Science.gov

Sample records for budding yeast reveals

  1. Heterochronic evolution reveals modular timing changes in budding yeast transcriptomes

    PubMed Central

    2010-01-01

    Background Gene expression is a dynamic trait, and the evolution of gene regulation can dramatically alter the timing of gene expression without greatly affecting mean expression levels. Moreover, modules of co-regulated genes may exhibit coordinated shifts in expression timing patterns during evolutionary divergence. Here, we examined transcriptome evolution in the dynamical context of the budding yeast cell-division cycle, to investigate the extent of divergence in expression timing and the regulatory architecture underlying timing evolution. Results Using a custom microarray platform, we obtained 378 measurements for 6,263 genes over 18 timepoints of the cell-division cycle in nine strains of S. cerevisiae and one strain of S. paradoxus. Most genes show significant divergence in expression dynamics at all scales of transcriptome organization, suggesting broad potential for timing changes. A model test comparing expression level evolution versus timing evolution revealed a better fit with timing evolution for 82% of genes. Analysis of shared patterns of timing evolution suggests the existence of seven dynamically-autonomous modules, each of which shows coherent evolutionary timing changes. Analysis of transcription factors associated with these gene modules suggests a modular pleiotropic source of divergence in expression timing. Conclusions We propose that transcriptome evolution may generally entail changes in timing (heterochrony) rather than changes in levels (heterometry) of expression. Evolution of gene expression dynamics may involve modular changes in timing control mediated by module-specific transcription factors. We hypothesize that genome-wide gene regulation may utilize a general architecture comprised of multiple semi-autonomous event timelines, whose superposition could produce combinatorial complexity in timing control patterns. PMID:20969771

  2. Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks.

    PubMed

    Zhou, Chunshui; Elia, Andrew E H; Naylor, Maria L; Dephoure, Noah; Ballif, Bryan A; Goel, Gautam; Xu, Qikai; Ng, Aylwin; Chou, Danny M; Xavier, Ramnik J; Gygi, Steven P; Elledge, Stephen J

    2016-06-28

    The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast. PMID:27298372

  3. Screening the Budding Yeast Genome Reveals Unique Factors Affecting K2 Toxin Susceptibility

    PubMed Central

    Servienė, Elena; Lukša, Juliana; Orentaitė, Irma

    2012-01-01

    Background Understanding how biotoxins kill cells is of prime importance in biomedicine and the food industry. The budding yeast (S. cerevisiae) killers serve as a convenient model to study the activity of biotoxins consistently supplying with significant insights into the basic mechanisms of virus-host cell interactions and toxin entry into eukaryotic target cells. K1 and K2 toxins are active at the cell wall, leading to the disruption of the plasma membrane and subsequent cell death by ion leakage. K28 toxin is active in the cell nucleus, blocking DNA synthesis and cell cycle progression, thereby triggering apoptosis. Genome-wide screens in the budding yeast S. cerevisiae identified several hundred effectors of K1 and K28 toxins. Surprisingly, no such screen had been performed for K2 toxin, the most frequent killer toxin among industrial budding yeasts. Principal Findings We conducted several concurrent genome-wide screens in S. cerevisiae and identified 332 novel K2 toxin effectors. The effectors involved in K2 resistance and hypersensitivity largely map in distinct cellular pathways, including cell wall and plasma membrane structure/biogenesis and mitochondrial function for K2 resistance, and cell wall stress signaling and ion/pH homeostasis for K2 hypersensitivity. 70% of K2 effectors are different from those involved in K1 or K28 susceptibility. Significance Our work demonstrates that despite the fact that K1 and K2 toxins share some aspects of their killing strategies, they largely rely on different sets of effectors. Since the vast majority of the host factors identified here is exclusively active towards K2, we conclude that cells have acquired a specific K2 toxin effectors set. Our work thus indicates that K1 and K2 have elaborated different biological pathways and provides a first step towards the detailed characterization of K2 mode of action. PMID:23227207

  4. Experimental evolution in budding yeast

    NASA Astrophysics Data System (ADS)

    Murray, Andrew

    2012-02-01

    I will discuss our progress in analyzing evolution in the budding yeast, Saccharomyces cerevisiae. We take two basic approaches. The first is to try and examine quantitative aspects of evolution, for example by determining how the rate of evolution depends on the mutation rate and the population size or asking whether the rate of mutation is uniform throughout the genome. The second is to try to evolve qualitatively novel, cell biologically interesting phenotypes and track the mutations that are responsible for the phenotype. Our efforts include trying to alter cell morphology, evolve multicellularity, and produce a biological oscillator.

  5. Single-Cell Analysis of Growth in Budding Yeast and Bacteria Reveals a Common Size Regulation Strategy.

    PubMed

    Soifer, Ilya; Robert, Lydia; Amir, Ariel

    2016-02-01

    To maintain a constant cell size, dividing cells have to coordinate cell-cycle events with cell growth. This coordination has long been supposed to rely on the existence of size thresholds determining cell-cycle progression [1]. In budding yeast, size is controlled at the G1/S transition [2]. In agreement with this hypothesis, the size at birth influences the time spent in G1: smaller cells have a longer G1 period [3]. Nevertheless, even though cells born smaller have a longer G1, the compensation is imperfect and they still bud at smaller cell sizes. In bacteria, several recent studies have shown that the incremental model of size control, in which size is controlled by addition of a constant volume (in contrast to a size threshold), is able to quantitatively explain the experimental data on four different bacterial species [4-7]. Here, we report on experimental results for the budding yeast Saccharomyces cerevisiae, finding, surprisingly, that cell size control in this organism is very well described by the incremental model, suggesting a common strategy for cell size control with bacteria. Additionally, we argue that for S. cerevisiae the "volume increment" is not added from birth to division, but rather between two budding events. PMID:26776734

  6. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation

    PubMed Central

    Hoggard, Timothy; Liachko, Ivan; Burt, Cassaundra; Meikle, Troy; Jiang, Katherine; Craciun, Gheorghe; Dunham, Maitreya J.; Fox, Catherine A.

    2016-01-01

    The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid

  7. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation.

    PubMed

    Hoggard, Timothy; Liachko, Ivan; Burt, Cassaundra; Meikle, Troy; Jiang, Katherine; Craciun, Gheorghe; Dunham, Maitreya J; Fox, Catherine A

    2016-01-01

    The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid

  8. Energy Landscape Reveals That the Budding Yeast Cell Cycle Is a Robust and Adaptive Multi-stage Process

    PubMed Central

    Lv, Cheng; Li, Xiaoguang; Li, Fangting; Li, Tiejun

    2015-01-01

    Quantitatively understanding the robustness, adaptivity and efficiency of cell cycle dynamics under the influence of noise is a fundamental but difficult question to answer for most eukaryotic organisms. Using a simplified budding yeast cell cycle model perturbed by intrinsic noise, we systematically explore these issues from an energy landscape point of view by constructing an energy landscape for the considered system based on large deviation theory. Analysis shows that the cell cycle trajectory is sharply confined by the ambient energy barrier, and the landscape along this trajectory exhibits a generally flat shape. We explain the evolution of the system on this flat path by incorporating its non-gradient nature. Furthermore, we illustrate how this global landscape changes in response to external signals, observing a nice transformation of the landscapes as the excitable system approaches a limit cycle system when nutrients are sufficient, as well as the formation of additional energy wells when the DNA replication checkpoint is activated. By taking into account the finite volume effect, we find additional pits along the flat cycle path in the landscape associated with the checkpoint mechanism of the cell cycle. The difference between the landscapes induced by intrinsic and extrinsic noise is also discussed. In our opinion, this meticulous structure of the energy landscape for our simplified model is of general interest to other cell cycle dynamics, and the proposed methods can be applied to study similar biological systems. PMID:25794282

  9. Multiple Pathways Influence Mitochondrial Inheritance in Budding Yeast

    PubMed Central

    Frederick, Rebecca L.; Okamoto, Koji; Shaw, Janet M.

    2008-01-01

    Yeast mitochondria form a branched tubular network. Mitochondrial inheritance is tightly coupled with bud emergence, ensuring that daughter cells receive mitochondria from mother cells during division. Proteins reported to influence mitochondrial inheritance include the mitochondrial rho (Miro) GTPase Gem1p, Mmr1p, and Ypt11p. A synthetic genetic array (SGA) screen revealed interactions between gem1Δ and deletions of genes that affect mitochondrial function or inheritance, including mmr1Δ. Synthetic sickness of gem1Δ mmr1Δ double mutants correlated with defective mitochondrial inheritance by large buds. Additional studies demonstrated that GEM1, MMR1, and YPT11 each contribute to mitochondrial inheritance. Mitochondrial accumulation in buds caused by overexpression of either Mmr1p or Ypt11p did not depend on Gem1p, indicating these three proteins function independently. Physical linkage of mitochondria with the endoplasmic reticulum (ER) has led to speculation that distribution of these two organelles is coordinated. We show that yeast mitochondrial inheritance is not required for inheritance or spreading of cortical ER in the bud. Moreover, Ypt11p overexpression, but not Mmr1p overexpression, caused ER accumulation in the bud, revealing a potential role for Ypt11p in ER distribution. This study demonstrates that multiple pathways influence mitochondrial inheritance in yeast and that Miro GTPases have conserved roles in mitochondrial distribution. PMID:18245340

  10. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle. PMID:26519319

  11. Actomyosin ring driven cytokinesis in budding yeast.

    PubMed

    Meitinger, Franz; Palani, Saravanan

    2016-05-01

    Cytokinesis is the final process in the cell cycle that physically divides one cell into two. In budding yeast, cytokinesis is driven by a contractile actomyosin ring (AMR) and the simultaneous formation of a primary septum, which serves as template for cell wall deposition. AMR assembly, constriction, primary septum formation and cell wall deposition are successive processes and tightly coupled to cell cycle progression to ensure the correct distribution of genetic material and cell organelles among the two rising cells prior to cell division. The role of the AMR in cytokinesis and the molecular mechanisms that drive AMR constriction and septation are the focus of current research. This review summarizes the recent progresses in our understanding of how budding yeast cells orchestrate the multitude of molecular mechanisms that control AMR driven cytokinesis in a spatio-temporal manner to achieve an error free cell division. PMID:26845196

  12. Interaction between bud-site selection and polarity-establishment machineries in budding yeast

    PubMed Central

    Wu, Chi-Fang; Savage, Natasha S.; Lew, Daniel J.

    2013-01-01

    Saccharomyces cerevisiae yeast cells polarize in order to form a single bud in each cell cycle. Distinct patterns of bud-site selection are observed in haploid and diploid cells. Genetic approaches have identified the molecular machinery responsible for positioning the bud site: during bud formation, specific locations are marked with immobile landmark proteins. In the next cell cycle, landmarks act through the Ras-family GTPase Rsr1 to promote local activation of the conserved Rho-family GTPase, Cdc42. Additional Cdc42 accumulates by positive feedback, creating a concentrated patch of GTP-Cdc42, which polarizes the cytoskeleton to promote bud emergence. Using time-lapse imaging and mathematical modelling, we examined the process of bud-site establishment. Imaging reveals unexpected effects of the bud-site-selection system on the dynamics of polarity establishment, raising new questions about how that system may operate. We found that polarity factors sometimes accumulate at more than one site among the landmark-specified locations, and we suggest that competition between clusters of polarity factors determines the final location of the Cdc42 cluster. Modelling indicated that temporally constant landmark-localized Rsr1 would weaken or block competition, yielding more than one polarity site. Instead, we suggest that polarity factors recruit Rsr1, effectively sequestering it from other locations and thereby terminating landmark activity. PMID:24062579

  13. Phylogenetic conservation and homology modeling help reveal a novel domain within the budding yeast heterochromatin protein Sir1.

    PubMed

    Hou, Zhonggang; Danzer, John R; Mendoza, Liza; Bose, Melissa E; Müller, Ulrika; Williams, Barry; Fox, Catherine A

    2009-02-01

    The yeast Sir1 protein's ability to bind and silence the cryptic mating-type locus HMRa requires a protein-protein interaction between Sir1 and the origin recognition complex (ORC). A domain within the C-terminal half of Sir1, the Sir1 ORC interaction region (Sir1OIR), and the conserved bromo-adjacent homology (BAH) domain within Orc1, the largest subunit of ORC, mediate this interaction. The structure of the Sir1OIR-Orc1BAH complex is known. Sir1OIR and Orc1BAH interacted with a high affinity in vitro, but the Sir1OIR did not inhibit Sir1-dependent silencing when overproduced in vivo, suggesting that other regions of Sir1 helped it bind HMRa. Comparisons of diverged Sir1 proteins revealed two highly conserved regions, N1 and N2, within Sir1's poorly characterized N-terminal half. An N-terminal portion of Sir1 (residues 27 to 149 [Sir1(27-149)]) is similar in sequence to the Sir1OIR; homology modeling predicted a structure for Sir1(27-149) in which N1 formed a submodule similar to the known Orc1BAH-interacting surface on Sir1. Consistent with these findings, two-hybrid assays indicated that the Sir1 N terminus could interact with BAH domains. Amino acid substitutions within or near N1 or N2 reduced full-length Sir1's ability to bind and silence HMRa and to interact with Orc1BAH in a two-hybrid assay. Purified recombinant Sir1 formed a large protease-resistant structure within which the Sir1OIR domain was protected, and Orc1BAH bound Sir1OIR more efficiently than full-length Sir1 in vitro. Thus, the Sir1 N terminus exhibited both positive and negative roles in the formation of a Sir1-ORC silencing complex. This functional duality might contribute to Sir1's selectivity for silencer-bound ORCs in vivo. PMID:19029247

  14. Cell Polarization and Cytokinesis in Budding Yeast

    PubMed Central

    Bi, Erfei; Park, Hay-Oak

    2012-01-01

    Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field. PMID:22701052

  15. Calling Card Analysis in Budding Yeast.

    PubMed

    Mayhew, David; Mitra, Robi D

    2016-02-01

    Calling card analysis is a high-throughput method for identifying the genomic binding sites of multiple transcription factors in a single experiment in budding yeast. By tagging a DNA-binding protein with a targeting domain that directs the insertion of the Ty5 retrotransposon, the genomic binding sites for that transcription factor are marked. The transposition locations are then identified en masse by Illumina sequencing. The calling card protocol allows for simultaneous analysis of multiple transcription factors. By cloning barcodes into the Ty5 transposon, it is possible to pair a unique barcode with every transcription factor in the experiment. The method presented here uses expression of transcription factors from their native loci; however, it can also be altered to measure binding sites of transcription factors overexpressed from a plasmid. PMID:26832687

  16. Systematic Definition of Protein Constituents along the Major Polarization Axis Reveals an Adaptive Reuse of the Polarization Machinery in Pheromone-Treated Budding Yeast

    PubMed Central

    2008-01-01

    Polarizing cells extensively restructure cellular components in a spatially and temporally coupled manner along the major axis of cellular extension. Budding yeast are a useful model of polarized growth, helping to define many molecular components of this conserved process. Besides budding, yeast cells also differentiate upon treatment with pheromone from the opposite mating type, forming a mating projection (the ‘shmoo’) by directional restructuring of the cytoskeleton, localized vesicular transport and overall reorganization of the cytosol. To characterize the proteomic localization changes accompanying polarized growth, we developed and implemented a novel cell microarray-based imaging assay for measuring the spatial redistribution of a large fraction of the yeast proteome, and applied this assay to identify proteins localized along the mating projection following pheromone treatment. We further trained a machine learning algorithm to refine the cell imaging screen, identifying additional shmoo-localized proteins. In all, we identified 74 proteins that specifically localize to the mating projection, including previously uncharacterized proteins (Ycr043c, Ydr348c, Yer071c, Ymr295c, and Yor304c-a) and known polarization complexes such as the exocyst. Functional analysis of these proteins, coupled with quantitative analysis of individual organelle movements during shmoo formation, suggests a model in which the basic machinery for cell polarization is generally conserved between processes forming the bud and the shmoo, with a distinct subset of proteins used only for shmoo formation. The net effect is a defined ordering of major organelles along the polarization axis, with specific proteins implicated at the proximal growth tip. PMID:19053807

  17. Measuring mitotic spindle dynamics in budding yeast

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  18. ¹¹³Cd NMR experiments reveal an unusual metal cluster in the solution structure of the yeast splicing protein Bud31p.

    PubMed

    van Roon, Anne-Marie M; Yang, Ji-Chun; Mathieu, Daniel; Bermel, Wolfgang; Nagai, Kiyoshi; Neuhaus, David

    2015-04-13

    Establishing the binding topology of structural zinc ions in proteins is an essential part of their structure determination by NMR spectroscopy. Using (113)Cd NMR experiments with (113)Cd-substituted samples is a useful approach but has previously been limited mainly to very small protein domains. Here we used (113)Cd NMR spectroscopy during structure determination of Bud31p, a 157-residue yeast protein containing an unusual Zn3Cys9 cluster, demonstrating that recent hardware developments make this approach feasible for significantly larger systems. PMID:25703931

  19. 113Cd NMR Experiments Reveal an Unusual Metal Cluster in the Solution Structure of the Yeast Splicing Protein Bud31p**

    PubMed Central

    van Roon, Anne-Marie M; Yang, Ji-Chun; Mathieu, Daniel; Bermel, Wolfgang; Nagai, Kiyoshi; Neuhaus, David

    2015-01-01

    Establishing the binding topology of structural zinc ions in proteins is an essential part of their structure determination by NMR spectroscopy. Using 113Cd NMR experiments with 113Cd-substituted samples is a useful approach but has previously been limited mainly to very small protein domains. Here we used 113Cd NMR spectroscopy during structure determination of Bud31p, a 157-residue yeast protein containing an unusual Zn3Cys9 cluster, demonstrating that recent hardware developments make this approach feasible for significantly larger systems. PMID:25703931

  20. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  1. Dielectric modelling of cell division for budding and fission yeast

    NASA Astrophysics Data System (ADS)

    Asami, Koji; Sekine, Katsuhisa

    2007-02-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast.

  2. Characterization of Septin Ultrastructure in Budding Yeast Using Electron Tomography

    PubMed Central

    Bertin, Aurélie; Nogales, Eva

    2015-01-01

    Summary Septins are essential for the completion of cytokinesis. In budding yeast, Saccharomyces cerevisiae, septins are located at the bud neck during mitosis and are closely connected to the inner plasma membrane. In vitro, yeast septins have been shown to self-assemble into a variety of filamentous structures, including rods, paired filaments, bundles and rings [1–3]. Using electron tomography of freeze-substituted section and cryo-electron tomography of frozen sections, we determined the three dimensional organization of the septin cytoskeleton in dividing budding yeast with molecular resolution [4,5]. Here we describe the detailed procedures used for our characterization of the septin cellular ultrastructure. PMID:26519309

  3. Mechanical feedback stabilizes budding yeast morphogenesis

    NASA Astrophysics Data System (ADS)

    Banavar, Samhita; Trogdon, Michael; Petzold, Linda; Campas, Otger

    Walled cells have the ability to remodel their shape while sustaining an internal turgor pressure that can reach values up to 10 atmospheres. This requires a tight and simultaneous regulation of cell wall assembly and mechanochemistry, but the underlying mechanisms by which this is achieved remain unclear. Using the growth of mating projections in budding yeast (S. cerevisiae) as a motivating example, we have developed a theoretical description that couples the mechanics of cell wall expansion and assembly via a mechanical feedback. In the absence of a mechanical feedback, cell morphogenesis is inherently unstable. The presence of a mechanical feedback stabilizes changes in cell shape and growth, and provides a mechanism to prevent cell lysis in a wide range of conditions. We solve for the dynamics of the system and obtain the different dynamical regimes. In particular, we show that several parameters affect the stability of growth, including the strength of mechanical feedback in the system. Finally, we compare our results to existing experimental data.

  4. Interactions between the budding yeast IQGAP homologue Iqg1p and its targets revealed by a split-EGFP bimolecular fluorescence complementation assay.

    PubMed

    Pathmanathan, Sevvel; Barnard, Emma; Timson, David J

    2008-10-01

    A split-EGFP based bimolecular fluorescence complementation (BiFC) assay has been used to detect interactions between the Saccharomyces cerevisiae cytoskeletal scaffolding protein Iqg1p and three targets: myosin essential light chain (Mlc1p), calmodulin (Cmd1p) and the small GTPase Cdc42p. The format of the BiFC assay used ensures that the proteins are expressed at wild type levels thereby avoiding artefacts due to overexpression. This is the first direct in vivo detection of these interactions; in each case, the complex is localised to discrete regions of the yeast cytoplasm. The labelling with EGFP fragments results in changes in growth kinetics, cell size and budding frequency. This is partly due to the reassembled EGFP locking the complexes into essentially permanent interactions. The consequences of this for Iqg1p interactions and BiFC assays in general are discussed. PMID:18675924

  5. Parasite epigenetics and immune evasion: lessons from budding yeast

    PubMed Central

    2013-01-01

    The remarkable ability of many parasites to evade host immunity is the key to their success and pervasiveness. The immune evasion is directly linked to the silencing of the members of extended families of genes that encode for major parasite antigens. At any time only one of these genes is active. Infrequent switches to other members of the gene family help the parasites elude the immune system and cause prolonged maladies. For most pathogens, the detailed mechanisms of gene silencing and switching are poorly understood. On the other hand, studies in the budding yeast Saccharomyces cerevisiae have revealed similar mechanisms of gene repression and switching and have provided significant insights into the molecular basis of these phenomena. This information is becoming increasingly relevant to the genetics of the parasites. Here we summarize recent advances in parasite epigenetics and emphasize the similarities between S. cerevisiae and pathogens such as Plasmodium, Trypanosoma, Candida, and Pneumocystis. We also outline current challenges in the control and the treatment of the diseases caused by these parasites and link them to epigenetics and the wealth of knowledge acquired from budding yeast. PMID:24252437

  6. Systematic identification of cell size regulators in budding yeast

    PubMed Central

    Soifer, Ilya; Barkai, Naama

    2014-01-01

    Cell size is determined by a complex interplay between growth and division, involving multiple cellular pathways. To identify systematically processes affecting size control in G1 in budding yeast, we imaged and analyzed the cell cycle of millions of individual cells representing 591 mutants implicated in size control. Quantitative metric distinguished mutants affecting the mechanism of size control from the majority of mutants that have a perturbed size due to indirect effects modulating cell growth. Overall, we identified 17 negative and dozens positive size control regulators, with the negative regulators forming a small network centered on elements of mitotic exit network. Some elements of the translation machinery affected size control with a notable distinction between the deletions of parts of small and large ribosomal subunit: parts of small ribosomal subunit tended to regulate size control, while parts of the large subunit affected cell growth. Analysis of small cells revealed additional size control mechanism that functions in G2/M, complementing the primary size control in G1. Our study provides new insights about size control mechanisms in budding yeast. PMID:25411401

  7. Computational Predictions of Structures of Multichromosomes of Budding Yeast

    PubMed Central

    Gürsoy, Gamze; Xu, Yun; Liang, Jie

    2016-01-01

    Knowledge of the global architecture of the cell nucleus and the spatial organization of genome is critical for understanding gene expression and nuclear function. Single-cell imaging techniques provide a wealth of information on the spatial organization of chromosomes. Computational tools for modelling chromosome structure have broad implications in studying the effect of cell nucleus on higher-order genome organization. Here we describe a multichromosome constrained self-avoiding chromatin model for studying ensembles of genome structural models of budding yeast nucleus. We successfully generated a large number of model genomes of yeast with appropriate chromatin fiber diameter, persistence length, and excluded volume under spatial confinement. By incorporating details of the constraints from single-cell imaging studies, our method can model the budding yeast genome realistically. The model developed here provides a general computational framework for studying the overall architecture of budding yeast genome. PMID:25570855

  8. Budding Yeast for Budding Geneticists: A Primer on the Saccharomyces cerevisiae Model System

    PubMed Central

    Duina, Andrea A.; Miller, Mary E.; Keeney, Jill B.

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans. PMID:24807111

  9. Post-transcriptional regulation in budding yeast meiosis.

    PubMed

    Jin, Liang; Neiman, Aaron M

    2016-05-01

    The precise regulation of gene expression is essential for developmental processes in eukaryotic organisms. As an important post-transcriptional regulatory point, translational control is complementary to transcriptional regulation. Sporulation in the budding yeast Saccharomyces cerevisiae is a developmental process controlled by a well-studied transcriptional cascade that drives the cell through the events of DNA replication, meiotic chromosome segregation, and spore assembly. Recent studies have revealed that as cells begin the meiotic divisions, translational regulation of gene expression fine tunes this transcriptional cascade. The significance and mechanisms of this translational regulation are beginning to emerge. These studies may also provide insights into translational regulation in germ cell development of multicellular organisms. PMID:26613728

  10. A Monitor for Bud Emergence in the Yeast Morphogenesis Checkpoint

    PubMed Central

    Theesfeld, Chandra L.; Zyla, Trevin R.; Bardes, Elaine G.S.; Lew, Daniel J.

    2003-01-01

    Cell cycle transitions are subject to regulation by both external signals and internal checkpoints that monitor satisfactory progression of key cell cycle events. In budding yeast, the morphogenesis checkpoint arrests the cell cycle in response to perturbations that affect the actin cytoskeleton and bud formation. Herein, we identify a step in this checkpoint pathway that seems to be directly responsive to bud emergence. Activation of the kinase Hsl1p is dependent upon its recruitment to a cortical domain organized by the septins, a family of conserved filament-forming proteins. Under conditions that delayed or blocked bud emergence, Hsl1p recruitment to the septin cortex still took place, but hyperphosphorylation of Hsl1p and recruitment of the Hsl1p-binding protein Hsl7p to the septin cortex only occurred after bud emergence. At this time, the septin cortex spread to form a collar between mother and bud, and Hsl1p and Hsl7p were restricted to the bud side of the septin collar. We discuss models for translating cellular geometry (in this case, the emergence of a bud) into biochemical signals regulating cell proliferation. PMID:12925763

  11. Distinct Domains of Yeast Cortical Tag Proteins Bud8p and Bud9p Confer Polar Localization and Functionality

    PubMed Central

    Krappmann, Anne-Brit; Taheri, Naimeh; Heinrich, Melanie

    2007-01-01

    In Saccharomyces cerevisiae, diploid yeast cells follow a bipolar budding program, which depends on the two transmembrane glycoproteins Bud8p and Bud9p that potentially act as cortical tags to mark the cell poles. Here, we have performed systematic structure-function analyses of Bud8p and Bud9p to identify functional domains. We find that polar transport of Bud8p and Bud9p does not depend on N-terminal sequences but instead on sequences in the median part of the proteins and on the C-terminal parts that contain the transmembrane domains. We show that the guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange factor Bud5p, which is essential for bud site selection and physically interacts with Bud8p, also interacts with Bud9p. Regions of Bud8p and Bud9p predicted to reside in the extracellular space are likely to confer interaction with the N-terminal region of Bud5p, implicating indirect interactions between the cortical tags and the GDP/GTP exchange factor. Finally, we have identified regions of Bud8p and Bud9p that are required for interaction with the cortical tag protein Rax1p. In summary, our study suggests that Bud8p and Bud9p carry distinct domains for delivery of the proteins to the cell poles, for interaction with the general budding machinery and for association with other cortical tag proteins. PMID:17581861

  12. Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast

    PubMed Central

    Tang, Haosu; Bidone, Tamara C.

    2015-01-01

    The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a 3D computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring. PMID:26538307

  13. Actin and Endocytosis in Budding Yeast

    PubMed Central

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  14. Structure and Function in the Budding Yeast Nucleus

    PubMed Central

    Taddei, Angela; Gasser, Susan M.

    2012-01-01

    Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein–protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function. PMID:22964839

  15. Sporulation in the Budding Yeast Saccharomyces cerevisiae

    PubMed Central

    Neiman, Aaron M.

    2011-01-01

    In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae. PMID:22084423

  16. The fascinating and secret wild life of the budding yeast S. cerevisiae

    PubMed Central

    Liti, Gianni

    2015-01-01

    The budding yeast Saccharomyces cerevisiae has been used in laboratory experiments for over a century and has been instrumental in understanding virtually every aspect of molecular biology and genetics. However, it wasn't until a decade ago that the scientific community started to realise how little was known about this yeast's ecology and natural history, and how this information was vitally important for interpreting its biology. Recent large-scale population genomics studies coupled with intensive field surveys have revealed a previously unappreciated wild lifestyle of S. cerevisiae outside the restrictions of human environments and laboratories. The recent discovery that Chinese isolates harbour almost twice as much genetic variation as isolates from the rest of the world combined suggests that Asia is the likely origin of the modern budding yeast. DOI: http://dx.doi.org/10.7554/eLife.05835.001 PMID:25807086

  17. Measuring Replicative Life Span in the Budding Yeast

    PubMed Central

    Steffen, Kristan K.; Kennedy, Brian K.; Kaeberlein, Matt

    2009-01-01

    Aging is a degenerative process characterized by a progressive deterioration of cellular components and organelles resulting in mortality. The budding yeast Saccharomyces cerevisiae has been used extensively to study the biology of aging, and several determinants of yeast longevity have been shown to be conserved in multicellular eukaryotes, including worms, flies, and mice 1. Due to the lack of easily quantified age-associated phenotypes, aging in yeast has been assayed almost exclusively by measuring the life span of cells in different contexts, with two different life span paradigms in common usage 2. Chronological life span refers to the length of time that a mother cell can survive in a non-dividing, quiescence-like state, and is proposed to serve as a model for aging of post-mitotic cells in multicellular eukaryotes. Replicative life span, in contrast, refers the number of daughter cells produced by a mother cell prior to senescence, and is thought to provide a model of aging in mitotically active cells. Here we present a generalized protocol for measuring the replicative life span of budding yeast mother cells. The goal of the replicative life span assay is to determine how many times each mother cell buds. The mother and daughter cells can be easily differentiated by an experienced researcher using a standard light microscope (total magnification 160X), such as the Zeiss Axioscope 40 or another comparable model. Physical separation of daughter cells from mother cells is achieved using a manual micromanipulator equipped with a fiber-optic needle. Typical laboratory yeast strains produce 20-30 daughter cells per mother and one life span experiment requires 2-3 weeks. PMID:19556967

  18. Analysis of the splicing machinery in fission yeast: a comparison with budding yeast and mammals

    PubMed Central

    Käufer, Norbert F.; Potashkin, Judith

    2000-01-01

    Based on genetic and bioinformatic analysis, 80 proteins from the newly sequenced Schizosaccharomyces pombe genome appear to be splicing factors. The fission yeast splicing factors were compared to those of Homo sapiens and Saccharomyces cerevisiae in order to determine the extent of conservation or divergence that has occurred over the billion years of evolution that separate these organisms. Our results indicate that many of the factors present in all three organisms have been well conserved throughout evolution. It is calculated that 38% of the fission yeast splicing factors are more similar to the human proteins than to the budding yeast proteins (>10% more similar or similar over a greater region). Many of the factors in this category are required for recognition of the 3′ splice site. Ten fission yeast splicing factors, including putative regulatory factors, have human homologs, but no apparent budding yeast homologs based on sequence data alone. Many of the budding yeast factors that are absent in fission yeast are associated with the U1 and U4/U6.U5 snRNP. Collectively the data presented in this survey indicate that of the two yeasts, S.pombe contains a splicing machinery more closely reflecting the archetype of a spliceosome. PMID:10931913

  19. Mitochondrial anchorage and fusion contribute to mitochondrial inheritance and quality control in the budding yeast Saccharomyces cerevisiae

    PubMed Central

    Higuchi-Sanabria, Ryo; Charalel, Joseph K.; Viana, Matheus P.; Garcia, Enrique J.; Sing, Cierra N.; Koenigsberg, Andrea; Swayne, Theresa C.; Vevea, Jason D.; Boldogh, Istvan R.; Rafelski, Susanne M.; Pon, Liza A.

    2016-01-01

    Higher-functioning mitochondria that are more reduced and have less ROS are anchored in the yeast bud tip by the Dsl1-family protein Mmr1p. Here we report a role for mitochondrial fusion in bud-tip anchorage of mitochondria. Fluorescence loss in photobleaching (FLIP) and network analysis experiments revealed that mitochondria in large buds are a continuous reticulum that is physically distinct from mitochondria in mother cells. FLIP studies also showed that mitochondria that enter the bud can fuse with mitochondria that are anchored in the bud tip. In addition, loss of fusion and mitochondrial DNA (mtDNA) by deletion of mitochondrial outer or inner membrane fusion proteins (Fzo1p or Mgm1p) leads to decreased accumulation of mitochondria at the bud tip and inheritance of fitter mitochondria by buds compared with cells with no mtDNA. Conversely, increasing the accumulation and anchorage of mitochondria in the bud tip by overexpression of MMR1 results in inheritance of less-fit mitochondria by buds and decreased replicative lifespan and healthspan. Thus quantity and quality of mitochondrial inheritance are ensured by two opposing processes: bud-tip anchorage by mitochondrial fusion and Mmr1p, which favors bulk inheritance; and quality control mechanisms that promote segregation of fitter mitochondria to the bud. PMID:26764088

  20. Mitochondrial anchorage and fusion contribute to mitochondrial inheritance and quality control in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Higuchi-Sanabria, Ryo; Charalel, Joseph K; Viana, Matheus P; Garcia, Enrique J; Sing, Cierra N; Koenigsberg, Andrea; Swayne, Theresa C; Vevea, Jason D; Boldogh, Istvan R; Rafelski, Susanne M; Pon, Liza A

    2016-03-01

    Higher-functioning mitochondria that are more reduced and have less ROS are anchored in the yeast bud tip by the Dsl1-family protein Mmr1p. Here we report a role for mitochondrial fusion in bud-tip anchorage of mitochondria. Fluorescence loss in photobleaching (FLIP) and network analysis experiments revealed that mitochondria in large buds are a continuous reticulum that is physically distinct from mitochondria in mother cells. FLIP studies also showed that mitochondria that enter the bud can fuse with mitochondria that are anchored in the bud tip. In addition, loss of fusion and mitochondrial DNA (mtDNA) by deletion of mitochondrial outer or inner membrane fusion proteins (Fzo1p or Mgm1p) leads to decreased accumulation of mitochondria at the bud tip and inheritance of fitter mitochondria by buds compared with cells with no mtDNA. Conversely, increasing the accumulation and anchorage of mitochondria in the bud tip by overexpression of MMR1 results in inheritance of less-fit mitochondria by buds and decreased replicative lifespan and healthspan. Thus quantity and quality of mitochondrial inheritance are ensured by two opposing processes: bud-tip anchorage by mitochondrial fusion and Mmr1p, which favors bulk inheritance; and quality control mechanisms that promote segregation of fitter mitochondria to the bud. PMID:26764088

  1. A comprehensive model to predict mitotic division in budding yeasts

    PubMed Central

    Sutradhar, Sabyasachi; Yadav, Vikas; Sridhar, Shreyas; Sreekumar, Lakshmi; Bhattacharyya, Dibyendu; Ghosh, Santanu Kumar; Paul, Raja; Sanyal, Kaustuv

    2015-01-01

    High-fidelity chromosome segregation during cell division depends on a series of concerted interdependent interactions. Using a systems biology approach, we built a robust minimal computational model to comprehend mitotic events in dividing budding yeasts of two major phyla: Ascomycota and Basidiomycota. This model accurately reproduces experimental observations related to spindle alignment, nuclear migration, and microtubule (MT) dynamics during cell division in these yeasts. The model converges to the conclusion that biased nucleation of cytoplasmic microtubules (cMTs) is essential for directional nuclear migration. Two distinct pathways, based on the population of cMTs and cortical dyneins, differentiate nuclear migration and spindle orientation in these two phyla. In addition, the model accurately predicts the contribution of specific classes of MTs in chromosome segregation. Thus we present a model that offers a wider applicability to simulate the effects of perturbation of an event on the concerted process of the mitotic cell division. PMID:26310442

  2. Programmed Cell Death Initiation and Execution in Budding Yeast

    PubMed Central

    Strich, Randy

    2015-01-01

    Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals. PMID:26272996

  3. Replication-Associated Recombinational Repair: Lessons from Budding Yeast

    PubMed Central

    Bonner, Jaclyn N.; Zhao, Xiaolan

    2016-01-01

    Recombinational repair processes multiple types of DNA lesions. Though best understood in the repair of DNA breaks, recombinational repair is intimately linked to other situations encountered during replication. As DNA strands are decorated with many types of blocks that impede the replication machinery, a great number of genomic regions cannot be duplicated without the help of recombinational repair. This replication-associated recombinational repair employs both the core recombination proteins used for DNA break repair and the specialized factors that couple replication with repair. Studies from multiple organisms have provided insights into the roles of these specialized factors, with the findings in budding yeast being advanced through use of powerful genetics and methods for detecting DNA replication and repair intermediates. In this review, we summarize recent progress made in this organism, ranging from our understanding of the classical template switch mechanisms to gap filling and replication fork regression pathways. As many of the protein factors and biological principles uncovered in budding yeast are conserved in higher eukaryotes, these findings are crucial for stimulating studies in more complex organisms. PMID:27548223

  4. Identification of budding yeast using a fiber-optic imaging bundle

    NASA Astrophysics Data System (ADS)

    Koschwanez, John; Holl, Mark; Marquardt, Brian; Dragavon, Joe; Burgess, Lloyd; Meldrum, Deirdre

    2004-05-01

    A successful imaging system has been designed and built for yeast pedigree analysis. The system uses a fiber-optic imaging bundle to recognize single yeast cells. Image processing software has been developed to accurately classify the cells as either budding or not budding a daughter cell. This system is intended to replace the body of a microscope for the detection of budding in a microfluidic system.

