Science.gov

Sample records for building energy conservation

  1. Energy conservation in swine buildings

    SciTech Connect

    Jones, D.D.; Friday, W.H.

    1980-05-01

    Saving energy in confinement swine buildings can be achieved by conserving existing animal heat through both proper building construction and control of the environment. Environmental management practices considered include building insulation and modifications, heating and cooling system selection, ventilation system adjustments, and proper building temperature. (MCW)

  2. Energy Conservation for Public Office Buildings

    ERIC Educational Resources Information Center

    Roush, Larry F.

    1973-01-01

    The energy conservation policy for public office buildings includes experimental designs of new federal office buildings in Manchester, New Hampshire and Saginaw, Michigan, as well as immediate energy conservation efforts. (Author/MF)

  3. Net zero building energy conservation

    NASA Astrophysics Data System (ADS)

    Kadam, Rohit

    This research deals with energy studies performed as part of a net-zero energy study for buildings. Measured data of actual energy utilization by a building for a continuous period of 33 months was collected and studied. The peak design day on which the building consumes maximum energy was found. The averages of the energy consumption for the peak month were determined. The DOE EnergyPlus software was used to simulate the energy requirements for the building and also obtain peak energy requirements for the peak month. Alternative energy sources such as ground source heat pump, solar photovoltaic (PV) panels and day-lighting modifications were applied to redesign the energy consumption for the building towards meeting net-zero energy requirements. The present energy use by the building, DOE Energy software simulations for the building as well as the net-zero model for the building were studied. The extents of the contributions of the individual energy harvesting measures were studied. For meeting Net Zero Energy requirement, it was found that the total energy load for the building can be distributed between alternative energy methods as 5.4% to daylighting modifications, 58% to geothermal and 36.6% to solar photovoltaic panels for electricity supply and thermal energy. Thus the directions to proceed towards achieving complete net-zero energy status were identified.

  4. Design of an energy conservation building

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1981-01-01

    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program.

  5. Design of an energy conservation building

    NASA Astrophysics Data System (ADS)

    Jensen, R. N.

    1981-11-01

    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program.

  6. Energy conservation in large buildings

    NASA Astrophysics Data System (ADS)

    Rosenfeld, A.; Hafemeister, D.

    1985-11-01

    As energy prices rise, newly energy aware designers use better tools and technology to create energy efficient buildings. Thus the U.S. office stock (average age 20 years) uses 250 kBTU/ft2 of resource energy, but the guzzler of 1972 uses 500 (up×2), and the 1986 ASHRAE standards call for 100-125 (less than 25% of their 1972 ancestors). Surprisingly, the first real cost of these efficient buildings has not risen since 1972. Scaling laws are used to calculate heat gains and losses of buildings to obtain the ΔT(free) which can be as large as 15-30 °C (30-60 °F) for large buildings. The net thermal demand and thermal time constants are determined for the Swedish Thermodeck buildings which need essentially no heat in the winter and no chillers in summer. The BECA and other data bases for large buildings are discussed. Off-peak cooling for large buildings is analyzed in terms of saving peak-electrical power. By downsizing chillers and using cheaper, off-peak power, cost-effective thermal storage in new commercial buildings can reduce U.S. peak power demands by 10-20 GW in 15 years. A further potential of about 40 GW is available from adopting partial thermal storage and more efficient air conditioners in existing buildings.

  7. Conserving Energy in School Buildings.

    ERIC Educational Resources Information Center

    Boice, John R.

    Educational Facilities Laboratories is developing a computer-based technical service--The Public Schools Energy Conservation Service (PSECS). As presently envisioned, PSECS would be capable of providing each participating district with information in five areas: (1) guidelines and instruction for establishing an energy usage data base; (2) a…

  8. Energy conservation in museums and historic buildings

    SciTech Connect

    Ucar, M.; Doering, G.C.

    1983-08-01

    The special environmental needs of museums and historic buildings can be met through methods that conserve energy as well. The research reported in this article is a result of a project undertaken to assess the energy conservation possibilities in such buildings. The irreplaceable nature of museum collections and the historic structures which often house them mandates that proper care be taken not to cause any irreversible damage in the process of saving energy. This article outlines specific heating, cooling and humidity control guidelines to follow, and recommends that all such buildings have an energy audit performed on their facilities. It also describes an energy use data base which has been compiled to show the actual energy consumption of museums.

  9. Energy Conservation in Buildings--A Human Factors/Systems Viewpoint. NBS Building Science Series 88.

    ERIC Educational Resources Information Center

    Rubin, Arthur I.

    The current emphasis on energy conservation in buildings must be balanced by a careful consideration of how proposed approaches affect building occupants. A headlong rush toward building designs that conserve energy at the expense of the quality of buildings as judged by occupants would be a very shortsighted approach. There must be a continual…

  10. Microcomputers for energy conservation in homes and other small buildings

    SciTech Connect

    Hendrick, A S

    1980-01-01

    Low cost microcomputers and related microelectric devices now make it practical to apply additional energy conserving control strategies in single-family homes and other small buildings. These conservation measures can make significant contributions toward attainment of national energy conservation objectives. Applications in space conditioning (heating, cooling, ventilation), lighting, electric demand limiting, metering of energy in various forms and for status displays are outlined. Examples of currently operating installations are described. Available equipment (such as personal computers, A/D converters, sensors, actuators, etc.) is discussed. Efforts at standard interface development and system integration are summarized. Statistics on the numbers of various building types, HVAC system types, energy consumption and energy conservation potential are presented. The structure of the HVAC controls industry is outlined. The US Department of Energy program of research, development and demonstration projects addressing efficient use of energy in buildings with new control systems is described.

  11. Energy conservation in developing countries using green building idea

    NASA Astrophysics Data System (ADS)

    Rashid, Akram; Mansoor Qureshi, Ijaz

    2013-06-01

    Green buildings uses processes that are environmentally responsible and resource-efficient throughout a building's life-cycle. In these buildings Certain energy conservative and environment friendly steps are considered and implemented from design, construction, operation, maintenance and renovation. In present era no doubt new technologies are constantly constructed and used in creating greener structures, energy efficient buildings. The common objective is to reduce the overall impact of the built environment on human health using available energy efficiently. To increase the efficiency of the System or the building, Onsite generation of renewable energy through solar power, wind power, hydro power, or biomasscan significantly reduce the environmental impact of the building. Power generation is generally the most expensive feature to add to a building. Any how power generation using renewable sources that is Solar system may further enhance energy conservation ideas. Power Factor improvement can also be another source of efficient tool for efficient use of Electrical Energy in green buildings. In developing countries a significant amount of Electrical Energy can be conserved and System efficiency as a whole can be increased by Power Factor correction. The reverse flow of power can be locally engaged instead of creating extra stress and opposition to the existing grid lines.

  12. Commercial building design and energy conservation: a preliminary assessment

    SciTech Connect

    Nieves, A.; Rosoff, D.

    1982-02-01

    The purpose of the research was to determine the degree of change in commercial building design practice relating to energy conservation since the enactment of the Energy Conservation Standard for New Buildings Act of 1976. Data on current design practices consisted of information from 400 buildings advertised for bids or under construction in 1979 to 1980 on glass in windows and doors, exterior wall systems, roof system, heating plants, and lighting systems. In addition to these building design components, energy conservation measures used included: natural lighting; deadband thermostat; greenhouse-effect atrium collector, heat recovery from the top of the atrium, greenhouse passive heating panels; natural ventilation; insulating shutters, closable skylights, thermal shutters, Trombe wall, corridor trombe; attic ventilation; wind shielding, concrete wall; titlted windows; night flushing cycle; and cooling coils using cooling tower water. A brief explanation of these measures is given. (MCW)

  13. Analysis of alternative strategies for energy conservation in new buildings

    SciTech Connect

    Fang, J.M.; Tawil, J.J.

    1980-12-01

    Building Energy Performance Standards (BEPS) were mandated by the Energy Conservation Standards for New Buildings Act of 1976 (Title III of Energy Conservation and Production Act) to promote energy efficiency and the use of renewable resources in new buildings. The report analyzes alternative Federal strategies and their component policy instruments and recommends a strategy for achieving the goals of the Act. The concern is limited to space conditioning (heating, cooling, and lighting) and water heating. The policy instruments considered include greater reliance on market forces; research and development; information, education and demonstration programs; tax incentives and sanctions; mortgage and finance programs; and regulations and standards. The analysis starts with an explanation of the barriers to energy conservation in the residential and commercial sectors. Individual policy instruments are then described and evaluated with respect to energy conservation, economic efficiency, equity, political impacts, and implementation and other transitional impacts. Five possible strategies are identified: (1) increased reliance on the market place; (2) energy consumption tax and supply subsidies; (3) BEPS with no sanctions and no incentives; (4) BEPS with sanctions and incentives (price control); and (5) BEPS with sanctions and incentives (no price controls). A comparative analysis is performed. Elements are proposed for inclusion in a comprehensive strategy for conservation in new buildings. (MCW)

  14. Optimum Building Shapes for Energy Conservation

    ERIC Educational Resources Information Center

    Berkoz, Esher Balkan

    1977-01-01

    An approach to optimum building shape design is summarized that is based on local climate and is especially important for heat control in lower cost construction with temperature-responsive thermal characteristics. The study was supported by Istanbul Technical University. For journal availability see HE 508 931. (Author/LBH)

  15. Energy Conservation Designed into HDR's New Building

    ERIC Educational Resources Information Center

    Jenkins, Larry

    1974-01-01

    A new building has been engineered by its engineer-owner tenants with provisions for two gas-oil hot water generators and for an electric boiler, so that operating personnel could switch to whatever fuel is available. (Author/MLF)

  16. Analysis of alternative strategies for energy conservation in new buildings

    NASA Astrophysics Data System (ADS)

    Fang, J. M.; Tawil, J.

    1980-12-01

    The policy instruments considered include: greater reliance on market forces; research and development; information, education and demonstration programs; tax incentives and sanctions; mortgage and finance programs; and regulations and standards. The analysis starts with an explanation of the barriers to energy conservation in the residential and commercial sectors. Individual policy instruments are described and evaluated with respect to energy conservation, economic efficiency, equity, political impacts, and implementation and other transitional impacts. Five possible strategies are identified: (1) increased reliance on the market place; (2) energy consumption tax and supply subsidies; (3) Building Energy Performance Standards (BEPS) with no sanctions and no incentives; (4) BEPS with sanctions and incentives (price control); and (5) BEPS with sanctions and incentives (no price controls). A comparative analysis is performed. Elements are proposed for inclusion in a comprehensive strategy for conservation in new buildings.

  17. Conserving energy in new buildings: analysis of nonregulatory policies

    SciTech Connect

    Scheer, R.M.; Nieves, L.A.; Mazzucchi, R.P.

    1981-05-01

    The costs and effectiveness of non-regulatory options relative to those of a regulatory approach are analyzed. Nonregulatory program alternatives identified are: information and education programs, tax incentives and disincentives, and mortage and finance programs. Chapter 2 briefly reviews survey data to assess present public awareness of energy issues and energy-efficient building design. Homebuyer and homebuilder surveys are reviewed and conservation motivations are discussed. Chapter 3 examines the provision of technical and economic information to various factors affecting building design decisions. This approach assumes that the economic incentives and technical means to achieve energy conservation goals already exist but that critical information is lacking. Chapter 4 examines how adjustments to the tax structure could enhance economic incentives and counter economic disincentives for energy conservation. Qualifying buildings for tax benefits would almost certainly require certification of design energy consumption. The effectiveness of tax incentives would depend in part on dissemination of public information regarding the incentives. Chapter 5 examines subsidies, such as subsidized mortgages and loan guarantees, which lower the cost of money or other costs but do not change the market structure facing the consumer. Certification that buildings qualify for such treatment would probably be required. Chapter 6 presents recommendations based on the study's findings. (MCW)

  18. Renewable energy and conservation measures for non-residential buildings

    NASA Astrophysics Data System (ADS)

    Grossman, Andrew James

    The energy demand in most countries is growing at an alarming rate and identifying economically feasible building retrofit solutions to decrease the need for fossil fuels so as to mitigate their environmental and societal impacts has become imperative. Two approaches are available for identifying feasible retrofit solutions: 1) the implementation of energy conservation measures; and 2) the production of energy from renewable sources. This thesis focuses on the development of retrofit software planning tools for the implementation of solar photovoltaic systems, and lighting system retrofits for mid-Michigan institutional buildings. The solar planning tool exploits the existing blueprint of a building's rooftop, and via image processing, the layouts of the solar photovoltaic arrays are developed based on the building's geographical location and typical weather patterns. The resulting energy generation of a PV system is estimated and is utilized to determine levelized energy costs. The lighting system retrofit analysis starts by a current utilization assessment of a building to determine the amount of energy used by the lighting system. Several LED lighting options are evaluated on the basis of color correlation temperature, color rendering index, energy consumption, and financial feasibility, to determine a retrofit solution. Solar photovoltaic installations in mid-Michigan are not yet financially feasible, but with the anticipated growth and dynamic complexity of the solar photovoltaic market, this solar planning tool is able to assist building proprietors make executive decisions regarding their energy usage. Additionally, a lighting system retrofit is shown to have significant financial and health benefits.

  19. Effects of energy conservation in residential and commercial buildings.

    PubMed

    Hirst, E; Hannon, B

    1979-08-17

    In 1977, heating, cooling, lighting, and other operations in residential and commercial buildings used 27 quads (1 quad = 10(15) British thermal units) of energy. This is more than one-third of the nation's total energy budget. Future trends in energy use in buildings are likely to depend strongly on fuel prices and government policies designed to save energy. Three scenarios are examined: (i) a base line in which fuel prices rise as projected by the Department of Energy; (ii) a conservation case that includes higher gas and oil prices plus the regulatory, financial incentive, and information programs authorized by the 94th Congress and proposed in the April 1977 National Energy Plan; and (iii) another conservation case that also includes new technologies (more efficient equipment, appliances, and structures). These scenarios are analyzed for changes in energy use, costs, and employment by means of detailed engineering-economic models of energy use in residential and commercial buildings developed at the Oak Ridge National Laboratory and input-output analyses developed at the University of Illinois. PMID:17781246

  20. Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code

    SciTech Connect

    Yu, Sha; Evans, Meredydd; Delgado, Alison

    2014-03-26

    India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century, driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after ECBC

  1. Energy conservation and management system using efficient building automation

    NASA Astrophysics Data System (ADS)

    Ahmed, S. Faiz; Hazry, D.; Tanveer, M. Hassan; Joyo, M. Kamran; Warsi, Faizan A.; Kamarudin, H.; Wan, Khairunizam; Razlan, Zuradzman M.; Shahriman A., B.; Hussain, A. T.

    2015-05-01

    In countries where the demand and supply gap of electricity is huge and the people are forced to endure increasing hours of load shedding, unnecessary consumption of electricity makes matters even worse. So the importance and need for electricity conservation increases exponentially. This paper outlines a step towards the conservation of energy in general and electricity in particular by employing efficient Building Automation technique. It should be noted that by careful designing and implementation of the Building Automation System, up to 30% to 40% of energy consumption can be reduced, which makes a huge difference for energy saving. In this study above mentioned concept is verified by performing experiment on a prototype experimental room and by implementing efficient building automation technique. For the sake of this efficient automation, Programmable Logic Controller (PLC) is employed as a main controller, monitoring various system parameters and controlling appliances as per required. The hardware test run and experimental findings further clarifies and proved the concept. The added advantage of this project is that it can be implemented to both small and medium level domestic homes thus greatly reducing the overall unnecessary load on the Utility provider.

  2. Providing for energy efficiency in homes and small buildings. Part I. Understanding and practicing energy conservation in buildings

    SciTech Connect

    Parady, W. Harold; Turner, J. Howard

    1980-06-01

    This is a training program to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. A teacher guide and student workbook are available to supplement the basic guide, which contains three parts. Part I considers the following: understanding the importance of energy; developing a concern for conserving energy; understanding the use of energy in buildings; care and maintenance of energy-efficient buildings; and developing energy-saving habits. A bibliography is presented.

  3. Cool roofs as an energy conservation measure for federal buildings

    SciTech Connect

    Taha, Haider; Akbari, Hashem

    2003-04-07

    We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

  4. Retrofit energy conservation in residential buildings in southern California

    NASA Technical Reports Server (NTRS)

    Turner, R. H.; Birur, G. C.; Daksla, C.

    1982-01-01

    The common energy conservation techniques (ECTs) that can be retrofit-installed into residential buildings are surveyed. The quantity of saved energy for heating and cooling attributable to each ECT is evaluated for three common modes of heating: natural gas heating at 60/therm; heating via heat pump at $1.20/therm; and electric resistance heating at $2.40/therm. In every case, a life cycle cost comparison is made between the long term revenue due to energy conservation and a safe and conventional alternative investment that might be available to the prudent homeowner. The comparison between investment in an ECT and the alternative investment is brought into perspective using the life cycle payback period and an economic Figure of Merit (FOM). The FOM allows for relative ranking between candidate ECTs. Because the entire spectrum of winter heating climates in California is surveyed, the decision maker can determine whether or not a considered ECT is recommended in a given climate, and under what conditions an ECT investment becomes attractive.

  5. Energy Efficiency Pilot Projects in Jaipur: Testing the Energy Conservation Building Code

    SciTech Connect

    Evans, Meredydd; Mathur, Jyotirmay; Yu, Sha

    2014-03-26

    The Malaviya National Institute of Technology (MNIT) in Jaipur, India is constructing two new buildings on its campus that allow it to test implementation of the Energy Conservation Building Code (ECBC), which Rajasthan made mandatory in 2011. PNNL has been working with MNIT to document progress on ECBC implementation in these buildings.

  6. Energy Conservation Curriculum for Secondary and Post-Secondary Students. Module 8: Building Construction Versus Energy Conservation.

    ERIC Educational Resources Information Center

    Navarro Coll., Corsicana, TX.

    This module is the eighth in a series of eleven modules in an energy conservation curriculum for secondary and postsecondary vocational students. It is designed for use by itself or as part of a sequence of four modules on conservation in building construction and operation (see also modules 9-11). The objective of this module is to train students…

  7. Energy Conservation in New Building Design: An Impact Assessment of ASHRAE Standard 90-75. Conservation and Environment Buildings Programs. Conservation Number 43B.

    ERIC Educational Resources Information Center

    Federal Energy Administration, Washington, DC.

    The American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE), has developed a document governing energy usage in all types of new construction: ASHRAE Standard 90-75: Energy Conservation in New Building Design (ASHRAE 90). To lay the foundation for an evaluation of ASHRAE 90, the Federal Energy Administration (FEA)…

  8. Energy conservation by multiple glazing on heavy masonry buildings

    NASA Astrophysics Data System (ADS)

    Pierce, E. T.

    1981-08-01

    The BLAST-2 computer program was used to investigate multiple glazing as a means to reduce the energy consumption of two buildings of the Library Congress in Washington, DC. The Thomas Jefferson building is of very heavy masonry construction, and the John Adams building is of heavy masonry. The techniques of modeling the building load and air system performance are explained. The results are presented and discussed.

  9. Assessment of Impacts from Adopting the 2006 International Energy Conservation Code for Residential Buildings in Wyoming

    SciTech Connect

    Lucas, Robert G.

    2007-10-01

    The state of Wyoming currently does not have a statewide building energy efficiency code for residential buildings. The U.S. Department of Energy has requested Pacific Northwest National Laboratory (PNNL) to estimate the energy savings, economic impacts, and pollution reduction from adopting the 2006 International Energy Conservation Code (IECC). This report addresses the impacts for low-rise residential buildings only.

  10. Energy Conservation and the Building Shell. BSIC/EFL Energy Workbook: Section 1.

    ERIC Educational Resources Information Center

    Building Systems Information Clearinghouse, Menlo Park, CA.

    This energy conservation workbook series was developed to provide specific data on the effect of various design and operating decisions on both cost and energy consumption. It is designed to make clear the energy consumption and cost implications of various building design and operating decisions in terms that both the layman and design…

  11. Technical Options for Energy Conservation in Buildings. National Conference of States on Building Codes and Standards and National Bureau of Standards Joint Emergency Workshop on Energy Conservation in Buildings. (Washington, D.C., June 19, 1973) NBS Technical Note 789.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC. Inst. for Applied Technology.

    The purpose of this report is to provide reference material on the technical options for energy conservation in buildings. Actions pertinent to existing buildings and new buildings are considered separately. Regarding existing buildings, principal topics include summer cooling, winter heating, and other energy-related features such as insulation,…

  12. Use of vegetation to ameliorate building microclimates: an assessment of energy-conservation potentials

    SciTech Connect

    Hutchison, B.A.; Taylor, F.G.; Wendt, R.L.

    1982-04-01

    The space-conditioning energy conservation potentials of landscapes designed to ameliorate building microclimates are evaluated. The physical bases for vegetative modifications of climate are discussed, and results of past study of the effects of vegetation on space-conditioning energy consumption in buildings are reviewed. The state-of-the-art of energy-conserving landscape designs is assessed and recommendations are presented for further research.

  13. Computer simulated building energy consumption for verification of energy conservation measures in network facilities

    NASA Technical Reports Server (NTRS)

    Plankey, B.

    1981-01-01

    A computer program called ECPVER (Energy Consumption Program - Verification) was developed to simulate all energy loads for any number of buildings. The program computes simulated daily, monthly, and yearly energy consumption which can be compared with actual meter readings for the same time period. Such comparison can lead to validation of the model under a variety of conditions, which allows it to be used to predict future energy saving due to energy conservation measures. Predicted energy saving can then be compared with actual saving to verify the effectiveness of those energy conservation changes. This verification procedure is planned to be an important advancement in the Deep Space Network Energy Project, which seeks to reduce energy cost and consumption at all DSN Deep Space Stations.

  14. Simplified energy design economics: Principles of economics applied to energy conservation and solar energy investments in buildings

    NASA Astrophysics Data System (ADS)

    Marshall, H. E.; Ruegg, R. T.; Wilson, F.

    1980-01-01

    Economic analysis techniques for evaluating alternative energy conservation investments in buildings are presented. Life cycle cost, benefit cost, savings to investment, payback, and rate of return analyses are explained and illustrated. The procedure for discounting is described for a heat pump investment. Formulas, tables of discount factors, and detailed instructions are provided to give all information required to make economic evaluations of energy conserving building designs.

  15. Energy conservation case studies for model commercial buildings covered by the CACS program

    SciTech Connect

    Kedl, R.J.; Bircher, T.L.

    1985-03-01

    Case studies of four small commercial buildings are presented that show the potential conservation of electrical and gas enegy and the potential reduction in peak electrical demand that result from the retrofit of most Commercial and Apartment Conservation Service (CACS) Program Measures and Procedures. Four prototypical buildings are representative of the great majority of CACS-covered businesses were used. Energy consrvation calculations were conducted on the buildings in six cities representing six different climates in the contiguous United States. Calculations were performed using DOE-2.1, a computer program that computes energy flow in buildings on an hour-by-hour basis.

  16. ASEAN-USAID buildings energy conservation project. Volume 1, Energy standards: Final report

    SciTech Connect

    Levine, M.D.; Busch, J.F.; Deringer, J.J.

    1992-06-01

    Mandatory or voluntary energy-efficiency standards for new or existing buildings can play an important role in a national program aimed at promoting energy conservation. Building codes and standards can provide a degree of control over design and building practices throughout the construction process, and encourage awareness of energy-conscious design. Studies in developed countries indicate that efficiency standards can produce energy reductions on the order of 20 to 40% or more. Within ASEAN, analyses of the savings potential from the proposed standards suggest that if implemented, these standards would produce savings over current new design practice of 19% to 24%. In this volume we provide an overview of the ASEAN-USAID project aimed at promulgating standards for energy efficiency in commercial buildings. The process of developing and implementing energy-efficiency standards for buildings can be subdivided into two key components: policy development; and technical and economic analysis. Each of these involves a number of steps and processes, as outlined in Figure 1-1. This volume describes the technical and economic analyses used to develop the proposed energy efficiency standards for four countries (Malaysia, Thailand, the Philippines, and Indonesia), and to refine an energy standard existing in Singapore since 1979. Though oriented toward the ASEAN region, the analysis methods described here are applicable in a range of settings, provided appropriate modifications are made for local building construction, climatic, economic, and political conditions. Implementation issues are not specifically addressed here; rather this volume is oriented towards the analytical work needed to establish or revise an energy standard for buildings.

  17. Recommendations on Implementing the Energy Conservation Building Code in Rajasthan, India

    SciTech Connect

    Yu, Sha; Makela, Eric J.; Evans, Meredydd; Mathur, Jyotirmay

    2012-02-01

    India launched the Energy Conservation Building Code (ECBC) in 2007 and Indian Bureau of Energy Efficiency (BEE) recently indicated that it would move to mandatory implementation in the 12th Five-Year Plan. The State of Rajasthan adopted ECBC with minor modifications; the new regulation is known as the Energy Conservation Building Directives – Rajasthan 2011 (ECBD-R). It became mandatory in Rajasthan on September 28, 2011. This report provides recommendations on an ECBD-R enforcement roadmap for the State of Rajasthan.

  18. ASEAN-USAID Buildings Energy Conservation Project. Final report, Volume 3: Audits

    SciTech Connect

    Loewen, J.M.; Levine, M.D.; Busch, J.F.

    1992-06-01

    The auditing subproject of the ASEAN-USAID Buildings Energy Conservation Project has generated a great deal of auditing activity throughout the ASEAN region. Basic building characterisfic and energy consumption data were gathered for over 200 buildings and are presented in this volume. A large number of buildings were given more detailed audits and were modeled with either the ASEAM-2 computer program or the more complex DOE-2 program. These models were used to calculate the savings to be generated by conservabon measures. Specially audits were also conducted, including lighting and thermal comfort surveys. Many researchers in the ASEAN region were trained to perform energy audits in a series of training courses and seminars. The electricity intensifies of various types of ASEAN buildings have been calculated. A comparison to the electricity intensity of the US building stock tentatively concludes that ASEAN office buildings are comparable, first class hotels and retail stores are more ewctricity intensive than their US counterparts, and hospitals are less intensive. Philippine and Singapore lighting surveys indicate that illuminance levels in offices tend to be below the minimum accepted standard. Computer simulations of the energy use in various building types generally agree that for most ASEAN buildings, electricity consumption for air-conditioning (including fan power) consumes approximately 60% of total building electricity. A review of the many studies made during the Project to calculate the savings from energy conservation opportunities (ECOS) shows a median potential savings of approximately 10%, with some buildings saving as much as 50%. Singapore buildings, apparently as a result of previously implemented efficient energy-use practices, shows a lower potential for savings than the other ASEAN nations. Air-conditioning ECOs hold the greatest potential for savings.

  19. Health effects associated with energy conservation measures in commercial buildings

    SciTech Connect

    Stenner, R.D.; Baechler, M.C.

    1990-09-01

    Indoor air quality can be impacted by hundreds of different chemicals. More than 900 different organic compounds alone have been identified in indoor air. Health effects that could arise from exposure to individual pollutants or mixtures of pollutants cover the full range of acute and chronic effects, including largely reversible responses, such as rashes and irritations, to the irreversible toxic and carcinogenic effects. These indoor contaminants are emitted from a large variety of materials and substances that are widespread components of everyday life. Pacific Northwest Laboratory conducted a search of the peer-reviewed literature on health effects associated with indoor air contaminants for the Bonneville Power Administration to aid the agency in the preparation of environmental documents. Results are reported in two volumes. Volume 1 summarizes the results of the search of the peer-reviewed literature on health effects associated with a selected list of indoor air contaminants. In addition, the report discusses potential health effects of polychlorinated biphenyls and chlorofluorocarbons. All references to the literature reviewed are found in this document Volume 2. Volume 2 provides detailed information from the literature reviewed, summarizes potential health effects, reports health hazard ratings, and discusses quantitative estimates of carcinogenic risk in humans and animals. Contaminants discussed in this report are those that; have been measured in the indoor air of a public building; have been measured (significant concentrations) in test situations simulating indoor air quality (as presented in the referenced literature); and have a significant hazard rating. 38 refs., 7 figs., 23 tabs.

  20. The Power of Flexibility: Autonomous Agents That Conserve Energy in Commercial Buildings

    NASA Astrophysics Data System (ADS)

    Kwak, Jun-young

    Agent-based systems for energy conservation are now a growing area of research in multiagent systems, with applications ranging from energy management and control on the smart grid, to energy conservation in residential buildings, to energy generation and dynamic negotiations in distributed rural communities. Contributing to this area, my thesis presents new agent-based models and algorithms aiming to conserve energy in commercial buildings. More specifically, my thesis provides three sets of algorithmic contributions. First, I provide online predictive scheduling algorithms to handle massive numbers of meeting/event scheduling requests considering flexibility , which is a novel concept for capturing generic user constraints while optimizing the desired objective. Second, I present a novel BM-MDP ( Bounded-parameter Multi-objective Markov Decision Problem) model and robust algorithms for multi-objective optimization under uncertainty both at the planning and execution time. The BM-MDP model and its robust algorithms are useful in (re)scheduling events to achieve energy efficiency in the presence of uncertainty over user's preferences. Third, when multiple users contribute to energy savings, fair division of credit for such savings to incentivize users for their energy saving activities arises as an important question. I appeal to cooperative game theory and specifically to the concept of Shapley value for this fair division. Unfortunately, scaling up this Shapley value computation is a major hindrance in practice. Therefore, I present novel approximation algorithms to efficiently compute the Shapley value based on sampling and partitions and to speed up the characteristic function computation. These new models have not only advanced the state of the art in multiagent algorithms, but have actually been successfully integrated within agents dedicated to energy efficiency: SAVES, TESLA and THINC. SAVES focuses on the day-to-day energy consumption of individuals and

  1. Summary review of building energy-use compilation and analysis (BECA). Part C. Conservation progress in retrofitted commercial buildings

    SciTech Connect

    Wall, L.W.; Flaherty, J.

    1982-08-01

    Data on actual energy use were compiled for 223 retrofitted commercial buildings and analyzed for energy performance and cost-effectiveness. 70% of the buildings were located in the northeastern region of the US. Dominant building types were schools and offices; over 75% of the buildings had floor areas larger than 50,000 ft/sup 2/. Nearly all (95%) of the buildings included operations and maintenance changes as part of the retrofit. The median value of source energy savings for the entire sample was 19% of the pre-retrofit consumption. Nine percent of the retrofits failed to save. The median value of retrofit cost was $0.56/ft/sup 2/. Complete cost data were available for less than 30% of the sample; for them the median value of simple payback time was in the 1 to 2 year range and the median value of cost of conserved site energy was $3.30/MBtu (with first-costs amortized over 5 years at 10% real interest). Also included are a study of the durability of retrofits and a comparison of predicted vs. actual savings.

  2. Bainbridge Energy Challenge. Energy efficiency and conservation block grant (EECBG) - Better buildings neighborhood program. Final Technical Report

    SciTech Connect

    Kraus, Yvonne X.

    2014-02-14

    RePower Bainbridge and Bremerton (RePower) is a residential energy-efficiency and conservation program designed to foster a sustainable, clean, and renewable energy economy. The program was a 3.5 year effort in the cities of Bainbridge Island and Bremerton, Washington, to conserve and reduce energy use, establish a trained home performance trade ally network, and create local jobs. RePower was funded through a $4.8 million grant from the US Department of Energy, Better Buildings Program. The grant’s performance period was August 1, 2010 through March 30, 2014.

  3. Using Qualified Energy Conservation Bonds for Public Building Upgrades. Reducing Energy Bills in the City of Philadelphia

    SciTech Connect

    Zimring, Mark

    2012-07-18

    Qualified Energy Conservation Bonds (QECBs) are federally-subsidized bonds that enable state, tribal, and local government issuers to borrow money to fund a range of energy conservation projects, including public building upgrades that reduce energy use by at least 20 percent, at very attractive borrowing rates and long terms. As part of the American Recovery and Reinvestment Act (ARRA), the City of Philadelphia received a $15 million QECB award from the U.S. Department of the Treasury (Treasury). The city leveraged $6.25 million of its QECB allocation to finance half of a $12.6 million initiative to upgrade the energy efficiency of City buildings. The upgrades to four city facilities are expected to deliver over $10 million of net savings, and are a major step towards achieving the city’s goal of reducing government energy consumption by 30 percent by 2015.

  4. Energy savings modelling of re-tuning energy conservation measures in large office buildings

    SciTech Connect

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2014-10-20

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS’s capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energy’s building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated – each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy

  5. Energy conservation standards for new federal residential buildings: A decision analysis study using relative value discounting

    SciTech Connect

    Harvey, C. . Coll. of Business Administration); Merkhofer, M.M.; Hamm, G.L. )

    1990-07-02

    This report presents a reassessment of the proposed standard for energy conservation in new federal residential buildings. The analysis uses the data presented in the report, Economic Analysis: In Support of Interim Energy Conservation Standards for New Federal Residential Buildings (June 1988)-to be referred to as the EASIECS report. The reassessment differs from that report in several respects. In modeling factual information, it uses more recent forecasts of future energy prices and it uses data from the Bureau of the Census in order to estimate the distribution of lifetimes of residential buildings rather than assuming a hypothetical 25-year lifetime. In modeling social preferences decision analysis techniques are used in order to examine issues of public values that often are not included in traditional cost-benefit analyses. The present report concludes that the public would benefit from the proposed standard. Several issues of public values regarding energy use are illustrated with methods to include them in a formal analysis of a proposed energy policy. The first issue places a value on costs and benefits that will occur in the future as an irreversible consequence of current policy choices. This report discusses an alternative method, called relative value discounting which permits flexible discounting of future events-and the possibility of placing greater values on future events. The second issue places a value on the indirect benefits of energy savings so that benefits accrue to everyone rather than only to the person who saves the energy. This report includes non-zero estimates of the indirect benefits. The third issue is how the costs and benefits discussed in a public policy evaluation should be compared. In summary, selection of individual projects with larger benefit to cost ratios leads to a portfolio of projects with the maximum benefit to cost difference. 30 refs., 6 figs., 16 tabs. (JF)

  6. ASEAN--USAID Buildings Energy Conservation Project final report. Volume 2, Technology

    SciTech Connect

    Levine, M.D.; Busch, J.F.

