Science.gov

Sample records for bulky adducts final

  1. Base sequence effects on DNA replication influenced by bulky adducts. Final report, March 1, 1995--February 28, 1997

    SciTech Connect

    Geacintov, N.E.

    1997-05-31

    Polycyclic aromatic hydrocarbons (PAH) are environmental pollutants that are present in air, food, and water. While PAH compounds are chemically inert and are sparingly soluble in aqueous solutions, in living cells they are metabolized to a variety of oxygenated derivatives, including the high mutagenic and tumorigenic diol epoxide derivatives. The diol epoxides of the sterically hindered fjord region compound benzo[c]phenanthrene (B[c]PhDE) are among the most powerful tumorigenic compounds in animal model test systems. In this project, site-specifically modified oligonucleotides containing single B[c]PhDE-N{sup 6}-dA lesions derived from the reactions of the 1S,2R,3R,4S and 1R,2S,3S,4R diol epoxides of B[c]PhDE with dA residues were synthesized. The replication of DNA catalyzed by a prokaryotic DNA polymerase (the exonuclease-free Klenow fragment E. Coli Po1 I) in the vicinity of the lesion at base-specific sites on B[c]PhDE-modified template strands was investigated in detail. The Michaelis-Menten parameters for the insertion of single deoxynucleotide triphosphates into growing DNA (primer) strands using the modified dA* and the bases just before and after the dA* residue as templates, depend markedly on the stereochemistry of the B[c]PhDE-modified dA residues. These observations provide novel insights into the mechanisms by which bulky PAH-DNA adducts affect normal DNA replication.

  2. Integrating S-phase Checkpoint Signaling with Trans-Lesion Synthesis of Bulky DNA Adducts

    PubMed Central

    Barkley, Laura R.; Ohmori, Haruo; Vaziri, Cyrus

    2011-01-01

    Bulky adducts are DNA lesions generated in response to environmental agents including benzo[a]pyrene (a combustion product) and solar ultraviolet radiation. Error-prone replication of adducted DNA can cause mutations, which may result in cancer. To minimize the detrimental effects of bulky adducts and other DNA lesions, S-phase checkpoint mechanisms sense DNA damage and integrate DNA repair with ongoing DNA replication. The essential protein kinase Chk1 mediates the S-phase checkpoint, inhibiting initiation of new DNA synthesis and promoting stabilization and recovery of stalled replication forks. Here we review the mechanisms by which Chk1 is activated in response to bulky adducts and potential mechanisms by which Chk1 signaling inhibits the initiation stage of DNA synthesis. Additionally, we discuss mechanisms by which Chk1 signaling facilitates bypass of bulky lesions by specialized Y-family DNA polymerases, thereby attenuating checkpoint signaling and allowing resumption of normal cell cycle progression. PMID:17652783

  3. PURIFICATION AND RECOVERY OF BULKY HYDROPHOBIC DNA ADDUCTS

    EPA Science Inventory

    For many years 32P postlabeling has detected DNA adducts at very low levels and yet has not been able to identify unknown adducts. Mass spectrometry offers substantially improved identification powers, albeit at some loss in detection limits. With this ultimate utilization of ma...

  4. 32P-postlabelling analysis of small aromatic and of bulky non-aromatic DNA adducts.

    PubMed

    Reddy, M V

    1993-01-01

    The 32P-postlabelling methodology for analysis of DNA adducts derived from carcinogens containing one aromatic ring (e.g., safrole, styrene oxide, benzene metabolites, 1-nitrosoindole-3-acetonitrile) or a bulky non-aromatic moiety (e.g., mitomycin C, diaziquone) is reviewed. Six steps are involved: digestion of DNA to 3'-nucleotides, enrichment of adducts, 32P-labelling of adducts, separation of labelled adducts by TLC, detection, and quantitation. The first step, DNA digestion with micrococcal nuclease and spleen phosphodiesterase, is applicable to DNA modified with most carcinogens independent of their size and structure. Of the two commonly used procedures for enrichment of aromatic adducts in DNA digests, the nuclease P1 treatment is substantially more effective than butanol extraction for small aromatic and bulky non-aromatic adducts. For initial purification of these adducts from unadducted material after 32P-labelling, multi-directional polyethyleneimine (PEI)-cellulose TLC using 1 M sodium phosphate, pH 6.0, as the D1 solvent is not suitable, because they are not retained on PEI-cellulose under these conditions. A higher concentration of sodium phosphate (e.g., 2.3 M) or development with D1 and D3 solvents in the same direction helps to retain adducts of safrole and of benzene metabolites. Also, transfer of adducts from multiple cut-outs above the origin after D1 chromatography, as adopted for analysis of I-compounds, is potentially applicable. However, initial purification by reverse-phase TLC, followed by in situ transfer and resolution by PEI-cellulose TLC has been found to be most effective for these adducts. Reverse-phase TLC at 4 degrees C or in a stronger salt solution further improves retention of some adducts (e.g., mitomycin C and diaziquone adducts). For adduct separation by PEI-cellulose TLC, salt solutions with or without urea are used. PMID:8225492

  5. Formation and Repair of Tobacco Carcinogen-Derived Bulky DNA Adducts

    PubMed Central

    Hang, Bo

    2010-01-01

    DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N-nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O6-alkylguanine DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects. PMID:21234336

  6. Formation and Repair of Tobacco Carcinogen-Derived Bulky DNA Adducts

    DOE PAGESBeta

    Hang, Bo

    2010-01-01

    DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N -nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O 6more » -alkylguanine DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects.« less

  7. Increased micronuclei and bulky DNA adducts in cord blood after maternal exposures to traffic-related air pollution.

    PubMed

    Pedersen, M; Wichmann, J; Autrup, H; Dang, D A; Decordier, I; Hvidberg, M; Bossi, R; Jakobsen, J; Loft, S; Knudsen, L E

    2009-11-01

    Exposure to traffic-related air pollution in urban environment is common and has been associated with adverse human health effects. In utero exposures that result in DNA damage may affect health later in life. Early effects of maternal and in utero exposures to traffic-related air pollution were assessed through the use of validated biomarkers in blood cells from mother-newborn pairs. A cross-sectional biomonitoring study with healthy pregnant women living in the Greater Copenhagen area, Denmark, was conducted. Bulky DNA adducts and micronuclei (MN) were measured in blood from 75 women and 69 umbilical cords, concurrently collected at the time of planned Caesarean section. Modeled residential traffic density, a proxy measure of traffic-related air pollution exposures, was validated by indoor levels of nitrogen dioxide and polycyclic aromatic hydrocarbons in 42 non-smoking homes. DNA adduct levels were similar and positively correlated in maternal and cord blood (1.40 vs. 1.37 n/10(8) nucleotides; r=0.99; p<0.01). Maternal MN frequencies were significantly associated with age (p<0.01), and higher than those of the newborns (7.0 vs. 3.2 MN per 1000 binucleated cells). Adduct levels were highest among mother-newborn pairs who lived near medium-traffic-density (>400-2500 vehicle km/24h; p<0.01) places. MN frequencies among newborns from women who lived at high-traffic-density homes (>2500 vehicle km/24h) were significantly increased (p=0.02). This trend remained after adjusting for potential confounders and effect modifiers. For the first time increased bulky DNA adducts and MN in cord blood after maternal exposures to traffic-related air pollution are found, demonstrating that these transplacental environmental exposures induce DNA damage in newborns. Given that increased DNA damage early in life indicate an increased risk for adverse health effects later in life, these findings justify intervention of pregnant women. PMID:19783246

  8. The GSTM1null (deletion) and MGMT84 rs12917 (Phe/Phe) haplotype are associated with bulky DNA adduct levels in human leukocytes.

    PubMed

    Molina, Edith; Pérez-Morales, Rebeca; Rubio, Julieta; Petrosyan, Pavel; Cadena, Leticia Hernández; Arlt, Volker M; Phillips, David H; Gonsebatt, María E

    2013-12-12

    Tobacco smoke and air pollutants contain carcinogens, such as polycyclic aromatic hydrocarbons (PAHs) and tobacco specific nitrosamines (TSNA), that are substrates of metabolizing enzymes generating reactive metabolites that can bind to DNA. Variation in the activity of these enzymes may modify the extent to which these metabolites can interact with DNA. We compared the levels of bulky DNA adducts in blood leukocytes from 93 volunteers living in Mexico City with the presence of 13 single nucleotide polymorphisms (SNPs) in genes related to PAH and TSNA metabolism (AhR rs2044853, CYP1A1 rs1048943, CYP1A1 rs1048943, CYP1A1 rs1799814, EPHX1 rs1051740, EPHX1 rs2234922, GSTM1 null, GSTT1 null and GSTP1 rs947894), DNA repair (XRCC1 rs25487, ERCC2 rs13181 and MGMT rs12917) and cell cycle (TP53 rs1042522). (32)P-postlabeling analysis was used to quantify bulky DNA adduct formation. Genotyping was performed using PCR-RFLP. The mean levels of bulky DNA adducts were 8.51±3.66 adducts/10(8) nucleotides (nt) in smokers and 8.38±3.59 adducts/10(8) nt in non-smokers, being the difference not statistically significant. Without taking into account the smoking status, GSTM1 null individuals had a marginally significant lower adduct levels compared with GSTM1 volunteers (p=0.0433) and individuals heterozygous for MGMT Leu/Phe had a higher level of bulky adducts than those who were homozygous wild type (p=0.0170). A multiple regression analysis model showed a significant association between the GSTM1 (deletion) and MGMT rs12917 (Phe/Phe) haplotype and the formation of DNA adducts in smokers (R(2)=0.2401, p=0.0215). The presence of these variants conferred a greater risk for higher adduct levels in this Mexican population. PMID:24084248

  9. Structural Basis for Bulky-Adduct DNA-Lesion Recognition by the Nucleotide Excision Repair Protein Rad14.

    PubMed

    Simon, Nina; Ebert, Charlotte; Schneider, Sabine

    2016-07-25

    Heterocyclic aromatic amines react with purine bases and result in bulky DNA adducts that cause mutations. Such structurally diverse lesions are substrates for the nucleotide excision repair (NER). It is thought that the NER machinery recognises and verifies distorted DNA conformations, also involving the xeroderma pigmentosum group A and C proteins (XPA, XPC) that act as a scaffold between the DNA substrate and several other NER proteins. Here we present the synthesis of DNA molecules containing the polycyclic, aromatic amine C8-guanine lesions acetylaminophenyl, acetylaminonaphthyl, acetylaminoanthryl, and acetylaminopyrenyl, as well as their crystal structures in complex with the yeast XPA homologue Rad14. This work further substantiates the indirect lesion-detection mechanism employed by the NER system that recognises destabilised and deformable DNA structures. PMID:27223336

  10. Mechanistic Investigation of the Bypass of a Bulky Aromatic DNA Adduct Catalyzed by a Y-family DNA Polymerase

    PubMed Central

    Gadkari, Varun V.; Tokarsky, E. John; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2014-01-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2’-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dGC8-N-ABA is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dGC8-N-ABA on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dGC8-N-ABA lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dGC8-N-ABA lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dGC8-N-ABA bypass catalyzed by Dpo4. PMID:25048879

