bubble-transport, as opposed to droplet-transport, in fluidic microsystems (e.g., laboratory-on-a-chip)—the potential gains in terms of volume, speed, and surface/volume ratio are non-negligible.

  7. Toxic trauma.

    PubMed

    Moles, T M; Baker, D J

    2001-01-01

    Hazardous materials (HAZMAT) carry many inherent dangers. Such materials are distributed widely in industrial and military sites. Toxic trauma (TT) denotes the complex of systemic and organ injury caused by toxic agents. Often, TT is associated with other injuries that also require the application of life-support techniques. Rapid onset of acute respiratory failure and consequent cardiovascular failure are of primary concern. Management of TT casualties is dependent upon the characteristics of the toxic agents involved and on the demographics surrounding the HAZMAT incident. Agents that can produce TT possess two pairs of salient characteristics: (1) causality (toxicity and latency), and (2) EMS system (persistency and transmissibility). Two characteristics of presentations are important: (1) incident presentation, and (2) casualty presentation. In addition, many of these agents complicate the processes associated with anaesthesia and must be dealt with. Failure of recognition of these factors may result in the development of respiratory distress syndromes and multiorgan system failure, or even death. PMID:11513285

  8. Gas bubble detector

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)

    1995-01-01

    A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.

  9. Sonochemistry and bubble dynamics.

    PubMed

    Mettin, Robert; Cairós, Carlos; Troia, Adriano

    2015-07-01

    The details of bubble behaviour in chemically active cavitation are still not sufficiently well understood. Here we report on experimental high-speed observations of acoustically driven single-bubble and few-bubble systems with the aim of clarification of the connection of their dynamics with chemical activity. Our experiment realises the sonochemical isomerization reaction of maleic acid to fumaric acid, mediated by bromine radicals, in a bubble trap set-up. The main result is that the reaction product can only be observed in a parameter regime where a small bubble cluster occurs, while a single trapped bubble stays passive. Evaluations of individual bubble dynamics for both cases are given in form of radius-time data and numerical fits to a bubble model. A conclusion is that a sufficiently strong collapse has to be accompanied by non-spherical bubble dynamics for the reaction to occur, and that the reason appears to be an efficient mixing of liquid and gas phase. This finding corroborates previous observations and literature reports on high liquid phase sonochemical activity under distinct parameter conditions than strong sonoluminescence emissions. PMID:25194210

  10. A bubble detection system for propellant filling pipeline

    NASA Astrophysics Data System (ADS)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-01

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  11. A bubble detection system for propellant filling pipeline.

    PubMed

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-01

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume. PMID:24985851

  12. A bubble detection system for propellant filling pipeline

    SciTech Connect

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-15

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  13. Prospects for bubble fusion

    SciTech Connect

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  14. Bubble nonlinear dynamics and stimulated scattering process

    NASA Astrophysics Data System (ADS)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  15. Gases in Tektite Bubbles.

    PubMed

    O'keefe, J A; Lowman, P D; Dunning, K L

    1962-07-20

    Spectroscopic analysis of light produced by electrodeless discharge in a tektite bubble showed the main gases in the bubble to be neon, helium, and oxygen. The neon and helium have probably diffused in from the atmosphere, while the oxygen may be atmospheric gas incorporated in the tektite during its formation. PMID:17801113

  16. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  17. Clustering in bubbly liquids

    NASA Astrophysics Data System (ADS)

    Figueroa, Bernardo; Zenit, Roberto

    2004-11-01

    We are conducting experiments to determine the amount of clustering that occurs when small gas bubbles ascend in clean water. In particular, we are interested in flows for which the liquid motion around the bubbles can be described, with a certain degree of accuracy, using potential flow theory. This model is applicable for the case of bubbly liquids in which the Reynolds number is large and the Weber number is small. To clearly observe the formation of bubble clusters we propose the use of a Hele-Shaw-type channel. In this thin channel the bubbles cannot overlap in the depth direction, therefore the identification of bubble clusters cannot be misinterpreted. Direct video image analysis is performed to calculate the velocity and size of the bubbles, as well as the formation of clusters. Although the walls do affect the motion of the bubbles, the clustering phenomena does occur and has the same qualitative behavior as in fully three-dimensional flows. A series of preliminary measurements are presented. A brief discussion of our plans to perform PIV measurements to obtain the liquid velocity fields is also presented.

  18. Cost versus Enrollment Bubbles

    ERIC Educational Resources Information Center

    Vedder, Richard K.; Gillen, Andrew

    2011-01-01

    The defining characteristic of a bubble is unsustainable growth that eventually reverses. Bubbles typically arise when uncertainty leads to unsustainable trends, and the authors argue that there are two areas in which higher education has experienced what appear to be unsustainable trends, namely, college costs (the costs to students, parents, and…

  19. Let Them Blow Bubbles.

    ERIC Educational Resources Information Center

    Korenic, Eileen

    1988-01-01

    Describes a series of activities and demonstrations involving the science of soap bubbles. Starts with a recipe for bubble solution and gives instructions for several activities on topics such as density, interference colors, optics, static electricity, and galaxy formation. Contains some background information to help explain some of the effects.…

  20. Computer-assisted trauma surgery.

    PubMed

    Atesok, Kivanc; Schemitsch, Emil H

    2010-05-01

    Computer-assisted orthopaedic surgery (CAOS) is performed by digitizing the patient's anatomy, combining the images in a computerized system, and integrating the surgical instruments into the digitized image background. This allows the surgeon to navigate the surgical instruments and the bone in an improved, virtual visual environment. CAOS in traumatology is performed with images obtained by fluoroscopy, CT, or three-dimensional fluoroscopy. CAOS is used in basic trauma procedures for preoperative planning, fracture reduction, intramedullary nailing, percutaneous screw or plate fixation, and hardware or shrapnel removal. Potential benefits of CAOS include minimal invasiveness, increased accuracy, and decreased radiation exposure. Limitations include a significant learning curve, increased surgical time, requirements for special setup and equipment handling in the operating room, specialized technical support, and cost. Current evidence shows no advantage with CAOS in trauma cases compared with conventional methods. Prospective randomized trials and clinical outcomes are lacking. PMID:20435875

  1. Pearls of Mandibular Trauma Management

    PubMed Central

    Koshy, John C.; Feldman, Evan M.; Chike-Obi, Chuma J.; Bullocks, Jamal M.

    2010-01-01

    Mandibular trauma is a common problem seen by plastic surgeons. When fractures occur, they have the ability to affect the patient's occlusion significantly, cause infection, and lead to considerable pain. Interventions to prevent these sequelae require either closed or open forms of reduction and fixation. Physicians determining how to manage these injuries should take into consideration the nature of the injury, background information regarding the patient's health, and the patient's comorbidities. Whereas general principles guide the management of the majority of injuries, special consideration must be paid to the edentulous patient, complex and comminuted fractures, and pediatric patients. These topics are discussed in this article, with a special emphasis on pearls of mandibular trauma management. PMID:22550460

  2. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  3. Trauma imaging in the thorax and abdomen

    SciTech Connect

    Rosenberger, A.; Adler, O.

    1987-01-01

    This book thoroughly covers the radiologic diagnosis of traumatic injuries of the thorax and abdomen with special consideration given to the physical principles governing blunt, blast, and penetrating trauma and to the pathophysiology which they cause. The clinical experience forming the major data base for this book is drawn from the Ramban Medical Center in Haifa, Israel, the major trauma center for the Middle East wars.

  4. Contemporary Management of Renal Trauma

    PubMed Central

    Shoobridge, Jennifer J; Corcoran, Niall M; Martin, Katherine A; Koukounaras, Jim; Royce, Peter L; Bultitude, Matthew F

    2011-01-01

    In the management of renal trauma, surgical exploration inevitably leads to nephrectomy in all but a few specialized centers. With current management options, the majority of hemodynamically stable patients with renal injuries can be successfully managed nonoperatively. Improved radiographic techniques and the development of a validated renal injury scoring system have led to improved staging of injury severity that is relatively easy to monitor. This article reviews a multidisciplinary approach to facilitate the care of patients with renal injury. PMID:21941463

  5. The Bubbling Galactic Disk

    NASA Astrophysics Data System (ADS)

    Churchwell, E.; Povich, M. S.; Allen, D.; Taylor, M. G.; Meade, M. R.; Babler, B. L.; Indebetouw, R.; Watson, C.; Whitney, B. A.; Wolfire, M. G.; Bania, T. M.; Benjamin, R. A.; Clemens, D. P.; Cohen, M.; Cyganowski, C. J.; Jackson, J. M.; Kobulnicky, H. A.; Mathis, J. S.; Mercer, E. P.; Stolovy, S. R.; Uzpen, B.; Watson, D. F.; Wolff, M. J.

    2006-10-01

    A visual examination of the images from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) has revealed 322 partial and closed rings that we propose represent partially or fully enclosed three-dimensional bubbles. We argue that the bubbles are primarily formed by hot young stars in massive star formation regions. We have found an average of about 1.5 bubbles per square degree. About 25% of the bubbles coincide with known radio H II regions, and about 13% enclose known star clusters. It appears that B4-B9 stars (too cool to produce detectable radio H II regions) probably produce about three-quarters of the bubbles in our sample, and the remainder are produced by young O-B3 stars that produce detectable radio H II regions. Some of the bubbles may be the outer edges of H II regions where PAH spectral features are excited and may not be dynamically formed by stellar winds. Only three of the bubbles are identified as known SNRs. No bubbles coincide with known planetary nebulae or W-R stars in the GLIMPSE survey area. The bubbles are small. The distribution of angular diameters peaks between 1' and 3' with over 98% having angular diameters less than 10' and 88% less than 4'. Almost 90% have shell thicknesses between 0.2 and 0.4 of their outer radii. Bubble shell thickness increases approximately linearly with shell radius. The eccentricities are rather large, peaking between 0.6 and 0.7; about 65% have eccentricities between 0.55 and 0.85.

  6. Rural trauma management.

    PubMed

    Wayne, R

    1989-05-01

    Rural trauma is a major problem in the United States. Up to 70 percent of trauma fatalities occur in rural areas, even though 70 percent of the population live in urban areas. Over the past 3 decades, numerous studies have defined the concept of preventable trauma death in both rural and urban populations. With the development of a regional trauma care system in Oregon, preventable trauma mortality should decrease. An effort was made to improve the quality of trauma care in Clatsop County, Oregon, a community of 30,000 people with 2 small rural hospitals. To obtain this goal, four steps were taken: (1) physician and nurse education was improved, (2) trauma protocols promoting prompt resuscitation and stabilization of patients were established, (3) regular trauma case reviews were conducted, and (4) emergency medical technician and prehospital management were coordinated. This study reviews the trail from sporadic, uncoordinated rural trauma care to the designation process. PMID:2712202

  7. Simulation of special bubble detectors for PICASSO.

    PubMed

    Azuelos, G; Barnabé-Heider, M; Behnke, E; Clark, K; Di Marco, M; Doane, P; Feighery, W; Genest, M-H; Gornea, R; Guénette, R; Kanagalingam, S; Krauss, C; Leroy, C; Lessard, L; Levine, I; Martin, J P; Noble, A J; Noulty, R; Shore, S N; Wichoski, U; Zacek, V

    2006-01-01

    The PICASSO project is a cold dark matter (CDM) search experiment relying on the superheated droplet technique. The detectors use superheated freon liquid droplets (active material) dispersed and trapped in a polymerised gel. This detection technique is based on the phase transition of superheated droplets at about room temperature and ambient pressure. The phase transition is induced by nuclear recoils when an atomic nucleus in the droplets interacts with incoming subatomic particles. This includes CDM particles candidate as the neutralino (a yet-to-discover particle predicted in extensions of the standard model of particle physics). Simulations performed to understand the detector response to neutrons and alpha particles are presented along with corresponding data obtained at the Montreal Laboratory. PMID:16822778

  8. Bubbles, Bubbles: Integrated Investigations with Floating Spheres

    ERIC Educational Resources Information Center

    Reeder, Stacy

    2007-01-01

    In this article, the author describes integrated science and mathematics activities developed for fourth-grade students to explore and investigate three-dimensional geometric shapes, Bernoulli's principle, estimation, and art with and through bubbles. Students were engaged in thinking and reflection on the questions their teachers asked and were…

  9. Relationship between trauma narratives and trauma pathology.

    PubMed

    Amir, N; Stafford, J; Freshman, M S; Foa, E B

    1998-04-01

    In this study we examined the relationship between posttrauma pathology and the level of articulation (complexity) in rape narratives recounted by victims shortly after the assault. Degree of articulation was operationalized as the reading level of the narrative as determined by a computer program. Shortly after the trauma, reading level was correlated with severity of anxiety but not with posttraumatic stress disorder (PTSD) symptoms. Degree of the narrative articulation shortly after the trauma, however, was related to severity of later PTSD. These results are consistent with the hypothesis that the less developed trauma narratives hinder recovery from trauma. PMID:9565923

  10. Tribonucleation of bubbles

    PubMed Central

    Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2014-01-01

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold. Direct observation through a transparent solid shows that each bubble in the trail results from the early coalescence of several microscopic bubbles, themselves detaching from microscopic gas pockets forming between the solids. From a detailed study of the wear tracks, with atomic force and scanning electron microscopy imaging, we conclude that these microscopic gas pockets originate from a local fracturing of the surface asperities, possibly enhanced by chemical reactions at the freshly created surfaces. Our findings will be useful either for preventing undesired bubble formation or, on the contrary, for “writing with bubbles,” i.e., creating controlled patterns of microscopic bubbles. PMID:24982169

  11. Significance of viscoelastic effects on the rising of a bubble and bubble-to-bubble interaction

    NASA Astrophysics Data System (ADS)

    Fernandez, Arturo

    2011-11-01

    Numerical results for the rising of a bubble and the interaction between two bubbles in non-Newtonian fluids will be discussed. The computations are carried out using a multiscale method combining front-tracking with Brownian dynamics simulations. The evaluation of the material properties for the non-Newtonian fluid will be discussed firstly. The results from the computations of a single bubble show how elastic effects modify the deformation and rising of the bubble by pulling the tail of it. The relationship between the strength of the elastic forces and the discontinuity in the bubble terminal velocity, when plotted versus bubble volume, is also observed in the computations. The bubble-to-bubble interaction is dominated not only by elastic effects but also by the shear-thinning caused by the leading bubble, which leads the trailing bubble to accelerate faster and coalesce with the leading bubble.

  12. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  13. Aerator Combined With Bubble Remover

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.

    1993-01-01

    System produces bubble-free oxygen-saturated water. Bubble remover consists of outer solid-walled tube and inner hydrophobic, porous tube. Air bubbles pass from water in outer tube into inner tube, where sucked away. Developed for long-term aquaculture projects in space. Also applicable to terrestrial equipment in which entrained bubbles dry membranes or give rise to cavitation in pumps.

  14. 'Not just little adults' - a pediatric trauma primer.

    PubMed

    Overly, Frank L; Wills, Hale; Valente, Jonathan H

    2014-01-01

    This article describes pediatric trauma care and specifically how a pediatric trauma center, like Hasbro Children's Hospital, provides specialized care to this patient population. The authors review unique aspects of pediatric trauma patients broken down into anatomy and physiology, including Airway and Respiratory, Cardiovascular Response to Hemorrhage, Spine Injuries, Traumatic Brain Injuries, Thoracic Injuries and Blunt Abdominal Trauma. They review certain current recommendations for evaluation and management of these pediatric patients. The authors also briefly review the topic of Child Abuse/Non-accidental Trauma in pediatric patients. Although Pediatric Trauma is a very broad topic, the goal of this article is to act as a primer and describe certain characteristics and management recommendations unique to the pediatric trauma patient. PMID:24400309

  15. Understanding and Addressing the Trauma from Abuse: A Model of Safety, Reconnection, and Integration for Victims of Abuse. A Specialized Training Program Designed To Enhance the Competency of Caseworkers, Adoptive & Foster Parents.

    ERIC Educational Resources Information Center

    Schatz, Mona Struhsaker; Rigg, Georgia A.

    Although the trauma that children experience in abusive situations differs from the trauma of a disaster, its effects are just as profound. The information and skills that caseworkers need to assess families and children who have been traumatized, to make more appropriate treatment planning decisions, and to carry out their professional roles with…

  16. What's in a Bubble?

    ERIC Educational Resources Information Center

    Saunderson, Megan

    2000-01-01

    Describes a unit on detergents and bubbles that establishes an interest in the properties of materials and focuses on active learning involving both hands- and minds-on learning rather than passive learning. (ASK)

  17. Blowing magnetic skyrmion bubbles

    NASA Astrophysics Data System (ADS)

    Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; Yu, Guoqiang; Jungfleisch, M. Benjamin; Fradin, Frank Y.; Pearson, John E.; Tserkovnyak, Yaroslav; Wang, Kang L.; Heinonen, Olle; te Velthuis, Suzanne G. E.; Hoffmann, Axel

    2015-07-01

    The formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally “blow” magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of these dynamically created skyrmions, including depinning and motion. The demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics.

  18. Chemistry in Soap Bubbles.

    ERIC Educational Resources Information Center

    Lee, Albert W. M.; Wong, A.; Lee, H. W.; Lee, H. Y.; Zhou, Ning-Huai

    2002-01-01

    Describes a laboratory experiment in which common chemical gases are trapped inside soap bubbles. Examines the physical and chemical properties of the gases such as relative density and combustion. (Author/MM)

  19. Trauma research in Qatar: a literature review and discussion of progress after establishment of a trauma research centre.

    PubMed

    El-Menyar, A; Asim, M; Zarour, A; Abdelrahman, H; Peralta, R; Parchani, A; Al-Thani, H

    2016-11-01

    A structured research programme is one of the main pillars of a trauma care system. Despite the high rate of injury-related mortalities, especially road traffic accidents, in Qatar, little consideration has been given to research in trauma. This review aimed to analyse research publications on the subject of trauma published from Qatar and to discuss the progress of clinical research in Qatar and the Gulf Cooperation Council countries with special emphasis on trauma research. A literature search using PubMed and Google Scholar search engines located 757 English-language articles within the fields of internal medicine, surgery and trauma originating from Qatar between the years 1993 and 2013. A steep increase in the number of trauma publications since 2010 could be linked to the setting up of a trauma research centre in Qatar in 2011. We believe that establishing a research unit has made a major impact on research productivity, which ultimately benefits health care. PMID:26857718

  20. Bubble coalescence in magmas

    NASA Technical Reports Server (NTRS)

    Herd, Richard A.; Pinkerton, Harry

    1993-01-01

    The most important factors governing the nature of volcanic eruptions are the primary volatile contents, the ways in which volatiles exsolve, and how the resulting bubbles grow and interact. In this contribution we assess the importance of bubble coalescence. The degree of coalescence in alkali basalts has been measured using Image Analysis techniques and it is suggested to be a process of considerable importance. Binary coalescence events occur every few minutes in basaltic melts with vesicularities greater than around 35 percent.

  1. Anterior chamber gas bubbles in open globe injury.

    PubMed

    Barnard, E B G; Baxter, D; Blanch, R

    2013-01-01

    We present a case of a 40-year-old soldier who was in close proximity to the detonation of an improvised explosive device (IED). Bubbles of gas were visible within the anterior chamber of his left eye. The authors propose that intraocular gas, present acutely after trauma, is diagnostic of open globe injury and is of particular importance in remote military environments. PMID:24079202

  2. Helping Youth Overcome Trauma

    ERIC Educational Resources Information Center

    Chambers, Jamie C.

    2005-01-01

    The effects of trauma can roll on unchecked like a spirit of death. In its path are strewn its once vibrant victims. Human bonds are rent asunder by the disgrace of trauma. These are the youngsters who have been verbally bashed, physically battered, sexually assaulted, and spiritually exploited. Other traumas of childhood neglect include: (1)…

  3. Clustering in Bubble Suspensions

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto

    2000-11-01

    A monidisperse bubble suspension is studied experimentally for the limit in which the Weber number is small and the Reynolds number is large. For this regime the suspension can be modeled using potential flow theory to describe the dynamics of the interstitial fluid. Complete theoretical descriptions have been composed (Spelt and Sangani, 1998) to model the behavior of these suspensions. Bubble clustering is a natural instability that arises from the potential flow considerations, in which bubbles tend to align in horizontal rafts as they move upwards. The appearance of bubble clusters was recently corroborated experimentally by Zenit et al. (2000), who found that although clusters did appear, their strength was not as strong as the predictions. Experiments involving gravity driven shear flows are used to explain the nature of the clustering observed in these type of flows. Balances of the bubble phase pressure (in terms of a calculated diffusion coefficient) and the Maxwell pressure (from the potential flow description) are presented to predict the stability of the bubble suspension. The predictions are compared with experimental results.

  4. Computed tomography in trauma

    SciTech Connect

    Toombs, B.D.; Sandler, C.M.

    1987-01-01

    This book begins with a chapter dealing with the epidemiology and mechanisms of trauma. Trauma accounts for more lives lost in the United States than cancer and heart disease. The fact that 30%-40% of trauma-related deaths are caused by improper or delayed diagnoses or treatment emphasizes the importance of rapid and accurate methods to establish a diagnosis. Acute thoracic, abdominal, and pelvic trauma and their complications are discussed. A chapter on high-resolution CT of spinal and facial trauma and the role of three-dimensional reconstruction images is presented.

  5. On the Physics of Fizziness: How liquid properties control bursting bubble aerosol production?

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Josserand, Christophe; Seon, Thomas

    2014-11-01

    Either in a champagne glass or at the oceanic scales, the tiny capillary bubbles rising at the surface burst in ejecting myriads of droplets. Focusing on the ejected droplets produced by a single bubble, we investigate experimentally how liquid properties and bubble size affect their characteristics: number, ejection velocities, sizes and ejection heights. These results allow us to finely tune the bursting bubble aerosol production. In the context of champagne industry, aerosols play a major role by spreading wine aroma above the glass. We demonstrate that this champagne fizz can be enhanced by selecting the wine viscosity and the bubble size, thanks to specially designed glass.

  6. [New observations on gut trauma].

    PubMed

    Staib, L; Henne-Bruns, D

    2005-10-01

    Abdominal trauma from blunt objects remains a challenge in clinical practice. The primary aims are quick recognition and reversal of life-threatening situations, rational use of the available diagnostic methods, and avoidance of unnecessary laparotomy. The majority of these injuries can now be treated conservatively, whereby interventional methods such as drainage inserts and embolisation are becoming increasingly favoured. Observation of the treatment course by an experienced surgeon is a must. In patients with complicated injuries, special attention must be paid to so-called missed injuries: traumata that may be overlooked such as small intestine and diaphragm ruptures. Aside from retaining organs and their function, the most important concern is damage control (for complex injuries) and laparotomy in the abdominal compartment, with the application of temporary laparotomy as needed. These methods are aimed at reducing mortality pre- and post-admittance. However, we still lack valid prognostic parameters to allow realistic estimation of survival following severe, blunt abdominal trauma. PMID:15843910

  7. Trauma system development.

    PubMed

    Lendrum, R A; Lockey, D J

    2013-01-01

    The word 'trauma' describes the disease entity resulting from physical injury. Trauma is one of the leading causes of death worldwide and deaths due to injury look set to increase. As early as the 1970s, it became evident that centralisation of resources and expertise could reduce the mortality rate from serious injury and that organisation of trauma care delivery into formal systems could improve outcome further. Internationally, trauma systems have evolved in various forms, with widespread reports of mortality and functional outcome benefits when major trauma management is delivered in this way. The management of major trauma in England is currently undergoing significant change. The London Trauma System began operating in April 2010 and others throughout England became operational this year. Similar systems exist internationally and continue to be developed. Anaesthetists have been and continue to be involved with all levels of trauma care delivery, from the provision of pre-hospital trauma and retrieval teams, through to chronic pain management and rehabilitation of patients back into society. This review examines the international development of major trauma care delivery and the components of a modern trauma system. PMID:23210554

  8. The dynamics of histotripsy bubbles

    NASA Astrophysics Data System (ADS)

    Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.

    2011-09-01

    Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.

  9. Colliding with a crunching bubble

    SciTech Connect

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  10. Turbulent bubbly flow

    NASA Astrophysics Data System (ADS)

    van den Berg, Thomas H.; Luther, Stefan; Mazzitelli, Irene M.; Rensen, Judith M.; Toschi, Federico; Lohse, Detlef

    The effect of bubbles on fully developed turbulent flow is investigated numerically and experimentally, summarizing the results of our previous papers (Mazzitelli et al., 2003, Physics of Fluids15, L5. and Journal of Fluid Mechanics488, 283; Rensen, J. et al. 2005, Journal of Fluid Mechanics538, 153). On the numerical side, we simulate Navier Stokes turbulence with a Taylor Reynolds number of Re?˜60, a large large-scale forcing, and periodic boundary conditions. The point-like bubbles follow their Lagrangian paths and act as point forces on the flow. As a consequence, the spectral slope is less steep as compared to the Kolmogorov case. The slope decrease is identified as a lift force effect. On the experimental side, we do hot-film anemometry in a turbulent water channel with Re? ˜ 200 in which we have injected small bubbles up to a volume percentage of 3%. Here the challenge is to disentangle the bubble spikes from the hot-film velocity signal. To achieve this goal, we have developed a pattern recognition scheme. Furthermore, we injected microbubbles up to a volume percentage of 0.3%. Both in the counter flowing situation with small bubbles and in the co-flow situation with microbubbles, we obtain a less spectral slope, in agreement with the numerical result.

  11. Bubbles of Metamorphosis

    NASA Astrophysics Data System (ADS)

    Prakash, Manu

    2011-11-01

    Metamorphosis presents a puzzling challenge where, triggered by a signal, an organism abruptly transforms its entire shape and form. Here I describe the role of physical fluid dynamic processes during pupal metamorphosis in flies. During early stages of pupation of third instar larvae into adult flies, a physical gas bubble nucleates at a precise temporal and spatial location, as part of the normal developmental program in Diptera. Although its existence has been known for the last 100 years, the origin and control of this ``cavitation'' event has remained completely mysterious. Where does the driving negative pressure for bubble nucleation come from? How is the location of the bubble nucleation site encoded in the pupae? How do molecular processes control such a physical event? What is the role of this bubble during development? Via developing in-vivo imaging techniques, direct bio-physical measurements in live insect pupal structures and physical modeling, here I elucidate the physical mechanism for appearance and disappearance of this bubble and predict the site of nucleation and its exact timing. This new physical insight into the process of metamorphosis also allows us to understand the inherent design of pupal shell architectures in various species of insects. Milton Award, Harvard Society of Fellows; Terman Fellowship, Stanford

  12. Plasma in sonoluminescing bubble.

    PubMed

    An, Yu

    2006-12-22

    With the new accommodation coefficient of water vapor evaluated by molecular dynamics model, the maximum temperature of a sonoluminescing bubble calculated with the full partial differential equations easily reaches few tens of thousands degrees. Though at this temperature the gas is weakly ionized (10% or less), the gas density inside a sonoluminescing bubble at the moment of the bubble's flashing is so high that there still forms a dense plasma. The light emission of the bubble is calculated by the plasma model which is compared with that by the bremsstrahlung (electron-ion, electron-neutral atom) and recombination model. The calculation by the two models shows that for the relatively low maximum temperature (< 30,000 K) of the bubble, the pulse width is independent of the wavelength and the spectrum deviates the black body radiation type; while for the relatively high maximum temperature (approximately 60,000 K), the pulse width is dependent of the wavelength and the spectrum is an almost perfect black body radiation spectrum. The maximum temperature calculated by the gas dynamics equations is much higher than the temperature fitted by the black body radiation formula. PMID:16797657

  13. A Bubble Bursts

    NASA Technical Reports Server (NTRS)

    2005-01-01

    RCW 79 is seen in the southern Milky Way, 17,200 light-years from Earth in the constellation Centaurus. The bubble is 70-light years in diameter, and probably took about one million years to form from the radiation and winds of hot young stars.

    The balloon of gas and dust is an example of stimulated star formation. Such stars are born when the hot bubble expands into the interstellar gas and dust around it. RCW 79 has spawned at least two groups of new stars along the edge of the large bubble. Some are visible inside the small bubble in the lower left corner. Another group of baby stars appears near the opening at the top.

    NASA's Spitzer Space Telescope easily detects infrared light from the dust particles in RCW 79. The young stars within RCW 79 radiate ultraviolet light that excites molecules of dust within the bubble. This causes the dust grains to emit infrared light that is detected by Spitzer and seen here as the extended red features.

  14. BLOWING COSMIC BUBBLES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image reveals an expanding shell of glowing gas surrounding a hot, massive star in our Milky Way Galaxy. This shell is being shaped by strong stellar winds of material and radiation produced by the bright star at the left, which is 10 to 20 times more massive than our Sun. These fierce winds are sculpting the surrounding material - composed of gas and dust - into the curve-shaped bubble. Astronomers have dubbed it the Bubble Nebula (NGC 7635). The nebula is 10 light-years across, more than twice the distance from Earth to the nearest star. Only part of the bubble is visible in this image. The glowing gas in the lower right-hand corner is a dense region of material that is getting blasted by radiation from the Bubble Nebula's massive star. The radiation is eating into the gas, creating finger-like features. This interaction also heats up the gas, causing it to glow. Scientists study the Bubble Nebula to understand how hot stars interact with the surrounding material. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  15. The Dueling Bubble Experiment

    NASA Astrophysics Data System (ADS)

    Roy, Anshuman; Borrell, Marcos; Felts, John; Leal, Gary; Hirsa, Amir

    2007-11-01

    When two drops or bubbles are brought into close proximity to each other, the thin film of the fluid between them drains as they are squeezed together. If the film becomes thin enough that intermolecular forces of attraction overwhelm capillary forces, the drops/bubbles coalesce and the time it takes for this to happen, starting from the point of apparent contact is referred to as the drainage time. One practical version of this scenario occurs during the formation of foams, when the thin film forms between gas bubbles that are growing in volume with time. We performed an experimental study that is intended to mimic this process in which the two drops (or bubbles) in the size range of 50-100 microns diameter are created by oozing a liquid/gas out of two capillaries of diameter less than 100 microns directly facing each other and immersed in a second fluid. We present measurements of drainage times for the cases of very low viscosity ratios PDMS drops in Castor oil (less than 0.05) and bubbles of air in PDMS, and highlight the differences that arise in part due to the different boundary conditions for thin film drainage for liquid-liquid versus gas-liquid systems, and in part due to the different Hamaker constants for the two systems.

  16. Effect of direct bubble-bubble interactions on linear-wave propagation in bubbly liquids

    NASA Astrophysics Data System (ADS)

    Fuster, D.; Conoir, J. M.; Colonius, T.

    2014-12-01

    We study the influence of bubble-bubble interactions on the propagation of linear acoustic waves in bubbly liquids. Using the full model proposed by Fuster and Colonius [J. Fluid Mech. 688, 253 (2011), 10.1017/jfm.2011.380], numerical simulations reveal that direct bubble-bubble interactions have an appreciable effect for frequencies above the natural resonance frequency of the average size bubble. Based on the new results, a modification of the classical wave propagation theory is proposed. The results obtained are in good agreement with previously reported experimental data where the classical linear theory systematically overpredicts the effective attenuation and phase velocity.

  17. Bubbles from nothing

    SciTech Connect

    Blanco-Pillado, Jose J.; Ramadhan, Handhika S.; Shlaer, Benjamin E-mail: handhika@cosmos.phy.tufts.edu

    2012-01-01

    Within the framework of flux compactifications, we construct an instanton describing the quantum creation of an open universe from nothing. The solution has many features in common with the smooth 6d bubble of nothing solutions discussed recently, where the spacetime is described by a 4d compactification of a 6d Einstein-Maxwell theory on S{sup 2} stabilized by flux. The four-dimensional description of this instanton reduces to that of Hawking and Turok. The choice of parameters uniquely determines all future evolution, which we additionally find to be stable against bubble of nothing instabilities.

  18. Heated Gas Bubbles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Fluid Physics is study of the motion of fluids and the effects of such motion. When a liquid is heated from the bottom to the boiling point in Earth's microgravity, small bubbles of heated gas form near the bottom of the container and are carried to the top of the liquid by gravity-driven convective flows. In the same setup in microgravity, the lack of convection and buoyancy allows the heated gas bubbles to grow larger and remain attached to the container's bottom for a significantly longer period.

  19. Evolution of Bubbles through Gas Injection from a Micro-Tube into Liquid Cross-Flow

    NASA Astrophysics Data System (ADS)

    Ghaemi, Sina; Rahimi, Payam; Nobes, David

    2008-11-01

    Generation of small-size bubbles is of importance in many processes such as chemical, medical and food industries. The most common method of bubble generation is injection of gas from an orifice into the liquid phase. In spite of simplicity of this method, appropriate conditions should exist to avoid bubble growth and obtain required small-size bubbles. Thorough understanding of the bubble formation and growth can reveal the required conditions and ensure detachment of the bubbles from the orifice with desired timing to control their size. In this work, evolution of bubbles from a micro-size gas injection tube into liquid cross-flow is investigated. Special attention has been devoted to optimize the conditions to generate micro-size bubbles. Specifically, the influence of gas injection tube size and location, gas and liquid Reynolds numbers and the geometry of the mixing chamber on the bubbles evolution is studied. High-speed shadowgraphy technique is applied to investigate bubbles size and shape. A Particle Tracking Velocimetry algorithm is also applied to calculate bubbles velocity. The velocity field of the liquid flow surrounding the bubbles is also characterized using a Mirco-Stereo-Particle Image Velocimetry technique.

  20. Mechanics of collapsing cavitation bubbles.

    PubMed

    van Wijngaarden, Leen

    2016-03-01

    A brief survey is given of the dynamical phenomena accompanying the collapse of cavitation bubbles. The discussion includes shock waves, microjets and the various ways in which collapsing bubbles produce damage. PMID:25890856

  1. Optimizing the use of blood products in trauma care.

    PubMed

    Hess, John R; Hiippala, Seppo

    2005-01-01

    Blood transfusion has been used to treat the injured since the US Civil War. Now, it saves the lives of tens of thousands of injured patients each year. However, not everyone who receives blood benefits, and some recipients are injured by the transfusion itself. Effective blood therapy in trauma management requires an integration of information from diverse sources, including data relating to trauma and blood use epidemiology, medical systems management, and clinical care. Issues of current clinical concern in highly developed trauma systems include how to manage massive transfusion events, how to limit blood use and so minimize exposure to transfusion risks, how to integrate new hemorrhage control modalities, and how to deal with blood shortages. Less developed trauma systems are primarily concerned with speeding transport to specialized facilities and assembling trauma center resources. This article reviews the factors that effect blood use in urgent trauma care. PMID:16221314

  2. Optimizing the use of blood products in trauma care

    PubMed Central

    2005-01-01

    Blood transfusion has been used to treat the injured since the US Civil War. Now, it saves the lives of tens of thousands of injured patients each year. However, not everyone who receives blood benefits, and some recipients are injured by the transfusion itself. Effective blood therapy in trauma management requires an integration of information from diverse sources, including data relating to trauma and blood use epidemiology, medical systems management, and clinical care. Issues of current clinical concern in highly developed trauma systems include how to manage massive transfusion events, how to limit blood use and so minimize exposure to transfusion risks, how to integrate new hemorrhage control modalities, and how to deal with blood shortages. Less developed trauma systems are primarily concerned with speeding transport to specialized facilities and assembling trauma center resources. This article reviews the factors that effect blood use in urgent trauma care. PMID:16221314

  3. Fluid Dynamics of Bubbly Liquids

    NASA Technical Reports Server (NTRS)

    Tsang, Y. H.; Koch, D. L.; Zenit, R.; Sangani, A.; Kushch, V. I.; Spelt, P. D. M.; Hoffman, M.; Nahra, H.; Fritz, C.; Dolesh, R.

    2002-01-01

    Experiments have been performed to study the average flow properties of inertially dominated bubbly liquids which may be described by a novel analysis. Bubbles with high Reynolds number and low Weber number may produce a fluid velocity disturbance that can be approximated by a potential flow. We studied the behavior of suspensions of bubbles of about 1.5 mm diameter in vertical and inclined channels. The suspension was produced using a bank of 900 glass capillaries with inner diameter of about 100 microns in a quasi-steady fashion. In addition, salt was added to the suspension to prevent bubble-bubble coalescence. As a result, a nearly monodisperse suspension of bubble was produced. By increasing the inclination angle, we were able to explore an increasing amount of shear to buoyancy motion. A pipe flow experiment with the liquid being recirculated is under construction. This will provide an even larger range of shear to buoyancy motion. We are planning a microgravity experiment in which a bubble suspension is subjected to shearing in a couette cell in the absence of a buoyancy-driven relative motion of the two phases. By employing a single-wire, hot film anemometer, we were able to obtain the liquid velocity fluctuations. The shear stress at the wall was measured using a hot film probe flush mounted on the wall. The gas volume fraction, bubble velocity, and bubble velocity fluctuations were measured using a homemade, dual impedance probe. In addition, we also employed a high-speed camera to obtain the bubble size distribution and bubble shape in a dilute suspension. A rapid decrease in bubble velocity for a dilute bubble suspension is attributed to the effects of bubble-wall collisions. The more gradual decrease of bubble velocity as gas volume fraction increases, due to subsequent hindering of bubble motion, is in qualitative agreement with the predictions of Spelt and Sangani for the effects of potential-flow bubble-bubble interactions on the mean velocity. The

  4. Radionuclide evaluation of lung trauma.

    PubMed

    Lull, R J; Tatum, J L; Sugerman, H J; Hartshorne, M F; Boll, D A; Kaplan, K A

    1983-07-01

    Nuclear medicine imaging procedures can play a significant role in evaluating the pulmonary complications that are seen in trauma patients. A quantitative method for measuring increased pulmonary capillary permeability that uses Tc-99m HSA allows early diagnosis of acute respiratory distress syndrome (ARDS) and accurately differentiates this condition from pneumonia or cardiogenic pulmonary edema. This technique may be of great value in following the response to therapy. The use of 133Xe to diagnose inhalation injury remains an important diagnostic tool, particularly at hospitals with specialized burn units. Regional decreases in ventilation-perfusion images reliably localize aspirated foreign bodies. Radionuclide techniques that are used to demonstrate gastropulmonary aspiration remain controversial and require further clinical evaluation. Pulmonary perfusion imaging, although nonspecific, may provide the earliest clue for correct diagnosis of fat embolism, air embolism, contusion, or laceration. Furthermore, the possibility of perfusion abnormality due to these uncommon conditions must be remembered whenever trauma patients are evaluated for pulmonary thromboembolism with scintigraphy. Occasionally, liver or spleen scintigraphy may be the most appropriate procedure when penetrating chest trauma also involves these subdiaphragmatic organs. PMID:6226097

  5. DNS studies of bubbly flows

    NASA Astrophysics Data System (ADS)

    Tryggvason, Gretar; Esmaeeli, Asghar; Biswas, Souvik

    2004-11-01

    Recent stuies of bubbly flows, using direct numerical simulations, are discussed. The goal of this study is to examine the collective behavior of many bubbles as the rise Reynolds number is increased and and a single bubble rises unsteadily, as well as to examine the motion of bubbles in channels. A front-tracking/finite volume method is used to fully resolve all flow scales, including the bubbles and the flow around them. Two cases are simulated, for one the bubbles remain nearly spherical and for the other case the bubbles are deformable and wobble. The wobbly bubbles remains relatively uniformly distributed and are not susceptible to the streaming instability found by Bunner and Tryggvason (2003) for deformable bubbles at lower rise Reynolds numbers. The more spherical bubbles, on the other hand, form transients ``rafts'' somewhat similar to those seen in potential flow simulation of many bubbles. For channel flow we compare results from direct numerical simulations of bubbly flow with prediction of the steady-state two-fluid model of Antal, Lahey, and Flaherty (1991). The simulations are done assuming a two-dimensional system and the model coefficients are adjusted slightly to match the data for upflow. The results generally agree reasonably well, even though the simulated void fraction is considerably higher than the one assumed in the derivation of the model. Research supported by DOE.

  6. Cohesion of Bubbles in Foam

    ERIC Educational Resources Information Center

    Ross, Sydney

    1978-01-01

    The free-energy change, or binding energy, of an idealized bubble cluster is calculated on the basis of one mole of gas, and on the basis of a single bubble going from sphere to polyhedron. Some new relations of bubble geometry are developed in the course of the calculation. (BB)

  7. Caring for Trauma Survivors.

    PubMed

    Antai-Otong, Deborah

    2016-06-01

    Although trauma exposure is common, few people develop acute and chronic psychiatric disorders. Those who develop posttraumatic stress disorder likely have coexisting psychiatric and physical disorders. Psychiatric nurses must be knowledgeable about trauma responses, implement evidence-based approaches to conduct assessments, and create safe environments for patients. Most researchers assert that trauma-focused cognitive-behavioral approaches demonstrate the most efficacious treatment outcomes. Integrated approaches, offer promising treatment options. This article provides an overview of clinical factors necessary to help the trauma survivor begin the process of healing and recovery and attain an optimal level of functioning. PMID:27229285

  8. Double Bubble? No Trouble!

    ERIC Educational Resources Information Center

    Shaw, Mike I.; Smith, Greg F.

    1995-01-01

    Describes a soap-solution activity involving formation of bubbles encasing the students that requires only readily available materials and can be adapted easily for use with various grade levels. Discusses student learning outcomes including qualitative and quantitative observations and the concept of surface tension. (JRH)

  9. Oscillations of soap bubbles

    NASA Astrophysics Data System (ADS)

    Kornek, U.; Müller, F.; Harth, K.; Hahn, A.; Ganesan, S.; Tobiska, L.; Stannarius, R.

    2010-07-01

    Oscillations of droplets or bubbles of a confined fluid in a fluid environment are found in various situations in everyday life, in technological processing and in natural phenomena on different length scales. Air bubbles in liquids or liquid droplets in air are well-known examples. Soap bubbles represent a particularly simple, beautiful and attractive system to study the dynamics of a closed gas volume embedded in the same or a different gas. Their dynamics is governed by the densities and viscosities of the gases and by the film tension. Dynamic equations describing their oscillations under simplifying assumptions have been well known since the beginning of the 20th century. Both analytical description and numerical modeling have made considerable progress since then, but quantitative experiments have been lacking so far. On the other hand, a soap bubble represents an easily manageable paradigm for the study of oscillations of fluid spheres. We use a technique to create axisymmetric initial non-equilibrium states, and we observe damped oscillations into equilibrium by means of a fast video camera. Symmetries of the oscillations, frequencies and damping rates of the eigenmodes as well as the coupling of modes are analyzed. They are compared to analytical models from the literature and to numerical calculations from the literature and this work.

  10. The Bubble N10

    NASA Astrophysics Data System (ADS)

    Gama, D.; Lepine, J.; Wu, Y.; Yuan, J.

    2014-10-01

    We studied the environment surrounding the infrared bubble N10 in molecular and infrared emission. There is an HII region at the center of this bubble. We investigated J=1-0 transitions of molecules ^{12}CO, ^{13}CO and C^{18}O towards N10. This object was detected by GLIMPSE, a survey carried out between 3.6 and 8.0 μ m. We also analyzed the emission at 24 μ m, corresponding to the emission of hot dust, with a contribution of small grains heated by nearby O stars. Besides, the contribution at 8 μ m is dominated by PAHs (polycyclic aromatic hydrocarbons) excited by radiation from the PDRs of bubbles. In the case of N10, it is proposed that the excess at 4.5 μ m IRAC band indicate an outflow, a signature of early stages of massive star formation. This object was the target of observations at the PMO 13.7 m radio telescope. The bubble N10 presents clumps, from which we can derive physical features through the observed parameters. We also intended to discuss the evolutionary stage of the clumps and their distribution. It can lead us to understand the triggered star formation scenario in this region.

  11. The Liberal Arts Bubble

    ERIC Educational Resources Information Center

    Agresto, John

    2011-01-01

    The author expresses his doubt that the general higher education bubble will burst anytime soon. Although tuition, student housing, and book costs have all increased substantially, he believes it is still likely that the federal government will continue to pour billions into higher education, largely because Americans have been persuaded that it…

  12. Bubbly Little Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this processed Spitzer Space Telescope image, baby star HH 46/47 can be seen blowing two massive 'bubbles.' The star is 1,140 light-years away from Earth.

    The infant star can be seen as a white spot toward the center of the Spitzer image. The two bubbles are shown as hollow elliptical shells of bluish-green material extending from the star. Wisps of green in the image reveal warm molecular hydrogen gas, while the bluish tints are formed by starlight scattered by surrounding dust.

    These bubbles formed when powerful jets of gas, traveling at 200 to 300 kilometers per second, or about 120 to 190 miles per second, smashed into the cosmic cloud of gas and dust that surrounds HH 46/47. The red specks at the end of each bubble show the presence of hot sulfur and iron gas where the star's narrow jets are currently crashing head-on into the cosmic cloud's gas and dust material.

    Whenever astronomers observe a star, or snap a stellar portrait, through the lens of any telescope, they know that what they are seeing is slightly blurred. To clear up the blurring in Spitzer images, astronomers at the Jet Propulsion Laboratory developed an image processing technique for Spitzer called Hi-Res deconvolution.

    This process reduces blurring and makes the image sharper and cleaner, enabling astronomers to see the emissions around forming stars in greater detail. When scientists applied this image processing technique to the Spitzer image of HH 46/47, they were able to see winds from the star and jets of gas that are carving the celestial bubbles.

    This infrared image is a three-color composite, with data at 3.6 microns represented in blue, 4.5 and 5.8 microns shown in green, and 24 microns represented as red.

  13. Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles

    NASA Technical Reports Server (NTRS)

    Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.

  14. Ring Bubbles of Dolphins

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since

  15. Rheology of dense bubble suspensions

    NASA Astrophysics Data System (ADS)

    Kang, Sang-Yoon; Sangani, Ashok S.; Tsao, Heng-Kwong; Koch, Donald L.

    1997-06-01

    The rheological behavior of rapidly sheared bubble suspensions is examined through numerical simulations and kinetic theory. The limiting case of spherical bubbles at large Reynolds number Re and small Weber number We is examined in detail. Here, Re=ργa2/μ and We=ργ2a3/s, a being the bubble radius, γ the imposed shear, s the interfacial tension, and μ and ρ, respectively, the viscosity and density of the liquid. The bubbles are assumed to undergo elastic bounces when they come into contact; coalescence can be prevented in practice by addition of salt or surface-active impurities. The numerical simulations account for the interactions among bubbles which are assumed to be dominated by the potential flow of the liquid caused by the motion of the bubbles and the shear-induced collision of the bubbles. A kinetic theory based on Grad's moment method is used to predict the distribution function for the bubble velocities and the stress in the suspension. The hydrodynamic interactions are incorporated in this theory only through their influence on the virtual mass and viscous dissipation in the suspension. It is shown that this theory provides reasonable predictions for the bubble-phase pressure and viscosity determined from simulations including the detailed potential flow interactions. A striking result of this study is that the variance of the bubble velocity can become large compared with (γa)2 in the limit of large Reynolds number. This implies that the disperse-phase pressure and viscosity associated with the fluctuating motion of the bubbles is quite significant. To determine whether this prediction is reasonable even in the presence of nonlinear drag forces induced by bubble deformation, we perform simulations in which the bubbles are subject to an empirical drag law and show that the bubble velocity variance can be as large as 15γ2a2.