    1992-06-01

    This volume reports on research in the area of energy conservation technology applied to commercial buildings in the Association of Southeast Asian Nations (ASEAN) region. Unlike Volume I of this series, this volume is a compilation of original technical papers prepared by different authors in the project. In this regard, this volume is much like a technical journal. The papers that follow report on research conducted by both US and ASEAN researchers. The authors representing Indonesia, Malaysia, Philippines, and Thailand, come from a range of positions in the energy arena, including government energy agencies, electric utilities, and universities. As such, they account for a wide range of perspectives on energy problems and the role that technology can play in solving them. This volume is about using energy more intelligently. In some cases, the effort is towards the use of more advanced technologies, such as low-emittance coatings on window glass, thermal energy storage, or cogeneration. In others, the emphasis is towards reclaiming traditional techniques for rendering energy services, but in new contexts such as lighting office buildings with natural light, or cooling buildings of all types with natural ventilation. Used in its broadest sense, the term ``technology`` encompasses all of the topics addressed in this volume. Along with the more customary associations of technology, such as advanced materials and equipment and the analysis of their performance, this volume treats design concepts and techniques, analysis of ``secondary`` impacts from applying technologies (i.e., unintended impacts, or impacts on parties not directly involved in the purchase and use of the technology), and the collection of primary data used for conducting technical analyses.

  7. Energy Efficiency and Conservation Block Grant (EECBG)- Better Buildings Neighborhood Program Final Report

    SciTech Connect

    Brown, Donisha; Harris, Barbara; Blue, Cynthia; Gaskins, Charla

    2014-09-16

    The original BetterBuildings for Greensboro grant program included an outreach campaign to inform 100% of the Greensboro community about the benefits of reducing energy use; a plan to reduce energy consumption in at least 34% of the homes and 10% of the other buildings in the east Greensboro target area; and a plan to create and retain jobs in the energy conservation industry. Under the original program structure the City of Greensboro planned to partner with local and regional lenders to create a diversified portfolio of loan products to meet the needs of various income levels and building types. All participants would participate in the loan programs as a method of meeting the program’s 5 to1 private capital match/leverage requirements. In June 2011 the program was restructured to include partnerships with large commercial and multifamily projects, with these partners providing the greater portion of the required match/leverage. The geographic focus was revised to include reducing energy consumption across the entire City of Greensboro, targeting neighborhoods with high concentrations of low-moderate income households and aged housing stock. The community outreach component used a neighborhood-based approach to train community residents and volunteers to conduct door-to-door neighborhood sweeps; delivered high quality information on available program resources; helped residents to evaluate alternative energy efficiency measures and alternative financing sources; assisted with contractor selections and monitoring/evaluation of work; coordinated activities with BetterBuildings program partners; and collected data required by the Department of Energy. Additionally, HERO (Home Energy Response Officers) delivered intro packages (energy efficiency information and products) to thousands of households at the initial point of contact. A pilot program (Early Adopters) was offered from March 1, 2011 through June 30, 2011. The Early Adopters program was designed to offer

  8. Research and Innovation in the Building Regulatory Process: Proceedings of the 5th Annual NBS/NCSBCS Joint Conference. Technical Seminar on Solar Energy Conservation

    NASA Astrophysics Data System (ADS)

    Berry, S. A.

    1981-05-01

    Topics in solar energy and energy conservation are addressed. These proceedings include: (1) energy programs in the state of Colorado; (2) building energy performance standards concepts (3) state energy audits; (4) energy and building systems services; (5) solar energy and building codes.

  9. Determination for the 2006 International Energy Conservation Code, Residential Buildings – Technical Support Document

    SciTech Connect

    Lucas, Robert G.

    2009-09-26

    Provides a technical analysis showing that the 2006 International Energy Conservation Code contains improvements in energy efficiency compared to its predecessor, the 2003 International Energy Conservation Code. DOE is required by law to issue "determinations" of whether or not new editions of the IECC improve energy efficiency.

  10. A comprehensive framework to assess, model, and enhance the human role in conserving energy in commercial buildings

    NASA Astrophysics Data System (ADS)

    Azar, Elie

    Energy conservation and sustainability are subjects of great interest today, especially in the commercial building sector which is witnessing a very high and growing demand for energy. Traditionally, efforts to reduce energy consumption in this sector consisted of researching and developing energy efficient building technologies and systems. On the other hand, recent studies indicate that human actions are major determinants of building energy performance and can lead to excessive energy use even in advanced low-energy buildings. As a result, it is essential to determine if the approach to future energy reduction initiatives should remain solely technology-focused, or if a human-focused approach is also needed to complement advancements in technology and improve building operation and performance. In practice, while technology-focused solutions have been extensively researched, promoted, and adopted in commercial buildings, research efforts on the role of human actions and energy use behaviors in energy conservation remain very limited. This study fills the missing gap in literature by presenting a comprehensive framework to (1) understand and quantify the influence of human actions on building energy performance, (2) model building occupants' energy use behaviors and account for potential changes in these behaviors over time, and (3) test and optimize different human-focused energy reduction interventions to increase their adoption in commercial buildings. Results are significant and prove that human actions have a major role to play in reducing the energy intensity of the commercial building sector. This sheds the light on the need for a shift in how people currently use and control different buildings systems, as this is crucial to ensure efficient building operation and to maximize the return on investment in energy-efficient technologies. Furthermore, this study proposes methods and tools that can be applied on any individual or groups of commercial buildings

  11. Building America Top Innovations 2012: Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research supporting Thermal Bypass Air Barrier requirements. Since these were adopted in the 2009 IECC, close to one million homes have been mandated to include this vitally important energy efficiency measure.

  12. Building energy analysis tool

    DOEpatents

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  13. Energy Conservation in University Buildings: Encouraging and Evaluating Reductions in Occupants' Electricity Use.

    ERIC Educational Resources Information Center

    McClelland, Lou; Cook, Stuart W.

    1980-01-01

    Electricity conservation programs were implemented in matched pairs of office-classroom-laboratory buildings and dormitories. The methodological problems of predicting consumption levels, interpreting why changes in consumption occurred, and estimating initial waste levels are discussed along with their implications for the conduct of behavioral…

  14. DEMONSTRATION OF THE DOE INTERIM ENERGY CONSERVATION STANDARDS FOR NEW FEDERAL RESIDENTIAL BUILDINGS: EXECUTIVE SUMMARY

    SciTech Connect

    Lee, A. D.; Baechler, M Di Massa, F. V.; Lucas, R. G.; Shankle, D. L.

    1992-01-01

    In accordance with federal legislation, the U.S. Department of Energy (DOE) bas conducted a project to demonstrate use of its Interim Energy Conservation Standards for New Federal Residential Buildings. The demonstration is the second step in a three-step process: development of interim standards, demonstration of the interim standards, and development of final standards. Pacific Northwest Laboratory (PNL) collected information from the demonstration project and prepared this report under a contract with DOE. The purpose of the standards is to improve the energy efficiency of federal housing and increase the use of nondepletable energy sources. In accordance with the legislation, the standards were to be performance-based rather than prescribing specific energy conservation measures. The standards use a computer software program called COSTSAFR which individualizes the standards based on climate, housing type, and fuel costs. The standards generate minimum energy-efficiency requirements by applying the life-cycle cost methodology developed for federal projects, For the demonstration, the DOE chose live federal agency housing projects: four military housing projects and one project for the Department of Health and Human Services. DOE and PNL worked with agency housing procurement officials and designers/architects to hypothetically apply the interim standards to each housing project. PNL conducted extensive interviews with the federal agencies and design contractors to determine what impacts the standards would have on the existing agency procurement process as well as on designers. Overall, PNL found that the interim standards met the basic intent of the law. Specific actions were identified, however, that DOE could take to improve the standards and encourage the agencies to implement them. Agency personnel and designers expressed similar concerns about the standards: the minimum efficiency levels established by the standards were lower than expected and the

  15. Energy Conservation for Schools.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto.

    Information intended for those concerned with the administration, planning, financing, operation, and maintenance of school facilities applies to both new and existing building. An examination of motivation and policies relating to energy conservation is followed by the methods used for quantitative assessment of energy savings relative to extra…

  16. Recommendations for energy conservation standards for new residential buildings - volume 3: Introduction and Background to the Standard Development Effort

    SciTech Connect

    Not Available

    1989-05-01

    The Energy Conservation for New Buildings Act of 1976, as amended, 42 U.S.C Section 6831 et. seq. requires the US Department of Energy to issue energy conservation standards for the design of new residential and commercial buildings. The standards will be mandatory only for the design of new federal buildings, and will serve as voluntary guidelines for the design of new non-federal buildings. This report documents the development and testing of a set of recommendations, from the American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) Special Projects Committee No. 53, designed to provide the technical foundation for the Congressionally-mandated energy standard for new residential buildings. The recommendations have been developed over the past 25 months by a multidisciplinary project team, under the management of the US Department of Energy and its prime contractor, Pacific Northwest Laboratory. Volume III -- Introduction and Background to the Standard Development Effort is a description of the Standard development process and contains the rationale for the general approach and specific criteria contained within the recommendations.

  17. DEMONSTRATION OF THE DOE INTERIM ENERGY CONSERVATION STANDARDS FOR NEW FEDERAL RESIDENTIAL BUILDINGS

    SciTech Connect

    Lee, A. D.; Baechler, H. C.; Di Massa, F. V.; Lucas, R. G.; Shankle, D. L.

    1992-01-01

    In accordance with federal legislation, the U.S. Department of Energy (DOE) has sponsored a study to demonstrate use of its Interim Energy Conservation Standards for New Federal Residential Buildings. The demonstration study was conducted by DOE and the Pacific Northwest Laboratory (PNL). The demonstration is the second step in a three-step process: I) development of interim standards, 2) demonstration of the interim standards, and 3) development of final standards. The standards are mandatory for federal agency housing procurements. Nevertheless, PNL found at the start of the demonstration that agency use of the interim standards had been minimal. The purpose of the standards is to improve the energy efficiency of federal housing and increase the use of nondepletable energy sources. In accordance with the legislation, the standards were to be performance-based rather than prescribing specific energy conservation measures. To fulfill this aspect of the legislation, the standards use a computer software program called COSTSAFR which generates a point system that individualizes the standards to specific projects based on climate, housing type, and fuel costs. The standards generate minimum energy-efficiency requirements by applying the life-cycle cost methodology developed for federal projects. For the demonstration, PNL and DOE chose five federal agency housing projects which had been built in diverse geographic and climate regions. Participating agencies were the Air Force, the Army (which provided two case studies), the Navy, and the Department of Health and Human Services. PNL worked with agency housing procurement officials and designers/architects to hypothetically apply the interim standards to the procurement and design of each housing project. The demonstration started at the point in the project where agencies would establish their energyefficiency requirements for the project and followed the procurement process through the designers' use of the point

  18. Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Utah

    SciTech Connect

    Cole, Pamala C.; Lucas, Robert G.

    2009-05-01

    The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current Utah code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $168 to $188 for an average new house in Utah at recent fuel prices.

  19. Window Design Strategies to Conserve Energy. NBS Building Science Series 104.

    ERIC Educational Resources Information Center

    Hastings, S. Robert; Crenshaw, Richard W.

    A multitude of design strategies are available to achieve energy-efficient windows. Opportunities for improving window performance fall into six groups: site, exterior appendages, frame, glazing, interior accessories, and building interior. Design strategies within these groups can improve one or more of the six energy functions of windows: solar…

  20. Energy Conservation and Solar Retrofitting for Existing Buildings in Oregon: An Architectural Design Class Project.

    ERIC Educational Resources Information Center

    Oregon Univ., Eugene. School of Architecture and Allied Arts.

    Five privately owned homes and two university owned homes were examined by architecture students in order to formulate design alternatives to fit the houses with solar collection, storage, and control devices for supplementing domestic space and/or water heating. General principles advanced include why energy conservation and solar retrofitting…

  1. The Management of Building Environment for Comfort and Energy Conservation. Final Report.

    ERIC Educational Resources Information Center

    North Seattle Community Coll., WA.

    This report presents materials from a Washington State project to develop a curriculum outline of three courses for energy conservation to be used in vocational supplement classes. It first presents results from an industrial survey on which engineers, architects, and mechanical contractors rated objectives for the three courses. Next are provided…

  2. Motor Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple motor inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: High Efficiency Motor retrofit and Cogged V-belts retrofit. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  3. A Comparison of the 2003 and 2006 International Energy Conservation Codes to Determine the Potential Impact on Residential Building Energy Efficiency

    SciTech Connect

    Stovall, Therese K; Baxter, Van D

    2008-03-01

    The IECC was updated in 2006. As required in the Energy Conservation and Production Act of 1992, Title 3, DOE has a legislative requirement to "determine whether such revision would improve energy efficiency in residential buildings" within 12 months of the latest revision. This requirement is part of a three-year cycle of regular code updates. To meet this requirement, an independent review was completed using personnel experienced in building science but not involved in the code development process.

  4. Energy conservation in museums

    SciTech Connect

    Ucar, M.; Doering, G.C.

    1980-07-01

    An overall assessment of energy conservation in museums in New York is made in view of the special environmental considerations involved. The special relative humidity, temperature, and lighting requirements of museums were studied extensively. An energy consumption data base was formed with actual energy use data obtained from over fifty institutions across the state. The computerized energy consumption data base compiled covers an extremely wide range of energy usage levels. On-site energy consumption ranged from approximately 20,000 to 400,000 Btu/ft/sup 2/ year. The data base includes small rural institutions and large metropolitan museums, historic and modern structures, seasonal and year-round museums, single buildings and collections of buildings, single-story buildings and multiple-story buildings, an aquarium, and a zoo. Thus, it is difficult to identify trends in the energy consumption data and to make correlations with such parameters as age, type, size, etc. Walk-through or mini energy audits were performed on ten museums located in various parts of New York State. This project also included a thorough study of all potential funding sources to which museums can apply for financing energy conservation measures. Sources of technical assistance and information were also identified. (MCW)

  5. Preliminary evaluation of radiation control coatings for energy conservation in buildings

    SciTech Connect

    Anderson, R.W.

    1992-02-01

    Radiation Control Coatings (RCCs) applied to external building surfaces can reflect about 85 percent of the solar heating from the surfaces of buildings. Since in warm climates, solar heating is the primary source of heat gain through walls and roofs, RCC technology represents an alternative or adjunct to conventional thermal control methods (e.g., thermal insulation) for opaque building components. The primary objectives of this project were to: (1) obtain solar and infrared reflectance data for representative RCC products, (2) evaluate test methods for measurement of the radiative properties of RCCs, (3) calculate the changes in heat flow attributed to RCCs in flat roof applications in several geographic locations, and (4) compare field tests and calculated thermal performance of an RCC in a flat roof configuration. Data are presented for the radiative properties of five commercially available RCC products as determined by several test methods. The potential energy benefits of RCCs are presented for flat roofs in both warm and cold climates.

  6. Local-government energy-conservation programs and their impact on rental buildings

    SciTech Connect

    Suchy, K.W.; VonZuckerstein, I.

    1982-08-01

    The current programs are identified, with emphasis at the local level, that have been implemented to promote energy efficiency in rental property markets. Various factors that influence the success of these local programs are analyzed. The issues of availability of financing on reasonable terms, efficiency and appropriateness of various tax incentives, value of information dissemination, regulatory considerations, technological barriers, and other beneficial or deterimental factors are extensively discussed. Local energy conservations programs that pertain to rental markets are reviewed for four representative communities: Chicago, Boston, Minneapolis, and San Francisco. Suggestions for future research are also presented.

  7. Energy Efficiency and Conservation Block Grant (EECBG) - Better Buildings Neighborhood Program at Greater Cincinnati Energy Alliance: Home Performance with Energy Star® and Better Buildings Performance

    SciTech Connect

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training

  8. Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Kansas City, Missouri

    SciTech Connect

    Lucas, Robert G.

    2011-09-30

    The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the 2006 IECC. The notable changes are: (1) Improved duct sealing verified by testing the duct system; (2) Increased duct insulation; (3) Improvement of window U-factors from 0.40 to 0.35; and (4) Efficient lighting requirements. An analysis of these changes resulted in estimated annual energy cost savings of about $145 a year for an average new house. Construction cost increases are estimated at $655. Home owners will experience an annual cost savings of close to $100 a year because reduction to energy bills will more than compensate for increased mortgage payments and other costs.

  9. Energy: Conservation, Energy Briefs

    ERIC Educational Resources Information Center

    Nation's Schools and Colleges, 1975

    1975-01-01

    A comprehensive energy conservation program at College of the Holy Cross has saved nearly one-third of the fuel oil and one-fifth of the electricity used at the college; briefs on boilers, lights, design. (Author/MLF)

  10. Standby Energy Conservation Plan No. 2: Building Temperature Restrictions Plan. Environmental report

    SciTech Connect

    1980-02-01

    This report analyzes the environmental impacts of the proposed Building Temperature Restrictions Plan. The Plan would result in fuel and energy savings which could be diverted to other areas. Environmental impacts, with emphasis on air quality, were analyzed and found to result in a very minor improvement in air quality. Public health impacts are also minimal, and although some individuals may experience discomfort, it can be minimized by adjustments in clothing. The change in temperature is insufficient to have any significant impact on persons suffering from most diseases.

  11. Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Mesa, Arizona

    SciTech Connect

    Lucas, Robert G.

    2011-03-31

    The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the 2006 IECC and the 2003 IECC. The notable changes are: (1) Improved duct sealing verified by testing the duct system; (2) Increased duct insulation; (3) Improvement of window U-factors from 0.40 to 0.35; and (4) Efficient lighting requirements. An analysis of these changes resulted in estimated annual energy cost savings of $145 a year for an average new house compared to the 2003 IECC. This energy cost saving decreases to $125 a year for the 2009 IECC compared to the 2006 IECC. Construction cost increases (per home) for complying with the 2009 IECC are estimated at $1256 relative to the 2003 IECC and $800 for 2006 IECC. Home owners will experience an annual cost savings of about $80 a year by complying with the 2009 IECC because reduction to energy bills will more than compensate for increased mortgage payments and other costs.

  12. Energy Conservation Code Decoded

    SciTech Connect

    Cole, Pam C.; Taylor, Zachary T.

    2006-09-01

    Designing an energy-efficient, affordable, and comfortable home is a lot easier thanks to a slime, easier to read booklet, the 2006 International Energy Conservation Code (IECC), published in March 2006. States, counties, and cities have begun reviewing the new code as a potential upgrade to their existing codes. Maintained under the public consensus process of the International Code Council, the IECC is designed to do just what its title says: promote the design and construction of energy-efficient homes and commercial buildings. Homes in this case means traditional single-family homes, duplexes, condominiums, and apartment buildings having three or fewer stories. The U.S. Department of Energy, which played a key role in proposing the changes that resulted in the new code, is offering a free training course that covers the residential provisions of the 2006 IECC.

  13. Energy Efficiency and Conservation Block Grant (EECBG): Better Buildings Neighborhood Program Final Report

    SciTech Connect

    Donnelly, Kat A.

    2014-01-10

    The Neighbor to Neighbor Energy Challenge (N2N) brought together a consortium of 14 leading clean energy rural, suburban, and low income communities throughout Connecticut. N2N was awarded $4.2 million from the U.S. Department of Energy (DOE) competitive BetterBuildings Neighborhood Program on August 10, 2010 to run a two-year pilot program (plus one year of transition and evaluation) (Award No. EMCBC- 00969-10). N2N tested innovative program models and hypotheses for improving Connecticut’s existing residential energy efficiency programs that are overseen by the ratepayer fund board and administered by CT utilities. N2N’s original goal was to engage 10 percent of households in participating communities to reduce their energy usage by 20 percent through energy upgrades and clean energy measures. N2N planned for customers to complete more comprehensive whole-home energy efficiency and clean energy measures and to achieve broader penetration than existing utility-administered regulated programs. Since this was an ARRA award, we report the following figures on job creation in Table 1. Since N2N is not continuing in its current form, we do not provide figures on job retention. Table 1 N2N Job Creation by Quarter Jobs Created 2010 Q4 6.65 2011 Q1 7.13 2011 Q2 4.98 2011 Q3 9.66 2011 Q4 5.43 2012 Q1 11.11 2012 Q2 6.85 2012 Q3 6.29 2012 Q4 6.77 2013 Q1 5.57 2013 Q2 8.35 2013 Q3 6.52 Total 85.31 The N2N team encountered several gaps in the existing efficiency program performance that hindered meeting N2N’s and DOE’s short-term program goals, as well as the State of Connecticut’s long-term energy, efficiency, and carbon reduction goals. However, despite the slow program start, N2N found evidence of increasing upgrade uptake rates over time, due to delayed customer action of one to two years from N2N introduction to completion of deeper household upgrades. Two main social/behavioral principles have contributed to driving deeper upgrades in CT: 1. Word of mouth

  14. Selling energy conservation.

    PubMed

    Hinrichsen, D

    1995-01-01

    This article concerns the Organization of the Petroleum Exporting Countries (OPEC) crisis and its impact on energy efficiency measures in the US. In 1985, when the OPEC collapsed, the US government had avoided the need to construct 350 gigawatts of new electric capacity. The most successful efficiency improvements, especially in household appliances and equipment, lighting and tightened energy efficiency standards in new buildings, resulted from the OPEC event. The real innovation of that time was the change in profit rules for utilities. This revolution and the way some US utilities view energy have not caught on elsewhere. Despite the initiative toward improving energy efficiency in homes, offices and industries, the change has been slow. Partly to blame are the big development banks, which pointed out that short-term conservation and efficiency measures could save at least 15% of the total energy demand without the need for major investment. The benefits of energy conservation was shown during the oil shock when per capita energy consumption fell by 5% in the member states of the Organization of Economic Cooperation and Development, while the per capita gross domestic product grew by a third. There has been a decrease in energy expenditure worldwide, and the scope for further energy savings is enormous, but governments need to recognize and seize the opportunity. PMID:12295818

  15. Environmental assessment in support of proposed voluntary energy conservation standard for new residential buildings

    SciTech Connect

    Hadley, D.L.; Parker, G.B.; Callaway, J.W.; Marsh, S.J.; Roop, J.M.; Taylor, Z.T.

    1989-06-01

    The objective of this environmental assessment (EA) is to identify the potential environmental impacts that could result from the proposed voluntary residential standard (VOLRES) on private sector construction of new residential buildings. 49 refs., 15 tabs.

  16. Fort Gordon energy survey and analysis of boiler and chiller plants, Building 25910, Building 25330. Proposed energy conservation opportunities for Savannah District Corps of Engineers. Executive summary. Final report

    SciTech Connect

    1995-04-03

    This report is the result of extensive field studies to determine the ability of the plants in the North Central and South Utility Buildings to meet current and future heating and cooling demands at Fort Gordon. As described in this document, the ability to meet these demands is based on providing utility services that are cost effective, efficient and reliable. The purpose of this report is to present four opportunities for Energy Conservation Investment Program (ECIP) projects at Fort Gordon. Each ECIP consists of multiple Energy Conservation Opportunities (ECOs). Each ECIP and ECO is described in sufficient detail to support the application process for funding.

  17. All-Of-The-Above Federal Building Energy Conservation Act of 2013

    THOMAS, 113th Congress

    Sen. Hoeven, John [R-ND

    2013-06-20

    06/25/2013 Committee on Energy and Natural Resources Subcommittee on Energy. Hearings held. With printed Hearing: S.Hrg. 113-70. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. Monitoring conservative retrofits in single family buildings

    SciTech Connect

    Richardson, C.S.

    1992-12-06

    This study has provided detailed before-and-after information on the ambient and comfort conditions in nine single family buildings, and on the energy consumption of those buildings, for one or more energy conservation retrofits. The data were recorded in such a manner that as well as being able to determine the savings from the retrofits and the influence these retrofits have on the comfort conditions of the residence, the effects of the retrofits on time-of-day usage are also determinable. The following are included in appendices: a table of participant's names, site addresses and retrofit; significant dates and appropriate comments; a day of data and an annotated data set; pre-retrofit and post-retrofit audit data sheets; and usage history.

  19. Making an Energy Conservation Program Work.

    ERIC Educational Resources Information Center

    Rump, Erwin E.; Hunter, James L.

    The first step of an energy conservation program is to monitor energy consumption. A system is explained that, in order to determine which buildings are energy efficient (considering all types of energy that a building might use), monitors total energy consumption. All such consumptions can be reduced to a common denominator: Barrels of Energy…

  20. Steam System Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: fixing steam leaks. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  1. Alternative Natural Energy Sources in Building Design.

    ERIC Educational Resources Information Center

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  2. The NASA Energy Conservation Program

    NASA Technical Reports Server (NTRS)

    Gaffney, G. P.

    1977-01-01

    Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.

  3. Commitment and energy conservation

    SciTech Connect

    Pallak, M.S.; Cook, D.A.; Sullivan, J.J.

    1980-01-01

    The authors discuss the process of becoming committed to energy conservation research, then describe practical issues of field research and several data sets on household energy conservation. Their results show that taking a stand affected behavior in reducing the levels of natural gas and electricity usage, with the effect continuing even after the study ended. Although based on the assumption that homeowners were initially favorable toward energy conservation, the studies suggest that energy-related behavior is malleable and amenable to approaches familiar to psychologists. The study indicates that feedback on energy use during peak seasons could help to avoid power shortages. 16 references, 6 tables.

  4. Home Energy Conservation Primer.

    ERIC Educational Resources Information Center

    DeLuca, V. William; And Others

    This guide was prepared to support a program of training for community specialists in contemporary and practical techniques of home energy conservation. It is designed to assist professionals in efficient operation of energy conservation programs and to provide ideas for expanding education operations. Eight major sections are presented: (1)…

  5. Residential Building Energy Analysis

    Energy Science and Technology Software Center (ESTSC)

    1990-09-01

    PEAR (Program for Energy Analysis of Residences) provides an easy-to-use and accurate method of estimating the energy and cost savings associated with various energy conservation measures in site-built single-family homes. Measures such as ceiling, wall, and floor insulation; different window type and glazing layers; infiltration levels; and equipment efficiency can be considered. PEAR also allows the user to consider the effects of roof and wall color, movable night insulation on the windows, reflective and heatmore » absorbing glass, an attached sunspace, and use of a night temperature setback. Regression techniques permit adjustments for different building geometries, window areas and orientations, wall construction, and extension of the data to 880 U.S. locations determined by climate parameters. Based on annual energy savings, user-specified costs of conservation measures, fuel, lifetime of measure, loan period, and fuel escalation and interest rates, PEAR calculates two economic indicators; the Simple Payback Period (SPP) and the Savings-to-Investment Ratio (SIR). Energy and cost savings of different sets of conservation measures can be compared in a single run. The program can be used both as a research tool by energy policy analysts and as a method for nontechnical energy calculation by architects, home builders, home owners, and others in the building industry.« less

  6. Residential Building Energy Analysis

    SciTech Connect

    Ritschard, R. L.

    1990-09-01

    PEAR (Program for Energy Analysis of Residences) provides an easy-to-use and accurate method of estimating the energy and cost savings associated with various energy conservation measures in site-built single-family homes. Measures such as ceiling, wall, and floor insulation; different window type and glazing layers; infiltration levels; and equipment efficiency can be considered. PEAR also allows the user to consider the effects of roof and wall color, movable night insulation on the windows, reflective and heat absorbing glass, an attached sunspace, and use of a night temperature setback. Regression techniques permit adjustments for different building geometries, window areas and orientations, wall construction, and extension of the data to 880 U.S. locations determined by climate parameters. Based on annual energy savings, user-specified costs of conservation measures, fuel, lifetime of measure, loan period, and fuel escalation and interest rates, PEAR calculates two economic indicators; the Simple Payback Period (SPP) and the Savings-to-Investment Ratio (SIR). Energy and cost savings of different sets of conservation measures can be compared in a single run. The program can be used both as a research tool by energy policy analysts and as a method for nontechnical energy calculation by architects, home builders, home owners, and others in the building industry.

  7. Energy Management Guide for Building Management. Electricity.

    ERIC Educational Resources Information Center

    Consolidated Edison Co., Brooklyn, NY.

    This guide is intended for use by commercial building management and operating staffs to encourage energy conservation. The measures suggested are meant to allow building operation at optimum efficiency while minimizing energy waste. Though mainly applicable to multistory buildings, the suggested energy conservation measures are also adaptable to…

  8. Integrating Land Conservation and Renewable Energy Goals in California: Assessing Land Use and Economic Cost Impacts Using the Optimal Renewable Energy Build-Out (ORB) Model.

    NASA Astrophysics Data System (ADS)

    Wu, G. C.; Schlag, N. H.; Cameron, D. R.; Brand, E.; Crane, L.; Williams, J.; Price, S.; Hernandez, R. R.; Torn, M. S.

    2015-12-01

    There is a lack of understanding of the environmental impacts and economic costs of potential renewable energy (RE) siting decisions that achieve ambitious RE targets. Such analyses are needed to inform policy recommendations that minimize potential conflicts between conservation and RE development. We use the state of California's rapid development of utility-scale RE as a case study to examine how possible land use constraints impact the total electricity land area, areas with conservation value, water use, and electricity cost of ambitious RE portfolios. We developed the Optimal Renewable energy Build-out (ORB) model, and used it in conjunction with the Renewable Portfolio Standard (RPS) Calculator, a RE procurement and transmission planning tool used by utilities within California, to generate environmentally constrained renewable energy potential and assess the cost and siting-associated impacts of wind, solar photovoltaic, concentrating solar power (CSP), and geothermal technologies. We find that imposing environmental constraints on RE development achieves lower conservation impacts and results in development of more fragmented land areas. With increased RE and environmental exclusions, generation becomes more widely distributed across the state, which results in more development on herbaceous agricultural vegetation, grasslands, and developed & urban land cover types. We find land use efficiencies of RE technologies are relatively inelastic to changes in environmental constraints, suggesting that cost-effective substitutions that reduce environmental impact and achieve RE goals is possible under most scenarios and exclusion categories. At very high RE penetration that is limited to in-state development, cost effectiveness decreases substantially under the highest level of environmental constraint due to the over-reliance on solar technologies. This additional cost is removed once the in-state constraint is lifted, suggesting that minimizing both negative

  9. Energy Conservation Simplified

    ERIC Educational Resources Information Center

    Hecht, Eugene

    2008-01-01

    The standard formulation of energy conservation involves the subsidiary ideas of kinetic energy ("KE"), work ("W"), thermal energy, internal energy, and a half-dozen different kinds of potential energy ("PE"): elastic, chemical, nuclear, gravitational, and so forth. These quantities came to be recognized during the centuries over which the…

  10. Energy Conservation vs. Energy Efficiency

    SciTech Connect

    Somasundaram, Sriram

    2010-09-30

    Energy conservation is considered by some as synonymous with energy efficiency, but to others, it has a meaning of getting fewer or lower quality energy services. The degree of confusion between these meanings varies widely by individual, culture, historic period and language spoken. In the context of this document, energy conservation means to keep from being lost or wasted; saved, and energy efficiency means the ability to produce a desired effect or product with a minimum of effort, expense or waste.

  11. Energy Conservation Simplified

    NASA Astrophysics Data System (ADS)

    Hecht, Eugene

    2008-02-01

    The standard formulation of energy conservation involves the subsidiary ideas of kinetic energy (KE), work (W), thermal energy, internal energy, and a half-dozen different kinds of potential energy (PE): elastic, chemical, nuclear, gravitational, and so forth. These quantities came to be recognized during the centuries over which the principle developed. The final conservation law, although rich in specificity, is fairly involved. More significantly, it obscures a fundamental underlying simplicity, which could only be appreciated post-relativity (1905). Energy is the scalar measure of physical change. Using the special theory it will be shown that there are only two all-encompassing classifications of energy—energy of rest and energy of motion—and that we can apply the idea of conservation of energy to all physical processes using only these two energy types as quantified by mass and KE.

  12. Total Energy Management: A Practical Handbook on Energy Conservation and Management. For Use of Owners and Managers of Office Buildings and Small Retail Stores. 2nd Edition.

    ERIC Educational Resources Information Center

    National Electrical Contractors Association, Washington, DC.

    Described in this guide for owners and managers of office buildings and small retail stores, is a program entitled Total Energy Management (TEM). The TEM program approach rests on the premise that buildings should be examined in terms of total energy consumption, rather than prescribing energy budgets for a building's separate systems. The…

  13. Geospatial database for heritage building conservation

    NASA Astrophysics Data System (ADS)

    Basir, W. N. F. W. A.; Setan, H.; Majid, Z.; Chong, A.

    2014-02-01

    Heritage buildings are icons from the past that exist in present time. Through heritage architecture, we can learn about economic issues and social activities of the past. Nowadays, heritage buildings are under threat from natural disaster, uncertain weather, pollution and others. In order to preserve this heritage for the future generation, recording and documenting of heritage buildings are required. With the development of information system and data collection technique, it is possible to create a 3D digital model. This 3D information plays an important role in recording and documenting heritage buildings. 3D modeling and virtual reality techniques have demonstrated the ability to visualize the real world in 3D. It can provide a better platform for communication and understanding of heritage building. Combining 3D modelling with technology of Geographic Information System (GIS) will create a database that can make various analyses about spatial data in the form of a 3D model. Objectives of this research are to determine the reliability of Terrestrial Laser Scanning (TLS) technique for data acquisition of heritage building and to develop a geospatial database for heritage building conservation purposes. The result from data acquisition will become a guideline for 3D model development. This 3D model will be exported to the GIS format in order to develop a database for heritage building conservation. In this database, requirements for heritage building conservation process are included. Through this research, a proper database for storing and documenting of the heritage building conservation data will be developed.