  11. The effects of diet on DNA bulky adduct levels are strongly modified by GSTM1 genotype: a study on 634 subjects.

    PubMed

    Palli, Domenico; Masala, Giovanna; Peluso, Marco; Gaspari, Laura; Krogh, Vittorio; Munnia, Armelle; Panico, Salvatore; Saieva, Calogero; Tumino, Rosario; Vineis, Paolo; Garte, Seymour

    2004-04-01

    Frequent consumption of fresh fruit and vegetables, and polymorphisms in the detoxifying enzyme glutathione S-transferase M1 (GSTM1) and other metabolic genes have been shown to modulate cancer risk at some sites. We have shown recently that DNA adducts, a reliable indicator of genotoxic damage and, possibly, of cancer risk, are modulated by plasma levels of selected micronutrients. Here we further investigate the association between DNA adduct levels and consumption of major food groups and foods, and the estimated dietary intake of nutrients, taking into account the possible modifying effect of metabolic polymorphisms, in a larger sample of 634 healthy adults enrolled in a prospective study in Italy. DNA adducts and five polymorphic metabolic genotypes (GSTM1, GSTT1, NAT2, CYP1A1 and MTHFR) were determined in peripheral leukocytes by using 32P-postlabeling technique and PCR methods. DNA bulky adducts (mean: 7.82 +/- 0.40/10(9) nt) were detected in 482/634 samples (76.0%). Overall, DNA adduct levels were significantly and inversely associated with the intake of raw leafy vegetables (P = 0.02), non-citrus fruits (P = 0.04), potassium (P = 0.01) and beta-carotene (P = 0.05). No association was evident with the five genotypes. Stratification by GSTM1 genotype showed strong inverse associations of DNA adduct levels with increasing consumption of all vegetables combined (P = 0.04), leafy vegetables (P = 0.004), raw leafy vegetables (P = 0.002) and fish (P = 0.03) among 307 GSTM1-null subjects; strong inverse associations also emerged with estimated dietary intakes of beta-carotene (P = 0.004), vitamin E (P = 0.004), niacin (P = 0.02) and potassium (P = 0.01). In contrast, no association emerged among 295 subjects with a GSTM1-wild genotype. Overall, statistically significant interactions in predicting DNA adduct levels were observed between the GSTM1-null genotype and consumption of leafy vegetables (P = 0.01), white meat (P = 0.04), and intake of vitamin C (P = 0

  12. Malondialdehyde–deoxyguanosine and bulky DNA adducts in schoolchildren resident in the proximity of the Sarroch industrial estate on Sardinia Island, Italy

    PubMed Central

    Peluso, Marco

    2013-01-01

    Air quality is a primary environmental concern in highly industrialised areas, with potential health effects in children residing nearby. The Sarroch industrial estate in Cagliari province, Sardinia Island, Italy, hosts the world’s largest power plant and the second largest European oil refinery and petrochemical park. This industrial estate produces a complex mixture of air pollutants, including benzene, heavy metals and polycyclic aromatic hydrocarbons. Thus, we conducted a cross-sectional study to evaluate the prevalence of malondialdehyde–deoxyguanosine adducts in the nasal epithelium of 75 representative children, aged 6–14 years, attending primary and secondary schools in Sarroch in comparison with 73 rural controls. Additionally, the levels of bulky DNA adducts were analysed in a subset of 62 study children. DNA damage was measured by 32P-postlabelling methodologies. The air concentrations of benzene and ethyl benzene were measured in the school gardens of Sarroch and a rural village by diffusive samplers. Outdoor measurements were also performed in other Sarroch areas and in the proximity of the industrial estate. The outdoor levels of benzene and ethyl benzene were significantly higher in the school gardens of Sarroch than in the rural village. Higher concentrations were also found in other Sarroch areas and in the vicinity of the industrial park. The mean levels of malondialdehyde–deoxyguanosine adducts per 108 normal nucleotides ± standard error (SE) were 74.6±9.1 and 34.1±4.4 in the children from Sarroch and the rural village, respectively. The mean ratio was 2.53, 95% confidence interval (CI): 1.71–2.89, P < 0.001, versus rural controls. Similarly, the levels of bulky DNA adducts per 108 normal nucleotides ± SE were 2.9±0.4 and 1.6±0.2 in the schoolchildren from Sarroch and the rural village, respectively. The means ratio was 1.90, 95% CI: 1.25–2.89, P = 0.003 versus rural controls. Our study indicates that children residing near the

  13. Structural Mechanism of Replication Stalling on a Bulky Amino-Polycyclic Aromatic Hydrocarbon DNA Adduct by a Y Family DNA Polymerase

    PubMed Central

    Kirouac, Kevin N.; Basu, Ashis K.; Ling, Hong

    2013-01-01

    Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. PMID:23876706

  14. Transcription Blockage by Bulky End-Termini at Single-Strand Breaks in the DNA Template: Differential Effects of 5′ and 3′ Adducts

    PubMed Central

    Neil, Alexander J.; Belotserkovskii, Boris P.; Hanawalt, Philip C.

    2014-01-01

    RNA polymerases from phage-infected bacteria and mammalian cells have been shown to bypass single-strand breaks (SSBs) with a single nucleotide gap in the template DNA strand during transcription elongation; however, the SSB bypass efficiency varies significantly depending upon the backbone end-chemistries at the break. Using a reconstituted T7 phage transcription system (T7 RNAP) and RNA polymerase II (RNAPII) in HeLa cell nuclear extracts, we observe a slight reduction in transcription arrest at SSBs with no gap as compared to those with a single nucleotide gap. We have shown that biotin and carbon-chain moieties linked to the 3′ side, and in select cases the 5′ side, of a SSB in the template strand strongly increase transcription arrest when compared to unmodified SSBs. We also find that a small carbon-chain moiety linked to the upstream side of a SSB aids transcriptional bypass of SSBs for both T7 RNAP and RNAP II. Analysis of transcription across SSBs flanked by bulky 3′ adducts reveals the ability of 3′ end-chemistries to arrest T7 RNAP in a size dependent manner. T7 RNAP is also completely arrested when 3′ adducts or 3′-phosphate groups are placed opposite 5′-phosphate groups at a SSB. We have also observed that a biotinylated thymine in the template strand (without a break) does not pose a strong block to transcription. Taken together these results emphasize the importance of the size of 3′, but usually not the 5′, end-chemistries in arresting transcription at SSBs, substantiating the notion that bulky 3′ lesions (e.g. topoisomerase cleavable complexes, 3′-phosphoglycolates and 3′-unsaturated aldehydes) pose very strong blocks to transcribing RNA polymerases. These findings have implications for the processing of DNA damage through SSB intermediates and the mechanism of SSB bypass by T7 RNAP and mammalian RNAPII. PMID:23066636

  15. Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function

    PubMed Central

    Liu, Zhi; Ding, Shuang; Kropachev, Konstantin; Lei, Jia; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2015-01-01

    The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide

  16. Versatility of Y-family Sulfolobus solfataricus DNA Polymerase Dpo4 in Translesion Synthesis Past Bulky N[superscript 2]-Alkylguanine Adducts

    SciTech Connect

    Zhang, Huidong; Eoff, Robert L.; Kozekov, Ivan D.; Rizzo, Carmelo J.; Egli, Martin; Guengerich, F. Peter

    2009-09-25

    In contrast to replicative DNA polymerases, Sulfolobus solfataricus Dpo4 showed a limited decrease in catalytic efficiency (k{sub cat}/K{sub m}) for insertion of dCTP opposite a series of N{sup 2}-alkylguanine templates of increasing size from (methyl (Me) to (9-anthracenyl)-Me (Anth)). Fidelity was maintained with increasing size up to (2-naphthyl)-Me (Naph). The catalytic efficiency increased slightly going from the N{sup 2}-NaphG to the N{sup 2}-AnthG substrate, at the cost of fidelity. Pre-steady-state kinetic bursts were observed for dCTP incorporation throughout the series (N{sup 2}-MeG to N{sup 2}-AnthG), with a decrease in the burst amplitude and k{sub pol}, the rate of single-turnover incorporation. The pre-steady-state kinetic courses with G and all of the six N{sup 2}-alkyl G adducts could be fit to a general DNA polymerase scheme to which was added an inactive complex in equilibrium with the active ternary Dpo4 {center_dot} DNA {center_dot} dNTP complex, and only the rates of equilibrium with the inactive complex and phosphodiester bond formation were altered. Two crystal structures of Dpo4 with a template N{sup 2}-NaphG (in a post-insertion register opposite a 3'-terminal C in the primer) were solved. One showed N{sup 2}-NaphG in a syn conformation, with the naphthyl group located between the template and the Dpo4 'little finger' domain. The Hoogsteen face was within hydrogen bonding distance of the N4 atoms of the cytosine opposite N{sup 2}-NaphG and the cytosine at the -2 position. The second structure showed N{sup 2}-Naph G in an anti conformation with the primer terminus largely disordered. Collectively these results explain the versatility of Dpo4 in bypassing bulky G lesions.

  17. C18 thin-layer chromatographic enhancement of the 32P-postlabeling assay for aromatic or bulky carcinogen-DNA adducts: evaluation of adduct recoveries in comparison with nuclease P1 and butanol methods.

    PubMed

    Reddy, M V

    1993-05-01

    The suitability of C18 reversed-phase thin-layer chromatography (TLC) for enrichment of adducts in the 32P-postlabeling assay was investigated for structurally diverse classes of DNA adducts derived from benzo[a]pyrene, 2-acetylaminofluorene, benzoquinone, safrole, and mitomycin C. The TLC enrichment involved retention of adducts to the C18 phase followed by elution with organic solvent-water. Adduct patterns obtained by the C18 purification were qualitatively similar to those obtained by the nuclease P1 and butanol procedures, the two commonly used enrichment methods. Adduct recoveries by the C18 method varied for different adducts and were significantly lower than those obtained by the other two techniques. PMID:8314936

  18. Mechanochemical and solution synthesis, X-ray structure and IR and 31P solid state NMR spectroscopic studies of copper(I) thiocyanate adducts with bulky monodentate tertiary phosphine ligands.