  5. Reconstitution and Characterization of Budding Yeast γ-Tubulin Complex

    PubMed Central

    Vinh, Dani B.N.; Kern, Joshua W.; Hancock, William O.; Howard, Jonathon; Davis, Trisha N.

    2002-01-01

    Nucleation of microtubules is central to assembly of the mitotic spindle, which is required for each cell division. γ-Tubulin is a universal component essential for microtubule nucleation from centrosomes. To elucidate the mechanism of microtubule nucleation in budding yeast we reconstituted and characterized the yeast γ-tubulin complex (Tub4p complex) produced in insect cells. The recombinant complex has the same sedimentation coefficient (11.6 S) as the native complex in yeast cell extracts and contains one molecule of Spc97p, one molecule of Spc98p, and two molecules of Tub4p. The reconstituted Tub4p complex binds preformed microtubules and has a low nucleating activity, allowing us to begin a detailed analysis of conditions that enhance this nucleating activity. We tested whether binding of the recombinant Tub4p complex to the spindle pole body docking protein Spc110p affects its nucleating activity. The solubility of recombinant Spc110p in insect cells is improved by coexpression with yeast calmodulin (Cmd1p). The Spc110p/Cmd1p complex has a small sedimentation coefficient (4.2 S) and a large Stokes radius (14.3 nm), indicative of an elongated structure. The Tub4p complex binds Spc110p/Cmd1p via Spc98p and the Kd for binding is 150 nM. The low nucleation activity of the Tub4p complex is not enhanced when it is bound to Spc110p/Cmd1p, suggesting that it requires additional components or modifications to achieve robust activity. Finally, we report the identification of a large 22 S Tub4p complex in yeast extract that contains multimers of Spc97p similar to γ-tubulin ring complexes found in higher eukaryotic cells. PMID:11950928

  6. Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

    PubMed

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2014-10-01

    Natural products with anti-aging property have drawn great attention recently but examples of such compounds are exceedingly scarce. By applying a high-throughput assay based on yeast chronological lifespan measurement, we screened the anti-aging activity of 144 botanical materials and found that dried roots of Salvia miltiorrhiza Bunge have significant anti-aging activity. Tanshinones isolated from the plant including cryptotanshione, tanshinone I, and tanshinone IIa, are the active components. Among them, cryptotanshinone can greatly extend the budding yeast Saccharomyces cerevisiae chronological lifespan (up to 2.5 times) in a dose- and the-time-of-addition-dependent manner at nanomolar concentrations without disruption of cell growth. We demonstrate that cryptotanshinone prolong chronological lifespan via a nutrient-dependent regime, especially essential amino acid sensing, and three conserved protein kinases Tor1, Sch9, and Gcn2 are required for cryptotanshinone-induced lifespan extension. In addition, cryptotanshinone significantly increases the lifespan of SOD2-deleted mutants. Altogether, those data suggest that cryptotanshinone might be involved in the regulation of, Tor1, Sch9, Gcn2, and Sod2, these highly conserved longevity proteins modulated by nutrients from yeast to humans. PMID:24970458

  7. A simple biophysical model emulates budding yeast chromosome condensation.

    PubMed

    Cheng, Tammy M K; Heeger, Sebastian; Chaleil, Raphaël A G; Matthews, Nik; Stewart, Aengus; Wright, Jon; Lim, Carmay; Bates, Paul A; Uhlmann, Frank

    2015-01-01

    Mitotic chromosomes were one of the first cell biological structures to be described, yet their molecular architecture remains poorly understood. We have devised a simple biophysical model of a 300 kb-long nucleosome chain, the size of a budding yeast chromosome, constrained by interactions between binding sites of the chromosomal condensin complex, a key component of interphase and mitotic chromosomes. Comparisons of computational and experimental (4C) interaction maps, and other biophysical features, allow us to predict a mode of condensin action. Stochastic condensin-mediated pairwise interactions along the nucleosome chain generate native-like chromosome features and recapitulate chromosome compaction and individualization during mitotic condensation. Higher order interactions between condensin binding sites explain the data less well. Our results suggest that basic assumptions about chromatin behavior go a long way to explain chromosome architecture and are able to generate a molecular model of what the inside of a chromosome is likely to look like. PMID:25922992

  8. The Composition, Functions, and Regulation of the Budding Yeast Kinetochore

    PubMed Central

    2013-01-01

    The propagation of all organisms depends on the accurate and orderly segregation of chromosomes in mitosis and meiosis. Budding yeast has long served as an outstanding model organism to identify the components and underlying mechanisms that regulate chromosome segregation. This review focuses on the kinetochore, the macromolecular protein complex that assembles on centromeric chromatin and maintains persistent load-bearing attachments to the dynamic tips of spindle microtubules. The kinetochore also serves as a regulatory hub for the spindle checkpoint, ensuring that cell cycle progression is coupled to the achievement of proper microtubule–kinetochore attachments. Progress in understanding the composition and overall architecture of the kinetochore, as well as its properties in making and regulating microtubule attachments and the spindle checkpoint, is discussed. PMID:23908374

  9. Polarization of Diploid Daughter Cells Directed by Spatial Cues and GTP Hydrolysis of Cdc42 in Budding Yeast

    PubMed Central

    Narayan, Monisha; Chou, Ching-Shan; Park, Hay-Oak

    2013-01-01

    Cell polarization occurs along a single axis that is generally determined by a spatial cue. Cells of the budding yeast exhibit a characteristic pattern of budding, which depends on cell-type-specific cortical markers, reflecting a genetic programming for the site of cell polarization. The Cdc42 GTPase plays a key role in cell polarization in various cell types. Although previous studies in budding yeast suggested positive feedback loops whereby Cdc42 becomes polarized, these mechanisms do not include spatial cues, neglecting the normal patterns of budding. Here we combine live-cell imaging and mathematical modeling to understand how diploid daughter cells establish polarity preferentially at the pole distal to the previous division site. Live-cell imaging shows that daughter cells of diploids exhibit dynamic polarization of Cdc42-GTP, which localizes to the bud tip until the M phase, to the division site at cytokinesis, and then to the distal pole in the next G1 phase. The strong bias toward distal budding of daughter cells requires the distal-pole tag Bud8 and Rga1, a GTPase activating protein for Cdc42, which inhibits budding at the cytokinesis site. Unexpectedly, we also find that over 50% of daughter cells lacking Rga1 exhibit persistent Cdc42-GTP polarization at the bud tip and the distal pole, revealing an additional role of Rga1 in spatiotemporal regulation of Cdc42 and thus in the pattern of polarized growth. Mathematical modeling indeed reveals robust Cdc42-GTP clustering at the distal pole in diploid daughter cells despite random perturbation of the landmark cues. Moreover, modeling predicts different dynamics of Cdc42-GTP polarization when the landmark level and the initial level of Cdc42-GTP at the division site are perturbed by noise added in the model. PMID:23437206

  10. A critical three-way junction is conserved in budding yeast and vertebrate telomerase RNAs

    PubMed Central

    Brown, Yogev; Abraham, Mira; Pearl, Sivan; Kabaha, Majdi M.; Elboher, Elhanan; Tzfati, Yehuda

    2007-01-01

    The telomerase ribonucleoprotein copies a short template within its integral RNA moiety onto eukaryotic chromosome ends, compensating for incomplete replication and degradation. Non-template regions of telomerase RNA (TER) are also crucial for telomerase function, yet they are highly divergent in sequence among species and their roles are largely unclear. Using both phylogenetic and mutational analyses, we predicted secondary structures for TERs from Kluyveromyces budding yeast species. A comparison of these secondary structure models with the published model for the Saccharomyces cerevisiae TER reveals a common arrangement into three long arms, a templating domain in the center and several conserved elements in the same positions within the structure. One of them, a three-way junction element, is highly conserved in budding yeast TERs. This element also shows sequence and structure similarity to the critical CR4-CR5 activating domain of vertebrate TERs. Mutational analysis in Kluyveromyces lactis confirmed that this element, and in particular the residues conserved across yeast and vertebrates, is critical for telomerase action both in vivo and in vitro. These findings demonstrate that despite the extreme divergence of TER sequences from different organisms, they do share conserved elements, which presumably carry out common roles in telomerase function. PMID:17855392

  11. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.

    PubMed

    Ohnuki, Shinsuke; Enomoto, Kenichi; Yoshimoto, Hiroyuki; Ohya, Yoshikazu

    2014-03-01

    The vitality of brewing yeasts has been used to monitor their physiological state during fermentation. To investigate the fermentation process, we used the image processing software, CalMorph, which generates morphological data on yeast mother cells and bud shape, nuclear shape and location, and actin distribution. We found that 248 parameters changed significantly during fermentation. Successive use of principal component analysis (PCA) revealed several important features of yeast, providing insight into the dynamic changes in the yeast population. First, PCA indicated that much of the observed variability in the experiment was summarized in just two components: a change with a peak and a change over time. Second, PCA indicated the independent and important morphological features responsible for dynamic changes: budding ratio, nucleus position, neck position, and actin organization. Thus, the large amount of data provided by imaging analysis can be used to monitor the fermentation processes involved in beer and bioethanol production. PMID:24012106

  12. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis.

    PubMed

    Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv

    2016-02-01

    The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species--Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548

  13. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis

    PubMed Central

    Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv

    2016-01-01

    The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548

  14. Using dielectrophoresis to study the dynamic response of single budding yeast cells to Lyticase.

    PubMed

    Tang, Shi-Yang; Yi, Pyshar; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2015-05-01

    Budding yeast cells are quick and easy to grow and represent a versatile model of eukaryotic cells for a variety of cellular studies, largely because their genome has been widely studied and links can be drawn with higher eukaryotes. Therefore, the efficient separation, immobilization, and conversion of budding yeasts into spheroplast or protoplast can provide valuable insight for many fundamentals investigations in cell biology at a single cell level. Dielectrophoresis, the induced motion of particles in non-uniform electric fields, possesses a great versatility for manipulation of cells in microfluidic platforms. Despite this, dielectrophoresis has been largely utilized for studying of non-budding yeast cells and has rarely been used for manipulation of budding cells. Here, we utilize dielectrophoresis for studying the dynamic response of budding cells to different concentrations of Lyticase. This involves separation of the budding yeasts from a background of non-budding cells and their subsequent immobilization onto the microelectrodes at desired densities down to single cell level. The immobilized yeasts are then stimulated with Lyticase to remove the cell wall and convert them into spheroplasts, in a highly dynamic process that depends on the concentration of Lyticase. We also introduce a novel method for immobilization of the cell organelles released from the lysed cells by patterning multi-walled carbon nanotubes (MWCNTs) between the microelectrodes. PMID:25701421

  15. A simple biophysical model emulates budding yeast chromosome condensation

    PubMed Central

    Cheng, Tammy MK; Heeger, Sebastian; Chaleil, Raphaël AG; Matthews, Nik; Stewart, Aengus; Wright, Jon; Lim, Carmay; Bates, Paul A; Uhlmann, Frank

    2015-01-01

    Mitotic chromosomes were one of the first cell biological structures to be described, yet their molecular architecture remains poorly understood. We have devised a simple biophysical model of a 300 kb-long nucleosome chain, the size of a budding yeast chromosome, constrained by interactions between binding sites of the chromosomal condensin complex, a key component of interphase and mitotic chromosomes. Comparisons of computational and experimental (4C) interaction maps, and other biophysical features, allow us to predict a mode of condensin action. Stochastic condensin-mediated pairwise interactions along the nucleosome chain generate native-like chromosome features and recapitulate chromosome compaction and individualization during mitotic condensation. Higher order interactions between condensin binding sites explain the data less well. Our results suggest that basic assumptions about chromatin behavior go a long way to explain chromosome architecture and are able to generate a molecular model of what the inside of a chromosome is likely to look like. DOI: http://dx.doi.org/10.7554/eLife.05565.001 PMID:25922992

  16. Integrative analysis of cell cycle control in budding yeast.

    PubMed

    Chen, Katherine C; Calzone, Laurence; Csikasz-Nagy, Attila; Cross, Frederick R; Novak, Bela; Tyson, John J

    2004-08-01

    The adaptive responses of a living cell to internal and external signals are controlled by networks of proteins whose interactions are so complex that the functional integration of the network cannot be comprehended by intuitive reasoning alone. Mathematical modeling, based on biochemical rate equations, provides a rigorous and reliable tool for unraveling the complexities of molecular regulatory networks. The budding yeast cell cycle is a challenging test case for this approach, because the control system is known in exquisite detail and its function is constrained by the phenotypic properties of >100 genetically engineered strains. We show that a mathematical model built on a consensus picture of this control system is largely successful in explaining the phenotypes of mutants described so far. A few inconsistencies between the model and experiments indicate aspects of the mechanism that require revision. In addition, the model allows one to frame and critique hypotheses about how the division cycle is regulated in wild-type and mutant cells, to predict the phenotypes of new mutant combinations, and to estimate the effective values of biochemical rate constants that are difficult to measure directly in vivo. PMID:15169868

  17. Evidence for cohesin sliding along budding yeast chromosomes

    PubMed Central

    Ocampo-Hafalla, Maria; Muñoz, Sofía; Samora, Catarina P.; Uhlmann, Frank

    2016-01-01

    The ring-shaped cohesin complex is thought to topologically hold sister chromatids together from their synthesis in S phase until chromosome segregation in mitosis. How cohesin stably binds to chromosomes for extended periods, without impeding other chromosomal processes that also require access to the DNA, is poorly understood. Budding yeast cohesin is loaded onto DNA by the Scc2–Scc4 cohesin loader at centromeres and promoters of active genes, from where cohesin translocates to more permanent places of residence at transcription termination sites. Here we show that, at the GAL2 and MET17 loci, pre-existing cohesin is pushed downstream along the DNA in response to transcriptional gene activation, apparently without need for intermittent dissociation or reloading. We observe translocation intermediates and find that the distribution of most chromosomal cohesin is shaped by transcription. Our observations support a model in which cohesin is able to slide laterally along chromosomes while maintaining topological contact with DNA. In this way, stable cohesin binding to DNA and enduring sister chromatid cohesion become compatible with simultaneous underlying chromosomal activities, including but maybe not limited to transcription. PMID:27278645

  18. Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast.

    PubMed

    Booth, Gregory T; Wang, Isabel X; Cheung, Vivian G; Lis, John T

    2016-06-01

    Complex regulation of gene expression in mammals has evolved from simpler eukaryotic systems, yet the mechanistic features of this evolution remain elusive. Here, we compared the transcriptional landscapes of the distantly related budding and fission yeast. We adapted the Precision Run-On sequencing (PRO-seq) approach to map the positions of RNA polymerase active sites genome-wide in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Additionally, we mapped preferred sites of transcription initiation in each organism using PRO-cap. Unexpectedly, we identify a pause in early elongation, specific to S. pombe, that requires the conserved elongation factor subunit Spt4 and resembles promoter-proximal pausing in metazoans. PRO-seq profiles in strains lacking Spt4 reveal globally elevated levels of transcribing RNA Polymerase II (Pol II) within genes in both species. Messenger RNA abundance, however, does not reflect the increases in Pol II density, indicating a global reduction in elongation rate. Together, our results provide the first base-pair resolution map of transcription elongation in S. pombe and identify divergent roles for Spt4 in controlling elongation in budding and fission yeast. PMID:27197211

  19. Specific residues of the GDP/GTP exchange factor Bud5p are involved in establishment of the cell type-specific budding pattern in yeast.

    PubMed

    Kang, Pil Jung; Lee, Bongyong; Park, Hay-Oak

    2004-07-01

    Cells of the budding yeast undergo oriented cell division by choosing a specific site for growth depending on their cell type. Haploid a and alpha cells bud in an axial pattern whereas diploid a/alpha cells bud in a bipolar pattern. The Ras-like GTPase Rsr1p/Bud1p, its GDP-GTP exchange factor Bud5p, and its GTPase-activating protein Bud2p are essential for selecting the proper site for polarized growth in all cell types. Here we showed that specific residues at the N terminus and the C terminus of Bud5p were important for bipolar budding, while some residues were involved in both axial and bipolar budding. These bipolar-specific mutations of BUD5 disrupted proper localization of Bud5p in diploid a/alpha cells without affecting Bud5p localization in haploid alpha cells. In contrast, Bud5p expressed in the bud5 mutants defective in both budding patterns failed to localize in all cell types. Thus, these results identify specific residues of Bud5p that are likely to be involved in direct interaction with spatial landmarks, which recruit Bud5p to the proper bud site. Finally, we found a new start codon of BUD5, which extends the open reading frame to 210 bp upstream of the previously estimated start site, thus encoding a polypeptide of 608 amino acid residues. Bud5p with these additional N-terminal residues interacted with Bud8p, a potential bipolar landmark, suggesting that the N-terminal region is necessary for recognition of the spatial cues. PMID:15136576

  20. Heterologous expression in budding yeast as a tool for studying the plant cell morphogenesis machinery.

    PubMed

    Cvrčková, Fatima; Hála, Michal

    2014-01-01

    The budding yeast (Saccharomyces cerevisiae) can serve as a unique experimental system for functional studies of heterologous genes, allowing not only complementation of readily available yeast mutations but also generation of overexpression phenotypes and in some cases also rescue of such phenotypes. Here we summarize the main considerations that have to be taken into account when using the yeast expression system for investigating the function of plant genes participating in cell morphogenesis; outline the strategies of experiment planning, yeast strain selection (or construction), and expression vector choice; and provide detailed protocols for yeast transformation, transformant selection, and phenotype evaluation. PMID:24132437

  1. Live-Cell Imaging of Mitochondria and the Actin Cytoskeleton in Budding Yeast.

    PubMed

    Higuchi-Sanabria, Ryo; Swayne, Theresa C; Boldogh, Istvan R; Pon, Liza A

    2016-01-01

    Maintenance and regulation of proper mitochondrial dynamics and functions are necessary for cellular homeostasis. Numerous diseases, including neurodegeneration and muscle myopathies, and overall cellular aging are marked by declining mitochondrial function and subsequent loss of multiple other cellular functions. For these reasons, optimized protocols are needed for visualization and quantification of mitochondria and their function and fitness. In budding yeast, mitochondria are intimately associated with the actin cytoskeleton and utilize actin for their movement and inheritance. This chapter describes optimal approaches for labeling mitochondria and the actin cytoskeleton in living budding yeast cells, for imaging the labeled cells, and for analyzing the resulting images. PMID:26498778

  2. Study of budding yeast colony formation and its characterizations by using circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  3. Cell Biology of Yeast Zygotes, from Genesis to Budding

    PubMed Central

    Tartakoff, Alan M.

    2015-01-01

    The zygote is the essential intermediate that allows interchange of nuclear, mitochondrial and cytosolic determinants between cells. Zygote formation in S. cerevisiae is accomplished by mechanisms that are not characteristic of mitotic cells. These include shifting the axis of growth away from classical cortical landmarks, dramatically reorganizing the cell cortex, remodeling the cell wall in preparation for cell fusion, fusing with an adjacent partner, accomplishing nuclear fusion, orchestrating two steps of septin morphogenesis that account for a delay in fusion of mitochondria, and implementing new norms for bud site selection. This essay emphasizes the sequence of dependent relationships that account for this progression from cell encounters through to zygote budding. It briefly summarizes classical studies of signal transduction and polarity specification and then focuses on downstream events. PMID:25862405

  4. Cell biology of yeast zygotes, from genesis to budding.

    PubMed

    Tartakoff, Alan M

    2015-07-01

    The zygote is the essential intermediate that allows interchange of nuclear, mitochondrial and cytosolic determinants between cells. Zygote formation in Saccharomyces cerevisiae is accomplished by mechanisms that are not characteristic of mitotic cells. These include shifting the axis of growth away from classical cortical landmarks, dramatically reorganizing the cell cortex, remodeling the cell wall in preparation for cell fusion, fusing with an adjacent partner, accomplishing nuclear fusion, orchestrating two steps of septin morphogenesis that account for a delay in fusion of mitochondria, and implementing new norms for bud site selection. This essay emphasizes the sequence of dependent relationships that account for this progression from cell encounters through zygote budding. It briefly summarizes classical studies of signal transduction and polarity specification and then focuses on downstream events. PMID:25862405

  5. Changes in Transcription and Metabolism During the Early Stage of Replicative Cellular Senescence in Budding Yeast*

    PubMed Central

    Kamei, Yuka; Tamada, Yoshihiro; Nakayama, Yasumune; Fukusaki, Eiichiro; Mukai, Yukio

    2014-01-01

    Age-related damage accumulates and a variety of biological activities and functions deteriorate in senescent cells. However, little is known about when cellular aging behaviors begin and what cellular aging processes change. Previous research demonstrated age-related mRNA changes in budding yeast by the 18th to 20th generation, which is the average replicative lifespan of yeast (i.e. about half of the population is dead by this time point). Here, we performed transcriptional and metabolic profiling for yeast at early stages of senescence (4th, 7th, and 11th generation), that is, for populations in which most cells are still alive. Transcriptional profiles showed up- and down-regulation for ∼20% of the genes profiled after the first four generations, few further changes by the 7th generation, and an additional 12% of the genes were up- and down-regulated after 11 generations. Pathway analysis revealed that these 11th generation cells had accumulated transcripts coding for enzymes involved in sugar metabolism, the TCA cycle, and amino acid degradation and showed decreased levels of mRNAs coding for enzymes involved in amino acid biosynthetic pathways. These observations were consistent with the metabolomic profiles of aging cells: an accumulation of pyruvic acid and TCA cycle intermediates and depletion of most amino acids, especially branched-chain amino acids. Stationary phase-induced genes were highly expressed after 11 generations even though the growth medium contained adequate levels of nutrients, indicating deterioration of the nutrient sensing and/or signaling pathways by the 11th generation. These changes are presumably early indications of replicative senescence. PMID:25294875

  6. Cytoskeletal impairment during isoamyl alcohol-induced cell elongation in budding yeast

    PubMed Central

    Murata, Wakae; Kinpara, Satoko; Kitahara, Nozomi; Yamaguchi, Yoshihiro; Ogita, Akira; Tanaka, Toshio; Fujita, Ken-ichi

    2016-01-01

    Isoamyl alcohol (IAA) induces pseudohyphae including cell elongation in the budding yeast Saccharomyces cerevisiae. Detailed regulation of microtubules and actin in developmental transition during cell elongation is poorly understood. Here, we show that although IAA did not affect the intracellular actin level, it reduced the levels of both α- and β-tubulins. In budding yeast, cytoplasmic microtubules are linked to actin via complexes consisting of at least Kar9, Bim1, and Myo2, and reach from the spindle pole body to the cortical attachment site at the bud tip. However, IAA did not affect migration of Myo2 to the bud tip and kept Kar9 in the interior portion of the cell. In addition, bud elongation was observed in Kar9-overexpressing cells in the absence of IAA. These results indicate that impairment of the link between cytoplasmic microtubules and actin is possibly involved in the lowered interaction of Myo2 with Kar9. Our study might explain the reason for delayed cell cycle during IAA-induced cell elongation. PMID:27507042

  7. Cytoskeletal impairment during isoamyl alcohol-induced cell elongation in budding yeast.

    PubMed

    Murata, Wakae; Kinpara, Satoko; Kitahara, Nozomi; Yamaguchi, Yoshihiro; Ogita, Akira; Tanaka, Toshio; Fujita, Ken-Ichi

    2016-01-01

    Isoamyl alcohol (IAA) induces pseudohyphae including cell elongation in the budding yeast Saccharomyces cerevisiae. Detailed regulation of microtubules and actin in developmental transition during cell elongation is poorly understood. Here, we show that although IAA did not affect the intracellular actin level, it reduced the levels of both α- and β-tubulins. In budding yeast, cytoplasmic microtubules are linked to actin via complexes consisting of at least Kar9, Bim1, and Myo2, and reach from the spindle pole body to the cortical attachment site at the bud tip. However, IAA did not affect migration of Myo2 to the bud tip and kept Kar9 in the interior portion of the cell. In addition, bud elongation was observed in Kar9-overexpressing cells in the absence of IAA. These results indicate that impairment of the link between cytoplasmic microtubules and actin is possibly involved in the lowered interaction of Myo2 with Kar9. Our study might explain the reason for delayed cell cycle during IAA-induced cell elongation. PMID:27507042

  8. Proliferation enhancement of budding yeast and mammalian cells with periodic oxygen radical treatment

    NASA Astrophysics Data System (ADS)

    Mori, Yosuke; Kobayashi, Jun; Murata, Tomiyasu; Hahizume, Hiroshi; Hori, Masaru; Ito, Masafumi

    2015-09-01

    Recently, nonequilibrium atmospheric-pressure plasmas have been intensively studied for biological applications. However, the each effect of species in plasmas to biological tissue has not been clarified yet because various factors exist in the plasmas. Accordingly, we have studied effects of atomic oxygen dose on cell growth such as budding yeast and mouse NIH3T3 fibroblasts of mammalian cells. Both of cells were suspended with PBS, and treated using oxygen radical source. In order to prevent the radicals from reacting with the ambient air, the treatment region was surrounded by a plastic cover and purged with Ar. The proliferative effect of 15 % was observed at the O3Pj dose of around 1 . 0 ×1017 cm-3 in NIH3T3 cells as well as in yeast cells. Moreover, periodic oxygen treatment enhanced the effect in budding yeast cells. The best interval of periodic oxygen radical treatment was around 2 hours, which is almost the same period as that of their cell cycle. With the optimum interval time, we have investigated the effect of the number of the treatments. As the number of treatments increases, the growth rate of budding yeast cells was gradually enhanced and saturated at thrice treatments. This work was partly supported by JSPS KAKENHI Grant Numbers 26286072 and project for promoting Research Center in Meijo University.

  9. Replication origins and timing of temporal replication in budding yeast: how to solve the conundrum?

    PubMed

    Barberis, Matteo; Spiesser, Thomas W; Klipp, Edda

    2010-05-01

    Similarly to metazoans, the budding yeast Saccharomyces cereviasiae replicates its genome with a defined timing. In this organism, well-defined, site-specific origins, are efficient and fire in almost every round of DNA replication. However, this strategy is neither conserved in the fission yeast Saccharomyces pombe, nor in Xenopus or Drosophila embryos, nor in higher eukaryotes, in which DNA replication initiates asynchronously throughout S phase at random sites. Temporal and spatial controls can contribute to the timing of replication such as Cdk activity, origin localization, epigenetic status or gene expression. However, a debate is going on to answer the question how individual origins are selected to fire in budding yeast. Two opposing theories were proposed: the "replicon paradigm" or "temporal program" vs. the "stochastic firing". Recent data support the temporal regulation of origin activation, clustering origins into temporal blocks of early and late replication. Contrarily, strong evidences suggest that stochastic processes acting on origins can generate the observed kinetics of replication without requiring a temporal order. In mammalian cells, a spatiotemporal model that accounts for a partially deterministic and partially stochastic order of DNA replication has been proposed. Is this strategy the solution to reconcile the conundrum of having both organized replication timing and stochastic origin firing also for budding yeast? In this review we discuss this possibility in the light of our recent study on the origin activation, suggesting that there might be a stochastic component in the temporal activation of the replication origins, especially under perturbed conditions. PMID:21037857

  10. The Anillin-Related Region of Bud4 Is the Major Functional Determinant for Bud4's Function in Septin Organization during Bud Growth and Axial Bud Site Selection in Budding Yeast

    PubMed Central

    Wu, Huan; Guo, Jia; Zhou, Ya-Ting

    2015-01-01

    The anillin-related protein Bud4 of Saccharomyces cerevisiae is required for axial bud site selection by linking the axial landmark to the septins, which localize at the mother bud neck. Recent studies indicate that Bud4 plays a role in septin organization during cytokinesis. Here we show that Bud4 is also involved in septin organization during bud growth prior to cytokinesis, as bud4Δ shs1Δ cells displayed an elongated bud morphology and defective septin organization at 18°C. Bud4 overexpression also affected septin organization during bud growth in shs1Δ cells at 30°C. Bud4 was previously thought to associate with the septins via its central region, while the C-terminal anillin-related region was not involved in septin association. Surprisingly, we found that the central region of Bud4 alone targets to the bud neck throughout the cell cycle, unlike full-length Bud4, which localizes to the bud neck only during G2/M phase. We identified the anillin-related region to be a second targeting domain that cooperates with the central region for proper septin association. In addition, the anillin-related region could largely mediate Bud4's function in septin organization during bud growth and bud site selection. We show that this region interacts with the C terminus of Bud3 and the two segments depend on each other for association with the septins. Moreover, like the bud4Δ mutant, the bud3Δ mutant genetically interacts with shs1Δ and cdc12-6 mutants in septin organization, suggesting that Bud4 and Bud3 may cooperate in septin organization during bud growth. These observations provide new insights into the interaction of Bud4 with the septins and Bud3. PMID:25576483

  11. The anillin-related region of Bud4 is the major functional determinant for Bud4's function in septin organization during bud growth and axial bud site selection in budding yeast.

    PubMed

    Wu, Huan; Guo, Jia; Zhou, Ya-Ting; Gao, Xiang-Dong

    2015-03-01

    The anillin-related protein Bud4 of Saccharomyces cerevisiae is required for axial bud site selection by linking the axial landmark to the septins, which localize at the mother bud neck. Recent studies indicate that Bud4 plays a role in septin organization during cytokinesis. Here we show that Bud4 is also involved in septin organization during bud growth prior to cytokinesis, as bud4Δ shs1Δ cells displayed an elongated bud morphology and defective septin organization at 18°C. Bud4 overexpression also affected septin organization during bud growth in shs1Δ cells at 30°C. Bud4 was previously thought to associate with the septins via its central region, while the C-terminal anillin-related region was not involved in septin association. Surprisingly, we found that the central region of Bud4 alone targets to the bud neck throughout the cell cycle, unlike full-length Bud4, which localizes to the bud neck only during G2/M phase. We identified the anillin-related region to be a second targeting domain that cooperates with the central region for proper septin association. In addition, the anillin-related region could largely mediate Bud4's function in septin organization during bud growth and bud site selection. We show that this region interacts with the C terminus of Bud3 and the two segments depend on each other for association with the septins. Moreover, like the bud4Δ mutant, the bud3Δ mutant genetically interacts with shs1Δ and cdc12-6 mutants in septin organization, suggesting that Bud4 and Bud3 may cooperate in septin organization during bud growth. These observations provide new insights into the interaction of Bud4 with the septins and Bud3. PMID:25576483

  12. Tracking Diacylglycerol and Phosphatidic Acid Pools in Budding Yeast

    PubMed Central

    Ganesan, Suriakarthiga; Shabits, Brittney N.; Zaremberg, Vanina

    2015-01-01

    Phosphatidic acid (PA) and diacylglycerol (DAG) are key signaling molecules and important precursors for the biosynthesis of all glycerolipids found in eukaryotes. Research conducted in the model organism Saccharomyces cerevisiae has been at the forefront of the identification of the enzymes involved in the metabolism and transport of PA and DAG. Both these lipids can alter the local physical properties of membranes by introducing negative curvature, but the anionic nature of the phosphomonoester headgroup in PA sets it apart from DAG. As a result, the mechanisms underlying PA and DAG interaction with other lipids and proteins are notoriously different. This is apparent from the analysis of the protein domains responsible for recognition and binding to each of these lipids. We review the current evidence obtained using the PA-binding proteins and domains fused to fluorescent proteins for in vivo tracking of PA pools in yeast. In addition, we present original results for visualization of DAG pools in yeast using the C1 domain from mammalian PKCδ. An emerging first cellular map of the distribution of PA and DAG pools in actively growing yeast is discussed. PMID:27081314

  13. Clathrin-mediated endocytosis in budding yeast at a glance.

    PubMed

    Lu, Rebecca; Drubin, David G; Sun, Yidi

    2016-04-15

    Clathrin-mediated endocytosis is an essential cellular process that involves the concerted assembly and disassembly of many different proteins at the plasma membrane. In yeast, live-cell imaging has shown that the spatiotemporal dynamics of these proteins is highly stereotypical. Recent work has focused on determining how the timing and functions of endocytic proteins are regulated. In this Cell Science at a Glance article and accompanying poster, we review our current knowledge of the timeline of endocytic site maturation and discuss recent works focusing on how phosphorylation, ubiquitylation and lipids regulate various aspects of the process. PMID:27084361

  14. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast.

    PubMed

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R; Drubin, David G

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin-Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism. PMID:27068241

  15. Chromosome Segregation in Budding Yeast: Sister Chromatid Cohesion and Related Mechanisms

    PubMed Central

    2014-01-01

    Studies on budding yeast have exposed the highly conserved mechanisms by which duplicated chromosomes are evenly distributed to daughter cells at the metaphase–anaphase transition. The establishment of proteinaceous bridges between sister chromatids, a function provided by a ring-shaped complex known as cohesin, is central to accurate segregation. It is the destruction of this cohesin that triggers the segregation of chromosomes following their proper attachment to microtubules. Since it is irreversible, this process must be tightly controlled and driven to completion. Furthermore, during meiosis, modifications must be put in place to allow the segregation of maternal and paternal chromosomes in the first division for gamete formation. Here, I review the pioneering work from budding yeast that has led to a molecular understanding of the establishment and destruction of cohesion. PMID:24395824

  16. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast

    PubMed Central

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R.; Drubin, David G.