  14. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    SciTech Connect

    Not Available

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  15. Foundry energy conservation workbook

    SciTech Connect

    1990-10-01

    This report discusses methods for promoting energy conservation in foundries. Use of electric power, natural gas, and coke are evaluated. Waste heat recovery systems are considered. Energy consumption in the specific processes of electric melting, natural gas melting, heat treatments, ladle melting, and coke fuel melting is described. An example energy analysis is included. (GHH)

  16. Foundry energy conservation workbook

    SciTech Connect

    Not Available

    1990-12-31

    This report discusses methods for promoting energy conservation in foundries. Use of electric power, natural gas, and coke are evaluated. Waste heat recovery systems are considered. Energy consumption in the specific processes of electric melting, natural gas melting, heat treatments, ladle melting, and coke fuel melting is described. An example energy analysis is included. (GHH)

  17. Building Code Compliance and Enforcement: The Experience of SanFrancisco's Residential Energy Conservation Ordinanace and California'sBuildign Standards for New Construction

    SciTech Connect

    Vine, E.

    1990-11-01

    As part of Lawrence Berkeley Laboratory's (LBL) technical assistance to the Sustainable City Project, compliance and enforcement activities related to local and state building codes for existing and new construction were evaluated in two case studies. The analysis of the City of San Francisco's Residential Energy Conservation Ordinance (RECO) showed that a limited, prescriptive energy conservation ordinance for existing residential construction can be enforced relatively easily with little administrative costs, and that compliance with such ordinances can be quite high. Compliance with the code was facilitated by extensive publicity, an informed public concerned with the cost of energy and knowledgeable about energy efficiency, the threat of punishment (Order of Abatement), the use of private inspectors, and training workshops for City and private inspectors. The analysis of California's Title 24 Standards for new residential and commercial construction showed that enforcement of this type of code for many climate zones is more complex and requires extensive administrative support for education and training of inspectors, architects, engineers, and builders. Under this code, prescriptive and performance approaches for compliance are permitted, resulting in the demand for alternative methods of enforcement: technical assistance, plan review, field inspection, and computer analysis. In contrast to existing construction, building design and new materials and construction practices are of critical importance in new construction, creating a need for extensive technical assistance and extensive interaction between enforcement personnel and the building community. Compliance problems associated with building design and installation did occur in both residential and nonresidential buildings. Because statewide codes are enforced by local officials, these problems may increase over time as energy standards change and become more complex and as other standards (eg, health and

  18. 59 FR- Energy Conservation

    Federal Register 2010, 2011, 2012, 2013, 2014

    1994-09-13

    ... and indoor air quality. These results, plus the introduction of new building energy technologies which... Engineers (ASHRAE Standard 62 Ventilation for Acceptable Indoor Air Quality). This will improve temperature comfort levels, ventilation, and the indoor air quality of buildings. This will, in turn, improve...

  19. Demand controlled ventilating systems: Sensor market survey. Energy conservation in buildings and community systems programme, annex 18, December 1991

    NASA Astrophysics Data System (ADS)

    Raatschen, W.; Sjoegren, M.

    The subject of indoor and outdoor air quality has generated a great deal of attention in many countries. Areas of concern include outgassing of building materials as well as occupant-generated pollutants such as carbon dioxide, moisture, and odors. Progress has also been made towards addressing issues relating to the air tightness of the building envelope. Indoor air quality studies indicate that better control of supply flow rates as well as the air distribution pattern within buildings are necessary. One method of maintaining good indoor air quality without extensive energy consumption is to control the ventilation rate according to the needs and demands of the occupants, or to preserve the building envelope. This is accomplished through the use of demand controlled ventilating (DCV) systems. The specific objective of Annex 18 is to develop guidelines for demand controlled ventilating systems based on state of the art analyses, case studies on ventilation effectiveness, and proposed ventilation rates for different users in domestic, office, and school buildings.

  20. Municipal-building conservation project: financing conservation in municipal buildings. Final report

    SciTech Connect

    Gatton, David; Mounts, Richard; Scrimger, Kay; Wood, Elizabeth; Musselwhite, Ron; Wanning, Helen; Frazier, Andrew; Pyles, Odessa

    1982-01-01

    The purpose of this survey was to assess one dimension of the energy problem that confronts cities - energy costs for public buildings - and to see how a sample of local governments had confronted that problem. While cities of all sizes tend to have a considerable variety of buildings, most are related to the basic municipal service of administration, police and fire protection, public works, and recreation. Most of these buildings consume natural gas and electricity as their primary source of energy, sources whose price is likely to rise more rapidly than the rate of inflation in the next few years. While it is difficult to assess the reports of energy costs without comparing them to the total city budget, these costs were found to be sizable among small and medium cities, and quite large among larger cities. While several of the conservation programs in the sample dated back to 1976, almost half (14) were relatively new, having been undertaken only in the last three years. Administratively, most have been placed under the direction of budget or public works officials, and, substantively, have emphasized no-cost/low-cost measures, such as employee awareness programs and improvements in building maintenance. In keeping with this, most of the programs have been supported by reprogramming funds, supplemented with local capital improvement funds, and state and federal grants. Case studies for five localities are appended.

  1. Energy Conservation--Hero or Villian?

    ERIC Educational Resources Information Center

    Keith, William J. B.

    1985-01-01

    Energy conservation efforts have often hermetically sealed buildings without concern for air quality. The Waterloo County Board of Education, Ontario, has installed indicators to test air quality and has installed a "clean room" for children with allergies. (MLF)

  2. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  3. Energy Conservation Through Rational Architecture and Planning

    ERIC Educational Resources Information Center

    Brubaker, C. William

    1976-01-01

    Buildings can be designed in harmony with the natural environment, and new techniques of "active" solar design exist to collect and use solar energy for space heating and cooling. Preservation and reuse of existing buildings and neighborhoods are other ways to conserve energy. (Author/MLF)

  4. Buildings That Conserve and Educate

    ERIC Educational Resources Information Center

    Prentiss, Timothy

    2011-01-01

    This article presents an interview with Wendy Rogers, a design principal at the architectural firm LPA in Irvine, California, as well as a LEED AP (Leadership in Energy and Environmental Design Accredited Professional). Throughout her 24-year career she has advocated for sustainable design in schools. Rogers works closely with the US Green…

  5. Energy Conservation Program Evaluation.

    ERIC Educational Resources Information Center

    Heilman, John G., Ed.

    1989-01-01

    Seven papers suggest ways in which theory informs evaluation research in the area of energy conservation. Perspectives of epistemology and methodology and political and bureaucratic issues are addressed. Examples show how theoretically informed concepts and propositions about personal choice and organizational process contribute to knowledge about…

  6. Energy-conservation indicators

    SciTech Connect

    Belzer, D.B.

    1982-06-01

    A series of Energy Conservation Indicators were developed for the Department of Energy to assist in the evaluation of current and proposed conservation strategies. As descriptive statistics that signify current conditions and trends related to efficiency of energy use, indicators provide a way of measuring, monitoring, or inferring actual responses by consumers in markets for energy services. Related sets of indicators are presented in some 30 one-page indicator summaries. Indicators are shown graphically, followed by several paragraphs that explain their derivation and highlight key findings. Indicators are classified according to broad end-use sectors: Aggregate (economy), Residential, Commercial, Industrial, and transportation. In most cases annual time series information is presented covering the period 1960 through 1981.

  7. Identification of cost effective energy conservation measures

    NASA Technical Reports Server (NTRS)

    Bierenbaum, H. S.; Boggs, W. H.

    1978-01-01

    In addition to a successful program of readily implemented conservation actions for reducing building energy consumption at Kennedy Space Center, recent detailed analyses have identified further substantial savings for buildings representative of technical facilities designed when energy costs were low. The techniques employed for determination of these energy savings consisted of facility configuration analysis, power and lighting measurements, detailed computer simulations and simulation verifications. Use of these methods resulted in identification of projected energy savings as large as $330,000 a year (approximately two year break-even period) in a single building. Application of these techniques to other commercial buildings is discussed

  8. Saving Money Through Energy Conservation.

    ERIC Educational Resources Information Center

    Presley, Michael H.; And Others

    This publication is an introduction to personal energy conservation. The first chapter presents a rationale for conserving energy and points out that private citizens control about one third of this country's energy consumption. Chapters two and three show how to save money by saving energy. Chapter two discusses energy conservation methods in the…

  9. Why not energy conservation?

    NASA Astrophysics Data System (ADS)

    Carlson, Shawn

    2016-01-01

    Energy conservation is a deep principle that is obeyed by all of the fundamental forces of nature. It puts stringent constraints on all systems, particularly systems that are ‘isolated,’ meaning that no energy can enter or escape. Notwithstanding the success of the principle of stationary action, it is fair to wonder to what extent physics can be formulated from the principle of stationary energy. We show that if one interprets mechanical energy as a state function, then its stationarity leads to a novel formulation of classical mechanics. However, unlike Lagrangian and Hamiltonian mechanics, which deliver their state functions via algebraic proscriptions (i.e., the Lagrangian is always the difference between a system’s kinetic and potential energies), this new formalism identifies its state functions as the solutions to a differential equation. This is an important difference because differential equations can generate more general solutions than algebraic recipes. When applied to Newtonian systems for which the energy function is separable, these state functions are always the mechanical energy. However, while the stationary state function for a charged particle moving in an electromagnetic field proves not to be energy, the function nevertheless correctly encodes the dynamics of the system. Moreover, the stationary state function for a free relativistic particle proves not to be the energy either. Rather, our differential equation yields the relativistic free-particle Lagrangian (plus a non-dynamical constant) in its correct dynamical context. To explain how this new formalism can consistently deliver stationary state functions that give the correct dynamics but that are not always the mechanical energy, we propose that energy conservation is a specific realization of a deeper principle of stationarity that governs both relativistic and non-relativistic mechanics.

  10. 76 FR 26656 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... Clothes Dryers and Room Air Conditioners AGENCY: Office of Energy Efficiency and Renewable Energy... L. Witkowski, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... energy conservation standards for clothes dryers and room air conditioners on April 21, 2011 (76 FR...

  11. Energy conservation technologies

    SciTech Connect

    Courtright, H.A.

    1993-12-31

    The conservation of energy through the efficiency improvement of existing end-uses and the development of new technologies to replace less efficient systems is an important component of the overall effort to reduce greenhouse gases which may contribute to global climate change. Even though uncertainties exist on the degree and causes of global warming, efficiency improvements in end-use applications remain in the best interest of utilities, their customers and society because efficiency improvements not only reduce environmental exposures but also contribute to industrial productivity, business cost reductions and consumer savings in energy costs.

  12. Energy conservation in typical Asian countries

    SciTech Connect

    Yang, M.; Rumsey, P.

    1997-06-01

    Various policies and programs have been created to promote energy conservation in Asia. Energy conservation centers, energy conservation standards and labeling, commercial building codes, industrial energy use regulations, and utility demand-side management (DSM) are but a few of them. This article attempts to analyze the roles of these different policies and programs in seven typical Asian countries: China, Indonesia, Japan, Pakistan, South Korea, the Philippines, and Thailand. The conclusions show that the two most important features behind the success policies and programs are (1) government policy support and (2) long-run self-sustainability of financial support to the programs.

  13. Energy Conservation Curriculum for Secondary and Post-Secondary Students. Module 11: Economics of Energy Conservation.

    ERIC Educational Resources Information Center

    Navarro Coll., Corsicana, TX.

    This module is the eleventh in a series of eleven modules in an energy conservation curriculum for secondary and postsecondary vocational students. It is designed for use by itself or as part of a sequence of four modules on energy conservation in building construction and operation (see also modules 8, 9, and 10). The objective of this module is…

  14. Sweet Grass Elementary School: A Study in Energy Conservation. Energy Conservation: School Design.

    ERIC Educational Resources Information Center

    Edmonton Public Schools (Alberta).

    The results of building a new school in Edmonton (Alberta) in accordance with energy efficient principles are described in this report, the third and last in a series describing three projects utilizing different approaches to energy conservation. The Sweet Grass Elementary School project consisted in designing, building, and monitoring an energy…

  15. National energy conservation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A set of energy conservation actions that cut across all sectors of the economy were analyzed so that all actions under consideration be analyzed systematically and as a whole. The actions considered were as follows: (1) roll back the price of newly discovered oil, (2) freeze gasoline production for 3 years at 1972 levels, (3) mandate automobile mileage improvements, (4) require industry to improve energy efficiency, (5) require manufacture of household appliances with greater efficiency, (6) force conversion of many power plants from gas and oil to coal. The results showed that considerable gas and oil would be saved by forcing switches to coal. However, the large scale switch to coal was shown to require greatly increased outputs from many other industries that in turn require more energy. It was estimated that nearly 2.5 quads of additional coal were needed to produce these additional requirements. Also, the indirect requirements would create more jobs.

  16. Low Energy Building for High Energy People.

    ERIC Educational Resources Information Center

    American School and University, 1982

    1982-01-01

    The Huston Huffman Center at the University of Oklahoma's Norman campus has a jogging track as well as facilities for exercise and court games that are fully accessible to the handicapped. The building is set eight feet in the ground both to reduce its bulk and to conserve energy. (Author/MLF)

  17. Supply Curves of Conserved Energy

    SciTech Connect

    Meier, Alan Kevin

    1982-05-01

    Supply curves of conserved energy provide an accounting framework that expresses the potential for energy conservation. The economic worthiness of a conservation measure is expressed in terms of the cost of conserved energy, and a measure is considered economical when the cost of conserved energy is less than the price of the energy it replaces. A supply curve of conserved energy is independent of energy prices; however, the economical reserves of conserved energy will depend on energy prices. Double-counting of energy savings and error propagation are common problems when estimating conservation potentials, but supply curves minimize these difficulties and make their consequences predictable. The sensitivity of the cost of conserved energy is examined, as are variations in the optimal investment strategy in response to changes in inputs. Guidelines are presented for predicting the consequences of such changes. The conservation supply curve concept can be applied to peak power, water, pollution, and other markets where consumers demand a service rather than a particular good.

  18. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (ESTSC)

    2005-03-02

    DOE2.1E-121SUNOS is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS).« less

  19. Energy conservation and air transportation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Air transportation demand and passenger energy demand are discussed, in relation to energy conservation. Alternatives to air travel are reviewed, along with airline advertising and ticket pricing. Cargo energy demand and airline systems efficiency are also examined, as well as fuel conservation techniques. Maximum efficiency of passenger aircraft, from B-747 to V/STOL to British Concorde, is compared.

  20. Recommendations for energy conservation standards for new residential buildings: Volume 2: Automated residential energy standard---user's guide--version 1. 1

    SciTech Connect

    Lortz, V.B.; Taylor, Z.T.

    1989-05-01

    This report documents the development and testing of a set of recommendations from the American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) Special Projects Committee No. 53, designed to provide the technical foundation for the Congressionally-mandated energy standard for new residential buildings. The recommendations were developed over a 25-month period by a multidisciplinary project team under the management of the DOE and its prime contractor, Pacific Northwest Laboratory (PNL).

  1. Commercial Buildings Energy Consumption Survey - Office Buildings

    EIA Publications

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  2. Energy conservation, using remote thermal scanning

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1978-01-01

    Airborne thermal infrared scans and thermal maps utilized in NASA's energy conservation program have proven to be efficient cost-effective method for identifying heat losses from building roofs and heating system distribution lines. Method employs commercially available equipment in highly developed way.

  3. Low-Tech Energy Conservation for Schools.

    ERIC Educational Resources Information Center

    Stein, Benjamin

    The American Institute of Architects National Committee on Architecture for Education presents this guide which addresses methods of energy conservation in school buildings with simple design, construction, and equipment-control technology so that trained and creative people can take over functions normally done by machinery and automated…

  4. Comparison of the Supplement to the 2004 IECC to the Current New York Energy Conservation Code - Residential Buildings

    SciTech Connect

    Lucas, Robert G.

    2004-09-01

    The New York State Department of State requested the U.S. Department of Energy (DOE) to prepare a report consisting of two components. The first component is an analysis comparing the effects on energy usage as a result of implementation of the 2004 Supplement to the IECC with the current New York code. The second component is an engineering analysis to determine whether additional costs of compliance with the proposal would be equal to or less than the present value of anticipated energy savings over a 10-year period. Under DOE's direction, Pacific Northwest National Laboratory (PNNL) completed the requested assessment of the potential code upgrade.

  5. Energy Conservation Through Effective Utilization

    ERIC Educational Resources Information Center

    Berg, Charles A.

    1973-01-01

    Discusses various ways in which the demand for energy could be decreased, focusing not so much on discouraging demand by increasing prices, as on reducing energy consumption by improving efficiency of energy utilization in buildings and in industry. (JR)

  6. The Fourth R. Resourcefulness in School Energy Conservation. SEED: Schoolhouse Energy Efficiency Demonstration.

    ERIC Educational Resources Information Center

    Tenneco, Inc., Houston, TX.

    An energy audit is a building inspection that, when complete, provides a profile of the building's energy usage. The energy audit determines how energy is used; simple maintenance and operating procedures to conserve energy; and the need, if any, for purchase of new energy saving equipment or modifications to the building. Schoolhouse Energy…

  7. New design concepts for energy-conserving buildings. Results of a national competition among students in schools of architecture

    SciTech Connect

    1982-01-01

    The National Student Competition in Energy Conscious Design held among professional schools of architecture in 1976 is documented. Fifty-five schools participated, submitting 115 entries; twelve were chosen as finalists. Details are presented on the twelve winning designs and excerpts from the remaining 103 entries are published. (MCW)

  8. Research and Development Data to Define the Thermal Performance of Reflective Materials Used to Conserve Energy in Building Applications

    SciTech Connect

    Eisenberg, J

    2001-04-09

    A comprehensive experimental laboratory study has been conducted on the thermal performance of reflective insulation systems. The goal of this study was to develop test and evaluation protocols and to obtain thermal performance data on a selected number of idealized and commercial systems containing reflective airspaces for use in analytical models. Steady-state thermal resistance has been measured on 17 different test panels using two guarded hot boxes. Additional instrumentation was installed to measure the temperature of critical locations inside the test panels. The test parameters which have been studied are heat flow direction (horizontal, up, and down), number of airspaces comprising the cavity, airspace effective emittance, airspace aspect ratio, airspace mean temperature and temperature difference, and the thermal resistance of the stud material. Tests have also been performed on similar constructions with mass insulation. Two one-dimensional calculation techniques (ASHRAE and proposed ASTM) have been employed to determine the cavity thermal resistance from the measured test panel results. The measured cavity thermal resistance is compared with literature data which is commonly employed to calculate the thermal resistance of reflective airspace assemblies. A consumer-oriented handbook pertaining to reflective insulation for building and commercial applications has also been prepared as part of this study.

  9. Energy conservation in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Prentis, Jeffrey J.; Fedak, William A.

    2004-05-01

    In the classical mechanics of conservative systems, the position and momentum evolve deterministically such that the sum of the kinetic energy and potential energy remains constant in time. This canonical trademark of energy conservation is absent in the standard presentations of quantum mechanics based on the Schrödinger picture. We present a purely canonical proof of energy conservation that focuses exclusively on the time-dependent position x(t) and momentum p(t) operators. This treatment of energy conservation serves as an introduction to the Heisenberg picture and illuminates the classical-quantum connection. We derive a quantum-mechanical work-energy theorem and show explicitly how the time dependence of x and p and the noncommutivity of x and p conspire to bring about a perfect temporal balance between the evolving kinetic and potential parts of the total energy operator.

  10. 78 FR 33838 - DOE Participation in Development of the International Energy Conservation Code

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... of Energy Efficiency and Renewable Energy DOE Participation in Development of the International Energy Conservation Code AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Office,...

  11. Energy efficient building design

    SciTech Connect

    Not Available

    1992-03-01

    The fundamental concepts of the building design process, energy codes and standards, and energy budgets are introduced. These tools were combined into Energy Design Guidelines and design contract requirements. The Guidelines were repackaged for a national audience and a videotape for selling the concept to government executives. An effort to test transfer of the Guidelines to outside agencies is described.

  12. Ames Energy: A Consumer's Guide to Energy Conservation.

    ERIC Educational Resources Information Center

    Women's Support Network, Inc., Santa Rosa, CA.

    Presented is an annotated bibliography of energy-related materials for the consumer. Materials (which include books, videotape recordings, magazines, pamphlets, and other media) are arranged by subject area. These area include: (1) earth sheltered buildings; (2) fuels; (3) general (including general energy conservation and insulation); (4) heat…

  13. Energy properties in urban building stock

    NASA Astrophysics Data System (ADS)

    Kanerva, V.; Lappalainen, M.

    Buildings in urban areas were examined for energy consumption and energy conservation potential. Oil is 75% of heating fuel. Over 30% of the overall building volume heated is served by district or regional heating. The annual consumption of heating energy in buildings fluctuates between 30 and 140 kW hr/cu m. Function, size, and maintenance patterns affect energy consumption. Interior temperature levels and ventilation account for much of the dispersion in consumption values. Older buildings consume less energy per unit volume than those erected after 1960. Buildings constructed since 1975 consume over 10% less energy than the average. It is concluded that it is possible to reduce energy consumption within cost-effective limits in urban building stock by one third during the 1980's.

  14. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (ESTSC)

    2005-01-24

    DOE2.1E-121 is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS). DOE2.1E-121 contains modifications to DOE2.1E which allows 1000 zones to be modeled.« less

  15. Energy Conservation Management for School Administrators: An Overview.

    ERIC Educational Resources Information Center

    Lukco, Bernard J.

    Information concerning energy conservation management is presented to aid school administrators in improving the energy efficiency of their buildings and programs. Three general topics are discussed: (1) the general nature and unique characteristics of school energy management; (2) initial steps in developing a conservation program, including…

  16. Careers in the Renewable Energy and Conservation Professions and Trades.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    Many kinds of jobs can be found in the renewable energy and energy conservation industries. This pamphlet indicates that a large career potential exists within the solar and conservation professions and trades. These careers consist of individuals who design, build, or install solar heating or hot water systems, who implement energy conservation…

  17. Basic Energy Conservation and Management Part 1: Looking at Lighting

    ERIC Educational Resources Information Center

    Krueger, Glenn

    2012-01-01

    Reducing school district energy expenditures has become a universal goal. However, school board members, superintendents, and directors of buildings and grounds are often unaware of the many options available to conserve energy. School energy conservation used to be relatively simple: turn off the lights and turn down the heat in the winter and…

  18. Monitoring conservative retrofits in single family buildings. Final technical report

    SciTech Connect

    Richardson, C.S.

    1992-12-06

    This study has provided detailed before-and-after information on the ambient and comfort conditions in nine single family buildings, and on the energy consumption of those buildings, for one or more energy conservation retrofits. The data were recorded in such a manner that as well as being able to determine the savings from the retrofits and the influence these retrofits have on the comfort conditions of the residence, the effects of the retrofits on time-of-day usage are also determinable. The following are included in appendices: a table of participant`s names, site addresses and retrofit; significant dates and appropriate comments; a day of data and an annotated data set; pre-retrofit and post-retrofit audit data sheets; and usage history.

  19. Analysis and Optimization of Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  20. Renewable energy and wildlife conservation

    USGS Publications Warehouse

    Khalil, Mona

    2016-01-01

    The renewable energy sector is rapidly expanding and diversifying the power supply of the country. Yet, as our Nation works to advance renewable energy and to conserve wildlife, some conflicts arise. To address these challenges, the U.S. Geological Survey (USGS) is conducting innovative research and developing workable solutions to reduce impacts of renewable energy production on wildlife.

  1. Science Activities in Energy: Conservation.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 14 activities relating to energy conservation. Activities are simple, concrete experiments for fourth, fifth and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a simple card which is introduced by a question. A teacher's…

  2. Industrial energy conservation technology

    SciTech Connect

    Schmidt, P.S.; Williams, M.A.

    1980-01-01

    A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  3. Foundry energy conservation workbook

    SciTech Connect

    Not Available

    1990-01-01

    The foundry industry is a significant user of energy, and therefore, a natural candidate for efforts to save energy and improve efficiency by both governmental agencies and technical/trade associations. These efforts are designed to both improve the national energy position and improve the industry's efficiency and profitability. Increased energy cost and the reduced availability of fossil fuels at certain times have provided the incentive to curb waste and to utilize purchased energy wisely. Energy costs now approach and sometimes exceed 10% of the sales dollar of many foundries. Although energy use by foundries has gradually decreased on a per/ton basis in recent years, the foundry industry must continue to find ways to utilize energy more efficiently. This workbook provides ways to achieve this goal.

  4. Industrial Energy Conservation Technology

    SciTech Connect

    Not Available

    1980-01-01

    A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  5. Energy Conservation. CORD Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in energy conservation is one of 16 courses in the Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored training programs. Comprised of seven modules,…

  6. Expansion of the residential conservation service program to multi-family and small commercial buildings

    SciTech Connect

    1980-11-01

    Alternative regulatory provisions are considered which might permit achievement of the building energy conservation regulatory goals at a lower cost. Major issues, regulatory and legislative options, and cost-benefit analyses are discussed for multi-family and commercial buildings. The following are presented: related government programs, urban and community impact analysis, institutional impacts, energy cost, Residential Conservation Service coverage, methods of analysis, and regional studies. (MHR)

  7. Designing for Energy Conservation.

    ERIC Educational Resources Information Center

    Estes, R. C.

    This document is a description of the energy efficient designs for new schools in the Alief Independent School District of Houston, Texas. Exhibit A shows how four major school projects differ from conventional designs. Parameters and designs for heating, ventilating, air conditioning, and lighting are given. Twenty year projected energy costs and…

  8. Energy conservation principles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper and presentation discuss preliminary findings from energy audits conducted in cotton gins in six states including the allocation of motor horse power and kilowatt hours energy consumption per bale. General inferences will be drawn from information collected at gin plants of various bale...

  9. Relevance of the second law of thermodynamics to energy conservation

    SciTech Connect

    Not Available

    1980-01-01

    An analysis is presented of the potential relevance of the use of analytical tools based on the Second Law of thermodynamics to existing federal programs for energy conservation in the industrial, transportation, buildings, and utility sectors in the US. (LCL)

  10. Energy Education/Conservation Examination.

    ERIC Educational Resources Information Center

    Wert, Jonathan M.

    This examination is designed to measure the general awareness level of high school students, teachers, and citizens in the area of energy development and conservation. It is composed of 100 true-false statements concerning energy education concepts. A sample examinee answer sheet and an examiner key are included. Reproduction of the exam is…

  11. Low-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple low-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Low-wattage T8 lighting retrofit, T12 to T8 lighting retrofit, LED Exit signs retrofit, Occupancy sensors, Screw-in lighting retrofit, and central lighting controls. This tool calculates energy savings, demand reduction, cooling load reduction, heating load increases, cost savings, building life cycle costs including: Simple payback, discounted payback,more » net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  12. Low-bay Lighting Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple low-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Low-wattage T8 lighting retrofit, T12 to T8 lighting retrofit, LED Exit signs retrofit, Occupancy sensors, Screw-in lighting retrofit, and central lighting controls. This tool calculates energy savings, demand reduction, cooling load reduction, heating load increases, cost savings, building life cycle costs including: Simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  13. High-bay Lighting Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  14. Overview of energy-conservation research opportunities

    SciTech Connect

    Hopp, W.J.; Hauser, S.G.; Hane, G.J.; Gurwell, W.E.; Bird, S.P.; Cliff, W.C.; Williford, R.E.; Williams, T.A.; Ashton, W.B.

    1981-12-01

    This document is a study of research opportunities that are important to developing advanced technologies for efficient energy use. The study's purpose is to describe a wide array of attractive technical areas from which specific research and development programs could be implemented. Research areas are presented for potential application in each of the major end-use sectors. The study develops and applies a systematic approach to identifying and screening applied energy conservation research opportunities. To broadly cover the energy end-use sectors, this study develops useful information relating to the areas where federally-funded applied research will most likely play an important role in promoting energy conservation. This study is not designed to produce a detailed agenda of specific recommended research activities. The general information presented allows uniform comparisons of disparate research areas and as such provides the basis for formulating a cost-effective, comprehensive federal-applied energy conservation research strategy. Chapter 2 discusses the various methodologies that have been used in the past to identify research opportunities and details the approach used here. In Chapters 3, 4, and 5 the methodology is applied to the buildings, transportation, and industrial end-use sectors and the opportunities for applied research in these sectors are discussed.Chapter 6 synthesizes the results of the previous three chapters to give a comprehensive picture of applied energy conservation research opportunities across all end-use sectors and presents the conclusions to the report.

  15. Energy Conservation Curriculum for Secondary and Post-Secondary Students. Module 9: Human Comfort and Energy Conservation.

    ERIC Educational Resources Information Center

    Navarro Coll., Corsicana, TX.

    This module is the ninth in a series of eleven modules in an energy conservation curriculum for secondary and postsecondary vocational students. It is designed for use by itself or as part of a sequence of four modules on energy conservation in building construction and operation (see also modules 8, 10, and 11). The objective of this module is to…

  16. Energy Efficiency for Building Construction Technology.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units of materials on energy efficiency that were designed to be incorporated into an existing program in building construction. The following topics are examined: conservation measures (residential energy use and methods for reducing…

  17. Energy conservation in industry

    SciTech Connect

    Strub, A.S.; Ehringer, H.

    1984-01-01

    This book discusses combustion and heat recovery, engines and batteries, and applications and technologies. Some of the topics covered include: energy-saving technologies; heat exchangers, fluidized bed exchangers, industrial heat pumps; fluidized bed combustion; waste heat recovery; orc machines and cascading; engines and flywheels; new types of engines; advanced batteries; fuel cell; chemical industry and catalysis; metallurgy; textile industry; food industry; microwave applications; and cement and glass ceramic industry.

  18. A Compendium of Energy Conservation Success Stories

    DOE R&D Accomplishments Database

    1988-09-01

    Three-quarters of DOE's Conservation R and D funds have been devoted to technology research and development: basic and applied research, exploratory R and D, engineering feasibility studies, pilot-scale prototype R and D, and technology demonstration. Non R and D projects have involved technology assessment program planning and analysis, model development, technology transfer and consumer information, health effects and safety research, and technical support for rule making. The success stories summarized in this compendium fall into three general categories: Completed Technology Success Stories, projects that have resulted in new energy-saving technologies that are presently being used in the private sector; Technical Success Stories, projects that have produced or disseminated important scientific/technical information likely to result in future energy savings; Program Success Stories, non-R and D activities that have resulted in nationally significant energy benefits. The Energy Conservation research and development program at DOE is managed by the Office of Conservation under the direction of the Deputy Assistant Secretary for Conservation. Three subordinate Program Offices correspond to the buildings, transportation, and industrial end-use sectors. A fourth subordinate Program Office{endash}Energy Utilization Research{endash}sponsors research and technical inventions for all end-use sectors.

  19. A compendium of energy conservation success stories

    SciTech Connect

    Not Available

    1988-09-01

    Three-quarters of DOE's Conservation R and D funds have been devoted to technology research and development: basic and applied research, exploratory R and D, engineering feasibility studies, pilot-scale prototype R and D, and technology demonstration. Non R and D projects have involved technology assessment program planning and analysis, model development, technology transfer and consumer information, health effects and safety research, and technical support for rule making. The success stories summarized in this compendium fall into three general categories: Completed Technology Success Stories, projects that have resulted in new energy-saving technologies that are presently being used in the private sector; Technical Success Stories, projects that have produced or disseminated important scientific/technical information likely to result in future energy savings; Program Success Stories, non-R and D activities that have resulted in nationally significant energy benefits. The Energy Conservation research and development program at DOE is managed by the Office of Conservation under the direction of the Deputy Assistant Secretary for Conservation. Three subordinate Program Offices correspond to the buildings, transportation, and industrial end-use sectors. A fourth subordinate Program Office/endash/Energy Utilization Research/endash/sponsors research and technical inventions for all end-use sectors.

  20. Energy Simulator Residential Buildings

    Energy Science and Technology Software Center (ESTSC)

    1992-02-24

    SERI-RES performs thermal energy analysis of residential or small commercial buildings and has the capability of modeling passive solar equipment such as rock beds, trombe walls, and phase change material. The analysis is accomplished by simulation. A thermal model of the building is created by the user and translated into mathematical form by the program. The mathematical equations are solved repeatedly at time intervals of one hour or less for the period of simulation. Themore » mathematical representation of the building is a thermal network with nonlinear, temperature-dependent controls. A combination of forward finite differences, Jacobian iteration, and constrained optimization techniques is used to obtain a solution. An auxiliary interactive editing program, EDITOR, is included for creating building descriptions. EDITOR checks the validity of the input data and also provides facilities for storing and referencing several types of building description files. Some of the data files used by SERI-RES need to be implemented as direct-access files. Programs are included to convert sequential files to direct-access files and vice versa.« less

  1. Building healthy soils using conservation tillage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic matter affects nearly every aspect of crop production. Soils with higher amounts of organic matter resist compaction, and have increased water holding capacity, infiltration, fertility, and disease resistance. All these factors ultimately affect productivity. Conservation tillage syste...

  2. Energy efficiency buildings program

    NASA Astrophysics Data System (ADS)

    1981-05-01

    Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.

  3. Energy Conservation through Architectural Design

    ERIC Educational Resources Information Center

    Thomson, Robert C., Jr.

    1977-01-01

    Describes a teaching unit designed to create in students an awareness of and an appreciation for the possibilities for energy conservation as they relate to architecture. It is noted that the unit can be adapted for use in many industrial programs and with different teaching methods due to the variety of activities that can be used. (Editor/TA)

  4. ENERGY CONSERVATION THROUGH SOURCE REDUCTION

    EPA Science Inventory

    This report deals with energy conservation through reduction in generation of post-consumer solid waste. The objective, scope, methodology and summary of the report are presented in Section 1. Section 2 contains the conclusions. Section 3 presents a review of output and input app...