  16. Can bubbles sink ships?

    NASA Astrophysics Data System (ADS)

    Hueschen, Michael A.

    2010-02-01

    I investigate the interplay between the buoyancy force and the upwelling (or drag) force which act on a floating object when bubbles are rising through a body of water. Bubbles reduce the buoyant force by reducing the density of the water, but if they entrain an upwelling flow of water as they rise, they can produce a large upward drag force on the floating object. In an upwelling flow, our model ship (density=0.94 g/cm3) floats in a foam whose density is only 0.75 g/cm3. Comparing results with and without upwelling currents is an interesting demonstration and has real-world applications to ships in the ocean.

  17. CONTINUOUSLY SENSITIVE BUBBLE CHAMBER

    DOEpatents

    Good, R.H.

    1959-08-18

    A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.

  18. Magnetic bubble domain memories

    NASA Technical Reports Server (NTRS)

    Ypma, J. E.

    1974-01-01

    Some attractive features of Bubble Domain Memory and its relation to existing technologies are discussed. Two promising applications are block access mass memory and tape recorder replacement. The required chip capabilities for these uses are listed, and the specifications for a block access mass memory designed to fit between core and HPT disk are presented. A feasibility model for a tape recorder replacement is introduced.

  19. Slurry bubble column hydrodynamics

    NASA Astrophysics Data System (ADS)

    Rados, Novica

    Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids

  20. Bubble dynamics in drinks

    NASA Astrophysics Data System (ADS)

    Broučková, Zuzana; Trávníček, Zdeněk; Šafařík, Pavel

    2014-03-01

    This study introduces two physical effects known from beverages: the effect of sinking bubbles and the hot chocolate sound effect. The paper presents two simple "kitchen" experiments. The first and second effects are indicated by means of a flow visualization and microphone measurement, respectively. To quantify the second (acoustic) effect, sound records are analyzed using time-frequency signal processing, and the obtained power spectra and spectrograms are discussed.

  1. Mechanisms of gas bubble retention

    SciTech Connect

    Gauglitz, P.A.; Mahoney, L.A.; Mendoza, D.P.; Miller, M.C.

    1994-09-01

    Retention and episodic release of flammable gases are critical safety concerns regarding double-shell tanks (DSTs) containing waste slurries. Previous investigations have concluded that gas bubbles are retained by the slurry that has settled at the bottom of the DST. However, the mechanisms responsible for the retention of these bubbles are not well understood. In addition, the presence of retained gas bubbles is expected to affect the physical properties of the sludge, but essentially no literature data are available to assess the effect of these bubbles. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The objectives of this study are to elucidate the mechanisms contributing to gas bubble retention and release from sludge such as is in Tank 241-SY-101, understand how the bubbles affect the physical properties of the sludge, develop correlations of these physical properties to include in computer models, and collect experimental data on the physical properties of simulated sludges with bubbles. This report presents a theory and experimental observations of bubble retention in simulated sludge and gives correlations and new data on the effect of gas bubbles on sludge yield strength.

  2. Imaging of head trauma.

    PubMed

    Rincon, Sandra; Gupta, Rajiv; Ptak, Thomas

    2016-01-01

    Imaging is an indispensable part of the initial assessment and subsequent management of patients with head trauma. Initially, it is important for diagnosing the extent of injury and the prompt recognition of treatable injuries to reduce mortality. Subsequently, imaging is useful in following the sequelae of trauma. In this chapter, we review indications for neuroimaging and typical computed tomography (CT) and magnetic resonance imaging (MRI) protocols used in the evaluation of a patient with head trauma. We review the role of CT), the imaging modality of choice in the acute setting, and the role of MRI in the evaluation of patients with head trauma. We describe an organized and consistent approach to the interpretation of imaging of these patients. Important topics in head trauma, including fundamental concepts related to skull fractures, intracranial hemorrhage, parenchymal injury, penetrating trauma, cerebrovascular injuries, and secondary effects of trauma, are reviewed. The chapter concludes with advanced neuroimaging techniques for the evaluation of traumatic brain injury, including use of diffusion tensor imaging (DTI), functional MRI (fMRI), and MR spectroscopy (MRS), techniques which are still under development. PMID:27432678

  3. The coagulopathy of trauma.

    PubMed

    Maegele, M

    2014-04-01

    Trauma is a leading cause of death, with uncontrolled hemorrhage and exsanguination being the primary causes of preventable deaths during the first 24 h following trauma. Death usually occurs quickly, typically within the first 6 h after injury. One out of four patients arriving at the Emergency Department after trauma is already in hemodynamic and hemostatic depletion. This early manifestation of hemostatic depletion is referred to as the coagulopathy of trauma, which may distinguished as: (i) acute traumatic coagulopathy (ATC) and (ii) iatrogenic coagulopathy (IC). The principle drivers of ATC have been characterized by tissue trauma, inflammation, hypoperfusion/shock, and the acute activation of the neurohumoral system. Hypoperfusion leads to an activation of protein C with cleavage of activated factors V and VIII and the inhibition of plasminogen activator inhibitor-1 (PAI-1), with subsequent fibrinolysis. Endothelial damage and activation results in Weibel-Palade body degradation and glycocalyx shedding associated with autoheparinization. In contrast, there is an IC which occurs secondary to uncritical volume therapy, leading to acidosis, hypothermia, and hemodilution. This coagulopathy may, then, be an integral part of the "vicious cycle" when combined with acidosis and hypothermia. The awareness of the specific pathophysiology and of the principle drivers underlying the coagulopathy of trauma by the treating physician is paramount. It has been shown that early recognition prompted by appropriate and aggressive management can correct coagulopathy, control bleeding, reduce blood product use, and improve outcome in severely injured patients. This paper summarizes: (i) the current concepts of the pathogenesis of the coagulopathy of trauma, including ATC and IC, (ii) the current strategies available for the early identification of patients at risk for coagulopathy and ongoing life-threatening hemorrhage after trauma, and (iii) the current and updated European

  4. Blunt Force Trauma in Veterinary Forensic Pathology.

    PubMed

    Ressel, L; Hetzel, U; Ricci, E

    2016-09-01

    Veterinary pathologists commonly encounter lesions of blunt trauma. The development of lesions is affected by the object's mass, velocity, size, shape, and angle of impact and by the plasticity and mobility of the impacted organ. Scrape, impact, and pattern abrasions cause localized epidermal loss and sometimes broken hairs and implanted foreign material. Contusions are best identified after reflecting the skin, and must be differentiated from coagulopathies and livor mortis. Lacerations-traumatic tissue tears-may have irregular margins, bridging by more resilient tissue, deviation of the wound tail, crushed hairs, and unilateral abrasion. Hanging or choking can cause circumferential cervical abrasions, contusions and rupture of hairs, hyoid bone fractures, and congestion of the head. Other special forms of blunt trauma include fractured nails, pressure sores, and dog bites. Ocular blunt trauma causes extraocular and intraocular hemorrhages, proptosis, or retinal detachment. The thoracic viscera are relatively protected from blunt trauma but may develop hemorrhages in intercostal muscles, rib fractures, pulmonary or cardiac contusions or lacerations with subsequent hemothorax, pneumothorax, or cardiac arrhythmia. The abdominal wall is resilient and moveable, yet the liver and spleen are susceptible to traumatic laceration or rupture. Whereas extravasation of blood can occur after death, evidence of vital injury includes leukocyte infiltration, erythrophagocytosis, hemosiderin, reparative lesions of fibroblast proliferation, myocyte regeneration in muscle, and callus formation in bone. Understanding these processes aids in the diagnosis of blunt force trauma including estimation of the age of resulting injuries. PMID:27381403

  5. Trauma and Mobile Radiography

    SciTech Connect

    Drafke, M.W.

    1989-01-01

    Trauma and Mobile Radiography focuses on the radiography of trauma patients and of patients confined to bed. This book offers students a foundation in the skills they need to produce quality radiograms without causing additional injury or pain to the patient. Features of this new book include: coverage of the basics of radiography and patient care, including monitoring of heavily sedated, immobile, and accident patients. Information on the injuries associated with certain types of accidents, and methods for dealing with these problems. Detailed explanation of the positioning of each anatomical area. A Quick Reference Card with information on evaluating, monitoring and radiographing trauma patients.

  6. Stable Multibubble Sonoluminescence Bubble Patterns

    SciTech Connect

    Posakony, Gerald J.; Greenwood, Lawrence R.; Ahmed, Salahuddin

    2006-06-30

    Multibubble standing wave patterns can be generated from a flat piezoceramic transducer element propagating into water. By adding a second transducer positioned at 90 degrees from the transducer generating the standing wave, a 3-dimensional volume of stable single bubbles can be established. Further, the addition of the second transducer stabilizes the bubble pattern so that individual bubbles may be studied. The size of the bubbles and the separation of the standing waves depend on the frequency of operation. Two transducers, operating at frequencies above 500 kHz, provided the most graphic results for the configuration used in this study. At these frequencies stable bubbles exhibit a bright sonoluminescence pattern. Whereas stable SBSL is well-known, stable MBSL has not been previously reported. This paper includes discussions of the acoustic responses, standing wave patterns, and pictorial results of the separation of individual bubble of sonoluminescence in a multibubble sonoluminescence environment.

  7. Cellular High-Energy Cavitation Trauma – Description of a Novel In Vitro Trauma Model in Three Different Cell Types

    PubMed Central

    Cao, Yuli; Risling, Mårten; Malm, Elisabeth; Sondén, Anders; Bolling, Magnus Frödin; Sköld, Mattias K.

    2016-01-01

    The mechanisms involved in traumatic brain injury have yet to be fully characterized. One mechanism that, especially in high-energy trauma, could be of importance is cavitation. Cavitation can be described as a process of vaporization, bubble generation, and bubble implosion as a result of a decrease and subsequent increase in pressure. Cavitation as an injury mechanism is difficult to visualize and model due to its short duration and limited spatial distribution. One strategy to analyze the cellular response of cavitation is to employ suitable in vitro models. The flyer-plate model is an in vitro high-energy trauma model that includes cavitation as a trauma mechanism. A copper fragment is accelerated by means of a laser, hits the bottom of a cell culture well causing cavitation, and shock waves inside the well and cell medium. We have found the flyer-plate model to be efficient, reproducible, and easy to control. In this study, we have used the model to analyze the cellular response to microcavitation in SH-SY5Y neuroblastoma, Caco-2, and C6 glioma cell lines. Mitotic activity in neuroblastoma and glioma was investigated with BrdU staining, and cell numbers were calculated using automated time-lapse imaging. We found variations between cell types and between different zones surrounding the lesion with these methods. It was also shown that the injured cell cultures released S-100B in a dose-dependent manner. Using gene expression microarray, a number of gene families of potential interest were found to be strongly, but differently regulated in neuroblastoma and glioma at 24 h post trauma. The data from the gene expression arrays may be used to identify new candidates for biomarkers in cavitation trauma. We conclude that our model is useful for studies of trauma in vitro and that it could be applied in future treatment studies. PMID:26869990

  8. In Search of the Big Bubble

    ERIC Educational Resources Information Center

    Simoson, Andrew; Wentzky, Bethany

    2011-01-01

    Freely rising air bubbles in water sometimes assume the shape of a spherical cap, a shape also known as the "big bubble". Is it possible to find some objective function involving a combination of a bubble's attributes for which the big bubble is the optimal shape? Following the basic idea of the definite integral, we define a bubble's surface as…

  9. Neutron detection via bubble chambers.

    PubMed

    Jordan, D V; Ely, J H; Peurrung, A J; Bond, L J; Collar, J I; Flake, M; Knopf, M A; Pitts, W K; Shaver, M; Sonnenschein, A; Smart, J E; Todd, L C

    2005-01-01

    Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography. PMID:16005238

  10. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics. PMID:26486337

  11. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  12. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer. respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  13. Bubble measuring instrument and method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  14. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  15. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting. distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receive, the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  16. Trauma program development.

    PubMed

    Althausen, Peter L

    2014-07-01

    The development of a strong trauma program is clearly one of the most important facets of successful business development. Several recent publications have demonstrated that well run trauma services can generate significant profits for both the hospital and the surgeons involved. There are many aspects to this task that require constant attention and insight. Top notch patient care, efficiency, and cost-effective resource utilization are all important components that must be addressed while providing adequate physician compensation within the bounds of hospital financial constraints and the encompassing legal issues. Each situation is different but many of the components are universal. This chapter addresses all aspects of trauma program development to provide the graduating fellow with the tools to create a new trauma program or improve an existing program in order to provide the best patient care while optimizing financial reward and improving care efficiency. PMID:24918830

  17. Basic trauma life support.

    PubMed

    Werman, H A; Nelson, R N; Campbell, J E; Fowler, R L; Gandy, P

    1987-11-01

    The impact of traumatic injuries on modern society in terms of morbidity, mortality, and economic cost is enormous. Studies have shown that both advanced life support skills and rapid stabilization and transport of the trauma victim have a beneficial effect on the patient's ultimate outcome. The Basic Trauma Life Support (BTLS) course was designed to provide pre-hospital care providers with the skills necessary to provide a thorough assessment, initial resuscitation, and rapid transportation of the trauma victim. Early studies suggest that the material is easily learned by prehospital care providers and that the on-scene time for trauma cases is reduced following training in BTLS. More widespread training in BTLS may have a significant effect on the mortality and morbidity associated with traumatic injuries. PMID:3662184

  18. Imaging of Abusive Trauma.

    PubMed

    Shekdar, Karuna

    2016-06-01

    "Shaken baby syndrome" is a term often used by the physicians and public to describe abusive trauma inflicted on infants and young children. Advances in the understanding of the mechanisms and the associated clinical spectrum of injury has lead us to modify our terminology and address it as "abusive trauma" (AT). Pediatric abusive head trauma is defined as an injury to the skull or intracranial contents of an infant or a young child (< 5 y age) due to inflicted blunt impact and/or violent shaking. This chapter focuses on the imaging aspects of childhood abusive trauma along with a brief description of the mechanism and pathophysiology of abusive injury. The diagnosis of AT is not always obvious, and abusive injuries in many infants may remain unrecognized. Pediatricians should be cognizant of AT since pediatricians play a crucial role in the diagnosis, management and prevention of AT. PMID:26882906

  19. Consistency in statistical moments as a test for bubble cloud clustering.

    PubMed

    Weber, Thomas C; Lyons, Anthony P; Bradley, David L

    2011-11-01

    Frequency dependent measurements of attenuation and/or sound speed through clouds of gas bubbles in liquids are often inverted to find the bubble size distribution and the void fraction of gas. The inversions are often done using an effective medium theory as a forward model under the assumption that the bubble positions are Poisson distributed (i.e., statistically independent). Under circumstances in which single scattering does not adequately describe the pressure field, the assumption of independence in position can yield large errors when clustering is present, leading to errors in the inverted bubble size distribution. It is difficult, however, to determine the existence of clustering in bubble clouds without the use of specialized acoustic or optical imaging equipment. A method is described here in which the existence of bubble clustering can be identified by examining the consistency between the first two statistical moments of multiple frequency acoustic measurements. PMID:22088013

  20. Trauma registry reengineered.

    PubMed

    Wargo, Christina; Bolig, Nicole; Hixson, Heather; McWilliams, Nate; Rummerfield, Heather; Stratton, Elaine; Woodruff, Tracy

    2014-01-01

    A successful trauma registry balances accuracy of abstraction and timeliness of case submissions to achieve quality performance. Staffing to achieve quality performance is a challenge at times based on competitive institutional need. The aim of this performance improvement timing study was to identify trauma registry job responsibilities and redesign the responsibilities to create increased abstraction time and maintain accuracy of data abstraction. The outcome is measured by case submission rates with existing staffing and interrater reliability outcomes. PMID:25397337

  1. Penetrating extremity trauma.

    PubMed

    Ivatury, Rao R; Anand, Rahul; Ordonez, Carlos

    2015-06-01

    Penetrating extremity trauma (PET) usually becomes less important when present along with multiple truncal injuries. The middle eastern wars documented the terrible mortality and morbidity resulting from PET. Even in civilian trauma, PET can lead to significant morbidity and mortality. There are now well-established principles in the evaluation and management of vascular, bony, soft tissue, and neurologic lesions that will lead to a reduction of the poor outcomes. This review will summarize some of these recent concepts. PMID:25413177

  2. Noninvasive ventilation in trauma.

    PubMed

    Karcz, Marcin K; Papadakos, Peter J

    2015-02-01

    Trauma patients are a diverse population with heterogeneous needs for ventilatory support. This requirement depends mainly on the severity of their ventilatory dysfunction, degree of deterioration in gaseous exchange, any associated injuries, and the individual feasibility of potentially using a noninvasive ventilation approach. Noninvasive ventilation may reduce the need to intubate patients with trauma-related hypoxemia. It is well-known that these patients are at increased risk to develop hypoxemic respiratory failure which may or may not be associated with hypercapnia. Hypoxemia in these patients is due to ventilation perfusion mismatching and right to left shunt because of lung contusion, atelectasis, an inability to clear secretions as well as pneumothorax and/or hemothorax, all of which are common in trauma patients. Noninvasive ventilation has been tried in these patients in order to avoid the complications related to endotracheal intubation, mainly ventilator-associated pneumonia. The potential usefulness of noninvasive ventilation in the ventilatory management of trauma patients, though reported in various studies, has not been sufficiently investigated on a large scale. According to the British Thoracic Society guidelines, the indications and efficacy of noninvasive ventilation treatment in respiratory distress induced by trauma have thus far been inconsistent and merely received a low grade recommendation. In this review paper, we analyse and compare the results of various studies in which noninvasive ventilation was applied and discuss the role and efficacy of this ventilator modality in trauma. PMID:25685722

  3. Airway management in trauma.

    PubMed

    Langeron, O; Birenbaum, A; Amour, J

    2009-05-01

    Maintenance of a patent and prevention of aspiration are essential for the management of the trauma patient, that requires experienced physicians in airway control techniques. Difficulties of the airway control in the trauma setting are increased by the vital failures, the risk of aspiration, the potential cervical spine injury, the combative patient, and the obvious risk of difficult tracheal intubation related to specific injury related to the trauma. Endotracheal intubation remains the gold standard in trauma patient airway management and should be performed via the oral route with a rapid sequence induction and a manual in-line stabilization maneuver, to decrease the risks previously mentioned. Different techniques to control the airway in trauma patients are presented: improvement of the laryngoscopic vision, lighted stylet tracheal intubation, retrograde technique for orotracheal intubation, the laryngeal mask and the intubating laryngeal mask airways, the combitube and cricothyroidotomy. Management of the airway in trauma patients requires regular training in these techniques and the knowledge of complementary techniques allowing tracheal intubation or oxygenation to overcome difficult intubation and to prevent major complications as hypoxemia and aspiration. PMID:19412149

  4. A bubbling bolt

    NASA Astrophysics Data System (ADS)

    Bossard, Guillaume; Katmadas, Stefanos

    2014-07-01

    We present a new solvable system, solving the equations of five-dimensional ungauged = 1 supergravity coupled to vector multiplets, that allows for non-extremal solutions and reduces to a known system when restricted to the floating brane Ansatz. A two-centre globally hyperbolic smooth geometry is obtained as a solution to this system, describing a bubble linking a Gibbons-Hawking centre to a charged bolt. However this solution turns out to violate the BPS bound, and we show that its generalisation to an arbitrary number of Gibbons-Hawking centres never admits a spin structure.

  5. Effect of bubble size on micro-bubble drag reduction

    NASA Astrophysics Data System (ADS)

    Shen, Xiaochun

    2005-11-01

    The effect of bubble size on micro-bubble drag reduction was investigated experimentally in a high-speed turbulent channel flow of water. A variety of near-wall injection techniques were used to create a bubbly turbulent boundary layer. The resulting wall friction force was measured directly by a floating element force balance. The bubble size was determined from photographic imaging. Using compressed nitrogen to force flow through a slot injector located in the plate beneath the boundary layer of the tunnel test section, a surfactant solution (Triton X-100, 19ppm) and salt water solution (35ppt) generated bubbles of average size between ˜500 microns and ˜200 microns and ˜100 microns, respectively (40 < d^+ < 200). In addition hollow spherical glass beads (˜75 microns (d^+ = 30) and specific gravity 0.18) and previously prepared lipid stabilized gas bubbles of ˜ 30 micron (d^+ =12) were injected. The results indicate that the drag reduction is related strongly to the injected gas volume flux and the static pressure in the boundary layer. Changing bubble size had essentially no influence on the measured friction drag, suggesting that friction drag is not a strong function of bubble size. [Sponsored by the Office of Naval Research.

  6. Bubble levitation and translation under single-bubble sonoluminescence conditions.

    PubMed

    Matula, Thomas J

    2003-08-01

    Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles. PMID:12942960

  7. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).

    PubMed

    Rosselló, J M; Dellavale, D; Bonetto, F J

    2015-01-01

    In the present work, stable clusters made of multiple sonoluminescent bubbles are experimentally and theoretically studied. Argon bubbles were acoustically generated and trapped using bi-frequency driving within a cylindrical chamber filled with a sulfuric acid aqueous solution (SA85w/w). The intensity of the acoustic pressure field was strong enough to sustain, during several minutes, a large number of positionally and spatially fixed (without pseudo-orbits) sonoluminescent bubbles over an ellipsoidally-shaped tridimensional array. The dimensions of the ellipsoids were studied as a function of the amplitude of the applied low-frequency acoustic pressure (PAc(LF)) and the static pressure in the fluid (P0). In order to explain the size and shape of the bubble clusters, we performed a series of numerical simulations of the hydrodynamic forces acting over the bubbles. In both cases the observed experimental behavior was in excellent agreement with the numerical results. The simulations revealed that the positionally stable region, mainly determined by the null primary Bjerknes force (F→Bj), is defined as the outer perimeter of an axisymmetric ellipsoidal cluster centered in the acoustic field antinode. The role of the high-frequency component of the pressure field and the influence of the secondary Bjerknes force are discussed. We also investigate the effect of a change in the concentration of dissolved gas on the positional and spatial instabilities through the cluster dimensions. The experimental and numerical results presented in this paper are potentially useful for further understanding and modeling numerous current research topics regarding multi-bubble phenomena, e.g. forces acting on the bubbles in multi-frequency acoustic fields, transient acoustic cavitation, bubble interactions, structure formation processes, atomic and molecular emissions of equal bubbles and nonlinear or unsteady acoustic pressure fields in bubbly media. PMID:24974006

  8. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1994-01-01

    Two KC-135 flight campaigns have been conducted to date which are specifically dedicated to study bubble formation in microgravity. The first flight was conducted during March 14-18, 1994, and the other during June 20-24, 1994. The results from the June 1994 flight have not been analyzed yet, while the results from the March flight have been partially analyzed. In the first flight three different experiments were performed, one with the specific aim at determining whether or not cavitation can take place during any of the fluid handling procedures adopted in the shuttle bioprocessing experiments. The other experiments were concerned with duplicating some of the procedures that resulted in bubble formation, namely the NCS filling procedure and the needle scratch of a solid surface. The results from this set of experiments suggest that cavitation did not take place during any of the fluid handling procedures. The results clearly indicate that almost all were generated as a result of the breakup of the gas/liquid interface. This was convincingly demonstrated in the scratch tests as well as in the liquid fill tests.

  9. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1996-01-01

    An extensive experimental program was initiated for the purpose of understanding the mechanisms leading to bubble generation during fluid handling procedures in a microgravity environment. Several key fluid handling procedures typical for PCG experiments were identified for analysis in that program. Experiments were designed to specifically understand how such procedures can lead to bubble formation. The experiments were then conducted aboard the NASA KC-135 aircraft which is capable of simulating a low gravity environment by executing a parabolic flight attitude. However, such a flight attitude can only provide a low gravity environment of approximately 10-2go for a maximum period of 30 seconds. Thus all of the tests conducted for these experiments were designed to last no longer than 20 seconds. Several experiments were designed to simulate some of the more relevant fluid handling procedures during protein crystal growth experiments. These include submerged liquid jet cavitation, filling of a cubical vessel, submerged surface scratch, attached drop growth, liquid jet impingement, and geysering experiments. To date, four separate KC-135 flight campaigns were undertaken specifically for performing these experiments. However, different experiments were performed on different flights.

  10. Acoustic Behavior of Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Prosperetti, Andrea; Oguz, Hasan N.

    1996-01-01

    In a microgravity environment vapor bubbles generated at a boiling surface tend to remain near it for a long time. This affects the boiling heat transfer and in particular promotes an early transition to the highly inefficient film boiling regime. This paper describes the physical basis underlying attempts to remove the bubbles by means of pressure radiation forces.

  11. Optical behavior of surface bubbles

    NASA Astrophysics Data System (ADS)

    Straulino, Samuele; Gambi, Cecilia M. C.; Molesini, Giuseppe

    2015-11-01

    The observation of diamond-like light spots produced by surface bubbles obliquely illuminated is reported. The phenomenon is discussed in terms of geometrical optics, and an explanation is provided attributing the effect to the astigmatism introduced by the deformation of the liquid surface surrounding the bubble. An essential ray tracing program is outlined and used to reconstruct the observed phenomenon numerically.

  12. Pitfalls in penetrating trauma.

    PubMed

    van Vugt, A B

    2003-08-01

    In Western Europe the most frequent cause of multiple injuries is blunt trauma. Only few of us have experience with penetrating trauma, without exception far less than in the USA or South-Africa. In Rotterdam, the Erasmus Medical Centre is a level I trauma centre, situated directly in the town centre. All penetrating traumas are directly presented to our emergency department by a well organized ambulance service supported by a mobile medical team if necessary. The delay with scoop and run principles is very short for these cases, resulting in severely injured reaching the hospital alive in increasing frequency. Although the basic principles of trauma care according to the guidelines of the Advanced Trauma Life Support (ATLS) (1-2) are the same for blunt and penetrating trauma with regard to priorities, diagnostics and primary therapy, there are some pitfalls in the strategy of management in penetrating trauma one should be aware of. Simple algorithms can be helpful, especially in case of limited experience (3). In case of life-saving procedures, the principles of Damage Control Surgery (DCS) must be followed (4-5). This approach is somewhat different from "traditional" surgical treatment. In the Ist phase prompt interventions by emergency thoracotomy and laparotomy are carried out, with only two goals to achieve: surgical control of haemorrhage and contamination. After temporary life-saving procedures, the 2nd phase is characterized by intensive care treatment, dealing with hypothermia, metabolic acidosis and clotting disturbances. Finally in the 3rd phase, within 6-24 hours, definitive surgical care takes place. In this overview, penetrating injuries of neck, thorax, abdomen and extremities will be outlined. Penetrating cranial injuries, as a neurosurgical emergency with poor prognosis, are not discussed. History and physical examination remain the corner stones of good medical praxis. In a work-up according to ATLS principles airway, breathing and circulation

  13. Influence of bubble size on micro-bubble drag reduction

    NASA Astrophysics Data System (ADS)

    Shen, Xiaochun; Ceccio, Steven L.; Perlin, Marc

    2006-09-01

    Micro-bubble drag reduction experiments were conducted in a turbulent water channel flow. Compressed nitrogen was used to force flow through a slot injector located in the plate beneath the boundary layer of the tunnel test section. Gas and bubbly mixtures were injected into a turbulent boundary layer (TBL), and the resulting friction drag was measured downstream of the injector. Injection into tap water, a surfactant solution (Triton X-100, 20 ppm), and a salt-water solution (35 ppt) yielded bubbles of average diameter 476, 322 and 254 μm, respectively. In addition, lipid stabilized gas bubbles (44 μm) were injected into the boundary layer. Thus, bubbles with d + values of 200 to 18 were injected. The results indicate that the measured drag reduction by micro-bubbles in a TBL is related strongly to the injected gas volumetric flow rate and the static pressure in the boundary layer, but is essentially independent of the size of the micro-bubbles over the size range tested.

  14. Classification of Liver Trauma

    PubMed Central

    Rizoli, Sandro B.; Brenneman, Frederick D.; Hanna, Sherif S.; Kahnamoui, Kamyar

    1996-01-01

    The classification of liver injuries is important for clinical practice, clinical research and quality assurance activities. The Organ Injury Scaling (OIS) Committee of the American Association for the Surgery of Trauma proposed the OIS for liver trauma in 1989. The purpose ofthe present study was to apply this scale to a cohort ofliver trauma patients managed at a single Canadian trauma centre from January 1987 to June 1992.170 study patients were identified and reviewed. The mean age was 30, with 69% male and a mean ISS of 33.90% had a blunt mechanism ofinjury. The 170 patients were categorized into the 60IS grades ofliver injury. The number of units of blood transfused, the magnitude of the operative treatment required, the liver-related complications and the liver-related mortality correlated well with the OIS grade. The OIS grade was unable to predict the need for laparotomy or the length of stay in hospital. We conclude that the OIS is a useful, practical and important tool for the categorization of liver injuries, and it may prove to be the universally accepted classification scheme in liver trauma. PMID:8809585

  15. Epidemiology of severe trauma.

    PubMed

    Alberdi, F; García, I; Atutxa, L; Zabarte, M

    2014-12-01

    Major injury is the sixth leading cause of death worldwide. Among those under 35 years of age, it is the leading cause of death and disability. Traffic accidents alone are the main cause, fundamentally in low- and middle-income countries. Patients over 65 years of age are an increasingly affected group. For similar levels of injury, these patients have twice the mortality rate of young individuals, due to the existence of important comorbidities and associated treatments, and are more likely to die of medical complications late during hospital admission. No worldwide, standardized definitions exist for documenting, reporting and comparing data on severely injured trauma patients. The most common trauma scores are the Abbreviated Injury Scale (AIS), the Injury Severity Score (ISS) and the Trauma and Injury severity Score (TRISS). Documenting the burden of injury also requires evaluation of the impact of post-trauma impairments, disabilities and handicaps. Trauma epidemiology helps define health service and research priorities, contributes to identify disadvantaged groups, and also facilitates the elaboration of comparable measures for outcome predictions. PMID:25241267

  16. Male genital trauma

    SciTech Connect

    Jordan, G.H.; Gilbert, D.A.

    1988-07-01

    We have attempted to discuss genital trauma in relatively broad terms. In most cases, patients present with relatively minimal trauma. However, because of the complexity of the structures involved, minimal trauma can lead to significant disability later on. The process of erection requires correct functioning of the arterial, neurologic, and venous systems coupled with intact erectile bodies. The penis is composed of structures that are compliant and distensible to the limits of their compliance. These structures therefore tumesce in equal proportion to each other, allowing for straight erection. Relatively minimal trauma can upset this balance of elasticity, leading to disabling chordee. Likewise, relatively minimal injuries to the vascular erectile structures can lead to significantly disabling spongiofibrosis. The urethra is a conduit of paramount importance. Whereas the development of stricture is generally related to the nature of the trauma, the extent of stricture and of attendant complications is clearly a function of the immediate management. Overzealous debridement can greatly complicate subsequent reconstruction. A delicate balance between aggressive initial management and maximal preservation of viable structures must be achieved. 38 references.

  17. The bubble legacy

    NASA Astrophysics Data System (ADS)

    Hecht, Jeff

    2010-05-01

    Imagine an optics company - let's call it JDS Uniphase - with a market capitalization approaching the gross domestic product (GDP) of Ireland. Now imagine it merging with a laser company - say, SDL - that has a stock valuation of 41bn, higher than the GDP of Costa Rica. Finally, imagine a start-up with 109m in venture capital in its pocket but no product to its name (Novalux) turning down an offer of 500m as insufficient. It may be hard to believe, but these tales are true: they occurred in the year 2000 - an era when the laser, fibre-optics and photonics industries were the darlings of the financial world. Such was the madcap nature of that brief period that survivors call it simply "the bubble".

  18. Surface Bubble Nucleation Stability

    NASA Astrophysics Data System (ADS)

    Seddon, James R. T.; Kooij, E. Stefan; Poelsema, Bene; Zandvliet, Harold J. W.; Lohse, Detlef

    2011-02-01

    Recent research has revealed several different techniques for nanoscopic gas nucleation on submerged surfaces, with findings seemingly in contradiction with each other. In response to this, we have systematically investigated the occurrence of surface nanobubbles on a hydrophobized silicon substrate for various different liquid temperatures and gas concentrations, which we controlled independently. We found that nanobubbles occupy a distinct region of this parameter space, occurring for gas concentrations of approximately 100%-110%. Below the nanobubble region we did not detect any gaseous formations on the substrate, whereas micropancakes (micron wide, nanometer high gaseous domains) were found at higher temperatures and gas concentrations. We moreover find that supersaturation of dissolved gases is not a requirement for nucleation of bubbles.

  19. Constrained Vapor Bubble

    NASA Technical Reports Server (NTRS)

    Huang, J.; Karthikeyan, M.; Plawsky, J.; Wayner, P. C., Jr.

    1999-01-01

    The nonisothermal Constrained Vapor Bubble, CVB, is being studied to enhance the understanding of passive systems controlled by interfacial phenomena. The study is multifaceted: 1) it is a basic scientific study in interfacial phenomena, fluid physics and thermodynamics; 2) it is a basic study in thermal transport; and 3) it is a study of a heat exchanger. The research is synergistic in that CVB research requires a microgravity environment and the space program needs thermal control systems like the CVB. Ground based studies are being done as a precursor to flight experiment. The results demonstrate that experimental techniques for the direct measurement of the fundamental operating parameters (temperature, pressure, and interfacial curvature fields) have been developed. Fluid flow and change-of-phase heat transfer are a function of the temperature field and the vapor bubble shape, which can be measured using an Image Analyzing Interferometer. The CVB for a microgravity environment, has various thin film regions that are of both basic and applied interest. Generically, a CVB is formed by underfilling an evacuated enclosure with a liquid. Classification depends on shape and Bond number. The specific CVB discussed herein was formed in a fused silica cell with inside dimensions of 3x3x40 mm and, therefore, can be viewed as a large version of a micro heat pipe. Since the dimensions are relatively large for a passive system, most of the liquid flow occurs under a small capillary pressure difference. Therefore, we can classify the discussed system as a low capillary pressure system. The studies discussed herein were done in a 1-g environment (Bond Number = 3.6) to obtain experience to design a microgravity experiment for a future NASA flight where low capillary pressure systems should prove more useful. The flight experiment is tentatively scheduled for the year 2000. The SCR was passed on September 16, 1997. The RDR is tentatively scheduled for October, 1998.

  20. Paediatric Blunt Torso Trauma

    PubMed Central

    Bhatti, Khalid M.; Taqi, Kadhim M.; Al-Harthy, Ahmed Z. S.; Hamid, Rana S.; Al-Balushi, Zainab N.; Sankhla, Dilip K.; Al-Qadhi, Hani A.

    2016-01-01

    Objectives: Trauma is the greatest cause of morbidity and mortality in paediatric/adolescent populations worldwide. This study aimed to describe trauma mechanisms, patterns and outcomes among children with blunt torso trauma admitted to the Sultan Qaboos University Hospital (SQUH) in Muscat, Oman. Methods: This retrospective single-centre study involved all children ≤12 years old with blunt torso trauma admitted for paediatric surgical care at SQUH between January 2009 and December 2013. Medical records were analysed to collect demographic and clinical data. Results: A total of 70 children were admitted with blunt torso trauma during the study period, including 39 (55.7%) male patients. The mean age was 5.19 ± 2.66 years. Of the cohort, 35 children (50.0%) received their injuries after having been hit by cars as pedestrians, while 19 (27.1%) were injured by falls, 12 (17.1%) during car accidents as passengers and four (5.7%) by falling heavy objects. According to computed tomography scans, thoracic injuries were most common (65.7%), followed by abdominal injuries (42.9%). The most commonly involved solid organs were the liver (15.7%) and spleen (11.4%). The majority of the patients were managed conservatively (92.9%) with a good outcome (74.3%). The mortality rate was 7.1%. Most deaths were due to multisystem involvement. Conclusion: Among children with blunt torso trauma admitted to SQUH, the main mechanism of injury was motor vehicle accidents. As a result, parental education and enforcement of infant car seat/child seat belt laws are recommended. Conservative management was the most successful approach. PMID:27226913

  1. Trauma-Focused CBT for Youth who Experience Ongoing Traumas

    PubMed Central

    Cohen, Judith A.; Mannarino, Anthony P.; Murray, Laura A.

    2011-01-01

    Many youth experience ongoing trauma exposure, such as domestic or community violence. Clinicians often ask whether evidence-based treatments containing exposure components to reduce learned fear responses to historical trauma are appropriate for these youth. Essentially the question is, if youth are desensitized to their trauma experiences, will this in some way impair their responding to current or ongoing trauma? The paper addresses practical strategies for implementing one evidence-based treatment, Trauma-Focused Cognitive Behavioral Therapy (TF-CBT) for youth with ongoing traumas. Collaboration with local therapists and families participating in TF-CBT community and international programs elucidated effective strategies for applying TF-CBT with these youth. These strategies included: 1) enhancing safety early in treatment; 2) effectively engaging parents who experience personal ongoing trauma; and 3) during the trauma narrative and processing component focusing on a) increasing parental awareness and acceptance of the extent of the youths’ ongoing trauma experiences; b) addressing youths’ maladaptive cognitions about ongoing traumas; and c) helping youth differentiate between real danger and generalized trauma reminders. Case examples illustrate how to use these strategies in diverse clinical situations. Through these strategies TF-CBT clinicians can effectively improve outcomes for youth experiencing ongoing traumas. PMID:21855140

  2. Trauma-Focused CBT for Youth Who Experience Ongoing Traumas

    ERIC Educational Resources Information Center

    Cohen, Judith A.; Mannarino, Anthony P.; Murray, Laura K.

    2011-01-01

    Many youth experience ongoing trauma exposure, such as domestic or community violence. Clinicians often ask whether evidence-based treatments containing exposure components to reduce learned fear responses to historical trauma are appropriate for these youth. Essentially the question is, if youth are desensitized to their trauma experiences, will…

  3. Assuring optimal trauma care: the role of trauma centre accreditation

    PubMed Central

    Simons, Richard; Kirkpatrick, Andrew

    2002-01-01

    Optimal care of the injured patient requires the delivery of appropriate, definitive care shortly after injury. Over the last 30 to 40 years, civilian trauma systems and trauma centres have been developed in the United States based on experience gained in military conflicts, particularly in Korea and Vietnam. A similar process is evolving in Canada. National trauma committees in the US and Canada have defined optimal resources to meet the goal of rapid, appropriate care in trauma centres. They have introduced programs (verification or accreditation) to externally audit trauma centre performance based on these guidelines. It is generally accepted that implementing trauma systems results in decreased preventable death and improved survival after trauma. What is less clear is the degree to which each facet of trauma system development contributes to this improvement. The relative importance of national performance guidelines and trauma centre audit as integral steps toward improved outcomes following injury are reviewed. Current Trauma Association of Canada guidelines for trauma centres are presented and the process of trauma centre accreditation is discussed. PMID:12174987

  4. Doughnut-shaped soap bubbles.

    PubMed

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L. It is well known that the sphere is the solution for V=L(3)/6π(2), and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V<αL(3)/6π(2), with α≈0.21, such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V<αL(3)/6π(2) cannot be stable and should not exist in foams, for instance. PMID:26565252

  5. Doughnut-shaped soap bubbles

    NASA Astrophysics Data System (ADS)

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L . It is well known that the sphere is the solution for V =L3/6 π2 , and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V <α L3/6 π2 , with α ≈0.21 , such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V <α L3/6 π2 cannot be stable and should not exist in foams, for instance.

  6. Fuel system bubble dissipation device

    SciTech Connect

    Iseman, W.J.

    1987-11-03

    This patent describes a bubble dissipation device for a fuel system wherein fuel is delivered through a fuel line from a fuel tank to a fuel control with the pressure of the fuel being progressively increased by components including at least one pump stage and an ejector in advance of the pump state. The ejector an ejector casing with a wall defining an elongate tubular flow passage which forms a portion of the fuel line to have all of the fuel flow through the tubular flow passage in flowing from the fuel tank to the fuel control, a nozzle positioned entirely within the tubular flow passage and spaced from the wall to permit fuel flow. The nozzle has an inlet and an outlet with the inlet connected to the pump stage to receive fuel under pressure continuously from the pump stage, a bubble accumulation chamber adjoining and at a level above the ejector casing and operatively connected to the fuel line in advance of the ejector casing. The bubble accumulation chamber is of a size to function as a fuel reservoir and hold an air bubble containing vapor above the level of fuel therein and having an outlet adjacent the bottom thereof operatively connected to the tubular flow passage in the ejector casing at an inlet end, a bubble accumulation chamber inlet above the level of the bubble accumulation chamber outlet whereby fuel can flow through the bubble accumulation chamber from the inlet to the outlet thereof with a bubble in the fuel rising above the fuel level in the bubble accumulation chamber.

  7. Advances in prehospital trauma care

    PubMed Central

    Williamson, Kelvin; Ramesh, Ramaiah; Grabinsky, Andreas

    2011-01-01

    Prehospital trauma care developed over the last decades parallel in many countries. Most of the prehospital emergency medical systems relied on input or experiences from military medicine and were often modeled after the existing military procedures. Some systems were initially developed with the trauma patient in mind, while other systems were tailored for medical, especially cardiovascular, emergencies. The key components to successful prehospital trauma care are the well-known ABCs of trauma care: Airway, Breathing, Circulation. Establishing and securing the airway, ventilation, fluid resuscitation, and in addition, the quick transport to the best-suited trauma center represent the pillars of trauma care in the field. While ABC in trauma care has neither been challenged nor changed, new techniques, tools and procedures have been developed to make it easier for the prehospital provider to achieve these goals in the prehospital setting and thus improve the outcome of trauma patients. PMID:22096773

  8. Bubble Growth in Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  9. Partial coalescence of soap bubbles

    NASA Astrophysics Data System (ADS)

    Harris, Daniel M.; Pucci, Giuseppe; Bush, John W. M.

    2015-11-01

    We present the results of an experimental investigation of the merger of a soap bubble with a planar soap film. When gently deposited onto a horizontal film, a bubble may interact with the underlying film in such a way as to decrease in size, leaving behind a smaller daughter bubble with approximately half the radius of its progenitor. The process repeats up to three times, with each partial coalescence event occurring over a time scale comparable to the inertial-capillary time. Our results are compared to the recent numerical simulations of Martin and Blanchette and to the coalescence cascade of droplets on a fluid bath.

  10. Bubble stimulation efficiency of dinoflagellate bioluminescence.

    PubMed

    Deane, Grant B; Stokes, M Dale; Latz, Michael I

    2016-02-01

    Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors. PMID:26061152

  11. Idioms of distress among trauma survivors: subtypes and clinical utility.

    PubMed

    Hinton, Devon E; Lewis-Fernández, Roberto

    2010-06-01

    In this introduction to the Special Issue on Trauma and Idioms of Distress, we provide an overview of the concept and typology of "idioms of distress," focusing particularly on their clinical utility. This includes the role of idioms as indicators of trauma exposure, of various types of psychopathology and of levels of distress, risk and functioning. It likewise includes the fact that idioms of distress may profoundly influence the personal meaning of having a trauma-related disorder, may shape the interpersonal course of the disorder and may pattern help-seeking and self-treatment. Finally, it illustrates the fact that idioms may also help clinicians understand sufferers' views of the causes of their distress, constitute key therapeutic targets and help increase therapeutic empathy and treatment adherence. This special issue focuses on the role played by idioms of distress in the local trauma ontology, the associations between the idioms and psychiatric disorders occurring in the context of trauma and the mechanisms by which the idioms profoundly influence the personal and interpersonal course of trauma-related disorders. PMID:20407812

  12. The Dynamics of Vapor Bubbles in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Prosperetti, A.

    1999-01-01

    In spite of a superficial similarity with gas bubbles, the intimate coupling between dynamical and thermal processes confers to oscillating vapor bubbles some unique characteristics. This paper examines numerically the validity of some asymptotic-theory predictions such as the existence of two resonant radii and a limit size for a given sound amplitude and frequency. It is found that a small vapor bubble in a sound field of sufficient amplitude grows quickly through resonance and continues to grow thereafter at a very slow rate, seemingly indefinitely. Resonance phenomena therefore play a role for a few cycles at most, and reaching a limit size-if one exists at all-is found to require far more than several tens of thousands of cycles. It is also found that some small bubbles may grow or collapse depending on the phase of the sound field. The model accounts in detail for the thermo-fluid-mechanic processes in the vapor. In the second part of the paper, an approximate formulation valid for bubbles small with respect to the thermal penetration length in the vapor is derived and its accuracy examined, The present findings have implications for acoustically enhanced boiling heat transfer and other special applications such as boiling in microgravity.

  13. Structured Sensory Trauma Interventions

    ERIC Educational Resources Information Center

    Steele, William; Kuban, Caelan

    2010-01-01

    This article features the National Institute of Trauma and Loss in Children (TLC), a program that has demonstrated via field testing, exploratory research, time series studies, and evidence-based research studies that its Structured Sensory Intervention for Traumatized Children, Adolescents, and Parents (SITCAP[R]) produces statistically…

  14. Pediatric head trauma

    PubMed Central

    Alexiou, George A; Sfakianos, George; Prodromou, Neofytos

    2011-01-01

    Head injury in children accounts for a large number of emergency department visits and hospital admissions. Falls are the most common type of injury, followed by motor-vehicle-related accidents. In the present study, we discuss the evaluation, neuroimaging and management of children with head trauma. Furthermore, we present the specific characteristics of each type of pediatric head injury. PMID:21887034

  15. Trauma Induced Myocardial Infarction

    PubMed Central

    Lolay, Georges A.; Abdel-Latef, Ahmed K.

    2016-01-01

    Chest Trauma in athletes is a common health problem. However, myocardial infarction secondary to coronary dissection in the setting of blunt chest trauma is extremely rare. We report a case of acute inferior wall myocardial infarction following blunt chest trauma. A 32-year-old male with no relevant medical problems was transferred to our medical center for retrosternal chest pain after being elbowed in the chest during a soccer game. Few seconds later, he started experiencing sharp retrosternal chest pain that was severe to that point where he called the emergency medical service. Upon arrival to the Trauma department patient was still complaining of chest pain. ECG demonstrated ST segment elevation in the inferior leads with reciprocal changes in the lateral leads all consistent with active ischemia. After rolling out Aortic dissection, patient was loaded with ASA, ticagerlor, heparin and was emergently taken to the cardiac catheterization lab. Coronary angiography demonstrated 100% thrombotic occlusion in the distal right coronary artery with TIMI 0 flow distally. After thrombus aspiration, a focal dissection was noted on the angiogram that was successfully stented. Two days after admission patient was discharged home. Echocardiography prior to discharge showed inferior wall akinesis, normal right ventricular systolic function and normal overall ejection fraction. PMID:26490501

  16. Early Childhood Trauma

    ERIC Educational Resources Information Center

    National Child Traumatic Stress Network, 2010

    2010-01-01

    Early childhood trauma generally refers to the traumatic experiences that occur to children aged 0-6. Because infants' and young children's reactions may be different from older children's, and because they may not be able to verbalize their reactions to threatening or dangerous events, many people assume that young age protects children from the…

  17. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Vogel, A.; Noack, J.; Chapyak, E.J.; Godwin, R.P.