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin–Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism. PMID:27068241

  17. The bud tip is the cellular hot spot of protein secretion in yeasts.

    PubMed

    Puxbaum, Verena; Gasser, Brigitte; Mattanovich, Diethard

    2016-09-01

    Yeasts are valuable hosts for recombinant protein production. Among them, Pichia pastoris is frequently used for production of secreted proteins, and much effort was made to improve the secretion efficiency of this expression platform. However, the knowledge on the secretion machinery is mainly based on studies in Saccharomyces cerevisiae. Therefore, it is of great interest for targeted improvement of the system to learn more about the secretion process in P. pastoris. Using human serum albumin, a protein which is produced in high quantities in P. pastoris, we show here the secretion pathway of this protein. During passage of the secretory route, the recombinant protein is mainly localized in the endoplasmic reticulum (ER) and in COPII vesicles, and is inherited to the daughter cell via the perinuclear ER. The final release to the cell exterior occurs at the bud, initiating at the bud tip and later spreading over the entire bud surface. The same polarized secretion pattern was observed for a recombinant antibody light chain and the native secretory protein Epx1 of P. pastoris. Clarifying the point of release of secretory proteins will have major impact on engineering the secretory pathway of P. pastoris and other budding yeasts. PMID:27338576

  18. Here, there, everywhere. mRNA localization in budding yeast.

    PubMed

    Singer-Krüger, Birgit; Jansen, Ralf-Peter

    2014-01-01

    mRNA localization and localized translation is a common mechanism that contributes to cell polarity and cellular asymmetry. In metazoan, mRNA transport participates in embryonic axis determination and neuronal plasticity. Since the mRNA localization process and its molecular machinery are rather complex in higher eukaryotes, the unicellular yeast Saccharomyces cerevisiae has become an attractive model to study mRNA localization. Although the focus has so far been on the mechanism of ASH1 mRNA transport, it has become evident that mRNA localization also assists in protein sorting to organelles, as well as in polarity establishment and maintenance. A diversity of different pathways has been identified that targets mRNA to their destination site, ranging from motor protein-dependent trafficking of translationally silenced mRNAs to co-translational targeting, in which mRNAs hitch-hike to organelles on ribosomes during nascent polypeptide chain elongation. The presence of these diverse pathways in yeast allows a systemic analysis of the contribution of mRNA localization to the physiology of a cell. PMID:25482891

  19. Septin Filament Formation is Essential in Budding Yeast

    PubMed Central

    McMurray, Michael A.; Bertin, Aurelie; Garcia, Galo; Lam, Lisa; Nogales, Eva; Thorner, Jeremy

    2011-01-01

    SUMMARY Septins are GTP-binding proteins that form ordered, rod-like multimeric complexes and polymerize into filaments, but how such supramolecular structure is related to septin function was unclear. In Saccharomyces cerevisiae, four septins form an apolar hetero-octamer (Cdc11–Cdc12–Cdc3–Cdc10–Cdc10–Cdc3–Cdc12–Cdc11) that associates end-to-end to form filaments. We show that septin filament assembly displays previously unanticipated plasticity. Cells lacking Cdc10 or Cdc11 are able to divide because the now-exposed subunits (Cdc3 or Cdc12, respectively) retain an ability to homodimerize via their so-called G interface, thereby allowing for filament assembly. In such cdc10Δ and cdc11Δ cells, the remaining septins, like wild-type complexes, localize to the cortex at the bud neck and compartmentalize non-septin factors, consistent with a diffusion barrier composed of continuous filaments in intimate contact with the plasma membrane. Conversely, Cdc10 or Cdc11 mutants that cannot self-associate, but “cap” Cdc3 or Cdc12, respectively, prevent filament formation, block cortical localization, and kill cells. PMID:21497764

  20. Studying Protein-Protein Interactions in Budding Yeast Using Co-immunoprecipitation.

    PubMed

    Foltman, Magdalena; Sanchez-Diaz, Alberto

    2016-01-01

    Understanding protein-protein interactions and the architecture of protein complexes in which they work is essential to identify their biological role. Protein co-immunoprecipitation (co-IP) is an invaluable technique used in biochemistry allowing the identification of protein interactors. Here, we describe in detail an immunoaffinity purification protocol as a one-step or two-step immunoprecipitation from budding yeast Saccharomyces cerevisiae cells to subsequently detect interactions between proteins involved in the same biological process. PMID:26519317

  1. The Malleable Nature of the Budding Yeast Nuclear Envelope: Flares, Fusion, and Fenestrations.

    PubMed

    Meseroll, Rebecca A; Cohen-Fix, Orna

    2016-11-01

    In eukaryotes, the nuclear envelope (NE) physically separates nuclear components and activities from rest of the cell. The NE also provides rigidity to the nucleus and contributes to chromosome organization. At the same time, the NE is highly dynamic; it must change shape and rearrange its components during development and throughout the cell cycle, and its morphology can be altered in response to mutation and disease. Here we focus on the NE of budding yeast, Saccharomyces cerevisiae, which has several unique features: it remains intact throughout the cell cycle, expands symmetrically during interphase, elongates during mitosis and, expands asymmetrically during mitotic delay. Moreover, its NE is safely breached during mating and when large structures, such as nuclear pore complexes and the spindle pole body, are embedded into its double membrane. The budding yeast NE lacks lamins and yet the nucleus is capable of maintaining a spherical shape throughout interphase. Despite these eccentricities, studies of the budding yeast NE have uncovered interesting, and likely conserved, processes that contribute to NE dynamics. In particular, we discuss the processes that drive and enable NE expansion and the dramatic changes in the NE that lead to extensions and fenestrations. J. Cell. Physiol. 231: 2353-2360, 2016. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. PMID:26909870

  2. Quantitative proteomic comparison of stationary/G0 phase cells and tetrads in budding yeast

    PubMed Central

    Kumar, Ravinder; Srivastava, Sanjeeva

    2016-01-01

    Most of the microbial cells on earth under natural conditions exist in a dormant condition, commonly known as quiescent state. Quiescent cells exhibit low rates of transcription and translation suggesting that cellular abundance of proteins may be similar in quiescent cells. Therefore, this study aim to compare the proteome of budding yeast cells from two quiescent states viz. stationary phase/G0 and tetrads. Using iTRAQ (isobaric tag for relative and absolute quantitation) based quantitative proteomics we identified 289 proteins, among which around 40 proteins exhibited ±1.5 fold change consistently from the four biological replicates. Proteomics data was validated by western blot and denstiometric analysis of Hsp12 and Spg4. Level of budding yeast 14-3-3 proteins was found to be similar in both the quiescent states, whereas Hsp12 and Spg4 expressed only during stress. FACS (fluorescence-activated cell sorting) analysis showed that budding yeast cells were arrested at G1 stages both in tetrads as well as in stationary phase. We also observed that quiescent states did not express Ime1 (inducer of meiosis). Taken together, our present study demonstrates that the cells in quiescent state may have similar proteome, and accumulation of proteins like Hsp12, Hsp26, and Spg4 may play an important role in retaining viability of the cells during dormancy. PMID:27558777

  3. Quantitative proteomic comparison of stationary/G0 phase cells and tetrads in budding yeast.

    PubMed

    Kumar, Ravinder; Srivastava, Sanjeeva

    2016-01-01

    Most of the microbial cells on earth under natural conditions exist in a dormant condition, commonly known as quiescent state. Quiescent cells exhibit low rates of transcription and translation suggesting that cellular abundance of proteins may be similar in quiescent cells. Therefore, this study aim to compare the proteome of budding yeast cells from two quiescent states viz. stationary phase/G0 and tetrads. Using iTRAQ (isobaric tag for relative and absolute quantitation) based quantitative proteomics we identified 289 proteins, among which around 40 proteins exhibited ±1.5 fold change consistently from the four biological replicates. Proteomics data was validated by western blot and denstiometric analysis of Hsp12 and Spg4. Level of budding yeast 14-3-3 proteins was found to be similar in both the quiescent states, whereas Hsp12 and Spg4 expressed only during stress. FACS (fluorescence-activated cell sorting) analysis showed that budding yeast cells were arrested at G1 stages both in tetrads as well as in stationary phase. We also observed that quiescent states did not express Ime1 (inducer of meiosis). Taken together, our present study demonstrates that the cells in quiescent state may have similar proteome, and accumulation of proteins like Hsp12, Hsp26, and Spg4 may play an important role in retaining viability of the cells during dormancy. PMID:27558777

  4. Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast.

    PubMed Central

    Sia, R A; Herald, H A; Lew, D J

    1996-01-01

    A morphogenesis checkpoint in budding yeast delays nuclear division (and subsequent cell cycle progression) in cells that have failed to make a bud. We show that the ability of this checkpoint to delay nuclear division requires the SWE1 gene, encoding a protein kinase that inhibits the master cell cycle regulatory kinase Cdc28. The timing of nuclear division in cells that cannot make a bud is exquisitely sensitive to the dosage of SWE1 and MIH1 genes, which control phosphorylation of Cdc28 at tyrosine 19. In contrast, the timing of nuclear division in budded cells does not rely on Cdc28 phosphorylation, suggesting that the morphogenesis checkpoint somehow turns on this regulatory pathway. We show that SWE1 mRNA levels fluctuate during the cell cycle and are elevated in cells that cannot make a bud. However, regulation of SWE1 mRNA levels by the checkpoint is indirect, acting through a feedback loop requiring Swe1 activity. Further, the checkpoint is capable of delaying nuclear division even when SWE1 transcription is deregulated. We propose that the checkpoint delays nuclear division through post-translational regulation of Swe1 and that transcriptional feedback loops enhance the efficacy of the checkpoint. Images PMID:8930890

  5. HRR25, a putative protein kinase from budding yeast: Association with repair of damaged DNA

    SciTech Connect

    Hoekstra, M.F.; Ou, A.C.; DeMaggio, A.J.; Burbee, D.G. ); Liskay, R.M. ); Heffron, F. )

    1991-08-30

    In simple eukaryotes, protein kinases regulate mitotic and meiotic cell cycles, the response to polypeptide pheromones, and the initiation of nuclear DNA synthesis. The protein HRR25 from the budding yeast Saccharomyces cerevisiae was defined by the mutation hrr25-1. This mutation resulted in sensitivity to continuous expression of the HO double-strand endonuclease, to methyl methanesulfonate, and to x-irradiation. Homozygotes of hrr25-1 were unable to sporulate and disruption and deletion of HRR25 interfered with mitotic and meiotic cell division. Sequence analysis revealed two distinctive regions in the protein. The NH{sub 2}-terminus of HRR25 contains the hallmark features of protein kinases, whereas the COOH-terminus is rich in proline and glutamine. Mutations in HRR25 at conserved residues found in all protein kinases inactivated the gene, and these mutants exhibited the hrr25 null phenotypes. Taken together, the hrr25 mutant phenotypes and the features of the gene product indicate that HRR25 is a distinctive member of the protein kinase superfamily.

  6. In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae

    PubMed Central

    Mc Intyre, John; Muller, Eric G D; Weitzer, Stefan; Snydsman, Brian E; Davis, Trisha N; Uhlmann, Frank

    2007-01-01

    Cohesion between sister chromatids in eukaryotes is mediated by the evolutionarily conserved cohesin complex. Cohesin forms a proteinaceous ring, large enough to trap pairs of replicated sister chromatids. The circumference consists of the Smc1 and Smc3 subunits, while Scc1 is thought to close the ring by bridging the Smc (structural maintenance of chromosomes) ATPase head domains. Little is known about two additional subunits, Scc3 and Pds5, and about possible conformational changes of the complex during the cell cycle. We have employed fluorescence resonance energy transfer (FRET) to analyse interactions within the cohesin complex in live budding yeast. These experiments reveal an unexpected geometry of Scc1 at the Smc heads, and suggest that Pds5 plays a role at the Smc hinge on the opposite side of the ring. Key subunit interactions, including close proximity of the two ATPase heads, are constitutive throughout the cell cycle. This depicts cohesin as a stable molecular machine undergoing only transient conformational changes during binding and dissociation from chromosomes. Using FRET, we did not observe interactions between more than one cohesin complex in vivo. PMID:17660750

  7. Crystal structures of the Gon7/Pcc1 and Bud32/Cgi121 complexes provide a model for the complete yeast KEOPS complex

    PubMed Central

    Zhang, Wenhua; Collinet, Bruno; Graille, Marc; Daugeron, Marie-Claire; Lazar, Noureddine; Libri, Domenico; Durand, Dominique; van Tilbeurgh, Herman

    2015-01-01

    The yeast KEOPS protein complex comprising Kae1, Bud32, Cgi121, Pcc1 and Gon7 is responsible for the essential tRNA threonylcarbamoyladenosine (t6A) modification. Deletion of genes coding for the KEOPS subunits also affects telomere elongation and transcriptional regulation. In the present work, the crystal structure of Bud32/Cgi121 in complex with ADP revealed that ADP is bound in the catalytic site of Bud32 in a canonical manner characteristic of Protein Kinase A (PKA) family proteins. We found that Gon7 forms a stable heterodimer with Pcc1 and report the crystal structure of the Pcc1-Gon7 heterodimer. Gon7 interacts with the same Pcc1 region engaged in the archaeal Pcc1 homodimer. We further show that yeast KEOPS, unlike its archaeal counterpart, exists as a heteropentamer in which Gon7, Pcc1, Kae1, Bud32 and Cgi121 also adopt a linear arrangement. We constructed a model of yeast KEOPS that provides structural insight into the role of Gon7. The model also revealed the presence of a highly positively charged crater surrounding the entrance of Kae1 that likely binds tRNA. PMID:25735745

  8. MAP kinase dynamics in response to pheromones in budding yeast.

    PubMed

    van Drogen, F; Stucke, V M; Jorritsma, G; Peter, M

    2001-12-01

    Although scaffolding is a major regulator of mitogen-activated protein kinase (MAPK) pathways, scaffolding proteins are poorly understood. During yeast mating, MAPK Fus3p is phosphorylated by MAPKK Ste7p, which is activated by MAPKKK Ste11p. This MAPK module interacts with the scaffold molecule Ste5p. Here we show that Ste11p and Ste7p were predominantly cytoplasmic proteins, while Ste5p and Fus3p were found in the nucleus and the cytoplasm. Ste5p, Ste7p and Fus3p also localized to tips of mating projections in pheromone-treated cells. Using fluorescence recovery after photobleaching (FRAP), we demonstrate that Fus3p rapidly shuttles between the nucleus and the cytoplasm independently of pheromones, Fus3p phosphorylation and Ste5p. Membrane-bound Ste5p can specifically recruit Fus3p and Ste7p to the cell cortex. Ste5p remains stably bound at the plasma membrane, unlike activated Fus3p, which dissociates from Ste5p and translocates to the nucleus. PMID:11781566

  9. Protein Acetylation and Acetyl Coenzyme A Metabolism in Budding Yeast

    PubMed Central

    Galdieri, Luciano; Zhang, Tiantian; Rogerson, Daniella; Lleshi, Rron

    2014-01-01

    Cells sense and appropriately respond to the physical conditions and availability of nutrients in their environment. This sensing of the environment and consequent cellular responses are orchestrated by a multitude of signaling pathways and typically involve changes in transcription and metabolism. Recent discoveries suggest that the signaling and transcription machineries are regulated by signals which are derived from metabolism and reflect the metabolic state of the cell. Acetyl coenzyme A (CoA) is a key metabolite that links metabolism with signaling, chromatin structure, and transcription. Acetyl-CoA is produced by glycolysis as well as other catabolic pathways and used as a substrate for the citric acid cycle and as a precursor in synthesis of fatty acids and steroids and in other anabolic pathways. This central position in metabolism endows acetyl-CoA with an important regulatory role. Acetyl-CoA serves as a substrate for lysine acetyltransferases (KATs), which catalyze the transfer of acetyl groups to the epsilon-amino groups of lysines in histones and many other proteins. Fluctuations in the concentration of acetyl-CoA, reflecting the metabolic state of the cell, are translated into dynamic protein acetylations that regulate a variety of cell functions, including transcription, replication, DNA repair, cell cycle progression, and aging. This review highlights the synthesis and homeostasis of acetyl-CoA and the regulation of transcriptional and signaling machineries in yeast by acetylation. PMID:25326522

  10. Force Generation by Endocytic Actin Patches in Budding Yeast

    PubMed Central

    Carlsson, Anders E.; Bayly, Philip V.

    2014-01-01

    Membrane deformation during endocytosis in yeast is driven by local, templated assembly of a sequence of proteins including polymerized actin and curvature-generating coat proteins such as clathrin. Actin polymerization is required for successful endocytosis, but it is not known by what mechanisms actin polymerization generates the required pulling forces. To address this issue, we develop a simulation method in which the actin network at the protein patch is modeled as an active gel. The deformation of the gel is treated using a finite-element approach. We explore the effects and interplay of three different types of force driving invagination: 1), forces perpendicular to the membrane, generated by differences between actin polymerization rates at the edge of the patch and those at the center; 2), the inherent curvature of the coat-protein layer; and 3), forces parallel to the membrane that buckle the coat protein layer, generated by an actomyosin contractile ring. We find that with optimistic estimates for the stall stress of actin gel growth and the shear modulus of the actin gel, actin polymerization can generate almost enough force to overcome the turgor pressure. In combination with the other mechanisms, actin polymerization can the force over the critical value. PMID:24739159

  11. Comparative 3D Genome Structure Analysis of the Fission and the Budding Yeast

    PubMed Central

    Gong, Ke; Tjong, Harianto; Zhou, Xianghong Jasmine; Alber, Frank

    2015-01-01

    We studied the 3D structural organization of the fission yeast genome, which emerges from the tethering of heterochromatic regions in otherwise randomly configured chromosomes represented as flexible polymer chains in an nuclear environment. This model is sufficient to explain in a statistical manner many experimentally determined distinctive features of the fission yeast genome, including chromatin interaction patterns from Hi-C experiments and the co-locations of functionally related and co-expressed genes, such as genes expressed by Pol-III. Our findings demonstrate that some previously described structure-function correlations can be explained as a consequence of random chromatin collisions driven by a few geometric constraints (mainly due to centromere-SPB and telomere-NE tethering) combined with the specific gene locations in the chromosome sequence. We also performed a comparative analysis between the fission and budding yeast genome structures, for which we previously detected a similar organizing principle. However, due to the different chromosome sizes and numbers, substantial differences are observed in the 3D structural genome organization between the two species, most notably in the nuclear locations of orthologous genes, and the extent of nuclear territories for genes and chromosomes. However, despite those differences, remarkably, functional similarities are maintained, which is evident when comparing spatial clustering of functionally related genes in both yeasts. Functionally related genes show a similar spatial clustering behavior in both yeasts, even though their nuclear locations are largely different between the yeast species. PMID:25799503

  12. Concerted mechanism of Swe1/Wee1 regulation by multiple kinases in budding yeast

    PubMed Central

    Asano, Satoshi; Park, Jung-Eun; Sakchaisri, Krisada; Yu, Li-Rong; Song, Sukgil; Supavilai, Porntip; Veenstra, Timothy D; Lee, Kyung S

    2005-01-01

    In eukaryotes, entry into mitosis is induced by cyclin B-bound Cdk1, which is held in check by the protein kinase, Wee1. In budding yeast, Swe1 (Wee1 ortholog) is targeted to the bud neck through Hsl1 (Nim1-related kinase) and its adaptor Hsl7, and is hyperphosphorylated prior to ubiquitin-mediated degradation. Here, we show that Hsl1 and Hsl7 are required for proper localization of Cdc5 (Polo-like kinase homolog) to the bud neck and Cdc5-dependent Swe1 phosphorylation. Mitotic cyclin (Clb2)-bound Cdc28 (Cdk1 homolog) directly phosphorylated Swe1 and this modification served as a priming step to promote subsequent Cdc5-dependent Swe1 hyperphosphorylation and degradation. Clb2-Cdc28 also facilitated Cdc5 localization to the bud neck through the enhanced interaction between the Clb2-Cdc28-phosphorylated Swe1 and the polo-box domain of Cdc5. We propose that the concerted action of Cdc28/Cdk1 and Cdc5/Polo on their common substrates is an evolutionarily conserved mechanism that is crucial for effectively triggering mitotic entry and other critical mitotic events. PMID:15920482

  13. Snap-, CLIP- and Halo-Tag Labelling of Budding Yeast Cells

    PubMed Central

    Stagge, Franziska; Mitronova, Gyuzel Y.; Belov, Vladimir N.; Wurm, Christian A.; Jakobs, Stefan

    2013-01-01

    Fluorescence microscopy of the localization and the spatial and temporal dynamics of specifically labelled proteins is an indispensable tool in cell biology. Besides fluorescent proteins as tags, tag-mediated labelling utilizing self-labelling proteins as the SNAP-, CLIP-, or the Halo-tag are widely used, flexible labelling systems relying on exogenously supplied fluorophores. Unfortunately, labelling of live budding yeast cells proved to be challenging with these approaches because of the limited accessibility of the cell interior to the dyes. In this study we developed a fast and reliable electroporation-based labelling protocol for living budding yeast cells expressing SNAP-, CLIP-, or Halo-tagged fusion proteins. For the Halo-tag, we demonstrate that it is crucial to use the 6′-carboxy isomers and not the 5′-carboxy isomers of important dyes to ensure cell viability. We report on a simple rule for the analysis of 1H NMR spectra to discriminate between 6′- and 5′-carboxy isomers of fluorescein and rhodamine derivatives. We demonstrate the usability of the labelling protocol by imaging yeast cells with STED super-resolution microscopy and dual colour live cell microscopy. The large number of available fluorophores for these self-labelling proteins and the simplicity of the protocol described here expands the available toolbox for the model organism Saccharomyces cerevisiae. PMID:24205303

  14. Synaptonemal Complex Proteins of Budding Yeast Define Reciprocal Roles in MutSγ-Mediated Crossover Formation.

    PubMed

    Voelkel-Meiman, Karen; Cheng, Shun-Yun; Morehouse, Savannah J; MacQueen, Amy J

    2016-07-01

    During meiosis, crossover recombination creates attachments between homologous chromosomes that are essential for a precise reduction in chromosome ploidy. Many of the events that ultimately process DNA repair intermediates into crossovers during meiosis occur within the context of homologous chromosomes that are tightly aligned via a conserved structure called the synaptonemal complex (SC), but the functional relationship between SC and crossover recombination remains obscure. There exists a widespread correlation across organisms between the presence of SC proteins and successful crossing over, indicating that the SC or its building block components are procrossover factors . For example, budding yeast mutants missing the SC transverse filament component, Zip1, and mutant cells missing the Zip4 protein, which is required for the elaboration of SC, fail to form MutSγ-mediated crossovers. Here we report the reciprocal phenotype-an increase in MutSγ-mediated crossovers during meiosis-in budding yeast mutants devoid of the SC central element components Ecm11 or Gmc2, and in mutants expressing a version of Zip1 missing most of its N terminus. This novel phenotypic class of SC-deficient mutants demonstrates unequivocally that the tripartite SC structure is dispensable for MutSγ-mediated crossover recombination in budding yeast. The excess crossovers observed in SC central element-deficient mutants are Msh4, Zip1, and Zip4 dependent, clearly indicating the existence of two classes of SC proteins-a class with procrossover function(s) that are also necessary for SC assembly and a class that is not required for crossover formation but essential for SC assembly. The latter class directly or indirectly limits MutSγ-mediated crossovers along meiotic chromosomes. Our findings illustrate how reciprocal roles in crossover recombination can be simultaneously linked to the SC structure. PMID:27184389

  15. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects.

    PubMed

    Hildebrand, Erica M; Biggins, Sue

    2016-03-01

    The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-A(Cse4) is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-A(Cse4) for degradation. To identify additional mechanisms that prevent CENP-A(Cse4) misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-A(Cse4) in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-A(Cse4) is enriched at promoters that contain histone H2A.Z(Htz1) nucleosomes, but that H2A.Z(Htz1) is not required for CENP-A(Cse4) mislocalization. Instead, the INO80 complex, which removes H2A.Z(Htz1) from nucleosomes, promotes the ectopic deposition of CENP-A(Cse4). Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-A(Cse4). The down-regulated genes are enriched for CENP-A(Cse4) mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation. PMID:26982580

  16. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects

    PubMed Central

    Hildebrand, Erica M.; Biggins, Sue

    2016-01-01

    The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-ACse4 is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-ACse4 for degradation. To identify additional mechanisms that prevent CENP-ACse4 misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-ACse4 in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-ACse4 is enriched at promoters that contain histone H2A.ZHtz1 nucleosomes, but that H2A.ZHtz1 is not required for CENP-ACse4 mislocalization. Instead, the INO80 complex, which removes H2A.ZHtz1 from nucleosomes, promotes the ectopic deposition of CENP-ACse4. Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-ACse4. The down-regulated genes are enriched for CENP-ACse4 mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation. PMID:26982580

  17. The budding yeast Centromere DNA Element II wraps a stable Cse4 hemisome in either orientation in vivo

    PubMed Central

    Henikoff, Steven; Ramachandran, Srinivas; Krassovsky, Kristina; Bryson, Terri D; Codomo, Christine A; Brogaard, Kristin; Wang, Ji-Ping; Henikoff, Jorja G

    2014-01-01

    In budding yeast, a single cenH3 (Cse4) nucleosome occupies the ∼120-bp functional centromere, however conflicting structural models for the particle have been proposed. To resolve this controversy, we have applied H4S47C-anchored cleavage mapping, which reveals the precise position of histone H4 in every nucleosome in the genome. We find that cleavage patterns at centromeres are unique within the genome and are incompatible with symmetrical structures, including octameric nucleosomes and (Cse4/H4)2 tetrasomes. Centromere cleavage patterns are compatible with a precisely positioned core structure, one in which each of the 16 yeast centromeres is occupied by oppositely oriented Cse4/H4/H2A/H2B hemisomes in two rotational phases within the population. Centromere-specific hemisomes are also inferred from distances observed between closely-spaced H4 cleavages, as predicted from structural modeling. Our results indicate that the orientation and rotational position of the stable hemisome at each yeast centromere is not specified by the functional centromere sequence. DOI: http://dx.doi.org/10.7554/eLife.01861.001 PMID:24737863

  18. Chemical genetic profiling of the microtubule-targeting agent peloruside A in budding yeast Saccharomyces cerevisiae.

    PubMed

    Wilmes, Anja; Hanna, Reem; Heathcott, Rosemary W; Northcote, Peter T; Atkinson, Paul H; Bellows, David S; Miller, John H

    2012-04-15

    Peloruside A, a microtubule-stabilising agent from a New Zealand marine sponge, inhibits mammalian cell division by a similar mechanism to that of the anticancer drug paclitaxel. Wild type budding yeast Saccharomyces cerevisiae (haploid strain BY4741) showed growth sensitivity to peloruside A with an IC(50) of 35μM. Sensitivity was increased in a mad2Δ (Mitotic Arrest Deficient 2) deletion mutant (IC(50)=19μM). Mad2 is a component of the spindle-assembly checkpoint complex that delays the onset of anaphase in cells with defects in mitotic spindle assembly. Haploid mad2Δ cells were much less sensitive to paclitaxel than to peloruside A, possibly because the peloruside binding site on yeast tubulin is more similar to mammalian tubulin than the taxoid site where paclitaxel binds. In order to obtain information on the primary and secondary targets of peloruside A in yeast, a microarray analysis of yeast heterozygous and homozygous deletion mutant sets was carried out. Haploinsufficiency profiling (HIP) failed to provide hits that could be validated, but homozygous profiling (HOP) generated twelve validated genes that interact with peloruside A in cells. Five of these were particularly significant: RTS1, SAC1, MAD1, MAD2, and LSM1. In addition to its known target tubulin, based on these microarray 'hits', peloruside A was seen to interact genetically with other cell proteins involved in the cell cycle, mitosis, RNA splicing, and membrane trafficking. PMID:22326528

  19. CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast.

    PubMed

    Coffman, Valerie C; Wu, Pengcheng; Parthun, Mark R; Wu, Jian-Qiu

    2011-11-14

    The stoichiometries of kinetochores and their constituent proteins in yeast and vertebrate cells were determined using the histone H3 variant CENP-A, known as Cse4 in budding yeast, as a counting standard. One Cse4-containing nucleosome exists in the centromere (CEN) of each chromosome, so it has been assumed that each anaphase CEN/kinetochore cluster contains 32 Cse4 molecules. We report that anaphase CEN clusters instead contained approximately fourfold more Cse4 in Saccharomyces cerevisiae and ~40-fold more CENP-A (Cnp1) in Schizosaccharomyces pombe than predicted. These results suggest that the number of CENP-A molecules exceeds the number of kinetochore-microtubule (MT) attachment sites on each chromosome and that CENP-A is not the sole determinant of kinetochore assembly sites in either yeast. In addition, we show that fission yeast has enough Dam1-DASH complex for ring formation around attached MTs. The results of this study suggest the need for significant revision of existing CEN/kinetochore architectural models. PMID:22084306

  20. Ingression Progression Complexes Control Extracellular Matrix Remodelling during Cytokinesis in Budding Yeast

    PubMed Central

    Foltman, Magdalena; Molist, Iago; Arcones, Irene; Sacristan, Carlos; Filali-Mouncef, Yasmina; Roncero, Cesar; Sanchez-Diaz, Alberto

    2016-01-01

    Eukaryotic cells must coordinate contraction of the actomyosin ring at the division site together with ingression of the plasma membrane and remodelling of the extracellular matrix (ECM) to support cytokinesis, but the underlying mechanisms are still poorly understood. In eukaryotes, glycosyltransferases that synthesise ECM polysaccharides are emerging as key factors during cytokinesis. The budding yeast chitin synthase Chs2 makes the primary septum, a special layer of the ECM, which is an essential process during cell division. Here we isolated a group of actomyosin ring components that form complexes together with Chs2 at the cleavage site at the end of the cell cycle, which we named ‘ingression progression complexes’ (IPCs). In addition to type II myosin, the IQGAP protein Iqg1 and Chs2, IPCs contain the F-BAR protein Hof1, and the cytokinesis regulators Inn1 and Cyk3. We describe the molecular mechanism by which chitin synthase is activated by direct association of the C2 domain of Inn1, and the transglutaminase-like domain of Cyk3, with the catalytic domain of Chs2. We used an experimental system to find a previously unanticipated role for the C-terminus of Inn1 in preventing the untimely activation of Chs2 at the cleavage site until Cyk3 releases the block on Chs2 activity during late mitosis. These findings support a model for the co-ordinated regulation of cell division in budding yeast, in which IPCs play a central role. PMID:26891268

  1. Ingression Progression Complexes Control Extracellular Matrix Remodelling during Cytokinesis in Budding Yeast.

    PubMed

    Foltman, Magdalena; Molist, Iago; Arcones, Irene; Sacristan, Carlos; Filali-Mouncef, Yasmina; Roncero, Cesar; Sanchez-Diaz, Alberto

    2016-02-01

    Eukaryotic cells must coordinate contraction of the actomyosin ring at the division site together with ingression of the plasma membrane and remodelling of the extracellular matrix (ECM) to support cytokinesis, but the underlying mechanisms are still poorly understood. In eukaryotes, glycosyltransferases that synthesise ECM polysaccharides are emerging as key factors during cytokinesis. The budding yeast chitin synthase Chs2 makes the primary septum, a special layer of the ECM, which is an essential process during cell division. Here we isolated a group of actomyosin ring components that form complexes together with Chs2 at the cleavage site at the end of the cell cycle, which we named 'ingression progression complexes' (IPCs). In addition to type II myosin, the IQGAP protein Iqg1 and Chs2, IPCs contain the F-BAR protein Hof1, and the cytokinesis regulators Inn1 and Cyk3. We describe the molecular mechanism by which chitin synthase is activated by direct association of the C2 domain of Inn1, and the transglutaminase-like domain of Cyk3, with the catalytic domain of Chs2. We used an experimental system to find a previously unanticipated role for the C-terminus of Inn1 in preventing the untimely activation of Chs2 at the cleavage site until Cyk3 releases the block on Chs2 activity during late mitosis. These findings support a model for the co-ordinated regulation of cell division in budding yeast, in which IPCs play a central role. PMID:26891268

  2. A Proteome-wide Fission Yeast Interactome Reveals Network Evolution Principles from Yeasts to Human.

    PubMed

    Vo, Tommy V; Das, Jishnu; Meyer, Michael J; Cordero, Nicolas A; Akturk, Nurten; Wei, Xiaomu; Fair, Benjamin J; Degatano, Andrew G; Fragoza, Robert; Liu, Lisa G; Matsuyama, Akihisa; Trickey, Michelle; Horibata, Sachi; Grimson, Andrew; Yamano, Hiroyuki; Yoshida, Minoru; Roth, Frederick P; Pleiss, Jeffrey A; Xia, Yu; Yu, Haiyuan

    2016-01-14

    Here, we present FissionNet, a proteome-wide binary protein interactome for S. pombe, comprising 2,278 high-quality interactions, of which ∼ 50% were previously not reported in any species. FissionNet unravels previously unreported interactions implicated in processes such as gene silencing and pre-mRNA splicing. We developed a rigorous network comparison framework that accounts for assay sensitivity and specificity, revealing extensive species-specific network rewiring between fission yeast, budding yeast, and human. Surprisingly, although genes are better conserved between the yeasts, S. pombe interactions are significantly better conserved in human than in S. cerevisiae. Our framework also reveals that different modes of gene duplication influence the extent to which paralogous proteins are functionally repurposed. Finally, cross-species interactome mapping demonstrates that coevolution of interacting proteins is remarkably prevalent, a result with important implications for studying human disease in model organisms. Overall, FissionNet is a valuable resource for understanding protein functions and their evolution. PMID:26771498

  3. Quantitative Analysis of Pac1/LIS1-mediated Dynein Targeting: Implications for Regulation of Dynein Activity in Budding Yeast

    PubMed Central

    Markus, Steven M.; Plevock, Karen M.; St. Germain, Bryan J.; Punch, Jesse J.; Meaden, Christopher W.; Lee, Wei-Lih

    2011-01-01

    LIS1 is a critical regulator of dynein function during mitosis and organelle transport. Here, we investigated how Pac1, the budding yeast LIS1 homologue, regulates dynein targeting and activity during nuclear migration. We show that Pac1 and Dyn1 (dynein heavy chain) are dependent upon each other and upon Bik1 (budding yeast CLIP-170 homologue) for plus end localization, whereas Bik1 is independent of either. Dyn1, Pac1 and Bik1 interact in vivo at the plus ends, where an excess amount of Bik1 recruits approximately equal amounts of Pac1 and Dyn1. Overexpression of Pac1 enhanced plus end targeting of Dyn1 and vice versa, while affinity-purification of Dyn1 revealed that it exists in a complex with Pac1 in the absence of Bik1, leading us to conclude that the Pac1-Dyn1 complex preassembles in the cytoplasm prior to loading onto Bik1-decorated plus ends. Strikingly, we found that Pac1-overexpression augments cortical dynein activity through a mechanism distinct from loss of She1, a negative regulator of dynein-dynactin association. While Pac1-overexpression enhances the frequency of cortical targeting for dynein and dynactin, the stoichiometry of these complexes remains relatively unchanged at the plus ends compared to that in wild-type cells (~3 dynein to 1 dynactin). Loss of She1, however, enhances dynein-dynactin association at the plus ends and the cell cortex, resulting in an apparent 1:1 stoichiometry. Our results reveal differential regulation of cortical dynein activity by She1 and Pac1, and provide a potentially new regulatory step in the off-loading model for dynein function. PMID:21294277

  4. Activation of budding yeast replication origins and suppression of lethal DNA damage effects on origin function by ectopic expression of the co-chaperone protein Mge1.

    PubMed

    Trabold, Peter A; Weinberger, Martin; Feng, Li; Burhans, William C

    2005-04-01

    Initiation of DNA replication in eukaryotes requires the origin recognition complex (ORC) and other proteins that interact with DNA at origins of replication. In budding yeast, the temperature-sensitive orc2-1 mutation alters these interactions in parallel with defects in initiation of DNA replication and in checkpoints that depend on DNA replication forks. Here we show that DNA-damaging drugs modify protein-DNA interactions at budding yeast replication origins in association with lethal effects that are enhanced by the orc2-1 mutation or suppressed by a different mutation in ORC. A dosage suppressor screen identified the budding yeast co-chaperone protein Mge1p as a high copy suppressor of the orc2-1-specific lethal effects of adozelesin, a DNA-alkylating drug. Ectopic expression of Mge1p also suppressed the temperature sensitivity and initiation defect conferred by the orc2-1 mutation. In wild type cells, ectopic expression of Mge1p also suppressed the lethal effects of adozelesin in parallel with the suppression of adozelesin-induced alterations in protein-DNA interactions at origins, stimulation of initiation of DNA replication, and binding of the precursor form of Mge1p to nuclear chromatin. Mge1p is the budding yeast homologue of the Escherichia coli co-chaperone protein GrpE, which stimulates initiation at bacterial origins of replication by promoting interactions of initiator proteins with origin sequences. Our results reveal a novel, proliferation-dependent cytotoxic mechanism for DNA-damaging drugs that involves alterations in the function of initiation proteins and their interactions with DNA. PMID:15647270

  5. Yeast Cdc42 functions at a late step in exocytosis, specifically during polarized growth of the emerging bud

    PubMed Central

    Adamo, Joan E.; Moskow, John J.; Gladfelter, Amy S.; Viterbo, Domenic; Lew, Daniel J.; Brennwald, Patrick J.