    PubMed

    Bowmaker, Graham A; Hanna, John V; Hart, Robert D; Healy, Peter C; King, Scott P; Marchetti, Fabio; Pettinari, Claudio; Skelton, Brian W; Tabacaru, Aurel; White, Allan H

    2012-07-01

    A number of adducts of copper(I) thiocyanate with bulky tertiary phosphine ligands, and some nitrogen-base solvates, were synthesized and structurally and spectroscopically characterised. CuSCN:PCy3 (1:2), as crystallized from pyridine, is shown by a single crystal X-ray study to be a one-dimensional polymer ...(Cy3P)2CuSCN(Cy3P)2CuSCN... (1) with the four-coordinate copper atoms linked end-on by S-SCN-N bridging thiocyanate groups. A second form (2), obtained from acetonitrile, was also identified and shown by IR and 31P CPMAS NMR spectroscopy to be mononuclear, with the magnitude of the dν(Cu) parameter measured from the 31P CPMAS and the ν(CN) value from the IR clearly establishing this compound as three-coordinate [(Cy3P)2CuNCS]. Two further CuSCN/PCy3 compounds CuSCN:PCy3 (1:1) (3), and CuSCN:PCy3:py (1:1:1) (4) were also characterized spectroscopically, with the dν(Cu) parameters indicating three- and four-coordinate copper sites, respectively. Attempts to obtain a 1:2 adduct with tri-t-butylphosphine have yielded, from pyridine, the 1:1 adduct as a dimer [(Bu(t)3P)((SCN)(NCS))Cu(PBu(t)3)] (5), while similar attempts with tri-o-tolylphosphine (from acetonitrile and pyridine (= L)) resulted in solvated 1:1:1 CuSCN:P(o-tol)3:L forms as dimeric [{(o-tol)3P}LCu((SCN)(NCS))CuL{P(o-tol)3}] (6 and 8). The solvent-free 1:1 CuSCN:P(o-tol)3 adduct (7), obtained by desolvation of 6, was characterized spectroscopically and dν(Cu) measurements from the 31P CPMAS NMR data are consistent with the decrease in coordination number of the copper atom from four (for 6) (P,N(MeCN)Cu,S,N) to three (for 7) (PCuS,N) upon loss of the acetonitrile of solvation. These results are compared with those previously reported for mononuclear and binuclear PPh3 adducts which demonstrate a clear tendency for the copper centre to remain four-coordinate. The IR spectroscopic measurements on these compounds show that bands in the far-IR spectra provide a much more definitive criterion for

  19. New fluorescence methodology for detecting DNA adducts. Final progress report, May 1, 1991--November 30, 1994

    SciTech Connect

    Giese, R.W.

    1994-12-19

    A new reagent, {open_quotes}BO-IMI{close_quotes}, has been developed that achieves, for the first time, single step, phosphate specific fluorescence labeling under aqueous conditions. Both 3{prime} and 5{prime} mononucleotides, including representative DNA adducts can be labeled. Included in this technique is a convenient procedure for postlabeling sample cleanup, leading to a practical detection of the products by capillary electrophoresis with laser fluorescence detection (CE-LIF). We consider that this new method will have a significant impact on the measurement of DNA adducts in human samples. This work was largely accomplished in the second half of our project. In the first half, we set up a new way to isolate DNA nucleotides from blood, worked with an initial, less specific technique for labeling DNA adducts, compared ionizing radiation vs oxidative damage to fluorescein labeled deoxyadenylic acid, and set up a capillary electrophoresis laser fluorescence detection system.

  20. Sperm DNA oxidative damage and DNA adducts.

    PubMed

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-12-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm

  1. sup 14 C-sulfur mustard adducts of calf thymus DNA. Final report, Aug-Sep 90

    SciTech Connect

    Yaverbaum, S.

    1991-02-01

    A grant was awarded to TNO-PML to develop immunochemical monitoring systems for the detection of DNA-HD and Protein-HD adducts in humans following exposure to HD. TNO-PML has been using 35S-HD to prepare adducts for their assays, which have inherent shortcomings that limit detection sensitivity. An experimental batch of 14C-HD-DNA adducts was prepared in an attempt to increase the assay sensitivity. Double - and single-stranded purified calf thymus DNA preparations were reacted with 142, 14.2 and 1.42 uM of 14C-HD under aqueousfree conditions. The 14C-HD-DNA adducts were isolated at -20C in 75% ethanol solution and freed of HD agent and organic solvents (i.e., acetone and alcohol). The 14C-HD-DNA adducts in aqueous buffer were analyzed for specific activity and purity. The ds-DNA-HD adducts were uncontaminated, but the ss-DNA-HD adducts were initially slightly contaminated with alcohol.

  2. General method for quantifying base adducts in specific mammalian genes

    SciTech Connect

    Thomas, D.C.; Morton, A.G.; Bohr, V.A.; Sancar, A.

    1988-06-01

    A general method has been developed to measure the formation and removal of DNA adducts in defined sequences of mammalian genomes. Adducted genomic DNA is digested with an appropriate restriction enzyme, treated with Escherichia coli UvrABC excision nuclease (ABC excinuclease), subjected to alkaline gel electrophoresis, and probed for specific sequences by Southern hybridization. The ABC excinuclease incises DNA containing bulky adducts and thus reduces the intensity of the full-length fragments in Southern hybridization in proportion to the number of adducts present in the probed sequence. This method is similar to that developed by Bohr et al. for quantifying pyrimidine dimers by using T4 endonuclease V. Because of the wide substrate range of ABC exinuclease, however, our method can be used to quantify a large variety of DNA adducts in specific genomic sequences.

  3. Measuring bulky waste arisings in Hong Kong

    SciTech Connect

    Chung Shanshan; Lau, Ka-yan Winifred; Zhang Chan

    2010-05-15

    All too often, waste authorities either assume that they know enough about their bulky waste stream or that it is too insignificant to deserve attention. In this paper, we use Hong Kong as an example to illustrate that official bulky waste figures can actually be very different from the reality and therefore important waste management decisions made based on such statistics may be wrong too. This study is also the first attempt in Hong Kong to outline the composition of bulky waste. It was found that about 342 tonnes/day of wood waste were omitted by official statistics owing to incomplete records on actual bulky waste flow. This is more than enough to provide all the feedstock needed for one regular-sized wood waste recycling facility in Hong Kong. In addition, the proportion of bulky waste in the municipal solid waste (MSW) streams in Hong Kong should be about 6.1% instead of the officially stated 1.43%. Admittedly, there are limitations with this study. Yet, present findings are suggestive of significant MSW data distortion in Hong Kong.

  4. DNA adducts in biomonitoring.

    PubMed

    Hemminki, K

    1995-05-01

    The types of occupational groups studied by postlabelling include foundry, coke oven and aluminium workers, roofers, garage and terminal workers, car mechanics and chimney sweeps. There does not seem to be a direct relationship between the exposure and adduct levels. However, the postlabelling assay is sensitive enough to show adducts in apparently unexposed individuals. The origin of such adducts is unknown; in the case of aromatic adducts, the origin is likely to be environmental and/or dietary. PMID:7618142

  5. A structurally-characterized NbCl5-NHC adduct.

    PubMed

    Bortoluzzi, Marco; Ferretti, Eleonora; Marchetti, Fabio; Pampaloni, Guido; Zacchini, Stefano

    2014-05-01

    The selective reactions of niobium pentachloride with two bulky NHC carbenes afforded NbCl5(NHC) complexes, bearing the highest oxidation state ever found for a metal centre in a transition metal halide-NHC adduct. The X-ray structure of 2a is the first one reported for a monodentate NHC-niobium species, and exhibits an abnormally long Nb-C bond. PMID:24658260

  6. [DNA adducts in human female genital organs].

    PubMed

    Postawski, Krzysztof; Przadka-Rabaniuk, Dorota; Monist, Marta; Baranowski, Włodzimierz

    2007-12-01

    DNA adducts, one of genetic damages markers, precede and finally can lead to oncogenic mutations. They appear in genome as a result of DNA bases damages caused by various and numerous environmental factors eg. ultraviolet light, ionic radiation, toxins and also endogenic substances, for example estrogens. It is believed that the creation of DNA adducts is a necessary but insufficient process for the neoplastic transformation of the cell. The following review presents concise knowledge about the DNA adducts creation and their sequels served in healthy and cancerous tissues of the female genital organs, on the base of the available data. PMID:18411923

  7. /sup 32/P-postlabeling analysis of aromatic DNA adducts in fish from polluted areas

    SciTech Connect

    Dunn, B.P.; Black, J.J.; Maccubbin, A.

    1987-12-15

    Brown bullheads (Ictalurus nebulosus) were sampled from sites in the Buffalo and Detroit Rivers where fish are exposed to high levels of sediment bound polycyclic aromatic hydrocarbons, and suffer from an elevated frequency of liver cancer. DNA was isolated from the livers of these wild fish and from control specimens which were raised in clean aquariums. DNA was enzymatically digested to normal and adducted nucleotides, and hydrophobic/bulky adducts were enriched in the digests either by preparative reverse-phase high-pressure liquid chromatography, or selective nuclease P1 dephosphorylation of normal nucleotides. Aromatic DNA-carcinogen adducts were then quantitated using /sup 32/P-postlabeling analysis. Using both adduct enrichment procedures, chromatograms derived from DNA of fish from polluted areas showed a diffuse diagonal radioactive zone not present in DNA from aquarium raised fish. The diagonal zone appeared to consist at least in part of multiple overlapping discrete adduct spots which could be partially separated by gradient high-pressure liquid chromatography prior to /sup 32/P-postlabeling analysis, and most of which were more strongly retained on a reverse-phase column than the major benzo(a)pyrene-DNA adduct. The behavior of the adducts in the diagonal radioactive zone and of their unlabeled precursors is consistent with their identification as nucleotide adducts of a variety of bulky hydrophobic aromatic environmental compounds. Total pollution-related adduct levels as analyzed by HPLC adduct enrichment and /sup 32/P-postlabeling were 70.1 +/- 29 (SD) nmol/mol normal nucleotide in fish from the Buffalo River, and 52 and 56 nmol/mol for two specimens from the Detroit River.

  8. Structure and mechanism of error-free replication past the major benzo[a]pyrene adduct by human DNA polymerase κ.

    PubMed

    Jha, Vikash; Bian, Chuanbing; Xing, Guangxin; Ling, Hong

    2016-06-01

    Benzo[a]pyrene (BP) is a well-known and frequently encountered carcinogen which generates a bulky DNA adduct (+)-trans-10S-BP-N(2)-dG (BP-dG) in cells. DNA polymerase kappa (polκ) is the only known Y-family polymerase that bypasses BP-dG accurately and thus protects cells from genotoxic BP. Here, we report the structures of human polκ in complex with DNA containing either a normal guanine (G) base or a BP-dG adduct at the active site and a correct deoxycytidine. The structures and supporting biochemical data reveal a unique mechanism for accurate replication by translesion synthesis past the major bulky adduct. The active site of polκ opens at the minor groove side of the DNA substrate to accommodate the bulky BP-dG that is attached there. More importantly, polκ stabilizes the lesion DNA substrate in the same active conformation as for regular B-form DNA substrates and the bulky BPDE ring in a 5' end pointing conformation. The BP-dG adducted DNA substrate maintains a Watson-Crick (BP-dG:dC) base pair within the active site, governing correct nucleotide insertion opposite the bulky adduct. In addition, polκ's unique N-clasp domain supports the open conformation of the enzyme and the extended conformation of the single-stranded template to allow bypass of the bulky lesion. This work illustrates the first molecular mechanism for how a bulky major adduct is replicated accurately without strand misalignment and mis-insertion. PMID:27034468