    1999-06-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored by time-resolved photography and numerical simulations. The growth-collapse period of cylindrical bubbles of large aspect ratio (length:diameter {approximately}20) differs only slightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble size and energy even for aspherical bubbles. The change of the oscillation period of bubbles near solid walls and elastic (tissue-like) boundaries relative to that of isolated spherical bubbles is also investigated.

  18. Transient bubbles, bublets and breakup

    NASA Astrophysics Data System (ADS)

    Keen, Giles; Blake, John

    1999-11-01

    The non-spherical nature of the collapse of bubbles has important ramifications in many practical situations such as ultrasonic cleaning, tanning of leather, and underwater explosions. In particular the high speed liquid jet that can thread a collapsing bubble is central to the functional performance. An impressive photographic record of a liquid jet was obtained by Crum using a bubble situated in the vicinity of a platform oscillating vertically at a frequency of 60 Hz. A boundary integral method is used to model this situation and is found to closely mimic some of the observations. However, a slight variation of parameters or a change in the phase of the driving frequency can lead to dramatically different bubble behaviour, a feature also observed by Crum.

  19. Bubble nucleation in stout beers

    NASA Astrophysics Data System (ADS)

    Lee, W. T.; McKechnie, J. S.; Devereux, M. G.

    2011-05-01

    Bubble nucleation in weakly supersaturated solutions of carbon dioxide—such as champagne, sparkling wines, and carbonated beers—is well understood. Bubbles grow and detach from nucleation sites: gas pockets trapped within hollow cellulose fibers. This mechanism appears not to be active in stout beers that are supersaturated solutions of nitrogen and carbon dioxide. In their canned forms these beers require additional technology (widgets) to release the bubbles which will form the head of the beer. We extend the mathematical model of bubble nucleation in carbonated liquids to the case of two gases and show that this nucleation mechanism is active in stout beers, though substantially slower than in carbonated beers and confirm this by observation. A rough calculation suggests that despite the slowness of the process, applying a coating of hollow porous fibers to the inside of a can or bottle could be a potential replacement for widgets.

  20. Partial coalescence of soap bubbles

    NASA Astrophysics Data System (ADS)

    Pucci, G.; Harris, D. M.; Bush, J. W. M.

    2015-06-01

    We present the results of an experimental investigation of the merger of a soap bubble with a planar soap film. When gently deposited onto a horizontal film, a bubble may interact with the underlying film in such a way as to decrease in size, leaving behind a smaller daughter bubble with approximately half the radius of its progenitor. The process repeats up to three times, with each partial coalescence event occurring over a time scale comparable to the inertial-capillary time. Our results are compared to the recent numerical simulations of Martin and Blanchette ["Simulations of surfactant effects on the dynamics of coalescing drops and bubbles," Phys. Fluids 27, 012103 (2015)] and to the coalescence cascade of droplets on a fluid bath.

  1. Pulling bubbles from a bath

    NASA Astrophysics Data System (ADS)

    Kao, Justin C. T.; Blakemore, Andrea L.; Hosoi, A. E.

    2010-06-01

    Deposition of bubbles on a wall withdrawn from a liquid bath is a phenomenon observed in many everyday situations—the foam lacing left behind in an emptied glass of beer, for instance. It is also of importance to the many industrial processes where uniformity of coating is desirable. We report work on an idealized version of this situation, the drag-out of a single bubble in Landau-Levich-Derjaguin flow. We find that a well-defined critical wall speed exists, separating the two regimes of bubble persistence at the meniscus and bubble deposition on the moving wall. Experiments show that this transition occurs at Ca∗˜Bo0.73. A similar result is obtained theoretically by balancing viscous stresses and gravity.

  2. Modeling the Local Bubble

    NASA Astrophysics Data System (ADS)

    Cox, D. P.

    Modeling the Local Bubble is one of those activities fraught with danger. It is very easy to be too naive, to fail to consider the dependence of the model on assumptions about the nearby ambient state, or the likelihood of such a structure. It is similarly easy to become so caught up in the details of the vicinity that it is unclear where to begin a necessarily idealized modeling effort. And finally, it is important to remember that the data we have may in some cases be lying to us, and that we have not yet learned to read their facial expressions quite carefully enough. That said, I've tried in this paper to be helpful to those who may wish to take the risks. I surveyed the very most basic stories that the data seem to tell, and pointed out the standard coincidences that may be telling us a lot about what is happening, but may turn out once again to have been just coincidences. I've described 5 distinct conceptions that in one flavor or another pretty well survey the collection of mental images that have so far been carried by those who've attempted models. One may be right, or something entirely different may be more appropriate. It's at least vital to realize that a conception comes first, followed by a simplified model of details. I've also included a long list of questions directed at observers. Some have partial answers, some one wouldn't know today quite how to approach. But it is a list that students of the soft x-ray background, interstellar absorption lines, possible instrumentation, and the heliosphere may wish to review from time to time, just to see whether they can figure out how to be more helpful. There is another list for modelers, things the models must address, however-so-flimsily if necessary, because there are strong observational constraints (and stronger ones coming) on what can and cannot be present in the local ISM. To that I've added a few remarks concerning x-ray emission coming from beyond the Local Bubble, and another few on how x

  3. Imaging in spinal trauma.

    PubMed

    Van Goethem, Johan W M; Maes, Menno; Ozsarlak, Ozkan; van den Hauwe, Luc; Parizel, Paul M

    2005-03-01

    Because it may cause paralysis, injury to the spine is one of the most feared traumas, and spinal cord injury is a major cause of disability. In the USA approximately 10,000 traumatic cervical spine fractures and 4000 traumatic thoracolumbar fractures are diagnosed each year. Although the number of individuals sustaining paralysis is far less than those with moderate or severe brain injury, the socioeconomic costs are significant. Since most of the spinal trauma patients survive their injuries, almost one out of 1000 inhabitants in the USA are currently being cared for partial or complete paralysis. Little controversy exists regarding the need for accurate and emergent imaging assessment of the traumatized spine in order to evaluate spinal stability and integrity of neural elements. Because clinicians fear missing occult spine injuries, they obtain radiographs for nearly all patients who present with blunt trauma. We are influenced on one side by fear of litigation and the possible devastating medical, psychologic and financial consequences of cervical spine injury, and on the other side by pressure to reduce health care costs. A set of clinical and/or anamnestic criteria, however, can be very useful in identifying patients who have an extremely low probability of injury and who consequently have no need for imaging studies. Multidetector (or multislice) computed tomography (MDCT) is the preferred primary imaging modality in blunt spinal trauma patients who do need imaging. Not only is CT more accurate in diagnosing spinal injury, it also reduces imaging time and patient manipulation. Evidence-based research has established that MDCT improves patient outcome and saves money in comparison to plain film. This review discusses the use, advantages and disadvantages of the different imaging techniques used in spinal trauma patients and the criteria used in selecting patients who do not need imaging. Finally an overview of different types of spinal injuries is given

  4. How does a bubble chamber work?

    SciTech Connect

    Konstantinov, D.; Homsi, W.; Luzuriaga, J.; Su, C.K.; Weilert, M.A.; Maris, H.J.

    1998-11-01

    A charged particle passing through a bubble chamber produces a track of bubbles. The way in which these bubbles are produced has been a matter of some controversy. The authors consider the possibility that in helium and hydrogen bubble chambers the production of bubbles is primarily a mechanical process, rather than a thermal process as has often been assumed. The model the authors propose gives results which are in excellent agreement with experiment.

  5. Bubble gum simulating abdominal calcifications.

    PubMed

    Geller, E; Smergel, E M

    1992-01-01

    CT examination of the abdomens of two children demonstrated sites of high attenuation in the stomach, which were revealed to be bubble gum. Investigation of the CT appearance of samples of chewing gum showed that it consistently has high attenuation (178-345 HU). The attenuation of gum base, which contains calcium carbonate, was 476 HU. In addition, examination of a volunteer who had swallowed bubble gum confirmed the CT appearance. PMID:1523059

  6. The impact of sexual trauma on sexual desire and function.

    PubMed

    McCarthy, Barry; Farr, Emily

    2011-01-01

    The field of sexual trauma is one of the most controversial and value-laden in mental health. The three factors which most affect adult sexual desire and function are the type of sexual trauma, how the sexual incidents were dealt with at the time and, most important, whether the person views her/himself as a survivor or victim. The assessment and treatment program described focuses on couple sex therapy with a special focus on processing the sexual trauma, honoring the person's veto and being 'partners in healing'. The core therapeutic theme is valuing intimate, erotic sexuality, which reinforces being a proud survivor rather than a shameful, anxious or angry victim. It is crucial to create a relapse prevention program to ensure that the person with the sexual trauma history continues to experience the positive roles of adult couple sexuality. PMID:22005207

  7. Bubble-Pen Lithography.

    PubMed

    Lin, Linhan; Peng, Xiaolei; Mao, Zhangming; Li, Wei; Yogeesh, Maruthi N; Rajeeva, Bharath Bangalore; Perillo, Evan P; Dunn, Andrew K; Akinwande, Deji; Zheng, Yuebing

    2016-01-13

    Current lithography techniques, which employ photon, electron, or ion beams to induce chemical or physical reactions for micro/nano-fabrication, have remained challenging in patterning chemically synthesized colloidal particles, which are emerging as building blocks for functional devices. Herein, we develop a new technique - bubble-pen lithography (BPL) - to pattern colloidal particles on substrates using optically controlled microbubbles. Briefly, a single laser beam generates a microbubble at the interface of colloidal suspension and a plasmonic substrate via plasmon-enhanced photothermal effects. The microbubble captures and immobilizes the colloidal particles on the substrate through coordinated actions of Marangoni convection, surface tension, gas pressure, and substrate adhesion. Through directing the laser beam to move the microbubble, we create arbitrary single-particle patterns and particle assemblies with different resolutions and architectures. Furthermore, we have applied BPL to pattern CdSe/ZnS quantum dots on plasmonic substrates and polystyrene (PS) microparticles on two-dimensional (2D) atomic-layer materials. With the low-power operation, arbitrary patterning and applicability to general colloidal particles, BPL will find a wide range of applications in microelectronics, nanophotonics, and nanomedicine. PMID:26678845

  8. An integrated wave-effects model for an underwater explosion bubble.

    PubMed

    Geers, Thomas L; Hunter, Kendall S

    2002-04-01

    A model for a moderately deep underwater explosion bubble is developed that integrates the shock wave and oscillation phases of the motion. A hyperacoustic relationship is formulated that relates bubble volume acceleration to far-field pressure profile during the shock-wave phase, thereby providing initial conditions for the subsequent oscillation phase. For the latter, equations for bubble-surface response are derived that include wave effects in both the external liquid and the internal gas. The equations are then specialized to the case of a spherical bubble, and bubble-surface displacement histories are calculated for dilational and translational motion. Agreement between these histories and experimental data is found to be substantially better than that produced by previous models. PMID:12002843

  9. Update on prehospital emergency care of severe trauma patients.

    PubMed

    Tazarourte, K; Cesaréo, E; Sapir, D; Atchabahian, A; Tourtier, J-P; Briole, N; Vigué, B

    2013-01-01

    The prognosis of severe trauma patients is determined by the ability of a healthcare system to provide high intensity therapeutic treatment on the field and to transport patients as quickly as possible to the structure best suited to their condition. Direct admission to a specialized center ("trauma center") reduces the mortality of the most severe trauma at 30 days and one year. Triage in a non-specialized hospital is a major risk of loss of chance and should be avoided whenever possible. Medical dispatching plays a major role in determining patient care. The establishment of a hospital care network is an important issue that is not formalized enough in France. The initial triage of severe trauma patients must be improved to avoid taking patients to hospitals that are not equipped to take care of them. For this purpose, the MGAP score can predict severity and help decide where to transport the patient. However, it does not help predict the need for urgent resuscitation procedures. Hemodynamic management is central to the care of hemorrhagic shock and severe head trauma. Transport helicopter with a physician on board has an important role to allow direct admission to a specialized center in geographical areas that are difficult to access. PMID:23916517

  10. FEASTING BLACK HOLE BLOWS BUBBLES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  11. Trauma Tactics: Rethinking Trauma Education for Professional Nurses.

    PubMed

    Garvey, Paula; Liddil, Jessica; Eley, Scott; Winfield, Scott

    2016-01-01

    According to the National Trauma Institute (2015), trauma accounts for more than 180,000 deaths each year in the United States. Nurses play a significant role in the care of trauma patients and therefore need appropriate education and training (L. ). Although several courses exist for trauma education, many nurses have not received adequate education in trauma management (B. ; L. ). Trauma Tactics, a 2-day course that focuses on high-fidelity human patient simulation, was created to meet this educational need. This descriptive study was conducted retrospectively to assess the effectiveness of the Trauma Tactics course. Pre- and postsurveys, tests, and simulation performance were used to evaluate professional nurses who participated in Trauma Tactics over a 10-month period. Fifty-five nurses were included in the study. Pre- and postsurveys revealed an increase in overall confidence, test scores increased by an average of 2.5 points, and simulation performance scores increased by an average of 16 points. Trauma Tactics is a high-quality course that provides a valuable and impactful educational experience for nurses. Further research is needed to evaluate the long-term effects of Trauma Tactics and its impacts on quality of care and patient outcomes. PMID:27414143

  12. Mechanisms of single bubble cleaning.

    PubMed

    Reuter, Fabian; Mettin, Robert

    2016-03-01

    The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8<γ<3.5, bubble collapse induced vortex flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γ<1.1, the bubble is in direct contact with the solid. Fast liquid flows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1<γ<1.8, only the second bubble collapse touches the substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by

  13. Parallel node placement method by bubble simulation

    NASA Astrophysics Data System (ADS)

    Nie, Yufeng; Zhang, Weiwei; Qi, Nan; Li, Yiqiang

    2014-03-01

    An efficient Parallel Node Placement method by Bubble Simulation (PNPBS), employing METIS-based domain decomposition (DD) for an arbitrary number of processors is introduced. In accordance with the desired nodal density and Newton’s Second Law of Motion, automatic generation of node sets by bubble simulation has been demonstrated in previous work. Since the interaction force between nodes is short-range, for two distant nodes, their positions and velocities can be updated simultaneously and independently during dynamic simulation, which indicates the inherent property of parallelism, it is quite suitable for parallel computing. In this PNPBS method, the METIS-based DD scheme has been investigated for uniform and non-uniform node sets, and dynamic load balancing is obtained by evenly distributing work among the processors. For the nodes near the common interface of two neighboring subdomains, there is no need for special treatment after dynamic simulation. These nodes have good geometrical properties and a smooth density distribution which is desirable in the numerical solution of partial differential equations (PDEs). The results of numerical examples show that quasi linear speedup in the number of processors and high efficiency are achieved.

  14. Spark bubble interaction with a suspended particle

    NASA Astrophysics Data System (ADS)

    Ohl, Siew-Wan; Wu, Di Wei; Klaseboer, Evert; Cheong Khoo, Boo

    2015-12-01

    Cavitation bubble collapse is influenced by nearby surfaces or objects. A bubble near a rigid surface will move towards the surface and collapse with a high speed jet. When a hard particle is suspended near a bubble generated by electric spark, the bubble expands and collapses moving the particle. We found that within a limit of stand-off distance, the particle is propelled away from the bubble as it collapses. At a slightly larger stand-off distance, the bubble collapse causes the particle to move towards the bubble initially before moving away. The bubble does not move the particle if it is placed far away. This conclusion is important for applications such as drug delivery in which the particle is to be propelled away from the collapsing bubble.

  15. Inviscid Partial Coalescence from Bubbles to Drops

    NASA Astrophysics Data System (ADS)

    Zhang, F. H.; Taborek, P.; Burton, J.; Khoo, B. C.; Lim, K. M.; Thoroddsen, S. T.

    2010-11-01

    Coalescence of bubbles (drops) not only coarse the bubble (drop) sizes, but sometimes produces satellite bubbles (droplets), known as partial coalescence. To explore links between the drop and bubble cases, we experimentally study the partial coalescence of pressurized xenon gas bubbles in nano de-ionized water using high-speed video imaging. The size of these satellites relative to their mother bubbles is found to increase with the density ratio of the gas to the liquid. Moreover, sub-satellite bubbles are sometimes observed, whose size is also found to increase with the density ratio, while keeps about one quarter of the primary satellite. The time duration from start of the coalescence to formation of the satellites, scaled by the capillary time, increases with the density ratio too. In addition, as the size ratio of the father bubble to the mother bubble increases moderately, their coalescence proceeds faster and the sub-satellite is prone to form and relatively larger.

  16. Needle Thoracotomy in Trauma.

    PubMed

    Rottenstreich, Misgav; Fay, Shmuel; Gendler, Sami; Klein, Yoram; Arkovitz, Marc; Rottenstreich, Amihai

    2015-12-01

    Tension pneumothorax is one of the leading causes of preventable death in trauma patients. Needle thoracotomy (NT) is the currently accepted first-line intervention but has not been well validated. In this review, we have critically discussed the evidence for NT procedure, re-examined the recommendations by the Advanced Trauma Life Support organization and investigated the safest and most effective way of NT. The current evidence to support the use of NT is limited. However, when used, it should be applied in the 2nd intercostal space at midclavicular line using a catheter length of at least 4.5 cm. Alternative measures should be studied for better prehospital management of tension pneumothorax. PMID:26633663

  17. Maxillofacial trauma scoring systems.

    PubMed

    Sahni, Vaibhav

    2016-07-01

    The changing complexity of maxillofacial fractures in recent years has created a situation where classical systems of classification of maxillofacial injuries fall short of defining trauma particularly that observed with high-velocity collisions where more than one region of the maxillofacial skeleton is affected. Trauma scoring systems designed specifically for the maxillofacial region are aimed to provide a more accurate assessment of the injury, its prognosis, the possible treatment outcomes, economics, length of hospital stay, and triage. The evolution and logic of such systems along with their merits and demerits are discussed. The author also proposes a new system to aid users in quickly and methodically choosing the system best suited to their needs without having to study a plethora of literature available in order to isolate their choice. PMID:26971084

  18. Substance Abuse and Trauma.

    PubMed

    Simmons, Shannon; Suárez, Liza

    2016-10-01

    There is a strong, bidirectional link between substance abuse and traumatic experiences. Teens with cooccurring substance use disorders (SUDs) and posttraumatic stress disorder (PTSD) have significant functional and psychosocial impairment. Common neurobiological foundations point to the reinforcing cycle of trauma symptoms, substance withdrawal, and substance use. Treatment of teens with these issues should include a systemic and integrated approach to both the SUD and the PTSD. PMID:27613348

  19. Experiments on the motion of gas bubbles in turbulence generated by an active grid

    NASA Astrophysics Data System (ADS)

    Poorte, R. E. G.; Biesheuvel, A.

    2002-06-01

    The random motion of nearly spherical bubbles in the turbulent flow behind a grid is studied experimentally. In quiescent water these bubbles rise at high Reynolds number. The turbulence is generated by an active grid of the design of Makita (1991), and can have turbulence Reynolds number R[lambda] of up to 200. Minor changes in the geometry of the grid and in its mode of operation improves the isotropy of the turbulence, compared with that reported by Makita (1991) and Mydlarski & Warhaft (1996). The trajectory of each bubble is measured with high spatial and temporal resolution with a specially developed technique that makes use of a position-sensitive detector. Bubble statistics such as the mean rise velocity and the root-mean-square velocity fluctuations are obtained by ensemble averaging over many identical bubbles. The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared with the quiescent conditions. The vertical bubble velocity fluctuations are found to be non-Gaussian, whereas the horizontal displacements are Gaussian for all times. The diffusivity of bubbles is considerably less than that of fluid particles. These findings are qualitatively consistent with results obtained through theoretical analysis and numerical simulations by Spelt & Biesheuvel (1997).

  20. Rethinking historical trauma.

    PubMed

    Kirmayer, Laurence J; Gone, Joseph P; Moses, Joshua

    2014-06-01

    Recent years have seen the rise of historical trauma as a construct to describe the impact of colonization, cultural suppression, and historical oppression of Indigenous peoples in North America (e.g., Native Americans in the United States, Aboriginal peoples in Canada). The discourses of psychiatry and psychology contribute to the conflation of disparate forms of violence by emphasizing presumptively universal aspects of trauma response. Many proponents of this construct have made explicit analogies to the Holocaust as a way to understand the transgenerational effects of genocide. However, the social, cultural, and psychological contexts of the Holocaust and of post-colonial Indigenous "survivance" differ in many striking ways. Indeed, the comparison suggests that the persistent suffering of Indigenous peoples in the Americas reflects not so much past trauma as ongoing structural violence. The comparative study of genocide and other forms of massive, organized violence can do much to illuminate both common mechanisms and distinctive features, and trace the looping effects from political processes to individual experience and back again. The ethics and pragmatics of individual and collective healing, restitution, resilience, and recovery can be understood in terms of the self-vindicating loops between politics, structural violence, public discourse, and embodied experience. PMID:24855142

  1. Bubble nucleation in an explosive micro-bubble actuator

    NASA Astrophysics Data System (ADS)

    van den Broek, D. M.; Elwenspoek, M.

    2008-06-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse. In this paper we take a closer look at the bubble nucleation. The moment of bubble nucleation was determined by both stroboscopic imaging and resistance thermometry. Two nucleation regimes could be distinguished. Several different heater designs were investigated under heat fluxes of hundreds of W mm-2. A close correspondence between current density in the heater and point of nucleation was found. This results in design rules for effective heaters.

  2. Ground State Properties and Bubble Structure of Synthesized Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Ikram, M.; Patra, S. K.

    2013-01-01

    We calculate the ground state properties of recently synthesized superheavy elements (SHEs) from Z = 105-118 along with the predicted proton magic Z = 120. The relativistic and nonrelativistic mean field formalisms are used to evaluate the binding energy (BE), charge radius, quadrupole deformation parameter and the density distribution of nucleons. We analyzed the stability of the nuclei based on BE and neutron to proton ratio. We also studied the bubble structure which reveals the special features of the superheavy nuclei.

  3. [The Trauma Network of the German Society for Trauma 2009].

    PubMed

    Kühne, C A; Mand, C; Sturm, J; Lackner, C K; Künzel, A; Siebert, H; Ruchholtz, S

    2009-10-01

    In 2009, 3 years after the foundation of the Trauma Network of the German Society for Trauma (TraumaNetzwerkD DGU), the majority of German hospitals participating in the treatment of seriously injured patients is registered in regional trauma networks (TNW). Currently there are 41 trauma networks with more than 660 hospitals in existence, 18 more are registered but are still in the planning phase. Each Federal State has an average of 39 trauma centres of different levels taking part in the treatment of seriously injured patients and every trauma network has an average catchment area of 8708 km(2). The most favourable geographical infrastructure conditions exist in Nordrhein-Westfalen, the least favourable in Sachsen-Anhalt and Mecklenburg-Vorpommern. A total of 95 hospitals have already fulfilled the first audit of the structural, personnel and qualitative requirements by the certification bodies. Examination of the check lists of 26 hospitals showed shortcomings in the clinical structure so that these hospitals must be rechecked after correction of the shortcomings. A total of 59 hospitals throughout Germany were successfully audited and only one failed to fulfil the requirements. Because of the varying sizes of the trauma networks there are differences in the areas covered by each trauma network and trauma centre. Concerning the process of certification and auditing (together with the company DIOcert) it could be seen that by careful examination of the check lists of each hospital unforeseen problems during the audit could be avoided. The following article will present the current state of development of the Trauma Network of the German Society for Trauma and describe the certification and auditing process. PMID:19756455

  4. Ethnic diversity deflates price bubbles

    PubMed Central

    Levine, Sheen S.; Apfelbaum, Evan P.; Bernard, Mark; Bartelt, Valerie L.; Zajac, Edward J.; Stark, David

    2014-01-01

    Markets are central to modern society, so their failures can be devastating. Here, we examine a prominent failure: price bubbles. Bubbles emerge when traders err collectively in pricing, causing misfit between market prices and the true values of assets. The causes of such collective errors remain elusive. We propose that bubbles are affected by ethnic homogeneity in the market and can be thwarted by diversity. In homogenous markets, traders place undue confidence in the decisions of others. Less likely to scrutinize others’ decisions, traders are more likely to accept prices that deviate from true values. To test this, we constructed experimental markets in Southeast Asia and North America, where participants traded stocks to earn money. We randomly assigned participants to ethnically homogeneous or diverse markets. We find a marked difference: Across markets and locations, market prices fit true values 58% better in diverse markets. The effect is similar across sites, despite sizeable differences in culture and ethnic composition. Specifically, in homogenous markets, overpricing is higher as traders are more likely to accept speculative prices. Their pricing errors are more correlated than in diverse markets. In addition, when bubbles burst, homogenous markets crash more severely. The findings suggest that price bubbles arise not only from individual errors or financial conditions, but also from the social context of decision making. The evidence may inform public discussion on ethnic diversity: it may be beneficial not only for providing variety in perspectives and skills, but also because diversity facilitates friction that enhances deliberation and upends conformity. PMID:25404313

  5. Bubble migration during hydrate formation

    NASA Astrophysics Data System (ADS)

    Shagapov, V. Sh.; Chiglintseva, A. S.; Rusinov, A. A.

    2015-03-01

    A model of the process of migration of methane bubbles in water under thermobaric conditions of hydrate formation is proposed. The peculiarities of the temperature field evolution, migration rate, and changes in the radius and volume fraction of gas hydrate bubbles are studied. It is shown that, with a constant mass flow of gas from the reservoir bottom, for all parameters of the surfacing gas hydrate disperse system, there is a quasistationary pattern in the form of a "step"-like wave. Depending on the relationship of the initial gas bubble density with the average gas density in the hydrate composition determined by the depth from which bubbles rise to the surface, the final radius of hydrate particles may be larger or smaller than the initial gas bubble radii. It is established that the speed at which gas hydrate inclusions rise to the surface decreases by several times due to an increase in their weight during hydrate formation. The influence of the depth of the water reservoir whose bottom is a gas flow source on the dynamics of hydrate formation is studied.

  6. Capillarity-Driven Bubble Separations

    NASA Astrophysics Data System (ADS)

    Wollman, Andrew; Weislogel, Mark; Dreyer, Michael

    2013-11-01

    Techniques for phase separation in the absence of gravity continue to be sought after 5 decades of space flight. This work focuses on the fundamental problem of gas bubble separation in bubbly flows through open wedge-shaped channel in a microgravity environment. The bubbles appear to rise in the channel and coalesce with the free surface. Forces acting on the bubble are the combined effects of surface tension, wetting conditions, and geometry; not buoyancy. A single dimensionless group is identified that characterizes the bubble behavior and supportive experiments are conducted in a terrestrial laboratory, in a 2.1 second drop tower, and aboard the International Space Station as part of the Capillary Channel Flow (CCF) experiments. The data is organized into regime maps that provide insight on passive phase separations for applications ranging from liquid management aboard spacecraft to lab-on-chip technologies. NASA NNX09AP66A, NASA Oregon Space Grant NNX10AK68H, NASA NNX12AO47A, DLR 50WM0535/0845/1145

  7. Ethnic diversity deflates price bubbles.

    PubMed

    Levine, Sheen S; Apfelbaum, Evan P; Bernard, Mark; Bartelt, Valerie L; Zajac, Edward J; Stark, David

    2014-12-30

    Markets are central to modern society, so their failures can be devastating. Here, we examine a prominent failure: price bubbles. Bubbles emerge when traders err collectively in pricing, causing misfit between market prices and the true values of assets. The causes of such collective errors remain elusive. We propose that bubbles are affected by ethnic homogeneity in the market and can be thwarted by diversity. In homogenous markets, traders place undue confidence in the decisions of others. Less likely to scrutinize others' decisions, traders are more likely to accept prices that deviate from true values. To test this, we constructed experimental markets in Southeast Asia and North America, where participants traded stocks to earn money. We randomly assigned participants to ethnically homogeneous or diverse markets. We find a marked difference: Across markets and locations, market prices fit true values 58% better in diverse markets. The effect is similar across sites, despite sizeable differences in culture and ethnic composition. Specifically, in homogenous markets, overpricing is higher as traders are more likely to accept speculative prices. Their pricing errors are more correlated than in diverse markets. In addition, when bubbles burst, homogenous markets crash more severely. The findings suggest that price bubbles arise not only from individual errors or financial conditions, but also from the social context of decision making. The evidence may inform public discussion on ethnic diversity: it may be beneficial not only for providing variety in perspectives and skills, but also because diversity facilitates friction that enhances deliberation and upends conformity. PMID:25404313

  8. Psychological Trauma in the Schools: A Retrospective Study.

    ERIC Educational Resources Information Center

    Zelikoff, Wendy L.; Hyman, Irwin A.

    An increase in clinical cases indicates that trauma in school children can be connected to teacher abuse. A survey was administered to 35 college undergraduates, 40 school teachers, 41 special educators, and 65 mixed individuals from Pennsylvania, New Jersey, New York, Delaware, Georgia, and Puerto Rico to determine the nature of the abuse, its…

  9. Reflections on 20 Years of Research on Violence and Trauma

    ERIC Educational Resources Information Center

    Forde, David R.

    2005-01-01

    This article is part of a special issue reflecting on what people have learned about violence and trauma over the past 20 years and where we need to go in the next 10 years. The author emphasizes the importance of learning to communicate in order to form effective community partnerships. Evidence-based research is noted as a methodological…

  10. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Godwin, R.P.; Chapyak, E.J.; Noack, J.; Vogel, A.

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  11. Gravity driven flows of bubble suspensions.

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto; Koch, Donald L.; Sangani, Ashok K.

    1999-11-01

    Experiments on vertical and inclined channels were performed to study the behavior of a mono-dispersed bubble suspension for which the dual limit of large Reynolds number and small Weber number is satisfied. A uniform stream of 1.5 mm diameter bubbles is produced by a bank of identical capillaries and coalescence is inhibited by addition of salt to the water. Measurements of the liquid velocity and bubble-probe collision rate are obtained with a hot wire anemometer. The gas volume fraction, bubble velocity, velocity variance and chord length are measured using a dual impedance probe. Image analysis is used to quantify the distributions of bubble size and aspect ratio. For vertical channels the bubble velocity is observed to decrease as the bubble concentration increases in accord with the predictions of Spelt and Sangani (1998). The bubble velocity variance arises largely due to bubble-wall and bubble-bubble collisions. For inclined channels, the strength of the shear flow is controlled by the extent of bubble segregation and the effective viscosity of the bubble phase. The measurements are compared with solutions of the averaged equations of motion for a range of gas volume fractions and channel inclination angles.

  12. Energy spectra in bubbly turbulence

    NASA Astrophysics Data System (ADS)

    Luther, Stefan; van den Berg, Thomas H.; Rensen, Judith; Lohse, Detlef

    2004-11-01

    The energy spectrum of single phase turbulent flow - apart from intermittency corrections - has been known since Kolomogorov 1941, E(k) ∝ k-5/3. How do bubbles modify this spectrum? To answer this question, we inject micro bubbles (radius 100 μm) in fully turbulent flow (Re_λ=200) up to volume concentrations of 0.3 %. Energy spectra and velocity structure functions are measured with hot-film anemometry. Under our experimental conditions, we find an enhancement of energy on small scales confirming numerical predictions by Mazzitelli, Lohse, and Toschi [Phys. Fluids 15, L5 (2003)]. They propose a mechanism in which bubbles are clustering most likely in downflow regions. This clustering is a lift force effect suppressing large vortical structures, while enhancing energy input on small scales.

  13. Bubbles Responding to Ultrasound Pressure

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (435KB, 13-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300162.html.

  14. Scaling laws for bubbling bifurcations

    NASA Astrophysics Data System (ADS)

    González-Tokman, Cecilia; Hunt, Brian R.

    2009-11-01

    We establish rigorous scaling laws for the average bursting time for bubbling bifurcations of an invariant manifold, assuming the dynamics within the manifold to be uniformly hyperbolic. This type of global bifurcation appears in nearly synchronized systems, and is conjectured to be typical among those breaking the invariance of an asymptotically stable hyperbolic invariant manifold. We consider bubbling precipitated by generic bifurcations of a fixed point in both symmetric and non-symmetric systems with a codimension one invariant manifold, and discuss their extension to bifurcations of periodic points. We also discuss generalizations to invariant manifolds with higher codimension, and to systems with random noise.

  15. Global trauma: the great divide

    PubMed Central

    Paniker, Jayanth; Graham, Simon Matthew; Harrison, James William

    2015-01-01

    Road trauma is an emergent global issue. There is huge disparity between the population affected by road trauma and the resource allocation. If the current trend continues, a predicted extra 5 million lives will be lost in this decade. This article aims to create an awareness of the scale of the problem of road trauma and the inequality in the resources available to address this problem. It also describes the responses from the international organisations and the orthopaedic community in dealing with this issue. The International Orthopaedic community has a unique opportunity and moral obligation to play a part in changing this trend of global trauma. PMID:27163075

  16. TECHNOLOGY ASSESSMENT OF FINE BUBBLE AERATORS

    EPA Science Inventory

    This technology assessment addresses design and evaluation of fine bubble aeration equipment. It discusses the associated gas transfer theory used as the basis for measuring water and wastewater oxygenation efficiency. Mixing requirements are also discussed. While bubble aeration...

  17. Removal of hydrogen bubbles from nuclear reactors

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1980-01-01

    Method proposed for removing large hydrogen bubbles from nuclear environment uses, in its simplest form, hollow spheres of palladium or platinum. Methods would result in hydrogen bubble being reduced in size without letting more radioactivity outside reactor.

  18. Behavior of Rapidly Sheared Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Sangani, A. S.; Kushch, V. I.; Hoffmann, M.; Nahra, H.; Koch, D. L.; Tsang, Y.

    2002-01-01

    An experiment to be carried out aboard the International Space Station is described. A suspension consisting of millimeter-sized bubbles in water containing some dissolved salt, which prevents bubbles from coalescing, will be sheared in a Couette cylindrical cell. Rotation of the outer cylinder will produce centrifugal force which will tend to accumulate the bubbles near the inner wall. The shearing will enhance collisions among bubbles creating thereby bubble phase pressure that will resist the tendency of the bubbles to accumulate near the inner wall. The bubble volume fraction and velocity profiles will be measured and compared with the theoretical predictions. Ground-based research on measurement of bubble phase properties and flow in vertical channel are described.

  19. Biomechanics of penetrating trauma.

    PubMed

    Yoganandan, N; Pintar, F A

    1997-01-01

    It is well known that injuries and deaths due to penetrating projectiles have become a national and an international epidemic in Western society. The application of biomedical engineering to solve day-to-day problems has produced considerable advances in safety and mitigation/prevention of trauma. The study of penetrating trauma has been largely in the military domain where war-time specific applications were advanced with the use of high-velocity weapons. With the velocity and weapon caliber in the civilian population at half or less compared with the military counterpart, wound ballistics is a largely different problem in today's trauma centers. The principal goal of the study of penetrating injuries in the civilian population is secondary prevention and optimized emergency care after occurrence. A thorough understanding of the dynamic biomechanics of penetrating injuries quantifies missile type, caliber, and velocity to hard and soft tissue damage. Such information leads to a comprehensive assessment of the acute and long-term treatment of patients with penetrating injuries. A review of the relevant military research applied to the civilian domain and presentation of new technology in the biomechanical study of these injuries offer foundation to this field. Relevant issues addressed in this review article include introduction of the military literature, the need for secondary prevention, environmental factors including projectile velocity and design, experimental studies with biological tissues and physical models, and mathematical simulations and analyses. Areas of advancement are identified that enables the pursuit of biomechanics research in order to arrive at better secondary prevention strategies. PMID:9719858

  20. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Daniele, M.; Renggli, C.; Perugini, D.; De Campos, C.; Hess, K. U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2014-12-01

    Rising bubbles may significantly affect magma mixing paths as has been demonstrated by analogue experiments in the past. Here, bubble-advection experiments are performed for the first time employing natural materials at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears as efficient mechanism to mingle contrasting melt compositions. MicroCT imaging shows bubbles trailing each other and trails of multiple bubbles having converged. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that subsequent bubbles rising are likely to follow the same pathways that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Fundamental implications for the concept of bubble advection in magma mixing are thus a) an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and b) non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a filament. Inside these filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments are likely to have experienced multiple bubbles passing through

  1. Rural Trauma: Is Trauma Designation Associated with Better Hospital Outcomes?

    ERIC Educational Resources Information Center

    Bowman, Stephen M.; Zimmerman, Frederick J.; Sharar, Sam R.; Baker, Margaret W.; Martin, Diane P.

    2008-01-01

    Context: While trauma designation has been associated with lower risk of death in large urban settings, relatively little attention has been given to this issue in small rural hospitals. Purpose: To examine factors related to in-hospital mortality and delayed transfer in small rural hospitals with and without trauma designation. Methods: Analysis…

  2. Trauma-Focused CBT for Youth with Complex Trauma

    ERIC Educational Resources Information Center

    Cohen, Judith A.; Mannarino, Anthony P.; Kliethermes, Matthew; Murray, Laura A.

    2012-01-01

    Objectives: Many youth develop complex trauma, which includes regulation problems in the domains of affect, attachment, behavior, biology, cognition, and perception. Therapists often request strategies for using evidence-based treatments (EBTs) for this population. This article describes practical strategies for applying Trauma-Focused Cognitive…

  3. Trauma-focused CBT for youth with complex trauma

    PubMed Central

    Mannarino, Anthony P.; Kliethermes, Matthew; Murray, Laura A.

    2013-01-01

    Objectives Many youth develop complex trauma, which includes regulation problems in the domains of affect, attachment, behavior, biology, cognition, and perception. Therapists often request strategies for using evidence-based treatments (EBTs) for this population. This article describes practical strategies for applying Trauma-Focused Cognitive Behavioral Therapy (TF-CBT) for youth with complex trauma. Methods TF-CBT treatment phases are described and modifications of timing, proportionality and application are described for youth with complex trauma. Practical applications include a) dedicating proportionally more of the model to the TF-CBT coping skills phase; b) implementing the TF-CBT Safety component early and often as needed throughout treatment; c) titrating gradual exposure more slowly as needed by individual youth; d) incorporating unifying trauma themes throughout treatment; and e) when indicated, extending the TF-CBT treatment consolidation and closure phase to include traumatic grief components and to generalize ongoing safety and trust. Results Recent data from youth with complex trauma support the use of the above TF-CBT strategies to successfully treat these youth. Conclusions The above practical strategies can be incorporated into TF-CBT to effectively treat youth with complex trauma. Practice implications Practical strategies include providing a longer coping skills phase which incorporates safety and appropriate gradual exposure; including relevant unifying themes; and allowing for an adequate treatment closure phase to enhance ongoing trust and safety. Through these strategies therapists can successfully apply TF-CBT for youth with complex trauma. PMID:22749612

  4. Radiology of skeletal trauma

    SciTech Connect

    Rogers, L.F.

    1982-01-01

    This 1000-page book contains over 1700 illustrations, is presented in two volumes and subdivided into 23 chapters. After brief chapters of Introduction and General Anatomy, a section on Skeletal Biomechanics is presented. The Epidemiology of Fractures chapter examines, among other things, the effects of age on the frequency and distribution of fractures. In the chapter on Classifications of Fractures, the author describes the character of traumatic forces such as angulating, torsional, avulsive, and compressive, and then relates these to the resultant fracture configurations. The Fracture Treatment chapter presents an overview of treatment principles. Other chapters deal with specific problems in pediatric trauma, fracture healing and nonhealing, and fracture complications.

  5. Management of Pediatric Trauma.

    PubMed

    2016-08-01

    Injury is still the number 1 killer of children ages 1 to 18 years in the United States (http://www.cdc.gov/nchs/fastats/children.htm). Children who sustain injuries with resulting disabilities incur significant costs not only for their health care but also for productivity lost to the economy. The families of children who survive childhood injury with disability face years of emotional and financial hardship, along with a significant societal burden. The entire process of managing childhood injury is enormously complex and varies by region. Only the comprehensive cooperation of a broadly diverse trauma team will have a significant effect on improving the care of injured children. PMID:27456509

  6. Interfacial instability of a condensing vapor bubble in a subcooled liquid

    NASA Astrophysics Data System (ADS)

    Ueno, I.; Ando, J.; Koiwa, Y.; Saiki, T.; Kaneko, T.

    2015-03-01

    A special attention is paid to the condensing and collapsing processes of vapor bubble injected into a subcooled pool. We try to extract the vapor-liquid interaction by employing a vapor generator that supplies vapor to the subcooled pool through an orifice instead of using a immersed heating surface to realize vapor bubbles by boiling phenomenon. This system enables ones to detect a spatio-temporal behavior of a single bubble of superheated vapor exposed to a subcooled liquid. In the present study, vapor of water is injected through an orifice at constant flow rate to the subcooled pool of water at the designated degree of subcooling under the atmospheric pressure. The degree of subcooling of the pool is ranged from 0 K to 70 K, and the vapor temperature is kept constant at 101 ∘C. The behaviors of the injected vapor are captured by high-speed camera at frame rate up to 0.3 million frame per second (fps) to track the temporal variation of the vapor bubble shape. It is found that the abrupt collapse of the vapor bubble exposed to the subcooled pool takes place under the condition that the degree of subcooling is greater than around 30 K, and that the abrupt collapse always takes place accompanying the fine disturbances or instability emerged on the free surface. We then evaluate a temporal variation of the apparent `volume' of the bubble V under the assumption of the axisymmetric shape of the vapor bubble. It is also found that the instability emerges slightly after the volume of the vapor bubble reaches the maximum value. It is evaluated that the second derivative of the corresponding `radius' R of the vapor bubble is negative when the instability appears on the bubble surface, where R = 3√ 3V/4π. We also illustrate that the wave number of the instability on the liquid-vapor interface increases as the degree of subcooling.

  7. Frictional drag reduction by bubble injection

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi

    2014-07-01

    The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

  8. Models of cylindrical bubble pulsation

    PubMed Central

    Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863

  9. Neutron Detection via Bubble Chambers

    SciTech Connect

    Jordan, David V.; Ely, James H.; Peurrung, Anthony J.; Bond, Leonard J.; Collar, J. I.; Flake, Matthew; Knopf, Michael A.; Pitts, W. K.; Shaver, Mark W.; Sonnenschein, Andrew; Smart, John E.; Todd, Lindsay C.

    2005-10-06

    The results of a Pacific Northwest National Laboratory (PNNL) exploratory research project investigating the feasibility of fast neutron detection using a suitably prepared and operated, pressure-cycled bubble chamber are described. The research was conducted along two parallel paths. Experiments with a slow pressure-release Halon chamber at the Enrico Fermi Institute at the University of Chicago showed clear bubble nucleation sensitivity to an AmBe neutron source and insensitivity to the 662 keV gammas from a 137Cs source. Bubble formation was documented via high-speed (1000 frames/sec) photography, and the acoustic signature of bubble formation was detected using a piezo-electric transducer element mounted on the base of the chamber. The chamber’s neutron sensitivity as a function of working fluid temperature was mapped out. The second research path consisted of the design, fabrication, and testing of a fast pressure-release Freon-134a chamber at PNNL. The project concluded with successful demonstrations of the PNNL chamber’s AmBe neutron source sensitivity and 137Cs gamma insensitivity. The source response tests of the PNNL chamber were documented with high-speed photography.

  10. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  11. Impurity bubbles in a BEC

    NASA Astrophysics Data System (ADS)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  12. Electrolysis Bubbles Make Waterflow Visible

    NASA Technical Reports Server (NTRS)

    Schultz, Donald F.

    1990-01-01

    Technique for visualization of three-dimensional flow uses tiny tracer bubbles of hydrogen and oxygen made by electrolysis of water. Strobe-light photography used to capture flow patterns, yielding permanent record that is measured to obtain velocities of particles. Used to measure simulated mixing turbulence in proposed gas-turbine combustor and also used in other water-table flow tests.

  13. Bubble-driven inertial micropump

    NASA Astrophysics Data System (ADS)

    Torniainen, Erik D.; Govyadinov, Alexander N.; Markel, David P.; Kornilovitch, Pavel E.

    2012-12-01

    The fundamental action of the bubble-driven inertial micropump is investigated. The pump has no moving parts and consists of a thermal resistor placed asymmetrically within a straight channel connecting two reservoirs. Using numerical simulations, the net flow is studied as a function of channel geometry, resistor location, vapor bubble strength, fluid viscosity, and surface tension. Two major regimes of behavior are identified: axial and non-axial. In the axial regime, the drive bubble either remains inside the channel, or continues to grow axially when it reaches the reservoir. In the non-axial regime, the bubble grows out of the channel and in all three dimensions while inside the reservoir. The net flow in the axial regime is parabolic with respect to the hydraulic diameter of the channel cross-section, but in the non-axial regime it is not. From numerical modeling, it is determined that the net flow is maximal when the axial regime crosses over to the non-axial regime. To elucidate the basic physical principles of the pump, a phenomenological one-dimensional model is developed and solved. A linear array of micropumps has been built using silicon-SU8 fabrication technology that is used to manufacture thermal inkjet printheads. Semi-continuous pumping across a 2 mm-wide channel has been demonstrated experimentally. Measured net flow with respect to viscosity variation is in excellent agreement with simulation results.

  14. Affirmative Discrimination and the Bubble

    ERIC Educational Resources Information Center

    Clegg, Roger

    2011-01-01

    In this essay, the author discusses how affirmative action contributed to an unnatural rise in enrollments in college. In considering the higher education bubble, he makes the case that as the opposition to preferences continues to build, the momentum of this trend will only increase as funding shrinks. He offers some tentative answers to a series…

  15. The Coming Law School Bubble

    ERIC Educational Resources Information Center

    Krauss, Michael I.

    2011-01-01

    In this article, the author explains how forty years of politicized hiring in the law schools has left its destructive mark. The results are potentially catastrophic: Market forces and internal law school policies may be combining to produce a legal education bubble the likes of which the country has never seen. (Contains 11 footnotes.)