    2001-01-01

    The Rho family GTPase Cdc42 is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. In yeast, the role of Cdc42 in polarization of cell growth includes polarization of the actin cytoskeleton, which delivers secretory vesicles to growth sites at the plasma membrane. We now describe a novel temperature-sensitive mutant, cdc42-6, that reveals a role for Cdc42 in docking and fusion of secretory vesicles that is independent of its role in actin polarization. cdc42-6 mutants can polarize actin and deliver secretory vesicles to the bud, but fail to fuse those vesicles with the plasma membrane. This defect is manifested only during the early stages of bud formation when growth is most highly polarized, and appears to reflect a requirement for Cdc42 to maintain maximally active exocytic machinery at sites of high vesicle throughput. Extensive genetic interactions between cdc42-6 and mutations in exocytic components support this hypothesis, and indicate a functional overlap with Rho3, which also regulates both actin organization and exocytosis. Localization data suggest that the defect in cdc42-6 cells is not at the level of the localization of the exocytic apparatus. Rather, we suggest that Cdc42 acts as an allosteric regulator of the vesicle docking and fusion apparatus to provide maximal function at sites of polarized growth. PMID:11706050

  6. Yeast Cdc42 functions at a late step in exocytosis, specifically during polarized growth of the emerging bud.

    PubMed

    Adamo, J E; Moskow, J J; Gladfelter, A S; Viterbo, D; Lew, D J; Brennwald, P J

    2001-11-12

    The Rho family GTPase Cdc42 is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. In yeast, the role of Cdc42 in polarization of cell growth includes polarization of the actin cytoskeleton, which delivers secretory vesicles to growth sites at the plasma membrane. We now describe a novel temperature-sensitive mutant, cdc42-6, that reveals a role for Cdc42 in docking and fusion of secretory vesicles that is independent of its role in actin polarization. cdc42-6 mutants can polarize actin and deliver secretory vesicles to the bud, but fail to fuse those vesicles with the plasma membrane. This defect is manifested only during the early stages of bud formation when growth is most highly polarized, and appears to reflect a requirement for Cdc42 to maintain maximally active exocytic machinery at sites of high vesicle throughput. Extensive genetic interactions between cdc42-6 and mutations in exocytic components support this hypothesis, and indicate a functional overlap with Rho3, which also regulates both actin organization and exocytosis. Localization data suggest that the defect in cdc42-6 cells is not at the level of the localization of the exocytic apparatus. Rather, we suggest that Cdc42 acts as an allosteric regulator of the vesicle docking and fusion apparatus to provide maximal function at sites of polarized growth. PMID:11706050

  7. DNA replication and damage checkpoints and meiotic cell cycle controls in the fission and budding yeasts.

    PubMed Central

    Murakami, H; Nurse, P

    2000-01-01

    The cell cycle checkpoint mechanisms ensure the order of cell cycle events to preserve genomic integrity. Among these, the DNA-replication and DNA-damage checkpoints prevent chromosome segregation when DNA replication is inhibited or DNA is damaged. Recent studies have identified an outline of the regulatory networks for both of these controls, which apparently operate in all eukaryotes. In addition, it appears that these checkpoints have two arrest points, one is just before entry into mitosis and the other is prior to chromosome separation. The former point requires the central cell-cycle regulator Cdc2 kinase, whereas the latter involves several key regulators and substrates of the ubiquitin ligase called the anaphase promoting complex. Linkages between these cell-cycle regulators and several key checkpoint proteins are beginning to emerge. Recent findings on post-translational modifications and protein-protein interactions of the checkpoint proteins provide new insights into the checkpoint responses, although the functional significance of these biochemical properties often remains unclear. We have reviewed the molecular mechanisms acting at the DNA-replication and DNA-damage checkpoints in the fission yeast Schizosaccharomyces pombe, and the modifications of these controls during the meiotic cell cycle. We have made comparisons with the controls in fission yeast and other organisms, mainly the distantly related budding yeast. PMID:10861204

  8. Topological structure analysis of the protein–protein interaction network in budding yeast

    PubMed Central

    Bu, Dongbo; Zhao, Yi; Cai, Lun; Xue, Hong; Zhu, Xiaopeng; Lu, Hongchao; Zhang, Jingfen; Sun, Shiwei; Ling, Lunjiang; Zhang, Nan; Li, Guojie; Chen, Runsheng

    2003-01-01

    Interaction detection methods have led to the discovery of thousands of interactions between proteins, and discerning relevance within large-scale data sets is important to present-day biology. Here, a spectral method derived from graph theory was introduced to uncover hidden topological structures (i.e. quasi-cliques and quasi-bipartites) of complicated protein–protein interaction networks. Our analyses suggest that these hidden topological structures consist of biologically relevant functional groups. This result motivates a new method to predict the function of uncharacterized proteins based on the classification of known proteins within topological structures. Using this spectral analysis method, 48 quasi-cliques and six quasi-bipartites were isolated from a network involving 11 855 interactions among 2617 proteins in budding yeast, and 76 uncharacterized proteins were assigned functions. PMID:12711690

  9. H2B Ubiquitylation Modulates Spliceosome Assembly and Function in Budding Yeast

    PubMed Central

    Hérissant, Lucas; Moehle, Erica A.; Bertaccini, Diego; Van Dorsselaer, Alain; Schaeffer-Reiss, Christine; Guthrie, Christine; Dargemont, Catherine

    2014-01-01

    Background information Commitment to splicing occurs co-transcriptionally, but a major unanswered question is the extent to which various modifications of chromatin, the template for transcription in vivo, contribute to the regulation of splicing. Results Here we perform genome-wide analyses showing that inhibition of specific marks – H2B ubiquitylation, H3K4 methylation, and H3K36 methylation – perturbs splicing in budding yeast, with each modification exerting gene-specific effects. Furthermore, semi-quantitative mass spectrometry on purified nuclear mRNPs and chromatin immunoprecipitation analysis on intron-containing genes indicated that H2B ubiquitylation, but not Set1-, Set2- or Dot1-dependent H3 methylation, stimulates recruitment of the early splicing factors, namely U1 and U2 snRNPs, onto nascent RNAs. Conclusions These results suggest that histone modifications impact splicing of distinct subsets of genes using distinct pathways. PMID:24476359

  10. Development of automatic image analysis algorithms for protein localization studies in budding yeast

    NASA Astrophysics Data System (ADS)

    Logg, Katarina; Kvarnström, Mats; Diez, Alfredo; Bodvard, Kristofer; Käll, Mikael

    2007-02-01

    Microscopy of fluorescently labeled proteins has become a standard technique for live cell imaging. However, it is still a challenge to systematically extract quantitative data from large sets of images in an unbiased fashion, which is particularly important in high-throughput or time-lapse studies. Here we describe the development of a software package aimed at automatic quantification of abundance and spatio-temporal dynamics of fluorescently tagged proteins in vivo in the budding yeast Saccharomyces cerevisiae, one of the most important model organisms in proteomics. The image analysis methodology is based on first identifying cell contours from bright field images, and then use this information to measure and statistically analyse protein abundance in specific cellular domains from the corresponding fluorescence images. The applicability of the procedure is exemplified for two nuclear localized GFP-tagged proteins, Mcm4p and Nrm1p.

  11. Dilution of the cell cycle inhibitor Whi5 controls budding-yeast cell size.

    PubMed

    Schmoller, Kurt M; Turner, J J; Kõivomägi, M; Skotheim, Jan M

    2015-10-01

    Cell size fundamentally affects all biosynthetic processes by determining the scale of organelles and influencing surface transport. Although extensive studies have identified many mutations affecting cell size, the molecular mechanisms underlying size control have remained elusive. In the budding yeast Saccharomyces cerevisiae, size control occurs in G1 phase before Start, the point of irreversible commitment to cell division. It was previously thought that activity of the G1 cyclin Cln3 increased with cell size to trigger Start by initiating the inhibition of the transcriptional inhibitor Whi5 (refs 6-8). Here we show that although Cln3 concentration does modulate the rate at which cells pass Start, its synthesis increases in proportion to cell size so that its total concentration is nearly constant during pre-Start G1. Rather than increasing Cln3 activity, we identify decreasing Whi5 activity--due to the dilution of Whi5 by cell growth--as a molecular mechanism through which cell size controls proliferation. Whi5 is synthesized in S/G2/M phases of the cell cycle in a largely size-independent manner. This results in smaller daughter cells being born with higher Whi5 concentrations that extend their pre-Start G1 phase. Thus, at its most fundamental level, size control in budding yeast results from the differential scaling of Cln3 and Whi5 synthesis rates with cell size. More generally, our work shows that differential size-dependency of protein synthesis can provide an elegant mechanism to coordinate cellular functions with growth. PMID:26390151

  12. Construction, Verification and Experimental Use of Two Epitope-Tagged Collections of Budding Yeast Strains

    PubMed Central

    Howson, Russell; Huh, Won-Ki; Ghaemmaghami, Sina; Falvo, James V.; Bower, Kiowa; Belle, Archana; Dephoure, Noah; Wykoff, Dennis D.; Weissman, Jonathan S.

    2005-01-01

    A major challenge in the post-genomic era is the development of experimental approaches to monitor the properties of proteins on a proteome-wide level. It would be particularly useful to systematically assay protein subcellular localization, post-translational modifications and protein–protein interactions, both at steady state and in response to environmental stimuli. Development of new reagents and methods will enhance our ability to do so efficiently and systematically. Here we describe the construction of two collections of budding yeast strains that facilitate proteome-wide measurements of protein properties. These collections consist of strains with an epitope tag integrated at the C-terminus of essentially every open reading frame (ORF), one with the tandem affinity purification (TAP) tag, and one with the green fluorescent protein (GFP) tag. We show that in both of these collections we have accurately tagged a high proportion of all ORFs (approximately 75% of the proteome) by confirming expression of the fusion proteins. Furthermore, we demonstrate the use of the TAP collection in performing high-throughput immunoprecipitation experiments. Building on these collections and the methods described in this paper, we hope that the yeast community will expand both the quantity and type of proteome level data available. PMID:18629296

  13. Experimental testing of a new integrated model of the budding yeast Start transition

    PubMed Central

    Adames, Neil R.; Schuck, P. Logan; Chen, Katherine C.; Murali, T. M.; Tyson, John J.; Peccoud, Jean

    2015-01-01

    The cell cycle is composed of bistable molecular switches that govern the transitions between gap phases (G1 and G2) and the phases in which DNA is replicated (S) and partitioned between daughter cells (M). Many molecular details of the budding yeast G1–S transition (Start) have been elucidated in recent years, especially with regard to its switch-like behavior due to positive feedback mechanisms. These results led us to reevaluate and expand a previous mathematical model of the yeast cell cycle. The new model incorporates Whi3 inhibition of Cln3 activity, Whi5 inhibition of SBF and MBF transcription factors, and feedback inhibition of Whi5 by G1–S cyclins. We tested the accuracy of the model by simulating various mutants not described in the literature. We then constructed these novel mutant strains and compared their observed phenotypes to the model’s simulations. The experimental results reported here led to further changes of the model, which will be fully described in a later article. Our study demonstrates the advantages of combining model design, simulation, and testing in a coordinated effort to better understand a complex biological network. PMID:26310445

  14. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast

    SciTech Connect

    Choi, Joon-Seok; Lee, Cheol-Koo

    2013-09-13

    Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.

  15. Single-mRNA counting using fluorescent in situ hybridization in budding yeast

    PubMed Central

    Trcek, Tatjana; Chao, Jeffrey A; Larson, Daniel R; Park, Hye Yoon; Zenklusen, Daniel; Shenoy, Shailesh M; Singer, Robert H

    2014-01-01

    Fluorescent in situ hybridization (FISH) allows the quantification of single mRNAs in budding yeast using fluorescently labeled single-stranded DNA probes, a wide-field epifluorescence microscope and a spot-detection algorithm. Fixed yeast cells are attached to coverslips and hybridized with a mixture of FISH probes, each conjugated to several fluorescent dyes. Images of cells are acquired in 3D and maximally projected for single-molecule analysis. Diffraction-limited labeled mRNAs are observed as bright fluorescent spots and can be quantified using a spot-detection algorithm. FISH preserves the spatial distribution of cellular RNA distribution within the cell and the stochastic fluctuations in individual cells that can lead to phenotypic differences within a clonal population. This information, however, is lost if the RNA content is measured on a population of cells by using reverse transcriptase PCR, microarrays or high-throughput sequencing. The FISH procedure and image acquisition described here can be completed in 3 d. PMID:22301778

  16. The Ty1 LTR-retrotransposon of budding yeast, Saccharomyces cerevisiae

    PubMed Central

    Curcio, M. Joan; Lutz, Sheila; Lesage, Pascale

    2015-01-01

    Summary Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology. PMID:25893143

  17. Continuous High-resolution Microscopic Observation of Replicative Aging in Budding Yeast

    PubMed Central

    Huberts, Daphne H. E. W.; Janssens, Georges E.; Lee, Sung Sik; Vizcarra, Ima Avalos; Heinemann, Matthias

    2013-01-01

    We demonstrate the use of a simple microfluidic setup, in which single budding yeast cells can be tracked throughout their entire lifespan. The microfluidic chip exploits the size difference between mother and daughter cells using an array of micropads. Upon loading, cells are trapped underneath these micropads, because the distance between the micropad and cover glass is similar to the diameter of a yeast cell (3-4 μm). After the loading procedure, culture medium is continuously flushed through the chip, which not only creates a constant and defined environment throughout the entire experiment, but also flushes out the emerging daughter cells, which are not retained underneath the pads due to their smaller size. The setup retains mother cells so efficiently that in a single experiment up to 50 individual cells can be monitored in a fully automated manner for 5 days or, if necessary, longer. In addition, the excellent optical properties of the chip allow high-resolution imaging of cells during the entire aging process. PMID:23995364

  18. Measurement of the volume growth rate of single budding yeast with the MOSFET-based microfluidic Coulter counter

    PubMed Central

    Sun, Jiashu; Stowers, Chris C.; Boczko, Erik M.

    2012-01-01

    We report on measurements of the volume growth rate of ten individual budding yeast cells using a recently developed MOSFET-based microfluidic Coulter counter. The MOSFET-based microfluidic Coulter counter is very sensitive, provides signals that are immune from the baseline drift, and can work with cell culture media of complex composition. These desirable features allow us to directly measure the volume growth rate of single cells of Saccharomyces cerevisiae LYH3865 strain budding yeast in YNB culture media over a whole cell cycle. Results indicate that all budding yeast follow a sigmoid volume growth profile with reduced growth rates at the initial stage before the bud emerges and the final stage after the daughter gets mature. Analysis of the data indicates that even though all piecewise linear, Gomperitz, and Hill’s function models can fit the global growth profile equally well, the data strongly support local exponential growth phenomenon. Accurate volume growth measurements are important for applications in systems biology where quantitative parameters are required for modeling and simulation. PMID:20717618

  19. Measurement of the volume growth rate of single budding yeast with the MOSFET-based microfluidic Coulter counter.

    PubMed

    Sun, Jiashu; Stowers, Chris C; Boczko, Erik M; Li, Deyu

    2010-11-01

    We report on measurements of the volume growth rate of ten individual budding yeast cells using a recently developed MOSFET-based microfluidic Coulter counter. The MOSFET-based microfluidic Coulter counter is very sensitive, provides signals that are immune from the baseline drift, and can work with cell culture media of complex composition. These desirable features allow us to directly measure the volume growth rate of single cells of Saccharomyces cerevisiae LYH3865 strain budding yeast in YNB culture media over a whole cell cycle. Results indicate that all budding yeast follow a sigmoid volume growth profile with reduced growth rates at the initial stage before the bud emerges and the final stage after the daughter gets mature. Analysis of the data indicates that even though all piecewise linear, Gomperitz, and Hill's function models can fit the global growth profile equally well, the data strongly support local exponential growth phenomenon. Accurate volume growth measurements are important for applications in systems biology where quantitative parameters are required for modeling and simulation. PMID:20717618

  20. Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion.

    PubMed Central

    Skibbens, Robert V

    2004-01-01

    From the time of DNA replication until anaphase onset, sister chromatids remain tightly paired along their length. Ctf7p/Eco1p is essential to establish sister-chromatid pairing during S-phase and associates with DNA replication components. DNA helicases precede the DNA replication fork and thus will first encounter chromatin sites destined for cohesion. In this study, I provide the first evidence that a DNA helicase is required for proper sister-chromatid cohesion. Characterizations of chl1 mutant cells reveal that CHL1 interacts genetically with both CTF7/ECO1 and CTF18/CHL12, two genes that function in sister-chromatid cohesion. Consistent with genetic interactions, Chl1p physically associates with Ctf7p/Eco1p both in vivo and in vitro. Finally, a functional assay reveals that Chl1p is critical for sister-chromatid cohesion. Within the budding yeast genome, Chl1p exhibits the highest degree of sequence similarity to human CHL1 isoforms and BACH1. Previous studies revealed that human CHLR1 exhibits DNA helicase-like activities and that BACH1 is a helicase-like protein that associates with the tumor suppressor BRCA1 to maintain genome integrity. Our findings document a novel role for Chl1p in sister-chromatid cohesion and provide new insights into the possible mechanisms through which DNA helicases may contribute to cancer progression when mutated. PMID:15020404

  1. Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore.

    PubMed

    Measday, Vivien; Hailey, Dale W; Pot, Isabelle; Givan, Scott A; Hyland, Katherine M; Cagney, Gerard; Fields, Stan; Davis, Trisha N; Hieter, Philip

    2002-01-01

    The budding yeast kinetochore is composed of an inner and outer protein complex, which binds to centromere (CEN) DNA and attaches to microtubules. We performed a genetic synthetic dosage lethality screen to identify novel kinetochore proteins in a collection of chromosome transmission fidelity mutants. Our screen identified several new kinetochore-related proteins including YLR381Wp/Ctf3p, which is a member of a conserved family of centromere-binding proteins. Ctf3p interacts with Mcm22p, Mcm16p, and the outer kinetochore protein Ctf19p. We used chromatin immunoprecipitation to demonstrate that Ctf3p, Mcm22p, and Mcm16p bind to CEN DNA in a Ctf19p-dependent manner. In addition, Ctf3p, Mcm22p, and Mcm16p have a localization pattern similar to other kinetochore proteins. The fission yeast Ctf3p homolog, Mis6, is required for loading of a CENP-A centromere specific histone, Cnp1, onto centromere DNA. We find however that Ctf3p is not required for loading of the budding yeast CENP-A homolog, Cse4p, onto CEN DNA. In contrast, Ctf3p and Ctf19p fail to bind properly to the centromere in a cse4-1 mutant strain. We conclude that the requirements for CENP-A loading onto centromere DNA differ in fission versus budding yeast. PMID:11782448

  2. The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast.

    PubMed

    Erkut, Cihan; Gade, Vamshidhar R; Laxman, Sunil; Kurzchalia, Teymuras V

    2016-01-01

    Many organisms, including species from all kingdoms of life, can survive desiccation by entering a state with no detectable metabolism. To survive, C. elegans dauer larvae and stationary phase S. cerevisiae require elevated amounts of the disaccharide trehalose. We found that dauer larvae and stationary phase yeast switched into a gluconeogenic mode in which metabolism was reoriented toward production of sugars from non-carbohydrate sources. This mode depended on full activity of the glyoxylate shunt (GS), which enables synthesis of trehalose from acetate. The GS was especially critical during preparation of worms for harsh desiccation (preconditioning) and during the entry of yeast into stationary phase. Loss of the GS dramatically decreased desiccation tolerance in both organisms. Our results reveal a novel physiological role for the GS and elucidate a conserved metabolic rewiring that confers desiccation tolerance on organisms as diverse as worm and yeast. PMID:27090086

  3. The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast

    PubMed Central

    Erkut, Cihan; Gade, Vamshidhar R; Laxman, Sunil; Kurzchalia, Teymuras V

    2016-01-01

    Many organisms, including species from all kingdoms of life, can survive desiccation by entering a state with no detectable metabolism. To survive, C. elegans dauer larvae and stationary phase S. cerevisiae require elevated amounts of the disaccharide trehalose. We found that dauer larvae and stationary phase yeast switched into a gluconeogenic mode in which metabolism was reoriented toward production of sugars from non-carbohydrate sources. This mode depended on full activity of the glyoxylate shunt (GS), which enables synthesis of trehalose from acetate. The GS was especially critical during preparation of worms for harsh desiccation (preconditioning) and during the entry of yeast into stationary phase. Loss of the GS dramatically decreased desiccation tolerance in both organisms. Our results reveal a novel physiological role for the GS and elucidate a conserved metabolic rewiring that confers desiccation tolerance on organisms as diverse as worm and yeast. DOI: http://dx.doi.org/10.7554/eLife.13614.001 PMID:27090086

  4. A Role for the Budding Yeast Separase, Esp1, in Ty1 Element Retrotransposition

    PubMed Central

    Cheung, Stephanie; Manhas, Savrina; Fang, Nancy; Wang, Kaiqian; Young, Barry; Loewen, Christopher; Mayor, Thibault; Measday, Vivien

    2015-01-01

    Separase/Esp1 is a protease required at the onset of anaphase to cleave cohesin and thereby enable sister chromatid separation. Esp1 also promotes release of the Cdc14 phosphatase from the nucleolus to enable mitotic exit. To uncover other potential roles for separase, we performed two complementary genome-wide genetic interaction screens with a strain carrying the budding yeast esp1-1 separase mutation. We identified 161 genes that when mutated aggravate esp1-1 growth and 44 genes that upon increased dosage are detrimental to esp1-1 viability. In addition to the expected cell cycle and sister chromatid segregation genes that were identified, 24% of the genes identified in the esp1-1 genetic screens have a role in Ty1 element retrotransposition. Retrotransposons, like retroviruses, replicate through reverse transcription of an mRNA intermediate and the resultant cDNA product is integrated into the genome by a conserved transposon or retrovirus encoded integrase protein. We purified Esp1 from yeast and identified an interaction between Esp1 and Ty1 integrase using mass spectrometry that was subsequently confirmed by co-immunoprecipitation analysis. Ty1 transposon mobility and insertion upstream of the SUF16 tRNA gene are both reduced in an esp1-1 strain but increased in cohesin mutant strains. Securin/Pds1, which is required for efficient localization of Esp1 to the nucleus, is also required for efficient Ty1 transposition. We propose that Esp1 serves two roles to mediate Ty1 transposition – one to remove cohesin and the second to target Ty1-IN to chromatin. PMID:25822502

  5. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System

    PubMed Central

    Verghese, Jacob; Abrams, Jennifer; Wang, Yanyu

    2012-01-01

    Summary: The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast. PMID:22688810

  6. Stepwise assembly of initiation proteins at budding yeast replication origins in vitro

    PubMed Central

    Seki, Takashi; Diffley, John F. X.

    2000-01-01

    The initiation of DNA replication in the budding yeast Saccharomyces cerevisiae occurs in two sequential and mutually exclusive steps. Prereplicative complexes (pre-RCs) containing origin recognition complex (ORC), Cdc6p, and the MCM2–7 proteins assemble only under conditions of low cyclin-dependent kinase (Cdk) activity during G1, whereas origin activation is driven by the increase in Cdk activity at the end of G1. As a first step toward the reconstitution of this two-step process in vitro, we describe a system in which extracts prepared from G1-arrested cells promote sequential assembly of ORC, Cdc6p, and MCM2–7 proteins onto exogenously added origin-containing DNA. This reaction requires an intact ARS consensus sequence and requires ATP for two distinct steps. Extracts from cells arrested in mitosis also can support the binding of ORC but are unable to load either Cdc6p or MCM2–7 proteins. This system should be useful for studying the mechanism and regulation of pre-RC assembly. PMID:11121019

  7. Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence

    PubMed Central

    Weinberger, Martin; Mesquita, Ana; Carroll, Timothy; Marks, Laura; Yang, Hui; Zhang, Zhaojie; Ludovico, Paula; Burhans, William C.

    2010-01-01

    Inhibition of growth signaling pathways protects against aging and age-related diseases in parallel with reduced oxidative stress. The relationships between growth signaling, oxidative stress and aging remain unclear. Here we report that in Saccharomyces cerevisiae, alterations in growth signaling pathways impact levels of superoxide anions that promote chronological aging and inhibit growth arrest of stationary phase cells in G0/G1. Factors that decrease intracellular superoxide anions in parallel with enhanced longevity and more efficient G0/G1 arrest include genetic inactivation of growth signaling pathways that inhibit Rim15p, which activates oxidative stress responses, and downregulation of these pathways by caloric restriction. Caloric restriction also reduces superoxide anions independently of Rim15p by elevating levels of H2O2, which activates superoxide dismutases. In contrast, high glucose or mutations that activate growth signaling accelerate chronological aging in parallel with increased superoxide anions and reduced efficiency of stationary phase G0/G1 arrest. High glucose also activates DNA damage responses and preferentially kills stationary phase cells that fail to arrest growth in G0/G1. These findings suggest that growth signaling promotes chronological aging in budding yeast by elevating superoxide anions that inhibit quiescence and induce DNA replication stress. A similar mechanism likely contributes to aging and age-related diseases in complex eukaryotes. PMID:21076178

  8. Cyclin B-cdk activity stimulates meiotic rereplication in budding yeast.

    PubMed Central

    Strich, Randy; Mallory, Michael J; Jarnik, Michal; Cooper, Katrina F

    2004-01-01

    Haploidization of gametes during meiosis requires a single round of premeiotic DNA replication (meiS) followed by two successive nuclear divisions. This study demonstrates that ectopic activation of cyclin B/cyclin-dependent kinase in budding yeast recruits up to 30% of meiotic cells to execute one to three additional rounds of meiS. Rereplication occurs prior to the meiotic nuclear divisions, indicating that this process is different from the postmeiotic mitoses observed in other fungi. The cells with overreplicated DNA produced asci containing up to 20 spores that were viable and haploid and demonstrated Mendelian marker segregation. Genetic tests indicated that these cells executed the meiosis I reductional division and possessed a spindle checkpoint. Finally, interfering with normal synaptonemal complex formation or recombination increased the efficiency of rereplication. These studies indicate that the block to rereplication is very different in meiotic and mitotic cells and suggest a negative role for the recombination machinery in allowing rereplication. Moreover, the production of haploids, regardless of the genome content, suggests that the cell counts replication cycles, not chromosomes, in determining the number of nuclear divisions to execute. PMID:15342503

  9. Integrative Analysis of Cell Cycle Control in Budding YeastD⃞

    PubMed Central

    Chen, Katherine C.; Calzone, Laurence; Csikasz-Nagy, Attila; Cross, Frederick R.; Novak, Bela; Tyson, John J.

    2004-01-01

    The adaptive responses of a living cell to internal and external signals are controlled by networks of proteins whose interactions are so complex that the functional integration of the network cannot be comprehended by intuitive reasoning alone. Mathematical modeling, based on biochemical rate equations, provides a rigorous and reliable tool for unraveling the complexities of molecular regulatory networks. The budding yeast cell cycle is a challenging test case for this approach, because the control system is known in exquisite detail and its function is constrained by the phenotypic properties of >100 genetically engineered strains. We show that a mathematical model built on a consensus picture of this control system is largely successful in explaining the phenotypes of mutants described so far. A few inconsistencies between the model and experiments indicate aspects of the mechanism that require revision. In addition, the model allows one to frame and critique hypotheses about how the division cycle is regulated in wild-type and mutant cells, to predict the phenotypes of new mutant combinations, and to estimate the effective values of biochemical rate constants that are difficult to measure directly in vivo. PMID:15169868

  10. Intragenic transcription of a noncoding RNA modulates expression of ASP3 in budding yeast

    PubMed Central

    Huang, Yu-Ching; Chen, Hung-Ta; Teng, Shu-Chun

    2010-01-01

    Inter- and intragenic noncoding transcription is widespread in eukaryotic genomes; however, the purpose of these types of transcription is still poorly understood. Here, we show that intragenic sense-oriented transcription within the budding yeast ASP3 coding region regulates a constitutively and immediately accessible promoter for the transcription of full-length ASP3. Expression of this short intragenic transcript is independent of GATA transcription factors, which are essential for the activation of full-length ASP3, and independent of RNA polymerase II (RNAPII). Furthermore, we found that an intragenic control element is required for the expression of this noncoding RNA (ncRNA). Continuous expression of the short ncRNA maintains a high level of trimethylation of histone H3 at lysine 4 (H3K4me3) at the ASP3 promoter and makes this region more accessible for RNAPII to transcribe the full-length ASP3. Our results show for the first time that intragenic noncoding transcription promotes gene expression. PMID:20817754

  11. Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network.

    PubMed

    Wang, Jin; Li, Chunhe; Wang, Erkang

    2010-05-01

    Studying the cell cycle process is crucial for understanding cell growth, proliferation, development, and death. We uncovered some key factors in determining the global robustness and function of the budding yeast cell cycle by exploring the underlying landscape and flux of this nonequilibrium network. The dynamics of the system is determined by both the landscape which attracts the system down to the oscillation orbit and the curl flux which drives the periodic motion on the ring. This global structure of landscape is crucial for the coherent cell cycle dynamics and function. The topography of the underlying landscape, specifically the barrier height separating basins of attractions, characterizes the capability of changing from one part of the system to another. This quantifies the stability and robustness of the system. We studied how barrier height is influenced by environmental fluctuations and perturbations on specific wirings of the cell cycle network. When the fluctuations increase, the barrier height decreases and the period and amplitude of cell cycle oscillation is more dispersed and less coherent. The corresponding dissipation of the system quantitatively measured by the entropy production rate increases. This implies that the system is less stable under fluctuations. We identified some key structural elements for wirings of the cell cycle network responsible for the change of the barrier height and therefore the global stability of the system through the sensitivity analysis. The results are in agreement with recent experiments and also provide new predictions. PMID:20393126

  12. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1.

    PubMed

    Kang, Hui; Tsygankov, Denis; Lew, Daniel J

    2016-06-01

    Bud formation by Saccharomyces cerevisiae must be coordinated with the nuclear cycle to enable successful proliferation. Many environmental stresses temporarily disrupt bud formation, and in such circumstances, the morphogenesis checkpoint halts nuclear division until bud formation can resume. Bud emergence is essential for degradation of the mitotic inhibitor, Swe1. Swe1 is localized to the septin cytoskeleton at the bud neck by the Swe1-binding protein Hsl7. Neck localization of Swe1 is required for Swe1 degradation. Although septins form a ring at the presumptive bud site before bud emergence, Hsl7 is not recruited to the septins until after bud emergence, suggesting that septins and/or Hsl7 respond to a "bud sensor." Here we show that recruitment of Hsl7 to the septin ring depends on a combination of two septin-binding kinases: Hsl1 and Elm1. We elucidate which domains of these kinases are needed and show that artificial targeting of those domains suffices to recruit Hsl7 to septin rings even in unbudded cells. Moreover, recruitment of Elm1 is responsive to bud emergence. Our findings suggest that Elm1 plays a key role in sensing bud emergence. PMID:27053666

  13. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1

    PubMed Central

    Kang, Hui; Tsygankov, Denis; Lew, Daniel J.

    2016-01-01

    Bud formation by Saccharomyces cerevisiae must be coordinated with the nuclear cycle to enable successful proliferation. Many environmental stresses temporarily disrupt bud formation, and in such circumstances, the morphogenesis checkpoint halts nuclear division until bud formation can resume. Bud emergence is essential for degradation of the mitotic inhibitor, Swe1. Swe1 is localized to the septin cytoskeleton at the bud neck by the Swe1-binding protein Hsl7. Neck localization of Swe1 is required for Swe1 degradation. Although septins form a ring at the presumptive bud site before bud emergence, Hsl7 is not recruited to the septins until after bud emergence, suggesting that septins and/or Hsl7 respond to a “bud sensor.” Here we show that recruitment of Hsl7 to the septin ring depends on a combination of two septin-binding kinases: Hsl1 and Elm1. We elucidate which domains of these kinases are needed and show that artificial targeting of those domains suffices to recruit Hsl7 to septin rings even in unbudded cells. Moreover, recruitment of Elm1 is responsive to bud emergence. Our findings suggest that Elm1 plays a key role in sensing bud emergence. PMID:27053666

  14. Global Analysis of Fission Yeast Mating Genes Reveals New Autophagy Factors

    PubMed Central

    Sun, Ling-Ling; Shen, En-Zhi; Yang, Bing; Dong, Meng-Qiu; He, Wan-Zhong; Du, Li-Lin

    2013-01-01

    Macroautophagy (autophagy) is crucial for cell survival during starvation and plays important roles in animal development and human diseases. Molecular understanding of autophagy has mainly come from the budding yeast Saccharomyces cerevisiae, and it remains unclear to what extent the mechanisms are the same in other organisms. Here, through screening the mating phenotype of a genome-wide deletion collection of the fission yeast Schizosaccharomyces pombe, we obtained a comprehensive catalog of autophagy genes in this highly tractable organism, including genes encoding three heretofore unidentified core Atg proteins, Atg10, Atg14, and Atg16, and two novel factors, Ctl1 and Fsc1. We systematically examined the subcellular localization of fission yeast autophagy factors for the first time and characterized the phenotypes of their mutants, thereby uncovering both similarities and differences between the two yeasts. Unlike budding yeast, all three Atg18/WIPI proteins in fission yeast are essential for autophagy, and we found that they play different roles, with Atg18a uniquely required for the targeting of the Atg12–Atg5·Atg16 complex. Our investigation of the two novel factors revealed unforeseen autophagy mechanisms. The choline transporter-like protein Ctl1 interacts with Atg9 and is required for autophagosome formation. The fasciclin domain protein Fsc1 localizes to the vacuole membrane and is required for autophagosome-vacuole fusion but not other vacuolar fusion events. Our study sheds new light on the evolutionary diversity of the autophagy machinery and establishes the fission yeast as a useful model for dissecting the mechanisms of autophagy. PMID:23950735

  15. Phosphorylation and cellular function of the human Rpa2 N-terminus in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Ghospurkar, Padmaja L; Wilson, Timothy M; Liu, Shengqin; Herauf, Anna; Steffes, Jenna; Mueller, Erica N; Oakley, Gregory G; Haring, Stuart J

    2015-02-01

    Maintenance of genome integrity is critical for proper cell growth. This occurs through accurate DNA replication and repair of DNA lesions. A key factor involved in both DNA replication and the DNA damage response is the heterotrimeric single-stranded DNA (ssDNA) binding complex Replication Protein A (RPA). Although the RPA complex appears to be structurally conserved throughout eukaryotes, the primary amino acid sequence of each subunit can vary considerably. Examination of sequence differences along with the functional interchangeability of orthologous RPA subunits or regions could provide insight into important regions and their functions. This might also allow for study in simpler systems. We determined that substitution of yeast Replication Factor A (RFA) with human RPA does not support yeast cell viability. Exchange of a single yeast RFA subunit with the corresponding human RPA subunit does not function due to lack of inter-species subunit interactions. Substitution of yeast Rfa2 with domains/regions of human Rpa2 important for Rpa2 function (i.e., the N-terminus and the loop 3-4 region) supports viability in yeast cells, and hybrid proteins containing human Rpa2 N-terminal phospho-mutations result in similar DNA damage phenotypes to analogous yeast Rfa2 N-terminal phospho-mutants. Finally, the human Rpa2 N-terminus (NT) fused to yeast Rfa2 is phosphorylated in a manner similar to human Rpa2 in human cells, indicating that conserved kinases recognize the human domain in yeast. The implication is that budding yeast represents a potential model system for studying not only human Rpa2 N-terminal phosphorylation, but also phosphorylation of Rpa2 N-termini from other eukaryotic organisms. PMID:25499885

  16. Phosphorylation and Cellular Function of the Human Rpa2 N-Terminus in the Budding Yeast Saccharomyces cerevisiae

    PubMed Central

    Ghospurkar, Padmaja L.; Wilson, Timothy M.; Liu, Shengqin; Herauf, Anna; Steffes, Jenna; Mueller, Erica N.; Oakley, Gregory G.; Haring, Stuart J.