  9. Structure and mechanism of error-free replication past the major benzo[a]pyrene adduct by human DNA polymerase κ

    PubMed Central

    Jha, Vikash; Bian, Chuanbing; Xing, Guangxin; Ling, Hong

    2016-01-01

    Benzo[a]pyrene (BP) is a well-known and frequently encountered carcinogen which generates a bulky DNA adduct (+)-trans-10S-BP-N2-dG (BP-dG) in cells. DNA polymerase kappa (polκ) is the only known Y-family polymerase that bypasses BP-dG accurately and thus protects cells from genotoxic BP. Here, we report the structures of human polκ in complex with DNA containing either a normal guanine (G) base or a BP-dG adduct at the active site and a correct deoxycytidine. The structures and supporting biochemical data reveal a unique mechanism for accurate replication by translesion synthesis past the major bulky adduct. The active site of polκ opens at the minor groove side of the DNA substrate to accommodate the bulky BP-dG that is attached there. More importantly, polκ stabilizes the lesion DNA substrate in the same active conformation as for regular B-form DNA substrates and the bulky BPDE ring in a 5′ end pointing conformation. The BP-dG adducted DNA substrate maintains a Watson–Crick (BP-dG:dC) base pair within the active site, governing correct nucleotide insertion opposite the bulky adduct. In addition, polκ's unique N-clasp domain supports the open conformation of the enzyme and the extended conformation of the single-stranded template to allow bypass of the bulky lesion. This work illustrates the first molecular mechanism for how a bulky major adduct is replicated accurately without strand misalignment and mis-insertion. PMID:27034468

  10. The analysis of DNA adducts: the transition from (32)P-postlabeling to mass spectrometry.

    PubMed

    Klaene, Joshua J; Sharma, Vaneet K; Glick, James; Vouros, Paul

    2013-06-28

    The technique of (32)P-postlabeling, which was introduced in 1982 for the analysis of DNA adducts, has long been the method of choice for in vivo studies because of its high sensitivity as it requires only <10μg DNA to achieve the detection of 1 adduct in 10(10) normal bases. (32)P-postlabeling has therefore been utilized in numerous human and animal studies of DNA adduct formation. Like all techniques (32)P-postlabeling does have several disadvantages including the use of radioactive phosphorus, lack of internal standards, and perhaps most significantly does not provide any structural information for positive identification of unknown adducts, a shortcoming that could significantly hamper progress in the field. Structural methods have since been developed to allow for positive identification of DNA adducts, but to this day, the same level of sensitivity and low sample requirements provided by (32)P-postlabeling have not been matched. In this mini review we will discuss the (32)P-postlabeling method and chronicle the transition to mass spectrometry via the hyphenation of gas chromatography, capillary electrophoresis, and ultimately liquid chromatography which, some 30years later, is only just starting to approach the sensitivity and low sample requirements of (32)P-postlabeling. This paper focuses on the detection of bulky carcinogen-DNA adducts, with no mention of oxidative damage or small alkylating agents. This is because the (32)P-postlabeling assay is most compatible with bulky DNA adducts. This will also allow a more comprehensive focus on a subject that has been our particular interest since 1990. PMID:22960573

  11. Isolevuglandin Adducts in Disease

    PubMed Central

    Bi, Wenzhao

    2015-01-01

    Abstract Significance: A diverse family of lipid-derived levulinaldehydes, isolevuglandins (isoLGs), is produced by rearrangement of endoperoxide intermediates generated through both cyclooxygenase (COX) and free radical-induced cyclooxygenation of polyunsaturated fatty acids and their phospholipid esters. The formation and reactions of isoLGs with other biomolecules has been linked to alcoholic liver disease, Alzheimer's disease, age-related macular degeneration, atherosclerosis, cardiac arythmias, cancer, end-stage renal disease, glaucoma, inflammation of allergies and infection, mitochondrial dysfunction, multiple sclerosis, and thrombosis. This review chronicles progress in understanding the chemistry of isoLGs, detecting their production in vivo and understanding their biological consequences. Critical Issues: IsoLGs have never been isolated from biological sources, because they form adducts with primary amino groups of other biomolecules within seconds. Chemical synthesis enabled investigation of isoLG chemistry and detection of isoLG adducts present in vivo. Recent Advances: The first peptide mapping and sequencing of an isoLG-modified protein present in human retina identified the modification of a specific lysyl residue of the sterol C27-hydroxylase Cyp27A1. This residue is preferentially modified by iso[4]LGE2 in vitro, causing loss of function. Adduction of less than one equivalent of isoLG can induce COX-associated oligomerization of the amyloid peptide Aβ1-42. Adduction of isoLGE2 to phosphatidylethanolamines causes gain of function, converting them into proinflammatory isoLGE2-PE agonists that foster monocyte adhesion to endothelial cells. Future Directions: Among the remaining questions on the biochemistry of isoLGs are the dependence of biological activity on isoLG isomer structure, the structures and mechanism of isoLG-derived protein–protein and DNA–protein cross-link formation, and its biological consequences. Antioxid. Redox Signal. 22

  12. Alcohol, Aldehydes, Adducts and Airways

    PubMed Central

    Sapkota, Muna; Wyatt, Todd A.

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  13. Alcohol, Aldehydes, Adducts and Airways.

    PubMed

    Sapkota, Muna; Wyatt, Todd A

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  14. Adenine-DNA adducts derived from the highly tumorigenic dibenzo[a,l]pyrene are resistant to nucleotide excision repair while guanine adducts are not

    PubMed Central

    Kropachev, Konstantin; Kolbanovskiy, Marina; Liu, Zhi; Cai, Yuqin; Zhang, Lu; Schwaid, Adam G.; Kolbanovskiy, Alexander; Ding, Shuang; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2013-01-01

    The structural origins of differences in susceptibilities of various DNA lesions to nucleotide excision repair (NER) are poorly understood. Here we compared, in the same sequence context, the relative NER dual incision efficiencies elicited by two stereochemically distinct pairs of guanine (N2-dG) and adenine (N6-dA) DNA lesions, derived from enantiomeric genotoxic diol epoxides of the highly tumorigenic fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P). Remarkably, in cell-free HeLa cell extracts, the guanine adduct with R absolute chemistry at the N2-dG linkage site is ~ 35 times more susceptible to NER dual incisions than the stereochemically identical N6-dA adduct. For the guanine and adenine adducts with S stereochemistry, a similar, but somewhat smaller effect (factor of ~15) is observed. The striking resistance of the bulky N6-dA in contrast to the modest to good susceptibilities of the N2-dG adducts to NER are interpreted in terms of the balance between lesion-induced DNA-distorting and DNA-stabilizing van der Waals interactions in their structures, that are partly reflected in the overall thermal stabilities of the modified duplexes. Our results are consistent with the hypothesis that the high genotoxic activity of DB[a,l]P is related to the formation of NER-resistant and persistent DB[a,l]P-derived adenine adducts in cellular DNA. PMID:23570232

  15. Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase γ.

    PubMed

    Kasiviswanathan, Rajesh; Minko, Irina G; Lloyd, R Stephen; Copeland, William C

    2013-05-17

    Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates. PMID:23543747

  16. DNA adduct measurements in zebra mussels, Dreissena polymorpha, Pallas. Potential use for genotoxicant biomonitoring of fresh water ecosystems.

    PubMed

    Le Goff, J; Gallois, J; Pelhuet, L; Devier, M H; Budzinski, H; Pottier, D; André, V; Cachot, J

    2006-08-12

    The purpose of this study was to examine PAH accumulation and bulky DNA adduct formation in the digestive gland of zebra mussels exposed in their habitat or in controlled laboratory conditions to complex mixture of PAH. DNA adducts were measured using a 32P-postlabelling protocol with nuclease P1 enrichment adapted from Reddy and Randerath [Reddy, M.V., Randerath, K., 1986. Nuclease P1-mediated enhancement of sensitivity of 32P-postlabelling test for structurally diverse DNA adducts. Carcinogenesis 7, 1543-1551]. Specimens collected in the upper part of the Seine estuary were shown to accumulate higher levels of PAH (up to 1.6 microg g(-1) dry weight) in comparison to individuals from the reference site (0.053 microg g(-1) dry weight). The former exhibited elevated levels of DNA adducts (up to 4.0/10(8) nucleotides) and higher diversity of individual adducts with five distinct spots being specifically detected in individuals originating from the Seine estuary. Zebra mussels exposed for 5 days to 0.01% (v/v) of organic extract of sediment from the Seine estuary were shown to accumulate high amounts of PAH (up to 138 microg g(-1) dry weight) but exhibited relatively low levels of DNA adducts. Exposure to benzo[a]pyrene led to a dose-dependent accumulation of B[a]P (up to 7063 microg g(-1) dry weight) and a clear induction of DNA adduct formation in the digestive gland of mussels (up to 1.13/10(8) nucleotides). Comparisons with other bivalves exposed to the same model PAH, revealed similar levels of adducts and comparable adduct profiles with a main adduct spot and a second faint one. This study clearly demonstrated that zebra mussels are able to biotransform B[a]P and probably other PAH into reactive metabolites with DNA-binding activity. This work also demonstrated the applicability of the nuclease P1 enhanced 32P-postlabelling method for bulky adduct detection in the digestive gland of zebra mussels. DNA adduct measurement in zebra mussels could be a suitable

  17. Solid state phase detector replaces bulky transformer circuit

    NASA Technical Reports Server (NTRS)

    Moberly, C. L.

    1967-01-01

    Miniature solid state phase detector using MOSFETs is used in a phase lock loop with a sun-bit detector in an integrated data-link circuit. This replaces bulky transformer circuits. It uses an inverter amplifier, a modulator switch, and a buffer amplifier.