  16. Breaking waves, turbulence and bubbles

    NASA Astrophysics Data System (ADS)

    Gemmrich, Johannes; Vagle, Svein; Thomson, Jim

    2014-05-01

    The air-sea fluxes of heat, momentum, and gases are to a large extent affected by wave-induced turbulence in the near-surface ocean layer, and are generally increased over the fluxes in a law-of-the-wall type boundary layer. However, air-bubbles generated during the wave breaking process may affect the density stratification and in turn reduce turbulence intensity in the near-surface layer. The turbulence field beneath surface waves is rather complex and provides great challenges for detailed observations. We obtained high resolution near-surface velocity profiles, bubble cloud measurements and video recordings of the breaking activity in a coastal strait. Conditions ranged from moderate to strong wind forcing with wind speed ranging from 5 m/s to 20 m/s. Estimates of the dissipation rates of turbulence kinetic energy are calculated from the in-situ velocity measurements. We find dissipation rates, fluctuating by more than two orders of magnitude, are closely linked to the air-fraction associated with micro-bubbles. Combining these turbulence estimates and the bubble cloud characteristics we infer differences in the strength of wave breaking and its effect on wave-induced mixing and air-sea exchange processes.

  17. LRL 25-inch Bubble Chamber

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Gow, J. D.; Barrera, F.; Eckman, G.; Shand, J.; Watt, R.; Norgren, D.; Hernandez, H. P.

    1964-07-08

    The recently completed 25-inch hydrogen bubble chamber combines excellent picture quality with a fast operating cycle. The chamber has a unique optical system and is designed to take several pictures each Bevatron pulse, in conjunction with the Bevatron rapid beam ejection system.

  18. Management of Colorectal Trauma

    PubMed Central

    2011-01-01

    Although the treatment strategy for colorectal trauma has advanced during the last part of the twentieth century and the result has improved, compared to other injuries, problems, such as high septic complication rates and mortality rates, still exist, so standard management for colorectal trauma is still a controversial issue. For that reason, we designed this article to address current recommendations for management of colorectal injuries based on a review of literature. According to the reviewed data, although sufficient evidence exists for primary repair being the treatment of choice in most cases of nondestructive colon injuries, many surgeons are still concerned about anastomotic leakage or failure, and prefer to perform a diverting colostomy. Recently, some reports have shown that primary repair or resection and anastomosis, is better than a diverting colostomy even in cases of destructive colon injuries, but it has not fully established as the standard treatment. The same guideline as that for colonic injury is applied in cases of intraperitoneal rectal injuries, and, diversion, primary repair, and presacral drainage are regarded as the standards for the management of extraperitoneal rectal injuries. However, some reports state that primary repair without a diverting colostomy has benefit in the treatment of extraperitoneal rectal injury, and presacral drainage is still controversial. In conclusion, ideally an individual management strategy would be developed for each patient suffering from colorectal injury. To do this, an evidence-based treatment plan should be carefully developed. PMID:21980586

  19. Sexual Trauma, Spirituality, and Psychopathology

    ERIC Educational Resources Information Center

    Krejci, Mark J.; Thompson, Kevin M.; Simonich, Heather; Crosby, Ross D.; Donaldson, Mary Ann; Wonderlich, Stephen A.; Mitchell, James E.

    2004-01-01

    This study assessed the association between spirituality and psychopathology in a group of sexual abuse victims and controls with a focus on whether spirituality moderated the association between sexual trauma and psychopathology. Seventy-one sexual trauma victims were compared to 25 control subjects on spiritual well-being, the Eating Disorder…

  20. Coagulopathy after severe pediatric trauma.

    PubMed

    Christiaans, Sarah C; Duhachek-Stapelman, Amy L; Russell, Robert T; Lisco, Steven J; Kerby, Jeffrey D; Pittet, Jean-François

    2014-06-01

    Trauma remains the leading cause of morbidity and mortality in the United States among children aged 1 to 21 years. The most common cause of lethality in pediatric trauma is traumatic brain injury. Early coagulopathy has been commonly observed after severe trauma and is usually associated with severe hemorrhage and/or traumatic brain injury. In contrast to adult patients, massive bleeding is less common after pediatric trauma. The classical drivers of trauma-induced coagulopathy include hypothermia, acidosis, hemodilution, and consumption of coagulation factors secondary to local activation of the coagulation system after severe traumatic injury. Furthermore, there is also recent evidence for a distinct mechanism of trauma-induced coagulopathy that involves the activation of the anticoagulant protein C pathway. Whether this new mechanism of posttraumatic coagulopathy plays a role in children is still unknown. The goal of this review is to summarize the current knowledge on the incidence and potential mechanisms of coagulopathy after pediatric trauma and the role of rapid diagnostic tests for early identification of coagulopathy. Finally, we discuss different options for treating coagulopathy after severe pediatric trauma. PMID:24569507

  1. Tiny Bubbles in my BEC

    SciTech Connect

    Blinova, Alina A.

    2012-08-01

    Ultracold atomic gases provide a unique way for exploring many-body quantum phenomena that are inaccessible to conventional low-temperature experiments. Nearly two decades ago the Bose-Einstein condensate (BEC) - an ultracold gas of bosons in which almost all bosons occupy the same single-particle state - became experimentally feasible. Because a BEC exhibits superfluid properties, it can provide insights into the behavior of low-temperature helium liquids. We describe the case of a single distinguishable atom (an impurity) embedded in a BEC and strongly coupled to the BEC bosons. Depending on the strength of impurity-boson and boson-boson interactions, the impurity self-localizes into two fundamentally distinct regimes. The impurity atom can behave as a tightly localized 'polaron,' akin to an electron in a dielectric crystal, or as a 'bubble,' an analog to an electron bubble in superfluid helium. We obtain the ground state wavefunctions of the impurity and BEC by numerically solving the two coupled Gross-Pitaevskii equations that characterize the system. We employ the methods of imaginary time propagation and conjugate gradient descent. By appropriately varying the impurity-boson and boson-boson interaction strengths, we focus on the polaron to bubble crossover. Our results confirm analytical predictions for the polaron limit and uncover properties of the bubble regime. With these results we characterize the polaron to bubble crossover. We also summarize our findings in a phase diagram of the BEC-impurity system, which can be used as a guide in future experiments.

  2. Prehospital Trauma Care in Singapore.

    PubMed

    Ho, Andrew Fu Wah; Chew, David; Wong, Ting Hway; Ng, Yih Yng; Pek, Pin Pin; Lim, Swee Han; Anantharaman, Venkataraman; Hock Ong, Marcus Eng

    2015-01-01

    Prehospital emergency care in Singapore has taken shape over almost a century. What began as a hospital-based ambulance service intended to ferry medical cases was later complemented by an ambulance service under the Singapore Fire Brigade to transport trauma cases. The two ambulance services would later combine and come under the Singapore Civil Defence Force. The development of prehospital care systems in island city-state Singapore faces unique challenges as a result of its land area and population density. This article defines aspects of prehospital trauma care in Singapore. It outlines key historical milestones and current initiatives in service, training, and research. It makes propositions for the future direction of trauma care in Singapore. The progress Singapore has made given her circumstances may serve as lessons for the future development of prehospital trauma systems in similar environments. Key words: Singapore; trauma; prehospital emergency care; emergency medical services. PMID:25494913

  3. Robust acoustic wave manipulation of bubbly liquids

    NASA Astrophysics Data System (ADS)

    Gumerov, N. A.; Akhatov, I. S.; Ohl, C.-D.; Sametov, S. P.; Khazimullin, M. V.; Gonzalez-Avila, S. R.

    2016-03-01

    Experiments with water-air bubbly liquids when exposed to acoustic fields of frequency ˜100 kHz and intensity below the cavitation threshold demonstrate that bubbles ˜30 μm in diameter can be "pushed" away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.

  4. Experimental study on the interaction between bubble and free surface using a high-voltage spark generator

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wang, S. P.; Zhang, A. M.

    2016-03-01

    The experimental studies presented in this paper attempt to supply a reasonable comprehensive explanation for the key feature of the collapse bubble and the complex nature of the raised free surface. Six distinctive patterns of free surface motion were identified for bubbles initiated at different γf (the non-dimensional bubble-free surface distance scaled with the maximum bubble radius). Special features such as "breaking wrinkles," "spraying water film," and other unstable phenomena were observed with free surface motions, which were hardly captured by a boundary integral scheme. Parameters defining the shape of the free surface, such as the spike height Hspike, the spike width Wbase, and the skirt height Hspray, are measured and analyzed against γf. Different voltages were used to generate bubbles with varies sizes, while the bubble and free surface motion patterns appeared to be largely independent of the bubble size. Finally, collapsing bubble shape, centroid migration, period of bubble oscillation, and jet tip velocity at different γf are investigated and noticeable variation trends are found.

  5. Conditions for static bubbles in viscoplastic fluids

    NASA Astrophysics Data System (ADS)

    Dubash, Neville; Frigaard, Ian

    2004-12-01

    We consider the slow motion of a gas bubble in a cylindrical column filled with a viscoplastic fluid, modeled here as a Herschel-Bulkley fluid. Because of the yield stress of the fluid, it is possible that a bubble will remain trapped in the fluid indefinitely. We adapt Prager's two variational principles to our problem. From these variational principles we develop two general stopping conditions, i.e., for a given bubble we can calculate a critical Bingham number above which the bubble will not move. The first condition is derived by bounding the velocity field and the second condition by bounding the stress field. We illustrate these conditions by considering specific bubble shapes, e.g., axisymmetric bubbles. We also develop a condition for bubble motion.

  6. Penetrating abdominal trauma.

    PubMed

    Henneman, P L

    1989-08-01

    The management of patients with penetrating abdominal trauma is outlined in Figure 1. Patients with hemodynamic instability, evisceration, significant gastrointestinal bleeding, peritoneal signs, gunshot wounds with peritoneal violation, and type 2 and 3 shotgun wounds should undergo emergency laparotomy. The initial ED management of these patients includes airway management, monitoring of cardiac rhythm and vital signs, history, physical examination, and placement of intravenous lines. Blood should be obtained for initial hematocrit, type and cross-matching, electrolytes, and an alcohol level or drug screen as needed. Initial resuscitation should utilize crystalloid fluid replacement. If more than 2 liters of crystalloid are needed to stabilize an adult (less in a child), blood should be given. Group O Rh-negative packed red blood cells should be immediately available for a patient in impending arrest or massive hemorrhage. Type-specific blood should be available within 15 minutes. A patient with penetrating thoracic and high abdominal trauma should receive a portable chest x-ray, and a hemo- or pneumothorax should be treated with tube thoracostomy. An unstable patient with clinical signs consistent with a pneumothorax, however, should receive a tube thoracostomy prior to obtaining roentgenographic confirmation. If time permits, a nasogastric tube and Foley catheter should be placed, and the urine evaluated for blood (these procedures can be performed in the operating room). If kidney involvement is suspected because of hematuria or penetrating trauma in the area of a kidney or ureter in a patient requiring surgery, a single-shot IVP should be performed either in the ED or the operating room. An ECG is important in patients with possible cardiac involvement and in patients over the age of 40 going to the operating room. Tetanus status should be updated, and appropriate antibiotics covering bowel flora should be given. Operative management should rarely be delayed

  7. Interaction between bubble and air-backed plate with circular hole

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Wang, S. P.; Zhang, A. M.

    2016-06-01

    This paper investigates the nonlinear interaction between a violent bubble and an air-backed plate with a circular hole. A numerical model is established using the incompressible potential theory coupled with the boundary integral method. A double-node technique is used to solve the overdetermined problem caused by the intersection between the solid wall and the free surface. A spark-generated bubble near the air-backed plate with a circular hole is observed experimentally using a high-speed camera. Our numerical results agree well with the experimental results. Both experimental and numerical results show that a multilevel spike emerges during the bubble's expansion and contraction. Careful numerical simulation reveals that this special type of spike is caused by the discontinuity in the boundary condition. The influences of the hole size and depth on the bubble and spike dynamics are also analyzed.

  8. An experimental investigation of the motion of long bubbles in inclined tubes

    SciTech Connect

    Bendiksen, K.H.

    1984-08-01

    The relative motion of single long air bubbles suspended in a constant liquid flow in inclined tubes has been studied experimentally. Specially designed instrumentation, based on the difference in refractive properties of air and liquid with respect to infrared light, has been constructed and applied to measure bubble propagation rates. A series of experiments were performed to determine the effect of tube inclination on bubble motion with liquid Reynolds and Froude numbers, and tube diameter as the most important parameters. Particular aspects of the flow are described theoretically, and model predictions were found to compare well with observations. A correlation of bubble and average liquid velocities, based on a least squares fit to the data is suggested. Comparisons with other relevant models and data are also presented.

  9. Open abdomen in trauma patients: a double-edged sword.

    PubMed

    Huang, Yu-Hua; Li, You-Sheng

    2016-01-01

    The use of open abdomen (OA) as a technique in the treatment of exsanguinating trauma patients was first described in the mid-19(th) century. Since the 1980s, OA has become a relatively new and increasingly common strategy to manage massive trauma and abdominal catastrophes. OA has been proven to help reduce the mortality of trauma. Nevertheless, the OA method may be associated with terrible and devastating complications such as enteroatmospheric fistula (EAF). As a result, OA should not be overused, and attention should be given to critical care as well as special management. The temporary abdominal closure (TAC) technique after abbreviated laparotomy was used to improve wound healing and facilitate final fascial closure of OA. Negative pressure therapy (NPT) is the most commonly used TAC method. PMID:27042329

  10. Generation of Bubbly Suspensions in Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hoffmann, Monica I.; Hussey, Sam; Bell, Kimberly R.

    2000-01-01

    Generation of a uniform monodisperse bubbly suspension in low gravity is a rather difficult task because bubbles do not detach as easily as on Earth. Under microgravity, the buoyancy force is not present to detach the bubbles as they are formed from the nozzles. One way to detach the bubbles is to establish a detaching force that helps their detachment from the orifice. The drag force, established by flowing a liquid in a cross or co-flow configuration with respect to the nozzle direction, provides this additional force and helps detach the bubbles as they are being formed. This paper is concerned with studying the generation of a bubbly suspension in low gravity in support of a flight definition experiment titled "Behavior of Rapidly Sheared Bubbly Suspension." Generation of a bubbly suspension, composed of 2 and 3 mm diameter bubbles with a standard deviation <10% of the bubble diameter, was identified as one of the most important engineering/science issues associated with the flight definition experiment. This paper summarizes the low gravity experiments that were conducted to explore various ways of making the suspension. Two approaches were investigated. The first was to generate the suspension via a chemical reaction between the continuous and dispersed phases using effervescent material, whereas the second considered the direct injection of air into the continuous phase. The results showed that the reaction method did not produce the desired bubble size distribution compared to the direct injection of bubbles. However, direct injection of air into the continuous phase (aqueous salt solution) resulted in uniform bubble-diameter distribution with acceptable bubble-diameter standard deviation.

  11. Vascular trauma historical notes.

    PubMed

    Rich, Norman M

    2011-03-01

    This article provides a brief historical review of treatment of vascular trauma. Although methods for ligation came into use in the second century, this knowledge was lost during the Dark Ages and did not come back until the Renaissance. Many advances in vascular surgery occurred during the Balkan Wars, World War I, and World War II, although without antibiotics and blood banking, the philosophy of life over limb still ruled. Documenting and repairing both arteries and veins became more common during the Korean and Vietnam conflicts. Increased documentation has revealed that the current conflicts have resulted in more arterial injuries than in previous wars, likely because of improved body armor, improvised explosive device attacks, tourniquet use, and improved medical evacuation time. This brief review emphasizes the great value of mentorship and the legacy of the management of arterial and venous injuries to be passed on. PMID:21502112

  12. [MUSCULOSKELETAL MARKERS, ARTHROPATY, TRAUMAS].

    PubMed

    Caldarini, Carla; Zavaroni, Federica; Benassi, Valentina

    2015-01-01

    The bone tissue remodeling due to strong physical/working activity is defined as ergonomic markers or MSM (Muscoloskeletal Stress Markers) (Capasso et al. 1999) and MOS (Markers of Occupational Stress). Among them we can find: enthesopaties, arthropaties, non metrical stress and traumas markers. In the present study, the analysis of these traits has been used to clarify habitual activity patterns of four imperial populations from Suburbium: Castel Malnome, Casal Bertone area Q, Via Padre Semeria e Quarto Cappello del Prete. The very high prevalence of activity-induced stress lesions occurred among the individuals of Castel Malnome and Casal Bertone area Q suggests that these groups were involved in strenuous occupations such as, respectively: the processing and storage of salt and the dyeing of textiles and hides discernible from the archaeological context. For the individuals of Via Padre Semeria and Quarto Cappello del Prete the alterations, instead, could be compatibles with agricultural work. PMID:27348990

  13. Lightweight Trauma Module - LTM

    NASA Technical Reports Server (NTRS)

    Hatfield, Thomas

    2008-01-01

    Current patient movement items (PMI) supporting the military's Critical Care Air Transport Team (CCATT) mission as well as the Crew Health Care System for space (CHeCS) have significant limitations: size, weight, battery duration, and dated clinical technology. The LTM is a small, 20 lb., system integrating diagnostic and therapeutic clinical capabilities along with onboard data management, communication services and automated care algorithms to meet new Aeromedical Evacuation requirements. The Lightweight Trauma Module is an Impact Instrumentation, Inc. project with strong Industry, DoD, NASA, and Academia partnerships aimed at developing the next generation of smart and rugged critical care tools for hazardous environments ranging from the battlefield to space exploration. The LTM is a combination ventilator/critical care monitor/therapeutic system with integrated automatic control systems. Additional capabilities are provided with small external modules.

  14. Trauma and religiousness.

    PubMed

    Gostečnik, Christian; Repič Slavič, Tanja; Lukek, Saša Poljak; Cvetek, Robert

    2014-06-01

    Victims of traumatic events who experience re-traumatization often develop a highly ambivalent relationship to God and all religiosity as extremely conflictual. On the one hand, they may choose to blame God for not having protected them, for having left them to feel so alone, for having been indifferent to them or they may even turn their wrath upon God, as the source of cruelty. Often though, the traumas experienced by individuals prompt them to turn to God and religion in search of help. This gives reason for the need of new and up-to-date research that can help elucidate why some people choose to seek help in religion and others turn away from it. PMID:23187617

  15. Etiology of gas bubble disease

    SciTech Connect

    Bouck, G.R.

    1980-11-01

    Gas bubble disease is a noninfectious, physically induced process caused by uncompensated hyperbaric pressure of total dissolved gases. When pressure compensation is inadequate, dissolved gases may form emboli (in blood) and emphysema (in tissues). The resulting abnormal physical presence of gases can block blood vessels (hemostasis) or tear tissues, and may result in death. Population mortality is generally skewed, in that the median time to death occurs well before the average time to death. Judged from mortality curves, three stages occur in gas bubble disease: (1) a period of gas pressure equilibrium, nonlethal cavitation, and increasing morbidity; (2) a period of rapid and heavy mortality; and (3) a period of protracted survival, despite lesions, and dysfunction that eventually terminates in total mortality. Safe limits for gas supersaturation depend on species tolerance and on factors that differ among hatcheries and rivers, between continuous and intermittent exposures, and across ranges of temperature and salinity.

  16. Prevalence, etiology, and types of dental trauma in children and adolescents: systematic review and meta-analysis

    PubMed Central

    Azami-Aghdash, Saber; Ebadifard Azar, Farbod; Pournaghi Azar, Fatemeh; Rezapour, Aziz; Moradi-Joo, Mohammad; Moosavi, Ahmad; Ghertasi Oskouei, Sina

    2015-01-01

    Background: Dental traumas are common among children and adolescents in many societies posing health and social problems. The aim of this study was to conduct a systematic review and meta-analysis on prevalence, etiology, types, and other epidemiologic aspects of dental trauma in children and adolescents (0-18 years old). Methods: In this systematic meta-analytical review, data were collected searching for key words including traumatic dental injuries, dental trauma, dental injury, dental trauma, tooth injuries, tooth trauma, traumatized teeth, dentoalveolar trauma, oral trauma, epidemiology, etiology, prevalence, incidence, occurrence, child*, and adolescence in the following databases: Scopus, CINAHL, Science Direct, PubMed and Google scholar. Results: From the total of 3197 articles, 44 completely relevant papers were included in the study. The prevalence of dental trauma was variable based on geographical area and was estimated 17.5% in the population, with higher prevalence in boys. Falling was the major cause for dental trauma, and the most frequent location was home. The most frequent type of trauma was enamel fracture. Conclusion: A relatively high prevalence was detected for dental trauma, which calls for effective planning and intervention to prevent the occurrence in children and adolescents. These may include special care for children, eliminating fall-prone areas, installing safety measures at homes, using protective appliances in sports, education, and raising the knowledge and availability of services to address enamel fracture. Region-specific criteria should be taken into account in programs and interventions. PMID:26793672

  17. Bubble-Induced Cave Collapse

    PubMed Central

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned “natural” instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a “collapse”. We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor. PMID:25849088

  18. Bubble-induced cave collapse.

    PubMed

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor. PMID:25849088

  19. An ecological view of psychological trauma and trauma recovery.

    PubMed

    Harvey, M R

    1996-01-01

    This paper presents an ecological view of psychological trauma and trauma recovery. Individual differences in posttraumatic response and recovery are the result of complex interactions among person, event, and environmental factors. These interactions define the interrelationship of individual and community and together may foster or impede individual recovery. The ecological model proposes a multidimensional definition of trauma recovery and suggests that the efficacy of trauma-focused interventions depends on the degree to which they enhance the person-community relationship and achieve "ecological fit" within individually varied recovery contexts. In attending to the social, cultural and political context of victimization and acknowledging that survivors of traumatic experiences may recover without benefit of clinical intervention, the model highlights the phenomenon of resiliency, and the relevance of community intervention efforts. PMID:8750448

  20. Immunohistochemical alterations after muscle trauma.

    PubMed

    Fechner, G; Bajanowski, T; Brinkmann, B

    1993-01-01

    The proteins fibrin, fibrinogen, fibronectin and complement C5b-9 were investigated in mechanically damaged skeletal muscle. An accumulation of fibrin, fibrinogen and fibronectin could be observed immediately after intra-vital trauma in damaged fibre zones, later an accumulation at the torn edges of the fibres. The accumulation of complement C5b-9 began one hour after trauma. After post mortem trauma no positive reactions could be observed for any of the proteins. The degree of expression of these proteins can therefore be used to differentiate between vital and postmortem muscle damage as well as the estimation of wound age in the early antemortem time period. PMID:8431399

  1. Unsteady thermocapillary migration of bubbles

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Balasubramaniam, R.

    1988-01-01

    Upon the introduction of a gas bubble into a liquid possessing a uniform thermal gradient, an unsteady thermo-capillary flow begins. Ultimately, the bubble attains a constant velocity. This theoretical analysis focuses upon the transient period for a bubble in a microgravity environment and is restricted to situations wherein the flow is sufficiently slow such that inertial terms in the Navier-Stokes equation and convective terms in the energy equation may be safely neglected (i.e., both Reynolds and Marangoni numbers are small). The resulting linear equations were solved analytically in the Laplace domain with the Prandtl number of the liquid as a parameter; inversion was accomplished numerically using a standard IMSL routine. In the asymptotic long-time limit, the theory agrees with the steady-state theory of Young, Goldstein, and Block. The theory predicts that more than 90 percent of the terminal steady velocity is achieved when the smallest dimensionless time, i.e., the one based upon the largest time scale-viscous or thermal-equals unity.

  2. ORIGIN OF THE FERMI BUBBLE

    SciTech Connect

    Cheng, K.-S.; Chernyshov, D. O.; Dogiel, V. A.; Ko, C.-M.; Ip, W.-H.

    2011-04-10

    Fermi has discovered two giant gamma-ray-emitting bubbles that extend nearly 10 kpc in diameter north and south of the Galactic center. The existence of the bubbles was first evidenced in X-rays detected by ROSAT and later WMAP detected an excess of radio signals at the location of the gamma-ray bubbles. We propose that periodic star capture processes by the galactic supermassive black hole, Sgr A*, with a capture rate 3 x 10{sup -5} yr{sup -1} and energy release {approx}3 x 10{sup 52} erg per capture can produce very hot plasma {approx}10 keV with a wind velocity {approx}10{sup 8} cm s{sup -1} injected into the halo and heat up the halo gas to {approx}1 keV, which produces thermal X-rays. The periodic injection of hot plasma can produce shocks in the halo and accelerate electrons to {approx}TeV, which produce radio emission via synchrotron radiation and gamma rays via inverse Compton scattering with the relic and the galactic soft photons.

  3. Soap bubbles in paintings: Art and science

    NASA Astrophysics Data System (ADS)

    Behroozi, F.

    2008-12-01

    Soap bubbles became popular in 17th century paintings and prints primarily as a metaphor for the impermanence and fragility of life. The Dancing Couple (1663) by the Dutch painter Jan Steen is a good example which, among many other symbols, shows a young boy blowing soap bubbles. In the 18th century the French painter Jean-Simeon Chardin used soap bubbles not only as metaphor but also to express a sense of play and wonder. In his most famous painting, Soap Bubbles (1733/1734) a translucent and quavering soap bubble takes center stage. Chardin's contemporary Charles Van Loo painted his Soap Bubbles (1764) after seeing Chardin's work. In both paintings the soap bubbles have a hint of color and show two bright reflection spots. We discuss the physics involved and explain how keenly the painters have observed the interaction of light and soap bubbles. We show that the two reflection spots on the soap bubbles are images of the light source, one real and one virtual, formed by the curved surface of the bubble. The faint colors are due to thin film interference effects.

  4. Computed tomography in trauma: An atlas approach

    SciTech Connect

    Toombs, B.D.; Sandler, C.

    1986-01-01

    This book discussed computed tomography in trauma. The text is organized according to mechanism of injury and site of injury. In addition to CT, some correlation with other imaging modalities is included. Blunt trauma, penetrating trauma, complications and sequelae of trauma, and use of other modalities are covered.

  5. Secondary Trauma in Children and School Personnel

    ERIC Educational Resources Information Center

    Motta, Robert W.

    2012-01-01

    A review of childhood secondary trauma is presented. Secondary trauma involves the transfer and acquisition of negative affective and dysfunctional cognitive states due to prolonged and extended contact with others, such as family members, who have been traumatized. As such, secondary trauma refers to a spread of trauma reactions from the victim…

  6. Building Agency Capacity for Trauma-Informed Evidence-Based Practice and Field Instruction.

    PubMed

    Strand, Virginia; Popescu, Marciana; Abramovitz, Robert; Richards, Sean

    2016-01-01

    Through this article the authors describe how schools of social work offering a child and adolescent trauma specialization actively partnered with their community-based field placement agencies to achieve a dual purpose: help agencies sustain the capacity for evidence-based trauma treatment (EBTT) and provide sufficient EBTT MSW student field placement sites that support preparation of trauma-informed practitioners by schools of social work. Development and description of the specific conceptual framework used to inform the trauma-informed organizational change initiative is described. Results of an Organizational Readiness assessment undertaken at six agencies reflect a strong alignment between implementation drivers identified in the literature (Fixsen, Blase, Naoom, & Wallace, 2009) and the conceptual framework. The manner in which these results are being used by schools of social work and their agency partners in sustaining the implementation of evidence-based trauma treatment is reviewed, and implications for future research, education, and practice is discussed. PMID:26083452

  7. Trauma and the wise baby.

    PubMed

    Kilborne, Benjamin

    2011-09-01

    This paper expands upon Ferenczi's concept of the wise baby and explores the dynamics of ignorance and compensatory ideals of wisdom as reactions to trauma and as manifestations of "double conscience," shame dynamics and Oedipal shame. Focusing on feelings of ignorance, of knowing and not knowing and their relation to trauma, the author elaborates on the dynamics of fantasies of wisdom, adumbrating implications for psychoanalytic technique. PMID:21818096

  8. BUBBLE DYNAMICS AT GAS-EVOLVING ELECTRODES

    SciTech Connect

    Sides, Paul J.

    1980-12-01

    Nucleation of bubbles, their growth by diffusion of dissolved gas to the bubble surface and by coalescence, and their detachment from the electrode are all very fast phenomena; furthermore, electrolytically generated bubbles range in size from ten to a few hundred microns; therefore, magnification and high speed cinematography are required to observe bubbles and the phenomena of their growth on the electrode surface. Viewing the action from the front side (the surface on which the bubbles form) is complicated because the most important events occur close to the surface and are obscured by other bubbles passing between the camera and the electrode; therefore, oxygen was evolved on a transparent tin oxide "window" electrode and the events were viewed from the backside. The movies showed that coalescence of bubbles is very important for determining the size of bubbles and in the chain of transport processes; growth by diffusion and by coalescence proceeds in series and parallel; coalescing bubbles cause significant fluid motion close to the electrode; bubbles can leave and reattach; and bubbles evolve in a cycle of growth by diffusion and different modes of coalescence. An analytical solution for the primary potential and current distribution around a spherical bubble in contact with a plane electrode is presented. Zero at the contact point, the current density reaches only one percent of its undisturbed value at 30 percent of the radius from that point and goes through a shallow maximum two radii away. The solution obtained for spherical bubbles is shown to apply for the small bubbles of electrolytic processes. The incremental resistance in ohms caused by sparse arrays of bubbles is given by {Delta}R = 1.352 af/kS where f is the void fraction of gas in the bubble layer, a is the bubble layer thickness, k is the conductivity of gas free electrolyte, and S is the electrode area. A densely populated gas bubble layer on an electrode was modeled as a hexagonal array of

  9. Deformed bubbles in inhomogeneous ultrasonic fields

    NASA Astrophysics Data System (ADS)

    Zaleski, Stéphane; Popinet, Stéphane

    1998-11-01

    We study numerically a bubble undergoing expansions and contractions under an ultrasonic acoustic field. The bubble deforms under the influence of intrinsic instabilities as well as inhomogeneities in the pressure field. Interface kinematics through connected marker chains, with cut-cell reconstructions are used to solve the Navier-Stokes equations in axisymmetric geometry. A series of embedded grids is used to follow large expansions and contractions. Test cases involve a bubble oscillating at a variable distance from a solid wall as well as a levitating bubble subject to a net force (the Bjerknes force). The numerical scheme is able to follow relatively small bubbles down to 3 μm, in the sonoluminescence regime. The Rayleigh-Taylor instability predicted in that regime is reproduced. Larger, millimeter size bubbles may also be followed. In that case the numerical results show a typical jet formation analogous to the experimental observations of Lauterborn. Preliminary observations of jet velocities are made and compared to experiment.

  10. Ostwald ripening in multiple-bubble nuclei

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Suzuki, Masaru; Inaoka, Hajime; Ito, Nobuyasu

    2014-12-01

    The Ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 × 106 Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as t-x with scaling exponent x. As the initial temperature increases, the exponent changes from x = 3/2 to 1, which implies that the growth of bubbles changes from interface-limited (the t1/2 law) to diffusion-limited (the t1/3 law) growth.

  11. Microfluidics with compound ``bubble-drops''

    NASA Astrophysics Data System (ADS)

    Khan, Saif A.; Duraiswamy, Suhanya

    2008-11-01

    ``Bubble-drops'' are compound fluid particles comprising a gas bubble and liquid drop that flow as a single fluid object through another immiscible liquid in a microchannel network. These fluid particles represent discrete multiphase `quanta', and expand the sphere of application of droplet microfluidics to inter-phase phenomena. We present here a simple method to generate monodisperse bubble-drop trains in microfabricated channel networks. The difference in drag force exerted on flowing bubbles and drops by the immiscible carrier liquid implies different translational speeds, thus providing the driving force for bubble-drop formation. We outline the criteria for stable generation and analyze factors influencing bubble-drop dynamics. We will also highlight several applications in chemical and biological synthesis and screening.

  12. Manipulating bubbles with secondary Bjerknes forces

    SciTech Connect

    Lanoy, Maxime; Derec, Caroline; Leroy, Valentin; Tourin, Arnaud

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  13. Bernoulli Suction Effect on Soap Bubble Blowing?

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  14. Mechanism of bubble detachment from vibrating walls

    SciTech Connect

    Kim, Dongjun; Park, Jun Kwon Kang, Kwan Hyoung; Kang, In Seok

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  15. Arrested Bubble Rise in a Narrow Tube

    NASA Astrophysics Data System (ADS)

    Lamstaes, Catherine; Eggers, Jens

    2016-06-01

    If a long air bubble is placed inside a vertical tube closed at the top it can rise by displacing the fluid above it. However, Bretherton found that if the tube radius, R, is smaller than a critical value Rc=0.918 ℓ_c , where ℓ_c=√{γ /ρ g} is the capillary length, there is no solution corresponding to steady rise. Experimentally, the bubble rise appears to have stopped altogether. Here we explain this observation by studying the unsteady bubble motion for Rbubble and the tube goes to zero in limit of large t like t^{-4/5} , leading to a rapid slow-down of the bubble's mean speed U ∝ t^{-2} . As a result, the total bubble rise in infinite time remains very small, giving the appearance of arrested motion.

  16. Mechanics of Bubbles in Sludges and Slurries

    SciTech Connect

    Gauglitz, Phillip A; Terrones, Guillermo; Rossen, William R

    2001-12-31

    The Hanford Site has 177 underground waste storage tanks that are known to retain and release bubbles composed of flammable gases. Characterizing and understanding the behavior of these bubbles is important for the safety issues associated with the flammable gases for both ongoing waste storage and future waste-retrieval operations. The retained bubbles are known to respond to small barometric pressure changes, though in a complex manner with unusual hysteresis occurring in some tanks in the relationship between bubble volume and pressure, or V-P hysteresis. With careful analysis, information on the volume of retained gas and the interactions of the waste and the bubbles can be determined. The overall objective of this study is to create a better understanding of the mechanics of bubbles retained in high-level waste sludges and slurries. Significant advancements have been made in all the major areas of basic theoretical and experimental method development.

  17. Gas Bubble Disease Monitoring and Research of Juvenile Salmonids : Annual Report 1996.

    SciTech Connect

    Maule, Alec G.; Beeman, John W.; Hans, Karen M.; Mesa, M.G.; Haner, P.; Warren, J.J.

    1997-10-01

    This document describes the project activities 1996--1997 contract year. This report is composed of three chapters which contain data and analyses of the three main elements of the project: field research to determine the vertical distribution of migrating juvenile salmonids, monitoring of juvenile migrants at dams on the Snake and Columbia rivers, and laboratory experiments to describe the progression of gas bubble disease signs leading to mortality. The major findings described in this report are: A miniature pressure-sensitive radio transmitter was found to be accurate and precise and, after compensation for water temperature, can be used to determine the depth of tagged-fish to within 0.32 m of the true depth (Chapter 1). Preliminary data from very few fish suggest that depth protects migrating juvenile steelhead from total dissolved gas supersaturation (Chapter 1). As in 1995, few fish had any signs of gas bubble disease, but it appeared that prevalence and severity increased as fish migrated downstream and in response to changing gas supersaturation (Chapter 2). It appeared to gas bubble disease was not a threat to migrating juvenile salmonids when total dissolved gas supersaturation was < 120% (Chapter 2). Laboratory studies suggest that external examinations are appropriate for determining the severity of gas bubble disease in juvenile salmonids (Chapter 3). The authors developed a new method for examining gill arches for intravascular bubbles by clamping the ventral aorta to reduce bleeding when arches were removed (Chapter 3). Despite an outbreak of bacterial kidney disease in the experimental fish, the data indicate that gas bubble disease is a progressive trauma that can be monitored (Chapter 3).

  18. Vascular trauma in civilian practice.

    PubMed Central

    Golledge, J.; Scriven, M. W.; Fligelstone, L. J.; Lane, I. F.

    1995-01-01

    Vascular trauma is associated with major morbidity and mortality, but little is known about its incidence or nature in Britain. A retrospective study of 36 patients requiring operative intervention for vascular trauma under one vascular surgeon over a 6-year period was undertaken. Twenty-four patients suffered iatrogenic trauma (median age 61 years); including cardiological intervention (19), radiological intervention (2), varicose vein surgery (1), umbilical vein catherisation (1) and isolated hyperthermic limb perfusion (1). There were 23 arterial and three venous injuries. Twelve patients had accidental trauma (median age 23 years). Three of the ten patients with blunt trauma were referred for vascular assessment before orthopaedic intervention, two after an on-table angiogram and five only after an initial orthopaedic procedure (range of delay 6 h to 10 days). Injuries were arterial in nine, venous in two and combined in one. Angiography was obtained in six patients, and in two patients with multiple upper limb fractures identified the site of injury when clinical localisation was difficult. A variety of vascular techniques were used to treat the injuries. Two patients died postoperatively and one underwent major limb amputation. Thirty-two (89%) remain free of vascular sequelae after a median follow-up of 48 months (range 3-72 months). Vascular trauma is uncommon in the United Kingdom. To repair the injuries a limited repertoire of vascular surgery techniques is needed. Therefore, vascular surgical assessment should be sought at an early stage to prevent major limb loss. PMID:8540659

  19. Detailed Jet Dynamics in a Collapsing Bubble

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2015-12-01

    We present detailed visualizations of the micro-jet forming inside an aspherically collapsing cavitation bubble near a free surface. The high-quality visualizations of large and strongly deformed bubbles disclose so far unseen features of the dynamics inside the bubble, such as a mushroom-like flattened jet-tip, crown formation and micro-droplets. We also find that jetting near a free surface reduces the collapse time relative to the Rayleigh time.

  20. Collapse of vacuum bubbles in a vacuum

    SciTech Connect

    Ng, Kin-Wang; Wang, Shang-Yung

    2011-02-15

    We revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications for the creation of a baby universe in the laboratory, the string landscape where the bubble nucleation takes place among a plenitude of metastable vacua, and the inflationary physics.

  1. Bubble, Drop and Particle Unit (BDPU)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication includes the following articles entitled: (1) Oscillatory Thermocapillary Instability; (2) Thermocapillary Convection in Multilayer Systems; (3) Bubble and Drop Interaction with Solidification Front; (4) A Liquid Electrohydrodynamics Experiment; (5) Boiling on Small Plate Heaters under Microgravity and a Comparison with Earth Gravity; (6) Thermocapillary Migration and Interactions of Bubbles and Drops; and (7) Nonlinear Surface Tension Driven Bubble Migration

  2. Buoyancy Driven Shear Flows of Bubble Suspensions

    NASA Astrophysics Data System (ADS)

    Hill, R. J.; Zenit, R.; Chellppannair, T.; Koch, D. L.; Spelt, P. D. M.; Sangani, A.

    1998-11-01

    In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1 and Re >> 1 , so that the bubbles are relatively undeformed and the flow is inviscid and approximately irrotational. Nitrogen is introduced through an array of capillaries at the base of a .2x.02x2 m channel filled with an aqueous electrolyte solution (0.06 molL-1 MgSO_4). The rising bubbles generate a unidirectional shear flow, where the denser suspension at the lower surface of the channel falls, while the less dense suspension at the upper surface rises. Hot-film anemometry is used to measure the resulting gas volume fraction and fluid velocity profiles. The bubble collision rate with the sensor is related to the gas volume fraction and the mean and variance of the bubble velocity using an experimentally measured collision surface area for the sensor. Bubble collisions with the sensor are identified by the characteristic slope of the hot-film anemometer signal when bubbles collide with the sensor. It is observed that the steady shear flow develops a bubble phase pressure gradient across the channel gap as the bubbles interchange momentum through direct collisions. The discrete phase presssure gradient balances the buoyancy force driving bubbles toward the upper surface resulting in a steady void fraction profile across the gap width. The strength of the shear flow is controlled by the extent of bubble segregation and by the effective viscosity of the bubble phase. The measurements are compared with solutions of the averaged equations of motion (Kang et al. 1997; Spelt and Sangani, 1998), for a range of gas volume fractions and channel inclination angles.

  3. Bursting the bubble of melt inclusions

    USGS Publications Warehouse

    Lowenstern, Jacob B.

    2015-01-01

    Most silicate melt inclusions (MI) contain bubbles, whose significance has been alternately calculated, pondered, and ignored, but rarely if ever directly explored. Moore et al. (2015) analyze the bubbles, as well as their host glasses, and conclude that they often hold the preponderance of CO2 in the MI. Their findings entreat future researchers to account for the presence of bubbles in MI when calculating volatile budgets, saturation pressures, and eruptive flux.

  4. Complications of pediatric trauma.

    PubMed

    Czerwinski, S J

    1991-09-01

    MSOF is a life-threatening complication of trauma. The body is a dynamic interrelated group of systems that work together efficiently. Changes in one system generally have a widespread impact, and soon the entire system is changed. In children with MSOF, the normal equilibrium that is maintained between organ systems does not exist. Generalized disruption of organ functions occur, and the body attempts to compensate and regain its homeostasis. This activity will often benefit certain organs and harm others. If the disruption continues and compensation fails, organ dysfunction occurs and general chaos reigns. Medical and nursing interventions are directed toward supporting individual organ systems before failure occurs. Attempts to provide this support for one system can cause adverse effects to occur in other systems. Although this is a potential result of medical and nursing interventions, often there is no other choice. It is essential that nurses be aware of the systemic consequences of these interventions and carefully evaluate them. Although overall mortality rates are high, children have a better chance for survival than adults. Expert nursing assessments, interventions, and evaluations are essential to maximize this outcome. More research in the area of MSOF in children is necessary, with specific attention to nursing management and the effect on patient outcome. PMID:1883588

  5. [Major respiratory tract traumas].

    PubMed

    Petrov, D; Obretenov, E; Kalaĭdzhiev, G; Plochev, M; Kostadinov, D

    2002-01-01

    Between 1988 and 2000 a total of 33 patients with traumatic tracheobronchial lesions were diagnosed and treated. The trauma was penetrating in 7 (stab and gun-shot), blunt in 10 (car accidents, compression and falling from heights) and iatrogenic in 16 of them (postintubational--15, after foreign body extraction--1). The main clinical and radiological features were subcutaneous emphysema, hemoptysis, respiratory insufficiency, pneumomediastinum and pneumothorax. The diagnosis was confirmed in all patients by early fiberoptic bronchoscopy. "Watch and see" tactics with massive antibiotics therapy was followed in 4 (12%) patients. A surgical treatment was carried out in 29 (88%) patients as follows: simple repair--19 (58%), left pneumonectomy--2 (6%), tracheal resection and anastomosis "end to end"--2 (6%), tracheostomy--1 (3%), thoracocenthesis and drainage--3 (9%) and cervical mediastinotomy--2 (6%). The operative mortality was 9%. The cause of death in these 3 patients were associated brain and spinal cord injuries. In the rest of patients the early and long-term postoperative results were considered very good. PMID:12515032

  6. Abdominal trauma by ostrich

    PubMed Central

    Usurelu, Sergiu; Bettencourt, Vanessa; Melo, Gina

    2015-01-01

    Introduction Ostriches typically avoid humans in the wild, since they correctly assess humans as potential predators, and, if approached, often run away. However, ostriches may turn aggressive rather than run when threatened, especially when cornered, and may also attack when they feel the need to defend their offspring or territories. Presentation of case A 71-year-old male patient presented with intra abdominal injury sustained from being kicked in the abdominal wall by an ostrich. During laparotomy, were found free peritoneal effusion and perforation of the small intestine. Discussion The clinical history and physical examination are extremely important for diagnostic and therapeutic decision making. CT-scan is the most accurate exam for making diagnosis. Surgery is the treatment of choice, and is always indicated when there is injury to the hollow viscera. In general it is possible to suture the defect. Conclusion In cases of blunt abdominal trauma by animals is necessary to have a low threshold of suspicion for acute abdomen. PMID:25685344

  7. Trauma of the midface

    PubMed Central

    Kühnel, Thomas S.; Reichert, Torsten E.

    2015-01-01

    Fractures of the midface pose a serious medical problem as for their complexity, frequency and their socio-economic impact. Interdisciplinary approaches and up-to-date diagnostic and surgical techniques provide favorable results in the majority of cases though. Traffic accidents are the leading cause and male adults in their thirties are affected most often. Treatment algorithms for nasal bone fractures, maxillary and zygomatic fractures are widely agreed upon whereas trauma to the frontal sinus and the orbital apex are matter of current debate. Advances in endoscopic surgery and limitations of evidence based gain of knowledge are matters that are focused on in the corresponding chapter. As for the fractures of the frontal sinus a strong tendency towards minimized approaches can be seen. Obliteration and cranialization seem to decrease in numbers. Some critical remarks in terms of high dose methylprednisolone therapy for traumatic optic nerve injury seem to be appropriate. Intraoperative cone beam radiographs and preshaped titanium mesh implants for orbital reconstruction are new techniques and essential aspects in midface traumatology. Fractures of the anterior skull base with cerebrospinal fluid leaks show very promising results in endonasal endoscopic repair. PMID:26770280

  8. [Trauma of the midface].

    PubMed

    Kühnel, T S; Reichert, T E

    2015-03-01

    Fractures of the midface pose a serious medical problem as for their complexity, frequency and their socio-economic impact. Interdisciplinary approaches and up-to-date diagnostic and surgical techniques provide favorable results in the majority of cases though. Traffic accidents are the leading cause and male adults in their thirties are affected most often. Treatment algorithms for nasal bone fractures, maxillary and zygoma fractures are widely agreed upon whereas trauma to the frontal sinus and the orbital apex are matter of current debate. Advances in endoscopic surgery and limitations of evidence based gain of knowledge are matters that are focused on in the corresponding chapter. As for the fractures of the frontal sinus a strong tendency towards minimized approaches can be seen. Obliteration and cranialisation seem to decrease in numbers.Some critical remarks in terms of high dose methylprednisolone therapy for traumatic optic nerve injury seem to be appropriate.Intraoperative cone beam radiographs and preshaped titanium mesh implants for orbital reconstruction are new techniques and essential aspects in midface traumatology. Fractures of the anterior skull base with cerebrospinal fluid leaks show very promising results in endonasal endoscopic repair. PMID:25860490

  9. Some problems of the theory of bubble growth and condensation in bubble chambers

    NASA Technical Reports Server (NTRS)

    Tkachev, L. G.

    1988-01-01

    This work is an attempt to explain the reasons for the discrepancies between the theoretical and experimental values of bubble growth rate in an overheated liquid, and to provide a brief formulation of the main premises of the theory on bubble growth in liquid before making a critical analysis. To simplify the problem, the floating upward of bubbles is not discussed; moreover, the study is based on the results of the theory of the behavior of fixed bubbles.

  10. Anomalous bubble propagation in elastic tubes

    NASA Astrophysics Data System (ADS)

    Heap, Alexandra; Juel, Anne

    2008-08-01

    Airway reopening is an important physiological event, as exemplified by the first breath of an infant that inflates highly collapsed airways by driving a finger of air through its fluid-filled lungs. Whereas fundamental models of airway reopening predict the steady propagation of only one type of bubble with a characteristic rounded tip, our experiments reveal a surprising selection of novel bubbles with counterintuitive shapes that reopen strongly collapsed, liquid-filled elastic tubes. Our multiple bubbles are associated with a discontinuous relationship between bubble pressure and speed that sets exciting challenges for modelers.

  11. Bubble formation in additive manufacturing of glass

    NASA Astrophysics Data System (ADS)

    Luo, Junjie; Gilbert, Luke J.; Peters, Daniel C.; Bristow, Douglas A.; Landers, Robert G.; Goldstein, Jonathan T.; Urbas, Augustine M.; Kinzel, Edward C.