    2015-01-01

    Maintenance of genome integrity is critical for proper cell growth. This occurs through accurate DNA replication and repair of DNA lesions. A key factor involved in both DNA replication and the DNA damage response is the heterotrimeric single-stranded DNA (ssDNA) binding complex Replication Protein A (RPA). Although the RPA complex appears to be structurally conserved throughout eukaryotes, the primary amino acid sequence of each subunit can vary considerably. Examination of sequence differences along with the functional interchangeability of orthologous RPA subunits or regions could provide insight into important regions and their functions. This might also allow for study in simpler systems. We determined that substitution of yeast Replication Factor A (RFA) with human RPA does not support yeast cell viability. Exchange of a single yeast RFA subunit with the corresponding human RPA subunit does not function due to lack of inter-species subunit interactions. Substitution of yeast Rfa2 with domains/regions of human Rpa2 important for Rpa2 function (i.e., the N-terminus and the loop 3–4 region) supports viability in yeast cells, and hybrid proteins containing human Rpa2 N-terminal phospho-mutations result in similar DNA damage phenotypes to analogous yeast Rfa2 N-terminal phospho-mutants. Finally, the human Rpa2 N-terminus (NT) fused to yeast Rfa2 is phosphorylated in a manner similar to human Rpa2 in human cells, indicating that conserved kinases recognize the human domain in yeast. The implication is that budding yeast represents a potential model system for studying not only human Rpa2 N-terminal phosphorylation, but also phosphorylation of Rpa2 N-termini from other eukaryotic organisms. PMID:25499885

  17. Structure of a Bud6/Actin Complex Reveals a Novel WH2-like Actin Monomer Recruitment Motif.

    PubMed

    Park, Eunyoung; Graziano, Brian R; Zheng, Wei; Garabedian, Mikael; Goode, Bruce L; Eck, Michael J

    2015-08-01

    In budding yeast, the actin-binding protein Bud6 cooperates with formins Bni1 and Bnr1 to catalyze the assembly of actin filaments. The nucleation-enhancing activity of Bud6 requires both a "core" domain that binds to the formin and a "flank" domain that binds monomeric actin. Here, we describe the structure of the Bud6 flank domain in complex with actin. Two helices in Bud6(flank) interact with actin; one binds in a groove at the barbed end of the actin monomer in a manner closely resembling the helix of WH2 domains, a motif found in many actin nucleation factors. The second helix rises along the face of actin. Mutational analysis verifies the importance of these Bud6-actin contacts for nucleation-enhancing activity. The Bud6 binding site on actin overlaps with that of the formin FH2 domain and is also incompatible with inter-subunit contacts in F-actin, suggesting that Bud6 interacts only transiently with actin monomers during filament nucleation. PMID:26118535

  18. Role of endocytosis in localization and maintenance of the spatial markers for bud-site selection in yeast.

    PubMed

    Tuo, Shanshan; Nakashima, Kenichi; Pringle, John R

    2013-01-01

    The yeast Saccharomyces cerevisiae normally selects bud sites (and hence axes of cell polarization) in one of two distinct patterns, the axial pattern of haploid cells and the bipolar pattern of diploid cells. These patterns depend on distinct sets of cortical-marker proteins that transmit positional information through a common signaling pathway based on a Ras-type GTPase. It has been reported previously that various proteins of the endocytic pathway may be involved in determining the bipolar pattern but not the axial pattern. To explore this question systematically, we constructed and analyzed congenic haploid and diploid deletion mutants for 14 genes encoding proteins that are involved in endocytosis. The mutants displayed a wide range of severities in their overall endocytosis defects, as judged by their growth rates and abilities to take up the lipophilic dye FM 4-64. Consistent with the previous reports, none of the mutants displayed a significant defect in axial budding, but they displayed defects in bipolar budding that were roughly correlated with the severities of their overall endocytosis defects. Both the details of the mutant budding patterns and direct examination of GFP-tagged marker proteins suggested that both initial formation and maintenance of the normally persistent bipolar marks depend on endocytosis, as well as polarized exocytosis, in actively growing cells. Interestingly, maintenance of the bipolar marks in non-growing cells did not appear to require normal levels of endocytosis. In some cases, there was a striking lack of correlation between the overall severities of the general-endocytosis defect and the bud-site selection defect, suggesting that various endocytosis proteins may differ in their importance for the uptake of various plasma-membrane targets. PMID:24039741

  19. DNA Replication Forks Pause at Silent Origins near the HML Locus in Budding Yeast

    PubMed Central

    Wang, Yangzhou; Vujcic, Marija; Kowalski, David

    2001-01-01

    Chromosomal replicators in budding yeast contain an autonomously replicating sequence (ARS) that functions in a plasmid, but certain ARSs are silent as replication origins in their natural chromosomal context. In chromosome III, the HML ARS cluster (ARS302-ARS303-ARS320) and ARS301 flank the transcriptionally silent mating-type locus HML, and all of these ARSs are silent as replication origins. ARS301 and ARS302 function in transcriptional silencing mediated by the origin recognition complex (ORC) and a heterochromatin structure, while the functions of ARS303 and ARS320 are not known. In this work, we discovered replication fork pause sites at the HML ARS cluster and ARS301 by analyzing DNA replication intermediates from the chromosome via two-dimensional gel electrophoresis. The replication fork pause at the HML ARS cluster was independent of cis- and trans-acting mutations that abrogate transcriptional silencing at HML. Deletion of the HML ARS cluster led to loss of the pause site. Insertion of a single, heterologous ARS (ARS305) in place of the HML ARS cluster reconstituted the pause site, as did multiple copies of DNA elements (A and B1) that bind ORC. The orc2-1 mutation, known to alter replication timing at origins, did not detectably affect the pause but activated the silent origin at the HML ARS cluster in a minority of cells. Delaying the time of fork arrival at HML led to the elimination of the pause sites at the HML ARS cluster and at the copy of ARS305 inserted in place of the cluster. Loss of the pause sites was accompanied by activation of the silent origins in the majority of cells. Thus, replication fork movement near HML pauses at a silent origin which is competent for replication initiation but kept silent through Orc2p, a component of the replication initiator. Possible functions for replication fork pause sites in checkpoints, S-phase regulation, mating-type switching, and transcriptionally silent heterochromatin are discussed. PMID:11438651

  20. New rapid screening method for anti-aging compounds using budding yeast and identification of beauveriolide I as a potent active compound.

    PubMed

    Nakaya, Shigeru; Mizuno, Saki; Ishigami, Hiroki; Yamakawa, Yasuhiro; Kawagishi, Hirokazu; Ushimaru, Takashi

    2012-01-01

    The chronological lifespan (CLS) of budding yeast is a model for the aging of post-mitotic cells in higher eukaryotes. We report here the development of a new method to assess yeast CLS. The new assay is simple, convenient and labor-saving. We applied this new method to screen natural compounds isolated from mushrooms and discovered beauveriolide I as a potent anti-aging agent. PMID:22790951

  1. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1.

    PubMed

    Höckner, Sebastian; Neumann-Arnold, Lea; Seufert, Wolfgang

    2016-07-15

    The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1-3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4-9 did not influence the cell cycle-regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4-9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1. PMID:27226481

  2. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho- type GTPases in yeast

    PubMed Central

    1994-01-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine- nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases. PMID:7962098

  3. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast.

    PubMed

    Peterson, J; Zheng, Y; Bender, L; Myers, A; Cerione, R; Bender, A

    1994-12-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine-nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases. PMID:7962098

  4. Formation of secretory vesicles in permeabilized cells: a salt extract from yeast membranes promotes budding of nascent secretory vesicles from the trans-Golgi network of endocrine cells.

    PubMed Central

    Ling, W L; Shields, D

    1996-01-01

    The mechanism of secretory-vesicle formation from the trans-Golgi network (TGN) of endocrine cells is poorly understood. To identify cytosolic activities that facilitate the formation and fission of nascent secretory vesicles, we treated permeabilized pituitary GH3 cells with high salt to remove endogenous budding factors. Using this cell preparation, secretory-vesicle budding from the TGN required addition of exogenous cytosol and energy. Mammalian cytosols (GH3 cells and bovine brain) promoted post-TGN vesicle formation. Most significantly, a salt extract of membranes from the yeast Saccharomyces cerevisiae, a cell lacking a regulated secretory pathway, stimulated secretory vesicle budding in the absence of mammalian cytosolic factors. These results demonstrate that the factors which promote secretory-vesicle release from the TGN are conserved between yeast and mammalian cells. PMID:8615761

  5. Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast.

    PubMed Central

    Surana, U; Amon, A; Dowzer, C; McGrew, J; Byers, B; Nasmyth, K

    1993-01-01

    It is widely assumed that degradation of mitotic cyclins causes a decrease in mitotic cdc2/CDC28 kinase activity and thereby triggers the metaphase to anaphase transition. Two observations made on the budding yeast Saccharomyces cerevisiae are inconsistent with this scenario: (i) anaphase occurs in the presence of high levels of kinase in cdc15 mutants and (ii) overproduction of a B-type mitotic cyclin causes arrest not in metaphase as previously reported but in telophase. Kinase destruction is therefore implicated in the exit from mitosis rather than the entry into anaphase. The behaviour of esp1 mutants shows in addition that kinase destruction can occur in the absence of anaphase completion. The execution of anaphase and the destruction of CDC28 kinase activity therefore appear to take place independently of one another. Images PMID:8491189

  6. Attachment of the Yeast Rhodosporidium toruloides Is Mediated by Adhesives Localized at Sites of Bud Cell Development

    PubMed Central

    Buck, James W.; Andrews, John H.

    1999-01-01

    The basidiomycetous yeast Rhodosporidium toruloides (anamorph, Rhodotorula glutinis) is a common phylloplane epiphyte with biocontrol potential. To understand how R. toruloides adheres to plant surfaces, we obtained nonadherent fungal mutants after chemical mutagenesis with methane-sulfonic acid ethyl ester. Sixteen attachment-minus (Att−) mutants were identified by three methods: (i) screening capsule-minus colonies for loss of adhesive ability; (ii) enrichment for mutants unable to attach to polystyrene; and (iii) selection for reduced fluorescence of fluorescein isothiocyanate-concanavalin A (Con A)-stained cells by fluorescence-activated cell sorting. None of the 16 mutants attached to polystyrene or barley leaves. The lectin Con A eliminated adhesion in all of the wild-type isolates tested. Hapten competition assays indicated that Con A bound to mannose residues on the cell surface. Adhesion of wild-type R. toruloides was transient; nonadhesive cells subsequently became adhesive, with bud development. All Att− mutants and nonattaching wild-type cells lacked polar regions that stained intensely with fluorescein isothiocyanate-Con A and India ink. Lectin, enzyme, and chemical treatments showed that the polar regions consisted of alkali-soluble materials, including mannose residues. Tunicamycin treatment reduced wild-type adhesion, indicating that the mannose residues could be associated with glycoproteins. We concluded that compounds, including mannose residues, that are localized at sites of bud development mediate adhesion of R. toruloides to both polystyrene and barley leaf surfaces. PMID:9925569

  7. Coupling spindle position with mitotic exit in budding yeast: The multifaceted role of the small GTPase Tem1

    PubMed Central

    Scarfone, Ilaria; Piatti, Simonetta

    2015-01-01

    The budding yeast S. cerevisiae divides asymmetrically and is an excellent model system for asymmetric cell division. As for other asymmetrically dividing cells, proper spindle positioning along the mother-daughter polarity axis is crucial for balanced chromosome segregation. Thus, a surveillance mechanism named Spindle Position Checkpoint (SPOC) inhibits mitotic exit and cytokinesis until the mitotic spindle is properly oriented, thereby preventing the generation of cells with aberrant ploidies. The small GTPase Tem1 is required to trigger a Hippo-like protein kinase cascade, named Mitotic Exit Network (MEN), that is essential for mitotic exit and cytokinesis but also contributes to correct spindle alignment in metaphase. Importantly, Tem1 is the target of the SPOC, which relies on the activity of the GTPase-activating complex (GAP) Bub2-Bfa1 to keep Tem1 in the GDP-bound inactive form. Tem1 forms a hetero-trimeric complex with Bub2-Bfa1 at spindle poles (SPBs) that accumulates asymmetrically on the bud-directed spindle pole during mitosis when the spindle is properly positioned. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. We have recently shown that Tem1 residence at SPBs depends on its nucleotide state and, importantly, asymmetry of the Bub2-Bfa1-Tem1 complex does not promote mitotic exit but rather controls spindle positioning. PMID:26507466

  8. Switching of a Mating-Type a Mutant Allele in Budding Yeast SACCHAROMYCES CEREVISIAE

    PubMed Central

    Klar, Amar J. S.; Fogel, Seymour; Radin, David N.

    1979-01-01

    Aimed at investigating the recovery of a specific mutant allele of the mating type locus (MAT) by switching a defective MAT allele, these experiments provide information bearing on several models proposed for MAT interconversion in bakers yeast, Saccharomyces cerevisiae. Hybrids between heterothallic (ho) cells carrying a mutant MATa allele, designated mata-2, and MATα ho strains show a high capacity for mating with MATa strains. The MATα/mata-2 diploids do not sporulate. However, zygotic clones obtained by mating MATα homothallic (HO) cells with mata-2 ho cells are unable to mate and can sporulate. Tetrad analysis of such clones revealed two diploid (MATα/MATa):two haploid segregants. Therefore, MAT switches occur in MATα/mata-2 HO/ho cells to produce MATα/MATa cells capable of sporulation. In heterothallic strains, the mata-2 allele can be switched to a functional MATα and subsequently to a functional MATa. Among 32 MATα to MATa switches tested, where the MATα was previously derived from the mata-2 mutant, only one mata-2 like isolate was observed. However, the recovered allele, unlike the parental allele, conplements the matα ste1–5 mutant, suggesting that these alleles are not identical and that the recovered allele presumably arose as a mutation of the MATα locus. No mata-2 was recovered by HO-mediated switching of MATα (previously obtained from mata-2 by HO) in 217 switches analyzed. We conclude that in homothallic and heterothallic strains, the mata-2 allele can be readily switched to a functional MATα and subsequently to a functional MATa locus. Overall, the results are in accord with the cassette model (Hicks, Strathern and Herskowitz 1977b) proposed to explain MAT interconversions. PMID:395020

  9. Complete DNA Sequence of Kuraishia capsulata Illustrates Novel Genomic Features among Budding Yeasts (Saccharomycotina)

    PubMed Central

    Morales, Lucia; Noel, Benjamin; Porcel, Betina; Marcet-Houben, Marina; Hullo, Marie-Francoise; Sacerdot, Christine; Tekaia, Fredj; Leh-Louis, Véronique; Despons, Laurence; Khanna, Varun; Aury, Jean-Marc; Barbe, Valérie; Couloux, Arnaud; Labadie, Karen; Pelletier, Eric; Souciet, Jean-Luc; Boekhout, Teun; Gabaldon, Toni; Wincker, Patrick; Dujon, Bernard

    2013-01-01

    The numerous yeast genome sequences presently available provide a rich source of information for functional as well as evolutionary genomics but unequally cover the large phylogenetic diversity of extant yeasts. We present here the complete sequence of the nuclear genome of the haploid-type strain of Kuraishia capsulata (CBS1993T), a nitrate-assimilating Saccharomycetales of uncertain taxonomy, isolated from tunnels of insect larvae underneath coniferous barks and characterized by its copious production of extracellular polysaccharides. The sequence is composed of seven scaffolds, one per chromosome, totaling 11.4 Mb and containing 6,029 protein-coding genes, ∼13.5% of which being interrupted by introns. This GC-rich yeast genome (45.7%) appears phylogenetically related with the few other nitrate-assimilating yeasts sequenced so far, Ogataea polymorpha, O. parapolymorpha, and Dekkera bruxellensis, with which it shares a very reduced number of tRNA genes, a novel tRNA sparing strategy, and a common nitrate assimilation cluster, three specific features to this group of yeasts. Centromeres were recognized in GC-poor troughs of each scaffold. The strain bears MAT alpha genes at a single MAT locus and presents a significant degree of conservation with Saccharomyces cerevisiae genes, suggesting that it can perform sexual cycles in nature, although genes involved in meiosis were not all recognized. The complete absence of conservation of synteny between K. capsulata and any other yeast genome described so far, including the three other nitrate-assimilating species, validates the interest of this species for long-range evolutionary genomic studies among Saccharomycotina yeasts. PMID:24317973

  10. Nile red fluorescence screening facilitating neutral lipid phenotype determination in budding yeast, Saccharomyces cerevisiae, and the fission yeast Schizosaccharomyces pombe.

    PubMed

    Rostron, Kerry A; Rolph, Carole E; Lawrence, Clare L

    2015-07-01

    Investigation of yeast neutral lipid accumulation is important for biotechnology and also for modelling aberrant lipid metabolism in human disease. The Nile red (NR) method has been extensively utilised to determine lipid phenotypes of yeast cells via microscopic means. NR assays have been used to differentiate lipid accumulation and relative amounts of lipid in oleaginous species but have not been thoroughly validated for phenotype determination arising from genetic modification. A modified NR assay, first described by Sitepu et al. (J Microbiol Methods 91:321-328, 2012), was able to detect neutral lipid changes in Saccharomyces cerevisiae deletion mutants with sensitivity similar to more advanced methodology. We have also be able to, for the first time, successfully apply the NR assay to the well characterised fission yeast Schizosaccharomyces pombe, an increasingly important organism in biotechnology. The described NR fluorescence assay is suitable for increased throughput and rapid screening of genetically modified strains in both the biotechnology industry and for modelling ectopic lipid production for a variety of human diseases. This ultimately negates the need for labour intensive and time consuming lipid analyses of samples that may not yield a desirable lipid phenotype, whilst genetic modifications impacting significantly on the cellular lipid phenotype can be further promoted for more in depth analyses. PMID:25948336

  11. Stable Pseudohyphal Growth in Budding Yeast Induced by Synergism between Septin Defects and Altered MAP-kinase Signaling.

    PubMed

    Kim, Junwon; Rose, Mark D

    2015-12-01

    Upon nutrient limitation, budding yeasts like Saccharomyces cerevisiae can be induced to adopt alternate filament-like growth patterns called diploid pseudohyphal or invasive haploid growth. Here, we report a novel constitutive pseudohyphal growth state, sharing some characteristics with classic forms of filamentous growth, but differing in crucial aspects of morphology, growth conditions and genetic regulation. The constitutive pseudohyphal state is observed in fus3 mutants containing various septin assembly defects, which we refer to as sadF growth (septin assembly defect induced filamentation) to distinguish it from classic filamentation pathways. Similar to other filamentous states, sadF cultures comprise aggregated chains of highly elongated cells. Unlike the classic pathways, sadF growth occurs in liquid rich media, requiring neither starvation nor the key pseudohyphal proteins, Flo8p and Flo11p. Moreover sadF growth occurs in haploid strains of S288C genetic background, which normally cannot undergo pseudohyphal growth. The sadF cells undergo highly polarized bud growth during prolonged G2 delays dependent on Swe1p. They contain septin structures distinct from classical pseudo-hyphae and FM4-64 labeling at actively growing tips similar to the Spitzenkörper observed in true hyphal growth. The sadF growth state is induced by synergism between Kss1p-dependent signaling and septin assembly defects; mild disruption of mitotic septins activates Kss1p-dependent gene expression, which exacerbates the septin defects, leading to hyper-activation of Kss1p. Unlike classical pseudo-hyphal growth, sadF signaling requires Ste5, Ste4 and Ste18, the scaffold protein and G-protein β and γ subunits from the pheromone response pathway, respectively. A swe1 mutation largely abolished signaling, breaking the positive feedback that leads to amplification of sadF signaling. Taken together, our findings show that budding yeast can access a stable constitutive pseudohyphal growth

  12. Stable Pseudohyphal Growth in Budding Yeast Induced by Synergism between Septin Defects and Altered MAP-kinase Signaling

    PubMed Central

    Kim, Junwon; Rose, Mark D.

    2015-01-01

    Upon nutrient limitation, budding yeasts like Saccharomyces cerevisiae can be induced to adopt alternate filament-like growth patterns called diploid pseudohyphal or invasive haploid growth. Here, we report a novel constitutive pseudohyphal growth state, sharing some characteristics with classic forms of filamentous growth, but differing in crucial aspects of morphology, growth conditions and genetic regulation. The constitutive pseudohyphal state is observed in fus3 mutants containing various septin assembly defects, which we refer to as sadF growth (septin assembly defect induced filamentation) to distinguish it from classic filamentation pathways. Similar to other filamentous states, sadF cultures comprise aggregated chains of highly elongated cells. Unlike the classic pathways, sadF growth occurs in liquid rich media, requiring neither starvation nor the key pseudohyphal proteins, Flo8p and Flo11p. Moreover sadF growth occurs in haploid strains of S288C genetic background, which normally cannot undergo pseudohyphal growth. The sadF cells undergo highly polarized bud growth during prolonged G2 delays dependent on Swe1p. They contain septin structures distinct from classical pseudo-hyphae and FM4-64 labeling at actively growing tips similar to the Spitzenkörper observed in true hyphal growth. The sadF growth state is induced by synergism between Kss1p-dependent signaling and septin assembly defects; mild disruption of mitotic septins activates Kss1p-dependent gene expression, which exacerbates the septin defects, leading to hyper-activation of Kss1p. Unlike classical pseudo-hyphal growth, sadF signaling requires Ste5, Ste4 and Ste18, the scaffold protein and G-protein β and γ subunits from the pheromone response pathway, respectively. A swe1 mutation largely abolished signaling, breaking the positive feedback that leads to amplification of sadF signaling. Taken together, our findings show that budding yeast can access a stable constitutive pseudohyphal growth

  13. Hormesis of glyceollin I, an induced phytoalexin from soybean, on budding yeast chronological lifespan extension.

    PubMed

    Liu, Yuancai; Wu, Ziyun; Feng, Shengbao; Yang, Xuena; Huang, Dejian

    2013-01-01

    Glyceollin I, an induced phytoalexin isolated from soybean, has been reported to have various bioactivities, including anti-bacterial, anti-nematode, anti-fungal, anti-estrogenic and anti-cancer, anti-oxidant, anti-inflammatory, insulin sensitivity enhancing, and attenuation of vascular contractions. Here we show that glyceollin I has hormesis and extends yeast life span at low (nM) doses in a calorie restriction (CR)-dependent manner, while it reduces life span and inhibits yeast cell proliferation at higher (μM) doses. In contrast, the other two isomers (glyceollin II and III) cannot extend yeast life span and only show life span reduction and antiproliferation at higher doses. Our results in anti-aging activity indicate that glyceollin I might be a promising calorie restriction mimetic candidate, and the high content of glyceollins could improve the bioactivity of soybean as functional food ingredients. PMID:24399048

  14. Ubiquitin-conjugating enzyme Cdc34 mediates cadmium resistance in budding yeast through ubiquitination of the transcription factor Met4

    SciTech Connect

    Hwang, Gi-Wook; Furuchi, Takemitsu; Naganuma, Akira

    2007-11-23

    Overexpression of the ubiquitin-conjugating enzyme Cdc34 conferred strong cadmium resistance on budding yeast. Proteasome activity, which is involved in the degradation of ubiquitinated proteins, was not essential for the acquisition of resistance to cadmium. The overexpression of Cdc34 accelerated the ubiquitination of the transcription factor Met4 and reduced expression of MET25 gene, which is a target of Met4. A MET25-disrupted strain of yeast was more resistant to cadmium than was the wild-type strain, but overexpression of Cdc34 in the MET25-disrupted cells did not affect sensitivity to cadmium. Met25 is an enzyme that catalyzes the synthesis of homocysteine from sulfide (S{sup 2-}) and O-acetylhomocysteine and we detected the increased production of S{sup 2-} upon overexpression of Cdc34. Our results suggest that overexpression of Cdc34 inactivates Met4 and interferes with expression of the MET25, with subsequent production of CdS, which has low toxicity, and, thus, a decrease in the cadmium toxicity.

  15. Maintenance and Integrity of the Mitochondrial Genome: a Plethora of Nuclear Genes in the Budding Yeast

    PubMed Central

    Contamine, Véronique; Picard, Marguerite

    2000-01-01

    Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho+ mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho0 petites) and/or lead to truncated forms (rho−) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho+ genome depends on a centromere-like structure dispensable for the maintenance of rho− mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes. PMID:10839818

  16. Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites.

    PubMed Central

    Amberg, D C; Zahner, J E; Mulholland, J W; Pringle, J R; Botstein, D

    1997-01-01

    A search for Saccharomyces cerevisiae proteins that interact with actin in the two-hybrid system and a screen for mutants that affect the bipolar budding pattern identified the same gene, AIP3/BUD6. This gene is not essential for mitotic growth but is necessary for normal morphogenesis. MATa/alpha daughter cells lacking Aip3p place their first buds normally at their distal poles but choose random sites for budding in subsequent cell cycles. This suggests that actin and associated proteins are involved in placing the bipolar positional marker at the division site but not at the distal tip of the daughter cell. In addition, although aip3 mutant cells are not obviously defective in the initial polarization of the cytoskeleton at the time of bud emergence, they appear to lose cytoskeletal polarity as the bud enlarges, resulting in the formation of cells that are larger and rounder than normal. aip3 mutant cells also show inefficient nuclear migration and nuclear division, defects in the organization of the secretory system, and abnormal septation, all defects that presumably reflect the involvement of Aip3p in the organization and/or function of the actin cytoskeleton. The sequence of Aip3p is novel but contains a predicted coiled-coil domain near its C terminus that may mediate the observed homo-oligomerization of the protein. Aip3p shows a distinctive localization pattern that correlates well with its likely sites of action: it appears at the presumptive bud site prior to bud emergence, remains near the tips of small bund, and forms a ring (or pair of rings) in the mother-bud neck that is detectable early in the cell cycle but becomes more prominent prior to cytokinesis. Surprisingly, the localization of Aip3p does not appear to require either polarized actin or the septin proteins of the neck filaments. Images PMID:9247651

  17. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    SciTech Connect

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  18. Replication dynamics in fission and budding yeasts through DNA polymerase tracking.

    PubMed

    Vázquez, Enrique; Antequera, Francisco

    2015-10-01

    The dynamics of eukaryotic DNA polymerases has been difficult to establish because of the difficulty of tracking them along the chromosomes during DNA replication. Recent work has addressed this problem in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae through the engineering of replicative polymerases to render them prone to incorporating ribonucleotides at high rates. Their use as tracers of the passage of each polymerase has provided a picture of unprecedented resolution of the organization of replicons and replication origins in the two yeasts and has uncovered important differences between them. Additional studies have found an overlapping distribution of DNA polymorphisms and the junctions of Okazaki fragments along mononucleosomal DNA. This sequence instability is caused by the premature release of polymerase δ and the retention of non proof-read DNA tracts replicated by polymerase α. The possible implementation of these new experimental approaches in multicellular organisms opens the door to the analysis of replication dynamics under a broad range of genetic backgrounds and physiological or pathological conditions. PMID:26293347

  19. Microtubule stability in budding yeast: characterization and dosage suppression of a benomyl-dependent tubulin mutant.

    PubMed Central

    Machin, N A; Lee, J M; Barnes, G

    1995-01-01

    To better understand the dynamic regulation of microtubule structures in yeast, we studied a conditional-lethal beta-tubulin mutation tub2-150. This mutation is unique among the hundreds of tubulin mutations isolated in Saccharomyces cerevisiae in that it appears to cause an increase in the stability of microtubules. We report here that this allele is a mutation of threonine 238 to alanine, and that tub2-150 prevents the spindle from elongating during anaphase, suggesting a nuclear microtubule defect. To identify regulators of microtubule stability and/or anaphase, yeast genes were selected that, when overexpressed, could suppress the tub2-150 temperature-sensitive phenotype. One of these genes, JSN1, encodes a protein of 125 kDa that has limited similarity to a number of proteins of unknown function. Overexpression of the JSN1 gene in a TUB2 strain causes that strain to become more sensitive to benomyl, a microtubule-destabilizing drug. Of a representative group of microtubule mutants, only one other mutation, tub2-404, could be suppressed by JSN1 overexpression, showing that JSN1 is an allele-specific suppressor. As tub2-404 mutants are also defective for spindle elongation, this provides additional support for a role for JSN1 during anaphase. Images PMID:8534919

  20. Direct TFIIA-TFIID protein contacts drive budding yeast ribosomal protein gene transcription.

    PubMed

    Layer, Justin H; Weil, P Anthony

    2013-08-01

    We have previously shown that yeast TFIID provides coactivator function on the promoters of ribosomal protein-encoding genes (RPGs) by making direct contact with the transactivator repressor activator protein 1 (Rap1). Further, our structural studies of assemblies generated with purified Rap1, TFIID, and TFIIA on RPG enhancer-promoter DNA indicate that Rap1-TFIID interaction induces dramatic conformational rearrangements of enhancer-promoter DNA and TFIID-bound TFIIA. These data indicate a previously unknown yet critical role for yeast TFIIA in the integration of activator-TFIID contacts with promoter conformation and downstream preinitiation complex formation and/or function. Here we describe the use of systematic mutagenesis to define how specific TFIIA contacts contribute to these processes. We have verified that TFIIA is required for RPG transcription in vivo and in vitro, consistent with the existence of a critical Rap1-TFIIA-TFIID interaction network. We also identified essential points of contact for TFIIA and Rap1 within the Rap1 binding domain of the Taf4 subunit of TFIID. These data suggest a mechanism for how interactions between TFIID, TFIIA, and Rap1 contribute to the high rate of transcription initiation seen on RPGs in vivo. PMID:23814059

  1. Watch out for your TRP1 marker: the effect of TRP1 gene on the growth at high and low temperatures in budding yeast.

    PubMed

    Leng, Gang; Song, Kiwon

    2016-05-01

    TRP1 is a frequently used auxotrophic marker for genetic modifications and selections in trp(-) budding yeast strains, including the commonly used wild-type strain W303a. However, we found that introduction of the TRP1 gene into a trp(-) strain significantly affected vegetative growth at low and high temperatures. Therefore, caution should be needed when working in a trp(-) background strain and using the TRP1 marker to study stress response phenotypes, particularly when analyzing temperature sensitivities. PMID:27190239

  2. Mediated amperometry reveals different modes of yeast responses to sugars.

    PubMed

    Garjonyte, Rasa; Melvydas, Vytautas; Malinauskas, Albertas

    2016-02-01

    Menadione-mediated amperometry at carbon paste electrodes modified with various yeasts (Saccharomyces cerevisiae, Candida pulcherrima, Pichia guilliermondii and Debaryomyces hansenii) was employed to monitor redox activity inside the yeast cells induced by glucose, fructose, sucrose, maltose or galactose. Continuous measurements revealed distinct modes (transient or gradually increasing) of the current development during the first 2 to 3 min after subjection to glucose, fructose and sucrose at electrodes containing S. cerevisiae and non-Saccharomyces strains. Different modes (increasing or decreasing) of the current development after yeast subjection to galactose at electrodes with S. cerevisiae or D. hansenii and at electrodes with C. pulcherrima and P. guilliermondii suggested different mechanisms of galactose assimilation. PMID:26523505

  3. iAID: an improved auxin-inducible degron system for the construction of a 'tight' conditional mutant in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Tanaka, Seiji; Miyazawa-Onami, Mayumi; Iida, Tetsushi; Araki, Hiroyuki

    2015-08-01

    Isolation of a 'tight' conditional mutant of a gene of interest is an effective way of studying the functions of essential genes. Strategies that use ubiquitin-mediated protein degradation to eliminate the product of a gene of interest, such as heat-inducible degron (td) and auxin-inducible degron (AID), are powerful methods for constructing conditional mutants. However, these methods do not work with some genes. Here, we describe an improved AID system (iAID) for isolating tight conditional mutants in the budding yeast Saccharomyces cerevisiae. In this method, transcriptional repression by the 'Tet-OFF' promoter is combined with proteolytic elimination of the target protein by the AID system. To provide examples, we describe the construction of tight mutants of the replication factors Dpb11 and Mcm10, dpb11-iAID, and mcm10-iAID. Because Dpb11 and Mcm10 are required for the initiation of DNA replication, their tight mutants are unable to enter S phase. This is the case for dpb11-iAID and mcm10-iAID cells after the addition of tetracycline and auxin. Both the 'Tet-OFF' promoter and the AID system have been shown to work in model eukaryotes other than budding yeast. Therefore, the iAID system is not only useful in budding yeast, but also can be applied to other model systems to isolate tight conditional mutants. PMID:26081484

  4. The budding yeast nuclear envelope adjacent to the nucleolus serves as a membrane sink during mitotic delay

    PubMed Central

    Witkin, Keren L.; Chong, Yolanda; Shao, Sichen; Webster, Micah T.; Lahiri, Sujoy; Walters, Alison D.; Lee, Brandon; Koh, Judice L.Y.; Prinz, William A.; Andrews, Brenda J.; Cohen-Fix, Orna

    2012-01-01

    Summary The mechanisms that dictate nuclear shape are largely unknown. Here we screened the budding yeast deletion collection for mutants with abnormal nuclear shape. A common phenotype was the appearance of a nuclear extension, particularly in mutants in DNA repair and chromosome segregation genes. Our data suggest that these mutations led to the abnormal nuclear morphology indirectly, by causing a checkpoint-induced cell cycle delay. Indeed, delaying cells in mitosis by other means also led to the appearance of nuclear extensions, while inactivating the DNA damage checkpoint pathway in a DNA repair mutant reduced the fraction of cells with nuclear extensions. Formation of a nuclear extension was specific to a mitotic delay, as cells arrested in S or G2 had round nuclei. Moreover, the nuclear extension always coincided with the nucleolus, while the morphology of DNA mass remained largely unchanged. Finally, we found that phospholipid synthesis continues unperturbed when cells delay in mitosis, and inhibiting phospholipid synthesis abolished the formation of nuclear extensions. Our data suggest a mechanism that promotes nuclear envelope expansion during mitosis. When mitotic progression is delayed, cells sequester the added membrane to the nuclear envelope associated with the nucleolus, possibly to avoid disruption of intra-nuclear organization. PMID:22658600

  5. Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast.

    PubMed

    Hammet, Andrew; Magill, Christine; Heierhorst, Jörg; Jackson, Stephen P

    2007-09-01

    Phosphorylation of histone H2A or H2AX is an early and sensitive marker of DNA damage in eukaryotic cells, although mutation of the conserved damage-dependent phosphorylation site is well tolerated. Here, we show that H2A phosphorylation is required for cell-cycle arrest in response to DNA damage at the G1/S transition in budding yeast. Furthermore, we show that the tandem BRCT domain of Rad9 interacts directly with phosphorylated H2A in vitro and that a rad9 point mutation that abolishes this interaction results in in vivo phenotypes that are similar to those caused by an H2A phosphorylation site mutation. Remarkably, similar checkpoint defects are also caused by a Rad9 Tudor domain mutation that impairs Rad9 chromatin association already in undamaged cells. These findings indicate that constitutive Tudor domain-mediated and damage-specific BRCT domain-phospho-H2A-dependent interactions of Rad9 with chromatin cooperate to establish G1 checkpoint arrest. PMID:17721446

  6. The Mating-specific Gα Interacts with a Kinesin-14 and Regulates Pheromone-induced Nuclear Migration in Budding Yeast

    PubMed Central

    Zaichick, Sofia V.; Metodiev, Metodi V.; Nelson, Scott A.; Durbrovskyi, Oleksii; Draper, Edward; Cooper, John A.