  18. Bulky waste quantities and treatment methods in Denmark.

    PubMed

    Larsen, Anna W; Petersen, Claus; Christensen, Thomas H

    2012-02-01

    Bulky waste is a significant and increasing waste stream in Denmark. However, only little research has been done on its composition and treatment. In the present study, data about collection methods, waste quantities and treatment methods for bulky waste were obtained from two municipalities. In addition a sorting analysis was conducted on combustible waste, which is a major fraction of bulky waste in Denmark. The generation of bulky waste was found to be 150-250 kg capita(-1) year(-1), and 90% of the waste was collected at recycling centres; the rest through kerbside collection. Twelve main fractions were identified of which ten were recyclable and constituted 50-60% of the total quantity. The others were combustible waste for incineration (30-40%) and non-combustible waste for landfilling (10%). The largest fractions by mass were combustible waste, bricks and tile, concrete, non-combustible waste, wood, and metal scrap, which together made up more than 90% of the total waste amounts. The amount of combustible waste could be significantly reduced through better sorting. Many of the waste fractions consisted of composite products that underwent thorough separation before being recycled. The recyclable materials were in many cases exported to other countries which made it difficult to track their destination and further treatment. PMID:21890876

  19. Two-Coordinate Magnesium(I) Dimers Stabilized by Super Bulky Amido Ligands.

    PubMed

    Boutland, Aaron J; Dange, Deepak; Stasch, Andreas; Maron, Laurent; Jones, Cameron

    2016-08-01

    A variety of very bulky amido magnesium iodide complexes, LMgI(solvent)0/1 and [LMg(μ-I)(solvent)0/1 ]2 (L=-N(Ar)(SiR3 ); Ar=C6 H2 {C(H)Ph2 }2 R'-2,6,4; R=Me, Pr(i) , Ph, or OBu(t) ; R'=Pr(i) or Me) have been prepared by three synthetic routes. Structurally characterized examples of these materials include the first unsolvated amido magnesium halide complexes, such as [LMg(μ-I)]2 (R=Me, R'=Pr(i) ). Reductions of several such complexes with KC8 in the absence of coordinating solvents have afforded the first two-coordinate magnesium(I) dimers, LMg-MgL (R=Me, Pr(i) or Ph; R'=Pr(i) , or Me), in low to good yields. Reductions of two of the precursor complexes in the presence of THF have given the related THF adduct complexes, L(THF)Mg-Mg(THF)L (R=Me; R'=Pr(i) ) and LMg-Mg(THF)L (R=Pr(i) ; R'=Me) in trace yields. The X-ray crystal structures of all magnesium(I) complexes were obtained. DFT calculations on the unsolvated examples reveal their Mg-Mg bonds to be covalent and of high s-character, while Ph⋅⋅⋅Mg bonding interactions in the compounds were found to be weak at best. PMID:27303934

  20. Bulky mediastinal aspergillosis mimicking cancer in an immunocompetent patient.

    PubMed

    Stern, Jean-Baptiste; Wyplosz, Benjamin; Validire, Pierre; Angoulvant, Adela; Fregeville, Aude; Caliandro, Raffaele; Gossot, Dominique

    2014-10-01

    We describe the case of a previously healthy 42-year-old woman who presented with a chronic cough and occasional night sweats. Radiologic exploration showed a bulky mediastinal mass surrounding the aortic arch, associated with a left subclavicular lymph node and a cerebral round lesion, mimicking a disseminated lung cancer. Surgical left subclavicular and computed tomography-guided mediastinal biopsy specimens showed granulomatous patterns. Mycologic culture of both samples grew Aspergillus flavus. Resolution was obtained after 9 months of oral voriconazole therapy. PMID:25282220

  1. Oxidation of Isoeugenol by Salen Complexes with Bulky Substituents

    PubMed Central

    Salanti, Anika; Orlandi, Marco; Tolppa, Eeva-Liisa; Zoia, Luca

    2010-01-01

    The catalytic properties of bulky water-soluble salen complexes in the oxidation of isoeugenol (2-methoxy-4-(1-propenyl) phenol) have been investigated in aqueous ethanol solutions in order to obtain a mixture of polymeric compounds through dehydrogenative polymerization. The average molecular weight of dehydrogenated polymers (DHPs) was monitored by GPC and correlated to reaction conditions such as time, concentration of substrate, concentration of catalyst, type of oxidation agent, etc. The DHP synthesized by adopting the best reaction conditions was characterized by different analytical techniques (GPC, 13C-NMR, 31P-NMR and LC-MS) to elucidate its structure. The lignin-like polymer resulting from isoeugenol radical coupling possesses valuable biological activity and finds applications in a variety of fields, such as packaging industry and cultural heritage conservation. PMID:20479991

  2. Nuclear Magnetic Resonance Studies of an N2-Guanine Adduct Derived from the Tumorigen Dibenzo[a,l]pyrene in DNA: Impact of Adduct Stereochemistry, Size, and Local DNA Sequence on Solution Conformations

    PubMed Central

    2015-01-01

    The dimensions and arrangements of aromatic rings (topology) in adducts derived from the reactions of polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites with DNA influence the distortions and stabilities of double-stranded DNA, and hence their recognition and processing by the human nucleotide excision repair (NER) system. Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which contains a nonplanar and aromatic fjord region that is absent in the structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide–DNA adducts formed include the stereoisomeric 14S and 14Rtrans-anti-DB[a,l]P-N2-dG and the stereochemically analogous 10S- and 10R-B[a]P-N2-dG (B[a]P-dG) guanine adducts. However, nuclear magnetic resonance (NMR) solution studies of the 14S-DB[a,l]P-N2-dG adduct in DNA have not yet been presented. Here we have investigated the 14S-DB[a,l]P-N2-dG adduct in two different sequence contexts using NMR methods with distance-restrained molecular dynamics simulations. In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced intercalative adduct conformation can be observed. In full duplexes, in contrast to the intercalated 14R stereoisomeric adduct, the bulky DB[a,l]P residue in the 14S adduct is positioned in a greatly widened and distorted minor groove, with significant disruptions and distortions of base pairing at the lesion site and two 5′-side adjacent base pairs. These unique structural features are significantly different from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of the DB[a,l]P aromatic ring system lead to greater structurally destabilizing DNA distortions that are partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects impact the NER response to the adduct. These structural results broaden our understanding of the structure–function relationship in NER. PMID

  3. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions

    NASA Astrophysics Data System (ADS)

    Mullins, Elwood A.; Shi, Rongxin; Parsons, Zachary D.; Yuen, Philip K.; David, Sheila S.; Igarashi, Yasuhiro; Eichman, Brandt F.

    2015-11-01

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.

  4. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.

    PubMed

    Mullins, Elwood A; Shi, Rongxin; Parsons, Zachary D; Yuen, Philip K; David, Sheila S; Igarashi, Yasuhiro; Eichman, Brandt F

    2015-11-12

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision. PMID:26524531

  5. Catalytic behaviour in the ring-opening polymerisation of organoaluminiums supported by bulky heteroscorpionate ligands.

    PubMed

    Castro-Osma, Jose A; Alonso-Moreno, Carlos; Lara-Sánchez, Agustín; Otero, Antonio; Fernández-Baeza, Juan; Sánchez-Barba, Luis F; Rodríguez, Ana M

    2015-07-21

    A series of alkyl organoaluminium complexes based on bulky heteroscorpionate ligands were designed as catalysts for the ring-opening polymerisation of cyclic esters. Thus, the treatment of AlX3 (X = Me, Et) with bulky acetamide or thioacetamide heteroscorpionate ligands nbptamH (1) [nbptamH = N-naphthyl-2,2-bis(3,5-dimethylpyrazol-1-yl)thioacetamide], fbpamH (2) [fbpamH = N-fluorenyl-2,2-bis(3,5-dimethylpyrazol-1-yl)acetamide], ptbptamH (3) [ptbptamH = N-phenyl-2,2-bis(3,5-di-tert-butylpyrazol-1-yl)thioacetamide], ntbptamH (4) [ntbptamH = N-naphthyl-2,2-bis(3,5-di-tert-butylpyrazol-1-yl)thioacetamide], ptbpamH (5) [ptbpamH = N-phenyl-2,2-bis(3,5-di-tert-butylpyrazol-1-yl)acetamide] and (S)-mtbpamH (6) [(S)-mtbpamH = (S)-(−)-N-α-methylbenzyl-2,2-bis(3,5-di-tert-butylpyrazol-1-yl)acetamide] for 1 hour at 0 °C afforded the dialkyl aluminium complexes [AlX2{κ(2)-nbptam}] (X = Me 7, Et 8), [AlX2{κ(2)-fbpam}] (X = Me 9, Et 10), [AlX2{κ(2)-ptbptam}] (X = Me 11, Et 12), [AlX2{κ(2)-ntbptam}] (X = Me 13, Et 14), [AlX2{κ2(-)ptbpam}] (X = Me 15, Et 16) and [AlX2{κ(2)-(S)-mtbpam}] (X = Me 17, Et 18). The structures of the complexes were determined by spectroscopic methods and the X-ray crystal structure of 14 was also established. The alkyl-containing aluminium complexes 7–18 can act as efficient single-component initiators for the ring-opening polymerisation of ε-caprolactone and rac-lactide. The polymerisations are living, as evidenced by the narrow polydispersities of the isolated polymers and the linear nature of the number average molecular weight versus conversion plot. Finally, a comparative study of ring-opening polymerisation for new bulky heteroscorpionate aluminium initiators and the less congested aluminium analogues is reported. PMID:25534594

  6. DNA adducts-chemical addons

    PubMed Central

    Rajalakshmi, T. R.; AravindhaBabu, N.; Shanmugam, K. T.; Masthan, K. M. K.

    2015-01-01

    DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde). This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers. PMID:26015708

  7. DNA adducts-chemical addons.

    PubMed

    Rajalakshmi, T R; AravindhaBabu, N; Shanmugam, K T; Masthan, K M K

    2015-04-01

    DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde). This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers. PMID:26015708

  8. 32P-postlabeling assay for carcinogen-DNA adducts: nuclease P1-mediated enhancement of its sensitivity and applications.

    PubMed Central

    Reddy, M V; Randerath, K

    1987-01-01

    Exceedingly sensitive assays are required for the detection of DNA adducts formed in humans exposed to low levels of environmental genotoxicants and therapeutic drugs. A 32P-postlabeling procedure for detection and quantitation of aromatic carcinogen-DNA lesions with a sensitivity limit of 1 adduct in 10(7) to 10(8) nucleotides has been described previously. In the standard procedure, DNA is enzymatically digested to 3'-phosphorylated normal and adducted mononucleotides, which are 32P-labeled at 5'-hydroxyl groups by T4 polynucleotide kinase-catalyzed [32P]phosphate transfer from [gamma-32P]ATP. 32P-labeled derivatives are resolved by TLC, detected by autoradiography, and quantitated by counting. This assay has been recently utilized for the determination and partial characterization of DNA adducts formed in somatic and reproductive tissues of rats given the clinically used anticancer drug, mitomycin C. The drug exhibits similar levels of covalent binding to DNA in most tissues. Further studies have revealed that adducted nucleotides are primarily guanine derivatives that are resistant to 3'-dephosphorylation by Penicillium citrinum nuclease P1. The latter observation has been utilized to enhance the 32P-assay's sensitivity to 1 adduct in 10(10) nucleotides for a 10-micrograms DNA sample by postincubation of DNA digests with nuclease P1 before 32P-labeling. The enzyme dephosphorylates the normal nucleotides but not most aromatic and bulky nonaromatic adducts, so that only the latter serve as substrates for the kinase-catalyzed labeling reaction. The new assay has also shown utility in the analysis of very low levels of age- and tissue-related DNA modifications, which might arise from dietary or endogenous compounds, in untreated rats and in humans. Images FIGURE 2. FIGURE 5. PMID:2834194

  9. The boron trifluoride nitromethane adduct

    NASA Astrophysics Data System (ADS)

    Ownby, P. Darrell

    2004-02-01

    The separation of the boron isotopes using boron trifluoride·organic-donor, Lewis acid·base adducts is an essential first step in preparing 10B enriched and depleted crystalline solids so vital to nuclear studies and reactor applications such as enriched MgB 2, boron carbide, ZrB 2, HfB 2, aluminum boron alloys, and depleted silicon circuits for radiation hardening and neutron diffraction crystal structure studies. The appearance of this new adduct with such superior properties demands attention in the continuing search for more effective and efficient means of separation. An evaluation of the boron trifluoride nitromethane adduct, its thermodynamic and physical properties related to large-scale isotopic separation is presented. Its remarkably high separation factor was confirmed to be higher than the expected theoretical value. However, the reportedly high acid/donor ratio was proven to be an order of magnitude lower. On-going research is determining the crystal structure of deuterated and 11B enriched 11BF 3·CD 3NO 2 by X-ray and neutron diffraction.