    2016-05-01

    Bubble formation is a common problem in glass manufacturing. The spatial density of bubbles in a piece of glass is a key limiting factor to the optical quality of the glass. Bubble formation is also a common problem in additive manufacturing, leading to anisotropic material properties. In glass Additive Manufacturing (AM) two separate types of bubbles have been observed: a foam layer caused by the reboil of the glass melt and a periodic pattern of bubbles which appears to be unique to glass additive manufacturing. This paper presents a series of studies to relate the periodicity of bubble formation to part scan speed, laser power, and filament feed rate. These experiments suggest that bubbles are formed by the reboil phenomena why periodic bubbles result from air being trapped between the glass filament and the substrate. Reboil can be detected using spectroscopy and avoided by minimizing the laser power while periodic bubbles can be avoided by a two-step laser melting process to first establish good contact between the filament and substrate before reflowing the track with higher laser power.

  12. The acoustic environment of a sonoluminescing bubble

    NASA Astrophysics Data System (ADS)

    Holzfuss, Joachim; Rüggeberg, Matthias; Holt, R. Glynn

    2000-07-01

    A bubble is levitated in water in a cylindrical resonator which is driven by ultrasound. It has been shown that in a certain region of parameter space the bubble is emitting light pulses (sonoluminescence). One of the properties observed is the enormous spatial stability leaving the bubble "pinned" in space allowing it to emit light with a timing of picosecond accuracy. We argue that the observed stability is due to interactions of the bubble with the resonator. A shock wave emitted at collapse time together with a self generated complex sound field, which is experimentally mapped with high resolution, is responsible for the observed effects.

  13. Dynamics of Vapour Bubbles in Nucleate Boiling. 1; Basic Equations of Bubble Evolution

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

    1995-01-01

    We consider the behaviour of a vapour bubble formed at a nucleation site on a heated horizontal wall. There is no forced convection of an ambient liquid, and the bubble is presumably separated from the wall by a thin liquid microlayer. The energy conservation law results in a variational equation for the mechanical energy of the whole system consisting of the bubble and liquid. It leads to a set of two strongly nonlinear equations which govern bubble expansion and motion of its centre of mass. A supplementary equation to find out the vapour temperature follows from consideration of heat transfer to the bubble, both from the bulk of surrounding liquid and through the microlayer. The average thickness of the microlayer is shown to increase monotonously with time as the bubble meniscus spreads along the wall. Bubble expansion is driven by the pressure head between vapour inside and liquid far away from the bubble, with due allowance for surface tension and gravity effects. It is resisted by inertia of liquid being placed into motion as the bubble grows. The inertia originates also a force that presses the bubble to the wall. This force is counteracted by the buoyancy and an effective surface tension force that tends to transform the bubble into a sphere. The analysis brings about quite a new formulation of the familiar problem of bubble growth and detachment under conditions of nucleate pool boiling.

  14. Molecular dynamics simulations of He bubble nucleation at grain boundaries

    SciTech Connect

    Yongfeng Zhang; Paul C Millett; Michael Tonks; Liangzhe Zhang; Bulent Biner

    2012-08-01

    The nucleation behavior of He bubbles in nano-grained body-centered-cubic (BCC) Mo is simulated using molecular dynamics (MD) simulations with a bicrystal model, focusing on the effect of grain boundary (GB) structure. Three types of GBs, the (100) twist S29, the ?110? symmetrical tilt (tilt angle of 10.1?), and the (112) twin boundaries, are studied as representatives of random GB, low angle GB with misfit dislocations, and special sigma boundaries. With the same amount of He, more He clusters form in nano-grained Mo with smaller average size compared to that in bulk. The effects of the GB structure originate from the excess volume in GBs. Trapping by excess volume results in reduction in mobility of He atoms, which enhances the nucleation with higher density of bubbles, and impedes the growth of He bubbles by absorption of mobile He atoms. Furthermore, the distribution of excess volume in GBs determines the distribution of He clusters. The effect of GBs becomes less pronounced with increasing vacancy concentration in the matrix.

  15. Potential uses of vacuum bubbles in noise and vibration control

    NASA Technical Reports Server (NTRS)

    Ver, Istvan L.

    1989-01-01

    Vacuum bubbles are new acoustic elements which are dynamically more compliant than the gas volume they replace, but which are statically robust. They are made of a thin metallic shell with vacuum in their cavity. Consequently, they pose no danger in terms of contamination or fire hazard. The potential of the vacuum bubble concept for noise and vibration control was assessed with special emphases on spacecraft and aircraft applications. The following potential uses were identified: (1) as a cladding, to reduce sound radiation of vibrating surfaces and the sound excitation of structures, (2) as a screen, to reflect or absorb an incident sound wave, and (3) as a liner, to increase low frequency sound transmission loss of double walls and to increase the low frequency sound attenuation of muffler baffles. It was found that geometric and material parameters must be controlled to a very high accuracy to obtain optimal performance and that performance is highly sensitive to variations in static pressure. Consequently, it was concluded that vacuum bubbles have more potential in spacecraft applications where static pressure is controlled more than in aircraft applications where large fluctuations in static pressure are common.

  16. Bubble dynamics under acoustic excitation with multiple frequencies

    NASA Astrophysics Data System (ADS)

    Zhang, Y. N.; Zhang, Y. N.; Li, S. C.

    2015-01-01

    Because of its magnificent mechanical and chemical effects, acoustic cavitation plays an important role in a broad range of biomedical, chemical and mechanical engineering problems. Particularly, irradiation of the multiple frequency acoustic wave could enhance the effects of cavitation. The advantages of employment of multi-frequency ultrasonic field include decreasing the cavitation thresholds, promoting cavitation nuclei generation, increasing the mass transfer and improving energy efficiency. Therefore, multi-frequency ultrasonic systems are employed in a variety of applications, e.g., to enhance the intensity of sonoluminenscence, to increase efficiency of sonochemical reaction, to improve the accuracy of ultrasound imaging and the efficiency of tissue ablation. Compared to single-frequency systems, a lot of new features of bubble dynamics exist in multi-frequency systems, such as special properties of oscillating bubbles, unique resonances in the bubble response curves, and unusual chaotic behaviours. In present paper, the underlying mechanisms of the cavitation effects under multi-frequency acoustical excitation are also briefly introduced.

  17. Bubbles and denaturation in DNA

    NASA Astrophysics Data System (ADS)

    van Erp, T. S.; Cuesta-López, S.; Peyrard, M.

    2006-08-01

    The local opening of DNA is an intriguing phenomenon from a statistical-physics point of view, but is also essential for its biological function. For instance, the transcription and replication of our genetic code cannot take place without the unwinding of the DNA double helix. Although these biological processes are driven by proteins, there might well be a relation between these biological openings and the spontaneous bubble formation due to thermal fluctuations. Mesoscopic models, like the Peyrard-Bishop-Dauxois (PBD) model, have fairly accurately reproduced some experimental denaturation curves and the sharp phase transition in the thermodynamic limit. It is, hence, tempting to see whether these models could be used to predict the biological activity of DNA. In a previous study, we introduced a method that allows to obtain very accurate results on this subject, which showed that some previous claims in this direction, based on molecular-dynamics studies, were premature. This could either imply that the present PBD model should be improved or that biological activity can only be predicted in a more complex framework that involves interactions with proteins and super helical stresses. In this article, we give a detailed description of the statistical method introduced before. Moreover, for several DNA sequences, we give a thorough analysis of the bubble-statistics as a function of position and bubble size and the so-called l-denaturation curves that can be measured experimentally. These show that some important experimental observations are missing in the present model. We discuss how the present model could be improved.

  18. Stationary bubble formation and cavity collapse in wedge-shaped hoppers

    PubMed Central

    Yagisawa, Yui; Then, Hui Zee; Okumura, Ko

    2016-01-01

    The hourglass is one of the apparatuses familiar to everyone, but reveals intriguing behaviors peculiar to granular materials, and many issues are remained to be explored. In this study, we examined the dynamics of falling sand in a special form of hourglass, i.e., a wedge-shaped hopper, when a suspended granular layer is stabilized to a certain degree. As a result, we found remarkably different dynamic regimes of bubbling and cavity. In the bubbling regime, bubbles of nearly equal size are created in the sand at a regular time interval. In the cavity regime, a cavity grows as sand beads fall before a sudden collapse of the cavity. Bubbling found here is quite visible to a level never discussed in the physics literature and the cavity regime is a novel phase, which is neither continuous, intermittent nor completely blocked phase. We elucidate the physical conditions necessary for the bubbling and cavity regimes and develop simple theories for the regimes to successfully explain the observed phenomena by considering the stability of a suspended granular layer and clogging of granular flow at the outlet of the hopper. The bubbling and cavity regimes could be useful for mixing a fluid with granular materials. PMID:27138747

  19. Stationary bubble formation and cavity collapse in wedge-shaped hoppers

    NASA Astrophysics Data System (ADS)

    Yagisawa, Yui; Then, Hui Zee; Okumura, Ko

    2016-05-01

    The hourglass is one of the apparatuses familiar to everyone, but reveals intriguing behaviors peculiar to granular materials, and many issues are remained to be explored. In this study, we examined the dynamics of falling sand in a special form of hourglass, i.e., a wedge-shaped hopper, when a suspended granular layer is stabilized to a certain degree. As a result, we found remarkably different dynamic regimes of bubbling and cavity. In the bubbling regime, bubbles of nearly equal size are created in the sand at a regular time interval. In the cavity regime, a cavity grows as sand beads fall before a sudden collapse of the cavity. Bubbling found here is quite visible to a level never discussed in the physics literature and the cavity regime is a novel phase, which is neither continuous, intermittent nor completely blocked phase. We elucidate the physical conditions necessary for the bubbling and cavity regimes and develop simple theories for the regimes to successfully explain the observed phenomena by considering the stability of a suspended granular layer and clogging of granular flow at the outlet of the hopper. The bubbling and cavity regimes could be useful for mixing a fluid with granular materials.

  20. Stationary bubble formation and cavity collapse in wedge-shaped hoppers.

    PubMed

    Yagisawa, Yui; Then, Hui Zee; Okumura, Ko

    2016-01-01

    The hourglass is one of the apparatuses familiar to everyone, but reveals intriguing behaviors peculiar to granular materials, and many issues are remained to be explored. In this study, we examined the dynamics of falling sand in a special form of hourglass, i.e., a wedge-shaped hopper, when a suspended granular layer is stabilized to a certain degree. As a result, we found remarkably different dynamic regimes of bubbling and cavity. In the bubbling regime, bubbles of nearly equal size are created in the sand at a regular time interval. In the cavity regime, a cavity grows as sand beads fall before a sudden collapse of the cavity. Bubbling found here is quite visible to a level never discussed in the physics literature and the cavity regime is a novel phase, which is neither continuous, intermittent nor completely blocked phase. We elucidate the physical conditions necessary for the bubbling and cavity regimes and develop simple theories for the regimes to successfully explain the observed phenomena by considering the stability of a suspended granular layer and clogging of granular flow at the outlet of the hopper. The bubbling and cavity regimes could be useful for mixing a fluid with granular materials. PMID:27138747

  1. Biosynthesis within a bubble architecture

    NASA Astrophysics Data System (ADS)

    Choi, Hyo-Jick; Montemagno, Carlo D.

    2006-05-01

    Sub-cellular compartmentalization is critical to life; it minimizes diffusion effects and enables locally high concentrations of biochemicals for improved reaction kinetics. We demonstrate an example of in vitro biochemical synthesis inside the water channels of foam using engineered artificial organelles (bacteriorhodopsin and F0F1-ATP synthase reconstituted polymer vesicles) as functional units to produce ATP. These results show that the interstitial space of bubbles serves as a metaphor for sub-cellular structure, providing a new platform for both investigating cellular metabolism and the engineering of biofunctional materials and systems.

  2. Trauma-Informed Care in the Massachusetts Child Trauma Project.

    PubMed

    Bartlett, Jessica Dym; Barto, Beth; Griffin, Jessica L; Fraser, Jenifer Goldman; Hodgdon, Hilary; Bodian, Ruth

    2016-05-01

    Child maltreatment is a serious public health concern, and its detrimental effects can be compounded by traumatic experiences associated with the child welfare (CW) system. Trauma-informed care (TIC) is a promising strategy for addressing traumatized children's needs, but research on the impact of TIC in CW is limited. This study examines initial findings of the Massachusetts Child Trauma Project, a statewide TIC initiative in the CW system and mental health network. After 1 year of implementation, Trauma-Informed Leadership Teams in CW offices emerged as key structures for TIC systems integration, and mental health providers' participation in evidence-based treatment (EBT) learning collaboratives was linked to improvements in trauma-informed individual and agency practices. After approximately 6 months of EBT treatment, children had fewer posttraumatic symptoms and behavior problems compared to baseline. Barriers to TIC that emerged included scarce resources for trauma-related work in the CW agency and few mental providers providing EBTs to young children. Future research might explore variations in TIC across service system components as well as the potential for differential effects across EBT models disseminated through TIC. PMID:26564909

  3. Spherically symmetric conformal gravity and ``gravitational bubbles''

    NASA Astrophysics Data System (ADS)

    Berezin, V. A.; Dokuchaev, V. I.; Eroshenko, Yu. N.

    2016-01-01

    The general structure of the spherically symmetric solutions in the Weyl conformal gravity is described. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions is found. It consists of two classes. The first one contains the solutions with constant two-dimensional curvature scalar of our specific metrics, and the representatives are the famous Robertson-Walker metrics. One of them we called the ``gravitational bubbles'', which is compact and with zero Weyl tensor. Thus, we obtained the pure vacuum curved space-times (without any material sources, including the cosmological constant) what is absolutely impossible in General Relativity. Such a phenomenon makes it easier to create the universe from ``nothing''. The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family. It appears that it can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We also investigated the general structure of the energy-momentum tensor in the spherical conformal gravity and constructed the vectorial equation that reveals clearly some features of non-vacuum solutions. Two of them are explicitly written, namely, the metrics à la Vaidya, and the electrovacuum space-time metrics.

  4. Liver trauma grading and biochemistry tests.

    PubMed

    Arslan, Gozde; Gemici, Aysegul Akdogan; Yirgin, Inci Kizildag; Gulsen, Esma; Inci, Ercan

    2013-10-01

    Among solid organ blunt traumas, the liver and spleen are mostly subject to injury. In addition, the liver is also commonly injured in penetrating traumas because of its size, location, and the ease of injury to the "Glisson Capsule". Several enzymes are known to be elevated following trauma. In our study, we evaluated the correlation between the levels of serum aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and gamma-glutamyl transpeptidase in 57 patients with blunt trauma to the liver and compared these values to the American Association for the Surgery of Trauma trauma grading system. Additionally, we compared the enzyme level elevations in these patients to the enzyme levels of 29 healthy subjects. As expected, we found significant elevations in enzyme levels of trauma patients compared to the control group. The calculated point estimates were not significantly different between grades 1 and 2 trauma. However, grade 3 trauma group showed a significant increase in enzyme levels. PMID:23793528

  5. Trauma Ultrasound in Civilian Tactical Medicine

    PubMed Central

    Whelan, Lori; Justice, William; Goodloe, Jeffrey M.; Dixon, Jeff D.; Thomas, Stephen H.

    2012-01-01

    The term “tactical medicine” can be defined in more than one way, but in the nonmilitary setting the term tactical emergency medical services (TEMS) is often used to denote medical support operations for law enforcement. In supporting operations involving groups such as special weapons and tactics (SWAT) teams, TEMS entail executing triage, diagnosis, stabilization, and evacuation decision-making in challenging settings. Ultrasound, now well entrenched as a part of trauma evaluation in the hospital setting, has been investigated in the prehospital arena and may have utility in TEMS. This paper addresses potential use of US in the tactical environment, with emphasis on the lessons of recent years' literature. Possible uses of US are discussed, in terms of both specific clinical applications and also with respect to informing triage and related decision making. PMID:23243509

  6. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Renggli, C.; Perugini, D.; De Campos, C. P.; Hess, K.-U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2015-04-01

    That rising bubbles may significantly affect magma mixing paths has already been demon strated by analogue experiments. Here, for the first time, bubble-advection experiments are performed employing volcanic melts at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears to be an efficient mechanism for mingling volcanic melts of highly contrasting compositions and properties. MicroCT imaging reveals bubbles trailing each other and multiple filaments coalescing into bigger ones. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that bubbles rising successively are likely to follow this pathway of low resistance that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Inevitable implications for the concept of bubble advection in magma mixing include thereby both an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a material. Inside the filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments

  7. Neural basis of economic bubble behavior.

    PubMed

    Ogawa, A; Onozaki, T; Mizuno, T; Asamizuya, T; Ueno, K; Cheng, K; Iriki, A

    2014-04-18

    Throughout human history, economic bubbles have formed and burst. As a bubble grows, microeconomic behavior ceases to be constrained by realistic predictions. This contradicts the basic assumption of economics that agents have rational expectations. To examine the neural basis of behavior during bubbles, we performed functional magnetic resonance imaging while participants traded shares in a virtual stock exchange with two non-bubble stocks and one bubble stock. The price was largely deflected from the fair price in one of the non-bubble stocks, but not in the other. Their fair prices were specified. The price of the bubble stock showed a large increase and battering, as based on a real stock-market bust. The imaging results revealed modulation of the brain circuits that regulate trade behavior under different market conditions. The premotor cortex was activated only under a market condition in which the price was largely deflected from the fair price specified. During the bubble, brain regions associated with the cognitive processing that supports order decisions were identified. The asset preference that might bias the decision was associated with the ventrolateral prefrontal cortex and the dorsolateral prefrontal cortex (DLPFC). The activity of the inferior parietal lobule (IPL) was correlated with the score of future time perspective, which would bias the estimation of future price. These regions were deemed to form a distinctive network during the bubble. A functional connectivity analysis showed that the connectivity between the DLPFC and the IPL was predominant compared with other connectivities only during the bubble. These findings indicate that uncertain and unstable market conditions changed brain modes in traders. These brain mechanisms might lead to a loss of control caused by wishful thinking, and to microeconomic bubbles that expand, on the macroscopic scale, toward bust. PMID:24468106

  8. Colorful Demos with a Long-Lasting Soap Bubble.

    ERIC Educational Resources Information Center

    Behroozi, F.; Olson, D. W.

    1994-01-01

    Describes several demonstrations that feature interaction of light with soap bubbles. Includes directions about how to produce a long-lasting stationary soap bubble with an easily changeable size and describes the interaction of white light with the bubble. (DDR)

  9. Special Days, Special Ways.

    ERIC Educational Resources Information Center

    Clarke, Jacqueline

    2001-01-01

    Presents unique ways to create special rituals that recognize individual students' achievements and milestones. Ideas include throwing a send-off party for a student who is moving; holding monthly birthday luncheons; choosing an ambassador to accompany new students around school; and making a lost tooth container that students can use to safely…

  10. Exercise-induced myofibrillar disruption with sarcolemmal integrity prior to simulated diving has no effect on vascular bubble formation in rats.

    PubMed

    Jørgensen, Arve; Foster, Philip P; Eftedal, Ingrid; Wisløff, Ulrik; Paulsen, Gøran; Havnes, Marianne B; Brubakk, Alf O

    2013-05-01

    Decompression sickness is initiated by gas bubbles formed during decompression, and it has been generally accepted that exercise before decompression causes increased bubble formation. There are indications that exercise-induced muscle injury seems to be involved. Trauma-induced skeletal muscle injury and vigorous exercise that could theoretically injure muscle tissues before decompression have each been shown to result in profuse bubble formation. Based on these findings, we hypothesized that exercise-induced skeletal muscle injury prior to decompression from diving would cause increase of vascular bubbles and lower survival rates after decompression. In this study, we examined muscle injury caused by eccentric exercise in rats prior to simulated diving and we observed the resulting bubble formation. Female Sprague-Dawley rats (n = 42) ran downhill (-16º) for 100 min on a treadmill followed by 90 min rest before a 50-min simulated saturation dive (709 kPa) in a pressure chamber. Muscle injury was evaluated by immunohistochemistry and qPCR, and vascular bubbles after diving were detected by ultrasonic imaging. The exercise protocol resulted in increased mRNA expression of markers of muscle injury; αB-crystallin, NF-κB, and TNF-α, and myofibrillar disruption with preserved sarcolemmal integrity. Despite evident myofibrillar disruption after eccentric exercise, no differences in bubble amounts or survival rates were observed in the exercised animals as compared to non-exercised animals after diving, a novel finding that may be applicable to humans. PMID:23129090

  11. Cavitation inception from bubble nuclei.

    PubMed

    Mørch, K A

    2015-10-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  12. Delta Alerts: Changing Outcomes in Geriatric Trauma.

    PubMed

    Wiles, Lynn L; Day, Mark D; Harris, LeAnna

    2016-01-01

    Geriatric trauma patients (GTPs) suffering minor injuries have suboptimal outcomes compared with younger populations. Patients 65 years or older account for 10% of all traumas but 28% of all trauma deaths. This trauma center established a third tier trauma alert specifically targeting GTPs at risk for poor outcomes. A Delta Alert is activated when GTPs suffer injuries that fall outside traditional trauma alert guidelines. Early identification and treatment of injuries and expedited referral to specialty groups have improved our GTPs' outcomes including decreased mortality and length of stay and increased percentage of GTPs who are discharged home. PMID:27414140

  13. Video recording of emergency department trauma resuscitations.

    PubMed

    Brown, Debra M

    2003-01-01

    Although hospitals are faced with the challenges of appropriately informing the public regarding health care and protecting the privacy of patients, a comprehensive policy concerning videotaping of trauma resuscitations can be developed to comply with regulatory bodies. Video recording of trauma team resuscitations can be utilized as an effective quality improvement tool to evaluate trauma team performance, psychomotor skills and techniques, and to identify educational needs related to specific trauma populations. Video recording of Trauma resuscitations is an effective tool for improving trauma team performance by educating clinical staff regarding roles and responsibilities. PMID:16265920

  14. The study of psychic trauma.

    PubMed

    Bacciagaluppi, Marco

    2011-01-01

    This article starts from the DSM definition of psychic trauma. A central source in this field is the 1992 book by Judith Herman. One line of investigation is the sexual abuse of women and children. In an early phase, both Janet and Freud described dissociation as a reaction to trauma. In 1897, Freud disputed the reality of sexual trauma, a position countered later by Ferenczi. In a later phase, this subject was investigated by the American feminist movement. Studies of physical abuse are then described, followed by mental abuse and neglect. Another line of investigation is combat neurosis. The two lines converged in the definition of PTSD and its incorporation into the DSM in 1980. The views on trauma of John Bowlby and Alice Miller are also discussed. The integration of the relational model in psychoanalysis with the trauma literature is presented. The most recent advances are located in neurobiology. The discussion makes a preliminary investigation of the remote causes of war and sexual violence. PMID:21902510

  15. Galactic Teamwork Makes Distant Bubbles

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    During the period of reionization that followed the dark ages of our universe, hydrogen was transformed from a neutral state, which is opaque to radiation, to an ionized one, which is transparent to radiation. But what generated the initial ionizing radiation? The recent discovery of multiple distant galaxies offers evidence for how this process occurred.Two Distant GalaxiesWe believe reionization occurred somewhere between a redshift of z = 6 and 7, because Ly-emitting galaxies drop out at roughly this redshift. Beyond this distance, were generally unable to see the light from these galaxies, because the universe is no longer transparent to their emission. This is not always the case, however: if a bubble of ionized gas exists around a distant galaxy, the radiation can escape, allowing us to see the galaxy.This is true of two recently-discovered Ly-emitting galaxies, confirmed to be at a redshift of z~7 and located near one another in a region known as the Bremer Deep Field. The fact that were able to see the radiation from these galaxies means that they are in an ionized HII region presumably one of the earlier regions to have become reionized in the universe.But on their own, neither of these galaxies is capable of generating an ionized bubble large enough for their light to escape. So what ionized the region around them, and what does this mean for our understanding of how reionization occurred in the universe?A Little Help From FriendsLocation in different filters of the objects in the Hubble Bremer Deep Field catalog. The z~7 selection region is outlined by the grey box. BDF-521 and BDF-3299 were the two originally discovered galaxies; the remaining red markers indicate the additional six galaxies discovered in the same region. [Castellano et al. 2016]A team of scientists led by Marco Castellano (Rome Observatory, INAF) investigated the possibility that there are other, faint galaxies near these two that have helped to ionize the region. Performing a survey

  16. Simple improvements to classical bubble nucleation models

    NASA Astrophysics Data System (ADS)

    Tanaka, Kyoko K.; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3 σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  17. Simple improvements to classical bubble nucleation models.

    PubMed

    Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations. PMID:26382410

  18. Gravity Wave Seeding of Equatorial Plasma Bubbles

    NASA Technical Reports Server (NTRS)

    Singh, Sardul; Johnson, F. S.; Power, R. A.

    1997-01-01

    Some examples from the Atmosphere Explorer E data showing plasma bubble development from wavy ion density structures in the bottomside F layer are described. The wavy structures mostly had east-west wavelengths of 150-800 km, in one example it was about 3000 km. The ionization troughs in the wavy structures later broke up into either a multiple-bubble patch or a single bubble, depending upon whether, in the precursor wavy structure, shorter wavelengths were superimposed on the larger scale wavelengths. In the multiple bubble patches, intrabubble spacings vaned from 55 km to 140 km. In a fully developed equatorial spread F case, east-west wavelengths from 690 km down to about 0.5 km were present simultaneously. The spacings between bubble patches or between bubbles in a patch appear to be determined by the wavelengths present in the precursor wave structure. In some cases, deeper bubbles developed on the western edge of a bubble patch, suggesting an east-west asymmetry. Simultaneous horizontal neutral wind measurements showed wavelike perturbations that were closely associated with perturbations in the plasma horizontal drift velocity. We argue that the wave structures observed here that served as the initial seed ion density perturbations were caused by gravity waves, strengthening the view that gravity waves seed equatorial spread F irregularities.

  19. The Physics of Foams, Droplets and Bubbles

    ERIC Educational Resources Information Center

    Sarker, Dipak K.

    2013-01-01

    Foams or bubble dispersions are common to milkshakes, bread, champagne froth, shaving mousse, shampoo, crude oil extraction systems, upholstery packing and bubble wrap, whereas the term droplet is often synonymous with either a small drop of water or a drop of oil--a type of coarse dispersion. The latter are seen in butter and milk, household…

  20. Steady State Vapor Bubble in Pool Boiling

    NASA Astrophysics Data System (ADS)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  1. Oscillating plasma bubbles. II. Pulsed experiments

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.

    2012-08-15

    Time-dependent phenomena have been investigated in plasma bubbles which are created by inserting spherical grids into an ambient plasma and letting electrons and ions form a plasma of different parameters than the ambient one. There are no plasma sources inside the bubble. The grid bias controls the particle flux. There are sheaths on both sides of the grid, each of which passes particle flows in both directions. The inner sheath or plasma potential develops self consistently to establish charge neutrality and divergence free charge and mass flows. When the electron supply is restricted, the inner sheath exhibits oscillations near the ion plasma frequency. When all electrons are excluded, a virtual anode forms on the inside sheath, reflects all ions such that the bubble is empty. By pulsing the ambient plasma, the lifetime of the bubble plasma has been measured. In an afterglow, plasma electrons are trapped inside the bubble and the bubble decays as slow as the ambient plasma. Pulsing the grid voltage yields the time scale for filling and emptying the bubble. Probes have been shown to modify the plasma potential. Using pulsed probes, transient ringing on the time scale of ion transit times through the bubble has been observed. The start of sheath oscillations has been investigated. The instability mechanism has been qualitatively explained. The dependence of the oscillation frequency on electrons in the sheath has been clarified.

  2. The rising bubble technique for discharge measurements

    NASA Astrophysics Data System (ADS)

    Luxemburg, W.; Hilgersom, K.; van Eekelen, M.

    2010-12-01

    The rising bubble technique is an elegant method to determine the full discharge of a river or a canal in a short moment of time. The method is not new [Sargent, 1982], but hardly applied so far. The method applies air bubbles released from the bottom of a river or canal. While the bubbles rise to the surface they are dragged along by the current. The deeper the stream and the faster the current the longer will be the distance they are dragged along. The horizontal displacement L, of the bubbles can be observed at the surface of the stream. To obtain a discharge, the rising velocity vr, of the bubble is required additionally. When the rising velocity is assumed constant the discharge per unit width amounts to q= Lvr. Placing a tube on the bottom of the stream and releasing bubbles at regular intervals results in a complete discharge profile. The ongoing research is focusing on factors affecting the rising velocity, solving practicalities in applying the method in the field and how modern image processing techniques can enhance determining in a glance the distance travelled by the bubbles. Surfacing of air bubbles in a canal

  3. Videotaping the Lifespan of a Soap Bubble.

    ERIC Educational Resources Information Center

    Ramme, Goran

    1995-01-01

    Describes how the use of a videotape to record the history of a soap bubble allows a study of many interesting events in considerable detail including interference fringes, convection and turbulence patterns on the surface, formation of black film, and the ultimate explosion of the bubble. (JRH)

  4. Drops and Bubble in Materials Science

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1982-01-01

    The formation of extended p-n junctions in semiconductors by drop migration, mechanisms and morphologies of migrating drops and bubbles in solids and nucleation and corrections to the Volmer-Weber equations are discussed. Bubble shrinkage in the processing of glass, the formation of glass microshells as laser-fusion targets, and radiation-induced voids in nuclear reactors were examined.

  5. Measuring the surface tension of soap bubbles

    NASA Technical Reports Server (NTRS)

    Sorensen, Carl D.

    1992-01-01

    The objectives are for students to gain an understanding of surface tension, to see that pressure inside a small bubble is larger than that inside a large bubble. These concepts can be used to explain the behavior of liquid foams as well as precipitate coarsening and grain growth. Equipment, supplies, and procedures are explained.

  6. Steady State Vapor Bubble in Pool Boiling.

    PubMed

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  7. Bubble behavior during solidification in low gravity

    NASA Technical Reports Server (NTRS)

    Papazian, J. M.; Wilcox, W. R.; Gutowski, R.

    1979-01-01

    The trapping and behavior of gas bubbles were studied during low-gravity solidification of carbon tetrabromide, a transparent metal-model material. The experiment was performed during a NASA-sponsored sounding rocket flight and involved gradient freeze solidification of a gas-saturated melt. Gas bubbles were evolved at the solid-liquid interface during the low-gravity interval. No large-scale thermal migration of bubbles, bubble pushing by the solid-liquid interface, or bubble detachment from the interface were observed during the low-gravity experiment. A unique bubble motion-fluid flow event occurred in one specimen: a large bubble moved downward and caused some circulation of the melt. The gas bubbles that were trapped by the solid in commercial-purity material formed voids that had a cylindrical shape, in contrast to the spherical shape that had been observed in a prior low-gravity experiment. These shapes were not influenced by the gravity level (0.0001 g-0 vs g-0), but were dependent upon the initial temperature gradient. In higher purity material, however, the shape of the voids changed from cylindrical in 1g to spherical in low gravity.

  8. Structure of nanoscale gas bubbles in metals

    SciTech Connect

    Caro, A. Schwen, D.; Martinez, E.

    2013-11-18

    A usual way to estimate the amount of gas in a bubble inside a metal is to assume thermodynamic equilibrium, i.e., the gas pressure P equals the capillarity force 2γ/R, with γ the surface energy of the host material and R the bubble radius; under this condition there is no driving force for vacancies to be emitted or absorbed by the bubble. In contrast to the common assumption that pressure inside a gas or fluid bubble is constant, we show that at the nanoscale this picture is no longer valid. P and density can no longer be defined as global quantities determined by an equation of state (EOS), but they become functions of position because the bubble develops a core-shell structure. We focus on He in Fe and solve the problem using both continuum mechanics and empirical potentials to find a quantitative measure of this effect. We point to the need of redefining an EOS for nanoscale gas bubbles in metals, which can be obtained via an average pressure inside the bubble. The resulting EOS, which is now size dependent, gives pressures that differ by a factor of two or more from the original EOS for bubble diameters of 1 nm and below.

  9. Particle motion induced by bubble cavitation.

    PubMed

    Poulain, Stéphane; Guenoun, Gabriel; Gart, Sean; Crowe, William; Jung, Sunghwan

    2015-05-29

    Cavitation bubbles induce impulsive forces on surrounding substrates, particles, or surfaces. Even though cavitation is a traditional topic in fluid mechanics, current understanding and studies do not capture the effect of cavitation on suspended objects in fluids. In the present work, the dynamics of a spherical particle due to a cavitation bubble is experimentally characterized and compared with an analytical model. Three phases are observed: the growth of the bubble where the particle is pushed away, its collapse where the particle approaches the bubble, and a longer time scale postcollapse where the particle continues to move toward the collapsed bubble. The particle motion in the longer time scale presumably results from the asymmetric cavitation evolution at an earlier time. Our theory considering the asymmetric bubble dynamics shows that the particle velocity strongly depends on the distance from the bubble as an inverse-fourth-power law, which is in good agreement with our experimentation. This study sheds light on how small free particles respond to cavitation bubbles in fluids. PMID:26066438

  10. The Minnaert Bubble: An Acoustic Approach

    ERIC Educational Resources Information Center

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude; Leroy, Valentin

    2008-01-01

    We propose an "ab initio" introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian…

  11. Steady State Vapor Bubble in Pool Boiling

    PubMed Central

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  12. Dynamics of Vapour Bubbles in Nucleate Boiling. 2; Evolution of Thermally Controlled Bubbles

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

    1995-01-01

    The previously developed dynamic theory of growth and detachment of vapour bubbles under conditions of nucleate pool boiling is applied to study motion and deformation of a bubble evolving at a single nucleation site. The bubble growth is presumed to be thermally controlled, and two components of heat transfer to the bubble are accounted of: the one from the bulk of surrounding liquid and the one due to heat conduction across a liquid microlayer formed underneath the bubble. Bubble evolution is governed by the buoyancy and an effective surface tension force, both the forces making the bubble centre of mass move away from the wall and, thus, assisting its detachment. Buoyancy-controlled and surface-tension-controlled regimes are considered separately in a meticulous way. The duration of the whole process of bubble evolution till detachment, the rate of growth, and the bubble departure size are found as functions of time and physical and operating parameters. Some repeatedly observed phenomena, such as an influence of gravity on the growth rate, are explained. Inferences of the model agree qualitatively with available experimental evidence, and conclusions pertaining to the dependence on gravity of the bubble radius at detachment and the whole time of the bubble development when being attached to the wall are confirmed quantitatively.

  13. Measurement of Bubble Size Distribution Based on Acoustic Propagation in Bubbly Medium

    NASA Astrophysics Data System (ADS)

    Wu, Xiongjun; Hsiao, Chao-Tsung; Choi, Jin-Keun; Chahine, Georges

    2013-03-01

    Acoustic properties are strongly affected by bubble size distribution in a bubbly medium. Measurement of the acoustic transmission becomes increasingly difficulty as the void fraction of the bubbly medium increases due to strong attenuation, while acoustic reflection can be measured more easily with increasing void fraction. The ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright, an instrument for bubble size measurement that is under development tries to take full advantage of the properties of acoustic propagation in bubbly media to extract bubble size distribution. Properties of both acoustic transmission and reflection in the bubbly medium from a range of short single-frequency bursts of acoustic waves at different frequencies are measured in an effort to deduce the bubble size distribution. With the combination of both acoustic transmission and reflection, assisted with validations from photography, the ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright has the potential to measure bubble size distributions in a wider void fraction range. This work was sponsored by Department of Energy SBIR program

  14. A new bubble dynamics model to study bubble growth, deformation, and coalescence

    NASA Astrophysics Data System (ADS)

    Huber, C.; Su, Y.; Nguyen, C. T.; Parmigiani, A.; Gonnermann, H. M.; Dufek, J.

    2014-01-01

    We propose a new bubble dynamics model to study the evolution of a suspension of bubbles over a wide range of vesicularity, and that accounts for hydrodynamical interactions between bubbles while they grow, deform under shear flow conditions, and exchange mass by diffusion coarsening. The model is based on a lattice Boltzmann method for free surface flows. As such, it assumes an infinite viscosity contrast between the exsolved volatiles and the melt. Our model allows for coalescence when two bubbles approach each other because of growth or deformation. The parameter (disjoining pressure) that controls the coalescence efficiency, i.e., drainage time for the fluid film between the bubbles, can be set arbitrarily in our calculations. We calibrated this parameter by matching the measured time for the drainage of the melt film across a range of Bond numbers (ratio of buoyancy to surface tension stresses) with laboratory experiments of a bubble rising to a free surface. The model is then used successfully to model Ostwald ripening and bubble deformation under simple shear flow conditions. The results we obtain for the deformation of a single bubble are in excellent agreement with previous experimental and theoretical studies. For a suspension, we observe that the collective effect of bubbles is different depending on the relative magnitude of viscous and interfacial stresses (capillary number). At low capillary number, we find that bubbles deform more readily in a suspension than for the case of a single bubble, whereas the opposite is observed at high capillary number.

  15. Moving with bubbles: a review of the interactions between bubbles and the microorganisms that surround them.

    PubMed

    Walls, Peter L L; Bird, James C; Bourouiba, Lydia

    2014-12-01

    Bubbles are ubiquitous in biological environments, emerging during the complex dynamics of waves breaking in the open oceans or being intentionally formed in bioreactors. From formation, through motion, until death, bubbles play a critical role in the oxygenation and mixing of natural and artificial ecosystems. However, their life is also greatly influenced by the environments in which they emerge. This interaction between bubbles and microorganisms is a subtle affair in which surface tension plays a critical role. Indeed, it shapes the role of bubbles in mixing or oxygenating microorganisms, but also determines how microorganisms affect every stage of the bubble's life. In this review, we guide the reader through the life of a bubble from birth to death, with particular attention to the microorganism-bubble interaction as viewed through the lens of fluid dynamics. PMID:25096288

  16. Kinetics of Bubble Generation in Mafic Enclaves

    NASA Astrophysics Data System (ADS)

    Jackson, B. A.; Gardner, J. E.

    2014-12-01

    Volcanically erupted mafic enclaves are typically vesicular, with the bubbles forming when the mafic magma cools after it is injected and disaggregated into a cooler silicic magma. This study uses hydrothermal experiments to investigate the kinetics of pre-eruptive bubble nucleation and growth within mafic magmas, focused on the efficiency of nucleation on different minerals, and to quantify the growth rate of bubbles with varying cooling rates. Starting materials are natural mafic enclaves from Southwest Trident, Alaska. Experiments were initially equilibrated with H2O at 85 MPa and 1065 °C for 2 hours, producing a melt with blocky crystals of plagioclase and pyroxene, and spherical bubbles with a mean 30 μm diameter and number density (Nv) of 7.2x104 cm-3. Upon cooling to 1015 °C at 2 °C/h, the mineralogy and Nv did not change (although total crystallinity increased), while the mean bubble diameter increased to 90 μm. Cooling further to 985 °C at 2 °C/h, resulted in the crystallization of Fe-Ti oxides, along with an abrupt Nv increase (3.0x105 cm-3) of bubbles with a mean diameter of 60 μm. This abrupt bubble nucleation event, coinciding with the formation of Fe-Ti oxides, suggests that plagioclase and pyroxene are poor bubble nucleation sites in mafic melts, and that Fe-Ti oxides are good bubble nucleation sites, similar to previous results using rhyolite melts. Additionally, the occurrence of this nucleation event suggests that cooling related diffusive growth of bubbles in mafic enclaves, under magma chamber conditions, is too slow to keep up with increasing volatile saturation in the melt, and that the melt may become supersaturated until nucleation sites for new bubbles become available. Rapid cooling (1065-985 °C at 110 °C/h) produced abundant acicular plagioclase and pyroxene crystals (no Fe-Ti oxides), and bubbles with a nearly identical mean diameter and Nv to experiments equilibrated at 1065 °C. It is therefore likely that bubbles will not

  17. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Renggli, C. J.; Perugini, D.; De Campos, C. P.; Hess, K.-U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2015-08-01

    In order to explore the materials' complexity induced by bubbles rising through mixing magmas, bubble-advection experiments have been performed, employing natural silicate melts at magmatic temperatures. A cylinder of basaltic glass was placed below a cylinder of rhyolitic glass. Upon melting, bubbles formed from interstitial air. During the course of the experimental runs, those bubbles rose via buoyancy forces into the rhyolitic melt, thereby entraining tails of basaltic liquid. In the experimental run products, these plume-like filaments of advected basalt within rhyolite were clearly visible and were characterised by microCT and high-resolution EMP analyses. The entrained filaments of mafic material have been hybridised. Their post-experimental compositions range from the originally basaltic composition through andesitic to rhyolitic composition. Rheological modelling of the compositions of these hybridised filaments yield viscosities up to 2 orders of magnitude lower than that of the host rhyolitic liquid. Importantly, such lowered viscosities inside the filaments implies that rising bubbles can ascend more efficiently through pre-existing filaments that have been generated by earlier ascending bubbles. MicroCT imaging of the run products provides textural confirmation of the phenomenon of bubbles trailing one another through filaments. This phenomenon enhances the relevance of bubble advection in magma mixing scenarios, implying as it does so, an acceleration of bubble ascent due to the decreased viscous resistance facing bubbles inside filaments and yielding enhanced mass flux of mafic melt into felsic melt via entrainment. In magma mixing events involving melts of high volatile content, bubbles may be an essential catalyst for magma mixing. Moreover, the reduced viscosity contrast within filaments implies repeated replenishment of filaments with fresh end-member melt. As a result, complex compositional gradients and therefore diffusion systematics can be

  18. Bubble chamber as a trace chemical detector

    SciTech Connect

    Luo, X.; McCreary, E.I.; Atencio, J.H.; McCown, A.W.; Sander, R.K.

    1998-08-01

    A novel concept for trace chemical analysis in liquid has been demonstrated. The technique utilizes light absorption in a superheated liquid. Although a superheated liquid is thermodynamically unstable, a high degree of superheating can be dynamically achieved for a short period of time. During this time the superheated liquid is extremely sensitive to boiling at nucleation sites produced by energy deposition. Observation of bubbles in the superheated liquid in some sense provides amplification of the initial energy deposition. Bubble chambers containing superheated liquids have been used to detect energetic particles; now a bubble chamber is used to detect a trace chemical in superheated liquid propane by observing bubble formation initiated by optical absorption. Crystal violet is used as a test case and can be detected at the subpart-per-10{sup 12} level by using a Nd:YAG laser. The mechanism for bubble formation and ideas for further improvement are discussed. {copyright} 1998 Optical Society of America

  19. Dynamics of charged hemispherical soap bubbles

    NASA Astrophysics Data System (ADS)

    Hilton, J. E.; van der Net, A.

    2009-04-01

    Raising the potential of a charged hemispherical soap bubble over a critical limit causes deformation of the bubble into a cone and ejection of a charged liquid jet. This is followed by a mode which has not previously been observed in bubbles, in which a long cylindrical liquid film column is created and collapses due to a Rayleigh-Plateau instability creating child bubbles. We show that the formation of the column and subsequent creation of child bubbles is due to a drop in potential caused by the ejection of charge from the system via the jet. Similar dynamics may occur in microscopic charged liquid droplets (electrospray processes), causing the creation of daughter droplets and long liquid spindles.

  20. Bubble growth and rise in soft sediments

    NASA Astrophysics Data System (ADS)

    Boudreau, Bernard P.; Algar, Chris; Johnson, Bruce D.; Croudace, Ian; Reed, Allen; Furukawa, Yoko; Dorgan, Kelley M.; Jumars, Peter A.; Grader, Abraham S.; Gardiner, Bruce S.

    2005-06-01

    The mechanics of uncemented soft sediments during bubble growth are not widely understood and no rheological model has found wide acceptance. We offer definitive evidence on the mode of bubble formation in the form of X-ray computed tomographic images and comparison with theory. Natural and injected bubbles in muddy cohesive sediments are shown to be highly eccentric oblate spheroids (disks) that grow either by fracturing the sediment or by reopening preexisting fractures. In contrast, bubbles in soft sandy sediment tend to be spherical, suggesting that sand acts fluidly or plastically in response to growth stresses. We also present bubble-rise results from gelatin, a mechanically similar but transparent medium, that suggest that initial rise is also accomplished by fracture. Given that muddy sediments are elastic and yield by fracture, it becomes much easier to explain physically related phenomena such as seafloor pockmark formation, animal burrowing, and gas buildup during methane hydrate melting.

  1. Instability of the 2S electron bubbles.

    PubMed

    Grinfeld, Pavel; Kojima, Haruo

    2003-09-01

    The 2S electron bubble placed in liquid helium has been previously believed to be spherical. We show that the 2S bubble is morphologically unstable at pressures above -1.23 bars. The 2S state being known to be radially unstable at pressures below -1.33 bars, the result leaves only a very narrow pressure range in which it can be found in a spherical configuration. Our stability analysis indicates that the 2S bubble is unstable against perturbations proportional to any of the third spherical harmonics Y(3m). Our numerical simulations show that there exist nonspherical stable configurations, such as the ones Maris and Konstantinov predicted for the 1P, 1D, and 2P electron bubbles and confirmed experimentally for the 1P. We believe that the 2S bubbles can also be produced and that our prediction will yield itself to experimental verification. PMID:14525485

  2. Bubbling at high flow rates in inviscid and viscous liquids (slags)

    NASA Astrophysics Data System (ADS)

    Engh, T. Abel; Nilmani, M.