  5. The Role of the Principal in Energy Conservation.

    ERIC Educational Resources Information Center

    Bamberger, Richard

    The principal's role in energy conservation includes being certain that steps have been taken within the school building to effect energy savings, and using his influence to make certain that his school system applies for an Energy Retrofitting Grant under the National Energy Act if appropriate. However, the principal's greater role is to take the…

  6. Nonprice incentives and energy conservation.

    PubMed

    Asensio, Omar I; Delmas, Magali A

    2015-02-10

    In the electricity sector, energy conservation through technological and behavioral change is estimated to have a savings potential of 123 million metric tons of carbon per year, which represents 20% of US household direct emissions in the United States. In this article, we investigate the effectiveness of nonprice information strategies to motivate conservation behavior. We introduce environment and health-based messaging as a behavioral strategy to reduce energy use in the home and promote energy conservation. In a randomized controlled trial with real-time appliance-level energy metering, we find that environment and health-based information strategies, which communicate the environmental and public health externalities of electricity production, such as pounds of pollutants, childhood asthma, and cancer, outperform monetary savings information to drive behavioral change in the home. Environment and health-based information treatments motivated 8% energy savings versus control and were particularly effective on families with children, who achieved up to 19% energy savings. Our results are based on a panel of 3.4 million hourly appliance-level kilowatt-hour observations for 118 residences over 8 mo. We discuss the relative impacts of both cost-savings information and environmental health messaging strategies with residential consumers. PMID:25583494

  7. Nonprice incentives and energy conservation

    PubMed Central

    Asensio, Omar I.; Delmas, Magali A.

    2015-01-01

    In the electricity sector, energy conservation through technological and behavioral change is estimated to have a savings potential of 123 million metric tons of carbon per year, which represents 20% of US household direct emissions in the United States. In this article, we investigate the effectiveness of nonprice information strategies to motivate conservation behavior. We introduce environment and health-based messaging as a behavioral strategy to reduce energy use in the home and promote energy conservation. In a randomized controlled trial with real-time appliance-level energy metering, we find that environment and health-based information strategies, which communicate the environmental and public health externalities of electricity production, such as pounds of pollutants, childhood asthma, and cancer, outperform monetary savings information to drive behavioral change in the home. Environment and health-based information treatments motivated 8% energy savings versus control and were particularly effective on families with children, who achieved up to 19% energy savings. Our results are based on a panel of 3.4 million hourly appliance-level kilowatt–hour observations for 118 residences over 8 mo. We discuss the relative impacts of both cost-savings information and environmental health messaging strategies with residential consumers. PMID:25583494

  8. Energy conservation is a waste

    SciTech Connect

    Inhaber, H.

    1998-07-01

    Energy conservation is virtually always a bust. Governments around the world continually trot out new schemes to reduce energy use and promote efficiency. The prime American example of this futility is government regulation of automobile gas mileage. Prompted by the Arab oil embargo of 1973, Congress mandated a doubling of gas mileage. What happened? Gasoline consumption rose from 1973 to the 1990s, as the roads were flooded with energy-efficient cars. Huge sport-utility vehicles crowd parking lots, also thanks to more efficient engines. Conservation fails because it takes no account of economics of human nature. The combination of greater engine efficiency and rising disposable income has produced a true golden age of motoring. In the same way, what is saved by installing special light bulbs is often wasted on new hot tubs, exterior lighting and a host of other energy uses, as homeowners assume that their electric bills will drop off substantially. In spite of these and dozens of other clear failures, the claims for conservation to solve virtually all the national energy dilemmas continue. Few if any are valid. While each of us can reduce energy use in one or two areas, one finds that the nation gradually uses more.

  9. BPA's Eighth Annual Energy Conservation Management Conference : Proceedings.

    SciTech Connect

    Energy Conservation Management Conference; United States. Bonneville Power Administration.

    1981-01-01

    The five-year energy conservation program at Bonneville Power Administration (BPA) is described at the conference. An overview of the program is presented. Topics covered in panel discussions include: how utilities can work effectively with weatherization contractors, homebuilders, energy auditors, and weatherization material suppliers; mechanisms for implementing conservation programs in the commercial sector; experiences gained in existing residential weatherization programs; and streamlining relationships between consumers, utilities, and BPA in providing services and getting feedback. The planning, programming, technical assistance, and engineering thrusts of BPA's conservation programs are discussed. Indoor air quality, renewable energy, and the regulator's role in relationships to energy conservation are discussed. Passive solar programs, DOE initiatives in solar and conservation for buildings, conservation potential in the commercial and industrial sectors, and current conservation research and development are also discussed. (MCW)

  10. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    SciTech Connect

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  11. Energy and Water Conservation Measures for Hanford (2013)

    SciTech Connect

    Reid, Douglas J.; Butner, Ryan S.

    2013-04-01

    Pacific Northwest National Laboratory (PNNL) performed an energy and water evaluation of selected buildings on the Hanford Site during the months of May and June 2012. The audit was performed under the direction of the U.S. Department of Energy, Sustainability Performance Office to identify key energy conservation measures (ECMs) and water conservation measures (WCMs). The evaluations consisted of on-site facility walk-throughs conducted by PNNL staff, interviews with building-operating personnel, and an examination of building designs and layouts. Information on 38 buildings was collected to develop a list of energy and water conservation measures. Table ES.1 is a summary of the ECMs, while table ES.2 is a summary of the WCMs.

  12. Energy conservation for housing: A workbook

    NASA Astrophysics Data System (ADS)

    1982-05-01

    Multifamily housing project managers can reduce their energy costs from 30 to 60 percent by capitalizing on a variety of energy conservation opportunities (ECO's) identified in HUD research on the physical condition of public housing stock. This workbook prepares managers for this planning and for making individualized energy audits. It provides all the materials they need to proceed, including analysis sheets for calculating costs - benefit and payback periods for each of the 50 ECO's described. The ECO's listed all into four general categories: architectural improvements to the energy design of the building envelope; heating system ECO's to increase energy efficiency; secondary ECO's related to the domestic water supply, air conditioning systems, and central laundry equipment; and electric system ECO's reducing utility surcharges and increasing light bulb efficiency.

  13. Energy 101: Energy Efficient Commercial Buildings

    ScienceCinema

    None

    2014-06-26

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  14. Energy 101: Energy Efficient Commercial Buildings

    SciTech Connect

    2014-03-14

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  15. Competency Based Education Curriculum for Energy Efficient Building Construction.

    ERIC Educational Resources Information Center

    Cole, John; And Others

    This competency-based curriculum for energy-efficient building construction is intended to educate students in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. Each of the eight units is based on one to five competencies. For…

  16. Building application of solar energy. Study no. 2: Representative buildings for solar energy performance analysis and market penetration

    NASA Technical Reports Server (NTRS)

    Hirshberg, A. S.

    1975-01-01

    The following topics are discussed: (1) Assignment of population to microclimatic zones; (2) specifications of the mix of buildings in the SCE territory; (3) specification of four typical buildings for thermal analysis and market penetration studies; (4) identification of the materials and energy conserving characteristics of these typical buildings; (5) specifications of the HVAC functions used in each typical building, and determination of the HVAC systems used in each building; and (6) identification of the type of fuel used in each building.

  17. Energy conservation using face detection

    NASA Astrophysics Data System (ADS)

    Deotale, Nilesh T.; Kalbande, Dhananjay R.; Mishra, Akassh A.

    2011-10-01

    Computerized Face Detection, is concerned with the difficult task of converting a video signal of a person to written text. It has several applications like face recognition, simultaneous multiple face processing, biometrics, security, video surveillance, human computer interface, image database management, digital cameras use face detection for autofocus, selecting regions of interest in photo slideshows that use a pan-and-scale and The Present Paper deals with energy conservation using face detection. Automating the process to a computer requires the use of various image processing techniques. There are various methods that can be used for Face Detection such as Contour tracking methods, Template matching, Controlled background, Model based, Motion based and color based. Basically, the video of the subject are converted into images are further selected manually for processing. However, several factors like poor illumination, movement of face, viewpoint-dependent Physical appearance, Acquisition geometry, Imaging conditions, Compression artifacts makes Face detection difficult. This paper reports an algorithm for conservation of energy using face detection for various devices. The present paper suggests Energy Conservation can be done by Detecting the Face and reducing the brightness of complete image and then adjusting the brightness of the particular area of an image where the face is located using histogram equalization.

  18. 24 CFR 242.82 - Energy conservation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Energy conservation. 242.82 Section... INSURANCE FOR HOSPITALS Miscellaneous Requirements § 242.82 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost-effective energy conservation in...

  19. 24 CFR 242.82 - Energy conservation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Energy conservation. 242.82 Section... INSURANCE FOR HOSPITALS Miscellaneous Requirements § 242.82 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost-effective energy conservation in...

  20. 24 CFR 242.82 - Energy conservation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Energy conservation. 242.82 Section... INSURANCE FOR HOSPITALS Miscellaneous Requirements § 242.82 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost-effective energy conservation in...

  1. 24 CFR 242.82 - Energy conservation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Energy conservation. 242.82 Section... INSURANCE FOR HOSPITALS Miscellaneous Requirements § 242.82 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost-effective energy conservation in...

  2. 24 CFR 242.82 - Energy conservation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Energy conservation. 242.82 Section... INSURANCE FOR HOSPITALS Miscellaneous Requirements § 242.82 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost-effective energy conservation in...

  3. Saving money with energy conservation: economic analysis of conservation measures

    SciTech Connect

    Bailey, J.E.; Roller, D.A.; Moor, W.C.

    1980-01-01

    The basic tools for performing simple economic analyses of energy-conservation measures are reviewed. Energy accounting establishes energy-utilization patterns and performance goals. Directions for analyzing the utility bill are presented. Part 2 introduces ways to calculate the payback period, return on investment, and present worth of energy-conservation measures. Examples are given for reducing parking lot and indoor lighting, adding storm windows, reducing ventilation-fan running time, recycling boiler condensate, and shifting electrical-demand peak. A discussion of the inflation, depreciation, and income-tax ramifications of energy conservation is offered.

  4. Energy conservation and the rental housing market

    SciTech Connect

    Counihan, R.H.; Nemtzow, D.

    1981-03-01

    Problems unique to the rental housing market are discussed in detail. Market forces have been inadequate to encourage energy conservation because of the split between those who own the buildings and those who use the energy. Renters are unwilling to invest in property they do not own. Owners are unwilling because either (1) tenants pay the energy bills or (2) energy costs can be passed along in the rent. Federal, state, and community legislative efforts in this area are discussed as is the metering problem (master or separate metering). It is concluded that, unless accompanied by financial incentives or standards, a prohibition on master meters is inadvisable. Further involvement by state and local governments is encouraged. 132 references. (MJJ)

  5. Energy use and conservation in the commercial sector: Volume 1, Conditional demand analysis applied to the Nonresidential Buildings Energy Consumption Survey (NBECS): Final report

    SciTech Connect

    Parti, M.; Sebald, A.V.; Farber, M.

    1988-02-01

    This report describes an investigation into the application of an enhanced conditional demand analysis (CDA) technique to the estimation and forecasting of commercial sector energy demand. The report consists of two volumes. This volume, the first, presents the theoretical background of the procedure and applies it to a national data set. 4 figs., 24 tabs.

  6. Energy Metrics for State Government Buildings

    NASA Astrophysics Data System (ADS)

    Michael, Trevor

    Measuring true progress towards energy conservation goals requires the accurate reporting and accounting of energy consumption. An accurate energy metrics framework is also a critical element for verifiable Greenhouse Gas Inventories. Energy conservation in government can reduce expenditures on energy costs leaving more funds available for public services. In addition to monetary savings, conserving energy can help to promote energy security, air quality, and a reduction of carbon footprint. With energy consumption/GHG inventories recently produced at the Federal level, state and local governments are beginning to also produce their own energy metrics systems. In recent years, many states have passed laws and executive orders which require their agencies to reduce energy consumption. In June 2008, SC state government established a law to achieve a 20% energy usage reduction in state buildings by 2020. This study examines case studies from other states who have established similar goals to uncover the methods used to establish an energy metrics system. Direct energy consumption in state government primarily comes from buildings and mobile sources. This study will focus exclusively on measuring energy consumption in state buildings. The case studies reveal that many states including SC are having issues gathering the data needed to accurately measure energy consumption across all state buildings. Common problems found include a lack of enforcement and incentives that encourage state agencies to participate in any reporting system. The case studies are aimed at finding the leverage used to gather the needed data. The various approaches at coercing participation will hopefully reveal methods that SC can use to establish the accurate metrics system needed to measure progress towards its 20% by 2020 energy reduction goal. Among the strongest incentives found in the case studies is the potential for monetary savings through energy efficiency. Framing energy conservation

  7. Energy for Buildings and Homes.

    ERIC Educational Resources Information Center

    Bevington, Rick; Rosenfeld, Arthur H.

    1990-01-01

    Described are new technologies such as superwindows, compact fluorescent lights, and automated control systems which, when combined with other strategies such as shade trees and light-colored buildings, could reduce building energy expenditures. (CW)

  8. Building Energy Monitoring and Analysis

    SciTech Connect

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  9. Building Energy Monitoring and Analysis

    SciTech Connect

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  10. On energy conservation in extended magnetohydrodynamics

    SciTech Connect

    Kimura, Keiji; Morrison, P. J.

    2014-08-15

    A systematic study of energy conservation for extended magnetohydrodynamic models that include Hall terms and electron inertia is performed. It is observed that commonly used models do not conserve energy in the ideal limit, i.e., when viscosity and resistivity are neglected. In particular, a term in the momentum equation that is often neglected is seen to be needed for conservation of energy.

  11. Conservation and Renewable Energy Program: Bibliography, 1988 edition

    SciTech Connect

    Vaughan, K.H.

    1988-04-01

    The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.

  12. Energy Experts Call for Conservation Steps

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Summarizes energy conservation measures suggested by a leading energy supplier, a leading energy consumer, and a top government official, involving more coal use as an energy resource and an adequate balance between energy supply and environmental restrictions. (CC)

  13. Suitable scheme study of Chinese Building Energy Efficiency CDM Projects

    NASA Astrophysics Data System (ADS)

    Huang, Beijia; Yang, Haizhen; Wang, Shaoping; Wang, Feng

    2010-11-01

    China has great potential to develop Building Energy Efficiency Clean Development Mechanism (BEE CDM) projects, although have many challenges. Our results show that large-scale public buildings and urban residential buildings have relatively high BEE CDM potential, when comparing their characteristics to the CDM project requirements. The building enclosure, illumination energy conservation, air condition energy saving, solar thermal, and solar photovoltaic technology have relatively high application potential while considering the energy saving potential and marginal emission reduction cost. Case study of large-scale buildings shows that technology integration of building enclosure, illumination energy conservation, air condition energy saving, solar thermal can reduce required building number to 130 in order to meet the 1×105 tCO2 e/a reduction criteria. Some suggestions are also given in this paper.

  14. High-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building lifemore » cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  15. Rating the energy performance of buildings

    SciTech Connect

    Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

    2004-12-01

    In order to succeed in developing a more sustainable society, buildings will need to be continuously improved. This paper discusses how to rate the energy performance of buildings. A brief review of recent approaches to energy rating is presented. It illustrates that there is no single correct or wrong concept, but one needs to be aware of the relative impact of the strategies. Different strategies of setting energy efficiency standards are discussed and the advantages of the minimum life cycle cost are shown. Indicators for building energy rating based on simulations, aggregated statistics and expert knowledge are discussed and illustrated in order to demonstrate strengths and weaknesses of each approach. In addition, the importance of considering the level of amenities offered is presented. Attributes of a rating procedure based on three elements, flexible enough for recognizing different strategies to achieve energy conservation, is proposed.

  16. Building energy governance in Shanghai

    NASA Astrophysics Data System (ADS)

    Kung, YiHsiu Michelle

    With Asia's surging economies and urbanization, the region is adding to its built environment at an unprecedented rate, especially those population centers in China and India. With numerous existing buildings, plus a new building boom, construction in these major Asian cities has caused momentous sustainability challenges. This dissertation focuses on China's leading city, Shanghai, to explore and assess its existing commercial building energy policies and practices. Research estimates that Shanghai's commercial buildings might become a key challenge with regard to energy use and CO2 emissions as compared to other major Asian cities. Relevant building energy policy instruments at national and local levels for commercial buildings are reviewed. In addition, two benchmarks are established to further assess building energy policies in Shanghai. The first benchmark is based on the synthesis of relevant criteria and policy instruments as recommended by professional organizations, while the second practical benchmark is drawn from an analysis of three global cities: New York, London and Tokyo. Moreover, two large-scale commercial building sites - Shanghai IKEA and Plaza 66 - are selected for investigation and assessment of their efforts on building energy saving measures. Detailed building energy savings, CO2 reductions, and management cost reductions based on data availability and calculations are presented with the co-benefits approach. The research additionally analyzes different interventions and factors that facilitate or constrain the implementation process of building energy saving measures in each case. Furthermore, a multi-scale analytical framework is employed to investigate relevant stakeholders that shape Shanghai's commercial building energy governance. Research findings and policy recommendations are offered at the close of this dissertation. Findings and policy recommendations are intended to facilitate commercial building energy governance in Shanghai and

  17. 75 FR 17036 - Energy Conservation Program: Energy Conservation Standards for Small Electric Motors; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Part 431 RIN 1904-AB70 Energy Conservation Program: Energy Conservation Standards for Small Electric... rule regarding the energy conservation standards for small electric motors, which was published on... energy conservation standards for small electric motors. Due to a drafting error, an incorrect...

  18. Citizen Action Guide to Energy Conservation.

    ERIC Educational Resources Information Center

    Citizens Advisory Committee on Environmental Quality.

    This book is concerned with educating citizen leaders and public officials on matters of transportation energy, industrial and electrical energy, and residential and commercial energy usage. Also included are guidelines on developing a national energy conservation policy and mobilizing citizens for action in energy conservation concerns. A…

  19. Conservation and renewable energy: State enactments 1981-83

    SciTech Connect

    Not Available

    1985-01-01

    This book updates the 1981 publication and summarizes selected state energy conservation and renewable energy enactments from 1981-83. Areas covered include sales tax exemptions; motor fuel tax exemptions; property tax incentives; income tax credits; loans, bonds, and grants; transportation; alcohol fuel development; and building improvements.

  20. Proceedings of the second US Department of Energy environmental control symposium. Volume 2. Nuclear energy, conservation, and solar energy

    SciTech Connect

    1980-06-01

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume II contains papers relating to: environmental control aspects of nuclear energy use and development; nuclear waste management; renewable energy sources; transportation and building conservation (fuel economy, gasohol, building standards, and industry); and geothermal energy, power transmission, and energy storage. (DMC)

  1. State building energy codes status

    SciTech Connect

    1996-09-01

    This document contains the State Building Energy Codes Status prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy under Contract DE-AC06-76RL01830 and dated September 1996. The U.S. Department of Energy`s Office of Codes and Standards has developed this document to provide an information resource for individuals interested in energy efficiency of buildings and the relevant building energy codes in each state and U.S. territory. This is considered to be an evolving document and will be updated twice a year. In addition, special state updates will be issued as warranted.

  2. Recovery Act. Development of a Model Energy Conservation Training Program

    SciTech Connect

    none,

    2012-07-05

    The overall objective of this project was to develop an updated model Energy Conservation training program for stationary engineers. This revision to the IUOE National Training Fund’s existing Energy Conservation training curriculum is designed to enable stationary engineers to incorporate essential energy management into routine building operation and maintenance tasks. The curriculum uses a blended learning approach that includes classroom, hands-on, computer simulation and web-based training in addition to a portfolio requirement for a workplace-based learning application. The Energy Conservation training program goal is development of a workforce that can maintain new and existing commercial buildings at optimum energy performance levels. The grant start date was July 6, 2010 and the project continued through September 30, 2012, including a three month non-funded extension.

  3. Managing state energy conservation programs - The Minnesota experience

    NASA Astrophysics Data System (ADS)

    Hirst, E.; Armstrong, J. R.

    1980-11-01

    The development and operation of energy conservation programs in the Minnesota Energy Agency (MEA) are discussed. The MEA has responsibility for voluntary conservation efforts, regulating energy efficient devices, and grant programs to audit and retrofit public buildings. The MEA has developed the plan under which the Minnesota utilities will provide conservation services to residential customers, including an on-site home energy audit. The relation between the Department of Energy (DOE) and state energy offices in implementing programs is considered. The DOE has provided technical assistance to the states through the development of a model audit. Steps are discussed to reduce the burdens imposed on the states by program planning, funding, and management responsibilities, including the consolidation of several existing state conservation programs. Improved policy analysis is suggested to correct inefficiencies in government programs.

  4. Models for residential-and commercial-sector energy conservation analysis: Applications, limitations, and future potential

    NASA Astrophysics Data System (ADS)

    Cole, H. E.; Fuller, R. E.

    1980-09-01

    Four of the major models used by DOE for energy conservation analyses in the residential and commercial building sectors are reviewed and critically analyzed to determine how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. The most effective role for each model in addressing future issues of buildings energy conservation policy and analysis is assessed. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

  5. Energy Conservation Curriculum for Secondary and Post-Secondary Students. Module 10: Heating Ventilating, and Air Conditioning Conservation Opportunities.

    ERIC Educational Resources Information Center

    Navarro Coll., Corsicana, TX.

    This module is the tenth in a series of eleven modules in an energy conservation curriculum for secondary and postsecondary vocational students. It is designed for use by itself or as part of a sequence of four modules on energy conservation in building construction and operation (see also modules 8, 9, and 11). The objective of this module is to…

  6. Institutional Manager's Guide to Energy Conservation.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of State and Local Programs.

    The information provided in this guidebook is based on a field evaluation of grantees in the Institutional Conservation Program (ICP). The ICP, authorized by the National Energy Conservation Policy Act of 1978 and administered by the Department of Energy, provides energy audits and 50 percent matching grants for detailed energy analyses and for…

  7. 36 CFR 910.36 - Energy conservation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Energy conservation. 910.36... DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.36 Energy conservation. All new development shall be designed to be economical in energy consumption. The Energy Guidelines of the...

  8. 36 CFR 910.36 - Energy conservation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Energy conservation. 910.36... DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.36 Energy conservation. All new development shall be designed to be economical in energy consumption. The Energy Guidelines of the...

  9. 36 CFR 910.36 - Energy conservation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Energy conservation. 910.36... DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.36 Energy conservation. All new development shall be designed to be economical in energy consumption. The Energy Guidelines of the...

  10. 36 CFR 910.36 - Energy conservation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Energy conservation. 910.36... DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.36 Energy conservation. All new development shall be designed to be economical in energy consumption. The Energy Guidelines of the...

  11. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    SciTech Connect

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  12. 78 FR 54197 - Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AD01 Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Packaged Boilers AGENCY: Office of Energy Efficiency... Efficiency and Renewable Energy, Building Technologies Office, EE-2J, 1000 Independence Avenue...

  13. Equity implications of utility energy conservation programs

    SciTech Connect

    Sutherland, R.J.

    1994-03-15

    This paper uses the Residential Energy Consumption Survey undertaken by the Energy Information Administration in 1990 to estimate the statistical association between household income and participation in electric utility energy conservation programs and the association between participation and the electricity consumption. The results indicate that utility rebates, energy audits, load management programs and other conservation measures tend to be undertaken at greater frequency by high income households than by low income households. Participants in conservation programs tend to occupy relatively new and energy efficient residences and undertake conservation measures other than utility programs, which suggests that utility sponsored programs are substitutes for other conservation investments. Electricity consumption during 1990 is not significantly less for households participating in utility programs than for nonparticipants, which also implies that utility conservation programs are displacing other conservation investments. Apparently, utility programs are not avoiding costs of new construction and instead are transferring wealth, particularly to high income participating households.

  14. Computerized energy analysis for the Mars operations support building

    NASA Technical Reports Server (NTRS)

    Yung, C. S.

    1981-01-01

    A detailed computerized building load simulation of the Operations Support Building at the Mars Deep Space Station, Goldstone, California is described. Five energy conservation suggestions were investigated prior to implementation. The results showed that cost savings of about 16 percent of present energy costs are possible.

  15. Final report on the energy edge impact evaluation of 28 new, low-energy commercial buildings

    SciTech Connect

    Piette, M.A.; Diamond, R.; Nordman, B.

    1994-08-01

    This report presents the findings of the Energy Edge Impact Evaluation. It is the fourth and final report in a series of project impact evaluation reports. Energy Edge is a research-oriented demonstration of energy efficiency in 28 new commercial buildings. Beginning in 1985,the project, sponsored by the Bonneville Power Administration (BPA), was developed to evaluate the potential for electricity conservation in new commercial buildings. By focusing on the construction of new commercial buildings, Energy Edge meets the region`s goal of capturing otherwise lost opportunities to accomplish energy conservation. That is, the best time to add an energy-efficiency measure to a building is during the construction phase.

  16. California commercial building energy benchmarking

    SciTech Connect

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and

  17. Energy Conservation: A Management Report for State and Local Governments and A Technical Guide for State and Local Governments.

    ERIC Educational Resources Information Center

    Public Technology, Inc., Washington, DC.

    This technical guide is part of a packet of tools designed to assist state or local government practitioners in organizing and managing an energy conservation program. It gives information on adapting energy conservation methods to existing public buildings and on designing new public buildings with energy conservation in mind. It also discusses…

  18. 10 CFR 455.102 - Energy conservation measure cost-share credit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy conservation measure cost-share credit. 455.102 Section 455.102 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION GRANT PROGRAMS FOR SCHOOLS AND HOSPITALS AND BUILDINGS OWNED BY UNITS OF LOCAL GOVERNMENT AND PUBLIC CARE INSTITUTIONS Cost Sharing §...

  19. An Energy Conservation Retrofit Process for Existing Public and Institutional Facilities.

    ERIC Educational Resources Information Center

    Tiedeman, Thomas V.

    This manual was developed to provide assistance to public officials first considering energy conservation in existing public buildings. The manual focuses on management decisions which must be made in implementing energy conservation programs for existing buildings. It provides assistance in developing a plan of attack, establishing schedules,…

  20. Energy and Educational Facilities: Costs and Conservation.

    ERIC Educational Resources Information Center

    Educational Facilities Labs., Inc., New York, NY.

    An analysis of energy costs and conservation in educational facilities in the United States is presented in this report. Tables and text give dollar figures for energy expenditures in education since the first oil embargo. Energy conservation through facilities management and through facilities modification is stressed. Recommendations are…

  1. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective...

  2. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective...

  3. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective...

  4. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective...

  5. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective...

  6. Interference and the Law of Energy Conservation

    ERIC Educational Resources Information Center

    Drosd, Robert; Minkin, Leonid; Shapovalov, Alexander S.

    2014-01-01

    Introductory physics textbooks consider interference to be a process of redistribution of energy from the wave sources in the surrounding space resulting in constructive and destructive interferences. As one can expect, the total energy flux is conserved. However, one case of apparent non-conservation energy attracts great attention. Imagine that…

  7. 75 FR 80292 - Energy Conservation Program: Energy Conservation Standards for Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ...). 74 FR 12058 (March 23, 2009) It was recently discovered that the efficiency levels under 10 CFR 431... Part 431 RIN 1904-AB71 Energy Conservation Program: Energy Conservation Standards for Electric Motors..., promulgating energy conservation standards for certain electric motors as prescribed in the Energy Policy...

  8. Encouraging energy conservation in multifamily housing: RUBS and other methods of allocating energy costs to residents

    SciTech Connect

    McClelland, L

    1980-10-01

    Methods of encouraging energy conservation in multifamily housing by allocating energy costs to residents are discussed; specifically, methods appropriate for use in master metered buildings without equipment to monitor energy consumption in individual apartments are examined. Several devices available for monitoring individual energy consumption are also discussed plus methods of comparing the energy savings and cost effectiveness of monitoring devices with those of other means of promoting conservation. Specific information in Volume I includes a comparison study on energy use in master and individually metered buildings; types of appropriate conservation programs for master metered buildings; a description of the Resident Utility Billing System (RUBS); energy savings associated with RUBS; Resident reactions to RUBS; cost effectiveness of RUBS for property owners; potential abuses, factors limiting widespread use, and legal status of RUBS. Part I of Volume II contains a cost allocation decision guide and Part II in Volume II presents the RUBS Operations Manual. Pertinent appendices to some chapters are attached. (MCW)

  9. Energy Conservation Experiments You Can Do...from Edison.

    ERIC Educational Resources Information Center

    Thomas Alva Edison Foundation, Southfield, MI.

    Background information, lists of materials needed, and procedures are provided for 11 energy conservation experiments. They include: (1) five experiments on heating and cooling (investigating how insulation works, investigating how weatherstripping works, investigating how storm windows work, building a draftometer, and letting sun heat a house);…

  10. Fort Gordon energy survey analysis of boiler and chiller plants, building 25910 and building 25330. Proposed energy conservation opportunities for Savannah District Corps of Engineers. Volume 1 of 3. Final report

    SciTech Connect

    1995-04-03

    Project No. 1 is all of the recommended ECO`s combined for the chilled water system in the North area, which is controlled and supplied from Building 25910. The attached project drawing shows an upgrade and general layout of equipment, showing the reuse of the existing cooling towers with new piping from them which will go through a free cooling heat exchanger. There will be pumps at each chiller that will extract the required amount of cooling water through a loop piping arrangement. Chillers 5, 6, and 7 are existing, but new higher efficiency chillers will be added in the size range of one 400 ton and two of 1,250 ton chillers. Return chilled water will either be run in a loop that will feed any of the chillers which have its new pump `on` to circulate the chilled water through it, or if no pumps are `on`, the water will circulate through the new free cooling plate heat exchanger to be located in Building 25910. Teed off of the return chilled water system there will be a pipe that feeds a chilled water storage tank which will be located behind the Plant in the woods. There will be a pump parallel with that line so that if additional pressure is needed to get the water up to the top of the storage tank, that pump will come on. The water in that pipe and water in the pipe leaving at the bottom of the chilled water storage will go back to the Plant. Both of these pipes will have flow in either direction, depending on whether the storage tank is being charged as it will be at night in the summer time, or whether it is being discharged during the peak cooling hours during the day in the summer. The existing chilled water distribution pumps will remain in operation, but the drives will now be controlled by a single variable speed drive.

  11. Energy and other resource conservation within urbanizing areas

    NASA Astrophysics Data System (ADS)

    Rowe, Peter G.

    1982-05-01

    The reported research seeks to answer several questions regarding energy conservation within urbanizing areas. As a practical matter, to what extent can dependence upon exhaustible resources be reduced? Can these reductions be achieved without severely impairing social well-being and environmental quality? And, what seem to be the prevailing institutional constraints limiting energy conservation within urbanizing areas? The study area was the proposed “downtown” of The Woodlands, a new town north of Houston, Texas. Two plans were developed for this area. In one, no particular attempt was made to conserve energy (conventional plan), while in the other, energy conservation was a primary consideration (conservation plan). For both plans, estimates were made of energy consumption within buildings, in the transportation sector, and in the actual production of building materials themselves (embodied energy). In addition, economic and environmental analyses were performed, including investigation of other resource issues such as water supply, solid waste disposal, stormwater management, and atmospheric emissions. Alternative on-site power systems were also investigated. Within the bounds of economic feasibility and development practicality, it was found that application of energy-conserving methods could yield annual energy savings of as much as 23%, and reduce dependence on prime fuels by 30%. Adverse economic effects on consumers were found to be minimal and environmental quality could be sustained. The major institutional constraints appeared to be those associated with traditional property ownership and with the use of common property resources. The resistance to change of everyday practices in land development and building industries also seemed to constrain potential applications.

  12. Energy analysis sample building data

    NASA Astrophysics Data System (ADS)

    1981-03-01

    Sample building data for energy calculations necessary for the comparative analysis between the proposed energy calculation procedure and the procedures using comprehensive hourly simulation of HVAC systems are presented. The comparison calculation includes data for the terminal reheat system, double-duct system, heat reclaim system, and standard VAV system for a hypothetical 20-story office building in Washington, DC. Each is evaluated in conjunction with electric centrifugal chiller and gas-fired boiler.

  13. Energy efficiency buildings program, FY 1980

    SciTech Connect

    Not Available

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  14. Energy Conservation Activity Packet, Grade 5.

    ERIC Educational Resources Information Center

    Bakke, Ruth

    This activity packet for grade 5 is one of a series developed in response to concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade five. The packet is divided into two parts and provides the teacher with background information, concepts and…

  15. Adoption of Energy Conservation among California Homeowners.

    ERIC Educational Resources Information Center

    Leonard-Barton, Dorothy; Rogers, Everett M.

    In spring 1977, just as California was emerging from one of the worst droughts in its history, 215 Palo Alto homeowners were interviewed about their views on energy and water conservation, and about the extent to which they had adopted 11 energy-conserving practices (ECP) in the home. The objective was to discover variables both important to…

  16. Energy conservation potential of surface modification technologies

    SciTech Connect

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  17. 34 CFR 75.616 - Energy conservation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) and 1 CFR part 51. The incorporated document is on file at the Department of Education, Grants and... 34 Education 1 2014-07-01 2014-07-01 false Energy conservation. 75.616 Section 75.616 Education... Grantee? Construction § 75.616 Energy conservation. (a) To the extent feasible, a grantee shall design...

  18. Energy Conservation in Agriculture. Competency Based Curriculum.

    ERIC Educational Resources Information Center

    Lawrence, Layle D.

    This competency-based energy conservation in agriculture curriculum for grades 11 and 12 is organized into seven modules. Intended for use for individualized or group instruction, the lessons should fit into existing units in courses of study rather than be presented as a single comprehensive energy conservation unit. Each module is based on from…

  19. 34 CFR 75.616 - Energy conservation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) and 1 CFR part 51. The incorporated document is on file at the Department of Education, Grants and... 34 Education 1 2012-07-01 2012-07-01 false Energy conservation. 75.616 Section 75.616 Education... Grantee? Construction § 75.616 Energy conservation. (a) To the extent feasible, a grantee shall design...