  10. New alkylzinc complexes with bulky tris(triazolyl)borate ligands: surprising water stability and reactivity.

    PubMed

    Kumar, Mukesh; Papish, Elizabeth T; Zeller, Matthias; Hunter, Allen D

    2010-01-01

    Bulky alkylzinc complexes, (Ttz(tBu,Me))ZnMe and (Ttz(tBu,Me))ZnEt, show remarkable stability towards water and both complexes crystallize with one molecule of adventitious water hydrogen bonded to two triazole rings; in contrast the less bulky complex, (Ttz(Ph,Me))ZnEt, reacts with water to yield (Ttz(Ph,Me))(2)Zn. PMID:20023932

  11. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    SciTech Connect

    Shi, Yun-bo

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs.

  12. DNA adduction by phenol, hydroquinone, or benzoquinone in vitro but not in vivo: nuclease P1-enhanced 32P-postlabeling of adducts as labeled nucleoside bisphosphates, dinucleotides and nucleoside monophosphates.

    PubMed

    Reddy, M V; Bleicher, W T; Blackburn, G R; Mackerer, C R

    1990-08-01

    The carcinogenicity of benzene has been considered to be in part mediated by its chemically reactive metabolic product benzoquinone (BQ), which is formed from the intermediary metabolites phenol and hydroquinone (HQ). We have evaluated the DNA-binding capability of these chemicals in vitro and in vivo by postlabeling. Treatment of rat Zymbal glands in culture with phenol and HQ or direct reaction of BQ with DNA produced DNA adducts, which were detectable by the nuclease P1-enhanced 32P-postlabeling assay as 5'-32P-labeled 3',5'-bisphosphate products. The enhancement of sensitivity in this assay is based on the previous finding that nuclease P1 hydrolyzes the phosphate attached to the 3' side of normal nucleotides but not the corresponding phosphate of most aromatic/bulky adducted nucleotides. Also based on this hydrolytic property of nuclease P1, we developed an additional sensitive procedure that permitted the detection of DNA lesions as 5'-32P-labeled products of dinucleotides, pXpN, or of nucleoside monophosphates, pX, where X and N indicate an adducted nucleoside and a normal nucleoside respectively. In the latter assay, adducted DNA was first digested with nuclease P1 and acid phosphatase to yield XpN and N. The latter were then 32P-labeled to yield [5'-32P] pXpN or 32P-labeled and treated with venom phosphodiesterase to obtain [5'-32P]pX. After optimization of enzymatic conditions, the modified nuclease P1 assay yielded adduct recoveries similar to those obtained by the bisphosphate assay for in vitro phenol-, HQ- and BQ-DNA adducts. Neither of the nuclease P1-enhanced postlabeling procedures showed exposure-specific adducts in vivo in the bone marrow, Zymbal gland, liver and spleen of female Sprague-Dawley rats at 24 h after the last of four single, daily p.o. doses of 75 mg/kg phenol or 150 mg/kg phenol/HQ (1:1). Our results show that phenol, HQ and BQ produce adducts in vitro, but corresponding adducts are not detected in vivo with phenol and phenol

  13. Selective Electrochemical versus Chemical Oxidation of Bulky Phenol.

    PubMed

    Zabik, Nicole L; Virca, Carolyn N; McCormick, Theresa M; Martic-Milne, Sanela

    2016-09-01

    The electrochemical oxidation of selected tert-butylated phenols 2,6-di-tert-butyl-4-methylphenol (1), 2,6-di-tert-butylphenol (2), 2,4,6-tri-tert-butylphenol (3), 2-tert-butylphenol (4), and 4-tert-butylphenol (5) was studied in an aprotic environment using cyclic voltammetry, square-wave voltammetry, and UV-vis spectroscopy. All compounds exhibited irreversible oxidation of the corresponding phenol or phenolate ion. Compound 2 was selectively electrochemically oxidized, while other phenol analogues underwent mostly chemical oxidation. The electrochemical oxidation of 2 produced a highly absorbing product, 3,5,3',5'-tetra-tert-butyl-4,4'-diphenoquinone, which was characterized by X-ray crystal diffraction. The electrochemical oxidation was monitored as a function of electrochemical parameters and concentration. Experimental and theoretical data indicated that the steric hindrance, phenoxyl radical stability, and hydrogen bonding influenced the outcome of the electrochemical oxidation. The absence of the substituent at the para position and the presence of the bulky substituents at ortho positions were structural and electrostatic requirements for the selective electrochemical oxidation. PMID:27454828

  14. Photosolvolysis of bulky (4-hydroxyphenyl)naphthalene derivatives.

    PubMed

    Skalamera, Dani; Mlinarić-Majerski, Kata; Uzelac, Lidija; Kralj, Marijeta; Wan, Peter; Basarić, Nikola

    2013-11-01

    Six new naphthylphenols , bearing bulky hydroxymethyl substituents on the naphthalene, were synthesized and their photoreactivity was investigated by preparative irradiation, fluorescence measurements, and laser flash photolysis. All derivatives (in S1) undergo deprotonation of the phenolic OH in the aqueous solution. Also, fluorescence quenching with HClO4 in the pH range 2-4 indicates that can be protonated in S1. Formation of QMs most probably takes place sequentially, triggered by the phenol deprotonation. However, with the present data, a mechanism that involves simultaneous deprotonation and the loss of OH(-) cannot be ruled out. Photodehydration takes place only for , , and , delivering the corresponding QMs which react with nucleophilic solvents giving the corresponding photosolvolysis products. The other less likely option for the formation of the observed solvolysis products from , , and may involve some radical species. Photodehydration of and was not observed which may be due to the anticipated high energy of the corresponding sterically-congested and . The most efficient photosolvolyses were observed for the 2,6-substituted naphthalenes. PMID:24057421

  15. DNA ADDUCTS OF THE ANTITUMOR AGENT DIAZIQUONE

    EPA Science Inventory

    We have studied adduct formation of the antineoplastic agent diaziquone with DNA and nucleotides in vitro. he aziridine moieties of AZQ can be expected to interact covalently with DNA which in turn presumably elicit the antitumor activity. e analyzed AZQ-DNA adducts by a modified...

  16. Recognition of cisplatin adducts by cellular proteins.

    PubMed

    Kartalou, M; Essigmann, J M

    2001-07-01

    Cisplatin is a widely used chemotherapeutic agent. It reacts with nucleophilic bases in DNA and forms 1,2-d(ApG), 1,2-d(GpG) and 1,3-d(GpTpG) intrastrand crosslinks, interstrand crosslinks and monofunctional adducts. The presence of these adducts in DNA is through to be responsible for the therapeutic efficacy of cisplatin. The exact signal transduction pathway that leads to cell cycle arrest and cell death following treatment with the drug is not known but cell death is believed to be mediated by the recognition of the adducts by cellular proteins. Here we describe the structural information available for cisplatin and related platinum adducts, the interactions of the adducts with cellular proteins and the implications of these interactions for cell survival. PMID:11406166

  17. Site-specific aflatoxin B sub 1 adduction of sequence-positioned nucleosome core particles

    SciTech Connect

    Moyer, R.A.

    1988-01-01

    The question of how the presence of nucleosomal packing of DNA modifies carcinogen interaction at specific sites cannot be answered by studies on whole chromatin or bulk nucleosomes because of the heterogeneity of DNA sequences in the particles. This problem was circumvented by constructing nucleosomes that are homogenous in DNA-histone contact points. A cloned DNA fragment, containing a sea urchin 5S gene which precisely positions a histone octamer was employed. By using {sup 32}P end-labeled DNA and genotoxins that allow cleavage at sites of attack, the frequency of adduction at every susceptible nucleotide can be determined on sequencing gels. The small methylating agent dimethyl sulfate (DMS) and the bulky alkylating agent afatoxin B{sub 1}-dichloride (AFB{sub 1}-Cl{sub 2}) were used to probe the influence of DNA-histone interactions on DNA alkylation patterns in sequence-positioned core particles.

  18. Stereochemical Configuration of 4-Hydroxy-2-nonenal-Cysteine Adducts and Their Stereoselective Formation in a Redox-regulated Protein*

    PubMed Central

    Wakita, Chika; Maeshima, Takuya; Yamazaki, Atsushi; Shibata, Takahiro; Ito, Sohei; Akagawa, Mitsugu; Ojika, Makoto; Yodoi, Junji; Uchida, Koji

    2009-01-01

    4-Hydroxy-2-nonenal (HNE), a major racemic product of lipid peroxidation, preferentially reacts with cysteine residues to form a stable HNE-cysteine Michael addition adduct possessing three chiral centers. Here, to gain more insight into sulfhydryl modification by HNE, we characterized the stereochemical configuration of the HNE-cysteine adducts and investigated their stereoselective formation in redox-regulated proteins. To characterize the HNE-cysteine adducts by NMR, the authentic (R)-HNE- and (S)-HNE-cysteine adducts were prepared by incubating N-acetylcysteine with each HNE enantiomer, both of which provided two peaks in reversed-phase high performance liquid chromatography (HPLC). The NMR analysis revealed that each peak was a mixture of anomeric isomers. In addition, mutarotation at the anomeric center was also observed in the analysis of the nuclear Overhauser effect. To analyze these adducts in proteins, we adapted a pyridylamination-based approach, using 2-aminopyridine in the presence of sodium cyanoborohydride, which enabled analyzing the individual (R)-HNE- and (S)-HNE-cysteine adducts by reversed-phase HPLC following acid hydrolysis. Using the pyridylamination method along with mass spectrometry, we characterized the stereoselective formation of the HNE-cysteine adducts in human thioredoxin and found that HNE preferentially modifies Cys73 and, to the lesser extent, the active site Cys32. More interestingly, the (R)-HNE- and (S)-HNE-cysteine adducts were almost equally formed at Cys73, whereas Cys32 exhibited a remarkable preference for the adduct formation with (R)-HNE. Finally, the utility of the method for the determination of the HNE-cysteine adducts was confirmed by an in vitro study using HeLa cells. The present results not only offer structural insight into sulfhydryl modification by lipid peroxidation products but also provide a platform for the chemical analysis of protein S-associated aldehydes in vitro and in vivo. PMID:19692331

  19. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    SciTech Connect

    Kiwamoto, R. Spenkelink, A.; Rietjens, I.M.C.M.; Punt, A.

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across.