    1988-02-01

    The behavior of gas discharging into melts at high velocities but still in the bubbling regime has been investigated in a laboratory modeling study for constant flow conditions. Air or helium was injected through a vertical tuyere into water, zinc-chloride, and aqueous glycerol solutions. High speed cinematography and pressure measurements in the tuyere have been carried out simultaneously. Pressure fluctuations at the injection point were monitored and correlated to the mode of bubble formation. The effects of high gas flow rates and high liquid viscosities have been examined in particular. Flow rates were employed up to 10-3 m3/s and viscosity to 0.5 Ns/m2. In order to attain a high gas momentum, the tuyere diameter was only 3 x 10-3 m. The experimental conditions and modeling liquids were chosen with special reference to the established practice of submerged gas injection to treat nonferrous slags. Such slags can be highly viscous. Bubble volume is smaller than that calculated from existing models such as those given by Davidson and Schüler10,11 due to the effect of gas momentum elongating the bubbles. On the other hand, viscosity tends to retard the bubble rise velocity, thus increasing volumes. To take elongation into account, a mathematical model is presented that assumes a prolate ellipsoidal shape of the bubbles. The unsteady potential flow equations for the liquid are solved for this case. Viscous effects are taken into account by noting that flow deviates from irrotational motion only in a thin boundary layer along the surface of the bubble. Thus, drag on the bubble can be obtained by calculating the viscous energy dissipation for potential flow past an ellipse. The time-dependent inertia coefficient for the ellipsoid is found by equating the vertical pressure increase inside and outside the bubble. This pressure change in the bubble is obtained by assuming that gas enters as a homogeneous jet and then calculating the stagnation pressure at the apex of

  3. Management of Carotid Artery Trauma

    PubMed Central

    Lee, Thomas S.; Ducic, Yadranko; Gordin, Eli; Stroman, David

    2014-01-01

    With increased awareness and liberal screening of trauma patients with identified risk factors, recent case series demonstrate improved early diagnosis of carotid artery trauma before they become problematio. There remains a need for unified screening criteria for both intracranial and extracranial carotid trauma. In the absence of contraindications, antithrombotic agents should be considered in blunt carotid artery injuries, as there is a significant risk of progression of vessel injury with observation alone. Despite CTA being used as a common screening modality, it appears to lack sufficient sensitivity. DSA remains to be the gold standard in screening. Endovascular techniques are becoming more widely accepted as the primary surgical modality in the treatment of blunt extracranial carotid injuries and penetrating/blunt intracranial carotid lessions. Nonetheless, open surgical approaches are still needed for the treatment of penetrating extracranial carotid injuries and in patients with unfavorable lesions for endovascular intervention. PMID:25136406

  4. Trauma--the malignant epidemic.

    PubMed

    Muckart, D J

    1991-01-19

    Trauma is the commonest cause of death in children and young adults in the USA and the UK and the incidence of both accidental and non-accidental injury continues to increase. In the Western world more pre-retirement years of life are lost annually from trauma than malignant disease, heart disease, and AIDS combined, and by the beginning of the last decade injury deaths outnumbered deaths from all other causes combined in those under 35 years of age. In South Africa, although infectious diseases continue to exact their toll, a similar pattern is emerging. Alcohol and speed are responsible for the majority of motor vehicle accidents, while the increasing ownership of firearms directly parallels the homicide rates from these weapons. Stricter application of the legislation governing alcohol, driving and firearm control is required and a regionalised trauma care programme is desperately needed to contain this epidemic. PMID:1989097

  5. Transfusion medicine in trauma patients

    PubMed Central

    Murthi, Sarah B; Dutton, Richard P; Edelman, Bennett B; Scalea, Thomas M; Hess, John R

    2011-01-01

    Injured patients stress the transfusion service with frequent demands for uncrossmatched red cells and plasma, occasional requirements for large amounts of blood products and the need for new and better blood products. Transfusion services stress trauma centers with demands for strict accountability for individual blood component units and adherence to indications in a clinical field where research has been difficult, and guidance opinion-based. New data suggest that the most severely injured patients arrive at the trauma center already coagulopathic and that these patients benefit from prompt, specific, corrective treatment. This research is clarifying trauma system requirements for new blood products and blood-product usage patterns, but the inability to obtain informed consent from severely injured patients remains an obstacle to further research. PMID:21083009

  6. Primary Particles from different bubble generation techniques

    NASA Astrophysics Data System (ADS)

    Butcher, A. C.; King, S. M.; Rosenoern, T.; Nilsson, E. D.; Bilde, M.

    2011-12-01

    Sea spray aerosols (SSA) are of major interest to global climate models due to large uncertainty in their emissions and ability to form Cloud Condensation Nuclei (CCN). In general, SSA are produced from wind breaking waves that entrain air and cause bubble bursting on the ocean surface. Preliminary results are presented for bubble generation, bubble size distribution, and CCN activity for laboratory generated SSA. In this study, the major processes of bubble formation are examined with respect to particle emissions. It has been suggested that a plunging jet closely resembles breaking wave bubble entrainment processes and subsequent bubble size distributions (Fuentes, Coe et al. 2010). Figure 1 shows the different particle size distributions obtained from the various bubble generation techniques. In general, frits produce a higher concentration of particles with a stronger bimodal particle size distribution than the various jet configurations used. The experiments consist of a stainless steel cylinder closed at both ends with fittings for aerosol sampling, flow connections for the recirculating jet, and air supply. Bubble generation included a recirculating jet with 16 mm or 4 mm nozzles, a stainless steel frit, or a ceramic frit. The chemical composition of the particles produced via bubble bursting processes has been probed using particle CCN activity. The CCN activity of sodium chloride, artificial sea salt purchased from Tropic Marin, and laboratory grade artificial sea salt (Kester, Duedall et al. 1967) has been compared. Considering the the limits of the shape factor as rough error bars for sodium chloride and bubbled sea salt, the CCN activity of artificial sea salt, Tropic Marin sea salt, and sodium chloride are not significantly different. This work has been supported by the Carlsberg Foundation.

  7. Gas bubble dynamics in soft materials.

    PubMed

    Solano-Altamirano, J M; Malcolm, John D; Goldman, Saul

    2015-01-01

    Epstein and Plesset's seminal work on the rate of gas bubble dissolution and growth in a simple liquid is generalized to render it applicable to a gas bubble embedded in a soft elastic solid. Both the underlying diffusion equation and the expression for the gas bubble pressure were modified to allow for the non-zero shear modulus of the medium. The extension of the diffusion equation results in a trivial shift (by an additive constant) in the value of the diffusion coefficient, and does not change the form of the rate equations. But the use of a generalized Young-Laplace equation for the bubble pressure resulted in significant differences on the dynamics of bubble dissolution and growth, relative to an inviscid liquid medium. Depending on whether the salient parameters (solute concentration, initial bubble radius, surface tension, and shear modulus) lead to bubble growth or dissolution, the effect of allowing for a non-zero shear modulus in the generalized Young-Laplace equation is to speed up the rate of bubble growth, or to reduce the rate of bubble dissolution, respectively. The relation to previous work on visco-elastic materials is discussed, as is the connection of this work to the problem of Decompression Sickness (specifically, "the bends"). Examples of tissues to which our expressions can be applied are provided. Also, a new phenomenon is predicted whereby, for some parameter values, a bubble can be metastable and persist for long times, or it may grow, when embedded in a homogeneous under-saturated soft elastic medium. PMID:25382720

  8. Mechanism of single-bubble sonoluminescence.

    PubMed

    An, Yu

    2006-08-01

    Considering almost all the effective processes of physics and chemical reaction in our numerical computation model, we investigate the mechanism of single bubble sonoluminescence (SBSL). For those sonoluminescing single bubbles in water at its flashing phase, the numerical simulation reveals that if the temperature inside the bubble is not high enough which may result in the plenty oxygen molecules and OH radicals undissociated, such as the case of a single argon bubble in 20 degrees C or 34 degrees C water, the radiative attachment of electrons to oxygen molecules and OH radicals contributes most to the SBSL; if the temperature inside the bubble is higher which makes most of the water vapor inside the bubble dissociate into oxygen and hydrogen atoms, such as the case of an argon bubble or a helium bubble in 0 degrees C water, the radiative attachment of electrons to oxygen and hydrogen atoms dominates the SBSL; if the temperature is still higher, such as the case of a xenon bubble in 0 degrees C water, the contribution from electron-neutral atom bremsstrahlung and electron-ion bremsstrahlung and recombination would be comparable with the contribution from the radiative attachment of electrons to oxygen and hydrogen atoms, and they together dominate the SBSL. For sonoluminescing single bubbles in those low vapor pressure liquids, such as in 85 wt.% sulphuric acid, the electron-neutral atom bremsstrahlung and the electron-ion bremsstrahlung and recombination contribute most to the continuous spectrum part of SBSL. The present calculation also provides good interpretations to those observed phenomena, such as emitted photon numbers, the width of optical pulses, the blackbody radiation like spectra. The temperature fitted by the blackbody radiation formula is very different from that calculated by the gas dynamics equations. Besides, the effect of chemical dissociation on the shock wave is also discussed. PMID:17025536

  9. Gas bubble dynamics in soft materials

    NASA Astrophysics Data System (ADS)

    Solano-Altamirano, J. M.; Malcolm, John D.; Goldman, Saul

    Epstein and Plesset's seminal work on the rate of gas bubble dissolution and growth in a simple liquid is generalized to render it applicable to a gas bubble embedded in a soft elastic medium. Both the underlying diffusion equation and the expression for the gas bubble pressure were modified to allow for the non-zero shear modulus of the elastic medium. The extension of the diffusion equation results in a trivial shift (by an additive constant) in the value of the diffusion coefficient, and does not change the form of the rate equations. But the use of a Generalized Young-Laplace equation for the bubble pressure resulted in significant differences on the dynamics of bubble dissolution and growth, relative to a simple liquid medium. Depending on whether the salient parameters (solute concentration, initial bubble radius, surface tension, and shear modulus) lead to bubble growth or dissolution, the effect of allowing for a non-zero shear modulus in the Generalized Young-Laplace equation is to speed up the rate of bubble growth, or to reduce the rate of bubble dissolution, respectively. The relation to previous work on visco-elastic materials is discussed, as is the connection of this work to the problem of Decompression Sickness (specifically, "the bends"). Examples of tissues to which our expressions can be applied are provided. Also, a new phenomenon is predicted whereby, for some parameter values, a bubble can be metastable and persist for long times, or it may grow, when embedded in a homogeneous under-saturated soft elastic medium.

  10. The effects of bubbles on the structure of upward gas-liquid flow

    NASA Astrophysics Data System (ADS)

    Gubaidulin, D. A.; Snigerev, B. A.

    2016-01-01

    The paper presents the results of study of the local structure of turbulent gas-liquid flow in vertical pipe. A mathematical model based on the use of Eulerian description for both phases taking into account the action of different forces of interfacial interaction. Special attention is paid to the development of approaches for the simulation of polydispersed bubbly flows taking into account processes of coagulation and fragmentation. Comparison of simulation results with experimental data showed that the developed approach allows to obtain detailed information about the structures of turbulent gas-liquid flows, the distribution of bubbles by size.

  11. Vascular Injury in Orthopedic Trauma.

    PubMed

    Mavrogenis, Andreas F; Panagopoulos, George N; Kokkalis, Zinon T; Koulouvaris, Panayiotis; Megaloikonomos, Panayiotis D; Igoumenou, Vasilios; Mantas, George; Moulakakis, Konstantinos G; Sfyroeras, George S; Lazaris, Andreas; Soucacos, Panayotis N

    2016-07-01

    Vascular injury in orthopedic trauma is challenging. The risk to life and limb can be high, and clinical signs initially can be subtle. Recognition and management should be a critical skill for every orthopedic surgeon. There are 5 types of vascular injury: intimal injury (flaps, disruptions, or subintimal/intramural hematomas), complete wall defects with pseudoaneurysms or hemorrhage, complete transections with hemorrhage or occlusion, arteriovenous fistulas, and spasm. Intimal defects and subintimal hematomas with possible secondary occlusion are most commonly associated with blunt trauma, whereas wall defects, complete transections, and arteriovenous fistulas usually occur with penetrating trauma. Spasm can occur after either blunt or penetrating trauma to an extremity and is more common in young patients. Clinical presentation of vascular injury may not be straightforward. Physical examination can be misleading or initially unimpressive; a normal pulse examination may be present in 5% to 15% of patients with vascular injury. Detection and treatment of vascular injuries should take place within the context of the overall resuscitation of the patient according to the established principles of the Advanced Trauma Life Support (ATLS) protocols. Advances in the field, made mostly during times of war, have made limb salvage the rule rather than the exception. Teamwork, familiarity with the often subtle signs of vascular injuries, a high index of suspicion, effective communication, appropriate use of imaging modalities, sound knowledge of relevant technique, and sequence of surgical repairs are among the essential factors that will lead to a successful outcome. This article provides a comprehensive literature review on a subject that generates significant controversy and confusion among clinicians involved in the care of trauma patients. [Orthopedics. 2016; 39(4):249-259.]. PMID:27322172

  12. Military sexual trauma.

    PubMed

    Wieland, Diane M; Haley, Jenna L; Bouder, Michelle

    2011-12-01

    Nurses' awareness of MST as a specific type of sexual assault within the military culture and sensitivity to the physical and psychological symptoms are important aspects of care. Nurses must treat the physical and emotional components of sexual assault in all settings; however, referral to the veterans administration programs and resources is key for the woman veteran to receive the specialized care developed by the healthcare system. Women veterans who have PTSD from MST and combat exposure are prone to depression, suicide and substance use/abuse. Nurses must not fear asking the woman if she is having suicidal thoughts or has a plan and intent to follow through with the plan. MST and PTSD may result in internalized anger, shame, self-blame, helplessness, hopelessness and powerlessness. Patient safety is of utmost importance. Assessing Patients for Sexual Violence, A Guide for Health Care Providers (2009) is a useful resource for nurses. The National Center for PTSD (2009) newsletter on the topic of MST includes a list of research studies. The work of Benedict (2007) and Corbett (2007) provide additional personal accounts of women soldiers who were in the Middle East conflicts. The nurse's referral to specialized services to treat MST and PTSD with evidence-based therapies is a crucial first step in the resiliency and well-being of these brave women who have served in all branches of the U.S. military. PMID:22359967

  13. Trauma-Informed or Trauma-Denied: Principles and Implementation of Trauma-Informed Services for Women

    ERIC Educational Resources Information Center

    Elliott, Denise E.; Bjelajac, Paula; Fallot, Roger D.; Markoff, Laurie S.; Reed, Beth Glover

    2005-01-01

    In this article, we attempt to bridge the gap between practice (service delivery) and philosophy (trauma theory, empowerment, and relational theory). Specifically, we identify 10 principles that define trauma-informed service, discuss the need for this type of service, and give some characteristics of trauma-informed services in eight different…

  14. Resuscitative thoracotomy in penetrating trauma.

    PubMed

    Fairfax, Lindsay M; Hsee, Li; Civil, Ian D

    2015-06-01

    The resuscitative thoracotomy (RT) is an important procedure in the management of penetrating trauma. As it is performed only in patients with peri-arrest physiology or overt cardiac arrest, survival is low. Experience is also quite variable depending on volume of penetrating trauma in a particular region. Survival ranges from 0% to as high as 89% depending on patient selection, available resources, and location of RT (operating or emergency rooms). In this article, published guidelines are reviewed as well as outcomes. Technical considerations of RT and well as proper training, personnel, and location are also discussed. PMID:25342073

  15. Component separation in abdominal trauma.

    PubMed

    Rawstorne, Edward; Smart, Christopher J; Fallis, Simon A; Suggett, Nigel

    2014-01-01

    Component separation is established for complex hernia repairs. This case presents early component separation and release of the anterior and posterior sheath to facilitate closure of the abdominal wall following emergency laparotomy, reinforcing the repair with a biological mesh. On Day 11 following an emergency laparotomy for penetrating trauma, this patient underwent component separation and release of the anterior and posterior sheath. An intra-abdominal biological mesh was secured, and the fascia and skin closed successfully. Primary abdominal closure can be achieved in patients with penetrating abdominal trauma with the use of component separation and insertion of intra-abdominal biological mesh, where standard closure is not possible. PMID:24876334

  16. Acoustic trauma caused by lightning.

    PubMed

    Mora-Magaña, I; Collado-Corona, M A; Toral-Martiñòn, R; Cano, A

    1996-03-01

    Lesions produced by exposure to noise are frequent in everyday life. Injuries may be found in all systems of the human body, from the digestive to the endocrine, from the cardiovascular to the nervous system. Many organs may be damaged, the ear being one of them. It is known that noise produced by factories, airports, musical instruments and even toys can cause auditory loss. Noises in nature can also cause acoustic trauma. This report is the case history of acoustic trauma caused by lightning. The patient was studied with CAT scan, electroencephalogram, and brain mapping, impedance audiometry with tympanogram and acoustic reflex, audiometry and evoked otoacoustics emissions: distortion products and transients. PMID:8882110

  17. [Polyvagal theory and emotional trauma].

    PubMed

    Leikola, Anssi; Mäkelä, Jukka; Punkanen, Marko

    2016-01-01

    According to the polyvagal theory, the autonomic nervous system can, in deviation from the conventional theory, be divided in three distinct parts that are in hierarchical relationship with each other. The most-primitive autonomic control results in depression of vital functions, the more evolved one in fighting or escape and the most evolved one in social involvement. Practical application of the polyvagal theory has resulted in positive results above all in the treatment of emotional trauma. in Finland, therapy of complex trauma is founded on the theory of structural dissociation of the personality, which together with the polyvagal theory forms a practical frame of reference for psychotherapeutic work. PMID:27044181

  18. Thromboembolic Disease After Orthopedic Trauma.

    PubMed

    Whiting, Paul S; Jahangir, A Alex

    2016-04-01

    Orthopedic trauma results in systemic physiologic changes that predispose patients to venous thromboembolism (VTE). In the absence of prophylaxis, VTE incidence may be as high as 60%. Mechanical and pharmacologic thromboprophylaxis are effective in decreasing rates of VTE. Combined mechanical and pharmacologic thromboprophylaxis is more efficacious for decreasing VTE incidence than either regimen independently. If pharmacologic thromboprophylaxis is contraindicated, mechanical prophylaxis should be used. Patients with isolated lower extremity fractures who are ambulatory, or those with isolated upper extremity trauma, do not require pharmacologic prophylaxis in the absence of other VTE risk factors. PMID:26772942

  19. Management of ocular, orbital, and adnexal trauma

    SciTech Connect

    Spoor, T.C.; Nesi, F.A.

    1988-01-01

    This book contains 20 chapters. Some of the chapter titles are: The Ruptured Globe: Primary Care; Corneal Trauma, Endophthalmitis; Antibiotic Usage; Radiology of Orbital Trauma; Maxillofacial Fractures; Orbital Infections; and Basic Management of Soft Tissue Injury.

  20. Acoustic Trauma - Hearing Loss in Teenagers

    MedlinePlus

    ... Issues Listen Español Text Size Email Print Share Acoustic Trauma - Hearing Loss in Teenagers Page Content Article ... temporary or permanent hearing loss. This is called acoustic trauma. How loud is 85 decibels? Surprisingly, not ...

  1. Observation of Microhollows Produced by Bubble Cloud Cavitation

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Miwa, Takashi

    2012-07-01

    When an ultrasonic wave with sound pressure less than the threshold level of bubble destruction irradiates microbubbles, the microbubbles aggregate by an acoustic radiation force and form bubble clouds. The cavitation of bubble clouds produces a large number of microhollows (microdips) on the flow channel wall. In this study, microhollow production by bubble cloud cavitation is evaluated using a blood vessel phantom made of N-isopropylacrylamide (NIPA) gel. Microbubble dynamics in bubble cloud cavitation is observed by a microscope with a short pulse light emitted diode (LED) light source. Microhollows produced on the flow channel wall are evaluated by a confocal laser microscope with a water immersion objective. It is observed that a mass of low-density bubbles (bubble mist) is formed by bubble cloud cavitation. The spatial correlation between the bubble mist and the microhollows shows the importance of the bubble mist in microhollow production by bubble cloud cavitation.

  2. Magma mixing enhanced by bubble ascent

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Perugini, D.; De Campos, C. P.; Hess, K.; Lavallee, Y.; Dingwell, D. B.

    2012-12-01

    Understanding the processes that affect the rate of liquid state homogenization provides fundamental clues on the otherwise inaccessible subsurface dynamics of magmatic plumbing systems. Compositional heterogeneities detected in the matrix of magmatic rocks represent the arrested state of a chemical equilibration. Magmatic homogenization has been divided into a) the mechanical interaction of magma batches (mingling) and b) the diffusive equilibration of compositional gradients, where diffusive equilibration is exponentially enhanced by progressive mechanical interaction [1]. The mechanical interaction between two distinct batches of magma has commonly been attributed to shear and folding movements between two liquids of distinct viscosities. A mode of mechanical interaction scarcely invoked is the advection of mafic material into a felsic one through bubble motion. Yet, experiments with analogue materials demonstrated that bubble ascent has the potential to enhance the fluid mechanical component of magma mixing [2]. Here, we present preliminary results from bubble-advection experiments. For the first time, experiments of this kind were performed using natural materials at magmatic temperatures. Cylinders of Snake River Plain (SRP) basalt were drilled with a cavity of defined volume and placed underneath cylinders of SRP rhyolite. Upon melting, the gas pocket, or bubble trapped within the cavity, rose into the rhyolite, so entraining a layer of basalt. Successive iterations of the same experiment at progressive intervals ensured a time series of magmatic interaction caused by bubble segregation. Variations in initial bubble size allowed the tracking of bubble volume to advected material ratio at defined viscosity contrast. The resulting plume-like structures that the advected basalt formed within the rhyolite were characterized by microCT and subsequent high-resolution EMP analyses. The mass of advected material per bubble correlated positively with bubble size. The

  3. TraumaSCAN: assessing penetrating trauma with geometric and probabilistic reasoning.

    PubMed Central

    Ogunyemi, O.; Clarke, J. R.; Webber, B.; Badler, N.

    2000-01-01

    This paper presents TraumaSCAN, a prototype computer system for assessing the effects of penetrating trauma to the chest and abdomen. TraumaSCAN combines geometric reasoning about potentially injured anatomic structures with (probabilistic) diagnostic reasoning about the consequences of these injuries. We also present results obtained from testing TraumaSCAN retrospectively on 26 actual gunshot wound cases. PMID:11079958

  4. "Bubbles"--a spot diagnosis.

    PubMed

    Kettner, Mattias; Ramsthaler, Frank; Schnabel, Axel

    2010-05-01

    Aspiration of blood is a phenomenon observed in violent and natural death scenarios. Bloodstain patterns evolving from expectoration of aspired blood may look suspicious of a violent genesis and thus mislead crime scene investigators. In the present case, a woman was found lying in a pool of blood on the kitchen floor. Furthermore, bloodstains covered her face, clothing, and surrounding furniture and walls. Bloodstain pattern analysis and medicolegal inspection of the suspected scene of crime were carried out and revealed dispersed stains with enclosed gas bubbles in the absence of signs of physical violence leading to the assessment of a natural manner of death. The bloodstains were attributed to expiration of blood because of an internal bleeding. Medicolegal autopsy confirmed the on-site diagnosis as a fatal esophageal varix rupture was found. PMID:20102472

  5. How regional trauma systems improve outcomes.

    PubMed

    Cole, Elaine

    2015-10-01

    Management of severely injured patients is complex and requires organised, expert care. Regionalised trauma systems are relatively new in the UK and aim to deliver optimal, timely care to injured patients at the most appropriate location. This article discusses the drivers, organisation, processes and outcomes of regionalised trauma care. It also describes the challenges and benefits of working within a trauma system to enable emergency practitioners to reflect on their roles in contemporary trauma care. PMID:26451941

  6. Micro-bubble Enhanced Sonoporation

    NASA Astrophysics Data System (ADS)

    Tachibana, Rie; Okamoto, Akio; Yoshinaka, Kiyoshi; Takagi, Shu; Matsumoto, Yoichiro

    2010-03-01

    A gene transfer system that uses ultrasound, known as sonoporation, has recently been developed, and it is known that micro-bubbles can help gene transfection in this technique. However, the mechanism and optimal induction conditions have not yet been fully clarified. We examined the factors that affect the gene induction rate, and attempted to devise a method for high-efficiency gene induction. In vitro, we inducted a GFP-containing plasmid into fibroblast cells (NIH3T3) using an ultrasound contrast agent (Sonazoid®, or micro-bubbles) and piezoelectric transducer. Cells were cultured on 24-well plates. The GFP-containing plasmid (concentration: 15 mg/ml) and Sonazoid® were mixed with the cell suspension. Ultrasound frequency was 2.0 MHz (burst wave, duty cycle: 10%), ultrasound intensity was varied from 0 W/cm2 to 11.0 W/cm2, exposure time ranged from 0 s to 120 s, and burst repetition frequency was varied from 50 Hz to 50000 Hz. Gene induction ratio was higher with stronger or longer ultrasound exposure, and gene induction ratio was affected by ultrasound burst repetition frequency. However, the ratio was less than 1%. We also measured cell survival and visualized cells with holes using propidium iodide. We found that about 80% of cells were alive, and many cells developed holes with ultrasound exposure at a burst repetition frequency of 5 kHz. These results suggest that fewer genes enter the cells or are expressed under these conditions. These problems require further study.

  7. Modelling isothermal bubbly-cap flows using two-group averaged bubble number density approach

    NASA Astrophysics Data System (ADS)

    Cheung, S. C. P.; Yeoh, G. H.; Tu, J. Y.

    2012-09-01

    Gas-liquid flows with wide range of bubble sizes are commonly encountered in many nuclear gas-liquid flow systems. In tracking the changes of gas volume fraction and bubble size distribution under complex flow conditions, numerical studies have been performed to predict the temporal and spatial evolution of two-phase geometrical structure caused by the effects of bubble interactions in gas-liquid flows. Within literatures, the development of most coalescence and break-up mechanisms were primarily focused on the interaction of spherical bubbles. Nevertheless, cap bubbles which are precursors to the formation of slug units in the slug flow regime with increasing volume fraction become ever more prevalent at high gas velocity conditions. It has been shown through many experiments that interaction behaviors between non-spherical bubbles in a liquid flow are remarkably different when compared to those of spherical bubbles. Based on the computational fluid dynamics (CFD) framework, a three-fluid model was solved, one set of conservation equations for the liquid phase while two sets of conservation equations for the gas phase with one being Group 1 spherical bubbles and the other depicting Group 2 cap bubbles. In this initial assessment, the bubble mechanistic models proposed by Hibiki and Ishii [1] have been adopted to describe the intra-group and inter-group interactions. The numerical predictions were evaluated against the experiment data of the TOPFLOW facility for vertical, upwards, airwater flows in a large pipe diameter [2].

  8. Calibration of a bubble evolution model to observed bubble incidence in divers.

    PubMed

    Gault, K A; Tikuisis, P; Nishi, R Y

    1995-09-01

    The method of maximum likelihood was used to calibrate a probabilistic bubble evolution model against data of bubbles detected in divers. These data were obtained from a diverse set of 2,064 chamber man-dives involving air and heliox with and without oxygen decompression. Bubbles were measured with Doppler ultrasound and graded according to the Kisman-Masurel code from which a single maximum bubble grade (BG) per diver was compared to the maximum bubble radius (Rmax) predicted by the model. This comparison was accomplished using multinomial statistics by relating BG to Rmax through a series of probability functions. The model predicted the formation of the bubble according to the critical radius concept and its evolution was predicted by assuming a linear rate of inert gas exchange across the bubble boundary. Gas exchange between the model compartment and blood was assumed to be perfusion-limited. The most successful calibration of the model was found using a trinomial grouping of BG according to no bubbles, low, and high bubble activity, and by assuming a single tissue compartment. Parameter estimations converge to a tissue volume of 0.00036 cm3, a surface tension of 5.0 dyne.cm-1, respective time constants of 27.9 and 9.3 min for nitrogen and helium, and respective Ostwald tissue solubilities of 0.0438 and 0.0096. Although not part of the calibration algorithm, the predicted evolution of bubble size compares reasonably well with the temporal recordings of BGs. PMID:7580766

  9. Computed tomography in the evaluation of trauma

    SciTech Connect

    Federle, M.P.; Brant-Zawadzki, M.

    1982-01-01

    This book is intended to be the current standard for computed tomography in the evaluation of trauma. It summarizes two years of experience at San Francisco General Hospital. The book is organized into seven chapters, covering head, maxillofacial, laryngeal, spinal, chest, abdominal, acetabular, and pelvic trauma. Extremity trauma is not discussed.

  10. Helpers in Distress: Preventing Secondary Trauma

    ERIC Educational Resources Information Center

    Whitfield, Natasha; Kanter, Deborah

    2014-01-01

    Those in close contact with trauma survivors are themselves at risk for trauma (e.g., Bride, 2007; Figley, 1995). Family, friends, and professionals who bear witness to the emotional retelling and re-enacting of traumatic events can experience what is called "secondary trauma" (Elwood, Mott, Lohr, & Galovski, 2011). The literature…

  11. Facial nerve palsy due to birth trauma

    MedlinePlus

    Seventh cranial nerve palsy due to birth trauma ... these factors do not lead to facial nerve palsy or birth trauma. ... The most common form of facial nerve palsy due to birth trauma ... This part controls the muscles around the lips. The muscle ...

  12. Cultural Differences in Autobiographical Memory of Trauma

    ERIC Educational Resources Information Center

    Jobson, Laura; O'Kearney, Richard

    2006-01-01

    This study investigated cultural differences in autobiographical memory of trauma. Australian and Asian international students provided self-defining memories, narratives of everyday and trauma memories and self-reports assessing adjustment to the trauma. No cultural distinction was found in how Australian or Asian subjects remembered a personal…

  13. Surfactants for Bubble Removal against Buoyancy

    NASA Astrophysics Data System (ADS)

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications.

  14. Bubbles in live-stranded dolphins

    PubMed Central

    Dennison, S.; Moore, M. J.; Fahlman, A.; Moore, K.; Sharp, S.; Harry, C. T.; Hoppe, J.; Niemeyer, M.; Lentell, B.; Wells, R. S.

    2012-01-01

    Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber–muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness. PMID:21993505

  15. Inert gas bubbles in bcc Fe

    NASA Astrophysics Data System (ADS)

    Gai, Xiao; Smith, Roger; Kenny, S. D.

    2016-03-01

    The properties of inert gas bubbles in bcc Fe is examined using a combination of static energy minimisation, molecular dynamics and barrier searching methods with empirical potentials. Static energy minimisation techniques indicate that for small Ar and Xe bubbles, the preferred gas to vacancy ratio at 0 K is about 1:1 for Ar and varies between 0.5:1 and 0.9:1 for Xe. In contrast to interstitial He atoms and small He interstitial clusters, which are highly mobile in the lattice, Ar and Xe atoms prefer to occupy substitutional sites and any interstitials present in the lattice soon displace Fe atoms and become substitutional. If a pre-existing bubble is present then there is a capture radius around a bubble which extends up to the 6th neighbour position. Collision cascades can also enlarge an existing bubble by the capture of vacancies. Ar and Xe can diffuse through the lattice through vacancy driven mechanisms but with relatively high energy barriers of 1.8 and 2.0 eV respectively. This indicates that Ar and Xe bubbles are much harder to form than bubbles of He and that such gases produced in a nuclear reaction would more likely be dispersed at substitutional sites without the help of increased temperature or radiation-driven mechanisms.

  16. Acoustic Bubble Removal from Boiling Surfaces

    NASA Technical Reports Server (NTRS)

    Prosperetti, Andrea

    2002-01-01

    The object of the study was the investigation of the forces generated by standing acoustic waves on vapor bubbles, both far and near boundaries. In order to accomplish this objective, in view of the scarcity of publications on the topic, it has been necessary to build an edifice of knowledge about vapor bubbles in sound and flow fields from the ground up, as it were. We have addressed problems of gradually greater difficulty as follows: 1. In the first place, the physics of an stationary isolated bubble subject to a sound field in an unbounded liquid was addressed; 2. The case of bubbles translating in a stationary pressure field was then considered; 3. This was followed by a study of the combined effects of sound and translation, 4. And of a neighboring boundary 5. Finally, a new method to deal with nonspherical bubbles was developed- In addition to the work on vapor bubbles, some studies on gas bubbles were conducted in view of NASA's interest in the phenomenon of sonoluminescence.

  17. Surfactants for Bubble Removal against Buoyancy.

    PubMed

    Raza, Md Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179

  18. Numerical modeling of bubble dynamics in magmas

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Su, Yanqing; Parmigiani, Andrea

    2014-05-01

    Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.

  19. Surfactants for Bubble Removal against Buoyancy

    PubMed Central

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179

  20. Bubbles in live-stranded dolphins.

    PubMed

    Dennison, S; Moore, M J; Fahlman, A; Moore, K; Sharp, S; Harry, C T; Hoppe, J; Niemeyer, M; Lentell, B; Wells, R S

    2012-04-01

    Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber-muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness. PMID:21993505

  1. Rheology of bubble-bearing magmas

    NASA Astrophysics Data System (ADS)

    Lejeune, A. M.; Bottinga, Y.; Trull, T. W.; Richet, P.

    1999-02-01

    The physical effects of air or argon bubbles on the rheology of a calcium aluminosilicate melt have been measured at temperatures ranging from 830° to 960°C, at 1 bar pressure. The melt composition is SiO 2:64, Al 2O 3:23, and CaO:13 (wt%), while bubble volume fractions are: 0, 0.06, 0.13, 0.32, 0.41 and 0.47. Measured Newtonian viscosities range from 10 10 to 10 14 dPa s. Melts with bubble fractions of 0.06 and 0.13 show with increasing temperature ( T) an increasing relative viscosity for T < 850°C. However at T > 850°C, for all bubble fractions the viscosity decreases markedly with temperature. The observed maximum decrease of the relative viscosity is 75% for a bubble fraction of 0.47 at 907°C. At all bubble fractions the viscosity is independent of the applied stress, which ranged from 11 to 677 bars. No clear indications were observed of non-Newtonian rheological behavior. Under our experimental conditions the relative viscosity of the two phase liquid depends primarily on the bubble fraction. Physical and volcanological implications of these measurements are discussed.

  2. MOBI: Microgravity Observations of Bubble Interactions

    NASA Technical Reports Server (NTRS)

    Koch, Donald L.; Sangani, Ashok

    2004-01-01

    One of the greatest uncertainties affecting the design of multiphase flow technologies for space exploration is the spatial distribution of phases that will arise in microgravity or reduced gravity. On Earth, buoyancy-driven motion predominates whereas the shearing of the bubble suspension controls its behavior in microgravity. We are conducting a series of ground-based experiments and a flight experiment spanning the full range of ratios of buoyancy to shear. These include: (1) bubbles rising in a quiescent liquid in a vertical channel; (2) weak shear flow induced by slightly inclining the channel; (3) moderate shear flow in a terrestrial vertical pipe flow; and (4) shearing of a bubble suspension in a cylindrical Couette cell in microgravity. We consider nearly monodisperse suspensions of 1 to 1.8 mm diameter bubbles in aqueous electrolyte solutions. The liquid velocity disturbance produced by bubbles in this size range can often be described using an inviscid analysis. Electrolytic solutions lead to hydrophilic repulsion forces that stabilize the bubble suspension without causing Marangoni stresses. We will discuss the mechanisms that control the flow behavior and phase distribution in the ground-based experiments and speculate on the factors that may influence the suspension flow and bubble volume fraction distribution in the flight experiment.

  3. Physical Processes for Single Bubble Sonoluminescence

    NASA Astrophysics Data System (ADS)

    Kwak, Ho-Young; Na, Jung

    1997-10-01

    Analytic solutions for a sonoluminescing gas bubble have been obtained, which provide density, pressure and temperature distributions for the gas inside bubble oscillating under ultrasonic field. The solutions have revealed that sonoluminescence should occur just prior to the bubble collapse and its duration is less than 300 ps and that increase and subsequent rapid decrease in bubble wall acceleration induce the quenching of gas, consequently of the optical emission followed by the substantial temperature rise up to 100,000 K, which can be regarded as a thermal spike. Also the solutions have revealed that Guderley's similarity solution is not valid just prior to the bubble collapse. The gas temperature inside the bubble near the collapse is determined primarily by the amount of radiation heat loss. It also turns out that the number of electrons ionized, the ion species and the kinetic energy of electrons affect the spectrum of light emission crucially. The calculated spectral radiance including the significant tails at short wavelengths, which shows a broad maximum, is in good agreement with observed data qualitatively. Further, it has been found that the bulk modulus of the liquid is the most important liquid property for the occurance of single bubble sonoluminescence.

  4. Bubbly Suspension Generated in Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    2000-01-01

    Bubbly suspensions are crucial for mass and heat transport processes on Earth and in space. These processes are relevant to pharmaceutical, chemical, nuclear, and petroleum industries on Earth. They are also relevant to life support, in situ resource utilization, and propulsion processes for long-duration space missions such as the Human Exploration and Development of Space program. Understanding the behavior of the suspension in low gravity is crucial because of factors such as bubble segregation, which could result in coalescence and affect heat and mass transport. Professors A. Sangani and D. Koch, principal investigators in the Microgravity Fluid Physics Program managed by the NASA Glenn Research Center at Lewis Field, are studying the physics of bubbly suspension. They plan to shear a bubbly suspension in a couette cell in microgravity to study bubble segregation and compare the bubble distribution in the couette gap with the one predicted by the suspension-averaged equations of motion. Prior to the Requirement Definition Review of this flight experiment, a technology for generating a bubbly suspension in microgravity has to be established, tested, and verified.

  5. Understanding Peat Bubbles: Biogeochemical-Hydrological Linkages

    NASA Astrophysics Data System (ADS)

    Strack, M.

    2009-05-01

    Decomposition of organic matter in peatland ecosystems produces gaseous end-products that can accumulate at depth and result in the build up of free-phase gas below the water table. This free-phase gas, or bubbles, reduces hydraulic conductivity, alters hydrologic and chemical gradients, and affects productivity surface vegetation through its role in peat buoyancy. In terms of greenhouse gas dynamics, these bubbles are likely the dominant subsurface stock of methane (CH4) and release of this CH4 to the atmosphere via ebullition may account for a significant portion of total efflux. Despite the importance of entrapped bubbles for peatland ecohydrological function there is still little known about how the quantity of bubbles varies between peatland types and at smaller scales within a peatland. Profiles of bubbles collected from several locations within four peatlands reveal that bubble volume varies significant among peatlands, between microforms and with depth. Previous studies also suggest that ebullition is spatially and temporally variable. This spatial variability may have important impacts on system ecohydrology and should be incorporated in models of peatland hydrology and development. This requires the difficult task of mapping bubble volume in three dimensions and over large areas. The potential for geophysical methods and the use of surface features to address this task will be discussed.

  6. Dynamics of two-dimensional bubbles

    NASA Astrophysics Data System (ADS)

    Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  7. Dynamics of two-dimensional bubbles.

    PubMed

    Piedra, Saúl; Ramos, Eduardo; Herrera, J Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps. PMID:26172798

  8. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  9. MAGNETIC TOPOLOGY OF BUBBLES IN QUIESCENT PROMINENCES

    SciTech Connect

    Dudik, J.; Aulanier, G.; Schmieder, B.; Zapior, M.; Heinzel, P.

    2012-12-10

    We study a polar-crown prominence with a bubble and its plume observed in several coronal filters by the SDO/AIA and in H{alpha} by the MSDP spectrograph in Bialkow (Poland) to address the following questions: what is the brightness of prominence bubbles in EUV with respect to the corona outside of the prominence and the prominence coronal cavity? What is the geometry and topology of the magnetic field in the bubble? What is the nature of the vertical threads seen within prominences? We find that the brightness of the bubble and plume is lower than the brightness of the corona outside of the prominence, and is similar to that of the coronal cavity. We constructed linear force-free models of prominences with bubbles, where the flux rope is perturbed by inclusion of parasitic bipoles. The arcade field lines of the bipole create the bubble, which is thus devoid of magnetic dips. Shearing the bipole or adding a second one can lead to cusp-shaped prominences with bubbles similar to the observed ones. The bubbles have complex magnetic topology, with a pair of coronal magnetic null points linked by a separator outlining the boundary between the bubble and the prominence body. We conjecture that plume formation involves magnetic reconnection at the separator. Depending on the viewing angle, the prominence can appear either anvil-shaped with predominantly horizontal structures, or cusp-shaped with predominantly vertical structuring. The latter is an artifact of the alignment of magnetic dips with respect to the prominence axis and the line of sight.

  10. The Minnaert bubble: an acoustic approach

    NASA Astrophysics Data System (ADS)

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude; Leroy, Valentin

    2008-11-01

    We propose an ab initio introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian variables. In unbounded water, the air-water system has a continuum of eigenmodes, some of them correspond to regular Fabry-Pérot resonances. A singular resonance, the lowest one, is shown to coincide with that of Minnaert. In bounded water, the eigenmodes spectrum is discrete, with a finite fundamental frequency. A spectacular quasi-locking of the latter occurs if it happens to exceed the Minnaert frequency, which provides an unforeseen one-bubble alternative version of the famous 'hot chocolate effect'. In the (low) frequency domain in which sound propagation inside the bubble reduces to a simple 'breathing' (i.e. inflation/deflation), the light air bubble can be 'dressed' by the outer water pressure forces, and is turned into the heavy Minnaert bubble. Thanks to this unexpected renormalization process, we demonstrate that the Minnaert bubble definitely behaves like a true harmonic oscillator of the spring-bob type, but with a damping term and a forcing term in apparent disagreement with those commonly admitted in the literature. Finally, we underline the double role played by the water. In order to tell the water motion associated with water compressibility (i.e. the sound) from the simple incompressible accompaniment of the bubble breathing, we introduce a new picture analogous to the electromagnetic radiative picture in Coulomb gauge, which naturally leads us to split the water displacement in an instantaneous and a retarded part. The Minnaert renormalized mass of the dressed bubble is then automatically recovered.

  11. Radio Bubbles in Clusters of Galaxies

    SciTech Connect

    Dunn, Robert J.H.; Fabian, A.C.; Taylor, G.B.; /NRAO, Socorro /KIPAC, Menlo Park

    2005-12-14

    We extend our earlier work on cluster cores with distinct radio bubbles, adding more active bubbles, i.e. those with GHz radio emission, to our sample, and also investigating ''ghost bubbles'', i.e. those without GHz radio emission. We have determined k, which is the ratio of the total particle energy to that of the electrons radiating between 10MHz and 10GHz. Constraints on the ages of the active bubbles confirm that the ratio of the energy factor, k, to the volume filling factor, f lies within the range 1 {approx}< k/f {approx}< 1000. In the assumption that there is pressure equilibrium between the radio-emitting plasma and the surrounding thermal X-ray gas, none of the radio lobes has equipartition between the relativistic particles and the magnetic field. A Monte-Carlo simulation of the data led to the conclusion that there are not enough bubbles present in the current sample to be able to determine the shape of the population. An analysis of the ghost bubbles in our sample showed that on the whole they have higher upper limits on k/f than the active bubbles, especially when compared to those in the same cluster. A study of the Brightest 55 cluster sample shows that 17, possibly 20, clusters required some form of heating as they have a short central cooling time, t{sub cool} {approx}< 3 Gyr, and a large central temperature drop, T{sub centre}/T{sub outer} < 1/2. Of these between 12 (70 per cent) and 15 (75 per cent), contain bubbles. This indicates that the duty cycle of bubbles is large in such clusters and that they can play a major role in the heating process.

  12. The management of liver trauma.

    PubMed Central

    Macfarlane, R.

    1985-01-01

    Despite advances in the management of liver trauma during the past 40 years, haemorrhage has remained the commonest cause of death. This article outlines the diversity of opinion between the desire to determine the extent of damage and resect devitalised tissue with its attendant risk of exacerbating haemorrhage, and the alternative of a more conservative approach. PMID:3895205

  13. Transforming Cultural Trauma into Resilience

    ERIC Educational Resources Information Center

    Brokenleg, Martin

    2012-01-01

    One of the biggest challenges facing Aboriginal populations increasingly is being called "intergenerational trauma." Restoring the cultural heritage is a central theme in the book, "Reclaiming Youth at Risk." That work describes the Circle of Courage model for positive development which blends Native child and youth care philosophy with research…

  14. Hypothermia and the trauma patient

    PubMed Central

    Kirkpatrick, Andrew W.; Chun, Rosaleen; Brown, Ross; Simons, Richard K.

    Hypothermia has profound effects on every system in the body, causing an overall slowing of enzymatic reactions and reduced metabolic requirements. Hypothermic, acutely injured patients with multisystem trauma have adverse outcomes when compared with normothermic control patients. Trauma patients are inherently predisposed to hypothermia from a variety of intrinsic and iatrogenic causes. Coagulation and cardiac sequelae are the most pertinent physiological concerns. Hypothermia and coagulopathy often mandate a simplified approach to complex surgical problems. A modification of traditional classification systems of hypothermia, applicable to trauma patients is suggested. There are few controlled investigations, but clinical opinion strongly supports the active prevention of hypothermia in the acutely traumatized patient. Preventive measures are simple and inexpensive, but the active reversal of hypothermia is much more complicated, often invasive and controversial. The ideal method of rewarming is unclear but must be individualized to the patient and is institution specific. An algorithm reflecting newer approaches to traumatic injury and technical advances in equipment and techniques is suggested. Conversely, hypothermia has selected clinical benefits when appropriately used in cases of trauma. Severe hypothermia has allowed remarkable survivals in the course of accidental circulatory arrest. The selective application of mild hypothermia in severe traumatic brain injury is an area with promise. Deliberate circulatory arrest with hypothermic cerebral protection has also been used for seemingly unrepairable injuries and is the focus of ongoing research. PMID:10526517

  15. Neuropathology of Acquired Cerebral Trauma.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1987-01-01

    To help educators understand the cognitive and behavioral sequelae of cerebral injury, the neuropathology of traumatic brain injury and the main neuropathological features resulting from trauma-related brain damage are reviewed. A glossary with definitions of 37 neurological terms is appended. (Author/DB)

  16. Management of hemorrhage in trauma.

    PubMed

    Schöchl, Herbert; Grassetto, Alberto; Schlimp, Christoph J

    2013-08-01

    Hemorrhage remains one of the leading causes of trauma-related deaths. Uncontrolled diffuse microvascular bleeding in the course of initial care is common, potentially resulting in exsanguination. Early and aggressive hemostatic intervention increases survival and reduces the incidence of massive transfusion. Thus, timely diagnosis of the underlying coagulation disorders is mandatory. It has been shown that standard coagulation tests do not sufficiently characterize trauma-induced coagulopathy (TIC). This has led to increasing interest in alternatives, such as the viscoelastic test, to diagnose TIC and to provide the basis for a goal-directed hemostatic therapy. The concept of damage control resuscitation (DCR) has been introduced widely in trauma patients with severe bleeding. This strategy addresses important confounders of the coagulation process such as hemodilution, hypothermia, and acidosis; DCR is based on a damage control surgical approach, permissive hypotension, and improvement of hemostatic competence. Many studies have shown benefit in mortality when using high ratios of fresh frozen plasma (FFP) to red blood cells (RBC) as early treatment. However, there is increased awareness that coagulation factor concentrate could be beneficial in the treatment of trauma-induced coagulopathy. PMID:23910535

  17. Medicating Relational Trauma in Youth

    ERIC Educational Resources Information Center

    Foltz, Robert

    2008-01-01

    Children who have experienced relational trauma present a host of problems and are often diagnosed with psychiatric disorders and then medicated. But there is evidence that commonly used drugs interfere with oxytocin or vasopressin, the human trust and bonding hormones. Thus, psychotropic drugs may impair interpersonal relationships and impede…

  18. Transfusion management of trauma patients.

    PubMed

    Shaz, Beth H; Dente, Christopher J; Harris, Robert S; MacLeod, Jana B; Hillyer, Christopher D

    2009-06-01

    The management of massively transfused trauma patients has improved with a better understanding of trauma-induced coagulopathy, the limitations of crystalloid infusion, and the implementation of massive transfusion protocols (MTPs), which encompass transfusion management and other patient care needs to mitigate the "lethal triad" of acidosis, hypothermia, and coagulopathy. MTPs are currently changing in the United States and worldwide because of recent data showing that earlier and more aggressive transfusion intervention and resuscitation with blood components that approximate whole blood significantly decrease mortality. In this context, MTPs are a key element of "damage control resuscitation," which is defined as the systematic approach to major trauma that addresses the lethal triad mentioned above. MTPs using adequate volumes of plasma, and thus coagulation factors, improve patient outcome. The ideal amounts of plasma, platelet, cryoprecipitate and other coagulation factors given in MTPs in relationship to the red blood cell transfusion volume are not known precisely, but until prospective, randomized, clinical trials are performed and more clinical data are obtained, current data support a target ratio of plasma:red blood cell:platelet transfusions of 1:1:1. Future prospective clinical trials will allow continued improvement in MTPs and thus in the overall management of patients with trauma. PMID:19448199

  19. On laser induced single bubble near a solid boundary: Contribution to the understanding of erosion phenomena

    NASA Astrophysics Data System (ADS)

    Isselin, Jean-Christophe; Alloncle, Anne-Patricia; Autric, Michel

    1998-11-01

    Cavitation erosion is an especially destructive and complex phenomenon. In order to understand its basic mechanism, the dynamics of laser-induced vapor bubbles have been investigated. Special experimental devices have been used to record ultrafast visualizations and pressure measurements. From these measurements, the different sources of stresses, induced on the solid wall by the presence of the bubble (shock wave, microjet), have been characterized. The "water hammer" pressure associated with the microjet velocity varies up to 210 MPa. When the bubble collapses near a solid wall, the pressure emitted is less than in an infinite medium. Pressure values up to 2.5 MPa have been found. These values have been associated with the duration of the pressure applied to the solid wall, which is about 30 ns for the microjet and more than 300 ns for the shock wave. These results have been correlated with the analysis of damage created on the surface sample.