  20. 34 CFR 75.616 - Energy conservation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) and 1 CFR part 51. The incorporated document is on file at the Department of Education, Grants and... 34 Education 1 2010-07-01 2010-07-01 false Energy conservation. 75.616 Section 75.616 Education... Grantee? Construction § 75.616 Energy conservation. (a) To the extent feasible, a grantee shall design...

  1. 34 CFR 75.616 - Energy conservation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) and 1 CFR part 51. The incorporated document is on file at the Department of Education, Grants and... 34 Education 1 2011-07-01 2011-07-01 false Energy conservation. 75.616 Section 75.616 Education... Grantee? Construction § 75.616 Energy conservation. (a) To the extent feasible, a grantee shall design...

  2. 34 CFR 75.616 - Energy conservation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) and 1 CFR part 51. The incorporated document is on file at the Department of Education, Grants and... 34 Education 1 2013-07-01 2013-07-01 false Energy conservation. 75.616 Section 75.616 Education... Grantee? Construction § 75.616 Energy conservation. (a) To the extent feasible, a grantee shall design...

  3. A Graduate Course in Energy Conservation.

    ERIC Educational Resources Information Center

    Fickes, Michael

    1999-01-01

    Examines the University of Michigan's (Ann Arbor) success with a six-year energy conservation program (The Energy Star Program) offered by the Environmental Protection Agency. Describes the program's components and areas of savings the university has achieved. (GR)

  4. 77 FR 32381 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    .... 77, No. 105 / Thursday May 31, 2012 / Proposed Rules#0;#0; ] DEPARTMENT OF ENERGY 10 CFR Parts 429 and 430 RIN 1904-AB90 Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy....

  5. Energy use in office buildings

    SciTech Connect

    1980-10-01

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  6. Energy conservation in rental housing: landlords' perceptions of problems and solutions

    SciTech Connect

    Levine, A.; Raab, J.; Astrein, B.; Bernstein, S.; Piernot, C.; Strahs, S.

    1982-03-01

    Rental housing owners have had little incentive to invest in energy conservation measures for their buildings. As the cost of energy continues to rise, market incentives increase. This research explores the decision processes and criteria of a purposive sample of landlords in four cities: Boston, Chicago, Denver, and San Francisco. The report outlines landlords' reasons for investing or not investing in energy conservation measures, the barriers they perceive to energy conservation, and their perceived solutions to energy problems in rental housing.

  7. Conservation as an alternative energy source

    NASA Technical Reports Server (NTRS)

    Allen, D. E.

    1978-01-01

    A speech is given outlining the energy situation in the United States. It is warned that the existing energy situation cannot prevail and the time is fast running out for continued growth or even maintenance of present levels. Energy conservation measures are given as an aid to decrease U.S. energy consumption, which would allow more time to develop alternative sources of energy.

  8. Environmental assessment in support of proposed interim energy conservation voluntary performance standards for new non-federal residential buildings: Volume 7

    SciTech Connect

    1989-09-01

    The objective of this environmental assessment (EA) is to identify the potential environmental impacts that could result from the proposed voluntary residential standard (VOLRES) on private sector construction of new residential buildings. In this report, the scope, objectives, and approach of this EA are presented.

  9. Energy Management in Municipal Buildings.

    ERIC Educational Resources Information Center

    Massachusetts State Dept. of Community Affairs, Boston. Energy Conservation Project.

    This manual is written for the manager or supervisor responsible for instituting an energy management program for municipal buildings. An introduction discusses the management issues facing municipal government in dealing with the need to reduce energy consumption. The guide reviews methods for central coordination of activity to ensure that…

  10. Using Hillsides Helps Conserve Energy.

    ERIC Educational Resources Information Center

    American School and University, 1979

    1979-01-01

    Two schools in rural Iowa have been designed with the north sides of the buildings set within rolling hillsides. This takes advantage of southern exposures and thermal ground mass to help modulate heating needs. (Author/MLF)

  11. ARES (Automated Residential Energy Standard) 1.2: User`s guide, in support of proposed interim energy conservation voluntary performance standards for new non-federal residential buildings: Volume 1

    SciTech Connect

    1989-09-01

    The ARES (Automated Residential Energy Standard) User`s Guide is designed to the user successfully operate the ARES computer program. This guide assumes that the user is familiar with basic PC skills such as using a keyboard and loading a disk drive. The ARES computer program was designed to assist building code officials in creating a residential energy standard based on local climate and costs.

  12. Transportation Energy Use and Conservation Potential

    ERIC Educational Resources Information Center

    Hirst, Eric

    1973-01-01

    Analyzes transportation energy consumption and energy intensiveness for inter-city freight and passenger traffic and urban passenger traffic with the definition of energy intensiveness as Btu per ton-mile or per passenger-mile. Indicates that public education is one of three ways to achieve the goals of energy conservation. (CC)

  13. 77 FR 18477 - Energy Conservation Program: Energy Conservation Standards for Battery Chargers and External...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... (CAIR, 70 FR 25162 (May 12, 2005)), but not the Clean Air Mercury Rule (CAMR, 70 FR 28606 (May 18, 2005... Conservation Standards for Battery Chargers and External Power Supplies; Proposed Rule #0;#0;Federal Register... 430 RIN 1904-AB57 Energy Conservation Program: Energy Conservation Standards for Battery Chargers...

  14. Electric load management and energy conservation

    NASA Technical Reports Server (NTRS)

    Kheir, N. A.

    1976-01-01

    Electric load management and energy conservation relate heavily to the major problems facing power industry at present. The three basic modes of energy conservation are identified as demand reduction, increased efficiency and substitution for scarce fuels. Direct and indirect load management objectives are to reduce peak loads and have future growth in electricity requirements in such a manner to cause more of it to fall off the system's peak. In this paper, an overview of proposed and implemented load management options is presented. Research opportunities exist for the evaluation of socio-economic impacts of energy conservation and load management schemes specially on the electric power industry itself.

  15. Energy and Water: Conservation Suggestions for California's Elementary and Secondary Schools.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This publication contains conservation suggestions for schools in California to save water and energy. Contents include: (1) a list of sources of additional energy education assistance and materials; (2) a discussion of energy conservation in schools including HVAC system operations, lighting and building design; (3) a summary outline of actions…

  16. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2013-01-01 2013-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  17. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1 Determine the... 10 Energy 3 2014-01-01 2014-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  18. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1 Each floor... 10 Energy 3 2014-01-01 2014-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  19. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2013-01-01 2013-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  20. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2010-01-01 2010-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  1. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2010-01-01 2010-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  2. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2011-01-01 2011-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  3. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2011-01-01 2011-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  4. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2012-01-01 2012-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  5. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2012-01-01 2012-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  6. Guidelines for Energy Simulation of Commercial Buildings: Final.

    SciTech Connect

    Kaplan, Michael; Caner, Phoebe

    1992-03-01

    This report distills the experience gained from intensive computer building simulation work for the Energy Edge project. The purpose of this report is twofold: to use that experience to guide conservation program managers in their use of modeling, and to improve the accuracy of design-phase computer models. Though the main emphasis of the report is on new commercial construction, it also addresses modeling as it pertains to retrofit construction. To achieve these purposes, this report will: (1) discuss the value of modeling for energy conservation programs; (2) discuss strengths and weaknesses of computer models; (3) provide specific guidelines for model input; (4) discuss input topics that are unusually large drivers of energy use and model inaccuracy; (5) provide guidelines for developing baseline models; (6) discuss types of energy conservation measures (ECMs) and building operation that are not suitable to modeling and present possible alternatives to modeling for analysis; and (7) provide basic requirements for model documentation. This project was initiated to determine whether commercial buildings can be designed and constructed to use at least 30% less energy than if they were designed and built to meet the current regional model energy code, the Model Conservation Standards (MCS) developed by the Pacific Northwest Electric Power and Conservation Planning Council. Secondary objectives of the project are to determine the incremental energy savings of a wide variety of ECMs and to compare the predictive accuracy of design-phase models with models that are carefully tuned to monitored building data.

  7. Energy conservations from an environmental viewpoint

    SciTech Connect

    Hijikata, Kunio

    1993-12-31

    It is not incorrect to state that all major environmental problems, such as the greenhouse effect, destruction of the ozone layer from CFC`s, acid rain due to air pollution by NOx and SOx, etc., are caused by excessive industrial and residential energy consumption. Considering the finite world energy resources and limited global space, the day might be already upon us in which the total amount of energy consumption in the world should be reduced. To maintain a high living standard without increasing energy consumption, waste energy recovery and energy conservation are vitally important. In order to effective use of energy resources, we should really know the meaning of the energy consumption and the characteristics of energy resources. In this paper, the technological aspects of energy conservation are stated from the standpoint of available energy.

  8. A Compendium of Energy Conservation: Success Stories 90

    DOE R&D Accomplishments Database

    1990-12-01

    The Department of Energy's (DOE) Office of Conservation and Renewable Energy proudly presents this summary of some its most successful projects and activities. The projects included in this document have made significant contributions to improving energy efficiency and fuel flexibility in the United States. The energy savings that can be realized from these projects are considerable. Americans have shown an impressive ability to reduce energy consumption since 1973. Studies show that 34 quadrillion Btus (quads) of energy were saved in 1988 alone as a result of energy conservation and other factors. These savings, worth approximately $180 billion, represent more energy than the United States obtains from any other single source. The availability of new, energy-efficient technologies has been an important ingredient in achieving these savings. Federal efforts to develop and commercialize energy-saving technologies and processes are a part of the reason for this progress. Over the past 10 years, DOE has carefully invested more than $2 billion in hundreds of research and development (R&D) projects to ensure the availability of advanced technology in the marketplace. These energy-efficient projects are carried out through DOE's Office of Conservation and Renewable Energy and reflect opportunities in the three energy-consuming, end-use sectors of the economy: buildings, transportation, and industry.

  9. A compendium of energy conservation: Success stories 90

    SciTech Connect

    Not Available

    1990-12-01

    The Department of Energy's (DOE) Office of Conservation and Renewable Energy proudly presents this summary of some its most successful projects and activities. The projects included in this document have made significant contributions to improving energy efficiency and fuel flexibility in the United States. The energy savings that can be realized from these projects are considerable. Americans have shown an impressive ability to reduce energy consumption since 1973. Studies show that 34 quadrillion Btus (quads) of energy were saved in 1988 alone as a result of energy conservation and other factors. These savings, worth approximately $180 billion, represent more energy than the United States obtains from any other single source. The availability of new, energy-efficient technologies has been an important ingredient in achieving these savings. Federal efforts to develop and commercialize energy-saving technologies and processes are a part of the reason for this progress. Over the past 10 years, DOE has carefully invested more than $2 billion in hundreds of research and development (R D) projects to ensure the availability of advanced technology in the marketplace. These energy-efficient projects are carried out through DOE's Office of Conservation and Renewable Energy and reflect opportunities in the three energy-consuming, end-use sectors of the economy: buildings, transportation, and industry.

  10. Providing for energy efficiency in homes and small buildings. Part II. Determining amount of energy lost or gained in a building

    SciTech Connect

    Not Available

    1980-06-01

    The training program is designed to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. There are 3 parts to the training program. They are entitled: Understanding and Practicing Energy Conservation in Buildings; Determining Amount of Energy Lost or Gained in a Building; and Determining Which Practices Are Most Efficient and Installing Materials. For Part Two, it is recommended that cooling and heating load calculation manual (GRP 158) ASHRAE, 1979, be used. Specific subjects covered in Part II are: Terms Used to Measure Energy in Buildings; Understanding Heat Losses and Gains in Buildings; Estimating Heating Loads in Buildings; Special Applications for Estimating Cooling Loads in Buildings; Estimating Cooling Loads in Buildings; and Determining Cost Benefits of Using Energy-Saving Practices.

  11. Living Lightly: Energy Conservation in Housing.

    ERIC Educational Resources Information Center

    Bender, Tom

    This publication contains a series of papers which promote the concepts of energy conservation and offer safe and convenient ways of handling all aspects of our lives affected by energy without having to depend in any way on fossil fuels or nuclear power. These changes, which can be brought about in homes and in energy flows affected by the…

  12. Energy conservation, ecological stability and environmental quality

    SciTech Connect

    Bourodimos, E.L.

    1980-12-01

    Energy is the lifeblood of the ecosystem and, therefore, of the human-social enterprise as well. The ecological stability in all levels of biosphere functions is a problem of environmental quality and ultimately of public health, economy and life styles: the impact of energy availability, its use and abuse. In the age of energy and natural resource scarcity with all sorts of disruptions in the industrial-economic fabric, the perilous energy crisis and the threat of ecological breakdown, a hard new look and evaluation of energy use and conservation potential is urgently needed. The following scheme of pertinent questions is in order: a. Energy and Mass Flow in the Ecosystems: Energy and the determinants of ecosystem structure and dynamics. Food chain and food webs. How much is needed. How much is wasted. What is an optimum ecological efficiency within conservation planning systems analysis. b. Energy and Mass Flow in the Human Environment: Human ecosystem adaptability. Environmental stresses and ecological instability. Biological control: energy conservation and the re-establishment of a tolerable stable state. c. Energy Conservation Planning: How much energy do we use and waste. How can energy use and waste be reduced in developed and developing countries within the context of enhancing ecological balance and economic-social growth.

  13. 75 FR 20833 - Building Energy Codes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Building Energy Codes AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for Information. SUMMARY: The...

  14. Building thermography and energy performance directive of buildings

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo; Siikanen, Sami

    2012-06-01

    Energy Performance of Buildings Directive came in to the force in Europe couple of years ago and it had an immediate effect on Building Codes in Europe. Finland have changed its building codes since 2007 - the insulation requirements have been tightened and the requirements have been specified. The biggest change is energy efficient calculations and determination of energy efficiency and energy label for buildings. This has caused a boom of new service providers (thermography services, air-tightness measurements and other services like new calculation tools). Thermography is used in verification in performance of buildings. In this presentation some examples of building thermography in walk-through energy audits combined with the results of energy efficiency calculations are presented - also some special problems in buildings of specific use (e.g. an art museum) and use of thermography to solve them.

  15. Energy-efficient rehabilitation of multifamily buildings in the Midwest

    SciTech Connect

    Katrakis, J.T.; Knight, P.A.; Cavallo, J.D.

    1994-09-01

    This report addresses the opportunities available to make multifamily housing more affordable by using energy efficiency practices in housing rehabilitation. Use of the energy conservation measures discussed in this report enables developers of multifamily housing to substantially reduce annual energy costs. The reduction in natural gas usage was found to be approximately 10 Btu per square foot per heating degree-day. The study focuses on a number of Chicago multifamily buildings. The buildings were examined to compare energy efficiency measures that are commonly found in multifamily building rehabilitation with the high-energy-efficiency (HE) techniques that are currently available to community developers but are often unused. The HE measures include R-43 insulation in attics, R-19 insulation in exterior walls, low-emissivity coatings on windows, air infiltration sealing, and HE heating systems. The report describes the HE features and their potential benefits for making housing more affordable. It also describes the factors influencing acceptance. This report makes recommendations for expanding cost-effective energy conservation in the multifamily building sector. Among the recommendations are: expand HE rehab and retrofit techniques to multifamily building rehabs in which demolition of the interior structures is not required (moderate rehabs) or buildings are not vacant (e.g., weatherization upgrades); and expand research into the special opportunities for incorporating energy conservation in low-income communities.

  16. Creating Energy-Efficient Buildings.

    ERIC Educational Resources Information Center

    Burr, Donald F.

    This paper was presented during the time the author was president of the Council of Educational Facility Planners, International, (CEFP/I). The presentation begins with a summary of the state of the world's natural gas and petroleum supplies and states that since one-third of all energy consumed in the United States is to heat and cool buildings,…

  17. Energy conservation through sealing technology

    NASA Technical Reports Server (NTRS)

    Stair, W. K.; Ludwig, L. P.

    1978-01-01

    Improvements in fluid film sealing resulting from a proposed research program could lead to an annual energy saving, on a national basis, equivalent to about 37 million bbl of oil or 0.3% of the total U.S. energy consumption. Further, the application of known sealing technology can result in an annual saving of an additional 10 million bbl of oil. The energy saving would be accomplished by reduction in process heat energy loss, reduction of frictional energy generated, and minimization of energy required to operate ancillary equipment associated with the seal system. In addition to energy saving, cost effectiveness is further enhanced by reduction in maintenance and in minimization of equipment for collecting leakage and for meeting environmental pollution standards.

  18. State industrial energy-conservation workshops

    SciTech Connect

    Murphy, P.T.; Tatar, J.J.; Evans, A.R.; Anderson, R.W.

    1981-01-01

    DOE's Office of Industrial Programs, in cooperation with the Office of State and Local Programs, sponsored a series of four workshops on state industrial energy-conservation programs in September and October, 1980. The workshops provided it a forum in which Federal and state officials could discuss: Federal programs supporting the development and implementation of industrial energy-conservation technology; Federal assistance available for state and local energy-conservation programs; states' programs and policy efforts to encourage industrial energy conservation, and identification of states' needs and recommendations for actions to meet the states' needs more effectively. The basic focus of the workshops was on industrial programs developed by the states through funding by the State Energy-Conservation Program. The objectives, background, and format of the workshops are described in Section 2. A summary of state industrial programs in Section 3 includes a program measure matrix and a discussion of elements in program design. Section 4 describes factors affecting the development, implementation, and evaluation of state industrial conservation programs. In Section 5 state needs, as perceived by the state representatives, are presented and discussed. Section 6 summarizes the states' suggestions as developed in the third session of each workshop.

  19. 78 FR 23335 - Energy Conservation Program: Energy Conservation Standards for Distribution Transformers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ...The Energy Policy and Conservation Act of 1975 (EPCA), as amended, prescribes energy conservation standards for various consumer products and certain commercial and industrial equipment, including distribution transformers. EPCA also requires the U.S. Department of Energy (DOE) to determine whether more-stringent standards would be technologically feasible and economically justified, and would......

  20. 78 FR 77607 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... conservation standards for residential furnace fans published on October 25, 2013 (78 FR 64067) is extended to... (78 FR 64067) to make available and invite comments on the proposed rule regarding energy conservation... Standards for Residential Furnace Fans AGENCY: Office of Energy Efficiency and Renewable Energy,...

  1. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning...

  2. 76 FR 22324 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ...The Energy Policy and Conservation Act (EPCA) prescribes energy conservation standards for various consumer products and commercial and industrial equipment, including residential clothes dryers and room air conditioners. EPCA also requires the U.S. Department of Energy (DOE) to determine if amended standards for these products are technologically feasible and economically justified, and would......

  3. Multi-faceted energy-conservation program. Final technical report

    SciTech Connect

    Not Available

    1981-01-01

    The purpose of this project was to design and build 19 solar thermosiphoning air panels, insulate walls, generally tighten up the library building, and install other energy conserving devices. Another purpose of the project was to serve as a model to other libraries in Kentucky, to commercial buildings in this area, and to homeowners in the area. After much discussion with architects and among ourselves, we chose a type of solar installation that would be visible to the public and easily replicated. We also carried out a number of procedures to make the library building more energy efficient: installed a 7-day programmable setback thermostat; insulated the walls; improved weatherstripping around the doors; added an economizer control to our air-handling system; and put an electric damper controlling supply air to a large but intermittently usedmeeting room. These changes resulted in approximately $700 in savings from December 1981, through February 1982. Thus far, we have carried out public education with a sign, brochures, press releases, and the purchase of appropriate books; librarians have received our brochure, and some have attended a workshop given here on energy conservation and solar energy.

  4. Energy conserving site design case study: Shenandoah, Georgia. Final report

    SciTech Connect

    Not Available

    1980-01-01

    The case study examines the means by which energy conservation can be achieved at an aggregate community level by using proper planning and analytical techniques for a new town, Shenandoah, Georgia, located twenty-five miles southwest of Atlanta's Hartsfield International Airport. A potentially implementable energy conservation community plan is achieved by a study team examining the land use options, siting characteristics of each building type, alternate infrastructure plans, possible decentralized energy options, and central utility schemes to determine how community energy conservation can be achieved by use of pre-construction planning. The concept for the development of mixed land uses as a passively sited, energy conserving community is based on a plan (Level 1 Plan) that uses the natural site characteristics, maximizes on passive energy siting requirement, and allows flexibility for the changing needs of the developers. The Level 2 Plan is identical with Level 1 plan plus a series of decentraized systems that have been added to the residential units: the single-family detached, the apartments, and the townhouses. Level 3 Plan is similar to the Level 1 Plan except that higher density dwellings have been moved to areas adjacent to central site. The total energy savings for each plan relative to the conventional plan are indicated. (MCW)

  5. Providing for energy efficiency in homes and small buildings: student workbook

    SciTech Connect

    Not Available

    1980-06-01

    This workbook parallels the basic manual, providing for energy efficiency in homes and small buildings consisting of three parts: understanding and practicing energy conservation in buildings; determining amount of energy lost or gained in a building; and determining which practices are most efficient and installing materials. A teacher guide is available to answer questions in the student workbook related to these subjects.

  6. Examination of implementation strategies for the Building Energy Performance Standards

    SciTech Connect

    Reilly, Lawrence J.

    1980-03-01

    Since the passage of the Energy Conservation Standards for New Buildings Act, research has been concentrated in two distinct areas. The first area of research has involved developing the energy budget standards for different building types and climatic conditions, and refining computer programs which will be needed to evaluate the energy consumption of proposed building designs. The second major area of research has been related to developing plans for implementing these standards once they are developed. The approaches taken in each of these two areas and the problems that were encountered are described and the proposed standards are briefly examined.

  7. Building Energy Efficiency and the Use of Raw Materials

    NASA Astrophysics Data System (ADS)

    Yuan, Luo

    To become a country of energy saving, consumption reduction, low carbon emissions and life has become a national policy background, we need to convert conception of architectural aesthetics and make necessary adjustments and consciousness. Techniques and methods of support, or method of the research are still needed in the construction, building energy conservation, the environmental protection, low carbon and recycling methods are taken measures. Developing, finding and adopingt "native" and "primary" processed materials, or in which inject new technology to form new material is an effective approach to ensure more ways from environmental protection, energy-saving building and building materials in such ideas to implement.

  8. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    SciTech Connect

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following

  9. Energy conservation at The University of Miami

    SciTech Connect

    Atherton, V.; Anzoategui, F.

    1995-06-01

    The University of Miami (UM) has embarked on a very important and worthwhile mission: {open_quotes}To make UM one of the most energy efficient Universities in the Nation by the year 2000.{close_quotes} In order for the University to meet this goal we knew we would need to take advantage of all the available technologies and address the freon issues. In June 1990 the Coral Gables Campus had five chilled Water Production Plants, each representing small independent systems serving from four to ten buildings. Because of energy conservation measures of the past (i.e. elimination, reheat, first generation lighting retrofits, and some diversity), each plant had excess capacity. At that time we also had identified about 600 tons of old falling apart air conditioning equipment. Our Capital Construction Program was beginning design efforts for a new Music Recital Hall and an addition to the Law Library. With all this considered it made sense to develop a common chilled water loop to connect these plants and provide a vehicle to capitalize on available capacity. As this concept took shape it became evident that a master chilled water loop encircling the entire campus would address the next 20 years of campus development. This 20 year plan would require various phases of development. Phase I would connect three chilled water production plants and enable us to supply chilled water to seven existing facilities with approximately 600 tons of old inefficient air conditioning equipment and supply chilled water to the new Law and Music facilities, (approximately 400 tons) without buying any additional chillers.

  10. Passive Energy Building Design Tool

    Energy Science and Technology Software Center (ESTSC)

    1994-11-01

    SOLAR5 is a computer aided design tool to help architects design better, more energy efficient buildings. It is intended for use at the beginning of the design process. To get started, only four pieces of information are necessary to compute the energy needed: the square footage, the number of stories, the kind of building (such as school, home, hotel, or any one of 20 types), and its location (the program stores the temperature ranges formore » fourty major cities). Additional information may be given later to fine tune the design. An expert system using heuristics from a wide range of sources, automatically creates a passive solar baseline building from the four facts specified for that project. By modifying and adapting prior designs the user can create and work upon as many as nine schemes simultaneously. SOLAR5 can analyze the buildings thermal performance for each hour of each month and plot its total heat gain or loss as a three-dimensional surface. After reading the plot, the user can immediately redesign the building and rerun the analysis. Separate heat gain/loss surfaces can be plotted for each of the different parts of the building or schemes that add together to make up the total, including walls, roof, windows, skylights, floor, slab on grade, people, lights, equipment, and infiltration. Two different schemes can be instantly compared by asking for a three-dimensional plot showing only the difference in their performances. The objective of SOLAR5 is to allow the designer to make changes easily and quickly with detailed instantaneous pictorial feedback of the implications of the change.« less

  11. Social psychological aspects of energy conservation

    NASA Astrophysics Data System (ADS)

    Aronson, Elliot; Yates, Suzanne

    1985-11-01

    Although some increases in the adoption of energy-efficient practices have been noted, only a small fraction of the potential savings are being realized, perhaps because human behavior is too complex for existing economic models. The rational-economic model is able to predict behavior in many situations, but it has limitations. To design effective public policy, the social, cognitive, and personal forces, that in addition to the economic realities define the situation, must be understood. This chapter examines one aspect of current energy conservation policy, the home energy audit program mandated by the Residential Conservation Service, and attempts to show how existing social psychological research might be beneficially applied.

  12. Energy conservation and existing rental housing

    SciTech Connect

    Bleviss, D.L.; Gravitz, A.A.

    1984-01-01

    The authors take an in-depth look at the federal, state, and local policies affecting energy efficiency in US rental dwellings. They examine the incentives and barriers to conservation investments. Case studies show how federal, utility, non-profit energy service companies, and rental codes have approached the problems inherent in the housing market's failure to make energy conservation investment. The report recommends an evolutionary approach involving three phases that begins with the identification of needs and culminates in mandated retrofits. A major case study explores program options for North Carolina. 32 references, 3 figures, 18 tables.

  13. Building dialogue on complex conservation issues in a conference setting.

    PubMed

    Rock, Jenny; Sparrow, Andrew; Wass, Rob; Moller, Henrik

    2014-10-01

    Dialogue about complex science and society issues is important for contemporary conservation agendas. Conferences provide an appropriate space for such dialogue, but despite its recognized worth, best practices for facilitating active dialogue are still being explored. Face-to-face (FTF) and computer-mediated communication (CMC) are two approaches to facilitating dialogue that have different strengths. We assessed the use of these approaches to create dialogue on cultural perspectives of conservation and biodiversity at a national ecology conference. In particular, we aimed to evaluate their potential to enhance dialogue through their integrated application. We used an interactive blog to generate CMC on participant-sourced issues and to prime subsequent discussion in an FTF conference workshop. The quantity and quality of both CMC and FTF discussion indicated that both approaches were effective in building dialogue. Prior to the conference the blog averaged 126 views per day, and 44 different authors contributed a total of 127 comments. Twenty-five participants subsequently participated in active FTF discussion during a 3-h workshop. Postconference surveys confirmed that CMC had developed participants' thinking and deepened FTF dialogue; 88% indicated specifically that CMC helped facilitate the FTF discussion. A further 83% of respondents concluded that preliminary blog discussion would be useful for facilitating dialogue at future conferences. PMID:24962421

  14. ENCORE: Energy Conservation Resources for Education.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Dept. of Industrial Education.

    This publication contains the energy education materials for middle schools from project ENCORE (Energy Conservation Resources for Education). These modules were originally field tested in Texas schools during the 1976-77 academic year. The revised materials in this publication are organized into four major units and thirteen chapters. The…

  15. The Role of Energy Storage in Commercial Building

    SciTech Connect

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of active DOE/BTP R

  16. Autotune E+ Building Energy Models

    SciTech Connect

    New, Joshua Ryan; Sanyal, Jibonananda; Bhandari, Mahabir S; Shrestha, Som S

    2012-01-01

    This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

  17. Energy savings in Polish buildings

    SciTech Connect

    Markel, L.C.; Gula, A.; Reeves, G.

    1995-12-31

    A demonstration of low-cost insulation and weatherization techniques was a part of phase 1 of the Krakow Clean Fossil Fuels and Energy Efficient Project. The objectives were to identify a cost-effective set of measures to reduce energy used for space heating, determine how much energy could be saved, and foster widespread implementation of those measures. The demonstration project focused on 4 11-story buildings in a Krakow housing cooperative. Energy savings of over 20% were obtained. Most important, the procedures and materials implemented in the demonstration project have been adapted to Polish conditions and applied to other housing cooperatives, schools, and hospitals. Additional projects are being planned, in Krakow and other cities, under the direction of FEWE-Krakow, the Polish Energie Cities Network, and Biuro Rozwoju Krakowa.

  18. 76 FR 71835 - Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... definitions and energy conservation standards for vented gas hearth direct heating equipment. 75 FR 20112. \\1... are excluded from DOE's regulations.'' 75 FR 20112, 20234 (April 16, 2010). In this final rule, DOE is... energy conservation standards for direct heating equipment manufactured on or after April 16, 2013. 75...

  19. 78 FR 42389 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ...This final rule corrects the energy conservation standards for room air conditioners. In the direct final rule establishing amended energy conservation standards for residential clothes dryers and room air conditioners, published in the Federal Register on April 21, 2011, and the subsequent notices of effective date and compliance dates for the direct final rule and amendment of compliance......

  20. 77 FR 22472 - Energy Conservation Program: Energy Conservation Standards for Certain External Power Supplies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... final rule was published on March 23, 2009. See 74 FR 12058. Subsequently, Congress revisited elements... a technical amendment to codify verbatim in regulation these statutory changes. See 76 FR 57897... Part 430 RIN 1904-AB57 Energy Conservation Program: Energy Conservation Standards for Certain...

  1. Conservation in the energy industry

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The basic energy supply and utilization problems faced by the United States were described. Actions which might alleviate the domestic shortfall of petroleum and natural gas are described, analyzed and overall impacts are assessed. Specific actions included are coal gasification, in situ shale oil production, improved oil and gas recovery, importation of liquid natural gas and deregulation of natural gas prices. These actions are weighed against each other as alternate techniques of alleviating or overcoming existing shortfalls.

  2. Energy conservation in electric distribution

    SciTech Connect

    Lee, Chong-Jin

    1994-12-31

    This paper discusses the potential for energy and power savings that exist in electric power delivery systems. These savings translate into significant financial and environmental benefits for electricity producers and consumers as well as for society in general. AlliedSignal`s knowledge and perspectives on this topic are the result of discussions with hundreds of utility executives, government officials and other industry experts over the past decade in conjunction with marketing our Amorphous Metal technology for electric distribution transformers. Amorphous metal is a technology developed by AlliedSignal that significantly reduces the energy lost in electric distribution transformers at an incremental cost of just a few cents per kilo-Watt-hour. The purpose of this paper is to discuss: Amorphous Metal Alloy Technology; Energy Savings Opportunity; The Industrial Barriers and Remedies; Worldwide Demand; and A Low Risk Strategy. I wish this presentation will help KEPCO achieve their stated aims of ensuring sound development of the national economy and enhancement of public life through the economic and stable supply of electric power. AlliedSignal Korea Ltd. in conjunction with AlliedSignal Amorphous Metals in the U.S. are here to work with KEPCO, transformer manufacturers, industry, and government agencies to achieve greater efficiency in power distribution.

  3. Energy Crisis: Resource Guide for Energy Conservation Education.

    ERIC Educational Resources Information Center

    Davey, Don; McDuffie, Claudia

    This publication is a resource guide to energy education and conservation materials and organizations. The stated purpose of this guide is to make teachers and other interested citizens of Oregon aware of some of the resources and sources of information on energy conservation education that are available in Oregon and in the United States and…

  4. Energy savings potential from energy-conserving irrigation systems

    SciTech Connect

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  5. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  6. Intervention strategies for energy efficient municipal buildings: Influencing energy decisions throughout buildings` lifetimes

    SciTech Connect

    1993-12-31

    The current energy-related decisionmaking processes that take place during the lifetimes of municipal buildings in San Francisco do not reflect our ideal picture of energy efficiency as a part of staff awareness and standard practice. Two key problems that undermine the success of energy efficiency programs are lost opportunities and incomplete actions. These problems can be caused by technology-related issues, but often the causes are institutional barriers (organizational or procedural {open_quotes}people problems{close_quotes}). Energy efficient decisions are not being made because of a lack of awareness or policy mandate, or because financial resources are not available to decisionmakers. The Bureau of Energy Conservation (BEC) is working to solve such problems in the City & County of San Francisco through the Intervention Strategies project. In the first phase of the project, using the framework of the building lifetime, we learned how energy efficiency in San Francisco municipal buildings can be influenced through delivering services to support decisionmakers; at key points in the process of funding, designing, constructing and maintaining them. The second phase of the project involved choosing and implementing five pilot projects. Through staff interviews, we learned how decisions that impact energy use are made at various levels. We compiled information about city staff and their needs, and resources available to meet those needs. We then designed actions to deliver appropriate services to staff at these key access points. BEC implemented five pilot projects corresponding to various stages in the building`s lifetime. These were: Bond Guidelines, Energy Efficient Design Practices, Commissioning, Motor Efficiency, and Facilities Condition Monitoring Program.

  7. 10 CFR 436.104 - Energy conservation measures and standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy conservation measures and standards. 436.104 Section 436.104 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Guidelines for General Operations Plans § 436.104 Energy conservation measures and standards....

  8. 10 CFR 436.104 - Energy conservation measures and standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy conservation measures and standards. 436.104 Section 436.104 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Guidelines for General Operations Plans § 436.104 Energy conservation measures and standards....

  9. 10 CFR 436.104 - Energy conservation measures and standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy conservation measures and standards. 436.104 Section 436.104 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Guidelines for General Operations Plans § 436.104 Energy conservation measures and standards....