  20. Mixed-Monolayer-Protected Au25 Clusters with Bulky Calix[4]arene Functionalities.

    PubMed

    Hassinen, Jukka; Pulkkinen, Petri; Kalenius, Elina; Pradeep, Thalappil; Tenhu, Heikki; Häkkinen, Hannu; Ras, Robin H A

    2014-02-01

    Although various complex, bulky ligands have been used to functionalize plasmonic gold nanoparticles, introducing them to small, atomically precise gold clusters is not trivial. Here, we demonstrate a simple one-pot procedure to synthesize fluorescent magic number Au25 clusters carrying controlled amounts of bulky calix[4]arene functionalities. These clusters are obtained from a synthesis feed containing binary mixtures of tetrathiolated calix[4]arene and 1-butanethiol. By systematic variation of the molar ratio of ligands, clusters carrying one to eight calixarene moieties were obtained. Structural characterization reveals unexpected binding of the calix[4]arenes to the Au25 cluster surface with two or four thiolates per moiety. PMID:26276613

  1. New fluorescence methodology for detecting DNA adducts

    SciTech Connect

    Giese, R.W.

    1993-05-21

    A new reagent, BO-IMI, has been developed that achieves, single step, phosphate specific fluorescence labeling under aqueous conditions. Both 3 in. and 5 in. mononucleotides, including representative DNA adducts can be labeled. Included in this technique is a convenient procedure for postlabeling sample cleanup, leading to a practical detection of the products by capillary electrophoresis with laser fluorescencedetection. We consider that this new method will have a significant impact on the measurement of DNA adducts in human samples. This work was largely accomplished in the second half of our project. In the first half, we set up a new way to isolate DNA nucleotides from blood, worked with an initial, less specific technique for labeling DNA adducts, compared ionizing radiation vs oxidative damage to fluorescein labeled deoxyadenylic acid, and set up a capillary electrophoresis laser fluorescence detection system.

  2. Reduced variational space analysis of methane adducts

    SciTech Connect

    Cundari, T.R.; Klinckman, T.R.

    1998-10-05

    Methane is the major component of natural gas, and hence its catalytic conversion to functionalized products (e.g., methanol) is of great interest. A variety of transition metal complexes have been investigated experimentally for the selective activation of methane. Recent experiments and computations suggest that weakly bound methane adducts play a pivotal role in metal-mediated methane activation. Calculation of the intrinsic reaction coordinates for methane activation by d{sup 0} imidos indicates that the adduct lies along the pathway for methane activation. Isolation of a stable methane adduct, suitable for experimental characterization, would be aided by a greater understanding of their chemistry. Given the short-lived nature of these adducts and the limited direct experimental information, computational chemistry is a useful tool for understanding the bonding and structure of these catalytic intermediates. This research investigated the bonding forces in methane adducts of transition metal (TM) complexes. The calculations reported here employed effective core potential (ECP) methods within the Hartree-Fock approximation using the GAMESS quantum chemistry program. The reduced variational space self-consistent field (RVS-SCF) method developed by Stevens and Fink was employed. This technique was used to analyze the Coulomb and exchange energy (CEX), polarization energy (POL), and charge transfer energy (CT) contributions to the binding energy ({Delta}E{sub add}) of methane to a TM complex. Adducts of high-valent (d{sup 0}) transition metal complexes were studied. The role of metal, ligand, and charge on the different contributions to the binding energy were analyzed.

  3. Brief chemotherapy (Stanford V) and adjuvant radiotherapy for bulky or advanced Hodgkin's disease: an update.

    PubMed

    Horning, S J; Rosenberg, S A; Hoppe, R T

    1996-01-01

    From May 1989 to August 1995, 94 previously untreated patients with Hodgkin's disease stage II with bulky mediastinal involvement (n = 28) or stage III or IV (n = 66) received an abbreviated chemotherapy regimen, Stanford V, +/-radiotherapy (RT). Chemotherapy was given weekly for 12 weeks followed by consolidative RT to sites of initial bulky disease. With a median follow-up of 3 years, the actuarial 6-year survival is 93% and the freedom from progression is 89%. There have been no relapses or deaths among the 28 patients with stage II bulky mediastinal disease. Eight relapses and three deaths have occurred in the group of 66 patients with stage III-IV disease. The abbreviated chemotherapy regimen, Stanford V, in combination with RT is well tolerated and highly effective therapy for bulky, limited stage and advanced stage HD. Lower cumulative exposure to alkylating agents, doxorubicin, bleomycin and limited use of radiation is expected to improved the prospects for fertility and decrease the risks for second neoplasms and late cardiopulmonary toxicity. PMID:8836420

  4. Turning the Page: Forget about Those Bulky Backbreakers, Digital Textbooks Are the Future

    ERIC Educational Resources Information Center

    Hill, Rebecca

    2010-01-01

    Remember when computers were mostly used in offices? They were big and bulky with about as much mobility as a beached whale. Forget about using them in the classroom. Forget about reading a book on them. Forget about an app, well, for anything. Today, computers are the number-one educational tool. In fact, no one can imagine a school without one.…

  5. Protein adducts as dosimeters of human exposure to styrene, styrene-7,8-oxide, and benzene.

    PubMed

    Rappaport, S M; Yeowell-O'Connell, K

    1999-09-01

    Cysteinyl adducts of hemoglobin (Hb) and albumin (Alb) formed via reactions with reactive species were measured in 48 subjects exposed to styrene (0.24-55.2 ppm) and to styrene-7,8-oxide (SO) (2.65-107 ppb) in a factory producing boats in the USA. Hb and Alb adducts were also investigated among 88 workers exposed to benzene (0-138 ppm) in several Chinese factories. The particular adducts were S-(2-hydroxy-1-phenylethyl) cysteine, from reactions of SO with Alb (designated SO-Alb), and S-phenylcysteine, from reactions of the CYP450 benzene metabolite, benzene oxide (BO), with Hb and Alb (designated BO-Hb and BO-Alb, respectively). The relationships between adduct levels and exposures were investigated in both studies. The estimated slopes varied considerably among the particular combinations of adduct and agent to which the workers were exposed, ranging from 0.815 pmol BO-Hb/g Hb per ppm benzene to 24400 pmol SO-Alb/g Alb per ppm SO. We used these estimated slopes, along with kinetic constants, to predict the systemic doses of SO and BO in humans per mg of styrene, SO or benzene per kg body weight, under certain assumptions. Using RX to signify the particular electrophile (SO or BO) the doses of RX to the blood per unit of dose varied between 2.21 and 4110 nM RX-h/mg agent per kg b.w. The dose of RX to the blood arising from inhalation of SO was almost 2000 times that of styrene (i.e. 4110 vs. 2.21 nM RX/mg agent per kg b.w.) and 430-781 times that of benzene (i.e. 4110 vs. 5.26-9.55 nM RX/mg agent per kg b.w.), depending upon the study. Comparable estimates of the blood dose of BO were obtained from adducts of Hb and Alb and two independent studies of BO-Alb yielded similar dose estimates. These results point to the utility of protein adducts as dosimeters of reactive electrophilic species in occupational studies. Finally, significant levels of background adducts of SO and BO with Hb and Alb were observed among workers, among control subjects and in commercial human

  6. Modelling informally collected quantities of bulky waste and reusable items in Austria

    SciTech Connect

    Ramusch, R. Pertl, A.; Scherhaufer, S.; Schmied, E.; Obersteiner, G.

    2015-10-15

    Highlights: • Informal collectors from Hungary collect bulky waste and reusable items in Austria. • Two methodologies were applied to estimate the informally collected quantities. • Both approaches lead to an estimation of roughly 100,000 t p.a. informally collected. • The formal Austrian system collects 72 kg/cap/yr of bulky waste, WEE & scrap metal. • Informal collection amounts to approx. 12 kg/cap/yr. - Abstract: Disparities in earnings between Western and Eastern European countries are the reason for a well-established informal sector actively involved in collection and transboundary shipment activities from Austria to Hungary. The preferred objects are reusable items and wastes within the categories bulky waste, WEEE and metals, intended to be sold on flea markets. Despite leading to a loss of recyclable resources for Austrian waste management, these informal activities may contribute to the extension of the lifetime of certain goods when they are reused in Hungary; nevertheless they are discussed rather controversially. The aim of this paper is to provide objective data on the quantities informally collected and transhipped. The unique activities of informal collectors required the development and implementation of a new set of methodologies. The concept of triangulation was used to verify results obtained by field visits, interviews and a traffic counting campaign. Both approaches lead to an estimation of approx. 100,000 t per year of reusable items informally collected in Austria. This means that in addition to the approx. 72 kg/cap/yr formally collected bulky waste, bulky waste wood, household scrap (excluding packaging) and WEEE, up to a further 12 kg/cap/yr might, in the case that informal collection is abandoned, end up as waste or in the second-hand sector.

  7. DETERMINATION OF HEMOGLOBIN ADDUCTS FOLLOWING ACRYLAMIDE EXPOSURE

    EPA Science Inventory

    The present project was undertaken to develop new methodologies for biological monitoring of exposure to the toxicant acrylamide in laboratory animals as well as humans. ethods were developed to measure the adducts of acrylamide and its epoxide metabolite glycinamide to cysteine ...

  8. 32P-postlabelling methods for cyclic DNA adducts.

    PubMed

    Watson, W P; Crane, A E; Steiner, S

    1993-01-01

    32P-Postlabelling procedures coupled with HPLC have been developed to detect and measure a range of cyclic DNA adducts formed by bifunctional genotoxic agents. The methods are based on reverse-phase HPLC, particularly column-switching HPLC, to enrich adduct 3'-monophosphates before labelling. Following 3'-dephosphorylation of the 3'5'-[5'-32P]bisphosphates with nuclease P1, the resulting 5'-[32P]monophosphate adducts are resolved, identified and characterized by co-chromatography with synthetic reference standards. The procedures have been applied to a number of cyclic adducts including those formed by chloroacetaldehyde, glycidaldehyde and malonaldehyde. In general, labelling efficiencies measured as chromatographed 5'-[32P]monophosphates were in the range 30-40%. However, the values for the malonaldehyde deoxyguanosine adduct were much lower. The techniques have been applied to studies on the formation of DNA adducts in the skin of male C3H mice treated cutaneously with glycidaldehyde. The HPLC-32P-postlabelling analysis of epidermal DNA hydrolysates indicated that a single major cyclic adduct was formed by reaction with deoxyadenosine residues in mouse skin DNA. The adduct was identified as a hydroxymethyl ethenodeoxyadenosine adduct by comparison with a synthetic standard. This adduct was highly fluorescent and it was possible to make quantitative comparisons of the amounts of adduct determined by either HPLC-32P-postlabelling or HPLC-fluorescence detection. PMID:8225493

  9. Stereotactic Radiosurgery as Part of Multimodal Treatment in a Bulky Leptomeningeal Recurrence of Breast Cancer

    PubMed Central

    Burton, Eric C; Shaughnessy, Joseph N

    2016-01-01

    Breast cancer metastatic to the brain and/or leptomeningeal spread of disease is a frequently encountered clinical situation, especially given the extended course of disease in these patients. Systemic therapies can often effectively prolong extracranial disease control, making effective strategies to control central nervous system-based disease even more critical. We present a case of bulky leptomeningeal relapse of breast cancer in the setting of prior whole brain radiation therapy. In order to treat the patient’s bulky disease and leptomeningeal spread while avoiding the potential toxicities of repeat whole brain radiation, the patient was treated with frameless stereotactic radiosurgery and intrathecal chemotherapy. This is the first report of this treatment approach for leptomeningeal relapse of breast cancer. The patient had an excellent response to treatment and durable intracranial control. PMID:27081584