  20. Modeling particle transport by bubbles for performance guidelines in airlift fermentors.

    PubMed

    Snape, J B; Thomas, N H

    1992-07-01

    A calculation method has been developed to model the statistical transport of biological particles in bubble-driven flows, with special reference to the biokinetics of environmental excursions experienced by individual cells, aggregated cells, or immobilization beads in airlift bioreactors. Interim developments on modeling the transport of such particles in concentric tube devices are reported. The calculation is driven by user-prescribed global parameters for the bioreactor geometry, bulk air flow rate, and particle parameters (size and slip speed). The algorithm calls on empirical data correlations for void fraction, bulk liquid flow rate, and bubble sizes and slip speeds, optimally selected from a large bibliographic database. The Monte Carlo algorithm concentrates on simulating particle transport in the bubbly riser flows.The packaged family of correlations and calculations represents, in effect, an expert system augmented by a transport simulation suited to characterizing the biokinetic response of cells cultured in airlift bioreactors. PMID:18601123

  1. Predictors of treatment completion in a sample of youth who have experienced physical or sexual trauma.

    PubMed

    Murphy, Robert A; Sink, Holli E; Ake, George S; Carmody, Karen Appleyard; Amaya-Jackson, Lisa M; Briggs, Ernestine C

    2014-01-01

    Despite significant advances in knowledge and availability of evidence-based models for child traumatic stress, many children simply do not complete treatment. There remain notable gaps in the services research literature about treatment completion among youth, particularly those who have experienced trauma and related sequelae. This study investigated the linkages among child physical and sexual trauma, posttraumatic stress disorder (PTSD) symptomatology, and treatment completion utilizing a clinical sample drawn from a large database from community treatment centers across the United States specializing in childhood trauma. Results from regression analyses indicated that neither the experience of sexual nor physical trauma directly predicted successful treatment completion. The links between sexual trauma and treatment completion, however, were mediated by PTSD avoidance symptoms. Children and youth experiencing sexual trauma reported higher levels of avoidance symptoms that were, in turn, significantly associated with a lower likelihood of completing trauma-focused mental health treatment. Practice implications are discussed and include strategies for clinicians to intervene during pivotal points of treatment to improve rates of service utilization and treatment completion. PMID:24084895

  2. Wartime spine injuries: understanding the improvised explosive device and biophysics of blast trauma.

    PubMed

    Kang, Daniel G; Lehman, Ronald A; Carragee, Eugene J

    2012-09-01

    The improvised explosive device (IED) has been the most significant threat by terrorists worldwide. Blast trauma has produced a wide pattern of combat spinal column injuries not commonly experienced in the civilian community. Unfortunately, explosion-related injuries have also become a widespread reality of civilian life throughout the world, and civilian medical providers who are involved in emergency trauma care must be prepared to manage casualties from terrorist attacks using high-energy explosive devices. Treatment decisions for complex spine injuries after blast trauma require special planning, taking into consideration many different factors and the complicated multiple organ system injuries not normally experienced at most civilian trauma centers. Therefore, an understanding about the effects of blast trauma by spine surgeons in the community has become imperative, as the battlefield has been brought closer to home in many countries through domestic terrorism and mass casualty situations, with the lines blurred between military and civilian trauma. We set out to provide the spine surgeon with a brief overview on the use of IEDs for terrorism and the current conflicts in Iraq and Afghanistan and also a perspective on the biophysics of blast trauma. PMID:22197184

  3. Bubbles, Bubbles, Tremors & Trouble: The Bayou Corne Sinkhole

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.

    2013-12-01

    In May 2012, thermogenic methane bubbles were first observed in Bayou Corne in Assumption Parish, Louisiana. As of July 2013, ninety one bubbling sites have been identified. Gas was also found in the top of the Mississippi River Alluvial Aquifer (MRAA) about 125 ft below the surface. Vent wells drilled into the MRAA have flared more 16 million SCF of gas. Trace amounts of hydrogen sulfide also have been detected. Bayou Corne flows above the Napoleonville salt dome which has been an active area for oil and gas exploration since the 1920s. The dome is also a site of dissolution salt mining which has produced large caverns with diameters of up to 300 ft and heights of 2000 ft. Some caverns are used for storage of natural gas. Microseismic activity was confirmed by an Earthscope seismic station in White Castle, LA in July 2012. An array of microseismic stations set up in the area recorded more than 60 microseismic events in late July and early August, 2012. These microseismic events were located on the western side of the dome. Estimated focal depths are just above the top of salt. In August 2012, a sinkhole developed overnight just to the northwest of a plugged and abandoned brine filled cavern (see figure below). The sinkhole continues to grow in area to more than 20 acres and has consumed a pipeline right of way. The sinkhole is more than 750 ft deep at its center. Microseismic activity was reduced for several months following the formation of the sinkhole. Microseismic events have reoccurred episodically since then with periods of frequent events preceding slumping of material into the sinkhole or a 'burp' where fluid levels in the sinkhole drop and then rebound followed by a decrease in microseismic activity. Some gas and/or oil may appear at the surface of the sinkhole following a 'burp'. Very long period events also have been observed which are believed to be related to subsurface fluid movement. A relief well drilled into the abandoned brine cavern found that

  4. Single Bubble Sonoluminescence in Low Gravity and Optical Radiation Pressure Positioning of the Bubble

    NASA Technical Reports Server (NTRS)

    Thiessen, D. B.; Young, J. E.; Marr-Lyon, M. J.; Richardson, S. L.; Breckon, C. D.; Douthit, S. G.; Jian, P. S.; Torruellas, W. E.; Marston, P. L.

    1999-01-01

    Several groups of researchers have demonstrated that high frequency sound in water may be used to cause the regular repeated compression and luminescence of a small bubble of gas in a flask. The phenomenon is known as single bubble sonoluminescence (SBSL). It is potentially important because light emitted by the bubble appears to be associated with a significant concentration of energy within the volume of the bubble. Unfortunately, the detailed physical mechanisms causing the radiation of light by oscillating bubbles are poorly understood and there is some evidence that carrying out experiments in a weightless environment may provide helpful clues. In addition, the radiation pressure of laser beams on the bubble may provide a way of simulating weightless experiments in the laboratory. The standard model of SBSL attributes the light emission to heating within the bubble by a spherically imploding shock wave to achieve temperatures of 50,000 K or greater. In an alternative model, the emission is attributed to the impact of a jet of water which is required to span the bubble and the formation of the jet is linked to the buoyancy of the bubble. The coupling between buoyancy and jet formation is a consequence of the displacement of the bubble from a velocity node (pressure antinode) of the standing acoustic wave that drives the radial bubble oscillations. One objective of this grant is to understand SBSL emission in reduced buoyancy on KC-135 parabolic flights. To optimize the design of those experiments and for other reasons which will help resolve the role of buoyancy, laboratory experiments are planned in simulated low gravity in which the radiation pressure of laser light will be used to position the bubble at the acoustic velocity node of the ultrasonic standing wave. Laser light will also be used to push the bubble away from the velocity node, increasing the effective buoyancy. The original experiments on the optical levitation and radiation pressure on bubbles

  5. Thermal migration of bubbles in zero gravity

    SciTech Connect

    Esmaeeli, A.; Tryggvason, G.; Arpaci, V.

    1996-12-31

    Thermocapillary migration of two-dimensional, deformable, interacting bubbles toward an initially flat fluid interface in zero gravity is studied. The full Navier-Stokes equations and the thermal energy equation are solved for the fluids inside and outside the bubbles using a front tracking/finite difference method. The boundaries of the domain are taken to be periodic in the horizontal direction and wall-bounded in the vertical direction. The temperatures of the walls are fixed such that an upward temperature gradient is imposed. Interactions of coalescing bubbles with different initial conditions are investigated.

  6. Three-dimensional magnetic bubble memory system

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)

    1994-01-01

    A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.

  7. Buoyancy Driven Shear Flows of Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Koch, D. L.; Hill, R. J.; Chellppannair, T.; Zenit, R.; Zenit, R.; Spelt, P. D. M.

    1999-01-01

    In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1a nd Re >> 1, for which comparisons are made with kinetic theory and numerical simulations. Here Re = gamma(a(exp 2)/nu is the Reynolds number and We = rho(gamma(exp 2))a(exp 3)/sigma is the Weber number; gamma is the shear rate, a is the bubble radius, nu is the kinematic viscosity of the liquid, rho is the density of the liquid, and sigma is the surface tension of the gas/liquid interface. Kang et al. calculated the bubble phase pressure and velocity variance of sheared bubble suspensions under conditions where the bubbles are spherical and the liquid phase velocity field can be approximated using potential flow theory, i.e. We= 0 and Re >> 1. Such conditions can be achieved in an experiment using gas bubbles, with a radius of O(0.5mm), in water. The theory requires that there be no average relative motion of the gas and liquid phases, hence the motivation for an experimental program in microgravity. The necessity of performing preliminary, Earth based experiments, however, requires performing experiments where the gas phase rises in the liquid, which significantly complicates the comparison of experiments with theory. Rather than comparing experimental results with theory for a uniform, homogeneous shear flow, experiments can be compared directly with solutions of the averaged equations of motion for bubble suspensions. This requires accounting for the significant lift force acting on the gas phase when the bubbles rise parallel to the average velocity of the sheared suspension. Shear flows can be produced in which the bubble phase pressure gradient, arising from shear induced collisions amongst the bubbles, balances a body force (centrifugal or gravitational) on the gas phase. A steady, non-uniform gas volume fraction

  8. Numerical investigation of bubble nonlinear dynamics characteristics

    SciTech Connect

    Shi, Jie Yang, Desen; Shi, Shengguo; Hu, Bo; Zhang, Haoyang; Jiang, Wei

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  9. Numerical investigation of bubble nonlinear dynamics characteristics

    NASA Astrophysics Data System (ADS)

    Shi, Jie; Yang, Desen; Zhang, Haoyang; Shi, Shengguo; Jiang, Wei; Hu, Bo

    2015-10-01

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  10. Screening of liquids for thermocapillary bubble movement

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Subramanian, R. S.; Papazian, J. M.; Smith, H. D.; Mattox, D. M.

    1979-01-01

    Ground-based methods for pretesting qualitatively the thermocapillary movement of gas bubbles in a liquid to be used in space processing are discussed. Theoretical considerations are shown to require the use of a thin, enclosed, horizontal liquid film in order that the bubbles move faster than the bulk convection of the liquid, with insulating boundaries to prevent the onset of instabilities. Experimental realizations of horizontal cells in which to test the thermocapillary movement of bubbles in sheets of molten glass heated from below and organic melts in tubes heated from both ends are briefly described and the results of experiments are indicated.

  11. On thermonuclear processes in cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Nigmatulin, R. I.; Lahey, R. T., Jr.; Taleyarkhan, R. P.; West, C. D.; Block, R. C.

    2014-09-01

    The theoretical and experimental foundations of so-called bubble nuclear fusion are reviewed. In the nuclear fusion process, a spherical cavitation cluster ˜ 10-2 m in diameter is produced of spherical bubbles at the center of a cylindrical chamber filled with deuterated acetone using a focused acoustic field having a resonant frequency of about 20 kHz. The acoustically-forced bubbles effectuate volume oscillations with sharp collapses during the compression stage. At the final stages of collapse, the bubble cluster emits 2.5 MeV D-D fusion neutron pulses at a rate of ˜ 2000 per second. The neutron yield is ˜ 10^5 s -1. In parallel, tritium nuclei are produced at the same yield. It is shown numerically that, for bubbles having sufficient molecular mass, spherical shock waves develop in the center of the cluster and that these spherical shock waves (microshocks) produce converging shocks within the interior bubbles, which focus energy on the centers of the bubbles. When these shock waves reflect from the centers of the bubbles, extreme conditions of temperature ( ˜ 10^8 K) and density ( ˜ 10^4 kg m -3) arise in a (nano)spherical region ( ˜ 10-7 m in size) that last for ˜ 10-12 s, during which time about ten D-D fusion neutrons and tritium nuclei are produced in the region. A paradoxical result in our experiments is that it is bubble cluster (not streamer) cavitation and the sufficiently high molecular mass of (and hence the low sound speed in) D-acetone ( C3D6O) vapor (as compared, for example, to deuterated water D2O) which are necessary conditions for the formation of convergent spherical microshock waves in central cluster bubbles. It is these waves that allow the energy to be sufficiently focused in the nanospherical regions near the bubble centers for fusion events to occur. The criticism to which the concept of 'bubble fusion' has been subjected in the literature, in particular, most recently in Uspekhi Fizicheskikh Nauk (Physics - Uspekhi) journal, is

  12. Co-operative oscillations of bubbles

    NASA Technical Reports Server (NTRS)

    Snyder, H. A.; Mord, A. J.

    1990-01-01

    A closed cryogenic storage tank in space may contain several bubbles. It is shown that these bubbles can oscillate in volume with n-1 resonant frequencies for n bubbles. The resonances can be excited by a sudden change in pressure, such as withdrawing fluid or venting, or by motion of the vehicle. In situations in which the ac accelerations dominate, such as in large space structures, the potential for harmful coupling of these oscillations to the spacecraft structure must be examined. Experimental data are presented which support the theoretical predictions.

  13. Major hepatectomy for complex liver trauma.

    PubMed

    Ariche, Arie; Klein, Yoram; Cohen, Amir; Lahat, Eylon

    2015-08-01

    The liver is the most frequently injured intraperitoneal organ, despite its relatively protected location. The liver consisting of a relatively fragile parenchyma contained within the Glisson capsule, which is thin and does not provide it with great protection. The management of hepatic trauma has undergone a paradigm shift over the past several decades with significant improvement in outcomes. Shifting from mandatory operation to selective nonoperative treatment, and, presently, to nonoperative treatment with selective operation. Operative management emphasizes packing, damage control, and utilization of interventional radiology, such as angiography and embolization. Because of the high morbidity and mortality, liver resection seems to have a minimal role in the management of hepatic injury in many reports, but in a specialized referral center, like our institute, surgical treatment becomes, in many cases, the only life-saving treatment. Innovations in liver transplant surgery, living liver donation, and the growth of specialized liver surgery teams have changed the way that surgeons and hepatic resection are done. PMID:26311308

  14. Autotransfusion utilization in abdominal trauma.

    PubMed

    Smith, L A; Barker, D E; Burns, R P

    1997-01-01

    The purpose of this review is to investigate the utility of autotransfusion in trauma patients in the past 3 years. A retrospective review was conducted of the charts for whom the Haemonetics Cell Saver autotransfusion device (Haemonetics Corp., Natick, MA) was utilized between January 1, 1993, and December 31, 1995. The estimated blood loss and quantity of blood transfused were noted for abdominal trauma patients. Costs of autotransfusion were then compared to estimated blood bank costs for this group. The Haemonetics Cell Saver autotransfusion device was requested for 592 cases from January 1, 1993, to December 31, 1995. Nonorthopedic trauma cases comprised 25 per cent of all autotransfusion cases. One hundred twenty-six patients had isolated abdominal trauma and had a mean estimated blood loss of 4864 +/- 6070 cc. The average volume of intraoperatively salvaged autologous blood transfused (autotransfusion) per patient was 1547 +/- 2359 cc, or a bank blood equivalent of 6.9 units of packed red blood cells. The total cost of autotransfusion in these patients was $63,252.00. Had bank blood been used instead of salvaged autologous blood, the cost would have been $114,523.00; thus, autotransfusion resulted in a savings of $51,271.00. The use of salvaged autologous blood comprised 45 per cent of total blood transfused. On a case-by-case basis, 75 per cent of cases were cost-effective compared to blood bank costs for an equivalent transfusion. Transfusion of intraoperatively salvaged autologous blood (autotransfusion) is a cost-effective, efficient way to provide blood products to operative trauma patients. PMID:8985070

  15. The National Trauma Research Repository: Ushering in a New ERA of trauma research (Commentary).

    PubMed

    Smith, Sharon L; Price, Michelle A; Fabian, Timothy C; Jurkovich, Gregory J; Pruitt, Basil A; Stewart, Ronald M; Jenkins, Donald H

    2016-09-01

    Despite being the leading cause of death in the United States for individuals 46 years and younger and the primary cause of death among military service members, trauma care research has been underfunded for the last 50 years. Sustained federal funding for a coordinated national trauma clinical research program is required to advance the science of caring for the injured. The Department of Defense is committed to funding studies with military relevance; therefore, it cannot fund pediatric or geriatric trauma clinical trials. Currently, trauma clinical trials are often performed within a single site or a small group of trauma hospitals, and research data are not available for secondary analysis or sharing across studies. Data-sharing platforms encourage transfer of research data and knowledge between civilian and military researchers, reduce redundancy, and maximize limited research funding. In collaboration with the Department of Defense, trauma researchers formed the Coalition for National Trauma Research (CNTR) in 2014 to advance trauma research in a coordinated effort. CNTR's member organizations are the American Association for the Surgery of Trauma (AAST), the American College of Surgeons Committee on Trauma (ACS COT), the Eastern Association for the Surgery of Trauma (EAST), the Western Trauma Association (WTA), and the National Trauma Institute (NTI). CNTR advocates for sustained federal funding for a multidisciplinary national trauma research program to be conducted through a large clinical trials network and a national trauma research repository. The initial advocacy and research activities underway to accomplish these goals are presented. PMID:27496599

  16. Interactions of multiple spark-generated bubbles with phase differences

    NASA Astrophysics Data System (ADS)

    Fong, Siew Wan; Adhikari, Deepak; Klaseboer, Evert; Khoo, Boo Cheong

    2009-04-01

    This paper aims to study the complex interaction between multiple bubbles, and to provide a summary and physical explanation of the phenomena observed during the interaction of two bubbles. High-speed photography is utilized to observe the experiments involving multiple spark-generated bubbles. Numerical simulations corresponding to the experiments are performed using the Boundary Element Method (BEM). The bubbles are typically between 3 and 5 mm in radius and are generated either in-phase (at the same time) or with phase differences. Complex phenomena are observed such as bubble splitting, and high-speed jetting inside a bubble caused by another collapsing bubble nearby (termed the ‘catapult’ effect). The two-bubble interactions are broadly classified in a graph according to two parameters: the relative inter-bubble distance and the phase difference (a new parameter introduced). The BEM simulations provide insight into the physics, such as bubble shape changes in detail, and jet velocities. Also presented in this paper are the experimental results of three bubble interactions. The interesting and complex observations of multiple bubble interaction are important for a better understanding of real life applications in medical ultrasonic treatment and ultrasonic cleaning. Many of the three bubble interactions can be explained by isolating bubble pairs and classifying their interaction according to the graph for the two bubble case. This graph can be a useful tool to predict the behavior of multiple bubble interactions.

  17. 21 CFR 870.4205 - Cardiopulmonary bypass bubble detector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass bubble detector. 870.4205... bypass bubble detector. (a) Identification. A cardiopulmonary bypass bubble detector is a device used to detect bubbles in the arterial return line of the cardiopulmonary bypass circuit. (b)...

  18. 21 CFR 870.4205 - Cardiopulmonary bypass bubble detector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass bubble detector. 870.4205... bypass bubble detector. (a) Identification. A cardiopulmonary bypass bubble detector is a device used to detect bubbles in the arterial return line of the cardiopulmonary bypass circuit. (b)...

  19. 21 CFR 870.4205 - Cardiopulmonary bypass bubble detector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass bubble detector. 870.4205... bypass bubble detector. (a) Identification. A cardiopulmonary bypass bubble detector is a device used to detect bubbles in the arterial return line of the cardiopulmonary bypass circuit. (b)...

  20. 21 CFR 870.4205 - Cardiopulmonary bypass bubble detector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass bubble detector. 870.4205... bypass bubble detector. (a) Identification. A cardiopulmonary bypass bubble detector is a device used to detect bubbles in the arterial return line of the cardiopulmonary bypass circuit. (b)...

  1. 21 CFR 870.4205 - Cardiopulmonary bypass bubble detector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass bubble detector. 870.4205... bypass bubble detector. (a) Identification. A cardiopulmonary bypass bubble detector is a device used to detect bubbles in the arterial return line of the cardiopulmonary bypass circuit. (b)...

  2. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  3. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  4. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  5. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  6. Nonpathologizing trauma interventions in abnormal psychology courses.

    PubMed

    Hoover, Stephanie M; Luchner, Andrew F; Pickett, Rachel F

    2016-01-01

    Because abnormal psychology courses presuppose a focus on pathological human functioning, nonpathologizing interventions within these classes are particularly powerful and can reach survivors, bystanders, and perpetrators. Interventions are needed to improve the social response to trauma on college campuses. By applying psychodynamic and feminist multicultural theory, instructors can deliver nonpathologizing interventions about trauma and trauma response within these classes. We recommend class-based interventions with the following aims: (a) intentionally using nonpathologizing language, (b) normalizing trauma responses, (c) subjectively defining trauma, (d) challenging secondary victimization, and (e) questioning the delineation of abnormal and normal. The recommendations promote implications for instructor self-reflection, therapy interventions, and future research. PMID:26460794

  7. An organized approach to trauma care: legacy of R Adams Cowley.

    PubMed

    Edlich, Richard F; Wish, John R; Britt, L D; Long, William B

    2004-01-01

    The organized approach to caring for trauma patients was introduced into the civilian setting by the innovative pioneer, R Adams Cowley. His system in Maryland has the following 11 components: (1) a State Police Aviation Division that transports patients throughout the State; (2) trained paramedics at the scene of the accident as well as on the helicopter, who will stabilize the patients en route to the Shock Trauma Center; (3) one central dispatch communication center in Baltimore that coordinates information between paramedics and the Trauma Center; (4) a Shock Trauma Center with a helicopter landing zone near the building; (5) trained trauma nurses and trauma technicians to transfer the patient from the helicopter by stretcher to the resuscitation area; if there is a special complication, such as an airway problem, the anesthesiologist and or trauma surgeon may meet the helicopter on the roof as well; (6) trauma surgeons, board-certified in surgery, with a certificate of added qualification in surgical critical care, to treat the critically ill trauma patients in the resuscitation area; (7) a CT scan and portable X-ray units in the admission area that aid in the diagnosis of the injury; (8) operating rooms adjacent to the admission area for repair of trauma injuries; (9) a surgical intensive unit to care for the trauma patient; (10) a team of specialty physicians trained in a wide variety of specialties who work as a multidisciplinary unit caring for the hospitalized patient; and (11) an ambulatory outpatient unit that allows the patient to be followed in the center after discharge. Dr. R Adams Cowley incorporated each of these 11 components for an organized trauma center into Maryland. In recognition of his landmark contributions to trauma, the eight-story Shock Trauma Center was named the R Adams Cowley Shock Trauma Center. There is growing evidence that this organized system in trauma care seen in Maryland must be replicated in every state in our nation. The

  8. [Characteristics of the clinical course and treatment of trauma to various areas of the body combined with facial and jaw injury].

    PubMed

    Deriabin, I I; Kabakov, B D; Luk'ianenko, A V

    1978-09-01

    The cases with combined maxillofacial injuries and traumas of other localization should be considered as cases of a higher risk of septic complications. The specialized stomatologic acid ought to be rendered to such cases with the nearest post-shock period, not later then within 36 hours after trauma. The analysis of 291 clinical observations is set forth. PMID:706107

  9. Wetting of soap bubbles on hydrophilic, hydrophobic, and superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Arscott, Steve

    2013-06-01

    Wetting of sessile bubbles on various wetting surfaces (solid and liquid) has been studied. A model is presented for the apparent contact angle of a sessile bubble based on a modified Young's equation--the experimental results agree with the model. Wetting a hydrophilic surface results in a bubble contact angle of 90° whereas using a superhydrophobic surface one observes 134°. For hydrophilic surfaces, the bubble angle diminishes with bubble radius whereas on a superhydrophobic surface, the bubble angle increases. The size of the plateau borders governs the bubble contact angle, depending on the wetting of the surface.

  10. Time-Dependent Changes in a Shampoo Bubble

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Arun

    2000-10-01

    This article demonstrates the fascinating phenomenon of time evolution of a shampoo bubble through experiments that can be performed by undergraduate students. The changes in thickness of the bubble films with time are followed by UV-vis spectroscopy. The change in chemical composition as a bubble film evolves is monitored by FTIR spectroscopy. It is observed that the change in thickness of a typical shampoo bubble film enclosed in a container is gradual and slow, and the hydrocarbon components of the bubble drain from the bubble much more slowly than water. An additional agent, such as acetonitrile, strikingly alters the dynamics of evolution of such a bubble.

  11. An experimental study on the effect of air bubble injection on the flow induced rotational hub

    SciTech Connect

    Nouri, N.M.; Sarreshtehdari, A.

    2009-01-15

    Modification of shear stress due to air bubbles injection in a rotary device was investigated experimentally. Air bubbles inject to the water flow crosses the neighbor of the hub which can rotate just by water flow shear stresses, in this device. Increasing air void fraction leads to decrease of shear stresses exerted on the hub surface until in high void fractions, the hub motion stopped as observed. Amount of skin friction decrease has been estimated by counting central hub rotations. Wall shear stress was decreased by bubble injection in all range of tested Reynolds number, changing from 50,378 to 71,238, and also by increasing air void fraction from zero to 3.06%. Skin friction reduction more than 85% was achieved in this study as maximum measured volume of air fraction injected to fluid flow while bubbles are distinct and they do not make a gas layer. Significant skin friction reduction obtained in this special case indicate that using small amount of bubble injection causes large amount of skin friction reduction in some rotary parts in the liquid phases like as water. (author)

  12. How are soap bubbles blown? Fluid dynamics of soap bubble blowing

    NASA Astrophysics Data System (ADS)

    Davidson, John; Lambert, Lori; Sherman, Erica; Wei, Timothy; Ryu, Sangjin

    2013-11-01

    Soap bubbles are a common interfacial fluid dynamics phenomenon having a long history of delighting not only children and artists but also scientists. In contrast to the dynamics of liquid droplets in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented. This is possibly because studying soap bubbles is more challenging due to there existing two gas-liquid interfaces. Having the thin-film interface seems to alter the characteristics of the bubble/drop creation process since the interface has limiting factors such as thickness. Thus, the main objective of this study is to determine how the thin-film interface differentiates soap bubbles from gas bubbles and liquid drops. To investigate the creation process of soap bubbles, we constructed an experimental model consisting of air jet flow and a soap film, which consistently replicates the conditions that a human produces when blowing soap bubbles, and examined the interaction between the jet and the soap film using the high-speed videography and the particle image velocimetry.

  13. Heat transfer and bubble dynamics in slurry bubble columns for Fischer-Tropsch clean alternative energy

    NASA Astrophysics Data System (ADS)

    Wu, Chengtian

    With the increasing demand for alternative energy resources, the Fischer-Tropsch (FT) process that converts synthesis gas into clean liquid fuels has attracted more interest from the industry. Slurry bubble columns are the most promising reactors for FT synthesis due to their advantages over other reactors. Successful operation, design, and scale-up of such reactors require detailed knowledge of hydrodynamics, bubble dynamics, and transport characteristics. However, most previous studies have been conducted at ambient pressure or covered only low superficial gas velocities. The objectives of this study were to experimentally investigate the heat transfer coefficient and bubble dynamics in slurry bubble columns at conditions that can mimic FT conditions. The air-C9C 11-FT catalysts/glass beads systems were selected to mimic the physical properties of the gas, liquid, and solid phases at commercial FT operating conditions. A heat transfer coefficient measurement technique was developed, and for the first time, this technique was applied in a pilot scale (6-inch diameter) high pressure slurry bubble column. The effects of superficial gas velocity, pressure, solids loading, and liquid properties on the heat transfer coefficients were investigated. Since the heat transfer coefficient can be affected by the bubble properties (Kumar et al., 1992), in this work bubble dynamics (local gas holdup, bubble chord length, apparent bubble frequency, specific interfacial area, and bubble velocity) were studied using the improved four-point optical probe technique (Xue et al., 2003; Xue, 2004). Because the four-point optical technique had only been successfully applied in a churn turbulent flow bubble column (Xue, 2004), this technique was first assessed in a small scale slurry bubble column in this study. Then the bubble dynamics were studied at the same conditions as the heat transfer coefficient investigation in the same pilot scale column. The results from four-point probe

  14. The biology of trauma: implications for treatment.

    PubMed

    Solomon, Eldra P; Heide, Kathleen M

    2005-01-01

    During the past 20 years, the development of brain imaging techniques and new biochemical approaches has led to increased understanding of the biological effects of psychological trauma. New hypotheses have been generated about brain development and the roots of antisocial behavior. We now understand that psychological trauma disrupts homeostasis and can cause both short and long-term effects on many organs and systems of the body. Our expanding knowledge of the effects of trauma on the body has inspired new approaches to treating trauma survivors. Biologically informed therapy addresses the physiological effects of trauma, as well as cognitive distortions and maladaptive behaviors. The authors suggest that the most effective therapeutic innovation during the past 20 years for treating trauma survivors has been Eye Movement Desensitization and Reprocessing (EMDR), a therapeutic approach that focuses on resolving trauma using a combination of top-down (cognitive) and bottom-up (affect/body) processing. PMID:15618561

  15. Fermi discovers giant bubbles in Milky Way

    NASA Video Gallery

    Using data from NASA's Fermi Gamma-ray Space Telescope, scientists have recently discovered a gigantic, mysterious structure in our galaxy. This feature looks like a pair of bubbles extending above...

  16. Fabrication of magnetic bubble memory overlay

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Self-contained magnetic bubble memory overlay is fabricated by process that employs epitaxial deposition to form multi-layered complex of magnetically active components on single chip. Overlay fabrication comprises three metal deposition steps followed by subtractive etch.

  17. Why do bubbles in Guinness sink?

    NASA Astrophysics Data System (ADS)

    Benilov, E. S.; Cummins, C. P.; Lee, W. T.

    2013-02-01

    Stout beers show the counter-intuitive phenomena of sinking bubbles, while the beer is settling. Previous research suggests that this phenomenon is due to the small size of the bubbles in these beers and the presence of a circulatory current, directed downwards near the side of the wall and upwards in the interior of the glass. The mechanism by which such a circulation is established and the conditions under which it will occur has not been clarified. In this paper, we use simulations and experiments to demonstrate that the flow in a glass of stout beer depends on the shape of the glass. If it narrows downwards (as the traditional stout glass, the pint, does), the flow is directed downwards near the wall and upwards in the interior and sinking bubbles will be observed. If the container widens downwards, the flow is opposite to that described above and only rising bubbles will be seen.

  18. Stretching cells and delivering drugs with bubbles

    NASA Astrophysics Data System (ADS)

    Ohl, Claus-Dieter; Li, Fenfang; Chon U, Chan; Gao, Yu; Xu, Chenjie

    2015-11-01

    In this talk we'll review our work on impulsive cell stretching using cavitation bubbles and magnetic microbubbles for drug delivery. For sufficient short times cells can sustain a much larger areal strain than the yield strain obtained from quasi-static stretching. Experiments with red blood cells show that even then the rupture of the cell is slow process; it is caused by diffusive swelling rather than mechanical violation of the plasma membrane. In the second part we'll discuss bubbles coated with magnetic and drug loaded particles. These bubbles offer an interesting vector for on demand delivery of drugs using mild ultrasound and magnetic fields. We report on basic experiments in microfluidic channels revealing the release of the agent during bubble oscillations and first in vivo validation with a mouse tumor model. Singapore National Research Foundations Competitive Research Program funding (NRF-CRP9-2011-04).

  19. Shapes of Bubbles and Drops in Motion.

    ERIC Educational Resources Information Center

    O'Connell, James

    2000-01-01

    Explains the shape distortions that take place in fluid packets (bubbles or drops) with steady flow motion by using the laws of Archimedes, Pascal, and Bernoulli rather than advanced vector calculus. (WRM)

  20. Universe out of a breathing bubble

    SciTech Connect

    Guendelman, Eduardo I.; Sakai, Nobuyuki

    2008-06-15

    We consider the model of a false-vacuum bubble with a thin wall where the surface energy density is composed of two different components, 'domain-wall' type and 'dust' type, with opposite signs. We find stably oscillating solutions, which we call 'breathing bubbles'. By decay to a lower mass state, such a breathing bubble could become either (i) a child universe or ii) a bubble that 'eats up' the original universe, depending on the sign of the surface energy of the domain-wall component. We also discuss the effect of the finite-thickness corrections to the thin-wall approximation and possible origins of the energy contents of our model.

  1. Bubble collisions and measures of the multiverse

    SciTech Connect

    Salem, Michael P.

    2012-01-01

    To compute the spectrum of bubble collisions seen by an observer in an eternally-inflating multiverse, one must choose a measure over the diverging spacetime volume, including choosing an ''initial'' hypersurface below which there are no bubble nucleations. Previous calculations focused on the case where the initial hypersurface is pushed arbitrarily deep into the past. Interestingly, the observed spectrum depends on the orientation of the initial hypersurface, however one's ability observe the effect rapidly decreases with the ratio of inflationary Hubble rates inside and outside one's bubble. We investigate whether this conclusion might be avoided under more general circumstances, including placing the observer's bubble near the initial hypersurface. We find that it is not. As a point of reference, a substantial appendix reviews relevant aspects of the measure problem of eternal inflation.

  2. Bubble nucleation of spatial vector fields

    NASA Astrophysics Data System (ADS)

    Masoumi, Ali; Xiao, Xiao; Yang, I.-Sheng

    2013-02-01

    We study domain walls and bubble nucleation in a nonrelativistic vector field theory with different longitudinal and transverse speeds of sound. We describe analytical and numerical methods to calculate the orientation-dependent domain-wall tension σ(θ). We then use this tension to calculate the critical bubble shape and show that the tunneling exponent is modified by a factor of sound speed ratio. This implies a big modification in the tunneling rate. The longitudinally oriented domain wall tends to be the heaviest and sometime suffers an instability. It can spontaneously break into zigzag segments. In this case, the critical bubble develops kinks, and its energy, and therefore the tunneling rate, scales with the sound speeds very differently than what would be expected for a smooth bubble.

  3. Universe out of a breathing bubble

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo I.; Sakai, Nobuyuki

    2008-06-01

    We consider the model of a false-vacuum bubble with a thin wall where the surface energy density is composed of two different components, “domain-wall” type and “dust” type, with opposite signs. We find stably oscillating solutions, which we call “breathing bubbles.” By decay to a lower mass state, such a breathing bubble could become either (i) a child universe or ii) a bubble that “eats up” the original universe, depending on the sign of the surface energy of the domain-wall component. We also discuss the effect of the finite-thickness corrections to the thin-wall approximation and possible origins of the energy contents of our model.

  4. Using sound to study bubble coalescence.

    PubMed

    Kracht, W; Finch, J A

    2009-04-01

    Frothers are surfactants used in flotation to aid generation of small bubbles, an effect attributed to coalescence prevention. Studying coalescence at the moment of bubble creation is a challenge because events occur over a time frame of milliseconds. This communication introduces a novel acoustic technique to study coalescence as bubbles are generated at a capillary. The sound signal was linked to bubble formation and coalescence events using high-speed cinematography. The technique has the resolution to detect events that occur within 1-2 ms. The results show that for common flotation frothers and n-alcohols (C(4)-C(8)) coalescence prevention is not simply related to surface activity. A total stress model is used to give a qualitative explanation to the action observed. Results for salt (sodium chloride) are included for comparison. PMID:19128806

  5. Methane bubbling: from speculation to quantification

    NASA Astrophysics Data System (ADS)

    Grinham, A. R.; Dunbabin, M.; Yuan, Z.

    2013-12-01

    Rates of methane bubbling (ebullition) represent a notoriously difficult emission pathway to quantify with highly variable spatial and temporal changes. However, the importance of bubbling fluxes in terms of total emissions is increasingly recognised from a number of different globally relevant natural systems including lakes, reservoirs and wetlands. This represents a critical challenge to current survey efforts to quantify greenhouse gas emissions and reduce the uncertainty associated with bubbling fluxes. A number of different methods have been proposed to overcome this challenge including bubble traps, floating chambers, echo sounders, laser spectrography and camera systems. Each method has relative merits and deficiencies with all trading-off the ability to directly quantify methane and provide spatial and temporal coverage. Here we present a novel method that allows direct measurement of methane bubble concentration as well as the ability to persistently monitor a wide spatial area. Central to the monitoring system is an Autonomous Surface Vessel (ASV) and an Optical Methane Detector (OMD). The ASV is equipped with solar panels and uses electric motors for propulsion to allow persistent environmental monitoring. The OMD has a path length of 1.3 m and 7 Hz sampling so a typical mission of 3 hours at 1 m s-1 covers an area in excess of 10 000 m2 and over 65 000 data points. The system was assessed on four sub-tropical freshwater reservoirs of varying surface area (0.5 to 100 km2), age (2 to 65 y) and catchment land use (40 to 90% natural vegetation cover). Each reservoir had unique challenges in terms of navigation and field conditions to test feasibility of this method. Deployment length varied from a single day to over 4 months to test method durability. In addition to ASV bubble surveys, floating static chambers were deployed to determine diffusive fluxes. Localised instantaneous bubble flux rates within a single reservoir ranged over three orders of

  6. Experimental study on interaction and coalescence of synchronized multiple bubbles

    NASA Astrophysics Data System (ADS)

    Cui, P.; Wang, Q. X.; Wang, S. P.; Zhang, A. M.

    2016-01-01

    Experiments are carried out on the interaction and coalescence of two, three, and four bubbles with approximately the same sizes, distributed evenly and symmetrically. The bubbles are generated simultaneously by electric discharges, using an in-house designed series circuit, and their interaction is captured using a high-speed camera. Particular attentions are paid to if/when coalescence of bubbles happens and the motion of the joined bubbles. Some new features are observed, which depend mainly on the dimensionless distance γbb = dbb/Rmax, where dbb is the inter-bubble distance and Rmax is the maximum bubble radius. For γbb > 2, a jet forms and penetrates each side bubble, directed to the center of the configuration, resulting in a protrusion. Towards the end of collapse, a large portion of bubble gases is compressed into the protrusion from the main part of the toroidal bubble. For γbb < 2, the bubbles coalesce during expansion, and the part of the joined bubble's surface distal from the center of the configuration collapses faster than elsewhere. The experiments show that the oscillation period of multi-bubbles does not change appreciably without coalescence but increases significantly with coalescence. For three bubbles initiated at collinear positions with γbb > 2, the jets that form from the side bubbles are towards the middle, and the middle bubble splits into two parts, moving towards the two side bubbles. For γbb < 2, the side bubbles merge with the middle bubble during expansion, forming an ellipsoid bubble; the joined bubble collapses predominantly from two sides, where two inward jets form towards the end of collapse.

  7. Scalar waves in the Witten bubble spacetime

    SciTech Connect

    Bhawal, B. Raman Research Institute, Bangalore ); Vishveshwara, C.V. )

    1990-09-15

    Massless scalar waves in the Witten bubble spacetime are studied. The timelike and angular parts of the separated Klein-Gordon equation are written in terms of hyperbolic harmonics characterized by the generalized frequency {omega}. The radial equation is cast into the Schroedinger form. The above mathematical formulation is applied to study the scattering problem, the bound states, and the corresponding stability criteria. The results confirm the concept of a bubble wall as a perfectly reflecting expanding sphere.

  8. Beer tapping: dynamics of bubbles after impact

    NASA Astrophysics Data System (ADS)

    Mantič-Lugo, V.; Cayron, A.; Brun, P.-T.; Gallaire, F.

    2015-12-01

    Beer tapping is a well known prank where a bottle of beer is impacted from the top by a solid object, usually another bottle, leading to a sudden foam overflow. A description of the shock-driven bubble dynamics leading to foaming is presented based on an experimental and numerical study evoking the following physical picture. First, the solid impact produces a sudden downwards acceleration of the bottle creating a strong depression in the liquid bulk. The existing bubbles undergo a strong expansion and a sudden contraction ending in their collapse and fragmentation into a large amount of small bubbles. Second, the bubble clouds present a large surface area to volume ratio, enhancing the CO2 diffusion from the supersaturated liquid, hence growing rapidly and depleting the CO2. The clouds of bubbles migrate upwards in the form of plumes pulling the surrounding liquid with them and eventually resulting in the foam overflow. The sudden pressure drop that triggers the bubble dynamics with a collapse and oscillations is modelled by the Rayleigh-Plesset equation. The bubble dynamics from impact to collapse occurs over a time (tb ≃ 800 μs) much larger than the acoustic time scale of the liquid bulk (tac = 2H/c ≃ 80 μs), for the experimental container of height H = 6 cm and a speed of sound around c ≃ 1500 m/s. This scale separation, together with the comparison of numerical and experimental results, suggests that the pressure drop is controlled by two parameters: the acceleration of the container and the distance from the bubble to the free surface.

  9. Astronaut Pedro Duque Watches A Water Bubble

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.

  10. Gravity waves from cosmic bubble collisions

    SciTech Connect

    Salem, Michael P.; Saraswat, Prashant; Shaghoulian, Edgar E-mail: ps88@stanford.edu

    2013-02-01

    Our local Hubble volume might be contained within a bubble that nucleated in a false vacuum with only two large spatial dimensions. We study bubble collisions in this scenario and find that they generate gravity waves, which are made possible in this context by the reduced symmetry of the global geometry. These gravity waves would produce B-mode polarization in the cosmic microwave background, which could in principle dominate over the inflationary background.

  11. Impact of shock wave pattern and cavitation bubble size on tissue damage during ureteroscopic electrohydraulic lithotripsy.

    PubMed

    Vorreuther, R; Corleis, R; Klotz, T; Bernards, P; Engelmann, U

    1995-03-01

    It is known that electrohydraulic lithotripsy (EHL) during ureteroscopy may cause ureteral damage. To evaluate this trauma potential, find its mechanism and make it possible to avoid it, our research employed photographic evaluation, tissue studies, shock wave measurements and disintegration tests. The setup included a 3.3 F probe attached to an experimental generator with adjustable voltages and capacities providing energies from 25 mJ. to 1300 mJ. per pulse. In general, we distinguish between two traumatic mechanisms: (1) After placing the probe directly on the mucosa the rapid initial plasma penetrates the tissue resulting in a small, nonthermal, punched-like defect, whose depth depends on the energy applied. This trauma has minor clinical implications and is avoided by maintaining a minimum safety distance of 1 mm.; (2) According to physics, each plasma is followed by a cavitation bubble. The maximum size of this bubble depends on the energy applied and ranges from 3 mm. (25 mJ) to > 15 mm. (1300 mJ). In proportion to the bubble size, the ureteral wall may be distended or disrupted, even when the probe is not in direct contact with the mucosa. Therefore, the goal should be to obtain a low energy pressure pulse with high disintegration efficacy. Our evaluation of the pressure waves revealed that the selection of a high voltage and a low capacity leads to short and steep "laser-like" pulses. These pulses have a significant higher impact on stone disintegration than the broader pulses of the same energy provided by currently available generators. PMID:7861549

  12. Population Balance Modeling of Polydispersed Bubbly Flow in Continuous-Casting Using Multiple-Size-Group Approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Qi, Fengsheng; Li, Baokuan; Jiang, Maofa; Tsukihashi, Fumitaka

    2015-02-01

    A population balance model based on the multiple-size-group (MUSIG) approach has been developed to investigate the polydispersed bubbly flow inside the slab continuous-casting mold and bubble behavior including volume fraction, breakup, coalescence, and size distribution. The Eulerian-Eulerian approach is used to describe the equations of motion of the two-phase flow. All the non-drag forces (lift force, virtual mass force, wall lubrication force, and turbulent dispersion force) and drag force are incorporated in this model. Sato and Sekiguchi model is used to account for the bubble-induced turbulence. Luo and Svendsen model and Prince and Blanch model are used to describe the bubbles breakup and coalescence behavior, respectively. A 1/4th water model of the slab continuous-casting mold was applied to investigate the distribution and size of bubbles by injecting air through a circumferential inlet chamber which was made of the specially-coated samples of mullite porous brick, which is used for the actual upper nozzle. Against experimental data, numerical results showed good agreement for the gas volume fraction and local bubble Sauter mean diameter. The bubble Sauter mean diameter in the upper recirculation zone decreases with increasing water flow rate and increases with increasing gas flow rate. The distribution of bubble Sauter mean diameter along the width direction of the upper mold increases first, and then gradually decreases from the SEN to the narrow wall. Close agreements between the predictions and measurements demonstrate the capability of the MUSIG model in modeling bubbly flow inside the continuous-casting mold.

  13. Population Balance Modeling of Polydispersed Bubbly Flow in Continuous-Casting Using Multiple-Size-Group Approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Qi, Fengsheng; Li, Baokuan; Jiang, Maofa; Tsukihashi, Fumitaka

    2014-09-01

    A population balance model based on the multiple-size-group (MUSIG) approach has been developed to investigate the polydispersed bubbly flow inside the slab continuous-casting mold and bubble behavior including volume fraction, breakup, coalescence, and size distribution. The Eulerian-Eulerian approach is used to describe the equations of motion of the two-phase flow. All the non-drag forces (lift force, virtual mass force, wall lubrication force, and turbulent dispersion force) and drag force are incorporated in this model. Sato and Sekiguchi model is used to account for the bubble-induced turbulence. Luo and Svendsen model and Prince and Blanch model are used to describe the bubbles breakup and coalescence behavior, respectively. A 1/4th water model of the slab continuous-casting mold was applied to investigate the distribution and size of bubbles by injecting air through a circumferential inlet chamber which was made of the specially-coated samples of mullite porous brick, which is used for the actual upper nozzle. Against experimental data, numerical results showed good agreement for the gas volume fraction and local bubble Sauter mean diameter. The bubble Sauter mean diameter in the upper recirculation zone decreases with increasing water flow rate and increases with increasing gas flow rate. The distribution of bubble Sauter mean diameter along the width direction of the upper mold increases first, and then gradually decreases from the SEN to the narrow wall. Close agreements between the predictions and measurements demonstrate the capability of the MUSIG model in modeling bubbly flow inside the continuous-casting mold.