    2009-01-01

    As a budding yeast cell elongates toward its mating partner, cytoplasmic microtubules connect the nucleus to the cell cortex at the growth tip. The Kar3 kinesin-like motor protein is then thought to stimulate plus-end depolymerization of these microtubules, thus drawing the nucleus closer to the site where cell fusion and karyogamy will occur. Here, we show that pheromone stimulates a microtubule-independent interaction between Kar3 and the mating-specific Gα protein Gpa1 and that Gpa1 affects both microtubule orientation and cortical contact. The membrane localization of Gpa1 was found to polarize early in the mating response, at about the same time that the microtubules begin to attach to the incipient growth site. In the absence of Gpa1, microtubules lose contact with the cortex upon shrinking and Kar3 is improperly localized, suggesting that Gpa1 is a cortical anchor for Kar3. We infer that Gpa1 serves as a positional determinant for Kar3-bound microtubule plus ends during mating. PMID:19386762

  7. Positive feedback promotes mitotic exit via the APC/C-Cdh1-separase-Cdc14 axis in budding yeast.

    PubMed

    Hatano, Yuhki; Naoki, Koike; Suzuki, Asuka; Ushimaru, Takashi

    2016-10-01

    The mitotic inhibitor securin is degraded via the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C)-Cdc20 after anaphase onset. This triggers activation of the mitotic protease separase and thereby sister chromatid separation. However, only a proportion of securin molecules are degraded at metaphase-anaphase transition and the remaining molecules are still present in anaphase. The roles of securin and separase in late mitosis remain elusive. Here, we show that securin still inhibits separase to repress mitotic exit in anaphase in budding yeast. APC/C-Cdh1-mediated securin degradation at telophase further liberated separase, which promotes Cdc14 release and mitotic exit. Separase executed these events via its proteolytic action and that in the Cdc14 early release (FEAR) network. Cdc14 release further activated APC/C-Cdh1 in the manner of a positive feedback loop. Thus, the positive feedback promotes mitotic exit via the APC/C-Cdh1-separase-Cdc14 axis. This study shows the importance of the two-step degradation mode of securin and the role of separase in mitotic exit. PMID:27418100

  8. RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast.

    PubMed Central

    Gardner, R; Putnam, C W; Weinert, T

    1999-01-01

    Eukaryotic checkpoint genes regulate multiple cellular responses to DNA damage. In this report, we examine the roles of budding yeast genes involved in G2/M arrest and tolerance to UV exposure. A current model posits three gene classes: those encoding proteins acting on damaged DNA (e.g. RAD9 and RAD24), those transducing a signal (MEC1, RAD53 and DUN1) or those participating more directly in arrest (PDS1). Here, we define important features of the pathways subserved by those genes. MEC1, which we find is required for both establishment and maintenance of G2/M arrest, mediates this arrest through two parallel pathways. One pathway requires RAD53 and DUN1 (the 'RAD53 pathway'); the other pathway requires PDS1. Each pathway independently contributes approximately 50% to G2/M arrest, effects demonstrable after cdc13-induced damage or a double-stranded break inflicted by the HO endonuclease. Similarly, both pathways contribute independently to tolerance of UV irradiation. How the parallel pathways might interact ultimately to achieve arrest is not yet understood, but we do provide evidence that neither the RAD53 nor the PDS1 pathway appears to maintain arrest by inhibiting adaptation. Instead, we think it likely that both pathways contribute to establishing and maintaining arrest. PMID:10357828

  9. Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast

    PubMed Central

    Hammet, Andrew; Magill, Christine; Heierhorst, Jörg; Jackson, Stephen P

    2007-01-01

    Phosphorylation of histone H2A or H2AX is an early and sensitive marker of DNA damage in eukaryotic cells, although mutation of the conserved damage-dependent phosphorylation site is well tolerated. Here, we show that H2A phosphorylation is required for cell-cycle arrest in response to DNA damage at the G1/S transition in budding yeast. Furthermore, we show that the tandem BRCT domain of Rad9 interacts directly with phosphorylated H2A in vitro and that a rad9 point mutation that abolishes this interaction results in in vivo phenotypes that are similar to those caused by an H2A phosphorylation site mutation. Remarkably, similar checkpoint defects are also caused by a Rad9 Tudor domain mutation that impairs Rad9 chromatin association already in undamaged cells. These findings indicate that constitutive Tudor domain-mediated and damage-specific BRCT domain–phospho-H2A-dependent interactions of Rad9 with chromatin cooperate to establish G1 checkpoint arrest. PMID:17721446

  10. Multiple stable states and hysteresis in continuous, oscillating cultures of budding yeast.

    PubMed

    Zamamiri, A Q; Birol, G; Hjortsø, M A

    2001-11-01

    The conditions that precede the onset of autonomous oscillations in continuous yeast cultures were studied in three different types of experiments. It was found that the final state of the culture depended on the protocol used to start up the reactor. Batch cultures, switched to continuous operation at different stages of the batch growth curve, all exhibited similar dynamics-ethanol depletion followed by autonomous oscillations. Small perturbations of the distribution of states in the reactor, achieved by addition of externally grown cells, were able to quench the oscillatory dynamics. Reaching the desired operating point by slow dilution rate changes gave rise to different final states, two oscillatory states and one steady state, depending on the rate of change in dilution rate. The multiplicity of stable states at a single operating point is not explained by any current distributed model and points toward a segregated mechanism of these oscillations. PMID:11590603

  11. Synthesis and Function of Membrane Phosphoinositides in Budding Yeast, Saccharomyces cerevisiae

    PubMed Central

    Strahl, Thomas; Thorner, Jeremy

    2007-01-01

    It is now well appreciated that derivatives of phosphatidylinositol (PtdIns) are key regulators of many cellular processes in eukaryotes. Of particular interest are phosphoinositides (mono- and polyphosphorylated adducts to the inositol ring in PtdIns), which are located at the cytoplasmic face of cellular membranes. Phosphoinositides serve both a structural and a signaling role via their recruitment of proteins that contain phosphoinositide-binding domains. Phosphoinositides also have a role as precursors of several types of second messengers for certain intracellular signaling pathways. Realization of the importance of phosphoinositides has brought increased attention to characterization of the enzymes that regulate their synthesis, interconversion, and turnover. Here we review the current state of our knowledge about the properties and regulation of the ATP-dependent lipid kinases responsible for synthesis of phosphoinositides and also the additional temporal and spatial controls exerted by the phosphatases and a phospholipase that act on phosphoinositides in yeast. PMID:17382260

  12. In vivo single-particle imaging of nuclear mRNA export in budding yeast demonstrates an essential role for Mex67p

    PubMed Central

    Smith, Carlas; Lari, Azra; Derrer, Carina Patrizia; Ouwehand, Anette; Rossouw, Ammeret; Huisman, Maximiliaan; Dange, Thomas; Hopman, Mark; Joseph, Aviva; Zenklusen, Daniel

    2015-01-01

    Many messenger RNA export proteins have been identified; yet the spatial and temporal activities of these proteins and how they determine directionality of messenger ribonucleoprotein (mRNP) complex export from the nucleus remain largely undefined. Here, the bacteriophage PP7 RNA-labeling system was used in Saccharomyces cerevisiae to follow single-particle mRNP export events with high spatial precision and temporal resolution. These data reveal that mRNP export, consisting of nuclear docking, transport, and cytoplasmic release from a nuclear pore complex (NPC), is fast (∼200 ms) and that upon arrival in the cytoplasm, mRNPs are frequently confined near the nuclear envelope. Mex67p functions as the principal mRNP export receptor in budding yeast. In a mex67-5 mutant, delayed cytoplasmic release from NPCs and retrograde transport of mRNPs was observed. This proves an essential role for Mex67p in cytoplasmic mRNP release and directionality of transport. PMID:26694837

  13. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast

    PubMed Central

    Li, Ping; Jin, Hui; Yu, Hong-Guo

    2014-01-01

    During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity. PMID:25103240

  14. Exposure of ELF-EMF and RF-EMF Increase the Rate of Glucose Transport and TCA Cycle in Budding Yeast

    PubMed Central

    Lin, Kang-Wei; Yang, Chuan-Jun; Lian, Hui-Yong; Cai, Peng

    2016-01-01

    In this study, we investigated the transcriptional response to 50 Hz extremely low frequency electromagnetic field (ELF-EMF) and 2.0 GHz radio frequency electromagnetic field (RF-EMF) exposure by Illumina sequencing technology using budding yeast as the model organism. The transcription levels of 28 genes were upregulated and those of four genes were downregulated under ELF-EMF exposure, while the transcription levels of 29 genes were upregulated and those of 24 genes were downregulated under RF-EMF exposure. After validation by reverse transcription quantitative polymerase chain reaction (RT-qPCR), a concordant direction of change both in differential gene expression (DGE) and RT-qPCR was demonstrated for nine genes under ELF-EMF exposure and for 10 genes under RF-EMF exposure. The RT-qPCR results revealed that ELF-EMF and RF-EMF exposure can upregulate the expression of genes involved in glucose transportation and the tricarboxylic acid (TCA) cycle, but not the glycolysis pathway. Energy metabolism is closely related with the cell response to environmental stress including EMF exposure. Our findings may throw light on the mechanism underlying the biological effects of EMF.

  15. Natural variation in non-coding regions underlying phenotypic diversity in budding yeast.

    PubMed

    Salinas, Francisco; de Boer, Carl G; Abarca, Valentina; García, Verónica; Cuevas, Mara; Araos, Sebastian; Larrondo, Luis F; Martínez, Claudio; Cubillos, Francisco A

    2016-01-01

    Linkage mapping studies in model organisms have typically focused their efforts in polymorphisms within coding regions, ignoring those within regulatory regions that may contribute to gene expression variation. In this context, differences in transcript abundance are frequently proposed as a source of phenotypic diversity between individuals, however, until now, little molecular evidence has been provided. Here, we examined Allele Specific Expression (ASE) in six F1 hybrids from Saccharomyces cerevisiae derived from crosses between representative strains of the four main lineages described in yeast. ASE varied between crosses with levels ranging between 28% and 60%. Part of the variation in expression levels could be explained by differences in transcription factors binding to polymorphic cis-regulations and to differences in trans-activation depending on the allelic form of the TF. Analysis on highly expressed alleles on each background suggested ASN1 as a candidate transcript underlying nitrogen consumption differences between two strains. Further promoter allele swap analysis under fermentation conditions confirmed that coding and non-coding regions explained aspartic and glutamic acid consumption differences, likely due to a polymorphism affecting Uga3 binding. Together, we provide a new catalogue of variants to bridge the gap between genotype and phenotype. PMID:26898953

  16. Natural variation in non-coding regions underlying phenotypic diversity in budding yeast

    PubMed Central

    Salinas, Francisco; de Boer, Carl G.; Abarca, Valentina; García, Verónica; Cuevas, Mara; Araos, Sebastian; Larrondo, Luis F.; Martínez, Claudio; Cubillos, Francisco A.

    2016-01-01

    Linkage mapping studies in model organisms have typically focused their efforts in polymorphisms within coding regions, ignoring those within regulatory regions that may contribute to gene expression variation. In this context, differences in transcript abundance are frequently proposed as a source of phenotypic diversity between individuals, however, until now, little molecular evidence has been provided. Here, we examined Allele Specific Expression (ASE) in six F1 hybrids from Saccharomyces cerevisiae derived from crosses between representative strains of the four main lineages described in yeast. ASE varied between crosses with levels ranging between 28% and 60%. Part of the variation in expression levels could be explained by differences in transcription factors binding to polymorphic cis-regulations and to differences in trans-activation depending on the allelic form of the TF. Analysis on highly expressed alleles on each background suggested ASN1 as a candidate transcript underlying nitrogen consumption differences between two strains. Further promoter allele swap analysis under fermentation conditions confirmed that coding and non-coding regions explained aspartic and glutamic acid consumption differences, likely due to a polymorphism affecting Uga3 binding. Together, we provide a new catalogue of variants to bridge the gap between genotype and phenotype. PMID:26898953

  17. A series of conditional shuttle vectors for targeted genomic integration in budding yeast

    PubMed Central

    Chou, Chia-Ching; Patel, Michael T.; Gartenberg, Marc R.

    2015-01-01

    The capacity of Saccharomyces cerevisiae to repair exposed DNA ends by homologous recombination has long been used by experimentalists to assemble plasmids from DNA fragments in vivo. While this approach works well for engineering extrachromosomal vectors, it is not well suited to the generation, recovery and reuse of integrative vectors. Here, we describe the creation of a series of conditional centromeric shuttle vectors, termed pXR vectors, that can be used for both plasmid assembly in vivo and targeted genomic integration. The defining feature of pXR vectors is that the DNA segment bearing the centromere and origin of replication, termed CEN/ARS, is flanked by a pair of loxP sites. Passaging the vectors through bacteria that express Cre recombinase reduces the loxP-CEN/ARS-loxP module to a single loxP site, thereby eliminating the ability to replicate autonomously in yeast. Each vector also contains a selectable marker gene, as well as a fragment of the HO locus, which permits targeted integration at a neutral genomic site. The pXR vectors provide a convenient and robust method to assemble DNAs for targeted genomic modifications. PMID:25736914

  18. Four linked genes participate in controlling sporulation efficiency in budding yeast.

    PubMed

    Ben-Ari, Giora; Zenvirth, Drora; Sherman, Amir; David, Lior; Klutstein, Michael; Lavi, Uri; Hillel, Jossi; Simchen, Giora

    2006-11-17

    Quantitative traits are conditioned by several genetic determinants. Since such genes influence many important complex traits in various organisms, the identification of quantitative trait loci (QTLs) is of major interest, but still encounters serious difficulties. We detected four linked genes within one QTL, which participate in controlling sporulation efficiency in Saccharomyces cerevisiae. Following the identification of single nucleotide polymorphisms by comparing the sequences of 145 genes between the parental strains SK1 and S288c, we analyzed the segregating progeny of the cross between them. Through reciprocal hemizygosity analysis, four genes, RAS2, PMS1, SWS2, and FKH2, located in a region of 60 kilobases on Chromosome 14, were found to be associated with sporulation efficiency. Three of the four "high" sporulation alleles are derived from the "low" sporulating strain. Two of these sporulation-related genes were verified through allele replacements. For RAS2, the causative variation was suggested to be a single nucleotide difference in the upstream region of the gene. This quantitative trait nucleotide accounts for sporulation variability among a set of ten closely related winery yeast strains. Our results provide a detailed view of genetic complexity in one "QTL region" that controls a quantitative trait and reports a single nucleotide polymorphism-trait association in wild strains. Moreover, these findings have implications on QTL identification in higher eukaryotes. PMID:17112318

  19. Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast

    PubMed Central

    van Welsem, Tibor; Friedman, Nir; Rando, Oliver J.; van Leeuwen, Fred

    2011-01-01

    Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5′ ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns. PMID:21666805

  20. Cytosolic chaperones mediate quality control of higher-order septin assembly in budding yeast

    PubMed Central

    Johnson, Courtney R.; Weems, Andrew D.; Brewer, Jennifer M.; Thorner, Jeremy; McMurray, Michael A.

    2015-01-01

    Septin hetero-oligomers polymerize into cytoskeletal filaments with essential functions in many eukaryotic cell types. Mutations within the oligomerization interface that encompasses the GTP-binding pocket of a septin (its “G interface”) cause thermoinstability of yeast septin hetero-oligomer assembly, and human disease. When coexpressed with its wild-type counterpart, a G interface mutant is excluded from septin filaments, even at moderate temperatures. We show that this quality control mechanism is specific to G interface mutants, operates during de novo septin hetero-oligomer assembly, and requires specific cytosolic chaperones. Chaperone overexpression lowers the temperature permissive for proliferation of cells expressing a G interface mutant as the sole source of a given septin. Mutations that perturb the septin G interface retard release from these chaperones, imposing a kinetic delay on the availability of nascent septin molecules for higher-order assembly. Un­expectedly, the disaggregase Hsp104 contributes to this delay in a manner that does not require its “unfoldase” activity, indicating a latent “holdase” activity toward mutant septins. These findings provide new roles for chaperone-mediated kinetic partitioning of non-native proteins and may help explain the etiology of septin-linked human diseases. PMID:25673805

  1. Organelle Size Scaling of the Budding Yeast Vacuole by Relative Growth and Inheritance.

    PubMed

    Chan, Yee-Hung M; Reyes, Lorena; Sohail, Saba M; Tran, Nancy K; Marshall, Wallace F

    2016-05-01

    It has long been noted that larger animals have larger organs compared to smaller animals of the same species, a phenomenon termed scaling [1]. Julian Huxley proposed an appealingly simple model of "relative growth"-in which an organ and the whole body grow with their own intrinsic rates [2]-that was invoked to explain scaling in organs from fiddler crab claws to human brains. Because organ size is regulated by complex, unpredictable pathways [3], it remains unclear whether scaling requires feedback mechanisms to regulate organ growth in response to organ or body size. The molecular pathways governing organelle biogenesis are simpler than organogenesis, and therefore organelle size scaling in the cell provides a more tractable case for testing Huxley's model. We ask the question: is it possible for organelle size scaling to arise if organelle growth is independent of organelle or cell size? Using the yeast vacuole as a model, we tested whether mutants defective in vacuole inheritance, vac8Δ and vac17Δ, tune vacuole biogenesis in response to perturbations in vacuole size. In vac8Δ/vac17Δ, vacuole scaling increases with the replicative age of the cell. Furthermore, vac8Δ/vac17Δ cells continued generating vacuole at roughly constant rates even when they had significantly larger vacuoles compared to wild-type. With support from computational modeling, these results suggest there is no feedback between vacuole biogenesis rates and vacuole or cell size. Rather, size scaling is determined by the relative growth rates of the vacuole and the cell, thus representing a cellular version of Huxley's model. PMID:27151661

  2. An in vivo detection system for transient and low‐abundant protein interactions and their kinetics in budding yeast

    PubMed Central

    Brezovich, Andrea; Schuschnig, Martina; Ammerer, Gustav

    2015-01-01

    Abstract Methylation tracking (M‐Track) is a protein‐proximity assay in Saccharomyces cerevisiae, allowing the detection of transient protein–protein interactions in living cells. The bait protein is fused to a histone lysine methyl transferase and the prey protein to a methylation acceptor peptide derived from histone 3. Upon interaction, the histone 3 fragment is stably methylated on lysine 9 and can be detected by methylation‐specific antibodies. Since methylation marking is irreversible in budding yeast and only takes place in living cells, the occurrence of artifacts during cell lysate preparation is greatly reduced, leading to a more accurate representation of native interactions. So far, this method has been limited to highly abundant or overexpressed proteins. However, many proteins of interest are low‐abundant, and overexpression of proteins may interfere with their function, leading to an artificial situation. Here we report the generation of a toolbox including a novel cleavage‐enrichment system for the analysis of very low‐abundant proteins at their native expression levels. In addition, we developed a system for the parallel analysis of two prey proteins in a single cell, as well as an inducible methylation system. The inducible system allows precise control over the time during which the interaction is detected and can be used to determine interaction kinetics. Furthermore, we generated a set of constructs facilitating the cloning‐free genomic tagging of proteins at their endogenous locus by homologous recombination, and their expression from centromeric plasmids. GenBank submissions: pCK900; KM407502, pCK901; KM407503, pCK902; KM407504, pCK903; KM407505, pCK904; KM407506, pCK905; KM407507, pCK906; KM407508, pCK907; KM407509, pCK908; KM407510, pCK909; KM407511, pCK910; KM407512, pCK911; KM407513. © 2015 The Authors. Yeast published by John Wiley & Sons Ltd. PMID:25582094

  3. Mechanisms Controlling Subcellular Localization of the G1 Cyclins Cln2p and Cln3p in Budding Yeast

    PubMed Central

    Miller, Mary E.; Cross, Frederick R.

    2001-01-01

    Different G1 cyclins confer functional specificity to the cyclin-dependent kinase (Cdk) Cdc28p in budding yeast. The Cln3p G1 cyclin is localized primarily to the nucleus, while Cln2p is localized primarily to the cytoplasm. Both binding to Cdc28p and Cdc28p-dependent phosphorylation in the C-terminal region of Cln2p are independently required for efficient nuclear depletion of Cln2p, suggesting that this process may be physiologically regulated. The accumulation of hypophosphorylated Cln2 in the nucleus is an energy-dependent process, but may not involve the RAN GTPase. Phosphorylation of Cln2p is inefficient in small newborn cells obtained by elutriation, and this lowered phosphorylation correlates with reduced Cln2p nuclear depletion in newborn cells. Thus, Cln2p may have a brief period of nuclear residence early in the cell cycle. In contrast, the nuclear localization pattern of Cln3p is not influenced by Cdk activity. Cln3p localization requires a bipartite nuclear localization signal (NLS) located at the C terminus of the protein. This sequence is required for nuclear localization of Cln3p and is sufficient to confer nuclear localization to green fluorescent protein in a RAN-dependent manner. Mislocalized Cln3p, lacking the NLS, is much less active in genetic assays specific for Cln3p, but more active in assays normally specific for Cln2p, consistent with the idea that Cln3p localization explains a significant part of Clnp functional specificity. PMID:11509671

  4. Highly diverged homologs of Saccharomyces cerevisiae mitochondrial mRNA-specific translational activators have orthologous functions in other budding yeasts.

    PubMed Central

    Costanzo, M C; Bonnefoy, N; Williams, E H; Clark-Walker, G D; Fox, T D

    2000-01-01

    Translation of mitochondrially coded mRNAs in Saccharomyces cerevisiae depends on membrane-bound mRNA-specific activator proteins, whose targets lie in the mRNA 5'-untranslated leaders (5'-UTLs). In at least some cases, the activators function to localize translation of hydrophobic proteins on the inner membrane and are rate limiting for gene expression. We searched unsuccessfully in divergent budding yeasts for orthologs of the COX2- and COX3-specific translational activator genes, PET111, PET54, PET122, and PET494, by direct complementation. However, by screening for complementation of mutations in genes adjacent to the PET genes in S. cerevisiae, we obtained chromosomal segments containing highly diverged homologs of PET111 and PET122 from Saccharomyces kluyveri and of PET111 from Kluyveromyces lactis. All three of these genes failed to function in S. cerevisiae. We also found that the 5'-UTLs of the COX2 and COX3 mRNAs of S. kluyveri and K. lactis have little similarity to each other or to those of S. cerevisiae. To determine whether the PET111 and PET122 homologs carry out orthologous functions, we deleted them from the S. kluyveri genome and deleted PET111 from the K. lactis genome. The pet111 mutations in both species prevented COX2 translation, and the S. kluyveri pet122 mutation prevented COX3 translation. Thus, while the sequences of these translational activator proteins and their 5'-UTL targets are highly diverged, their mRNA-specific functions are orthologous. PMID:10757749

  5. The budding yeast amphiphysin complex is required for contractile actin ring (CAR) assembly and post-contraction GEF-independent accumulation of Rho1-GTP.

    PubMed

    Cundell, Michael John; Price, Clive

    2014-01-01

    The late events of the budding yeast cell division cycle, cytokinesis and cell separation, require the assembly of a contractile actomyosin ring (CAR), primary and secondary septum formation followed by enzymatic degradation of the primary septum. Here we present evidence that demonstrates a role for the budding yeast amphiphysin complex, a heterodimer comprising Rvs167 and Rvs161, in CAR assembly and cell separation. The iqg1-1 allele is synthetically lethal with both rvs167 and rvs161 null mutations. We show that both Iqg1 and the amphiphysin complex are required for CAR assembly in early anaphase but cells are able to complete assembly in late anaphase when these activities are, respectively, either compromised or absent. Amphiphysin dependent CAR assembly is dependent upon the Rvs167 SH3 domain, but this function is insufficient to explain the observed synthetic lethality. Dosage suppression of the iqg1-1 allele demonstrates that endocytosis is required for the default cell separation pathway in the absence of CAR contraction but is unlikely to be required to maintain viability. The amphiphysin complex is required for normal, post-mitotic, localization of Chs3 and the Rho1 GEF, Rom2, which are responsible for secondary septum deposition and the accumulation of GTP bound Rho1 at the bud neck. It is concluded that a failure of polarity establishment in the absence of CAR contraction and amphiphysin function leads to loss of viability as a result of the consequent cell separation defect. PMID:24874185

  6. Regulation of Cdc42 polarization by the Rsr1 GTPase and Rga1, a Cdc42 GTPase-activating protein, in budding yeast

    PubMed Central

    Lee, Mid Eum; Lo, Wing-Cheong; Miller, Kristi E.; Chou, Ching-Shan; Park, Hay-Oak

    2015-01-01

    ABSTRACT Cdc42 plays a central role in establishing polarity in yeast and animals, yet how polarization of Cdc42 is achieved in response to spatial cues is poorly understood. Using live-cell imaging, we found distinct dynamics of Cdc42 polarization in haploid budding yeast in correlation with two temporal steps of the G1 phase. The position at which the Cdc42–GTP cluster develops changes rapidly around the division site during the first step but becomes stabilized in the second step, suggesting that an axis of polarized growth is determined in mid G1. Cdc42 polarization in the first step and its proper positioning depend on Rsr1 and its GTPase-activating protein (GAP) Bud2. Interestingly, Rga1, a Cdc42 GAP, exhibits transient localization to a site near the bud neck and to the division site during cytokinesis and G1, and this temporal change of Rga1 distribution is necessary for determination of a proper growth site. Mathematical modeling suggests that a proper axis of Cdc42 polarization in haploid cells might be established through a biphasic mechanism involving sequential positive feedback and transient negative feedback. PMID:25908844

  7. Role of a Cdc42p Effector Pathway in Recruitment of the Yeast Septins to the Presumptive Bud SiteD⃞V⃞

    PubMed Central

    Iwase, Masayuki; Luo, Jianying; Nagaraj, Satish; Longtine, Mark; Kim, Hyong Bai; Haarer, Brian K.; Caruso, Carlo; Tong, Zongtian; Pringle, John R.; Bi, Erfei

    2006-01-01

    The septins are GTP-binding, filament-forming proteins that are involved in cytokinesis and other processes. In the yeast Saccharomyces cerevisiae, the septins are recruited to the presumptive bud site at the cell cortex, where they form a ring through which the bud emerges. We report here that in wild-type cells, the septins typically become detectable in the vicinity of the bud site several minutes before ring formation, but the ring itself is the first distinct structure that forms. Septin recruitment depends on activated Cdc42p but not on the normal pathway for bud-site selection. Recruitment occurs in the absence of F-actin, but ring formation is delayed. Mutant phenotypes and suppression data suggest that the Cdc42p effectors Gic1p and Gic2p, previously implicated in polarization of the actin cytoskeleton, also function in septin recruitment. Two-hybrid, in vitro protein binding, and coimmunoprecipitation data indicate that this role involves a direct interaction of the Gic proteins with the septin Cdc12p. PMID:16371506

  8. A septin from the filamentous fungus A. nidulans induces atypical pseudohyphae in the budding yeast S. cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Septins were first discovered in Saccharomyces cerevisiae where they form a scaffold that organizes the bud site and are a component of the morphogenesis checkpoint that coordinates budding with mitosis. Five of the seven S. cerevisiae septins (Cdc3, Cdc10, Cdc11, Cdc12 and Shs1) colocalize as a rin...

  9. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions.

    PubMed

    Chen, Weitao; Nie, Qing; Yi, Tau-Mu; Chou, Ching-Shan

    2016-07-01

    Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell interactions. PMID

  10. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions

    PubMed Central

    Chen, Weitao; Nie, Qing; Yi, Tau-Mu; Chou, Ching-Shan

    2016-01-01

    Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell interactions. PMID

  11. Involvement of budding yeast Rad5 in translesion DNA synthesis through physical interaction with Rev1

    PubMed Central

    Xu, Xin; Lin, Aiyang; Zhou, Cuiyan; Blackwell, Susan R.; Zhang, Yiran; Wang, Zihao; Feng, Qianqian; Guan, Ruifang; Hanna, Michelle D.; Chen, Zhucheng; Xiao, Wei

    2016-01-01

    DNA damage tolerance (DDT) is responsible for genomic stability and cell viability by bypassing the replication block. In Saccharomyces cerevisiae DDT employs two parallel branch pathways to bypass the DNA lesion, namely translesion DNA synthesis (TLS) and error-free lesion bypass, which are mediated by sequential modifications of PCNA. Rad5 has been placed in the error-free branch of DDT because it contains an E3 ligase domain required for PCNA polyubiquitination. Rad5 is a multi-functional protein and may also play a role in TLS, since it interacts with the TLS polymerase Rev1. In this study we mapped the Rev1-interaction domain in Rad5 to the amino acid resolution and demonstrated that Rad5 is indeed involved in TLS possibly through recruitment of Rev1. Genetic analyses show that the dual functions of Rad5 can be separated and reconstituted. Crystal structure analysis of the Rad5–Rev1 interaction reveals a consensus RFF motif in the Rad5 N-terminus that binds to a hydrophobic pocket within the C-terminal domain of Rev1 that is highly conserved in eukaryotes. This study indicates that Rad5 plays a critical role in pathway choice between TLS and error-free DDT. PMID:27001510

  12. Involvement of budding yeast Rad5 in translesion DNA synthesis through physical interaction with Rev1.

    PubMed

    Xu, Xin; Lin, Aiyang; Zhou, Cuiyan; Blackwell, Susan R; Zhang, Yiran; Wang, Zihao; Feng, Qianqian; Guan, Ruifang; Hanna, Michelle D; Chen, Zhucheng; Xiao, Wei

    2016-06-20

    DNA damage tolerance (DDT) is responsible for genomic stability and cell viability by bypassing the replication block. In Saccharomyces cerevisiae DDT employs two parallel branch pathways to bypass the DNA lesion, namely translesion DNA synthesis (TLS) and error-free lesion bypass, which are mediated by sequential modifications of PCNA. Rad5 has been placed in the error-free branch of DDT because it contains an E3 ligase domain required for PCNA polyubiquitination. Rad5 is a multi-functional protein and may also play a role in TLS, since it interacts with the TLS polymerase Rev1. In this study we mapped the Rev1-interaction domain in Rad5 to the amino acid resolution and demonstrated that Rad5 is indeed involved in TLS possibly through recruitment of Rev1. Genetic analyses show that the dual functions of Rad5 can be separated and reconstituted. Crystal structure analysis of the Rad5-Rev1 interaction reveals a consensus RFF motif in the Rad5 N-terminus that binds to a hydrophobic pocket within the C-terminal domain of Rev1 that is highly conserved in eukaryotes. This study indicates that Rad5 plays a critical role in pathway choice between TLS and error-free DDT. PMID:27001510

  13. A Novel Role of the Budding Yeast Separin Esp1 in Anaphase Spindle Elongation

    PubMed Central

    Jensen, Sanne; Segal, Marisa; Clarke, Duncan J.; Reed, Steven I.

    2001-01-01

    In Saccharomyces cerevisiae, the metaphase–anaphase transition is initiated by the anaphase-promoting complex–dependent degradation of Pds1, whereby Esp1 is activated to promote sister chromatid separation. Although this is a fundamental step in the cell cycle, little is known about the regulation of Esp1 and how loss of cohesion is coordinated with movement of the anaphase spindle. Here, we show that Esp1 has a novel role in promoting anaphase spindle elongation. The localization of Esp1 to the spindle apparatus, analyzed by live cell imaging, is regulated in a manner consistent with a function during anaphase B. The protein accumulates in the nucleus in G2 and is mobilized onto the spindle pole bodies and spindle midzone at anaphase onset, where it persists into midanaphase. Association with Pds1 occurs during S phase and is required for efficient nuclear targeting of Esp1. Spindle association is not fully restored in pds1 mutants expressing an Esp1-nuclear localization sequence fusion protein, suggesting that Pds1 is also required to promote Esp1 spindle binding. In agreement, Pds1 interacts with the spindle at the metaphase–anaphase transition and a fraction remains at the spindle pole bodies and the spindle midzone in anaphase cells. Finally, mutational analysis reveals that the conserved COOH-terminal region of Esp1 is important for spindle interaction. PMID:11149918

  14. Budding yeast protein extraction and purification for the study of function, interactions, and post-translational modifications.

    PubMed

    Szymanski, Eva Paige; Kerscher, Oliver

    2013-01-01

    Homogenization by bead beating is a fast and efficient way to release DNA, RNA, proteins, and metabolites from budding yeast cells, which are notoriously hard to disrupt. Here we describe the use of a bead mill homogenizer for the extraction of proteins into buffers optimized to maintain the functions, interactions and post-translational modifications of proteins. Logarithmically growing cells expressing the protein of interest are grown in a liquid growth media of choice. The growth media may be supplemented with reagents to induce protein expression from inducible promoters (e.g. galactose), synchronize cell cycle stage (e.g. nocodazole), or inhibit proteasome function (e.g. MG132). Cells are then pelleted and resuspended in a suitable buffer containing protease and/or phosphatase inhibitors and are either processed immediately or frozen in liquid nitrogen for later use. Homogenization is accomplished by six cycles of 20 sec bead-beating (5.5 m/sec), each followed by one minute incubation on ice. The resulting homogenate is cleared by centrifugation and small particulates can be removed by filtration. The resulting cleared whole cell extract (WCE) is precipitated using 20% TCA for direct analysis of total proteins by SDS-PAGE followed by Western blotting. Extracts are also suitable for affinity purification of specific proteins, the detection of post-translational modifications, or the analysis of co-purifying proteins. As is the case for most protein purification protocols, some enzymes and proteins may require unique conditions or buffer compositions for their purification and others may be unstable or insoluble under the conditions stated. In the latter case, the protocol presented may provide a useful starting point to empirically determine the best bead-beating strategy for protein extraction and purification. We show the extraction and purification of an epitope-tagged SUMO E3 ligase, Siz1, a cell cycle regulated protein that becomes both sumoylated and

  15. A Visual Screen of Protein Localization during Sporulation Identifies New Components of Prospore Membrane-Associated Complexes in Budding Yeast

    PubMed Central

    Lam, Chien; Santore, Ethan; Lavoie, Elizabeth; Needleman, Leor; Fiacco, Nicholas; Kim, Carey

    2014-01-01

    During ascospore formation in Saccharomyces cerevisiae, the secretory pathway is reorganized to create new intracellular compartments, termed prospore membranes. Prospore membranes engulf the nuclei produced by the meiotic divisions, giving rise to individual spores. The shape and growth of prospore membranes are constrained by cytoskeletal structures, such as septin proteins, that associate with the membranes. Green fluorescent protein (GFP) fusions to various proteins that associate with septins at the bud neck during vegetative growth as well as to proteins encoded by genes that are transcriptionally induced during sporulation were examined for their cellular localization during prospore membrane growth. We report localizations for over 100 different GFP fusions, including over 30 proteins localized to the prospore membrane compartment. In particular, the screen identified IRC10 as a new component of the leading-edge protein complex (LEP), a ring structure localized to the lip of the prospore membrane. Localization of Irc10 to the leading edge is dependent on SSP1, but not ADY3. Loss of IRC10 caused no obvious phenotype, but an ady3 irc10 mutant was completely defective in sporulation and displayed prospore membrane morphologies similar to those of an ssp1 strain. These results reveal the architecture of the LEP and provide insight into the evolution of this membrane-organizing complex. PMID:24390141

  16. The S40 residue in HIV-1 Gag p6 impacts local and distal budding determinants, revealing additional late domain activities

    PubMed Central

    2013-01-01

    Background HIV-1 budding is directed primarily by two motifs in Gag p6 designated as late domain-1 and −2 that recruit ESCRT machinery by binding Tsg101 and Alix, respectively, and by poorly characterized determinants in the capsid (CA) domain. Here, we report that a conserved Gag p6 residue, S40, impacts budding mediated by all of these determinants. Results Whereas budding normally results in formation of single spherical particles ~100 nm in diameter and containing a characteristic electron-dense conical core, the substitution of Phe for S40, a change that does not alter the amino acids encoded in the overlapping pol reading frame, resulted in defective CA-SP1 cleavage, formation of strings of tethered particles or filopodia-like membrane protrusions containing Gag, and diminished infectious particle formation. The S40F-mediated release defects were exacerbated when the viral-encoded protease (PR) was inactivated or when L domain-1 function was disrupted or when budding was almost completely obliterated by the disruption of both L domain-1 and −2. S40F mutation also resulted in stronger Gag-Alix interaction, as detected by yeast 2-hybrid assay. Reducing Alix binding by mutational disruption of contact residues restored single particle release, implicating the perturbed Gag-Alix interaction in the aberrant budding events. Interestingly, introduction of S40F partially rescued the negative effects on budding of CA NTD mutations EE75,76AA and P99A, which both prevent membrane curvature and therefore block budding at an early stage. Conclusions The results indicate that the S40 residue is a novel determinant of HIV-1 egress that is most likely involved in regulation of a critical assembly event required for budding in the Tsg101-, Alix-, Nedd4- and CA N-terminal domain affected pathways. PMID:24257210

  17. RIM15 antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast.

    PubMed

    Kessi-Pérez, Eduardo I; Araos, Sebastián; García, Verónica; Salinas, Francisco; Abarca, Valentina; Larrondo, Luis F; Martínez, Claudio; Cubillos, Francisco A

    2016-05-01

    Different natural yeast populations have faced dissimilar selective pressures due to the heterogeneous fermentation substrates available around the world; this increases the genetic and phenotypic diversity in Saccharomyces cerevisiae In this context, we expect prominent differences between isolates when exposed to a particular condition, such as wine or sake musts. To better comprehend the mechanisms underlying niche adaptation between two S. cerevisiae isolates obtained from wine and sake fermentation processes, we evaluated fermentative and fungicide resistance phenotypes and identify the molecular origin of such adaptive variation. Multiple regions were associated with fermentation rate under different nitrogen conditions and fungicide resistance, with a single QTL co-localizing in all traits. Analysis around this region identified RIM15 as the causative locus driving fungicide sensitivity, together with efficient nitrogen utilization and glycerol production in the wine strain. A null RIM15 variant confers a greater fermentation rate through the utilization of available glucose instead of its storage. However, this variant has a detrimental effect on fungicide resistance since complex sugars are not synthesized and transported into the membrane. Together, our results reveal the antagonist pleiotropic nature of a RIM15 null variant, positively affecting a series of fermentation related phenotypes, but apparently detrimental in the wild. PMID:26945894

  18. Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast

    PubMed Central

    Skelly, Daniel A.; Merrihew, Gennifer E.; Riffle, Michael; Connelly, Caitlin F.; Kerr, Emily O.; Johansson, Marnie; Jaschob, Daniel; Graczyk, Beth; Shulman, Nicholas J.; Wakefield, Jon; Cooper, Sara J.; Fields, Stanley; Noble, William S.; Muller, Eric G.D.; Davis, Trisha N.; Dunham, Maitreya J.; MacCoss, Michael J.; Akey, Joshua M.