  10. 10 CFR 436.104 - Energy conservation measures and standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy conservation measures and standards. 436.104 Section 436.104 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Guidelines for General Operations Plans § 436.104 Energy conservation measures and standards....

  11. 10 CFR 436.104 - Energy conservation measures and standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy conservation measures and standards. 436.104 Section 436.104 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Guidelines for General Operations Plans § 436.104 Energy conservation measures and standards....

  12. Labor and energy impacts of energy-conservation measures

    SciTech Connect

    Not Available

    1980-01-01

    Three papers are presented discussing the labor and energy impacts of energy-conservation measures, namely: Generation of the Industry/Occupation Wage Matrix and Related Matters, by Carole Green; Job Shifts from Energy Conservation (Salary Distribution Effects), by Robert A. Herendeen; and Energy and Labor Implication of Improving Thermal Integrity of New Houses, by John Joseph Nangle. A separate abstract was prepared for each paper.

  13. Buildings energy efficiency in the Southeast

    SciTech Connect

    Not Available

    1993-01-01

    In June 1992, energy service providers from around the Southeastern United States gathered at the Shenandoah Environment and Education Center of Georgia Power Company, to discuss issues related to energy efficiency buildings in the region. The meeting was organized by an ad hoc planning committee under the auspices of the Atlanta Support Office of the DOE. The objectives of the Workshop were to provide a forum for regional energy service providers to discuss matters of mutual concern and to identify issues of particular relevance to the Southeast. What characterizes energy use in the Southeast Most lists would include rapid population growth, high temperatures and humidity, a large air conditioning load on utilities, a relatively clean environment, and regulatory processes that seek to keep energy prices low. There was less unanimity on what are the priority issues. No definitive list of priorities emerged from the workshop. Participants did identify several areas where work should be initiated: networking, training/certification/education, performance of technical measures, and studies of market forces/incentives/barriers. The most frequently mentioned context for these work areas was that of utility programs. Presentations given during the first morning provided attendees an overview of energy use in the region and of building energy conservation programs being implemented both by state agencies and by utilities. These were the base for breakout and plenary sessions in which attendees expressed their views on specific topics. The regional need mentioned most often at the workshop was for networking among energy service providers in the region. In this context, this report itself is a follow up action. Participants also requested a regional directory of energy program resources. DOE agreed to assemble a preliminary directory based upon input from workshop attendees. Because the response was quick and positive, a directory is part of this document.

  14. Short-Term Energy Tests of a Credit Union Building in Idaho (Draft)

    SciTech Connect

    Subbarao, K.; Balcomb, J. D.

    1993-01-01

    This report describes tests and results of the energy performance of a credit union building in Idaho. The building is in the Energy Edge Program administered by the Bonneville Power Administration (BPA). BPA provided incentives to incorporate innovative features designed to conserve energy use by the building. It is of interest to determine the actual performance of these features. The objective of this project was to evaluate the applicability of the SERI short-term energy monitoring (STEM) method to nonresidential buildings.

  15. 76 FR 52852 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... Clothes Dryers and Room Air Conditioners AGENCY: Office of Energy Efficiency and Renewable Energy... Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence Avenue... Management Program, Energy Efficiency and Renewable Energy. For the reasons set forth in the preamble,...

  16. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation...

  17. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation...

  18. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation...

  19. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation...

  20. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation...

  1. Energy conservation for pasteurizer apparatus

    SciTech Connect

    Huling, J.K.

    1981-07-21

    In the pasteurizing of beverages in closed containers, the containers arrive generally in a chilled state and are progressively raised in temperature approaching the pasteurizing temperature and, after being pasteurized for an appropriate time, are progressively cooled down. Apparatus of this type is provided with a source of chilled water which is available for use when skips occur in the supply of the containers, the chilled water being accumulated from the incoming containers and from common outside sources. The accumulated water in its chilled state saves substantial amounts of energy by eliminating mechanical or other means to produce the chill effect, and such source of water is constantly available under control which senses the presence of a skip in the supply of containers.

  2. Role of conservation in planning for an energy emergency: home and work-place energy use

    SciTech Connect

    Carlsmith, R S

    1980-06-01

    Prospects for making substantial reductions in energy consumption in the residential, commercial, and industrial sectors are discussed. Steps to deal with an emergency and with preparations that can be started now to reduce our vulnerability are described. A large amount of energy conservation has occurred since 1973. As a result, 1980 consumption will be about 83 EJ instead of 104 EJ. Much of this energy conservation has come about from increased efficiency, as indicated by the fact that the energy/GNP ratio has dropped from 64 MJ/1972 dollar in 1973 to 58 MJ/1972 dollar in 1979. Higher energy prices have been and will continue to be the principal driving force for conservation. However, there are a number of serious barriers. Because of these barriers Congress has promulgated a program of encouraging conservation through regulations, financial measures, and information programs. Some of the most important are energy performance standards for new buildings, assistance in retrofitting residential buildings, and grants for institutional buildings. The planning for emergency situations remains incomplete. Proposed emergency measures (with the exception of gasoline rationing) focus largely on reduction of nonessential uses of energy. The potential reductions achievable by such measures would fall far short of the requirements in a serious emergency such as a cutoff of all imports from the mid-east. There remains an urgent need for detailed planning of allocation, distribution, pricing, and enforcement procedures for a major emergency.

  3. Thermal Insulation Strips Conserve Energy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Launching the space shuttle involves an interesting paradox: While the temperatures inside the shuttle s main engines climb higher than 6,000 F hot enough to boil iron for fuel, the engines use liquid hydrogen, the second coldest liquid on Earth after liquid helium. Maintained below 20 K (-423 F), the liquid hydrogen is contained in the shuttle s rust-colored external tank. The external tank also contains liquid oxygen (kept below a somewhat less chilly 90 K or -297 F) that combines with the hydrogen to create an explosive mixture that along with the shuttle s two, powdered aluminum-fueled solid rocket boosters allows the shuttle to escape Earth s gravity. The cryogenic temperatures of the main engines liquid fuel can cause ice, frost, or liquefied air to build up on the external tank and other parts of the numerous launch fueling systems, posing a possible debris risk when the ice breaks off during launch and causing difficulties in the transfer and control of these cryogenic liquid propellants. Keeping the fuel at the necessary ultra-cold temperatures while minimizing ice buildup and other safety hazards, as well as reducing the operational maintenance costs, has required NASA to explore innovative ways for providing superior thermal insulation systems. To address the challenge, the Agency turned to an insulating technology so effective that, even though it is mostly air, a thin sheet can prevent a blowtorch from igniting a match. Aerogels were invented in 1931 and demonstrate properties that make them the most extraordinary insulating materials known; a 1-inch-thick piece of aerogel provides the same insulation as layering 15 panes of glass with air pockets in between. Derived from silica, aluminum oxide, or carbon gels using a supercritical drying process - resulting in a composition of almost 99-percent air - aerogels are the world s lightest solid (among 15 other titles they hold in the Guinness World Records), can float indefinitely on water if treated to be

  4. Energy conservation manual for builders in the Mid-Columbia Basin area

    SciTech Connect

    Mazzucchi, R.P.; Nieves, L.A.; Hopp, W.J.

    1981-03-01

    Results of a comprehensive cost-effectiveness evaluation of energy conservation measures currently available for use in typical residential buildings are presented. Section 2 discusses construction techniques for energy-efficient buildings and presents estimates of the cost of incorporating the conservation measures in the prototype building, the resultant annual energy savings, and the value of that annual energy savings based upon typical regional fuel prices. In Section 3 this information is summarized to prioritize conservation investments according to their economic effectiveness and offer general recommendations to home builders. Appendix A contains detailed information pertaining to the energy consumption calculations. Appendix B presents the methodology, assumptions, and results of a detail cash flow analysis of each of the conservation items for which sufficient performance and cost data are currently available. (MCW)

  5. Angular momentum conservation in dipolar energy transfer.

    PubMed

    Guo, Dong; Knight, Troy E; McCusker, James K

    2011-12-23

    Conservation of angular momentum is a familiar tenet in science but has seldom been invoked to understand (or predict) chemical processes. We have developed a general formalism based on Wigner's original ideas concerning angular momentum conservation to interpret the photo-induced reactivity of two molecular donor-acceptor assemblies with physical properties synthetically tailored to facilitate intramolecular energy transfer. Steady-state and time-resolved spectroscopic data establishing excited-state energy transfer from a rhenium(I)-based charge-transfer state to a chromium(III) acceptor can be fully accounted for by Förster theory, whereas the corresponding cobalt(III) adduct does not undergo an analogous reaction despite having a larger cross-section for dipolar coupling. Because this pronounced difference in reactivity is easily explained within the context of the angular momentum conservation model, this relatively simple construct may provide a means for systematizing a broad range of chemical reactions. PMID:22194572

  6. Energy Implementation Centers: A Method of Speeding the Use of Solar Energy and Other Energy Conserving Technologies. Final Report.

    ERIC Educational Resources Information Center

    Hirshberg, A. S.; And Others

    This report examines the role of implementation centers as a vehicle for speeding the use of solar energy and energy conservation. It covers a study of previous building industry innovations; a brief review of the diffusion of innovation literature, including several case studies; identification of the solar thermal application process and…

  7. Energy Conservation Research Study. Final Report.

    ERIC Educational Resources Information Center

    Cayemberg, Merlin; And Others

    This study explored the availability of energy conservation programs at community colleges; the apparent need for such programs or courses by industry, business, and government; and the types of programs, if any, which should be offered at the vocational/technical level. Information was sought from 52 current two-year programs, the fifty state…

  8. Thermal Comfort and Strategies for Energy Conservation.

    ERIC Educational Resources Information Center

    Rohles, Frederick H., Jr.

    1981-01-01

    Discusses studies in thermal comfort which served as the basis for the comfort standard. Examines seven variables in the human response to the thermal environment in terms of the ways in which they can be modified to conserve energy. (Author/MK)

  9. The Urgent Need for Energy Conservation

    ERIC Educational Resources Information Center

    Abelson, Philip H.

    1973-01-01

    Discusses the serious nature of the Energy Crisis'' and the dependence of the United States economy on imported hydrocarbons. Urges immediate action to alleviate the situation by increasing domestic production of oil, substituting coal for oil, and by conservation, especially in the use of automobile fuel. (JR)

  10. 36 CFR 910.36 - Energy conservation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Energy conservation. 910.36 Section 910.36 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA...

  11. Energy Conservation: Implementing an Effective Campus Program.

    ERIC Educational Resources Information Center

    Marsee, Jeff

    After reviewing the physical plant environment and temperature control equipment at Eastfield College (Texas), this paper explains how redirected efforts toward energy conservation can result in important cost/usage savings. Electricity billing rates are explained to provide a stronger usage strategy for cost effectiveness. Two methods of reducing…

  12. Energy Conservation Featured in Illinois High School

    ERIC Educational Resources Information Center

    Modern Schools, 1976

    1976-01-01

    The William Fremd High School in Palatine, Illinois, scheduled to open in 1977, is being built with energy conservation uppermost in mind. In this system, 70 heat pumps will heat and cool 300,000 square feet of educational facilities. (Author/MLF)

  13. Energy conservation indicators. 1982 annual report

    SciTech Connect

    Belzer, D.B.

    1982-09-01

    A series of Energy Conservation Indicators were developed for the Department of Energy to assist in the evaluation of current and proposed conservation strategies. As descriptive statistics that signify current conditions and trends related to efficiency of energy use, indicators provide a way of measuring, monitoring, or inferring actual responses by consumers in markets for energy services. Related sets of indicators are presented in some 40 one-page indicator summaries. Indicators are shown graphically, followed by several paragraphs that explain their derivation and highlight key findings. Indicators are classified according to broad end-use sectors: Aggregate (economy), Residential, Commercial, Industrial, Transportation and Electric Utilities. In most cases annual time series information is presented covering the period 1960 through 1981.

  14. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    SciTech Connect

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-09-30

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  15. ELS Design Group/SOL-ARC: Energy-Efficient State Office Building, San Jose, Ca, Citation.

    ERIC Educational Resources Information Center

    Progressive Architecture, 1981

    1981-01-01

    Recipient of an architectural design citation from the 28th Progressive Architecture Awards is an energy-efficient office building that relies on passive techniques of conservation to produce energy savings. (Author/MLF)

  16. Energy conservation in ice skating rinks

    SciTech Connect

    Dietrich, B.K.; McAvoy, T.J.

    1980-01-01

    An economic and energy analysis of ice rinks was made to examine the areas in which energy could be profitably conserved. The areas where new equipment could make a major reduction in energy use are: the use of waste heat for space heating, the installation of a low emissivity false ceiling to reduce radiant heat, the use of a load cycling controller to reduce refrigeration costs, and the installation of more efficient lighting systems. Changes in rink operating procedure that could cut energy use are: higher refrigerant temperatures, thinner ice, the use of colder resurfacing water, turning the compressors and pumps off at night, and reducing ventilation.

  17. Science and society test X: Energy conservation

    NASA Astrophysics Data System (ADS)

    Hafemeister, David

    1987-04-01

    United States energy consumption has remained essentially constant at about 80 exajoules/year (75 quads/year) since the oil embargo of 1973-1974, while the GNP in constant dollars has increased by about 30%. This article will discuss the physics behind some of these improvements in end-use efficiency in such areas as: (i) buildings (scaling laws, ``free-heat,'' superinsulated houses, thermal storage in large buildings, off-peak cooling), (ii) solar energy (passive, photovoltaics), (iii) utility load management (``smart meters,'' capital recovery fees, voltage control), (iv) appliances (life-cycle costs, refrigerators), and (v) lighting (isotopic enhancement).

  18. Energy conservation for dynamical black holes.

    PubMed

    Hayward, Sean A

    2004-12-17

    An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. This first law of black-hole dynamics describes how a black hole grows and is regular in the limit where it ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures of both ingoing and outgoing, transverse and longitudinal gravitational radiation on and near a black hole. Corresponding energy-tensor forms of the first law involve a preferred time vector which plays the role of a stationary Killing vector. Identifying an energy flux, vanishing if and only if the horizon is null, allows a division into energy supply and work terms. The energy supply can be expressed in terms of area increase and a newly defined surface gravity, yielding a Gibbs-like equation. PMID:15697889

  19. Transportation energy conservation data book: Edition 4

    SciTech Connect

    Kulp, G.; Shonka, D.B.; Collins, M.J.; Murphy, B.J.; Reed, K.J.

    1980-09-01

    This is the fourth edition of the Transportation Energy Conservation Data Book, a statistical compendium compiled and published by ORNL for DOE. Secondary data on transportation characteristics by mode, on transportation energy use, and on other related variables are presented in tabular and/or graphic form. All major modes of transportation are represented: highway, air, rail, marine, and pipeline. The six main chapters focus on various characteristics of the transportation sector including (1) modal characteristics, (2) current energy use, efficiency and conservation, (3) projections of modal energy use, (4) impact of government activities, (5) supply and cost of energy, and (6) general demographic and economic characteristics. Included in the tables and figures are the following transportation stock and use statistics: number of vehicles, vehicle-miles traveled, passenger-miles and freight ton-miles, fleet characteristics, household automobile ownership, size mix of automobiles, vehicle travel characteristics, and commuting patterns. Energy characteristics presented include energy use by fuel source and transportation mode, energy intensity figures by mode, indirect energy use, production as a percent of consumption, imports as a percent of domestic production, energy prices from the wellhead to the retail outlet, and alternative fuels.

  20. Renewable Energy Applications for Existing Buildings: Preprint

    SciTech Connect

    Hayter, S. J.; Kandt, A.

    2011-08-01

    This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

  1. Energy Conservation Guidebook : to be Used in Conjunction with the Energy Conservation Policies October 1993.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-11-01

    This guidebook is an instrument for implementing BPA`s Energy Conservation Policies established through the concensus of the four Area Office Managers and the Assistant Administrator for the Office of Energy Resources. As technical support for, and elaboration of, the Energy Conservation Policies, the Guidebook follows the format of the Policies themselves. The Guidebook tackles each section of the Policies in order, again assigning roles and responsibilities where appropriate, enlarging on policy issues and, where appropriate, outlining data considerations. The sections in order are: conservation load reduction, cost-effectiveness limits, BA management targets, consumer contributions, utility contribution, program verification, and program evaluation.

  2. Hyperspectral sensors and the conservation of monumental buildings

    NASA Astrophysics Data System (ADS)

    Camaiti, Mara; Benvenuti, Marco; Chiarantini, Leandro; Costagliola, Pilar; Moretti, Sandro; Paba, Francesca; Pecchioni, Elena; Vettori, Silvia

    2010-05-01

    The continuous control of the conservation state of outdoor materials is a good practice for timely planning conservative interventions and therefore to preserve historical buildings. The monitoring of surfaces composition, in order to characterize compounds of neo-formation and deposition, by traditional diagnostic campaigns, although gives accurate results, is a long and expensive method, and often micro-destructive analyses are required. On the other hand, hyperspectral analysis in the visible and near infrared (VNIR) region is a very common technique for determining the characteristics and properties of soils, air, and water in consideration of its capability to give information in a rapid, simultaneous and not-destructive way. VNIR Hypespectral analysis, which discriminate materials on the basis of their different patterns of absorption at specific wavelengths, are in fact successfully used for identifying minerals and rocks (1), as well as for detecting soil properties including moisture, organic content and salinity (2). Among the existing VNIR techniques (Laboratory Spectroscopy - LS, Portable Spectroscopy - PS and Imaging Spectroscopy - IS), PS and IS can play a crucial role in the characterization of components of exposed stone surfaces. In particular, the Imaging Spectroscopic (remote sensing), which uses sensors placed both on land or airborne, may contribute to the monitoring of large areas in consideration of its ability to produce large areal maps at relatively low costs. In this presentation the application of hyperspectral instruments (mainly PS and IS, not applied before in the field of monumental building diagnostic) to quantify the degradation of carbonate surfaces will be discussed. In particular, considering gypsum as the precursor symptom of damage, many factors which may affect the estimation of gypsum content on the surface will be taken into consideration. Two hyperspectral sensors will be considered: 1) A portable radiometer (ASD

  3. Hyperspectral sensors and the conservation of monumental buildings

    NASA Astrophysics Data System (ADS)

    Camaiti, Mara; Benvenuti, Marco; Chiarantini, Leandro; Costagliola, Pilar; Moretti, Sandro; Paba, Francesca; Pecchioni, Elena; Vettori, Silvia

    2010-05-01

    The continuous control of the conservation state of outdoor materials is a good practice for timely planning conservative interventions and therefore to preserve historical buildings. The monitoring of surfaces composition, in order to characterize compounds of neo-formation and deposition, by traditional diagnostic campaigns, although gives accurate results, is a long and expensive method, and often micro-destructive analyses are required. On the other hand, hyperspectral analysis in the visible and near infrared (VNIR) region is a very common technique for determining the characteristics and properties of soils, air, and water in consideration of its capability to give information in a rapid, simultaneous and not-destructive way. VNIR Hypespectral analysis, which discriminate materials on the basis of their different patterns of absorption at specific wavelengths, are in fact successfully used for identifying minerals and rocks (1), as well as for detecting soil properties including moisture, organic content and salinity (2). Among the existing VNIR techniques (Laboratory Spectroscopy - LS, Portable Spectroscopy - PS and Imaging Spectroscopy - IS), PS and IS can play a crucial role in the characterization of components of exposed stone surfaces. In particular, the Imaging Spectroscopic (remote sensing), which uses sensors placed both on land or airborne, may contribute to the monitoring of large areas in consideration of its ability to produce large areal maps at relatively low costs. In this presentation the application of hyperspectral instruments (mainly PS and IS, not applied before in the field of monumental building diagnostic) to quantify the degradation of carbonate surfaces will be discussed. In particular, considering gypsum as the precursor symptom of damage, many factors which may affect the estimation of gypsum content on the surface will be taken into consideration. Two hyperspectral sensors will be considered: 1) A portable radiometer (ASD

  4. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    SciTech Connect

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  5. Analysis of energy use at US institutional buildings

    NASA Astrophysics Data System (ADS)

    Hirst, E.; Trimble, J.; Goelitz, R.

    1981-11-01

    The Federal Institutional Conservation Program includes collection of energy use and energy related data from individual institutional buildings. Data were obtained from ten states (Massachusetts, New Hampshire, Vermont, New Jersey, Florida, Minnesota, Wisconsin, Texas, Kansas, and Oregon) on almost fifteen thousand schools, hospitals, local government buildings, and public care institutions. After the data were carefully examined, organized, and validated (i.e., outliers that might be errors were deleted), regression equations were developed for each of the four institutional building types. Because so many of the data elements were either missing or outliers, techniques were applied that allow incorporation of observations with missing data in the regression analysis. These equations explain annual energy use as functions of average energy price, floor area, year of construction, occupancy, air conditioning, primary heating fuel, owner, location, and building function.

  6. Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings

    SciTech Connect

    Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

    2013-08-30

    The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

  7. North Carolina State Plan for Technical Assistance and Energy Conservation Measures: Grant Programs for Schools and Hospitals and for Buildings Owned by Units of Local Government and Public Care Institutions.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Commerce, Raleigh. Energy Div.

    State guidelines for grant applications that follow the regulations of the National Energy Conservation Policy Act of 1978 are presented for North Carolina institutions. Among the 17 procedures spelled out in detail are several that concern eligible institutions' involvement in the development of the state plan, notification of the plan, and…

  8. Interference and the Law of Energy Conservation

    NASA Astrophysics Data System (ADS)

    Drosd, Robert; Minkin, Leonid; Shapovalov, Alexander S.

    2014-10-01

    Introductory physics textbooks consider interference to be a process of redistribution of energy from the wave sources in the surrounding space resulting in constructive and destructive interferences. As one can expect, the total energy flux is conserved. However, one case of apparent non-conservation energy attracts great attention.1,2 Imagine that a pair of coherent, point-like wave sources (located at the same position) radiates sinusoidal waves of amplitude A, spreading in a uniform medium. Assume also that radiation of the two sources is in phase. Since the energy of oscillation, E, is proportional to amplitude squared, one quickly arrives at an apparent paradox. That is, the energy of oscillation in every point due to only one source is E0=CA2 (C is the coefficient of proportionality), while according to the linear superposition principle, the combined amplitude of oscillations from the two sources is 2A and the energy of oscillations is E =C(2A)2=4CA2=4E0, i.e., four (not two) times greater than the energy of oscillation of one isolated source in the absence of the second. In the general case, superposition of two waves with identical amplitudes and wavelengths produces a wave with an intensity somewhere between zero and four times the intensity of a single wave source (depending on relative phase of the two waves). This leads to the obvious question: how can we account for the extra (or missing) energy that necessarily results from in-phase (or anti-phase) wave interference? This apparent violation of the principle of conservation energy, due to the superposition of waves, is the primary topic of this paper.

  9. 75 FR 41102 - Energy Conservation Program: Energy Conservation Standards for Furnace Fans: Reopening of Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... standards for furnace fans on June 3, 2010 by publishing a notice in the Federal Register (75 FR 31323). The... establish energy conservation standards for the use of electricity for purposes of circulating air...

  10. 78 FR 36315 - Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... and Residential Dishwashers, Dehumidifiers, and Cooking Products'' (Framework Document).\\9\\ 71 FR... microwave oven product types. DOE's product testing and reverse-engineering analysis additionally determined... amended, prescribes energy conservation standards for various consumer products and certain commercial...

  11. Building Green: The Adoption Process of LEED- and Energy Star-Rated Office Buildings

    NASA Astrophysics Data System (ADS)

    Malkani, Arvin P.

    There are opportunities for green building technology in office buildings to produce energy savings and cost efficiencies that can produce a positive economic and environmental impact. In order for these opportunities to be realized, however, decision makers must appreciate the value of green building technology. The objective of this research is to better understand the motivations that lead office building professionals to adopt green building technology. By utilizing a validated theory named the Unified Theory of Acceptance and Use of Technology (UTAUT), the investigator analyzes the impact of four predictor variables on the behavioral intention to adopt green building technology. The adapted UTAUT model, called the Green Building Technology Model (GBTM), was found to have a statistically significant correlation with the intention to adopt green building technology. The results provide a model for using the GBTM in green building technology applications. Implications are drawn for the green industry on the whole and for the green office building movement in particular. Industry and government can develop interventions based on the insights learned from this study about the adoption process. These interventions, such as education or awareness campaigns, can help increase the adoption of green building technology, further advancing society's efforts to conserve the natural environment and achieve cost efficiencies.

  12. Solar energy, conservation, and rental housing

    SciTech Connect

    Levine, A.; Raab, J.

    1981-03-01

    Renters must pay the majority of energy costs either directly or in their rents. They have limited financial and legal abilities to make improvements necessary to increase substantially the energy efficiency of rental housing. This report discusses the problem of how to increase investments in energy conservation and solar energy devices for rental housing, which constitutes over one-third of US housing. As background, this report characterizes the rental-housing market, including owners' decision-making criteria. Federal, state, and local policies that affect energy-related investments in rental housing are described. Programs are divided into five major categories: (1) programs for tenants, (2) financial incentives for owners, (3) leasing of solar energy equipment, (4) mediation between tenants and landlords, and (5) regulation. The report concludes that energy and conservation programs aimed at the residential sector must disaggregate owner-occupied housing from rental housing for maximum effect. No one program is advocated since local rental-housing markets differ substantially. For improvements greater than no-cost or low-cost items, programs must be directed at rental-housing owners and not only at tenants.

  13. Energy-conserving development regulations: current practice

    SciTech Connect

    Not Available

    1980-05-01

    Almost every aspect of land development has an effect on energy use, from minute architectural details to broad considerations of urban density. Energy-efficiency depends in part on how development is planned and carried out. Conventional development regulations, such as zoning ordinances and subdivision regulations, can be adapted in many ways to promote energy conservation at the community level. This report is about energy-efficient site and neighborhood design. It examines recent experiences of local governments that have adopted new development regulations or amended existing ones to promote energy conservation, more efficient generation and distribution, or a switch to alternative, renewable sources. Although much has been written in recent years about saving energy through community design, actual experience in applying these new ideas is still limited. To date, most communities have focused their efforts on studying the problem, documenting consumption patterns, and writing reports and plans. Only a handful have amended their land-use controls for the express purpose of saving energy. This study identifies 13 of these pioneering communities, after undertaking a survey of over 1400 local, regional, and state planning agencies. It takes a look at their experiences, to learn what has been done, how well it has worked, and what problems have been encountered.

  14. Building-owners energy-education program. Final report

    SciTech Connect

    Not Available

    1981-12-01

    The objectives of the program are to develop and test market a cogent education program aimed specifically at building owners to help them be more decisive and knowledgeable, and to motivate them to direct their managers and professionals to implement a rational plan for achieving energy conservation in their commercial office buildings and to establish a plan, sponsored by the Building Owners and Managers Association International (BOMA) to implement this educational program on a nation-wide basis. San Francisco, Chicago, and Atlanta were chosen for test marketing a model program. The procedure used in making the energy survey is described. Energy survey results of participating buildings in San Francisco, Chicago, and Atlanta are summarized. (MCW)

  15. Energy Efficient Homes and Small Buildings. Vocational Education, Industrial Arts Curriculum Guide. Bulletin 1698.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This curriculum guide provides high school carpentry, construction, or drafting course teachers with material related to retrofitting a building for energy conservation. Section 1 discusses how design and construction methods affect energy use. Section 2 focuses on care and maintenance of energy efficient buildings. In addition to informative…

  16. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when...

  17. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when...

  18. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when...

  19. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when...

  20. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when...

  1. 75 FR 14319 - Energy Conservation Standards for Fluorescent Lamp Ballasts: Public Meeting and Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... cycle to amend energy conservation standards for fluorescent lamp ballasts. 65 FR 56740, 56740-56749... document (TSD), and briefing materials, which are available at http://www1.eere.energy.gov/buildings..., 2010. ADDRESSES: The public meeting will be held at the U.S. Department of Energy, Forrestal...

  2. 75 FR 30014 - Office of Energy Efficiency and Renewable Energy; Energy Efficiency and Conservation Block Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... of Energy Efficiency and Renewable Energy; Energy Efficiency and Conservation Block Grant Program AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice. SUMMARY... Efficiency and Renewable Energy (EERE), has experienced historic growth and unprecedented workload...

  3. Conservation and solar energy program: congressional budget request, FY 1982

    SciTech Connect

    1981-01-01

    Funding summaries are presented for the Conservation and Solar Energy Program funding information and program overview on energy conservation (Volume 7 of 7, DOE/CR-0011/2) are included for the Buildings and Community Systems, Industrial, Transportation; State and Local, Multi-Sector, Energy Impact Assistance, and Residential/Commercial retrofit programs. Funding information and program overviews on solar technology (Volume 2 of 7, DOE/CR-011/2) are included for Active and Passive Solar Heating and Cooling, Photovoltaics Energy Systems, Solar Thermal Power Systems, Biomass Energy Systems, Wind Energy Conversion Systems, Ocean Systems, Solar International Activities, Solar Information Systems, SERI Facility, MX-RES, Program Direction, and Alcohol Fuels programs. Information and overviews on energy production, demonstration, and distribution (Volume 6 of 7, DOE/CR-0011/2) are given for the solar program. A funding summary and a program overview are included for electrochemical and physical and chemical storage systems as appearing in DOE/CR-0011/2, Volume 3 of 7. Relevant tabulated data from the FY 1981. Request to the Congress are presented for Supplementals, Rescissions, and Deferrals. (MCW)

  4. Handbook of energy use for building construction

    SciTech Connect

    Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

    1980-03-01

    The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

  5. Building heating and cooling applications thermal energy storage program overview

    NASA Technical Reports Server (NTRS)

    Eissenberg, D. M.

    1980-01-01

    Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.

  6. ImBuild: Impact of building energy efficiency programs

    SciTech Connect

    Scott, M.J.; Hostick, D.J.; Belzer, D.B.

    1998-04-01

    As part of measuring the impact of government programs on improving the energy efficiency of the Nation`s building stock, the Department of Energy Office of Building Technology, State and Community Programs (BTS) is interested in assessing the economic impacts of its portfolio of programs, specifically the potential impact on national employment and income. The special-purpose version of the IMPLAN model used in this study is called ImBuild. In comparison with simple economic multiplier approaches, such as Department of Commerce RIMS 2 system, ImBuild allows for more complete and automated analysis of the economic impacts of energy efficiency investments in buildings. ImBuild is also easier to use than existing macroeconomic simulation models. The authors conducted an analysis of three sample BTS energy programs: the residential generator-absorber heat exchange gas heat pump (GAX heat pump), the low power sulfur lamp (LPSL) in residential and commercial applications, and the Building America program. The GAX heat pump would address the market for the high-efficiency residential combined heating and cooling systems. The LPSL would replace some highly efficient fluorescent commercial lighting. Building America seeks to improve the energy efficiency of new factory-built, modular, manufactured, and small-volume, site-built homes through use of systems engineering concepts and early incorporation of new products and processes, and by increasing the demand for more energy-efficient homes. The authors analyze a scenario for market penetration of each of these technologies devised for BTS programs reported in the BTS GPRA Metrics Estimates, FY99 Budget Request, December 19, 1997. 46 figs., 4 tabs.

  7. Energy conservation and the transportation sector

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The present status of the energy implications of the transportation systems in the United States was illustrated, with primary emphasis on the technologies and methods for achieving a substantial reduction in the associated energy price (approximately 25% of the nation's energy is consumed directly in the operation of these systems). These technologies may be classified as follows: (1) improvement of system efficiency (system operations or technological), (2) substitution for scarce energy resources (electrification, alternate fuels, use of man power, recycling), (3) curtailment of end use (managed population growth rate, education of citizenry, alternatives to personal transportation, improved urban planning, reduced travel incentives). Examples and illustrations were given. Thirty-four actions were chosen on the basis of a preliminary filtering process with the objective of: (1) demonstrating a methodological approach to arrive at logical and consistent conservation action packages, (2) recommending a viable and supportable specific set of actions.

  8. Advanced Energy Retrofit Guide Office Buildings

    SciTech Connect

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  9. Advanced Energy Retrofit Guide Retail Buildings

    SciTech Connect

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  10. Behind closed doors: energy conservation can be hazardous to your health

    SciTech Connect

    Lyman, F.

    1980-12-01

    The push for energy conservation, which has involved cutting down the ventilation in homes and other buildings, can create air pollution problems indoors. The reduction in ventilation allows the accumulation of pollutants generated by sources ranging from formaldehyde foam insulation and asbestos ceilings to synthetic furniture fabrics and radioactive building materials. Studies at LBL and EPA indicate some of the health hazards potentially associated with inadequate building ventilation, such as respiratory ailments, eye irritations, and sinus headaches.

  11. Federal Government Energy Management and Conservation Programs Fiscal Year 2008

    SciTech Connect

    None, None

    2014-03-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  12. Federal Government Energy Management and Conservation Programs Fiscal Year 2009

    SciTech Connect

    None, None

    2014-03-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  13. HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A REVIEW OF GOVERNMENTAL AND PRIVATE AGENCY ENERGY CONSERVATION INITIATIVES

    SciTech Connect

    Banks, Robert S.; Rainer, David

    1980-03-01

    This report presents the results of a recent research project originally concerned with review of governmental initiatives for changes to hospital design and operation standards at both the federal and state levels. However. it quickly became apparent that concern with energy conservation was not impacting hospital environmental standards, especially at the state level, irrespective of the energy implications. Consequently, the study was redirected to consider all energy conservation initiatives directed toward design and operating practices unique to the hospital environment. The scope was limited to agency programs (i.e., not undertaken at the initiative of individual hospitals), applicable to non-federal public and private hospitals.

  14. Energy Conservation: Guidelines for Action. Suggested Guidelines for Local School District Development of Energy Conservation Programs.

    ERIC Educational Resources Information Center

    Michigan Association of School Administrators, East Lansing.