  14. Trauma care systems in Spain.

    PubMed

    Queipo de Llano, E; Mantero Ruiz, A; Sanchez Vicioso, P; Bosca Crespo, A; Carpintero Avellaneda, J L; de la Torre Prado, M V

    2003-09-01

    Trauma care systems in Spain are provided by the Nacional Health Service in a decentralized way by the seventeen autonomous communities whose process of decentralization was completed in January 2002. Its organisation is similar in all of them. Public sector companies of sanitary emergencies look after the health of citizens in relation to medical and trauma emergencies with a wide range of up to date resources both technical and human. In the following piece there is a description of the emergency response teams divided into ground and air that are responsible for the on site care of the patients in coordination with other public services. They also elaborate the prehospital clinical history that is going to be a valuable piece of information for the teams that receive the patient in the Emergency Hospital Unit (EHU). From 1980 to 1996 the mortality rate per 10.000 vehicles and the deaths per 1.000 accidents dropped significantly: in 1980 6.4 and 96.19% and in 1996, 2.8 and 64.06% respectively. In the intrahospital organisation there are two differentiated areas to receive trauma patients the casualty department and the EHU. In the EHU the severe and multiple injured patients are treated by the emergency hospital doctors; first in the triage or resuscitation areas and after when stabilised they are passed too the observation area or to the Intensive Care Unit (ICU) and from there the EHU or ICU doctors call the appropriate specialists. There is a close collaboration and coordination between the orthopaedic surgeon the EHU doctors and the other specialists surgeons in order to comply with treatment prioritization protocols. Once the patient has been transferred an entire process of assistance continuity is developed based on interdisciplinary teams formed in the hospital from the services areas involved in trauma assistance and usually coordinated by the ICU doctors. There is also mentioned the assistance registry of trauma patients, the ICU professional training

  15. Integral momentum balance on a growing bubble

    NASA Astrophysics Data System (ADS)

    Siedel, S.; Cioulachtjian, S.; Robinson, A. J.; Bonjour, J.

    2013-12-01

    The integral momentum balance on a growing boiling bubble is investigated. All forces acting on the bubble are detailed, and the methods and assumptions used to calculate their integral resultants are discussed. The momentum balance computation is then performed using experimental data of bubbles growing on an artificial nucleation site in a controlled environment. The relative magnitude of each force component is compared, showing negligible dynamic forces, upwards forces composed mainly of the buoyancy and contact pressure components, and downwards forces being exclusively due to surface tension and adhesion. The difficulty encountered in measuring the apparent contact angle due to mirage effects has been highlighted; a new method, fitting numerically simulated bubble profile to the contour measurements has been proposed and used to correct the effects of refraction on the bubble profile determination. As all forces acting on the bubble were measured, it was possible to estimate the residuals of the momentum balance. Their small value validated both the expressions used for the forces and the methodology to evaluate their value.

  16. Topside sounder observations of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Dyson, P. L.; Benson, R. F.

    1978-01-01

    Large scale regions of depleted equatorial ionospheric plasma, called equatorial bubbles, are investigated using topside sounder data. The sounder's unique remote measuring capability enables the magnetic field-aligned nature of the bubbles to be investigated. A search of all available Alouette 2 and ISIS 1 ionograms during nighttime perigee passes near the magnetic equator has revealed a variety of echo signatures associated with bubbles. In addition to a sudden drop in electron density, these signatures usually include in situ spread F and ducted traces. The ducted traces have been used to determine the electron density distribution and to infer changes in ion composition along the magnetic field line within the duct associated with the bubble. In some cases it can be determined that the bubble is asymmetric with respect to the magnetic equator. Even though such features require 3 dimensional models for their explanation, the great field-aligned extent of the bubbles (relative to their cross section) suggests that current theories, which ignore variations along the magnetic field, are still applicable.

  17. Fearless versus fearful speculative financial bubbles

    NASA Astrophysics Data System (ADS)

    Andersen, J. V.; Sornette, D.

    2004-06-01

    Using a recently introduced rational expectation model of bubbles, based on the interplay between stochasticity and positive feedbacks of prices on returns and volatility, we develop a new methodology to test how this model classifies nine time series that have been previously considered as bubbles ending in crashes. The model predicts the existence of two anomalous behaviors occurring simultaneously: (i) super-exponential price growth and (ii) volatility growth, that we refer to as the “fearful singular bubble” regime. Out of the nine time series, we find that five pass our tests and can be characterized as “fearful singular bubbles”. The four other cases are the information technology Nasdaq bubble and three bubbles of the Hang Seng index ending in crashes in 1987, 1994 and 1997. According to our analysis, these four bubbles have developed with essentially no significant increase of their volatility. This paper thus proposes that speculative bubbles ending in crashes form two groups hitherto unrecognized, namely those accompanied by increasing volatility (reflecting increasing risk perception) and those without change of volatility (reflecting an absence of risk perception).

  18. Intensely oscillating cavitation bubble in microfluidics

    NASA Astrophysics Data System (ADS)

    Siew-Wan, Ohl; Tandiono; Klaseboer, Evert; Dave, Ow; Choo, Andre; Claus-Dieter, Ohl

    2015-12-01

    This study reports the technical breakthrough in generating intense ultrasonic cavitation in the confinement of a microfluidics channel [1], and applications that has been developed on this platform for the past few years [2,3,4,5]. Our system consists of circular disc transducers (10-20 mm in diameter), the microfluidics channels on PDMS (polydimethylsiloxane), and a driving circuitry. The cavitation bubbles are created at the gas- water interface due to strong capillary waves which are generated when the system is driven at its natural frequency (around 100 kHz) [1]. These bubbles oscillate and collapse within the channel. The bubbles are useful for sonochemistry and the generation of sonoluminescence [2]. When we add bacteria (Escherichia coli), and yeast cells (Pichia pastoris) into the microfluidics channels, the oscillating and collapsing bubbles stretch and lyse these cells [3]. Furthermore, the system is effective (DNA of the harvested intracellular content remains largely intact), and efficient (yield reaches saturation in less than 1 second). In another application, human red blood cells are added to a microchamber. Cell stretching and rapture are observed when a laser generated cavitation bubble expands and collapses next to the cell [4]. A numerical model of a liquid pocket surrounded by a membrane with surface tension which was placed next to an oscillating bubble was developed using the Boundary Element Method. The simulation results showed that the stretching of the liquid pocket occurs only when the surface tension is within a certain range.

  19. Magnetic susceptibility based magnetic resonance estimation of micro-bubble size for the vertically upward bubbly flow.

    PubMed

    Arbabi, A; Mastikhin, I V

    2012-12-01

    The approach originally developed for the Nuclear Magnetic Resonance analysis of stable micro-bubbles is applied to studies of vertical bubbly flows. A very fast dispersion (diffusion) of water in bubbly flows extends the fast diffusion limit down to short (2-10 ms) measurement times, permitting the use of the simplified analytical expression to extract the micro-bubble size information both in bulk and spatially resolved. The observed strong bubble-induced reduction in T(2)(*) necessitates the use of very short encoding times and pure phase encoding methods to accurately measure the void fraction. There was an expected underestimation of bubble sizes at faster flow rates due to the limitations of the theory derived for small bubble sizes and non-interacting spherical bubbles (low void fractions and slow flow rates). This approach lends itself to studies of bubbly flows and cavitating media characterized by small bubble sizes and low void fractions. PMID:23117260

  20. The Scientometric Bubble Considered Harmful.

    PubMed

    Génova, Gonzalo; Astudillo, Hernán; Fraga, Anabel

    2016-02-01

    This article deals with a modern disease of academic science that consists of an enormous increase in the number of scientific publications without a corresponding advance of knowledge. Findings are sliced as thin as salami and submitted to different journals to produce more papers. If we consider academic papers as a kind of scientific 'currency' that is backed by gold bullion in the central bank of 'true' science, then we are witnessing an article-inflation phenomenon, a scientometric bubble that is most harmful for science and promotes an unethical and antiscientific culture among researchers. The main problem behind the scenes is that the impact factor is used as a proxy for quality. Therefore, not only for convenience, but also based on ethical principles of scientific research, we adhere to the San Francisco Declaration on Research Assessment when it emphasizes "the need to eliminate the use of journal-based metrics in funding, appointment and promotion considerations; and the need to assess research on its own merits rather on the journal in which the research is published". Our message is mainly addressed to the funding agencies and universities that award tenures or grants and manage research programmes, especially in developing countries. The message is also addressed to well-established scientists who have the power to change things when they participate in committees for grants and jobs. PMID:25689931

  1. Bubble Divergences from Twisted Cohomology

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin; Smerlak, Matteo

    2012-06-01

    We consider a class of lattice topological field theories, among which are the weak-coupling limit of 2d Yang-Mills theory and 3d Riemannian quantum gravity, whose dynamical variables are flat discrete connections with compact structure group on a cell 2-complex. In these models, it is known that the path integral measure is ill-defined because of a phenomenon known as `bubble divergences'. In this paper, we extend recent results of the authors to the cases where these divergences cannot be understood in terms of cellular cohomology. We introduce in its place the relevant twisted cohomology, and use it to compute the divergence degree of the partition function. We also relate its dominant part to the Reidemeister torsion of the complex, thereby generalizing previous results of Barrett and Naish-Guzman. The main limitation to our approach is the presence of singularities in the representation variety of the fundamental group of the complex; we illustrate this issue in the well-known case of two-dimensional manifolds.

  2. Bubbling AdS3

    NASA Astrophysics Data System (ADS)

    Martelli, Dario; Morales, Jose F.

    2005-02-01

    In the light of the recent Lin, Lunin, Maldacena (LLM) results, we investigate 1/2-BPS geometries in minimal (and next to minimal) supergravity in D = 6 dimensions. In the case of minimal supergravity, solutions are given by fibrations of a two-torus T2 specified by two harmonic functions. For a rectangular torus the two functions are related by a non-linear equation with rare solutions: AdS3 × S3, the pp-wave and the multi-center string. ``Bubbling'', i.e. superpositions of droplets, is accommodated by allowing the complex structure of the T2 to vary over the base. The analysis is repeated in the presence of a tensor multiplet and similar conclusions are reached, with generic solutions describing D1D5 (or their dual fundamental string-momentum) systems. In this framework, the profile of the dual fundamental string-momentum system is identified with the boundaries of the droplets in a two-dimensional plane.

  3. [Safe:Trac course series of the German Society for Trauma Surgery on patient safety].

    PubMed

    Burghofer, K; Lackner, C K

    2009-08-01

    Based on crew resource management of the airline industry the German Society for Trauma Surgery (Deutsche Gesellschaft für Unfallchirurgie, DGU) was the first scientific community in Germany to develop and implement a training course for patient safety. The S:training courses contain four course formats which focus on the prehospital life support (S:PLS), the operating room (S:OR), the trauma room (S:TR) and the intensive care unit (S:ICU). In the training the importance of the human factor for the management of acute major trauma is developed by means of presentations, training videos, practical training, discussions and realistic case scenarios associated with the special working environment of the participants. A specially developed course manual acts as a work and reference book and course booking is possible at http://www.safe-trac.de. PMID:19644664

  4. Musculoskeletal trauma: the baseball bat.

    PubMed Central

    Bryant, D. D.; Greenfield, R.; Martin, E.

    1992-01-01

    Between July 1987 and December 1990 in Washington, DC, 116 patients sustained 146 fractures and seven dislocations due to an assault with a baseball bat. The ulna was the most common site of trauma (61 fractures), followed by the hand (27 injuries) and the radius (14 injuries). Forty-two of the 146 fractures were significantly displaced and required open reduction and internal fixation to restore satisfactory alignment. Twenty-nine of the 146 fractures were open fractures. Treatment protocol for open fractures consisted of irrigation and debridement, antibiotic therapy, and bone stabilization with either internal or external fixation, or casting. Recognition of the severity of the soft tissue and bone damage is important in the management of musculoskeletal trauma secondary to the baseball bat. Images Figure 1 Figure 2 Figure 3 PMID:1460683

  5. Hypotensive Resuscitation among Trauma Patients

    PubMed Central

    Carrick, Matthew M.; Leonard, Jan; Slone, Denetta S.; Mains, Charles W.

    2016-01-01

    Hemorrhagic shock is a principal cause of death among trauma patients within the first 24 hours after injury. Optimal fluid resuscitation strategies have been examined for nearly a century, more recently with several randomized controlled trials. Hypotensive resuscitation, also called permissive hypotension, is a resuscitation strategy that uses limited fluids and blood products during the early stages of treatment for hemorrhagic shock. A lower-than-normal blood pressure is maintained until operative control of the bleeding can occur. The randomized controlled trials examining restricted fluid resuscitation have demonstrated that aggressive fluid resuscitation in the prehospital and hospital setting leads to more complications than hypotensive resuscitation, with disparate findings on the survival benefit. Since the populations studied in each randomized controlled trial are slightly different, as is the timing of intervention and targeted vitals, there is still a need for a large, multicenter trial that can examine the benefit of hypotensive resuscitation in both blunt and penetrating trauma patients. PMID:27595109

  6. Planned reoperation for severe trauma.

    PubMed Central

    Hirshberg, A; Mattox, K L

    1995-01-01

    OBJECTIVE: The authors review the physiologic basis, indications, techniques, and results of the planned reoperation approach to severe trauma. SUMMARY BACKGROUND DATA: Multivisceral trauma and exsanguinating hemorrhage lead to hypothermia, coagulopathy, and acidosis. Formal resections and reconstructions in these unstable patients often result in irreversible physiologic insult. A new surgical strategy addresses these physiologic concerns by staged control and repair of the injuries. METHOD: The authors review the literature. RESULTS: Indications for planned reoperation include avoidance of irreversible physiologic insult and inability to obtain direct hemostasis or formal abdominal closure. The three phases of the strategy include initial control, stabilization, and delayed reconstruction. Various techniques are used to obtain rapid temporary control of bleeding and hollow visceral spillage. Hypothermia, coagulopathy, and the abdominal compartment syndrome are major postoperative concerns. Definitive repair of the injuries is undertaken after stabilization. CONCLUSION: Planned reoperation offers a simple and effective alternative to the traditional surgical management of complex or multiple injuries in critically wounded patients. PMID:7618965

  7. Computed tomography of splenic trauma

    SciTech Connect

    Jeffrey, R.B.; Laing, F.C.; Federle, M.P.; Goodman, P.C.

    1981-12-01

    Fifty patients with abdominal trauma and possible splenic injury were evaluated by computed tomography (CT). CT correctly diagnosed 21 of 22 surgically proved traumatic sesions of the spleen (96%). Twenty-seven patients had no evidence of splenic injury. This was confirmed at operation in 1 patient and clinical follow-up in 26. There were one false negative and one false positive. In 5 patients (10%), CT demonstrated other clinically significant lesions, including hepatic or renal lacerations in 3 and large retroperitoneal hematomas in 2. In adolescents and adults, CT is an accurate, noninvasive method of rapidly diagnosing splenic trauma and associated injuries. Further experience is needed to assess its usefulness in evaluating splenic injuries in infants and small children.

  8. Musculoskeletal trauma service in Thailand.

    PubMed

    Mahaisavariya, Banchong

    2008-10-01

    Trauma is becoming a leading cause of death in most of the low-income and middle-income countries worldwide. The growing number of motor vehicles far surpasses the development and upkeep of the road and highway networks, traffic laws, and driver training and licensing. In Thailand, road traffic injuries have become the second leading cause of death and morbidity overall since 1990. The lack of improvement to existing roadways, implementation of traffic safety and ridership laws including seatbelt regulations, and poor emergency medical assistance support systems all contribute to these statistics. An insufficient number and inequitable distribution of healthcare professionals is also a national problem, especially at the district level. Prehospital care of trauma patients remains insufficient and improvements at the national level are suggested. PMID:18629597

  9. Conservative treatment of liver trauma.

    PubMed

    Andersson, R; Bengmark, S

    1990-01-01

    A marked change toward a more conservative approach in the treatment of abdominal trauma has been noted, especially during the last decade. This change in regimen was first seen in the handling of splenic trauma, initiated by pediatric surgeons. Later, the concept of conservative management was also introduced among adults and it is now widely accepted. Here, an almost mandatory splenectomy has been replaced by attempts at various forms of splenic salvage. The development followed an initial report by King and Shumacker in 1952 on an increased susceptibility to overwhelming sepsis in splenectomized children, findings which later also were demonstrated among adults. It has also been shown that the bleeding from intraparenchymal lesions with an intact splenic capsule or minor capsular tears frequently ceases spontaneously, hereby making nonoperative management possible in selective cases. PMID:2200210

  10. Hypotensive Resuscitation among Trauma Patients.

    PubMed

    Carrick, Matthew M; Leonard, Jan; Slone, Denetta S; Mains, Charles W; Bar-Or, David

    2016-01-01

    Hemorrhagic shock is a principal cause of death among trauma patients within the first 24 hours after injury. Optimal fluid resuscitation strategies have been examined for nearly a century, more recently with several randomized controlled trials. Hypotensive resuscitation, also called permissive hypotension, is a resuscitation strategy that uses limited fluids and blood products during the early stages of treatment for hemorrhagic shock. A lower-than-normal blood pressure is maintained until operative control of the bleeding can occur. The randomized controlled trials examining restricted fluid resuscitation have demonstrated that aggressive fluid resuscitation in the prehospital and hospital setting leads to more complications than hypotensive resuscitation, with disparate findings on the survival benefit. Since the populations studied in each randomized controlled trial are slightly different, as is the timing of intervention and targeted vitals, there is still a need for a large, multicenter trial that can examine the benefit of hypotensive resuscitation in both blunt and penetrating trauma patients. PMID:27595109

  11. Assessment and Availability of Trauma Care Services in a District Hospital of South India; A Field Observational Study

    PubMed Central

    Uthkarsh, Pallavi Sarji; Gururaj, Gopalkrishna; Reddy, Sai Sabharish; Rajanna, Mandya Siddalingaiah

    2016-01-01

    Objective: To assess the availability of trauma care services in a district referral hospital of Southern India. Methods: This was a cross-sectional study being performed during 2013 in a tertiary healthcare centre in Southern Indian. A detailed assessment of trauma care services was done in a 400 bed speciality hospital which is an apex referral hospital in the public health system using a check list based on WHO guidelines for evaluation of essential trauma care services, along with in-depth interviews of hospital stake holders and key informants. Results: The hospital had physical infrastructure in terms of emergency room, inpatient wards, operation theatres, intensive care unit and blood bank facilities. The recently constructed designated building for trauma care services was not operational and existing facilities were used beyond capacity. A designated trauma team was lacking and speciality services for managing polytrauma were deficient and thus, existing personnel were performing multiple tasks. Neurosurgeons and rehabilitative nursing staff were unavailable, and a radiographer was not available on a 24/7 basis. Existing nursing personnel had not received any formal training in trauma care and standard operating protocols were not available for trauma care. Resources for acute resuscitation were partially adequate. The hospital lacked adequate resources to manage head, abdomen, chest and spine injuries, and most of the polytrauma cases were referred to nearby city hospitals. Conclusion: District hospital, the only referral hospital in public health system for trauma victims of that region, had inadequate resources to manage trauma victims, which was probably responsible for delay in trauma care, improper referrals, high cost of care and poor outcomes. PMID:27331066

  12. Changing approach to psychological trauma.

    PubMed

    2016-07-01

    As the Battle of the Somme's anniversary looms and post-traumatic stress disorder continues to be an enduring issue for the armed forces, what lessons in treating mental illness can we learn from the first world war? Claire Chatterton, writing in Mental Health Practice, examines the changes to treating psychological trauma during the Somme by health professionals who had rarely worked with people experiencing mental health problems. PMID:27380708

  13. Current Epidemiology of Genitourinary Trauma

    PubMed Central

    McGeady, James B.; Breyer, Benjamin N.

    2013-01-01

    Synopsis This article reviews recent publications evaluating the current epidemiology of urologic trauma. It begins by providing a brief explanation of databases that have been recently used to study this patient population, then proceeds to discuss each genitourinary organ individually, discussing the most relevant and up to date information published for each one. The conclusion of the article briefly discusses possible future research and development areas pertaining to the topic. PMID:23905930

  14. Trauma systems, shock, and resuscitation.

    PubMed

    Fallon, W F

    1993-01-01

    This review of early care covers issues pertaining to the analysis of system function, prehospital intravascular volume replacement, diagnosis of proximity vascular injury, the role of emergency thoracotomy, and the value of transesophageal echocardiography. The first six articles deal with various aspects of system function, from triage to analysis of outcome. The next series of articles reviews work in progress evaluating optimal fluid for resuscitation. Hypertonic saline and dextran combinations have been shown to restore vital signs better than isotonic solutions; they are safe, require smaller volumes, and may improve head injury outcome. Danger lies in the restoration of perfusion without hemorrhage control. Two articles on emergency thoracotomy review the indications and outcome in blunt and penetrating trauma. Survival in blunt trauma is virtually zero. An article and two editorials summarize state of the art for diagnosis and treatment of proximity vascular injury. Two articles describe the potential use of the new technique of transesophageal echocardiography. This new modality has not formed a solid indication at present and can be considered investigational in trauma care. PMID:7584006

  15. Joseph Beuys: trauma and catharsis.

    PubMed

    Ottomann, C; Stollwerck, P L; Maier, H; Gatty, I; Muehlberger, T

    2010-12-01

    Joseph Beuys was one of the most significant artists of the 20th century. He was a gunner and radio operator in the German Air Force during World War II, and was severely injured several times. In March 1943 he had a life-changing experience after the dive bomber he was assigned to crashed in the Crimean peninsula. This trauma influenced Beuys' entire artistic career, and is known in art history as the 'Tartar Legend' or 'Tartar Myth'. Profoundly affected by the crash, the severe trauma, the near-death experience and his rescue, which he perceived as a "rebirth", Beuys no longer saw himself, other people or society as a whole in the same way as previously. With his new consciousness, he ignored boundaries and created visions whereby all mankind could experience the healing he had undergone. Beuys did not bring society far enough for the turning point towards "the healing of the world" to be visible, yet today it is important to keep his work alive as a record of his extraordinary strength, which arose from trauma and severe injury, and was carried by a passionate commitment to mankind and to life itself. PMID:21393290

  16. Financial Bubbles, Real Estate Bubbles, Derivative Bubbles, and the Financial and Economic Crisis

    NASA Astrophysics Data System (ADS)

    Sornette, Didier; Woodard, Ryan

    The financial crisis of 2008, which started with an initially well-defined epicenter focused on mortgage backed securities (MBS), has been cascading into a global economic recession, whose increasing severity and uncertain duration has led and is continuing to lead to massive losses and damage for billions of people. Heavy central bank interventions and government spending programs have been launched worldwide and especially in the USA and Europe, with the hope to unfreeze credit and bolster consumption. Here, we present evidence and articulate a general framework that allows one to diagnose the fundamental cause of the unfolding financial and economic crisis: the accumulation of several bubbles and their interplay and mutual reinforcement have led to an illusion of a "perpetual money machine" allowing financial institutions to extract wealth from an unsustainable artificial process. Taking stock of this diagnostic, we conclude that many of the interventions to address the so-called liquidity crisis and to encourage more consumption are ill-advised and even dangerous, given that precautionary reserves were not accumulated in the "good times" but that huge liabilities were. The most "interesting" present times constitute unique opportunities but also great challenges, for which we offer a few recommendations.

  17. The Link between Childhood Trauma and Mental Illness: Effective Interventions for Mental Health Professionals.

    ERIC Educational Resources Information Center

    Everett, Barbara; Gallop, Ruth

    Many people seeking help from the mental health system have histories of childhood trauma from sexual and physical abuse. Little literature is available for counselors, mental health workers, and other professionals on the topic of specialized therapy for abuse survivors. Counselors have a crucial role in helping these clients heal and recover.…

  18. A Call to Action: Responding to Large-Scale Disasters, Catastrophes, and Traumas

    ERIC Educational Resources Information Center

    Parham, William D.

    2011-01-01

    The ascendance of large-scale disasters, catastrophes, and traumas as a concentrated focus of academic inquiry in counseling psychology is timely, and this special issue and subsequent investigations represent welcome areas of scholarship. The observations and comments herein salute the authors for responding to a post-Katrina discovery by…

  19. The Role of Cumulative Trauma, Betrayal, and Appraisals in Understanding Trauma Symptomatology.

    PubMed

    Martin, Christina Gamache; Cromer, Lisa Demarni; Deprince, Anne P; Freyd, Jennifer J

    2013-03-01

    Poor psychological outcomes are common among trauma survivors, yet not all survivors experience adverse sequelae. The current study examined links between cumulative trauma exposure as a function of the level of betrayal (measured by the relational closeness of the survivor and the perpetrator), trauma appraisals, gender, and trauma symptoms. Participants were 273 college students who reported experiencing at least one traumatic event on a trauma checklist. Three cumulative indices were constructed to assess the number of different types of traumas experienced that were low (LBTs), moderate (MBTs), or high in betrayal (HBTs). Greater trauma exposure was related to more symptoms of depression, dissociation, and PTSD, with exposure to HBTs contributing the most. Women were more likely to experience HBTs than men, but there were no gender differences in trauma-related symptoms. Appraisals of trauma were predictive of trauma-related symptoms over and above the effects explained by cumulative trauma at each level of betrayal. The survivor's relationship with the perpetrator, the effect of cumulative trauma, and their combined impact on trauma symptomatology are discussed. PMID:23542882

  20. Real-time on-line ultrasonic monitoring for bubbles in ceramic 'slip' in pottery pipelines.

    PubMed

    Yim, Geun Tae; Leighton, Timothy G

    2010-01-01

    When casting ceramic items in potteries, liquid 'slip' is passed from a settling tank, through overhead pipelines, before being pumped manually into the moulds. It is not uncommon for bubbles to be introduced into the slip as it passes through the complex piping network, and indeed the presence of bubbles is a major source of financial loss to the ceramics industry worldwide. This is because the bubbles almost always remain undetected until after the ceramic items have been fired in a kiln, during which process bubbles expand and create unwanted holes in the pottery. Since there it is usually an interval of several hours between the injection of the slip into the moulds, and the inspection of the items after firing, such bubble generation goes undetected on the production line during the manufacture of hundreds or even thousands of ceramic units. Not only does this mean hours of wasted staff time, power consumption and production line time: the raw material which makes up these faulty items cannot even be recycled, as fired ceramic cannot be converted back into slip. Currently, the state-of-the-art method for detecting bubbles in the opaque ceramic slip is slow and invasive, can only be used off-line, and requires expertise which is rarely available. This paper describes the invention, engineering and in-factory testing across Europe of an ultrasonic system for real-time monitoring for the presence of bubbles in casting slip. It interprets changes in the scattering statistics accompanying the presence of the bubbles, the latter being detected through perturbations in the received signal when a narrow-band ultrasonic probing wave is transmitted through the slip. The device can be bolted onto the outside of the pipeline, or used in-line. It is automated, and requires no special expertise. The acoustic problems which had to be solved were severe, and included making the system capable of monitoring the slip regardless of the material of pipe (plastic, steel, etc.) and

  1. Rest frame of bubble nucleation

    SciTech Connect

    Garriga, Jaume; Kanno, Sugumi; Tanaka, Takahiro E-mail: sugumi@cosmos.phy.tufts.edu

    2013-06-01

    Vacuum bubbles nucleate at rest with a certain critical size and subsequently expand. But what selects the rest frame of nucleation? This question has been recently addressed in [1] in the context of Schwinger pair production in 1+1 dimensions, by using a model detector in order to probe the nucleated pairs. The analysis in [1] showed that, for a constant external electric field, the adiabatic ''in'' vacuum of charged particles is Lorentz invariant, (and in this) case pairs tend to nucleate preferentially at rest with respect to the detector. Here, we sharpen this picture by showing that the typical relative velocity between the frame of nucleation and that of the detector is at most of order Δv ∼ S{sub E}{sup −1/3} << 1. Here, S{sub E} >> 1 is the action of the instanton describing pair creation. The bound Δv coincides with the minimum uncertainty in the velocity of a non-relativistic charged particle embedded in a constant electric field. A velocity of order Δv is reached after a time interval of order Δt ∼ S{sub E}{sup −1/3}r{sub 0} << r{sub 0} past the turning point in the semiclassical trajectory, where r{sub 0} is the size of the instanton. If the interaction takes place in the vicinity of the turning point, the semiclassical description of collision does not apply. Nonetheless, we find that even in this case there is still a strong asymmetry in the momentum transferred from the nucleated particles to the detector, in the direction of expansion after the turning point. We conclude that the correlation between the rest frame of nucleation and that of the detector is exceedingly sharp.

  2. Dynamics and switching processes for magnetic bubbles in nanoelements

    SciTech Connect

    Moutafis, C.; Bland, J. A. C.; Komineas, S.

    2009-06-01

    We study numerically the dynamics of a magnetic bubble in a disk-shaped magnetic element which is probed by a pulse of a magnetic field gradient. Magnetic bubbles are nontrivial magnetic configurations which are characterized by a topological (skyrmion) number N and they have been observed in mesoscopic magnetic elements with strong perpendicular anisotropy. For weak fields we find a skew deflection of the axially symmetric N=1 bubble and a subsequent periodic motion around the center of the dot. This gyrotropic motion of the magnetic bubble is shown here for the first time. Stronger fields induce switching of the N=1 bubble to a bubble which contains a pair of Bloch lines and has N=0. The N=0 bubble can be switched back to a N=1 bubble by applying again an external field gradient. Detailed features of the unusual bubble dynamics are described by employing the skyrmion number and the moments of the associated topological density.

  3. Validation of Bubble Dynamics Equation for a Nano-scale Bubble via Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Tsuda, S.; Hyodo, H.; Watanabe, S.

    2015-12-01

    For a validation of the application of conventional bubble dynamics to a nano-scale bubble behaviour, we simulated a nano-scale bubble collapsing or vibration by Molecular Dynamics (MD) method and compared the result with the solution of Rayleigh-Plesset (RP) equation and that of Confined RP (CRP) equation, whose boundary condition was corrected to be consistent with that of MD simulation. As a result, a good coincidence was obtained between MD, RP, and CRP in the case of one-component fluid. In addition, also a good correspondence was obtained particularly in the comparison between MD and CRP in the case of two-component fluid containing non-condensable gas. The present results indicate that conventional bubble dynamics equation can be applied even to a nano-scale tiny bubble.

  4. Thyroid crisis in the maxillofacial trauma patient.

    PubMed

    Weinstock, Robert J; Lewis, Tashorn; Miller, Jared; Clarkson, Earl I

    2014-11-01

    Thyroid crisis, also known as thyroid storm, is a rare complication of thyrotoxicosis that results in a hypermetabolic and hyperadrenergic state. This condition requires prompt recognition and treatment because the mortality from thyroid crisis approaches 30%. Thyrotoxicosis alone will usually not progress to thyroid crisis. Thyroid crisis will typically be precipitated by some concomitant event such as infection, iodine-containing contrast agents, medications such as amiodarone, pregnancy, or surgery. Trauma is a rare precipitator of thyroid crisis. Several published studies have reported thyroid crisis resulting from blunt or penetrating neck trauma. Significant systemic trauma, such as motor vehicle accidents, has also been reported to precipitate thyroid crisis. It is very unusual for minor trauma to precipitate thyroid crisis. In the present study, we report the case of a patient who had incurred relatively minor maxillofacial trauma and developed thyroid crisis 2 weeks after the initial trauma. PMID:25085805

  5. Assessing sexual trauma histories in homeless women.

    PubMed

    Weinrich, Sally; Hardin, Sally; Glaser, Dale; Barger, Mary; Bormann, Jill; Lizarraga, Cabiria; Terry, Micheal; Criscenzo, Jeeni; Allard, Carolyn B

    2016-01-01

    Almost 1 out of every 3 homeless women (32%) in the United States, United Kingdom, and Australia has experienced childhood sexual trauma. We assessed lifetime sexual trauma histories among 29 homeless women from three Southern California community sites: one residential safe house and two safe parking areas. More than half of the women (54%) reported a history of sexual trauma. That rate was higher (86%) among women living at the safe home than among women staying at the safe parking sites (only 42%). All four of the women who had served in the military reported having experienced military sexual trauma. The high percentages of sexual trauma found in homeless women highlight the need for effective interventions for sexual trauma. PMID:26583457

  6. Primary and secondary skeletal blast trauma.

    PubMed

    Christensen, Angi M; Smith, Victoria A; Ramos, Vanessa; Shegogue, Candie; Whitworth, Mark

    2012-01-01

    This study examines primary (resulting from blast wave) and secondary (resulting from disintegrated, penetrating fragments) blast trauma to the skeleton. Eleven pigs were exposed to semi-controlled blast events of varying explosive type, charge size, and distance, including some cases with shrapnel. Skeletal trauma was found to be extensive, presenting as complex, comminuted fractures with numerous small, displaced bone splinters and fragments. Traumatic amputation of the limbs and cranium was also observed. Fractures were concentrated in areas nearer the blast, but there was generally no identifiable point of impact. Fractures were more random in appearance and widespread than those typically associated with gunshot or blunt force injury events. These patterns appear to be uniquely associated with blast trauma and may therefore assist forensic anthropologists and other forensic examiners in the interpretation of skeletal trauma by enabling them to differentiate between blast trauma and trauma resulting from some other cause. PMID:21981586

  7. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    NASA Astrophysics Data System (ADS)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  8. Prehospital advanced trauma life support for critical blunt trauma victims.

    PubMed

    Cwinn, A A; Pons, P T; Moore, E E; Marx, J A; Honigman, B; Dinerman, N

    1987-04-01

    The ability of paramedics to deliver advanced trauma life support (ATLS) in an expedient fashion for victims of trauma has been strongly challenged. In this study, the records of 114 consecutive victims of blunt trauma who underwent laparotomy or thoracotomy were reviewed. Prehospital care was rendered by paramedics operating under strict protocols. The mean response time (minutes +/- SEM) to the scene was 5.6 +/- 0.27. On-scene time was 13.9 +/- 0.62. The time to return to the hospital was 8.0 +/- 0.4. On-scene time included assessing hazards at the scene, patient extrication, spine immobilization (n = 98), application of oxygen (n = 94), measurement of vital signs (n = 114), splinting of 59 limbs, and the following ATLS procedures: endotracheal intubation (n = 31), IV access (n = 106), ECG monitoring (n = 69), procurement of blood for tests including type and cross (n = 58), and application of a pneumatic antishock garment (PASG) (n = 31). On-scene times were analyzed according to the number of ATLS procedures performed: insertion of one IV line (n = 46), 14.8 +/- 1.03 minutes; two IV lines (n = 28), 13.4 +/- 0.92; one IV line plus intubation (n = 7), 14.0 +/- 2.94; two IV lines plus intubation (n = 9), 17.0 +/- 2.38; and two IV lines plus intubation plus PASG (n = 13), 12.4 +/- 1.36. Of the 161 IV attempts, 94% were completed successfully. Of 36 attempts at endotracheal intubation, 89% were successful.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3826807

  9. 76 FR 31453 - Special Conditions: Gulfstream Model GVI Airplane; Single-Occupant Side-Facing Seats

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... FR 291). No comments were received and these ] special conditions are adopted as proposed... energy absorbing protective padding (foam or equivalent), such as Ensolite. 3. Thoracic Trauma: Thoracic trauma index (TTI) injury criterion must be substantiated by dynamic test or by rational analysis...

  10. Herds of methane chambers grazing bubbles

    NASA Astrophysics Data System (ADS)

    Grinham, Alistair; Dunbabin, Matthew

    2014-05-01

    Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique

  11. Bubble transport in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Owoeye, Eyitayo James

    Understanding the behavior of bubbles in subcooled flow boiling is important for optimum design and safety in several industrial applications. Bubble dynamics involve a complex combination of multiphase flow, heat transfer, and turbulence. When a vapor bubble is nucleated on a vertical heated wall, it typically slides and grows along the wall until it detaches into the bulk liquid. The bubble transfers heat from the wall into the subcooled liquid during this process. Effective control of this transport phenomenon is important for nuclear reactor cooling and requires the study of interfacial heat and mass transfer in a turbulent flow. Three approaches are commonly used in computational analysis of two-phase flow: Eulerian-Lagrangian, Eulerian-Eulerian, and interface tracking methods. The Eulerian- Lagrangian model assumes a spherical non-deformable bubble in a homogeneous domain. The Eulerian-Eulerian model solves separate conservation equations for each phase using averaging and closure laws. The interface tracking method solves a single set of conservation equations with the interfacial properties computed from the properties of both phases. It is less computationally expensive and does not require empirical relations at the fluid interface. Among the most established interface tracking techniques is the volume-of-fluid (VOF) method. VOF is accurate, conserves mass, captures topology changes, and permits sharp interfaces. This work involves the behavior of vapor bubbles in upward subcooled flow boiling. Both laminar and turbulent flow conditions are considered with corresponding pipe Reynolds number of 0 -- 410,000 using a large eddy simulation (LES) turbulence model and VOF interface tracking method. The study was performed at operating conditions that cover those of boiling water reactors (BWR) and pressurized water reactors (PWR). The analysis focused on the life cycle of vapor bubble after departing from its nucleation site, i.e. growth, slide, lift-off, rise

  12. About the equilibrium speed of sound in a liquid with gas-vapor bubbles

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Gubaidullina, D. D.; Fedorov, Yu V.

    2016-01-01

    The general expression of an equilibrium velocity of a sound in vapor-gas-liquid mixtures is presented and influence of concentration of vapor and a volume content of bubbles on the received expression is analyzed. In special cases, for gas-liquid and vapor-liquid mixtures expressions of an equilibrium velocity are presented and the satisfactory consent of the received expressions with known experimental data is discovered.

  13. Self-structured, current aperture approach for bubble memory

    NASA Technical Reports Server (NTRS)

    Nelson, G. L.; Krahn, D. R.; Dean, R. H.; Paul, M. C.; Tolman, C. H.

    1985-01-01

    An approach to magnetic bubble memory which incorporates dual conductor current access drive with a self-structured (strongly interacting) bubble lattice is described. This is expected to provide higher operating speeds, defect tolerance, and higher bit density for a given bubble size as compared to present field access bubble devices. Bubble spacings of 2.5 bubble diameters are projected for a prototype device. Experimental work on device components including detectors, major/minor loops, and gates is described. Defect tolerance has also been demonstrated.

  14. MLS, a magnetic logic simulator for magnetic bubble logic design

    NASA Astrophysics Data System (ADS)

    Kinsman, Thomas B.; Cendes, Zoltan J.

    1987-04-01

    A computer program that simulates the logic functions of magnetic bubble devices has been developed. The program uses a color graphics screen to display the locations of bubbles on a chip during operation. It complements the simulator previously developed for modeling bubble devices on the gate level [Smith et al., IEEE Trans. Magn. MAG-19, 1835 (1983); Smith and Kryder, ibid. MAG-21, 1779 (1985)]. This new tool simplifies the design and testing of bubble logic devices, and facilitates the development of complicated LSI bubble circuits. The program operation is demonstrated with the design of an in-stream faulty loop compensator using bubble logic.

  15. Detecting dark matter with scintillating bubble chambers

    NASA Astrophysics Data System (ADS)

    Zhang, Jianjie; Dahl, C. Eric; Jin, Miaotianzi; Baxter, Daniel

    2016-03-01

    Threshold based direct WIMP dark matter detectors such as the superheated bubble chambers developed by the PICO experiment have demonstrated excellent electron-recoil and alpha discrimination, excellent scalability, ease of change of target fluid, and low cost. However, the nuclear-recoil like backgrounds have been a limiting factor in their dark matter sensitivity. We present a new type of detector, the scintillating bubble chamber, which reads out the scintillation pulse of the scattering events as well as the pressure, temperature, acoustic traces, and bubble images as a conventional bubble chamber does. The event energy provides additional handle to discriminate against the nuclear-recoil like backgrounds. Liquid xenon is chosen as the target fluid in our prototyping detector for its high scintillation yield and suitable vapor pressure which simplifies detector complexity. The detector can be used as an R&D tool to study the backgrounds present in the current PICO bubble chambers or as a prototype for standalone dark matter detectors in the future. Supported by DOE Grant DE-SC0012161.

  16. Sonoluminescence: Why fiery bubbles have eternal life

    NASA Astrophysics Data System (ADS)

    Lohse, Detlef; Brenner, Michael; Hilgenfeldt, Sascha

    1996-11-01

    Sound driven gas bubbles in water can emit light pulses. This phenomenon is called sonoluminescence (SL). Two different phases of single bubble SL have been proposed: diffusively stable and diffusively unstable SL. Phase diagrams are presented in the gas concentration vs forcing pressure state space and also in the ambient radius vs forcing pressure state space. These phase diagrams are based on the thresholds for energy focusing in the bubble and on those for (i) shape instabilities and (ii) diffusive instabilities. Stable SL only occurs in a tiny parameter window of large forcing pressure amplitude Pa ~ 1.2 - 1.5atm and low gas concentration of less than 0.4% of saturation. The results quantitatively agree with experimental results of Putterman's UCLA group on argon, but not on air. However, air bubbles and other gas mixtures can also successfully be treated in this approach if in addition (iii) chemical instabilities are considered. The essential feature is the removal of almost all nitrogen and oxygen from the bubble through reaction to soluble compounds (i.e. NOx or NH_3).

  17. Turbulent shear control with oscillatory bubble injection

    NASA Astrophysics Data System (ADS)

    Park, Hyun Jin; Oishi, Yoshihiko; Tasaka, Yuji; Murai, Yuichi; Takeda, Yasushi

    2009-02-01

    It is known that injecting bubbles into shear flow can reduce the frictional drag. This method has advantages in comparison to others in simplicity of installation and also in environment. The amount of drag reduction by bubbles depends on the void fraction provided in the boundary layer. It means, however, that certain power must be consumed to generate bubbles in water, worsening the total power-saving performance. We propose oscillatory bubble injection technique to improve the performance in this study. In order to prove this idea of new type of drag reduction, velocity vector field and shear stress profile in a horizontal channel flow are measured by ultrasonic velocity profiler (UVP) and shear stress transducer, respectively. We measure the gas-liquid interface from the UVP signal, as well. This compound measurement with different principles leads to deeper understanding of bubble-originated drag reduction phenomena, in particular for unsteady process of boundary layer alternation. At these experiments, the results have demonstrated that the intermittency promotes the drag reduction more than normal continuous injection for the same void fraction supplied.

  18. Mechanics of Bubbles in Sludges and Slurries

    SciTech Connect

    Gauglitz, Phillip A.; Denn, Morton M.; Rossen, William R.

    1999-06-01

    This project is focusing on key issues associated with the flammable gas safety hazard and its role in safe storage and in future waste operations such as salt-well pumping, waste transfers, and sluicing and retrieval of tank waste. The purpose of this project is to develop a basic understanding of how single bubbles (of flammable gases) behave in representative waste simulants and then develop a framework for predicting macroscopic full-tank behavior from the underlying single-bubble behavior. The specific objectives of this research are as follows: 1. quantitatively describe the interaction of bubbles with waste materials (both sludges and slurries) to understand the physical mechanisms by which barometric pressure changes give rise to a hysteresis between level and pressure 2. develop improved methods for estimating retained gas by properly accounting for the interactions of bubbles with the waste 3. determine how to estimate waste physical properties from the observed hysteresis and the limitations of these estimates 4. determine how barometric pressure fluctuations induce slow upward migration and release of gas bubbles.

  19. Numerical simulation of mass transfer in the liquid phase of the bubble layer of a thermal deaerator

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Misbakhov, R. Sh.; Lapteva, E. A.

    2015-12-01

    On the basis of one-dimensional diffusion model of the flow structure and boundary layer theory, a method for calculating the mass transfer of dissolved oxygen in the liquid phase of the bubble layer of a thermal deaerator is developed. Mass transfer with the bulk source of mass has been considered, wherein the basic parameter is mass-transfer coefficient. A model of pseudo laminar boundary layer on the bubble surface is proposed, and the possibility of calculating of mass-transfer coefficient from bubbles in the mass source of diffusion model is shown, taking into account the gas content and external turbulence. A comparison of the calculation results of mass-transfer coefficient is given from the bubbles with known experimental data. It is shown that taking into account gas content results in an increase of the mass-transfer coefficient by 2-4 times. Expressions for calculations of gas content, dynamic speed, and inverse stirring coefficient in the liquid phase of the bubble layer are presented. In the special case, transition from the diffusion model of the flow structure to cell model is made, and comparison of the calculation results on the concentration of oxygen in water at the output of DSA-300 bubbling thermal deaerator with experimental data is performed. The developed mathematical model and calculation algorithm can be used in the design, diagnosis, and modernization of thermal deaerators.

  20. Structure and dynamics of the wake of bubbles and its relevance for bubble interaction

    NASA Astrophysics Data System (ADS)

    Brücker, Christoph

    1999-07-01

    The flow in the wake of single and two interacting air bubbles freely rising in water is studied experimentally using digital-particle-image-velocimetry in combination with high-speed recording. The experiments focus on ellipsoidal bubbles of diameter of about 0.4-0.8 cm which show spiraling, zigzagging, and rocking motion during their rise in water, which was seeded with small tracer particles for flow visualization. Under counterflow conditions in the vertical channel, the bubbles are retained in the center of the observation region, which allows the wake oscillations and bubble interaction to be observed over several successive periods. By simultaneous diffuse illumination in addition to the light sheet, we were able to record both the path and shape oscillations of the bubble, as well as the wake structure in a horizontal and vertical cross section. The results show that the zigzagging motion is coupled to a regular generation and discharge of alternate oppositely oriented hairpin-like vortex structures. Associated with the wake oscillation, the bubble experiences a strong asymmetric deformation in the equatorial plane at the inversion points of the zigzag path. The zigzag motion is superimposed on a small lateral drift of the bubble, which implies the existence of a net lift force. This is explained by the observed different strength of the hairpin vortices in the zig and zag path; a seemingly familiar phenomenon was found in recent numerical results of the sphere wake flow. For spiraling bubbles the wake is approximately steady to an observer moving with the bubble. It consists of a twisted pair of streamwise vortex filaments which are wound in a helical path and are attached to the bubble base at an asymmetrical position. The minor axis of the bubble is tilted in the tangential plane as well as in the radial plane toward the spiral center. Due to the pressure field induced by the asymmetrically attached wake two components of the lift force exist, one that