    2013-01-01

    To better understand the quantitative characteristics and structure of phenotypic diversity, we measured over 14,000 transcript, protein, metabolite, and morphological traits in 22 genetically diverse strains of Saccharomyces cerevisiae. More than 50% of all measured traits varied significantly across strains [false discovery rate (FDR) = 5%]. The structure of phenotypic correlations is complex, with 85% of all traits significantly correlated with at least one other phenotype (median = 6, maximum = 328). We show how high-dimensional molecular phenomics data sets can be leveraged to accurately predict phenotypic variation between strains, often with greater precision than afforded by DNA sequence information alone. These results provide new insights into the spectrum and structure of phenotypic diversity and the characteristics influencing the ability to accurately predict phenotypes. PMID:23720455

  19. The GTPase-Activating Protein Rga1 Interacts with Rho3 GTPase and May Regulate Its Function in Polarized Growth in Budding Yeast

    PubMed Central

    He, Fei; Nie, Wen-Chao; Tong, Zongtian; Yuan, Si-Min; Gong, Ting; Liao, Yuan; Bi, Erfei; Gao, Xiang-Dong

    2015-01-01

    In budding yeast, Rga1 negatively regulates the Rho GTPase Cdc42 by acting as a GTPase-activating protein (GAP) for Cdc42. To gain insight into the function and regulation of Rga1, we overexpressed Rga1 and an N-terminally truncated Rga1-C538 (a.a. 538-1007) segment. Overexpression of Rga1-C538 but not full-length Rga1 severely impaired growth and cell morphology in wild-type cells. We show that Rga1 is phosphorylated during the cell cycle. The lack of phenotype for full-length Rga1 upon overexpression may result from a negative regulation by G1-specific Pho85, a cyclin-dependent kinase (CDK). From a high-copy suppressor screen, we isolated RHO3, SEC9, SEC1, SSO1, SSO2, and SRO7, genes involved in exocytosis, as suppressors of the growth defect caused by Rga1-C538 overexpression. Moreover, we detected that Rga1 interacts with Rho3 in two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Rga1 preferentially interacts with the GTP-bound form of Rho3 and the interaction requires the GAP domain and additional sequence upstream of the GAP domain. Our data suggest that the interaction of Rga1 with Rho3 may regulate Rho3’s function in polarized bud growth. PMID:25860339

  20. Organelle-cytoskeletal interactions: actin mutations inhibit meiosis-dependent mitochondrial rearrangement in the budding yeast Saccharomyces cerevisiae.

    PubMed Central

    Smith, M G; Simon, V R; O'Sullivan, H; Pon, L A

    1995-01-01

    During early stages of meiosis I, yeast mitochondria fuse to form a single continuous thread. Thereafter, portions of the mitochondrial thread are equally distributed to daughter cells. Using time-lapse fluorescence microscopy and a membrane potential sensing dye, mitochondria are resolved as small particles at the cell periphery in pre-meiotic, living yeast. These organelles display low levels of movement. During meiosis I, we observed a threefold increase in mitochondrial motility. Mitochondrial movements were linear, occurred at a maximum velocity of 25 +/- 6.7 nm/s, and resulted in organelle collision and fusion to form elongated tubular structures. Mitochondria do not co-localize with microtubules. Destabilization of microtubules by nocodazole treatment has no significant effect on the rate and extent of thread formation. In contrast, yeast bearing temperature-sensitive mutations in the actin-encoding ACT1 gene (act1-3 and act1-133) exhibit abnormal mitochondrial aggregation, fragmentation, and enlargement as well as loss of mitochondrial motility. In act1-3 cells, mitochondrial defects and actin delocalization occur only at restrictive temperatures. The act1-133 mutation, which perturbs the myosin-binding site of actin without significantly affecting actin cytoskeletal structure in meiotic yeast, results in mitochondrial morphology and motility defects at restrictive and permissive temperatures. These studies support a role for the actin cytoskeleton in the control of mitochondrial position and movements in meiotic yeast. Images PMID:8573793

  1. Clausmarin A, Potential Immunosuppressant Revealed by Yeast-Based Assay and Interleukin-2 Production Assay in Jurkat T Cells

    PubMed Central

    Suauam, Pitipreya; Yingyongnarongkul, Boon-ek; Palaga, Tanapat; Miyakawa, Tokichi; Yompakdee, Chulee

    2015-01-01

    Small-molecule inhibitors of Ca2+-signaling pathways are of medicinal importance, as exemplified by the immunosuppressants FK506 and cyclosporin A. Using a yeast-based assay devised for the specific detection of Ca2+-signaling inhibitors, clausmarin A, a previously reported terpenoid coumarin, was identified as an active substance. Here, we investigated the likely mechanism of clausmarin A action in yeast and Jurkat T-cells. In the presence of 100 mM CaCl2 in the growth medium of Ca2+-sensitive Δzds1 strain yeast, clausmarin A exhibited a dose-dependent alleviation of various defects due to hyperactivation of Ca2+ signaling, such as growth inhibition, polarized bud growth and G2 phase cell-cycle arrest. Furthermore, clausmarin A inhibited the growth of Δmpk1 (lacking the Mpk1 MAP kinase pathway) but not Δcnb1 (lacking the calcineurin pathway) strain, suggesting that clausmarin A inhibited the calcineurin pathway as presumed from the synthetic lethality of these pathways. Furthermore, clausmarin A alleviated the serious defects of a strain expressing a constitutively active form of calcineurin. In the human Jurkat T-cell line, clausmarin A exhibited a dose-dependent inhibition of IL-2 production and IL-2 gene transcription, as well as an inhibition of NFAT dephosphorylation. The effects of clausmarin A observed in both yeast and Jurkat cells are basically similar to those of FK506. Our study revealed that clausmarin A is an inhibitor of the calcineurin pathway, and that this is probably mediated via inhibition of calcineurin phosphatase activity. As such, clausmarin A is a potential immunosuppressant. PMID:26313553

  2. Close, stable homolog juxtaposition during meiosis in budding yeast is dependent on meiotic recombination, occurs independently of synapsis, and is distinct from DSB-independent pairing contacts

    PubMed Central

    Peoples, Tamara L.; Dean, Eric; Gonzalez, Oscar; Lambourne, Lindsey; Burgess, Sean M.

    2002-01-01

    A site-specific recombination system that probes the relative probabilities that pairs of chromosomal loci collide with one another in living cells of budding yeast was used to explore the relative contributions of pairing, recombination, synaptonemal complex formation, and telomere clustering to the close juxtaposition of homologous chromosome pairs during meiosis. The level of Cre-mediated recombination between a pair of loxP sites located at an allelic position on homologous chromosomes was 13-fold greater than that between a pair of loxP sites located at ectopic positions on nonhomologous chromosomes. Mutations affecting meiotic recombination initiation and the processing of DNA double-strand breaks (DSBs) into single-end invasions (SEIs) reduced the levels of allelic Cre-mediated recombination levels by three- to sixfold. The severity of Cre/loxP phenotypes is presented in contrast to relatively weak DSB-independent pairing defects as assayed using fluorescence in situ hybridization for these mutants. Mutations affecting synaptonemal complex (SC) formation or crossover control gave wild-type levels of allelic Cre-mediated recombination. A delay in attaining maximum levels of allelic Cre-mediated recombination was observed for a mutant defective in telomere clustering. None of the mutants affected ectopic levels of recombination. These data suggest that stable, close homolog juxtaposition in yeast is distinct from pre-DSB pairing interactions, requires both DSB and SEI formation, but does not depend on crossovers or SC. PMID:12101126

  3. PRIMED: PRIMEr database for deleting and tagging all fission and budding yeast genes developed using the open-source genome retrieval script (GRS).

    PubMed

    Cummings, Michael T; Joh, Richard I; Motamedi, Mo

    2015-01-01

    The fission (Schizosaccharomyces pombe) and budding (Saccharomyces cerevisiae) yeasts have served as excellent models for many seminal discoveries in eukaryotic biology. In these organisms, genes are deleted or tagged easily by transforming cells with PCR-generated DNA inserts, flanked by short (50-100 bp) regions of gene homology. These PCR reactions use especially designed long primers, which, in addition to the priming sites, carry homology for gene targeting. Primer design follows a fixed method but is tedious and time-consuming especially when done for a large number of genes. To automate this process, we developed the Python-based Genome Retrieval Script (GRS), an easily customizable open-source script for genome analysis. Using GRS, we created PRIMED, the complete PRIMEr D atabase for deleting and C-terminal tagging genes in the main S. pombe and five of the most commonly used S. cerevisiae strains. Because of the importance of noncoding RNAs (ncRNAs) in many biological processes, we also included the deletion primer set for these features in each genome. PRIMED are accurate and comprehensive and are provided as downloadable Excel files, removing the need for future primer design, especially for large-scale functional analyses. Furthermore, the open-source GRS can be used broadly to retrieve genome information from custom or other annotated genomes, thus providing a suitable platform for building other genomic tools by the yeast or other research communities. PMID:25643023

  4. The budding yeast U5 snRNP Prp8 is a highly conserved protein which links RNA splicing with cell cycle progression.

    PubMed Central

    Shea, J E; Toyn, J H; Johnston, L H

    1994-01-01

    The dbf3 mutation was originally obtained in a screen for DNA synthesis mutants with a cell cycle phenotype in the budding yeast Saccharomyces cerevisiae. We have now isolated the DBF3 gene and found it to be an essential gene with an ORF of 7239 nucleotides, potentially encoding a large protein of 268 kDa. We also obtained an allele-specific high copy number suppressor of the dbf3-1 allele, encoded by the known SSB1 gene, a member of the Hsp70 family of heat shock proteins. The sequence of the Dbf3 protein is 58% identical over 2300 amino acid residues to a predicted protein from Caenorhabditis elegans. Furthermore, partial sequences with 61% amino acid sequence identity were deduced from two files of human cDNA in the EST nucleotide database so that Dbf3 is a highly conserved protein. The nucleotide sequence of DBF3 turned out to be identical to the yeast gene PRP8, which encodes a U5 snRNP required for pre-mRNA splicing. This surprising result led us to further characterise the phenotype of dbf3 which confirmed its role in the cell cycle and showed it to function early, around the time of S phase. This data suggests a hitherto unexpected link between pre-mRNA splicing and the cell cycle. Images PMID:7838707

  5. Cloning of a human cDNA encoding a CDC2-related kinase by complementation of a budding yeast cdc28 mutation

    SciTech Connect

    Ninomiya-Tsuji, Jun ); Nomoto, Satoshi; Matsumoto, Kunihiro ); Yasuda, Hideyo ); Reed, S.I. )

    1991-10-15

    The authors have cloned two different human cDNAs that can complement cdc28 mutations of budding yeast Saccharomyces cerevisiae. One corresponds to a gene encoding human p34{sup CDC2} kinase, and the other to a gene (CDK2; cell division kinase) that has not been characterized previously. The CDK2 protein is highly homologous to p34{sup CDC2} kinase and more significantly is homologous to Xenopus Eg1 kinase, suggesting that CDK2 is the human homolog of Eg1. The human CDC2 and CDK2 genes were both able to complement the inviability of a null allele of S. cerevisiae CDC28. This result indicates that the CDK2 protein has a biological activity closely related to the CDC28 and p34{sup CDC2} kinases. However, CDK2 was unable to complement cdc2 mutants in fission yeast Schizosaccharomyces pombe under the condition where the human CDC2 gene could complement them. CDK2 mRNA appeared late in G{sub 1} or in early S phase, slightly before CDC2 mRNA, after growth stimulation in normal human fibroblast cells. These results suggest that in human cells, two different CDC2-like kinases may regulate the cell cycle at distinct stages.

  6. Deletion of a Cys-His motif from the Alpharetrovirus nucleocapsid domain reveals late domain mutant-like budding defects.

    PubMed

    Lee, Eun-Gyung; Linial, Maxine L

    2006-03-30

    The Rous sarcoma virus (RSV) Gag polyprotein is the only protein required for virus assembly and release. We previously found that deletion of either one of the two Cys-His (CH) motifs in the RSV nucleocapsid (NC) protein did not abrogate Gag-Gag interactions, RNA binding, or packaging but greatly reduced virus production (E-G. Lee, A. Alidina et al., J. Virol. 77: 2010-2020, 2003). In this report, we have further investigated the effects of mutations in the CH motifs on virus assembly and release. Precise deletion of either CH motif, without affecting surrounding basic residues, reduced virus production by approximately 10-fold, similar to levels seen for late (L) domain mutants. Strikingly, transmission electron microscopy revealed that virions of both DeltaCH1 and DeltaCH2 mutants were assembled normally at the plasma membrane but were arrested in budding. Virus particles remained tethered to the membrane or to each other, reminiscent of L domain mutants, although the release defect appears to be independent of the L domain functions. Therefore, two CH motifs are likely to be required for budding independent of a requirement for either Gag-Gag interactions or RNA packaging. PMID:16406458

  7. Deletion of a Cys-His motif from the Alpharetrovirus nucleocapsid domain reveals late domain mutant-like budding defects

    SciTech Connect

    Lee, Eun-Gyung; Linial, Maxine L. . E-mail: mlinial@fhcrc.org

    2006-03-30

    The Rous sarcoma virus (RSV) Gag polyprotein is the only protein required for virus assembly and release. We previously found that deletion of either one of the two Cys-His (CH) motifs in the RSV nucleocapsid (NC) protein did not abrogate Gag-Gag interactions, RNA binding, or packaging but greatly reduced virus production (E-G. Lee, A. Alidina et al., J. Virol. 77: 2010-2020, 2003). In this report, we have further investigated the effects of mutations in the CH motifs on virus assembly and release. Precise deletion of either CH motif, without affecting surrounding basic residues, reduced virus production by approximately 10-fold, similar to levels seen for late (L) domain mutants. Strikingly, transmission electron microscopy revealed that virions of both {delta}CH1 and {delta}CH2 mutants were assembled normally at the plasma membrane but were arrested in budding. Virus particles remained tethered to the membrane or to each other, reminiscent of L domain mutants, although the release defect appears to be independent of the L domain functions. Therefore, two CH motifs are likely to be required for budding independent of a requirement for either Gag-Gag interactions or RNA packaging.

  8. Timed deletion of Twist1 in the limb bud reveals age-specific impacts on autopod and zeugopod patterning.

    PubMed

    Loebel, David A F; Hor, Angelyn C C; Bildsoe, Heidi K; Tam, Patrick P L

    2014-01-01

    Twist1 encodes a transcription factor that plays a vital role in limb development. We have used a tamoxifen-inducible Cre transgene, Ubc-CreERT2, to generate time-specific deletions of Twist1 by inducing Cre activity in mouse embryos at different ages from embryonic (E) day 9.5 onwards. A novel forelimb phenotype of supernumerary pre-axial digits and enlargement or partial duplication of the distal radius was observed when Cre activity was induced at E9.5. Gene expression analysis revealed significant upregulation of Hoxd10, Hoxd11 and Grem1 in the anterior half of the forelimb bud at E11.5. There is also localized upregulation of Ptch1, Hand2 and Hoxd13 at the site of ectopic digit formation, indicating a posterior molecular identity for the supernumerary digits. The specific skeletal phenotypes, which include duplication of digits and distal zeugopods but no overt posteriorization, differ from those of other Twist1 conditional knockout mutants. This outcome may be attributed to the deferment of Twist1 ablation to a later time frame of limb morphogenesis, which leads to the ectopic activation of posterior genes in the anterior tissues after the establishment of anterior-posterior anatomical identities in the forelimb bud. PMID:24893291

  9. Off-Target Effects of Psychoactive Drugs Revealed by Genome-Wide Assays in Yeast

    PubMed Central

    Ericson, Elke; Gebbia, Marinella; Heisler, Lawrence E.; Wildenhain, Jan; Tyers, Mike; Giaever, Guri; Nislow, Corey

    2008-01-01

    To better understand off-target effects of widely prescribed psychoactive drugs, we performed a comprehensive series of chemogenomic screens using the budding yeast Saccharomyces cerevisiae as a model system. Because the known human targets of these drugs do not exist in yeast, we could employ the yeast gene deletion collections and parallel fitness profiling to explore potential off-target effects in a genome-wide manner. Among 214 tested, documented psychoactive drugs, we identified 81 compounds that inhibited wild-type yeast growth and were thus selected for genome-wide fitness profiling. Many of these drugs had a propensity to affect multiple cellular functions. The sensitivity profiles of half of the analyzed drugs were enriched for core cellular processes such as secretion, protein folding, RNA processing, and chromatin structure. Interestingly, fluoxetine (Prozac) interfered with establishment of cell polarity, cyproheptadine (Periactin) targeted essential genes with chromatin-remodeling roles, while paroxetine (Paxil) interfered with essential RNA metabolism genes, suggesting potential secondary drug targets. We also found that the more recently developed atypical antipsychotic clozapine (Clozaril) had no fewer off-target effects in yeast than the typical antipsychotics haloperidol (Haldol) and pimozide (Orap). Our results suggest that model organism pharmacogenetic studies provide a rational foundation for understanding the off-target effects of clinically important psychoactive agents and suggest a rational means both for devising compound derivatives with fewer side effects and for tailoring drug treatment to individual patient genotypes. PMID:18688276

  10. A Method for Sporulating Budding Yeast Cells That Allows for Unbiased Identification of Kinase Substrates Using Stable Isotope Labeling by Amino Acids in Cell Culture

    PubMed Central

    Suhandynata, Ray; Liang, Jason; Albuquerque, Claudio. P.; Zhou, Huilin; Hollingsworth, Nancy M.

    2014-01-01

    Quantitative proteomics has been widely used to elucidate many cellular processes. In particular, stable isotope labeling by amino acids in cell culture (SILAC) has been instrumental in improving the quality of data generated from quantitative high-throughput proteomic studies. SILAC uses the cell’s natural metabolic pathways to label proteins with isotopically heavy amino acids. Incorporation of these heavy amino acids effectively labels a cell’s proteome, allowing the comparison of cell cultures treated under different conditions. SILAC has been successfully applied to a variety of model organisms including yeast, fruit flies, plants, and mice to look for kinase substrates as well as protein–protein interactions. In budding yeast, several kinases are known to play critical roles in different aspects of meiosis. Therefore, the use of SILAC to identify potential kinase substrates would be helpful in the understanding the specific mechanisms by which these kinases act. Previously, it has not been possible to use SILAC to quantitatively study the phosphoproteome of meiotic Saccharomyces cerevisiae cells, because yeast cells sporulate inefficiently after pregrowth in standard synthetic medium. In this study we report the development of a synthetic, SILAC-compatible, pre-sporulation medium (RPS) that allows for efficient sporulation of S. cerevisiae SK1 diploids. Pre-growth in RPS supplemented with heavy amino acids efficiently labels the proteome, after which cells proceed relatively synchronously through meiosis, producing highly viable spores. As proof of principle, SILAC experiments were able to identify known targets of the meiosis-specific kinase Mek1. PMID:25168012

  11. Yeast studies reveal moonlighting functions of the ancient actin cytoskeleton.

    PubMed

    Sattlegger, Evelyn; Chernova, Tatiana A; Gogoi, Neeku M; Pillai, Indu V; Chernoff, Yury O; Munn, Alan L

    2014-08-01

    Classic functions of the actin cytoskeleton include control of cell size and shape and the internal organization of cells. These functions are manifest in cellular processes of fundamental importance throughout biology such as the generation of cell polarity, cell migration, cell adhesion, and cell division. However, studies in the unicellular model eukaryote Saccharomyces cerevisiae (Baker's yeast) are giving insights into other functions in which the actin cytoskeleton plays a critical role. These include endocytosis, control of protein translation, and determination of protein 3-dimensional shape (especially conversion of normal cellular proteins into prions). Here, we present a concise overview of these new "moonlighting" roles for the actin cytoskeleton and how some of these roles might lie at the heart of important molecular switches. This is an exciting time for researchers interested in the actin cytoskeleton. We show here how studies of actin are leading us into many new and exciting realms at the interface of genetics, biochemistry, and cell biology. While many of the pioneering studies have been conducted using yeast, the conservation of the actin cytoskeleton and its component proteins throughout eukaryotes suggests that these new roles for the actin cytoskeleton may not be restricted to yeast cells but rather may reflect new roles for the actin cytoskeleton of all eukaryotes. PMID:25138357

  12. Yeast studies reveal moonlighting functions of the ancient actin cytoskeleton

    PubMed Central

    Sattlegger, Evelyn; Chernova, Tatiana A.; Gogoi, Neeku M.; Pillai, Indu V.; Chernoff, Yury O.; Munn, Alan L.

    2014-01-01

    Classic functions of the actin cytoskeleton include control of cell size and shape and the internal organisation of cells. These functions are manifest in cellular processes of fundamental importance throughout biology such as the generation of cell polarity, cell migration, cell adhesion and cell division. However, studies in the unicellular model eukaryote Saccharomyces cerevisiae (Baker's yeast) are giving insights into other functions in which the actin cytoskeleton plays a critical role. These include endocytosis, control of protein translation and determination of protein 3-dimensional shape (especially conversion of normal cellular proteins into prions). Here we present a concise overview of these new "moonlighting" roles for the actin cytoskeleton and how some of these roles might lie at the heart of important molecular switches. This is an exciting time for researchers interested in the actin cytoskeleton. We show here how studies of actin are leading us into many new and exciting realms at the interface of genetics, biochemistry and cell biology. While many of the pioneering studies have been conducted using yeast, the conservation of the actin cytoskeleton and its component proteins throughout eukaryotes suggests that these new roles for the actin cytoskeleton may not be restricted to yeast cells but rather may reflect new roles for the actin cytoskeleton of all eukaryotes. PMID:25138357

  13. Fluorescence Recovery After Photo-Bleaching (FRAP) and Fluorescence Loss in Photo-Bleaching (FLIP) Experiments to Study Protein Dynamics During Budding Yeast Cell Division.

    PubMed

    Bolognesi, Alessio; Sliwa-Gonzalez, Andrzej; Prasad, Rupali; Barral, Yves

    2016-01-01

    The easiness of tagging any protein of interest with a fluorescent marker together with the advance of fluorescence microscopy techniques enable researchers to study in great detail the dynamic behavior of proteins both in time and space in living cells. Two commonly used techniques are FRAP (Fluorescent Recovery After Photo-bleaching) and FLIP (Fluorescence Loss In Photo-bleaching). Upon single bleaching (FRAP) or constant bleaching (FLIP) of the fluorescent signal in a specific area of the cell, the intensity of the fluorophore is monitored over time in the bleached area and in surrounding regions; information is then derived about the diffusion speed of the tagged molecule, the amount of mobile versus immobile molecules as well as the kinetics with which they exchange between different parts of the cell. Thereby, FRAP and FLIP are very informative about the kinetics with which the different organelles of the cell separate into mother- and daughter-specific compartments during cell division. Here, we describe protocols for both FRAP and FLIP and explain how they can be used to study protein dynamics during cell division in the budding yeast Saccharomyces cerevisiae. These techniques are easily adaptable to other model organisms. PMID:26519303

  14. PP2ACdc55’s role in reductional chromosome segregation during achiasmate meiosis in budding yeast is independent of its FEAR function

    PubMed Central

    Kerr, Gary W.; Wong, Jin Huei; Arumugam, Prakash

    2016-01-01

    PP2ACdc55 is a highly conserved serine-threonine protein phosphatase that is involved in diverse cellular processes. In budding yeast, meiotic cells lacking PP2ACdc55 activity undergo a premature exit from meiosis I which results in a failure to form bipolar spindles and divide nuclei. This defect is largely due to its role in negatively regulating the Cdc Fourteen Early Anaphase Release (FEAR) pathway. PP2ACdc55 prevents nucleolar release of the Cdk (Cyclin-dependent kinase)-antagonising phosphatase Cdc14 by counteracting phosphorylation of the nucleolar protein Net1 by Cdk. CDC55 was identified in a genetic screen for monopolins performed by isolating suppressors of spo11Δ spo12Δ lethality suggesting that Cdc55 might have a role in meiotic chromosome segregation. We investigated this possibility by isolating cdc55 alleles that suppress spo11Δ spo12Δ lethality and show that this suppression is independent of PP2ACdc55’s FEAR function. Although the suppressor mutations in cdc55 affect reductional chromosome segregation in the absence of recombination, they have no effect on chromosome segregation during wild type meiosis. We suggest that Cdc55 is required for reductional chromosome segregation during achiasmate meiosis and this is independent of its FEAR function. PMID:27455870

  15. PP2A(Cdc55)'s role in reductional chromosome segregation during achiasmate meiosis in budding yeast is independent of its FEAR function.

    PubMed

    Kerr, Gary W; Wong, Jin Huei; Arumugam, Prakash

    2016-01-01

    PP2A(Cdc55) is a highly conserved serine-threonine protein phosphatase that is involved in diverse cellular processes. In budding yeast, meiotic cells lacking PP2A(Cdc55) activity undergo a premature exit from meiosis I which results in a failure to form bipolar spindles and divide nuclei. This defect is largely due to its role in negatively regulating the Cdc Fourteen Early Anaphase Release (FEAR) pathway. PP2A(Cdc55) prevents nucleolar release of the Cdk (Cyclin-dependent kinase)-antagonising phosphatase Cdc14 by counteracting phosphorylation of the nucleolar protein Net1 by Cdk. CDC55 was identified in a genetic screen for monopolins performed by isolating suppressors of spo11Δ spo12Δ lethality suggesting that Cdc55 might have a role in meiotic chromosome segregation. We investigated this possibility by isolating cdc55 alleles that suppress spo11Δ spo12Δ lethality and show that this suppression is independent of PP2A(Cdc55)'s FEAR function. Although the suppressor mutations in cdc55 affect reductional chromosome segregation in the absence of recombination, they have no effect on chromosome segregation during wild type meiosis. We suggest that Cdc55 is required for reductional chromosome segregation during achiasmate meiosis and this is independent of its FEAR function. PMID:27455870

  16. Membrane bioreactor wastewater treatment plants reveal diverse yeast and protist communities of potential significance in biofouling.

    PubMed

    Liébana, Raquel; Arregui, Lucía; Belda, Ignacio; Gamella, Luis; Santos, Antonio; Marquina, Domingo; Serrano, Susana

    2015-01-01

    The yeast community was studied in a municipal full-scale membrane bioreactor wastewater treatment plant (MBR-WWTP). The unexpectedly high diversity of yeasts indicated that the activated sludge formed a suitable environment for them to proliferate, with cellular concentrations of 2.2 ± 0.8 × 10(3) CFU ml(-1). Sixteen species of seven genera were present in the biological reactor, with Ascomycetes being the most prevalent group (93%). Most isolates were able to grow in a synthetic wastewater medium, adhere to polyethylene surfaces, and develop biofilms of variable complexity. The relationship between yeast populations and the protists in the MBR-WWTP was also studied, revealing that some protist species preyed on and ingested yeasts. These results suggest that yeast populations may play a role in the food web of a WWTP and, to some extent, contribute to membrane biofouling in MBR systems. PMID:25588128

  17. Mps1 and Ipl1/Aurora B Act Sequentially to Correctly Orient Chromosomes on the Meiotic Spindle of Budding Yeast

    PubMed Central

    Meyer, Régis E.; Kim, Seoyoung; Obeso, David; Straight, Paul D.; Winey, Mark; Dawson, Dean S.

    2013-01-01

    The conserved kinases Mps1 and Ipl1/Aurora B are critical for enabling chromosomes to attach to microtubules such that partner chromosomes will be segregated correctly from each other, but the precise roles of these kinases have been unclear. Here, imaging of live yeast cells was performed to elucidate the stages of chromosome-microtubule interactions, and their regulation by Ipl1 and Mps1, through meiosis I. Ipl1 was found to release kinetochore-microtubule (kMT) associations following meiotic entry, liberating chromosomes to begin homologous pairing. Surprisingly, most chromosome pairs were found to begin their spindle interactions with incorrect kMT attachments. Ipl1 released these improper connections while Mps1 triggered the formation of new force-generating microtubule attachments. This microtubule release and reattachment cycle can prevent catastrophic chromosome segregation errors in meiosis. PMID:23371552

  18. Detection of Multiple Budding Yeast Cells and a Partial Sequence of 43-kDa Glycoprotein Coding Gene of Paracoccidioides brasiliensis from a Case of Lacaziosis in a Female Pacific White-Sided Dolphin (Lagenorhynchus obliquidens).

    PubMed

    Minakawa, Tomoko; Ueda, Keiichi; Tanaka, Miyuu; Tanaka, Natsuki; Kuwamura, Mitsuru; Izawa, Takeshi; Konno, Toshihiro; Yamate, Jyoji; Itano, Eiko Nakagawa; Sano, Ayako; Wada, Shinpei

    2016-08-01

    Lacaziosis, formerly called as lobomycosis, is a zoonotic mycosis, caused by Lacazia loboi, found in humans and dolphins, and is endemic in the countries on the Atlantic Ocean, Indian Ocean and Pacific Ocean of Japanese coast. Susceptible Cetacean species include the bottlenose dolphin (Tursiops truncatus), the Indian Ocean bottlenose dolphin (T. aduncus), and the estuarine dolphin (Sotalia guianensis); however, no cases have been recorded in other Cetacean species. We diagnosed a case of Lacaziosis in a Pacific white-sided dolphin (Lagenorhynchus obliquidens) nursing in an aquarium in Japan. The dolphin was a female estimated to be more than 14 years old at the end of June 2015 and was captured in a coast of Japan Sea in 2001. Multiple, lobose, and solid granulomatous lesions with or without ulcers appeared on her jaw, back, flipper and fluke skin, in July 2014. The granulomatous skin lesions from the present case were similar to those of our previous cases. Multiple budding and chains of round yeast cells were detected in the biopsied samples. The partial sequence of 43-kDa glycoprotein coding gene confirmed by a nested PCR and sequencing, which revealed a different genotype from both Amazonian and Japanese lacaziosis in bottlenose dolphins, and was 99 % identical to those derived from Paracoccidioides brasiliensis; a sister fungal species to L. loboi. This is the first case of lacaziosis in Pacific white-sided dolphin. PMID:26883513

  19. Divergent Evolution of the Transcriptional Network Controlled by Snf1-Interacting Protein Sip4 in Budding Yeasts.

    PubMed

    Mehlgarten, Constance; Krijger, Jorrit-Jan; Lemnian, Ioana; Gohr, André; Kasper, Lydia; Diesing, Anne-Kathrin; Grosse, Ivo; Breunig, Karin D

    2015-01-01

    Cellular responses to starvation are of ancient origin since nutrient limitation has always been a common challenge to the stability of living systems. Hence, signaling molecules involved in sensing or transducing information about limiting metabolites are highly conserved, whereas transcription factors and the genes they regulate have diverged. In eukaryotes the AMP-activated protein kinase (AMPK) functions as a central regulator of cellular energy homeostasis. The yeast AMPK ortholog SNF1 controls the transcriptional network that counteracts carbon starvation conditions by regulating a set of transcription factors. Among those Cat8 and Sip4 have overlapping DNA-binding specificity for so-called carbon source responsive elements and induce target genes upon SNF1 activation. To analyze the evolution of the Cat8-Sip4 controlled transcriptional network we have compared the response to carbon limitation of Saccharomyces cerevisiae to that of Kluyveromyces lactis. In high glucose, S. cerevisiae displays tumor cell-like aerobic fermentation and repression of respiration (Crabtree-positive) while K. lactis has a respiratory-fermentative life-style, respiration being regulated by oxygen availability (Crabtree-negative), which is typical for many yeasts and for differentiated higher cells. We demonstrate divergent evolution of the Cat8-Sip4 network and present evidence that a role of Sip4 in controlling anabolic metabolism has been lost in the Saccharomyces lineage. We find that in K. lactis, but not in S. cerevisiae, the Sip4 protein plays an essential role in C2 carbon assimilation including induction of the glyoxylate cycle and the carnitine shuttle genes. Induction of KlSIP4 gene expression by KlCat8 is essential under these growth conditions and a primary function of KlCat8. Both KlCat8 and KlSip4 are involved in the regulation of lactose metabolism in K. lactis. In chromatin-immunoprecipitation experiments we demonstrate binding of both, KlSip4 and KlCat8, to

  20. Divergent Evolution of the Transcriptional Network Controlled by Snf1-Interacting Protein Sip4 in Budding Yeasts

    PubMed Central

    Mehlgarten, Constance; Krijger, Jorrit-Jan; Lemnian, Ioana; Gohr, André; Kasper, Lydia; Diesing, Anne-Kathrin; Grosse, Ivo; Breunig, Karin D.

    2015-01-01

    Cellular responses to starvation are of ancient origin since nutrient limitation has always been a common challenge to the stability of living systems. Hence, signaling molecules involved in sensing or transducing information about limiting metabolites are highly conserved, whereas transcription factors and the genes they regulate have diverged. In eukaryotes the AMP-activated protein kinase (AMPK) functions as a central regulator of cellular energy homeostasis. The yeast AMPK ortholog SNF1 controls the transcriptional network that counteracts carbon starvation conditions by regulating a set of transcription factors. Among those Cat8 and Sip4 have overlapping DNA-binding specificity for so-called carbon source responsive elements and induce target genes upon SNF1 activation. To analyze the evolution of the Cat8-Sip4 controlled transcriptional network we have compared the response to carbon limitation of Saccharomyces cerevisiae to that of Kluyveromyces lactis. In high glucose, S. cerevisiae displays tumor cell-like aerobic fermentation and repression of respiration (Crabtree-positive) while K. lactis has a respiratory-fermentative life-style, respiration being regulated by oxygen availability (Crabtree-negative), which is typical for many yeasts and for differentiated higher cells. We demonstrate divergent evolution of the Cat8-Sip4 network and present evidence that a role of Sip4 in controlling anabolic metabolism has been lost in the Saccharomyces lineage. We find that in K. lactis, but not in S. cerevisiae, the Sip4 protein plays an essential role in C2 carbon assimilation including induction of the glyoxylate cycle and the carnitine shuttle genes. Induction of KlSIP4 gene expression by KlCat8 is essential under these growth conditions and a primary function of KlCat8. Both KlCat8 and KlSip4 are involved in the regulation of lactose metabolism in K. lactis. In chromatin-immunoprecipitation experiments we demonstrate binding of both, KlSip4 and KlCat8, to

  1. Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae.

    PubMed Central

    Kron, S J; Styles, C A; Fink, G R

    1994-01-01

    Laboratory strains of Saccharomyces cerevisiae are dimorphic; in response to nitrogen starvation they switch from a yeast form (YF) to a filamentous pseudohyphal (PH) form. Time-lapse video microscopy of dividing cells reveals that YF and PH cells differ in their cell cycles and budding polarity. The YF cell cycle is controlled at the G1/S transition by the cell-size checkpoint Start. YF cells divide asymmetrically, producing small daughters from full-sized mothers. As a result, mothers and daughters bud asynchronously. Mothers bud immediately but daughters grow in G1 until they achieve a critical cell size. By contrast, PH cells divide symmetrically, restricting mitosis until the bud grows to the size of the mother. Thus, mother and daughter bud synchronously in the next cycle, without a G1 delay before Start. YF and PH cells also exhibit distinct bud-site selection patterns. YF cells are bipolar, producing their second and subsequent buds at either pole. PH cells are unipolar, producing their second and subsequent buds only from the end opposite the junction with their mother. We propose that in PH cells a G2 cell-size checkpoint delays mitosis until bud size reaches that of the mother cell. We conclude that yeast and PH forms are distinct cell types each with a unique cell cycle, budding pattern, and cell shape. Images PMID:7841518

  2. Important role of catalase in the cellular response of the budding yeast Saccharomyces cerevisiae exposed to ionizing radiation.