    Curriculum guidelines for the local development of energy conservation programs in public schools reflect an interdisciplinary educational approach--the result of a coordinated effort by industry, commerce, education, and government agencies concerned with the energy crisis. The scope and nature of the problem, with its implications for education…

  15. 75 FR 34656 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Certain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... in the rulemaking process to consider energy conservation standards for certain ER, BR, and small diameter incandescent reflector lamps. 75 FR 23191. The document provided for the submission of written... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10...

  16. Energy conservation with chilled-water storage

    SciTech Connect

    Fiorino, D.

    1993-05-01

    Thermal energy storage (TES) is widely recognized as a demand-side management technology for shifting cooling electrical demand from peak daytime periods to off-peak nighttime and weekend periods when utilities have reserve generating capacity. TES has enabled users to significantly reduce their electricity costs by reducing peak demand and taking advantage of lower off-peak usage rates, often with large utility incentive payments and sometimes with reduced capital costs. It has also enabled utilities to reduce peaks and fill valleys, thereby improving system load factors, reducing reliance on peaking units, increasing utilization of base load units and postponing the construction of additional generating units. Because TES has been so strongly categorized as a demand-shifting technology, its potential for energy conservation has received little recognition. And, certainly, there are many existing TES systems that use more electricity than conventional cooling systems and are beneficial only for shifting demand. However, recent advances in the technology have produced more efficient and better integrated TES systems that use less electricity and natural gas than conventional cooling/heating systems. To apprise engineers of thermal energy storage's potential for energy conservation, this article will study the design and operation of a TES system in one industrial retrofit application.

  17. Background to the development process, Automated Residential Energy Standard (ARES) in support of proposed interim energy conservation voluntary performance standards for new non-federal residential buildings: Volume 3

    SciTech Connect

    1989-09-01

    This report documents the development and testing of a set of recommendations generated to serve as a primary basis for the Congressionally-mandated residential standard. This report treats only the residential building recommendations.

  18. NASA Net Zero Energy Buildings Roadmap

    SciTech Connect

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  19. Evaluation of the State Energy Conservation Program from program initiation to September 1978. Final report

    SciTech Connect

    Heller, James N.; Grossmann, John R.; Shochet, Susan; Bresler, Joel; Duggan, Noreene

    1980-03-01

    The State Energy Conservation Program was established in 1975 to promote energy conservation and to help states develop and implement their own conservation programs. Base (5) and supplemental (3) programs required states to implement programs including: mandatory thermal-efficiency standards and insulation requirements for new and renovated buildings; mandatory lighting efficiency standards for public buildings; mandatory standards and policies affecting the procurement practices of the state and its political subdivisions; program measures to promote the availability and use of carpools, vanpools, and public transportation; a traffic law or regulation which permits a right turn-on-red; and procedures to carry out a continuing public education effort to increase awareness of energy conservation; procedures which promote effective coordination among local, state, and Federal energy conservation programs; and procedures for carrying out energy audits on buildings and industrial plants. All 50 states and Puerto Rico, Guam, the Virgin Islands, American Samoa, and the District of Columbia participated in the program. The total 1980 energy savings projected by the states is about 5.9 quadrillion Btu's or about 7% of the DOE projected 1980 baseline consumption of just under 83 quads. The detailed summary is presented on the following: information the SECP evaluation; DOE response to the SECP; DOE's role in the program management process; the effectiveness of the states in managing the SECP; the status of program measure implementation; innovative state energy conservation programs; and the evaluation methodology.

  20. Building Energy Efficiency in Rural China

    SciTech Connect

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01

    Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  1. School District Energy Conservation Activities. R-96-J-2.

    ERIC Educational Resources Information Center

    New York State Office of the Comptroller, Albany. Div. of Management Audit.

    To help New York's State Department of Education assess public school districts' energy conservation activities, the results of an audit of school districts' energy conservation activities are presented. The audit shows that most school districts have made some efforts toward energy conservation and that the Department does provide some assistance…

  2. 41 CFR 101-25.112 - Energy conservation policy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Energy conservation...-General Policies § 101-25.112 Energy conservation policy. (a) Agency officials responsible for procurement..., which has been established pursuant to Public Law 94-163, Energy Policy and Conservation Act. (b)...

  3. 41 CFR 101-25.112 - Energy conservation policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Energy conservation...-General Policies § 101-25.112 Energy conservation policy. (a) Agency officials responsible for procurement..., which has been established pursuant to Public Law 94-163, Energy Policy and Conservation Act. (b)...

  4. 41 CFR 101-25.112 - Energy conservation policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Energy conservation...-General Policies § 101-25.112 Energy conservation policy. (a) Agency officials responsible for procurement..., which has been established pursuant to Public Law 94-163, Energy Policy and Conservation Act. (b)...

  5. 41 CFR 101-25.112 - Energy conservation policy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Energy conservation...-General Policies § 101-25.112 Energy conservation policy. (a) Agency officials responsible for procurement..., which has been established pursuant to Public Law 94-163, Energy Policy and Conservation Act. (b)...

  6. 41 CFR 101-25.112 - Energy conservation policy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Energy conservation...-General Policies § 101-25.112 Energy conservation policy. (a) Agency officials responsible for procurement..., which has been established pursuant to Public Law 94-163, Energy Policy and Conservation Act. (b)...

  7. Energy performance standards for new buildings: economic analysis

    SciTech Connect

    Not Available

    1980-01-01

    This assessment determines the major economic impacts of the implementation of the standards on affected groups, and evaluates the effectiveness of the standards as an investment in energy conservation. The analyses examine the impacts on individual owners, construction industry, and the Nation. Chapter 2, Summary, briefly displays the results of the analysis. Chapter 3, Approach, describes the methodology used to evaluate the standards for the various building types and perspectives. The basis and structure for evaluating the standards' impacts on occupants and the Nation are described. Chapter 4, Building Microeconomics, evaluates the net economic effects of changes in building cost and energy use for three categories of buildings: single family residential, commercial and multifamily residential, and mobile homes. Chapter 5, Primary National Impacts, develops forecasts of energy savings and national costs and benefits both with and without implementation of the standards. Chapter 6, Impacts on Selected Building Industries, estimates changes in labor and material use in building construction and assesses the importance of these changes. Chapter 7, Net National Impacts, assesses the effects of changes in energy consumption and construction of new buildings on the national economy, including such factors as national income, investment, employment, and balance of trade. Details of models and data bases used in the analysis are included in Appendixes A through I. (MCW)

  8. Technology Utilization House Study Report. [For Energy Conservation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives of Project TECH are: (1) to construct a single family detached dwelling for demonstrating the application of advanced technology and minimizing the requirement for energy and utility services, and (2) to help influence future development in home construction by defining the interaction of integrated energy and water management systems with building configuration and construction materials. Components and methods expected to be cost effective over a 20 year span were studied. Emphasis was placed on the utilization of natural heating and cooling characteristics. Orientation and location of windows, landscaping, natural ventilation, and characteristics of the local climate and microclimate were intended to be used to best advantage. Energy conserving homes are most efficient when design for specific sites, therefore project TECH should not be considered a prototype design suitable for all locations. However, it does provide ideas and analytical methods which can be applied to some degree in all housing.

  9. Functional materials for energy-efficient buildings

    NASA Astrophysics Data System (ADS)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  10. K-12 Teacher Understanding of Energy Conservation: Conceptual Metaphor, Dissipation, and Degradation

    NASA Astrophysics Data System (ADS)

    Daane, Abigail R.

    In K-12 educational settings, conservation of energy is typically presented in two ways: the conservation of energy principle (energy is neither created nor destroyed) and the sociopolitical need to conserve energy (we guard against energy being used up). These two meanings of conservation typically remain disconnected from each other and can appear contradictory, even after instruction. In an effort to support teachers in building robust understandings of energy from their existing knowledge, I designed a study to investigate the productive ideas in K-12 teachers' conversations about energy. A micro-analysis of discourse, gestures, and artifacts of professional development courses revealed teachers' productive ideas about three aspects of energy: conceptual metaphor, dissipation and degradation. In learning about energy, K-12 teachers come to use conceptual metaphors in their own language and value attending to students' metaphorical language as a means of formative assessment. Teachers' conversations about dissipation suggest that apparent difficulties with energy conservation may have their roots in a strong association between forms of energy (thermal) and their perceptible indicators (warmth). Teachers address this challenge by employing an exaggeration strategy to locate the dissipated thermal energy, making the energy indicator perceptible. Finally, teachers' unprompted statements about sociopolitical aspects of energy are related to both statements from the NGSS and aspects of energy degradation. I conclude that energy conservation can be better taught and learned in K-12 Education by: 1) understanding and applying conceptual metaphors about energy in K-12 settings, 2) using prior experiences to better understand dissipative energy processes involving imperceptible thermal energy, thereby understanding how energy conservation applies in all situations, and 3) connecting productive ideas about sociopolitical aspects of energy to canonical physics. Keywords

  11. Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint

    SciTech Connect

    Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

    2010-08-01

    Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

  12. PEAR2.1. Residential Building Energy Analysis

    SciTech Connect

    Ritschard, R.L.

    1992-01-16

    PEAR (Program for Energy Analysis of Residences) provides an easy-to-use and accurate method of estimating the energy and cost savings associated with various energy conservation measures in site-built single-family homes. Measures such as ceiling, wall, and floor insulation; different window type and glazing layers; infiltration levels; and equipment efficiency can be considered. PEAR also allows the user to consider the effects of roof and wall color, movable night insulation on the windows, reflective and heat absorbing glass, an attached sunspace, and use of a night temperature setback. Regression techniques permit adjustments for different building geometries, window areas and orientations, wall construction, and extension of the data to 880 U.S. locations determined by climate parameters. Based on annual energy savings, user-specified costs of conservation measures, fuel, lifetime of measure, loan period, and fuel escalation and interest rates, PEAR calculates two economic indicators; the Simple Payback Period (SPP) and the Savings-to-Investment Ratio (SIR). Energy and cost savings of different sets of conservation measures can be compared in a single run. The program can be used both as a research tool by energy policy analysts and as a method for nontechnical energy calculation by architects, home builders, home owners, and others in the building industry.

  13. Flexible Framework for Building Energy Analysis: Preprint

    SciTech Connect

    Hale, E.; Macumber, D.; Weaver, E.; Shekhar, D.

    2012-09-01

    In the building energy research and advanced practitioner communities, building models are perturbed across large parameter spaces to assess energy and cost performance in the face of programmatic and economic constraints. This paper describes the OpenStudio software framework for performing such analyses.

  14. Energy-conservation opportunities in lighting

    SciTech Connect

    1981-04-01

    Technologies and techniques which can be employed by your existing personnel - without the need for consultants - to reduce your lighting costs by as much as 70% are discussed. Four basic steps to reduce energy costs and improve the effectiveness of the lighting system discussed are: get acquainted with some of the basic terminology and energy efficient lamps and fixtures which are on the market; conduct a survey of the building to determine where and how much energy and money can be saved in the process; implement the simple, low-cost or no-cost measures immediately; and calculate the payback period for capital investment modifications, and implement those which make economic sense. Case studies are used to illustrate the recommendations. (MCW)

  15. Solar-Energy System for a Commercial Building--Topeka, Kansas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.

  16. Public Schools Energy Conservation Measures, Report Number 8: Garfield Elementary School, Sioux Falls, South Dakota.

    ERIC Educational Resources Information Center

    American Association of School Administrators, Arlington, VA.

    Presented is an investigation of the possibilities for reducing energy consumption at Garfield Elementary School, Sioux Falls, South Dakota. The report summarizes methodology and findings of the building investigations, computer simulations and assessments of energy conservation opportunities. Results indicate that approximately 62% of the present…

  17. 78 FR 63823 - Energy Conservation Program: Test Procedures for Television Sets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... consumption of modern TVs. 74 FR 53641. \\1\\ See Energy Conservation Program: Repeal of Test Procedures for Televisions. 74 FR 53640 (Oct. 20, 2009). http://www1.eere.energy.gov/buildings/appliance_standards/pdfs... former test procedure. 74 FR 53640. As a first step in the rulemaking process, DOE published a...

  18. Energy Conservation: What Schools Can Do Now. OSSC Bulletin Vol. 23, No. 7.

    ERIC Educational Resources Information Center

    Young, Stuart; Richmond, Jim

    Information supplied in this bulletin stems from a review of the process the Creswell (Oregon) School District used in adopting its own energy conservation measures and in successfully applying for a construction grant for energy-efficient buildings. A number of questions that school districts may have in attempting to establish energy…

  19. Energy Conservation for School Custodial and Maintenance Personnel. Course Outline and Instructional Materials.

    ERIC Educational Resources Information Center

    Anderson, Calvin E.

    Presented are materials prepared for the inservice education of school maintenance personnel on the subject of energy conservation in school facilities operations. The course is designed to help maintenance staff understand their schools' energy usage and formulate plans to control that usage. Among the topics covered are building inventory,…

  20. HVAC systems and energy conservation in hotels

    SciTech Connect

    Wagner, J.R.

    1986-01-01

    This paper discusses the effect that the design of the basic HVAC has on the relative success of energy conservation efforts in hotels. The unusual nature of a hotel is explained along with the impact that it has on the HVAC system. The paper stresses the practical considerations which must be made by the HVAC system designer when he designs the guest rooms, public areas, back-of-the-house areas, temperature control system, and energy management system. The advantages of providing separate air-handling systems are presented. The benefits of line voltage electric controls for guest room fan coil units are explained. General recommendations for arrangement of ventilation systems and possible opportunities for heat recovery are included.

  1. NREL's Building Component Library for Use with Energy Models

    DOE Data Explorer

    The Building Component Library (BCL) is the U.S. Department of Energy’s comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. The BCL contains components which are the building blocks of an energy model. They can represent physical characteristics of the building such as roofs, walls, and windows, or can refer to related operational information such as occupancy and equipment schedules and weather information. Each component is identified through a set of attributes that are specific to its type, as well as other metadata such as provenance information and associated files. The BCL also contains energy conservation measures (ECM), referred to as measures, which describe a change to a building and its associated model. For the BCL, this description attempts to define a measure for reproducible application, either to compare it to a baseline model, to estimate potential energy savings, or to examine the effects of a particular implementation. The BCL currently contains more than 30,000 components and measures. A faceted search mechanism has been implemented on the BCL that allows users to filter through the search results using various facets. Facet categories include component and measure types, data source, and energy modeling software type. All attributes of a component or measure can also be used to filter the results.

  2. Opportunities for energy conservation through biotechnology

    SciTech Connect

    Young, J.K.; Griffin, E.A.; Russell, J.A.

    1984-11-01

    The purpose of this study is to identify and quantify potential energy savings available through the development and application of biotechnologies. This information is required in support of ECUT research planning efforts as an aid in identifying promising areas needing further consideration and development. It is also intended as background information for a companion ECUT study being conducted by the National Academy of Science to evaluate the use of bioprocessing methods to conserve energy. Several studies have been conducted recently to assess the status and implications of the development of biotechnology. The Office of Technology Assessment (OTA) considered institutional, economic, and scientific problems and barriers. The National Science Foundation sponsored a study to examine regulatory needs for this new and expanding technology. Somewhat in contrast to these studies, this report covers principally the technical issues. It should be emphasized that the practicality of many developments in biotechnology is not evaluated solely on the basis of energy considerations. Bioprocesses must often compete with well-established coal, petroleum, and natural gas technologies. A complete evaluation of the technical, economical, and ecological impacts of the large-scale applications discussed in this report is not possible within the scope of this study. Instead, this report assesses the potential of biotechnology to save energy so that research into all aspects of implementation will be stimulated for those industries with significant energy savings potential. 92 references, 6 figures, 24 tables.

  3. BLAST: Building energy simulation in Hong Kong

    NASA Astrophysics Data System (ADS)

    Fong, Sai-Keung

    1999-11-01

    The characteristics of energy use in buildings under local weather conditions were studied and evaluated using the energy simulation program BLAST-3.0. The parameters used in the energy simulation for the study and evaluation include the architectural features, different internal building heat load settings and weather data. In this study, mathematical equations and the associated coefficients useful to the industry were established. A technology for estimating energy use in buildings under local weather conditions was developed by using the results of this study. A weather data file of Typical Meteorological Years (TMY) has been compiled for building energy studies by analyzing and evaluating the weather of Hong Kong from the year 1979 to 1988. The weather data file TMY and the example weather years 1980 and 1988 were used by BLAST-3.0 to evaluate and study the energy use in different buildings. BLAST-3.0 was compared with other building energy simulation and approximation methods: Bin method and Degree Days method. Energy use in rectangular compartments of different volumes varying from 4,000 m3 to 40,000 m3 with different aspect ratios were analyzed. The use of energy in buildings with concrete roofs was compared with those with glass roofs at indoor temperature 21°C, 23°C and 25°C. Correlation relationships among building energy, space volume, monthly mean temperature and solar radiation were derived and investigated. The effects of space volume, monthly mean temperature and solar radiation on building energy were evaluated. The coefficients of the mathematical relationships between space volume and energy use in a building were computed and found satisfactory. The calculated coefficients can be used for quick estimation of energy use in buildings under similar situations. To study energy use in buildings, the cooling load per floor area against room volume was investigated. The case of an air-conditioned single compartment with 5 m ceiling height was

  4. Electrorheology for energy production and conservation

    NASA Astrophysics Data System (ADS)

    Huang, Ke

    Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national

  5. Energy Conservation Education. An Action Approach. Grades 4-9.

    ERIC Educational Resources Information Center

    Zamm, Michael; Samuel, Barry C.

    Seventeen lessons are provided in this curriculum designed to involve students (grades 4-9) in energy conservation. The lessons are presented in four parts. The three lessons in part I are intended to give students a preliminary conceptual framework for energy conservation and to motivate them to participate in the conservation-action projects…

  6. Energy Conservation Curriculum for Secondary and Post-Secondary Students. Module 7: Appliance Energy Conservation Opportunities.

    ERIC Educational Resources Information Center

    Navarro Coll., Corsicana, TX.

    This module is the seventh in a series of eleven modules in an energy conservation curriculum for secondary and postsecondary vocational students. It is designed for use by itself or as part of a sequence of four modules on understanding utilities (see modules 3, 5, and 6). The objective of this module is to train students in the recognition,…

  7. 78 FR 73589 - Energy Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... electric motor requirements. 64 FR 54114. In response to EISA 2007, on March 23, 2009, DOE updated, among... and energy conservation standards. 74 FR 12058. On December 22, 2008, DOE proposed to update the test procedures under 10 CFR part 431 both for electric motors and small electric motors. 73 FR 78220....

  8. 77 FR 28927 - Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Standard 90.1-2010. 77 FR 2356, 2366-79. ASHRAE Standard 90.1-2010 amended its efficiency levels for small... small,\\7\\ large, and very large commercial package air- conditioning and heating equipment. 76 FR 25622... amending its energy conservation standards for small, large, and very large water-cooled and...

  9. 76 FR 47518 - Energy Conservation Program: Treatment of “Smart” Appliances in Energy Conservation Standards and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Parts 430 and 431 Energy Conservation Program: Treatment of ``Smart'' Appliances in Energy Conservation Standards and Test Procedures AGENCY: Office of Energy Efficiency and Renewable Energy, Department of...

  10. ENERGY CONSERVATION AND ENERGY DECENTRALIZATION: ISSUES AND PROSPECTS

    SciTech Connect

    Levine, Mark D.; Craig, Paul P.

    1980-01-01

    We have presented views of the seemingly paradoxical nature and irrationality of the energy system and the decisions that determine its evolution. An economic approach to energy decisions, while widely espoused and generally believed to be the underpinning of our system. appears not to be functioning in very important areas. The result is enormous waste of economic and intangible resources to produce energy that could be effectively replaced by energy conservation at low costs. This inefficiency in the economic system is, in our judgment. far greater than is recognized either by the public or by 'experts.' It has led to an over-investment in centralized energy systems and has discouraged the use of decentralized systems that could contribute significantly in the near term to a lessening of our energy problems. There are some signs that the situation is changing. albeit rather slowly. High prices and the widespread recognition of the seriousness of our energy problems have contributed to an increasing involvement of individuals in energy decisions profoundly affecting their future. To achieve an evolution of the energy system in which decentralized technologies (and, in the near term, particularly technologies that improve the efficiency of energy use) play an important role, the government must act forcefully. This action needs to recognize and be responsive to the powerful discriminatory effect of the economic system, as it is presently constituted, against investments in energy conservation.

  11. Energy conservation and energy decentralization: issues and prospects

    SciTech Connect

    Levine, M.D.; Craig, P.P.

    1980-01-01

    Views are presented of the seemingly paradoxical nature and irrationality of the energy system and the decisions that determine its evolution. An economic approach to energy decisions, while widely espoused and generally believed to be the underpinning of our system, appears not to be functioning in very-important areas. The result is enormous waste of economic and intangible resources to produce energy that could be effectively replaced by energy conservation at low costs. This inefficiency in the economic system is, in the author's judgment, far greater than is recognized either by the public or by experts. They feel it has led to an over-investment in centralized energy systems and has discouraged the use of decentralized systems that could contribute significantly in the near term to a lessening of our energy problems. There are some signs that the situation is changing, albeit rather slowly. High prices and the widespread recognition of the seriousness of our energy problems have contributed to an increasing involvement of individuals in energy decisions profoundly affecting their future. To achieve an evolution of the energy system in which decentralized technologies (and, in the near term, particularly technologies that improve the efficiency of energy use) play an important role, the government must act forcefully. This action needs to recognize and be responsive to the powerful discriminatory effect of the economic system, as it is presently constituted, against investments in energy conservation.

  12. Electrorheology for Efficient Energy Production and Conservation

    NASA Astrophysics Data System (ADS)

    Tao, R.; Du, Enpeng; Tao, Hong; Xu, Xiaojun; Liu, Yun

    2011-03-01

    At present, most of our energy comes from liquid fuels. The viscosity plays a very important role in liquid fuel production and conservation. For example, reducing the viscosity of crude oil is the key for oil extraction and its transportation from off-shore via deep water pipelines. Currently, the dominant method to reduce viscosity is to raise oil's temperature, which does not only require much energy, but also impacts the environment. Recently, based on the basic physics of viscosity, we proposed a new theory and developed a new technology, utilizing electrorheology to reduce the viscosity of liquid fuels. The method is energy-efficient, and the results are significant. When this technology is applied to crude oil, the suspended nanoscale paraffin particle, asphalt particles, and other particles are aggregated into micrometer-size streamline aggregates, leading to significant viscosity reduction. When the temperature is below 0circ; C and the water content inside the oil becomes ice, the viscosity reduction can be as high as 75%. Our recent neutron scattering experiment has verified the physical mechanism of viscosity reduction. In comparison with heating, to reach the same level of viscosity reduction, this technology requires less than 1% of the energy needed for heating. Moreover, this technology only takes several seconds to complete the viscosity reduction, while heating takes at least several minutes to complete.

  13. ECASTAR: Energy Conservation; an Assessment of Systems, Technologies and Requirements

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A methodology for a systems approach display and assessment of the potential for energy conservation actions and the impacts of those actions was presented. The U.S. economy is divided into four sectors: energy industry, industry, residential/commercial and transportation. Each sector is assessed with respect to energy conservation actions and impacts. The four sectors are combined and three strategies for energy conservation actions for the combined sectors are assessed. The three strategies (national energy conservation, electrification and diversification) represent energy conservation actions for the near term (now to 1985), the mid term (1985 to 2000) and the far term (2000 and beyond). The assessment procedure includes input/output analysis to bridge the flows between the sectors, and net economics and net energetics as performance criteria for the conservation actions. Targets of opportunity for large net energy net energy savings and the application of technology to achieve these savings are discussed.

  14. Technology Innovation and Building Energy Codes

    NASA Astrophysics Data System (ADS)

    Altwies, Joy E.

    The primary objective of this dissertation is to add insight on the following general question: Has public policy stimulated energy-related technological change in buildings? Greater understanding of how policy influences technological change in the building sector can translate into better-designed policy mechanisms, ultimately accelerating innovation and adoption of energy-saving technologies. These technologies can enable building users to reduce their energy consumption and associated environmental impacts. This research addresses this general question using a case study of building controls technology, and poses the following specific research question: Has the use of building energy codes stimulated adoption of building controls? Building controls can be used in any type of building, of any vintage, and in any location; the systems come in a variety of configurations with a common objective; and they affect major sources of building energy consumption. Since they are used in both residential and commercial sectors, both of these sectors are included in the analysis. To address this research question, data are assembled from diverse sources and analyzed in multiple ways. The chapters proceed in a sequence that adds insight on individual aspects of the process of innovation in building controls. Chapter 1 reviews the literature on technological change, the characteristics of the building industry, and related energy policy. Chapter 2 uses patent citation data to characterize invention. Chapter 3 measures trends in technology prices to assess innovation. Chapter 4 uses federal commercial and residential building surveys to measure diffusion. Chapter 5 examines building energy code policies, selected for their relatively long history, widespread use, and relevance to building controls. In Chapter 6, data from Chapters 2 through 5 are used as inputs to a regression model to identify the effect of policy on adoption of the technology. Findings are discussed in

  15. Energy Conservation in Small Schools. Small Schools Digest.

    ERIC Educational Resources Information Center

    Gardener, Clark

    Information concerning methods and available materials for conserving energy is needed by small, rural schools to offset continued increasing energy costs and lack of financial support and technical assistance. The first step in developing an energy conservation policy is to obtain school board commitment and to establish an energy saving policy.…

  16. Conservation of Mechanical Energy Using Dry Ice Slider-Projectiles

    ERIC Educational Resources Information Center

    Gales, Jenna; Baker, Blane

    2008-01-01

    Energy concepts are fundamentally important for describing and analyzing systems ranging from subatomic particles to spiral galaxies. In general, students first encounter such concepts in introductory courses that typically focus on forms of energy, energy transfer, and conservation laws. Within these courses, conservation of mechanical energy is…

  17. Energy conservation: Industry. Citations from the NITS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-07-01

    The 335 citations, 37 of which are new entries, discuss potential methods of conserving energy. Many abstracts deal with reports that also cover processes used, amount of energy consumed, and environmental considerations of energy conserving options. Industries covered include food, paper, chemical, cement, metals, petroleum refining, contract construction, synthetic rubber, plastics, drug manufacturing, and stone, clay, and glass. Energy conservation through the use of waste heat is covered in a related Published Search entitled Waste Heat Utilization.

  18. Building evolutionary resilience for conserving biodiversity under climate change

    PubMed Central

    Sgrò, Carla M; Lowe, Andrew J; Hoffmann, Ary A

    2011-01-01

    Evolution occurs rapidly and is an ongoing process in our environments. Evolutionary principles need to be built into conservation efforts, particularly given the stressful conditions organisms are increasingly likely to experience because of climate change and ongoing habitat fragmentation. The concept of evolutionary resilience is a way of emphasizing evolutionary processes in conservation and landscape planning. From an evolutionary perspective, landscapes need to allow in situ selection and capture high levels of genetic variation essential for responding to the direct and indirect effects of climate change. We summarize ideas that need to be considered in planning for evolutionary resilience and suggest how they might be incorporated into policy and management to ensure that resilience is maintained in the face of environmental degradation. PMID:25567976

  19. Economic Energy Savings Potential in Federal Buildings

    SciTech Connect

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  20. Models for residential- and commercial-sector energy-conservation analysis: applications, limitations, and future potential. Final report

    SciTech Connect

    Cole, Henry E.; Fullen, Robert E.

    1980-09-01

    This report reviews four of the major models used by the Department of Energy (DOE) for energy conservation analyses in the residential- and commercial-building sectors. The objective is to provide a critical analysis of how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. For this, the study brings together information on the models' analytical structure and their strengths and limitations in policy applications these are then employed to assess the most-effective role for each model in addressing future issues of buildings energy-conservation policy and analysis. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

  1. Commercial building energy standards implementation: Myth vs reality

    SciTech Connect

    Conover, D.R.; Jarnagin, R.E.; Shankle, D.

    1992-08-01

    Since the advent of building energy standards almost 20 years ago there have been numerous codes, standards, and regulations (herein after referred to as standards) developed, adopted, and applied to new commercial building design and construction. The development of these standards occurs primarily at the national level, while adoption and implementation occurs at the state and local levels of government. Many assume that the mere adoption of a standard ensures that compliance is achieved and energy conserving buildings automatically result from the process. This assumption accounts for the myth that all buildings are constructed in compliance with the adopted standard and in reality many are not. There are many different processes by which standards are adopted and actually implemented, and they directly affect how close reality is to the myth. The paper presents the different processes used throughout the US to adopt and implement building energy standards for new commercial buildings, reviews available studies on compliance, discusses the reasons for reduced compliance, and suggests programs to improve today's realities.

  2. Commercial building energy standards implementation: Myth vs reality

    SciTech Connect

    Conover, D.R.; Jarnagin, R.E.; Shankle, D.

    1992-08-01

    Since the advent of building energy standards almost 20 years ago there have been numerous codes, standards, and regulations (herein after referred to as standards) developed, adopted, and applied to new commercial building design and construction. The development of these standards occurs primarily at the national level, while adoption and implementation occurs at the state and local levels of government. Many assume that the mere adoption of a standard ensures that compliance is achieved and energy conserving buildings automatically result from the process. This assumption accounts for the myth that all buildings are constructed in compliance with the adopted standard and in reality many are not. There are many different processes by which standards are adopted and actually implemented, and they directly affect how close reality is to the myth. The paper presents the different processes used throughout the US to adopt and implement building energy standards for new commercial buildings, reviews available studies on compliance, discusses the reasons for reduced compliance, and suggests programs to improve today`s realities.

  3. Buildings Energy Program annual report, FY 1991

    SciTech Connect

    Secrest, T.J.

    1992-05-01

    The Buildings Energy Program at PNL conducts research and development (R&D) for DOE`s Office of Building Technologies (OBT). The OBT`s mission is to lead a national program supporting private and federal sector efforts to improve the energy efficiency of the nation`s buildings and to increase the use of renewable energy sources. Under an arrangement with DOE, Battelle staff also conduct research and development projects for other federal agencies and private clients. This annual report contains an account of the buildings-related research projects conducted at PNL during fiscal year (FY) 1991. A major focus of PNL`s energy projects is to improve the energy efficiency of commercial and residential buildings. Researchers who are developing solutions to energy-use problems view a building as an energy-using system. From this perspective, a desirable solution is not only one that is cost-effective and responsive to the needs of the occupants, but also one that optimizes the interaction among the energy components and systems that compose the whole.

  4. Annual report to Congress on Federal Government energy management and conservation programs, Fiscal year 1994

    SciTech Connect

    1995-10-06

    This report provides sinformation on energy consumption in Federal buildings and operations and documents activities conducted by Federal agencies to meet statutory requirements of the National Energy Conservation Policy Act. It also describes energy conservation and management activities of the Federal Government under section 381 of the Energy Policy and Conservation Act. Implementation activities undertaken during FY94 by the Federal agencies under the Energy Policy Act of 1992 and Executive Orders 12759 and 12902 are also described. During FY94, total (gross) energy consumption of the US Government, including energy consued to produce, process, and transport energy, was 1.72 quadrillion Btu. This represents {similar_to}2.0% of the total 85.34 quads used in US.

  5. Kyiv institutional buildings energy efficiency program: Draft procedures

    SciTech Connect

    1998-09-01

    The Kyiv Institutional Buildings Energy Efficiency (KIBA) Project is being conducted to support the development of a program to improve the energy efficiency for heat and hot water provided by district heat in institutional (education, healthcare, and cultural) buildings owned and operated by State and Municipal Organizations in the City of Kyiv, Ukraine. KIBA is funded by the US Department of Energy and is being conducted in cooperation with the World Bank and the Ukrainian State Committee for Energy Conservation. This document provides a set of draft procedures for the installation of the efficiency measures to ensure that the quality of the installations is maximized and that cost is minimized. The procedures were developed as an integrated package to reflect the linkages that exist throughout the installation process.

  6. Affordable housing through energy conservation: A guide to designing and constructing energy efficient homes

    SciTech Connect

    Not Available

    1989-06-01

    PEAR is an interactive program for residential building energy analysis utilizing a comprehensive DOE-2.1 data base for residential buildings. This data base was compiled using over 10,000 computer simulations covering five residential buildings in 45 geographical locations. This extensive data base is used by PEAR to estimate the annual energy use of houses with typical conservation measures such as ceiling, wall, and floor insulation, different window types and glazing layers, infiltration levels, and equipment efficiency. It also allows the user to include the effects of roof and wall color, movable night insulation on the windows, reflective and heat absorbing glass, an attached sunspace, and use of a night setback. Regression techniques in PEAR permit adjustments for different building geometries, window areas and orientations, wall construction, and extension of the data to over 800 US locations based on climate parameters. PEAR is designed as a user-friendly program that can be used both as a research tool by energy policy analysts, and as a nontechnical energy calculation method by architects, homebuilders, homeowners, and others in the building industry. Technical documentation of the PEAR program and the database is given elsewhere (see References). 3 refs., 11 figs., 5 tabs.

  7. 75 FR 29933 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ...The U.S. Department of Energy (DOE) is publishing this notice of proposed rulemaking (NOPR) to implement provisions of the Energy Conservation and Production Act, as amended by the Energy Policy Act of 2005 and the Energy Independence and Security Act of 2007, that require DOE to establish revised performance standards for the construction of new Federal buildings and major renovations of......

  8. Chlorofluorocarbon environmental issues related to conservation acquisition in commercial buildings

    SciTech Connect

    Marseille, T.J.; Baechler, M.C.

    1990-09-01

    Recent scientific evidence strongly suggests that the release of large quantities of chlorofluorocarbon (CFC) gases into the atmosphere will result in environmentally harmful long-term effects. Because of those effects, a massive worldwide effort is currently under way to ban their use. At request of the Bonneville Power Administration, the Pacific Northwest Laboratory conducted a literature search to identify the issues surrounding the CFC phaseout. The search was focused on how these issues impact the commercial building sector. Information was obtained that describes: How the release of CFCs into the atmosphere may affect the global environment; legislative and regulatory programs initiated to restrict CFCs; potential impacts the reduced CFC supply will have on commercial buildings; the most promising CFC substitute technologies; and the potential costs of CFC restriction. 11 refs., 2 tabs.

  9. Sault Tribe Building Efficiency Energy Audits

    SciTech Connect

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  10. ECP (Environmental Conservation Project) Report, No. 5, March 1976. Planning for Energy Conservation.

    ERIC Educational Resources Information Center

    Environmental Law Inst., Washington, DC.

    The culmination of the Environmental Law Institute's Energy Conservation Project will be a series of handbooks addressed to state and local officials, legislators, and interested citizens setting out suggested strategies for conserving energy. This issue of the ECP Report publishes the first of a series of draft chapters from these handbooks - a…

  11. How a Little Conservation Can Save Energy and Big Money.

    ERIC Educational Resources Information Center

    Williams, Fred D.

    1985-01-01

    This school system cut its energy consumption by 40 percent by involving people throughout the school system in simple energy conservation measures suggested by an energy audit and undertaking structural improvement projects half-funded by federal grants. (DCS)

  12. Scripted Building Energy Modeling and Analysis (Presentation)

    SciTech Connect

    Macumber, D.

    2012-10-01

    Building energy analysis is often time-intensive, error-prone, and non-reproducible. Entire energy analyses can be scripted end-to-end using the OpenStudio Ruby API. Common tasks within an analysis can be automated using OpenStudio Measures. Graphical user interfaces (GUI's) and component libraries reduce time, decrease errors, and improve repeatability in energy modeling.

  13. Energy-Efficient Renovation of Educational Buildings

    ERIC Educational Resources Information Center

    Erhorn-Kluttig, Heike; Morck, Ove

    2005-01-01

    Case studies demonstrating energy-efficient renovation of educational buildings collected by the International Energy Agency (IEA) provide information on retrofit technologies, energy-saving approaches and ventilation strategies. Some general findings are presented here along with one case study, Egebjerg School in Denmark, which shows how natural…

  14. Building Energy-Efficiency Best Practice Policies and Policy Packages

    SciTech Connect

    Levine, Mark; Can, Stephane de la Rue de; Zheng, Nina; Williams, Christopher; Amman, Jennifer; Staniaszek, Dan

    2012-10-26

    This report addresses the single largest source of greenhouse gas emissions and the greatest opportunity to reduce these emissions. The IPCC 4th Assessment Report estimates that globally 35% to 40% of all energy-related CO{sub 2} emissions (relative to a growing baseline) result from energy use in buildings. Emissions reductions from a combination of energy efficiency and conservation (using less energy) in buildings have the potential to cut emissions as much as all other energy-using sectors combined. This is especially the case for China, India and other developing countries that are expected to account for 80% or more of growth in building energy use worldwide over the coming decades. In short, buildings constitute the largest opportunity to mitigate climate change and special attention needs to be devoted to developing countries. At the same time, the buildings sector has been particularly resistant to achieving this potential. Technology in other sectors has advanced more rapidly than in buildings. In the recent past, automobile companies have made large investments in designing, engineering, and marketing energy efficient and alternative fuel vehicles that reduce greenhouse gas emissions. At the same time, the buildings sector – dependent on millions and millions of decisions by consumers and homeowners – face a large variety of market barriers that cause very substantial underinvestment in energy efficiency. How can the trajectory of energy use in buildings be changed to reduce the associated CO{sub 2} emissions? Is it possible to greatly accelerate this change? The answer to these questions depends on policy, technology, and behavior. Can policies be crafted and implemented to drive the trajectory down? Can the use of existing energy efficiency technologies be increased greatly and new technologies developed and brought to market? And what is the role of behavior in reducing or increasing energy use in buildings? These are the three overarching issues

  15. Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California. Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure

    SciTech Connect

    Mendell, Mark J.; Apte, Mike G.

    2010-10-31

    This report considers the question of whether the California Energy Commission should incorporate the ASHRAE 62.1 ventilation standard into the Title 24 ventilation rate (VR) standards, thus allowing buildings to follow the Indoor Air Quality Procedure. This, in contrast to the current prescriptive standard, allows the option of using ventilation rate as one of several strategies, which might include source reduction and air cleaning, to meet specified targets of indoor air concentrations and occupant acceptability. The research findings reviewed in this report suggest that a revised approach to a ventilation standard for commercial buildings is necessary, because the current prescriptive ASHRAE 62.1 Ventilation Rate Procedure (VRP) apparently does not provide occupants with either sufficiently acceptable or sufficiently healthprotective air quality. One possible solution would be a dramatic increase in the minimum ventilation rates (VRs) prescribed by a VRP. This solution, however, is not feasible for at least three reasons: the current need to reduce energy use rather than increase it further, the problem of polluted outdoor air in many cities, and the apparent limited ability of increasing VRs to reduce all indoor airborne contaminants of concern (per Hodgson (2003)). Any feasible solution is thus likely to include methods of pollutant reduction other than increased outdoor air ventilation; e.g., source reduction or air cleaning. The alternative 62.1 Indoor Air Quality Procedure (IAQP) offers multiple possible benefits in this direction over the VRP, but seems too limited by insufficient specifications and inadequate available data to provide adequate protection for occupants. Ventilation system designers rarely choose to use it, finding it too arbitrary and requiring use of much non-engineering judgment and information that is not readily available. This report suggests strategies to revise the current ASHRAE IAQP to reduce its current limitations. These

  16. Energy conservation in regenerated chemical absorption processes

    SciTech Connect

    Thompson, R.E.

    1986-01-01

    Energy savings from split-flow design modifications or the installation of absorber intercoolers are quantified for solvent-based separation processes. Absorber-stripper systems that use aqueous monoethanolamine (MEA) or diethanolamine (DEA) to remove CO/sub 2/ or H/sub 2/S from natural gas streams are modeled. Use of split flow in regenerated chemical absorption processes with isothermal columns resulted in energy savings of over 50% for systems with large solute-recovery fractions. The energy savings are a linear function of the logarithm of percent unrecovered solute. Optimal values are found for the flow rate and withdrawal point of the split-flow stream. The optimal design and operating conditions for CO/sub 2/ systems with adiabatic columns are determined by the stripper column; the stripper exhibits a steam-consumption minimum with respect to the total solvent flow rate and the composition of the lean-solvent stream. In contrast, optimal conditions for H/sub 2/S systems are set by the absorber. These absorber-limited systems exhibit a steam consumption minimum for the lowest solvent flow which can achieve the specified solute recovery in the absorber. Absorber intercoolers conserve energy by reducing the solvent flow rate required for a specified solute recovery. The optimal intercooler location is near an acid-gas-to-amine ratio halfway between the same ratios for the lean and rich solvent streams. The intercooler location is near an acid-gas-to-amine ratio halfway between the same ratios for the lean and rich solvent streams. The intercooler is optically sized by equating the absorber-solvent-feed temperature, the absorber-intercooler process-outlet temperature, and the cooling-water effluent temperature.

  17. A review of the health effects of energy conserving materials.

    PubMed Central

    Levin, L; Purdom, P W

    1983-01-01

    The energy conservation movement has promoted both greater use of insulating materials and the reduction of heat losses by sealing air leaks. The release of volatile or airborne materials from the installation of these building materials under these conditions has resulted in an exacerbated indoor air pollution with the potential for certain health and safety hazards. Consequently, a comparative review of the health and safety hazards, exposure standards, and regulatory action associated with the more commonly used insulating materials with particular respect to current energy conservation measures was undertaken. The materials reviewed included asbestos, urea-formaldehyde foam, polyvinyl chloride, cellulosic insulations, fibrous glass, mineral wool, and vermiculite. Although no longer used, the past installation of asbestos in a friable form is the greatest potential health hazard. The exposure to formaldehyde gas from its release from urea-formaldehyde foam has elicited subjective complaints of sensory irritation and unresolved controversy and regulatory action regarding its toxicity to humans. Lesser health problems have been associated with the more widely used fibrous glass and mineral or rock wools. PMID:6342431

  18. Energy use and conservation in the commercial sector: Volume 2, An application of the NBECS (Nonresidential Buildings Energy Consumption Survey) commercial conditional demand model to a test case utility, San Diego Gas and Electric Company: Final report

    SciTech Connect

    Parti, M.; Sebald, A.V.; Farber, M.

    1988-02-01

    This report describes an investigation into the application of an enhanced conditional demand analysis (CDA) technique to the estimation and forecasting of commercial sector energy demand. The report consists of two volumes. This volume, the second, describes the application of the technique to a particular utility service area. 5 refs., 4 figs., 27 tabs.

  19. Decision analysis for prioritizing recommended energy conservation options

    SciTech Connect

    Meadows, K.L. ); Brothers, P.W. )

    1989-01-01

    Knowledge engineering techniques were used to study the decision process for choosing which of a set of recommended energy conservation options would be implemented. Building management decision-makers from both the private and public sectors were interviewed to gain an understanding of the decision-making process. Decision objectives were identified and the process computerized. Results of the study are twofold. The first is a formalization of the decision-making process. The formalization enables both efficient treatment of large numbers of objectives and demonstration of optimality in meeting objectives. Second, the knowledge-based system produced is programmed in a conventional programming environment rather than a rule-based expert system shell, demonstrating the range of applicability of knowledge engineering techniques.

  20. 40 CFR 73.26 - Conservation and renewable energy reserve.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Conservation and renewable energy... renewable energy reserve. The Administrator will allocate 300,000 allowances to the Conservation and Renewable Energy Reserve subaccount of the Acid Rain Data System. Allowances from this Reserve will...

  1. 40 CFR 73.26 - Conservation and renewable energy reserve.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Conservation and renewable energy... renewable energy reserve. The Administrator will allocate 300,000 allowances to the Conservation and Renewable Energy Reserve subaccount of the Acid Rain Data System. Allowances from this Reserve will...

  2. Pre-Service Primary Teachers' Attitudes towards Energy Conservation

    ERIC Educational Resources Information Center

    Tekbiyik, Ahmet; Ipek, Cemalettin

    2008-01-01

    This study aims to examine the pre-service primary teachers' attitudes towards energy conservation. In order to reach this main aim following research questions are formulated: (1) What are the attitude levels of pre-service primary teachers in terms of energy conservation? (2) Do pre-service primary teachers' attitudes towards energy conservation…

  3. 24 CFR 968.115 - Modernization and energy conservation standards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Modernization and energy... energy conservation standards. All improvements funded under this part shall: (a) Meet the modernization standards as prescribed by HUD; (b) Incorporate cost-effective energy conservation measures, identified...

  4. 24 CFR 968.115 - Modernization and energy conservation standards.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Modernization and energy... energy conservation standards. All improvements funded under this part shall: (a) Meet the modernization standards as prescribed by HUD; (b) Incorporate cost-effective energy conservation measures, identified...

  5. 24 CFR 968.115 - Modernization and energy conservation standards.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Modernization and energy... energy conservation standards. All improvements funded under this part shall: (a) Meet the modernization standards as prescribed by HUD; (b) Incorporate cost-effective energy conservation measures, identified...

  6. 24 CFR 968.115 - Modernization and energy conservation standards.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Modernization and energy... energy conservation standards. All improvements funded under this part shall: (a) Meet the modernization standards as prescribed by HUD; (b) Incorporate cost-effective energy conservation measures, identified...

  7. 77 FR 43723 - Energy Efficiency and Conservation Loan Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... Energy Efficiency and Conservation Loan Program AGENCY: Rural Utilities Service, USDA. ACTION: Notice of... procedures for loan and guarantee financial assistance in support of energy efficiency programs (EE Programs... implementing demand side management, energy efficiency and conservation programs, and on-grid and...

  8. Project Energize: Outcomes of a Community Confernece on Energy Conservation.

    ERIC Educational Resources Information Center

    Driscoll, Patricia; Deshler, David

    Intended to help program planners and evaluators in providing insight as to what can be accomplished in an educational program dealing with energy conservation, this report is an evaluation of the outcomes of a community conference on energy conservation. There is a brief description of the day-long energy conference attended by 178 people (38 of…

  9. Case study of building of conservation coalitions to conserve ecological interactions.

    PubMed

    Chen, Gao; Luo, Shihong; Mei, Nianshu; Shen, Dingfang; Sun, Weibang

    2015-12-01

    We engaged experts in various fields of study (pollination ecology, chemical ecology, and ethnobotany), invited community participation, and provided environmental education in an effort to conserve an endangered birthwort (Aristolochia delavayi) and a vulnerable pipevine swallowtail (Byasa daemonius). Scientists studied the uptake and sequestration of the secondary metabolites aristolochic acids from A. delavayi leaves by different stages of pipevine swallowtail as a defense mechanism; low fruit set of the myophilous A. delavayi due to pollinator limitation; and the emission of chemical signals that attract parasitic wasps by the prepupae of B. daemonius. The results of these studies were part of an education program delivered by personnel of non-governmental organizations. The program was devised to deliver information to the public about the health risks of consuming A. delavayi individuals (aristolochic-acid-associated cancers) and to establish a bridge between the public and scientific research. Following delivery of the program, the behavior of residents changed considerably. Community residents were involved in management activities, including participation in a program to promote understanding of ecological interactions between A. delavayi and B. daemonius; designing an in situ conservation site; monitoring A. delavayi and B. daemonius individuals; and promoting the natural fruit set of A. delavayi by scattering animal excrement to attract fly pollinators. The integration of scientific information and community participation appears to have resulted in an increase in abundance of threatened A. delavayi and B. daemonius populations. We believe the involvement of local people in conservation is necessary for successful species conservation. PMID:26372410

  10. Revealing myths about people, energy and buildings

    SciTech Connect

    Diamond, R.; Moezzi, M.

    2000-05-01

    In this essay we take a closer look at some energy myths, focusing on the ways energy professionals and the public alike, talk, write and teach about how energy affects the way in which we design, operate, retrofit and inhabit buildings. What myths about people, energy and buildings are current today? Who tells these myths and why do we believe them? How do myths affect our behavior? Myths are a way of understanding the world we live in. They may represent incomplete understanding, or be based on premises that are scientifically not valid, but they help us understand and explain how the world works, and we shape our behavior accordingly.

  11. DOE-2 Building Energy Analysis Program

    SciTech Connect

    Curtis, R.B.; Birdsall, B.; Buhl, W.F.; Erdem, E.; Eto, J.; Hirsch, J.J.; Olson, K.H.; Winkelmann, F.C.

    1984-04-01

    The DOE-2 Building Energy Analysis Program was designed to allow engineers and architects to perform design studies of whole-building energy use under actual weather conditions. Its development was guided by several objectives: (1) that the description of the building entered by the user be readily understood by non-computer scientists, (2) that, when available, the calculations be based upon well established algorithms, (3) that it permit the simulation of commonly available heating, ventilating, and air-conditioning (HVAC) equipment, (4) that the computer costs of the program be minimal, and (5) that the predicted energy use of a building be acceptably close to measured values. These objectives have been met. An overview of the program upon completion of the DOE-2.1C edition is given.

  12. Buildings and energy in the 1980`s

    SciTech Connect

    1995-06-01

    Many energy programs were put into place during the 1970`s and 1980`s to lessen the dependence upon foreign oil supplies and to improve how all forms of energy are used. A significant percent of total energy consumption occurred in the residential and commercial sectors. This report concentrates on the physical makeup of the residential and commercial buildings sectors and their use of energy, and examines changes that occurred during the 1980`s. Chapter 1 presents a summary of major findings. The following three chapters focus on different aspects of the overarching theme of buildings and energy in the 1980`s. Chapter 2 discusses major characteristics of residential and commercial buildings. Chapter 3 considers the major energy sources and end uses in terms of number of buildings and floorspace. Chapter 4 focuses on energy consumption and expenditures. Chapters 2, 3, and 4 contain tables at the end of each chapter that summarize data from detailed tables that are available separately on diskette or via EIA`s Electronic Publishing System (EPUB). Following the body of the report, appendices and a glossary provide additional information on the methodologies used in this report and on the residential and commercial building consumption surveys on which this report is based. 62 figs., 30 tabs.

  13. Simplified building energy analysis tool for architects

    NASA Astrophysics Data System (ADS)

    Chaisuparasmikul, Pongsak

    Energy Modeler is an energy software program designed to study the relative change of energy uses (heating, cooling, and lighting loads) in different architectural design schemes. This research focuses on developing a tool to improve energy efficiency of the built environment. The research studied the impact of different architectural design response for two distinct global climates: temperate and tropical climatic zones. This energy-based interfacing program is intended to help architects, engineers, educators, students, building designers, major consumers of architectural services, and other professionals whose work interfaces with that of architects, perceive, quickly visualize, and compare energy performance and savings of different design schemes. The buildings in which we live or work have a great impact on our natural environment. Energy savings and consumption reductions in our buildings probably are the best indications of solutions to help environmental sustainability; by reducing the depletion of the world's fossil fuel (oil, natural gas, coal etc.). Architects when they set about designing an environmentally responsive building for an owner or the public, often lack the energy-based information and design tools to tell them whether the building loads and energy consumption are very responsive to the modifications that they made. Buildings are dynamic in nature and changeable over time, with many design variables involved. Architects really need energy-based rules or tools to assist them in the design process. Energy efficient design for sustainable solutions requires attention throughout the design process and is very related to architectural solutions. Early involvement is the only guaranteed way of properly considering fundamental building design issues related to building site, form and exposure. The research presents the methodology and process, which leads to the discussion of the research findings. The innovative work is to make these tools

  14. Energy and Architecture: The Solar and Conservation Potential. Worldwatch Paper 40.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    This monograph explores how architecture is influenced by and is responding to the global energy dilemma. Emphasis is placed on conservation techniques (using heavy insulation) and on passive solar construction (supplying most of a building's heating, cooling, and lighting requirements by sunlight). The basic problem is that architecture, like…

  15. Some Basics for Teaching and Evaluating Energy Conservation in the Home

    ERIC Educational Resources Information Center

    McColl, Robert W.

    1978-01-01

    Examines methods for determining thermal efficiency and measuring heat loss in the home. Suggests ways to conserve energy based upon (1) climatic environment and its impact on a structure, (2) physical location of buildings and their microclimate, and (3) behavior modification of the inhabitants. (Author)

  16. Understanding Building Energy Codes and Standards

    SciTech Connect

    Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

    2003-03-01

    Energy codes and standards play a vital role by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. The Difference Between Energy Codes, Energy Standards and the Model Energy Code Energy codes--specify how buildings must be constructed or perform, and are written in mandatory, enforceable language. States or local governments adopt and enforce energy codes for their jurisdictions. Energy standards--describe how buildings should be constructed to save energy cost-effectively. They are published by national organizations such as the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). They are not mandatory, but serve as national recommendations, with some variation for regional climate. States and local governments frequently use energy standards as the technical basis for developing their energy codes. Some energy standards are written in mandatory, enforceable language, making it easy for jurisdictions to incorporate the provisions of the energy standards directly into their laws or regulations.

  17. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation...

  18. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation...

  19. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation...

  20. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation...

  1. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation...

  2. The evaluation of building occupants' public awareness on energy efficiency: The study case of Chancellery Building, USM

    NASA Astrophysics Data System (ADS)

    Baharum, Faizal; Zainon, Mohamad Rizal; Seng, Loh Yong

    2016-08-01

    It is increasingly perceived that considerable energy savings in building can be accomplished in buildings through changes in staff's behavior. This study explored the public awareness of energy consumption and their perceived level of control over energy use. Generally, individual awareness and attitudes about the need to conserve energy, the perceived actions and opinions of other users and views of control over the ease and opportunity to reduce energy consumption were seen by staffs to identify with whether they would expect to save energy in Chancellery Building, USM. It is important that staff engagement in the successful achievement of the target on energy saving. Therefore, the aim of this research is to create a survey instrument by using staffs as benchmark of evaluation, for the identification of problems in respect to aware the public of energy saving and energy-efficiency in Chancellery Building. This research was conducted in the office of Chancellery Building, USM. Survey forms had been distributed to the staffs in the office to determine their awareness towards energy saving. The results were investigated by utilizing Statistical Package for the Social Science (SPSS) in order to determine its reliability and validity. The research result helped the advancement of energy-efficiency and determine the wastefulness of the existed building.

  3. Energy Conservation: An Examination of Energy Conservation Mechanisms As They Relate to School Districts in Region XI.

    ERIC Educational Resources Information Center

    Kerns, Marilyn

    This report attempts to supply information on energy conservation mechanisms that can be employed in schools to the public schools of Minnesota. The report begins by presenting guidelines for developing an energy conservation plan. The two models include the concept of Total Educational Energy Management as developed by the Colorado Department of…

  4. Annual report to Congress on Federal Government Energy Management and Conservation Programs

    SciTech Connect

    Not Available

    1994-02-01

    This report on Federal Energy Management for Fiscal year (FY) 1992 provides information on energy consumption in Federal buildings and operations and documents activities conducted by Federal agencies to meet the statutory requirements of Title V, Part 3, of the National Energy Conservation Policy Act (NECPA), as amended, 42 U.S.C. 8251-8261, and Title VIII of NECPA, 42 U.S.C. 8287-8287b. This report also describes the energy conservation and management activities of the Federal Government under the authorization of section 381 of the Energy Policy and Conservation Act (EPCA), as amended, 42 U.S.C. 6361. Implementation activities undertaken during FY 1992 by the Federal agencies under Executive Order 12759 on Federal Energy Management are also described in this report.

  5. Nano-structured Materials in New and Existing Buildings: To Improved Performance and Saving of Energy

    NASA Astrophysics Data System (ADS)

    Scalisi, F.

    Improving well-being in buildings, in relation to energy conservation, represents a great challenge. In southern Italy a basic problem is that of keeping buildings cool in the summer months. This problem affects not only newly-erected buildings, but also the large number of existing buildings, some of which are of historical importance. Nano-technology represents an excellent opportunity to harness the salvage of existing buildings to the living requirements of contemporary society. The use of nano-structured materials in newly-erected buildings will lead to improved performance and a considerable saving of energy. Above all, the use of nano-structured materials in existing buildings will provide the possibility of intervention in these buildings and help improve, for example, insulation or lighting, without invasive intervention and consequent damage to the building itself.

  6. Energy balance framework for Net Zero Energy buildings

    EPA Science Inventory

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  7. Energy Conservation Manual for School Food Service Managers.

    ERIC Educational Resources Information Center

    Messersmith, Ann M.; Wheeler, George; Rousso, Victoria

    Energy cost management is important in all school food service operations, particularly at times when rising energy costs threaten budgets. This document is designed as a reference manual on energy and provides information about monitoring energy use and developing energy improvement and conservation plans. The manual offers energy conservation…

  8. Country Report on Building Energy Codes in Korea

    SciTech Connect

    Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

    2009-04-17

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

  9. Country Report on Building Energy Codes in India

    SciTech Connect

    Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

    2009-04-07

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

  10. Country Report on Building Energy Codes in Japan

    SciTech Connect

    Evans, Meredydd; Shui, Bin; Takagi, T.

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

  11. Country Report on Building Energy Codes in Australia

    SciTech Connect

    Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

    2009-04-02

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

  12. Country Report on Building Energy Codes in China

    SciTech Connect

    Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

  13. Country Report on Building Energy Codes in Canada

    SciTech Connect

    Shui, Bin; Evans, Meredydd

    2009-04-06

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

  14. Country Report on Building Energy Codes in the United States

    SciTech Connect

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  15. DEEP: A Database of Energy Efficiency Performance to Accelerate Energy Retrofitting of Commercial Buildings

    SciTech Connect

    Hoon Lee, Sang; Hong, Tianzhen; Sawaya, Geof; Chen, Yixing; Piette, Mary Ann

    2015-05-01

    The paper presents a method and process to establish a database of energy efficiency performance (DEEP) to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 35 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones. DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and domestic hot water. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of an on-going project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users’ decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct

  16. Simplified floor-area-based energy-moisture-economic model for residential buildings

    NASA Astrophysics Data System (ADS)

    Martinez, Luis A.

    In the United States, 21% of all energy is used in residential buildings (40% of which is for heating and cooling homes). Promising improvements in residential building energy efficiency are underway such as the Building America Program and the Passive House Concept. The ability of improving energy efficiency in buildings is enhanced by building energy modeling tools, which are well advanced and established but lack generality (each building has to be modeled individually) and require high cost, which limits many residential buildings from taking advantage of such powerful tools. This dissertation attempts to develop guidelines based on a per-building-floor-area basis for designing residential buildings that achieve maximum energy efficiency and minimum life cycle cost. Energy and moisture-mass conservation principles were formulated for residential buildings on a per-building-floor-area basis. This includes thermal energy balance, moisture-mass conservation and life cycle cost. The analysis also includes the effects of day-lighting, initial cost estimation and escalation rates. The model was implemented on Excel so it is available for broader audiences and was validated using the standard BESTEST validation procedure for energy models yielding satisfactory results for different scenarios, within a 90% confidence interval. Using the model, parametric optimization studies were conducted in order to study how each variable affects energy and life cycle cost. An efficient whole-building optimization procedure was developed to determine the optimal design based on key design parameters. Whole-building optimization studies were conducted for 12 climate zones using four different criteria: minimum energy consumption, minimum life cycle cost (35 years) using constant energy costs and minimum life cycle cost (35 years) varying escalation rates (-5%, 10%). Conclusions and recommendations were inferred on how to design an optimal house, using each criterion and for all

  17. New priorities in energy-conservation R and D

    SciTech Connect

    Willke, T.L.; Ashton, W.B.; Hopp, W.J.; Hane, G.J.; Liberman, A.; Strasser, G.

    1981-12-01

    A study is presented that identified, screened, and provided information on various technologies which offer significant potential for energy conservation yet require applied research and development to achieve that potential. The scope of the study and the methodology used to identify and screen energy conservation R and D opportunities are discussed. Results of the R and D opportunities study are discussed, including a tabular summary of conservation potential and example R and D needs. General aspects of the new energy policy and its effects on the federal role in energy conservation are discussed. The potential effects of the new energy policy upon areas of applied R and D identified under previous criteria are illustrated and elements of the new federal role in energy conservation are summarized. (LEW)

  18. Providing for Energy Efficiency in Homes and Small Buildings, Part III.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    Presented is part three of a training program designed to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy efficient buildings. Alternatives are provided in this program to allow for specific instruction in…

  19. Providing for Energy Efficiency in Homes and Small Buildings. Student Workbook.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    This student manual presents a training program designed to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that may result in energy efficient buildings. Alternatives are provided in this program to allow for specific instruction in…

  20. Providing for Energy Efficiency in Homes and Small Buildings, Part I.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    Presented is part one of a training program designed to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy efficient buildings. Alternatives are provided in this program to allow for specific instruction in…

  1. Providing for Energy Efficiency in Homes and Small Buildings, Part II.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    Presented is part two of a training program designed to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy efficient buildings. Alternatives are provided in this program to allow for specific instruction in…

  2. Building America - Resources for Energy Efficient Homes

    SciTech Connect

    2012-04-19

    Building America publications help builders achieve whole-house energy savings in five major climate zones. Using the recommendation and process improvements outlined in the Best Practices Series handbooks, builders can re-engineer their designs to improve energy performance and quality. Case studies for new and existing homes provide results from actual projects.

  3. Energy Signal Tool for Decision Support in Building Energy Systems

    SciTech Connect

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

    2014-12-01

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

  4. Energy conservation and efficiency in manufacturing: Employee decisions and actions

    NASA Astrophysics Data System (ADS)

    Corson, Marla D.

    Energy conservation and intensity reduction efforts are becoming increasingly more prevalent and ultimately necessary, especially for energy-intensive manufacturing companies in particular to stay in business. Typical actions are to change technology, and thus, realize an energy cost savings in overall utilities. However, in today's competitive market, with climate change and other environmental impacts as well, it is necessary for the cost of energy to be valued as a cost of making a product, and thus, managed at the same level as the cost of labor or materials. This research assessed human behavior at the individual and organizational levels both at work and at home that either prompted or prohibited employees from taking daily action to conserve energy or develop greater energy efficient practices. Ultimately, the questions began with questions regarding employee views and knowledge of energy at work and at home and what drives both behaviors toward conservation or efficiency. And, the contribution identifies the key drivers, barriers, and/or incentives that affect those behaviors. The results of this study show that the key driver and motivator for energy conservation both at home and work is cost savings. The study showed that to further motivate individuals to conserve energy at home and work, more knowledge of the impact their actions have or could have as well as tools would be needed. The most poinient aspect of the research was the level of importance placed on energy conservation and the desire to conserve. The feedback given to the open ended questions was quite impressive regarding what employees have done and continue to do particularly within their homes to conserve energy. These findings brought about final recommendations that were in fact not expected but could significantly influence an increase in energy conservation at work by leveraging the existing desire to conserve which is a key component to decision making.

  5. Conclusions and recommendations of the Latin America and Caribbean Regional Energy Conservation Seminar, Alajuela, Costa Rica, January 14-17, 1985

    SciTech Connect

    Not Available

    1985-03-29

    Reports were given on active energy-conservation projects in the region (Barbados, Jamaica, Central American region and Panama, Peru, Ecuador, the Dominican Republic, and Costa Rica). In addition, there were presentations on energy auditing, fuel substitution, and financing energy conservation. Although the seminar concentrated on the industrial sector, it also explored opportunities for energy-efficiency improvements in the building and transportation sectors.

  6. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    SciTech Connect

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  7. Energy Conservation Activity Packet, Grade 5. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This activity notebook for grade 5 is one of a series developed in response to energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade five. The packet is divided into two parts and provides the teacher with background information, concepts and objectives, and…

  8. A Better 2-D Mechanical Energy Conservation Experiment

    ERIC Educational Resources Information Center

    Paesler, Michael

    2012-01-01

    A variety of simple classical mechanics energy conservation experiments are used in teaching laboratories. Typical one-dimensional (1-D) setups may involve falling balls or oscillating springs. Many of these can be quite satisfying in that students can confirm--within a few percent--that mechanical energy is conserved. Students generally have…

  9. Energy Conservation Activity Packet, Grade 4. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This activity notebook for grade 4 is one in a series developed in response to the concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade four. The packet is divided into two parts and provides the teacher with background information, concepts and…

  10. Energy Conservation Activity Packet, Grade 6. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This activity notebook for grade 6 is one of a series developed in response to the concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade six. The packet is divided into two parts and provides the teacher with background information, concepts and…

  11. Development of the Concepts of Energy Conservation and Entropy.

    ERIC Educational Resources Information Center

    Shultz, Thomas R.; Coddington, Marilyn

    1981-01-01

    Studied the development of the concepts of energy conservation and entropy in 5- to 15-year-old children. Energy conservation was not well understood until about age 15. Entropy was understood by 9- to 15-year-olds when the concept was illustrated by the gradual mixing of differently colored, rolling marbles. (Author/DB)

  12. 40 CFR 73.26 - Conservation and renewable energy reserve.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Conservation and renewable energy reserve. 73.26 Section 73.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Allocations § 73.26 Conservation and renewable energy reserve. The Administrator...

  13. 40 CFR 73.26 - Conservation and renewable energy reserve.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Conservation and renewable energy reserve. 73.26 Section 73.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Allocations § 73.26 Conservation and renewable energy reserve. The Administrator...

  14. 40 CFR 73.26 - Conservation and renewable energy reserve.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Conservation and renewable energy reserve. 73.26 Section 73.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Allocations § 73.26 Conservation and renewable energy reserve. The Administrator...

  15. Financial Energy Conservation Projects at Independent Colleges and Universities.

    ERIC Educational Resources Information Center

    Morrell, L. R.

    1981-01-01

    Factors affecting financial decisions for energy conservation projects at independent colleges and universities and methods that may be used when making a financial investment decision are examined, along with sources of funding for the projects. Projects that result in the conservation of energy resources might, in a time of extreme shortages,…

  16. Adult Education in Action: Saving Dollars by Energy Conservation.

    ERIC Educational Resources Information Center

    Moore, Allen B.; And Others

    1979-01-01

    Describes the energy conservation management communication network in the Northeast Georgia Area Planning and Development Commission, a ten-county regional planning agency. The authors state that the use of local citizens and community leaders in the energy conservation planning and program activities demonstrates adult education in action. (MF)

  17. 76 FR 45606 - Desert Renewable Energy Conservation Plan, Habitat Conservation Plan and Possible Land Use Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Bureau of Land Management Fish and Wildlife Service Desert Renewable Energy Conservation Plan, Habitat Conservation Plan and Possible Land Use Plan Amendment, Southern California: Environmental Impact Statement... possible amendment to the CDCAP on November 20, 2009 (74 FR 60291). At this time, BLM announces the...

  18. Look beyond the Obvious Energy Savers to Conserve School Dollars.

    ERIC Educational Resources Information Center

    Wisniewski, Adrian T.

    1985-01-01

    Describes a Milwaukee, Wisconsin, school system's energy conservation project that insulated utility tunnels and pipes in two schools. Energy savings will pay back the insulation cost in less than two years. (MD)

  19. Window Treatment Phase I and Other Energy II Conservation Measures.

    ERIC Educational Resources Information Center

    Donohue, Philip E.

    Six different energy-saving treatments for large window areas were tested by Tompkins-Cortland Community College (TCCC) to coordinate energy saving with building design. The TCCC building has an open space design with 33,000 square feet of external glass and other features causing heating problems and high energy costs. Phase I of the…

  20. Marketing Conservation.

    ERIC Educational Resources Information Center

    Ellis, William B.

    1987-01-01

    In 1986, Northeast Utilities began helping shool administrators combat school building energy wastage through a program called Energy Alliance. The typical school can reduce its energy bill by 30 percent by adopting a wide range of conservation measures, including cogeneration, relamping, and energy audits. (MLH)