    PubMed

    Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2015-03-01

    Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation. PMID:25416226

  3. High-resolution statistical mapping reveals gene territories in live yeast.

    PubMed

    Berger, Axel B; Cabal, Ghislain G; Fabre, Emmanuelle; Duong, Tarn; Buc, Henri; Nehrbass, Ulf; Olivo-Marin, Jean-Christophe; Gadal, Olivier; Zimmer, Christophe

    2008-12-01

    The nonrandom positioning of genes inside eukaryotic cell nuclei is implicated in central nuclear functions. However, the spatial organization of the genome remains largely uncharted, owing to limited resolution of optical microscopy, paucity of nuclear landmarks and moderate cell sampling. We developed a computational imaging approach that creates high-resolution probabilistic maps of subnuclear domains occupied by individual loci in budding yeast through automated analysis of thousands of living cells. After validation, we applied the technique to genes involved in galactose metabolism and ribosome biogenesis. We found that genomic loci are confined to 'gene territories' much smaller than the nucleus, which can be remodeled during transcriptional activation, and that the nucleolus is an important landmark for gene positioning. The technique can be used to visualize and quantify territory positions relative to each other and to nuclear landmarks, and should advance studies of nuclear architecture and function. PMID:18978785

  4. Control of Polarized Growth by the Rho Family GTPase Rho4 in Budding Yeast: Requirement of the N-Terminal Extension of Rho4 and Regulation by the Rho GTPase-Activating Protein Bem2

    PubMed Central

    Gong, Ting; Liao, Yuan; He, Fei; Yang, Yang; Yang, Dan-Dan; Chen, Xiang-Dong

    2013-01-01

    In the budding yeast Saccharomyces cerevisiae, Rho4 GTPase partially plays a redundant role with Rho3 in the control of polarized growth, as deletion of RHO4 and RHO3 together, but not RHO4 alone, caused lethality and a loss of cell polarity at 30°C. Here, we show that overexpression of the constitutively active rho4Q131L mutant in an rdi1Δ strain caused a severe growth defect and generated large, round, unbudded cells, suggesting that an excess of Rho4 activity could block bud emergence. We also generated four temperature-sensitive rho4-Ts alleles in a rho3Δ rho4Δ strain. These mutants showed growth and morphological defects at 37°C. Interestingly, two rho4-Ts alleles contain mutations that cause amino acid substitutions in the N-terminal region of Rho4. Rho4 possesses a long N-terminal extension that is unique among the six Rho GTPases in the budding yeast but is common in Rho4 homologs in other yeasts and filamentous fungi. We show that the N-terminal extension plays an important role in Rho4 function since rho3Δ rho4Δ61 cells expressing truncated Rho4 lacking amino acids (aa) 1 to 61 exhibited morphological defects at 24°C and a growth defect at 37°C. Furthermore, we show that Rho4 interacts with Bem2, a Rho GTPase-activating protein (RhoGAP) for Cdc42 and Rho1, by yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and glutathione S-transferase (GST) pulldown assays. Bem2 specifically interacts with the GTP-bound form of Rho4, and the interaction is mediated by its RhoGAP domain. Overexpression of BEM2 aggravates the defects of rho3Δ rho4 mutants. These results suggest that Bem2 might be a novel GAP for Rho4. PMID:23264647

  5. The budding yeast Cdc48(Shp1) complex promotes cell cycle progression by positive regulation of protein phosphatase 1 (Glc7).

    PubMed

    Böhm, Stefanie; Buchberger, Alexander

    2013-01-01

    The conserved, ubiquitin-selective AAA ATPase Cdc48 regulates numerous cellular processes including protein quality control, DNA repair and the cell cycle. Cdc48 function is tightly controlled by a multitude of cofactors mediating substrate specificity and processing. The UBX domain protein Shp1 is a bona fide substrate-recruiting cofactor of Cdc48 in the budding yeast S. cerevisiae. Even though Shp1 has been proposed to be a positive regulator of Glc7, the catalytic subunit of protein phosphatase 1 in S. cerevisiae, its cellular functions in complex with Cdc48 remain largely unknown. Here we show that deletion of the SHP1 gene results in severe growth defects and a cell cycle delay at the metaphase to anaphase transition caused by reduced Glc7 activity. Using an engineered Cdc48 binding-deficient variant of Shp1, we establish the Cdc48(Shp1) complex as a critical regulator of mitotic Glc7 activity. We demonstrate that shp1 mutants possess a perturbed balance of Glc7 phosphatase and Ipl1 (Aurora B) kinase activities and show that hyper-phosphorylation of the kinetochore protein Dam1, a key mitotic substrate of Glc7 and Ipl1, is a critical defect in shp1. We also show for the first time a physical interaction between Glc7 and Shp1 in vivo. Whereas loss of Shp1 does not significantly affect Glc7 protein levels or localization, it causes reduced binding of the activator protein Glc8 to Glc7. Our data suggest that the Cdc48(Shp1) complex controls Glc7 activity by regulating its interaction with Glc8 and possibly further regulatory subunits. PMID:23418575

  6. Fluorescent Labeling of Yeast Cell Wall Components.

    PubMed

    Okada, Hiroki; Ohya, Yoshikazu

    2016-01-01

    Yeast cells stained with a fluorescent dye that specifically binds to one of the cell wall components can be observed under a fluorescent microscope. Visualization of the components 1,3-β-glucan, mannoproteins, and/or chitin not only provides information concerning the cell wall, but also reveals clues about various cellular activities such as cell polarity, vesicular transport, establishment of budding pattern, apical and isotropic bud growth, and replicative cell age. This protocol describes a standard method for visualizing different components of the yeast cell wall. PMID:27480714

  7. Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data

    PubMed Central

    Okada, Hiroki; Ohnuki, Shinsuke; Roncero, Cesar; Konopka, James B.; Ohya, Yoshikazu

    2014-01-01

    The cell wall of budding yeast is a rigid structure composed of multiple components. To thoroughly understand its involvement in morphogenesis, we used the image analysis software CalMorph to quantitatively analyze cell morphology after treatment with drugs that inhibit different processes during cell wall synthesis. Cells treated with cell wall–affecting drugs exhibited broader necks and increased morphological variation. Tunicamycin, which inhibits the initial step of N-glycosylation of cell wall mannoproteins, induced morphologies similar to those of strains defective in α-mannosylation. The chitin synthase inhibitor nikkomycin Z induced morphological changes similar to those of mutants defective in chitin transglycosylase, possibly due to the critical role of chitin in anchoring the β-glucan network. To define the mode of action of echinocandin B, a 1,3-β-glucan synthase inhibitor, we compared the morphology it induced with mutants of Fks1 that contains the catalytic domain for 1,3-β-glucan synthesis. Echinocandin B exerted morphological effects similar to those observed in some fks1 mutants, with defects in cell polarity and reduced glucan synthesis activity, suggesting that echinocandin B affects not only 1,3-β-glucan synthesis, but also another functional domain. Thus our multivariate analyses reveal discrete functions of cell wall components and increase our understanding of the pharmacology of antifungal drugs. PMID:24258022

  8. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals “aging factors” and mechanism of lifespan asymmetry

    PubMed Central

    Yang, Jing; McCormick, Mark A.; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K.; Li, Hao

    2015-01-01

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials (“aging factors”) through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms. PMID:26351681

  9. A pharmaco-epistasis strategy reveals a new cell size controlling pathway in yeast

    PubMed Central

    Moretto, Fabien; Sagot, Isabelle; Daignan-Fornier, Bertrand; Pinson, Benoît

    2013-01-01

    Cell size is a complex quantitative trait resulting from interactions between intricate genetic networks and environmental conditions. Here, taking advantage of previous studies that uncovered hundreds of genes affecting budding yeast cell size homeostasis, we performed a wide pharmaco-epistasis analysis using drugs mimicking cell size mutations. Simple epistasis relationship emerging from this approach allowed us to characterize a new cell size homeostasis pathway comprising the sirtuin Sir2, downstream effectors including the large ribosomal subunit (60S) and the transcriptional regulators Swi4 and Swi6. We showed that this Sir2/60S signaling route acts independently of other previously described cell size controlling pathways and may integrate the metabolic status of the cell through NAD+ intracellular concentration. Finally, although Sir2 and the 60S subunits regulate both cell size and replicative aging, we found that there is no clear causal relationship between these two complex traits. This study sheds light on a pathway of >50 genes and illustrates how pharmaco-epistasis applied to yeast offers a potent experimental framework to explore complex genotype/phenotype relationships. PMID:24217298

  10. Papulacandin B resistance in budding and fission yeasts: isolation and characterization of a gene involved in (1,3)beta-D-glucan synthesis in Saccharomyces cerevisiae.

    PubMed Central

    Castro, C; Ribas, J C; Valdivieso, M H; Varona, R; del Rey, F; Duran, A

    1995-01-01

    Papulacandin B, an antifungal agent that interferes with the synthesis of yeast cell wall (1,3)beta-D-glucan, was used to isolate resistant mutants in Schizosaccharomyces pombe and Saccharomyces cerevisiae. The resistance to papulacandin B always segregated as a recessive character that defines a single complementation group in both yeasts (pbr1+ and PBR1, respectively). Determination of several kinetic parameters of (1,3)beta-D-glucan synthase activity revealed no differences between S. pombe wild-type and pbr1 mutant strains except in the 50% inhibitory concentration for papulacandin B of the synthases (about a 50-fold increase in mutant activity). Inactivation of the synthase activity of both yeasts after in vivo treatment with the antifungal agent showed that mutant synthases were more resistant than the corresponding wild-type ones. Detergent dissociation of the S. pombe synthase into soluble and particulate fractions and subsequent reconstitution indicated that the resistance character of pbr1 mutants resides in the particulate fraction of the enzyme. Cloning and sequencing of PBR1 from S. cerevisiae revealed a gene identical to others recently reported (FKS1, ETG1, CWH53, and CND1). Its disruption leads to reduced levels of both (1,3)beta-D-glucan synthase activity and the alkali-insoluble cell wall fraction. Transformants containing the PBR1 gene reverse the defect in (1,3)beta-D-glucan synthase. It is concluded that Pbr1p is probably part of the (1,3)beta-D-glucan synthase complex. PMID:7592316

  11. Arenavirus Budding

    PubMed Central

    Urata, Shuzo; de la Torre, Juan Carlos

    2011-01-01

    Several arenaviruses cause hemorrhagic fever disease in humans and pose a significant public health concern in their endemic regions. On the other hand, the prototypic arenavirus LCMV is a superb workhorse for the investigation of virus-host interactions and associated disease. The arenavirus small RING finger protein called Z has been shown to be the main driving force of virus budding. The budding activity of Z is mediated by late (L) domain motifs, PT/SAP, and PPXY, located at the C-terminus of Z. This paper will present the current knowledge on arenavirus budding including the diversity of L domain motifs used by different arenaviruses. We will also discuss how improved knowledge of arenavirus budding may facilitate the development of novel antiviral strategies to combat human pathogenic arenaviruses. PMID:22312335

  12. Bud-Neck Scaffolding as a Possible Driving Force in ESCRT-Induced Membrane Budding

    PubMed Central

    Mercker, Moritz; Marciniak-Czochra, Anna

    2015-01-01

    Membrane budding is essential for processes such as protein sorting and transport. Recent experimental results with ESCRT proteins reveal a novel budding mechanism, with proteins emerging in bud necks but separated from the entire bud surface. Using an elastic model, we show that ESCRT protein shapes are sufficient to spontaneously create experimentally observed structures, with protein-membrane interactions leading to protein scaffolds in bud-neck regions. Furthermore, the model reproduces experimentally observed budding directions and bud sizes. Finally, our results reveal that membrane-mediated sorting has the capability of creating structures more complicated than previously assumed. PMID:25692588

  13. Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: An integration of 2D DIGE, quantitative proteomics, and bioinformatics.

    PubMed

    Boone, Cory H T; Grove, Ryan A; Adamcova, Dana; Braga, Camila P; Adamec, Jiri

    2016-07-01

    Clinical usage of lidocaine, a pro-oxidant has been linked with severe, mostly neurological complications. The mechanism(s) causing these complications is independent of the blockade of voltage-gated sodium channels. The budding yeast Saccharomyces cerevisiae lacks voltage-gated sodium channels, thus provides an ideal system to investigate lidocaine-induced protein and pathway alterations. Whole-proteome alterations leading to these complications have not been identified. To address this, S. cerevisiae was grown to stationary phase and exposed to an LC50 dose of lidocaine. The differential proteomes of lidocaine treatment and control were resolved 6 h post exposure using 2D DIGE. Amine reactive dyes and carbonyl reactive dyes were used to assess protein abundance and protein oxidation, respectively. Quantitative analysis of these dyes (⩾ 1.5-fold alteration, p ⩽ 0.05) revealed a total of 33 proteoforms identified by MS differing in abundance and/or oxidation upon lidocaine exposure. Network analysis showed enrichment of apoptotic proteins and cell wall maintenance proteins, while the abundance of proteins central to carbohydrate metabolism, such as triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase, and redox proteins superoxide dismutase and peroxiredoxin were significantly decreased. Enzymes of carbohydrate metabolism, such as phosphoglycerate kinase and enolase, the TCA cycle enzyme aconitase, and multiple ATP synthase subunits were found to be oxidatively modified. Also, the activity of aconitase was found to be decreased. Overall, these data suggest that toxic doses of lidocaine induce significant disruption of glycolytic pathways, energy production, and redox balance, potentially leading to cell malfunction and death. PMID:27193513

  14. Phosphoproteomic analyses reveal novel cross-modulation mechanisms between two signaling pathways in yeast.

    PubMed

    Vaga, Stefania; Bernardo-Faura, Marti; Cokelaer, Thomas; Maiolica, Alessio; Barnes, Christopher A; Gillet, Ludovic C; Hegemann, Björn; van Drogen, Frank; Sharifian, Hoda; Klipp, Edda; Peter, Matthias; Saez-Rodriguez, Julio; Aebersold, Ruedi

    2014-01-01

    Cells respond to environmental stimuli via specialized signaling pathways. Concurrent stimuli trigger multiple pathways that integrate information, predominantly via protein phosphorylation. Budding yeast responds to NaCl and pheromone via two mitogen-activated protein kinase cascades, the high osmolarity, and the mating pathways, respectively. To investigate signal integration between these pathways, we quantified the time-resolved phosphorylation site dynamics after pathway co-stimulation. Using shotgun mass spectrometry, we quantified 2,536 phosphopeptides across 36 conditions. Our data indicate that NaCl and pheromone affect phosphorylation events within both pathways, which thus affect each other at more levels than anticipated, allowing for information exchange and signal integration. We observed a pheromone-induced down-regulation of Hog1 phosphorylation due to Gpd1, Ste20, Ptp2, Pbs2, and Ptc1. Distinct Ste20 and Pbs2 phosphosites responded differently to the two stimuli, suggesting these proteins as key mediators of the information exchange. A set of logic models was then used to assess the role of measured phosphopeptides in the crosstalk. Our results show that the integration of the response to different stimuli requires complex interconnections between signaling pathways. PMID:25492886

  15. Phosphoproteomic analyses reveal novel cross-modulation mechanisms between two signaling pathways in yeast

    PubMed Central

    Vaga, Stefania; Bernardo-Faura, Marti; Cokelaer, Thomas; Maiolica, Alessio; Barnes, Christopher A; Gillet, Ludovic C; Hegemann, Björn; van Drogen, Frank; Sharifian, Hoda; Klipp, Edda; Peter, Matthias; Saez-Rodriguez, Julio; Aebersold, Ruedi

    2014-01-01

    Cells respond to environmental stimuli via specialized signaling pathways. Concurrent stimuli trigger multiple pathways that integrate information, predominantly via protein phosphorylation. Budding yeast responds to NaCl and pheromone via two mitogen-activated protein kinase cascades, the high osmolarity, and the mating pathways, respectively. To investigate signal integration between these pathways, we quantified the time-resolved phosphorylation site dynamics after pathway co-stimulation. Using shotgun mass spectrometry, we quantified 2,536 phosphopeptides across 36 conditions. Our data indicate that NaCl and pheromone affect phosphorylation events within both pathways, which thus affect each other at more levels than anticipated, allowing for information exchange and signal integration. We observed a pheromone-induced down-regulation of Hog1 phosphorylation due to Gpd1, Ste20, Ptp2, Pbs2, and Ptc1. Distinct Ste20 and Pbs2 phosphosites responded differently to the two stimuli, suggesting these proteins as key mediators of the information exchange. A set of logic models was then used to assess the role of measured phosphopeptides in the crosstalk. Our results show that the integration of the response to different stimuli requires complex interconnections between signaling pathways. PMID:25492886

  16. Xbp1 Directs Global Repression of Budding Yeast Transcription during the Transition to Quiescence and Is Important for the Longevity and Reversibility of the Quiescent State

    PubMed Central

    Miles, Shawna; Li, Lihong; Davison, Jerry; Breeden, Linda L.

    2013-01-01

    Pure populations of quiescent yeast can be obtained from stationary phase cultures that have ceased proliferation after exhausting glucose and other carbon sources from their environment. They are uniformly arrested in the G1 phase of the cell cycle, and display very high thermo-tolerance and longevity. We find that G1 arrest is initiated before all the glucose has been scavenged from the media. Maintaining G1 arrest requires transcriptional repression of the G1 cyclin, CLN3, by Xbp1. Xbp1 is induced as glucose is depleted and it is among the most abundant transcripts in quiescent cells. Xbp1 binds and represses CLN3 transcription and in the absence of Xbp1, or with extra copies of CLN3, cells undergo ectopic divisions and produce very small cells. The Rad53-mediated replication stress checkpoint reinforces the arrest and becomes essential when Cln3 is overproduced. The XBP1 transcript also undergoes metabolic oscillations under glucose limitation and we identified many additional transcripts that oscillate out of phase with XBP1 and have Xbp1 binding sites in their promoters. Further global analysis revealed that Xbp1 represses 15% of all yeast genes as they enter the quiescent state and over 500 of these transcripts contain Xbp1 binding sites in their promoters. Xbp1-repressed transcripts are highly enriched for genes involved in the regulation of cell growth, cell division and metabolism. Failure to repress some or all of these targets leads xbp1 cells to enter a permanent arrest or senescence with a shortened lifespan. PMID:24204289

  17. Structural and functional studies of Bud23–Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes

    PubMed Central

    Létoquart, Juliette; Huvelle, Emmeline; Wacheul, Ludivine; Bourgeois, Gabrielle; Zorbas, Christiane; Graille, Marc; Heurgué-Hamard, Valérie; Lafontaine, Denis L. J.

    2014-01-01

    The eukaryotic small ribosomal subunit carries only four ribosomal (r) RNA methylated bases, all close to important functional sites. N7-methylguanosine (m7G) introduced at position 1575 on 18S rRNA by Bud23–Trm112 is at a ridge forming a steric block between P- and E-site tRNAs. Here we report atomic resolution structures of Bud23–Trm112 in the apo and S-adenosyl-l-methionine (SAM)-bound forms. Bud23 and Trm112 interact through formation of a β-zipper involving main-chain atoms, burying an important hydrophobic surface and stabilizing the complex. The structures revealed that the coactivator Trm112 undergoes an induced fit to accommodate its methyltransferase (MTase) partner. We report important structural similarity between the active sites of Bud23 and Coffea canephora xanthosine MTase, leading us to propose and validate experimentally a model for G1575 coordination. We identify Bud23 residues important for Bud23–Trm112 complex formation and recruitment to pre-ribosomes. We report that though Bud23–Trm112 binds precursor ribosomes at an early nucleolar stage, m7G methylation occurs at a late step of small subunit biogenesis, implying specifically delayed catalytic activation. Finally, we show that Bud23–Trm112 interacts directly with the box C/D snoRNA U3-associated DEAH RNA helicase Dhr1 supposedly involved in central pseudoknot formation; this suggests that Bud23–Trm112 might also contribute to controlling formation of this irreversible and dramatic structural reorganization essential to overall folding of small subunit rRNA. Our study contributes important new elements to our understanding of key molecular aspects of human ribosomopathy syndromes associated with WBSCR22 (human Bud23) malfunction. PMID:25489090

  18. Analysis of COX2 mutants reveals cytochrome oxidase subassemblies in yeast

    PubMed Central

    2005-01-01

    Cytochrome oxidase catalyses the reduction of oxygen to water. The mitochondrial enzyme contains up to 13 subunits, 11 in yeast, of which three, Cox1p, Cox2p and Cox3p, are mitochondrially encoded. The assembly pathway of this complex is still poorly understood. Its study in yeast has been so far impeded by the rapid turnover of unassembled subunits of the enzyme. In the present study, immunoblot analysis of blue native gels of yeast wild-type and Cox2p mutants revealed five cytochrome oxidase complexes or subcomplexes: a, b, c, d and f; a is likely to be the fully assembled enzyme; b lacks Cox6ap; d contains Cox7p and/or Cox7ap; f represents unassembled Cox1p; and c, observed only in the Cox2p mutants, contains Cox1p, Cox3p, Cox5p and Cox6p and lacks the other subunits. The identification of these novel cytochrome oxidase subcomplexes should encourage the reexamination of other yeast mutants. PMID:15921494

  19. New Insights into Sulfur Metabolism in Yeasts as Revealed by Studies of Yarrowia lipolytica

    PubMed Central

    Hébert, Agnès; Forquin-Gomez, Marie-Pierre; Roux, Aurélie; Aubert, Julie; Junot, Christophe; Heilier, Jean-François; Landaud, Sophie; Bonnarme, Pascal

    2013-01-01

    Yarrowia lipolytica, located at the frontier of hemiascomycetous yeasts and fungi, is an excellent candidate for studies of metabolism evolution. This yeast, widely recognized for its technological applications, in particular produces volatile sulfur compounds (VSCs) that fully contribute to the flavor of smear cheese. We report here a relevant global vision of sulfur metabolism in Y. lipolytica based on a comparison between high- and low-sulfur source supplies (sulfate, methionine, or cystine) by combined approaches (transcriptomics, metabolite profiling, and VSC analysis). The strongest repression of the sulfate assimilation pathway was observed in the case of high methionine supply, together with a large accumulation of sulfur intermediates. A high sulfate supply seems to provoke considerable cellular stress via sulfite production, resulting in a decrease of the availability of the glutathione pathway's sulfur intermediates. The most limited effect was observed for the cystine supply, suggesting that the intracellular cysteine level is more controlled than that of methionine and sulfate. Using a combination of metabolomic profiling and genetic experiments, we revealed taurine and hypotaurine metabolism in yeast for the first time. On the basis of a phylogenetic study, we then demonstrated that this pathway was lost by some of the hemiascomycetous yeasts during evolution. PMID:23220962

  20. Dormant buds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dormant vegetative buds from diverse species can be preserved using cryopreservation. Sakai (1960) provided one of the first studies showing that winter twigs of poplar (Populus sieboldi) and willow (Salix koriyanagi) could survive low temperatures if slowly cooled prior to immersion in liquid nitr...

  1. A Geometrically-Constrained Mathematical Model of Mammary Gland Ductal Elongation Reveals Novel Cellular Dynamics within the Terminal End Bud.

    PubMed

    Paine, Ingrid; Chauviere, Arnaud; Landua, John; Sreekumar, Amulya; Cristini, Vittorio; Rosen, Jeffrey; Lewis, Michael T

    2016-04-01

    Mathematics is often used to model biological systems. In mammary gland development, mathematical modeling has been limited to acinar and branching morphogenesis and breast cancer, without reference to normal duct formation. We present a model of ductal elongation that exploits the geometrically-constrained shape of the terminal end bud (TEB), the growing tip of the duct, and incorporates morphometrics, region-specific proliferation and apoptosis rates. Iterative model refinement and behavior analysis, compared with biological data, indicated that the traditional metric of nipple to the ductal front distance, or percent fat pad filled to evaluate ductal elongation rate can be misleading, as it disregards branching events that can reduce its magnitude. Further, model driven investigations of the fates of specific TEB cell types confirmed migration of cap cells into the body cell layer, but showed their subsequent preferential elimination by apoptosis, thus minimizing their contribution to the luminal lineage and the mature duct. PMID:27115287

  2. A Geometrically-Constrained Mathematical Model of Mammary Gland Ductal Elongation Reveals Novel Cellular Dynamics within the Terminal End Bud

    PubMed Central

    Chauviere, Arnaud; Landua, John; Sreekumar, Amulya; Cristini, Vittorio; Rosen, Jeffrey; Lewis, Michael T.

    2016-01-01

    Mathematics is often used to model biological systems. In mammary gland development, mathematical modeling has been limited to acinar and branching morphogenesis and breast cancer, without reference to normal duct formation. We present a model of ductal elongation that exploits the geometrically-constrained shape of the terminal end bud (TEB), the growing tip of the duct, and incorporates morphometrics, region-specific proliferation and apoptosis rates. Iterative model refinement and behavior analysis, compared with biological data, indicated that the traditional metric of nipple to the ductal front distance, or percent fat pad filled to evaluate ductal elongation rate can be misleading, as it disregards branching events that can reduce its magnitude. Further, model driven investigations of the fates of specific TEB cell types confirmed migration of cap cells into the body cell layer, but showed their subsequent preferential elimination by apoptosis, thus minimizing their contribution to the luminal lineage and the mature duct. PMID:27115287

  3. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

    PubMed Central

    Carlile, Thomas M.; Rojas-Duran, Maria F.; Zinshteyn, Boris; Shin, Hakyung; Bartoli, Kristen M.; Gilbert, Wendy V.

    2014-01-01

    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs1, enhances the function of transfer RNA and ribosomal RNA by stabilizing RNA structure2–8. mRNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function – it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding center9,10. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological was unclear. Here we present a comprehensive analysis of pseudouridylation in yeast and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as 100 novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease11–13. PMID:25192136

  4. Functional genomic analysis reveals overlapping and distinct features of chronologically long-lived yeast populations.

    PubMed

    Wierman, Margaret B; Matecic, Mirela; Valsakumar, Veena; Li, Mingguang; Smith, Daniel L; Bekiranov, Stefan; Smith, Jeffrey S

    2015-03-01

    Yeast chronological lifespan (CLS) is extended by multiple genetic and environmental manipulations, including caloric restriction (CR). Understanding the common changes in molecular pathways induced by such manipulations could potentially reveal conserved longevity mechanisms. We therefore performed gene expression profiling on several long-lived yeast populations, including anade4∆mutant defective in de novo purine (AMP) biosynthesis, and a calorie restricted WT strain. CLS was also extended by isonicotinamide (INAM) or expired media derived from CR cultures. Comparisons between these diverse long-lived conditions revealed a common set of differentially regulated genes, several of which were potential longevity biomarkers. There was also enrichment for genes that function in CLS regulation, including a long-lived adenosine kinase mutant (ado1∆) that links CLS regulation to the methyl cycle and AMP. Genes co-regulated between the CR and ade4∆ conditions were dominated by GO terms related to metabolism of alternative carbon sources, consistent with chronological longevity requiring efficient acetate/acetic acid utilization. Alternatively, treating cells with isonicotinamide (INAM) or the expired CR media resulted in GO terms predominantly related to cell wall remodeling, consistent with improved stress resistance and protection against external insults like acetic acid. Acetic acid therefore has both beneficial and detrimental effects on CLS. PMID:25769345

  5. The plasma membrane protein Rch1 is a negative regulator of cytosolic calcium homeostasis and positively regulated by the calcium/calcineurin signaling pathway in budding yeast.

    PubMed

    Zhao, Yunying; Yan, Hongbo; Happeck, Ricardo; Peiter-Volk, Tina; Xu, Huihui; Zhang, Yan; Peiter, Edgar; van Oostende Triplet, Chloë; Whiteway, Malcolm; Jiang, Linghuo

    2016-01-01

    Saccharomyces cerevisiae Rch1 is structurally similar to both the vertebrate solute carrier SLC10A7 and Candida albicans Rch1. We show here that ScRCH1 is a functional homolog of CaRCH1. In S. cerevisiae, overexpression of ScRCH1 suppresses, but deletion of ScRCH1 does not affect, the lithium and rapamycin tolerance of pmr1 cells. Overexpression of ScRCH1 reduces expression of ENA1, prevents sustained accumulation of cytosolic calcium and reduces the activation level of calcium/calcineurin signaling in pmr1 cells. Therefore, similar to the situation in the pathogen C. albicans, ScRch1 negatively regulates the cytosolic homeostasis in response to high levels of extracellular calcium. ScRch1 proteins distribute as multiple foci in the plasma membrane prior to cell division, move toward and concentrate at the bud neck as the bud grows in size, and disperse again along the plasma membrane immediately prior to cytokinesis. Furthermore, our genetic and biochemical data also demonstrate that transcriptional expression of RCH1 is positively regulated by calcium/calcineurin signaling through the sole CDRE element in its promoter. PMID:26832117

  6. Bulk Segregant Analysis Reveals the Genetic Basis of a Natural Trait Variation in Fission Yeast

    PubMed Central

    Hu, Wen; Suo, Fang; Du, Li-Lin

    2015-01-01

    Although the fission yeast Schizosaccharomyces pombe is a well-established model organism, studies of natural trait variations in this species remain limited. To assess the feasibility of segregant-pool-based mapping of phenotype-causing genes in natural strains of fission yeast, we investigated the cause of a maltose utilization defect (Mal-) of the S. pombe strain CBS5557 (originally known as Schizosaccharomyces malidevorans). Analyzing the genome sequence of CBS5557 revealed 955 nonconservative missense substitutions, and 61 potential loss-of-function variants including 47 frameshift indels, 13 early stop codons, and 1 splice site mutation. As a side benefit, our analysis confirmed 146 sequence errors in the reference genome and improved annotations of 27 genes. We applied bulk segregant analysis to map the causal locus of the Mal- phenotype. Through sequencing the segregant pools derived from a cross between CBS5557 and the laboratory strain, we located the locus to within a 2.23-Mb chromosome I inversion found in most S. pombe isolates including CBS5557. To map genes within the inversion region that occupies 18% of the genome, we created a laboratory strain containing the same inversion. Analyzing segregants from a cross between CBS5557 and the inversion-containing laboratory strain narrowed down the locus to a 200-kb interval and led us to identify agl1, which suffers a 5-bp deletion in CBS5557, as the causal gene. Interestingly, loss of agl1 through a 34-kb deletion underlies the Mal- phenotype of another S. pombe strain CGMCC2.1628. This work adapts and validates the bulk segregant analysis method for uncovering trait-gene relationship in natural fission yeast strains. PMID:26615217

  7. Population genomic analysis reveals highly conserved mitochondrial genomes in the yeast species Lachancea thermotolerans.

    PubMed

    Freel, Kelle C; Friedrich, Anne; Hou, Jing; Schacherer, Joseph

    2014-10-01

    The increasing availability of mitochondrial (mt) sequence data from various yeasts provides a tool to study genomic evolution within and between different species. While the genomes from a range of lineages are available, there is a lack of information concerning intraspecific mtDNA diversity. Here, we analyzed the mt genomes of 50 strains from Lachancea thermotolerans, a protoploid yeast species that has been isolated from several locations (Europe, Asia, Australia, South Africa, and North / South America) and ecological sources (fruit, tree exudate, plant material, and grape and agave fermentations). Protein-coding genes from the mtDNA were used to construct a phylogeny, which reflected a similar, yet less resolved topology than the phylogenetic tree of 50 nuclear genes. In comparison to its sister species Lachancea kluyveri, L. thermotolerans has a smaller mt genome. This is due to shorter intergenic regions and fewer introns, of which the latter are only found in COX1. We revealed that L. kluyveri and L. thermotolerans share similar levels of intraspecific divergence concerning the nuclear genomes. However, L. thermotolerans has a more highly conserved mt genome with the coding regions characterized by low rates of nonsynonymous substitution. Thus, in the mt genomes of L. thermotolerans, stronger purifying selection and lower mutation rates potentially shape genome diversity in contract to what was found for L. kluyveri, demonstrating that the factors driving mt genome evolution are different even between closely related species. PMID:25212859

  8. Population Genomics Reveals Chromosome-Scale Heterogeneous Evolution in a Protoploid Yeast

    PubMed Central

    Friedrich, Anne; Jung, Paul; Reisser, Cyrielle; Fischer, Gilles; Schacherer, Joseph

    2015-01-01

    Yeast species represent an ideal model system for population genomic studies but large-scale polymorphism surveys have only been reported for species of the Saccharomyces genus so far. Hence, little is known about intraspecific diversity and evolution in yeast. To obtain a new insight into the evolutionary forces shaping natural populations, we sequenced the genomes of an expansive worldwide collection of isolates from a species distantly related to Saccharomyces cerevisiae: Lachancea kluyveri (formerly S. kluyveri). We identified 6.5 million single nucleotide polymorphisms and showed that a large introgression event of 1 Mb of GC-rich sequence in the chromosomal arm probably occurred in the last common ancestor of all L. kluyveri strains. Our population genomic data clearly revealed that this 1-Mb region underwent a molecular evolution pattern very different from the rest of the genome. It is characterized by a higher recombination rate, with a dramatically elevated A:T → G:C substitution rate, which is the signature of an increased GC-biased gene conversion. In addition, the predicted base composition at equilibrium demonstrates that the chromosome-scale compositional heterogeneity will persist after the genome has reached mutational equilibrium. Altogether, the data presented herein clearly show that distinct recombination and substitution regimes can coexist and lead to different evolutionary patterns within a single genome. PMID:25349286

  9. Population genomics reveals chromosome-scale heterogeneous evolution in a protoploid yeast.

    PubMed

    Friedrich, Anne; Jung, Paul; Reisser, Cyrielle; Fischer, Gilles; Schacherer, Joseph

    2015-01-01

    Yeast species represent an ideal model system for population genomic studies but large-scale polymorphism surveys have only been reported for species of the Saccharomyces genus so far. Hence, little is known about intraspecific diversity and evolution in yeast. To obtain a new insight into the evolutionary forces shaping natural populations, we sequenced the genomes of an expansive worldwide collection of isolates from a species distantly related to Saccharomyces cerevisiae: Lachancea kluyveri (formerly S. kluyveri). We identified 6.5 million single nucleotide polymorphisms and showed that a large introgression event of 1 Mb of GC-rich sequence in the chromosomal arm probably occurred in the last common ancestor of all L. kluyveri strains. Our population genomic data clearly revealed that this 1-Mb region underwent a molecular evolution pattern very different from the rest of the genome. It is characterized by a higher recombination rate, with a dramatically elevated A:T → G:C substitution rate, which is the signature of an increased GC-biased gene conversion. In addition, the predicted base composition at equilibrium demonstrates that the chromosome-scale compositional heterogeneity will persist after the genome has reached mutational equilibrium. Altogether, the data presented herein clearly show that distinct recombination and substitution regimes can coexist and lead to different evolutionary patterns within a single genome. PMID:25349286

  10. Crossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast.

    PubMed Central

    Zalevsky, J; MacQueen, A J; Duffy, J B; Kemphues, K J; Villeneuve, A M

    1999-01-01

    Formation of crossovers between homologous chromosomes during Caenorhabditis elegans meiosis requires the him-14 gene. Loss of him-14 function severely reduces crossing over, resulting in lack of chiasmata between homologs and consequent missegregation. Cytological analysis showing that homologs are paired and aligned in him-14 pachytene nuclei, together with temperature-shift experiments showing that him-14 functions during the pachytene stage, indicate that him-14 is not needed to establish pairing or synapsis and likely has a more direct role in crossover formation. him-14 encodes a germline-specific member of the MutS family of DNA mismatch repair (MMR) proteins. him-14 has no apparent role in MMR, but like its Saccharomyces cerevisiae ortholog MSH4, has a specialized role in promoting crossing over during meiosis. Despite this conservation, worms and yeast differ significantly in their reliance on this pathway: whereas worms use this pathway to generate most, if not all, crossovers, yeast still form 30-50% of their normal number of crossovers when this pathway is absent. This differential reliance may reflect differential stability of crossover-competent recombination intermediates, or alternatively, the presence of two different pathways for crossover formation in yeast, only one of which predominates during nematode meiosis. We discuss a model in which HIM-14 promotes crossing over by interfering with Holliday junction branch migration. PMID:10545458