  10. Stereotactic Radiosurgery as Part of Multimodal Treatment in a Bulky Leptomeningeal Recurrence of Breast Cancer.

    PubMed

    Bertke, Matthew H; Burton, Eric C; Shaughnessy, Joseph N

    2016-01-01

    Breast cancer metastatic to the brain and/or leptomeningeal spread of disease is a frequently encountered clinical situation, especially given the extended course of disease in these patients. Systemic therapies can often effectively prolong extracranial disease control, making effective strategies to control central nervous system-based disease even more critical. We present a case of bulky leptomeningeal relapse of breast cancer in the setting of prior whole brain radiation therapy. In order to treat the patient's bulky disease and leptomeningeal spread while avoiding the potential toxicities of repeat whole brain radiation, the patient was treated with frameless stereotactic radiosurgery and intrathecal chemotherapy. This is the first report of this treatment approach for leptomeningeal relapse of breast cancer. The patient had an excellent response to treatment and durable intracranial control. PMID:27081584

  11. Shape matters: lifecycle of cooperative patches promotes cooperation in bulky populations.

    PubMed

    Misevic, Dusan; Frénoy, Antoine; Lindner, Ariel B; Taddei, François

    2015-03-01

    Natural cooperative systems take many forms, ranging from one-dimensional cyanobacteria arrays to fractal-like biofilms. We use in silico experimental systems to study a previously overlooked factor in the evolution of cooperation, physical shape of the population. We compare the emergence and maintenance of cooperation in populations of digital organisms that inhabit bulky (100 × 100 cells) or slender (4 × 2500) toroidal grids. Although more isolated subpopulations of secretors in a slender population could be expected to favor cooperation, we find the opposite: secretion evolves to higher levels in bulky populations. We identify the mechanistic explanation for the shape effect by analyzing the lifecycle and dynamics of cooperator patches, from their emergence and growth, to invasion by noncooperators and extinction. Because they are constrained by the population shape, the cooperator patches expand less in slender than in bulky populations, leading to fewer cooperators, less public good secretion, and generally lower cooperation. The patch dynamics and mechanisms of shape effect are robust across several digital cooperation systems and independent of the underlying basis for cooperation (public good secretion or a cooperation game). Our results urge for a greater consideration of population shape in the study of the evolution of cooperation across experimental and modeling systems. PMID:25639379

  12. Shape matters: Lifecycle of cooperative patches promotes cooperation in bulky populations

    PubMed Central

    Misevic, Dusan; Frénoy, Antoine; Lindner, Ariel B; Taddei, François

    2015-01-01

    Natural cooperative systems take many forms, ranging from one-dimensional cyanobacteria arrays to fractal-like biofilms. We use in silico experimental systems to study a previously overlooked factor in the evolution of cooperation, physical shape of the population. We compare the emergence and maintenance of cooperation in populations of digital organisms that inhabit bulky (100 × 100 cells) or slender (4 × 2500) toroidal grids. Although more isolated subpopulations of secretors in a slender population could be expected to favor cooperation, we find the opposite: secretion evolves to higher levels in bulky populations. We identify the mechanistic explanation for the shape effect by analyzing the lifecycle and dynamics of cooperator patches, from their emergence and growth, to invasion by noncooperators and extinction. Because they are constrained by the population shape, the cooperator patches expand less in slender than in bulky populations, leading to fewer cooperators, less public good secretion, and generally lower cooperation. The patch dynamics and mechanisms of shape effect are robust across several digital cooperation systems and independent of the underlying basis for cooperation (public good secretion or a cooperation game). Our results urge for a greater consideration of population shape in the study of the evolution of cooperation across experimental and modeling systems. PMID:25639379

  13. Modelling informally collected quantities of bulky waste and reusable items in Austria.

    PubMed

    Ramusch, R; Pertl, A; Scherhaufer, S; Schmied, E; Obersteiner, G

    2015-10-01

    Disparities in earnings between Western and Eastern European countries are the reason for a well-established informal sector actively involved in collection and transboundary shipment activities from Austria to Hungary. The preferred objects are reusable items and wastes within the categories bulky waste, WEEE and metals, intended to be sold on flea markets. Despite leading to a loss of recyclable resources for Austrian waste management, these informal activities may contribute to the extension of the lifetime of certain goods when they are reused in Hungary; nevertheless they are discussed rather controversially. The aim of this paper is to provide objective data on the quantities informally collected and transhipped. The unique activities of informal collectors required the development and implementation of a new set of methodologies. The concept of triangulation was used to verify results obtained by field visits, interviews and a traffic counting campaign. Both approaches lead to an estimation of approx. 100,000 t per year of reusable items informally collected in Austria. This means that in addition to the approx. 72 kg/cap/yr formally collected bulky waste, bulky waste wood, household scrap (excluding packaging) and WEEE, up to a further 12 kg/cap/yr might, in the case that informal collection is abandoned, end up as waste or in the second-hand sector. PMID:26209344

  14. Human DNA adduct measurements: state of the art.

    PubMed Central

    Poirier, M C; Weston, A

    1996-01-01

    Human DNA adduct formation (covalent modification of DNA with chemical carcinogens) is a promising biomarker for elucidating the molecular epidemiology of cancer. Classes of compounds for which human DNA adducts have been observed include polycyclic aromatic hydrocarbons (PAHs), nitrosamines, mycotoxins, aromatic amines, heterocyclic amines, ultraviolet light, and alkylating cancer chemotherapeutic agents. Most human DNA adduct exposure monitoring has been performed with either 32P-postlabeling or immunoassays, neither of which is able to chemically characterize specific DNA adducts. Recently developed combinations of methods with chemical and physical end points have allowed identification of specific adducts in human tissues. Studies are presented that demonstrate that high ambient levels of benzo[a]pyrene are associated with high levels of DNA adducts in human blood cell DNA and that the same DNA adduct levels drop when the ambient PAH levels decrease significantly. DNA adduct dosimetry, which has been achieved with some dietary carcinogens and cancer chemotherapeutic agents, is described, as well as studies correlating DNA adducts with other biomarkers. It is likely that some toxic, noncarcinogenic compounds may have genotoxic effects, including oxidative damage, and that adverse health outcomes other than cancer may be correlated with DNA adduct formation. The studies presented here may serve as useful prototypes for exploration of other toxicological end points. PMID:8933030

  15. Polymorphic acetylation of arylamines and DNA-adduct formation.

    PubMed

    Weber, W W; Levy, G N; Martell, K J

    1990-01-01

    Inbred mouse strains congenic for rapid and slow N-acetyltransferase (NAT) (A.B6, rapid and B6.A, slow) were used to separate the effect of the NAT polymorphism from the influence of other genetically polymorphic enzymes on DNA adduct formation induced by exposure to arylamine carcinogens. Adduct formation was measured by HPLC analysis of 32P-postlabeled nucleotides from DNA of the urinary bladder and liver. Acetylator phenotype was a significant determinant of DNA damage in females as slow acetylators had higher levels of bladder DNA adducts than rapids. This correlation was the reverse of that seen with liver DNA. Older mice (20-23 weeks) formed much higher bladder DNA adduct levels than young mice (7 week). The increase in bladder adduct formation with age was seen in both sexes of all mouse strains. The older male B6 mice showed a 26-fold increase in bladder adducts and the older females showed no more than a 2-fold increase. In addition, the older male B6 mice produced significant amounts of an unidentified, early eluting adduct peak. Biochemical studies of liver NAT and O-acetyltransferase (OAT) activities showed a direct correlation between the levels of liver 2-aminofluorene (AF) NAT activity and levels of liver DNA-adduct formation, but the role of OAT activity in adduct formation in the mouse remains unclear. These results indicate that the NAT phenotype, age and sex are all important determinants of arylamine-DNA adduct formation in mice. PMID:2134671

  16. Covalent adduction of nitrogen mustards to model protein nucleophiles.

    PubMed

    Thompson, Vanessa R; DeCaprio, Anthony P

    2013-08-19

    Protein adducts have the potential to serve as unique biomarkers of exposure to compounds of interest. Many xenobiotics (or their metabolites) are electrophilic and therefore reactive with nucleophilic amino acid residues on proteins. Nitrogen mustards are reactive xenobiotics with potential use as chemical warfare agents (CWA) or agents of terrorist attack, in addition to being employed as chemotherapeutic agents. The present study utilized cysteine-, lysine-, and histidine-containing model peptides to characterize in vitro adduction of the nitrogen mustards mechloroethamine (HN-2) and tris-(2-chlorethyl)amine (HN-3) to these nucleophilic amino acid residues by means of liquid chromatography-tandem mass spectrometry. The study assessed the structure of adducts formed, the time course of adduct formation, concentration-response relationships, and temporal stability of adducts. Adduction was hypothesized to occur on all three model peptides via initial formation of a reactive aziridinium intermediate for both mechloroethamine and tris-(2-chlorethyl)amine, followed by covalent adduction to nucleophilic residues. While adduction was found to occur most readily with cysteine, it was also observed at lysine and histidine, demonstrating that adduction by mechloroethamine and tris-(2-chlorethyl)amine is possible at multiple nucleophilic sites. Following solid phase extraction cleanup, adducts formed with mechloroethamine were stable for up to three weeks. Adducts formed with tris-(2-chlorethyl)amine were less stable; however, hydrolyzed secondary adducts were observed throughout the three week period. This study demonstrates that the nitrogen mustards mechloroethamine and tris-(2-chlorethyl)amine form stable adducts with reactive protein nucleophiles other than cysteine. PMID:23859065

  17. Development of an immunoassay to detect benzene adducts in hemoglobin

    SciTech Connect

    Grassman, J.A.

    1993-01-01

    The purpose of this project was to develop an immunoassay to detect the adducts formed in hemoglobin after exposure to benzene, which is known to cause bone marrow degeneration and acute myelogenous leukemia. The use of benzene-adduct detection as a biological monitoring method would permit measurement of low exposures and exposures sustained weeks earlier. The reactivity of hydroquinone, an important benzene metabolite, with blood proteins and amino acids was investigated in order to decide which antigens and analytes were likely to be suitable for immunoassay development. The second section determined the combination of benzene-metabolite and antigen need to produce an immunoassay with the requisite low detection limit and specificity. The immunoassays with the best performance were tested on hemoglobin from benzene-exposed mice. In vitro studies showed that hydroquinone efficiently formed adducts with erythrocyte membranes and hemoglobin but not with albumin. Adduction efficiency was greater in incubations using purified hemoglobin than whole blood. Cysteine accounted for 15 to 27% of the adducts formed by hydroquinone. The site of the other adducts were not identified although there was evidence that the hemoglobin heme was adducted. Adducts were found on only 1 of the 2 globin chains. Tryptic digestion of the globin failed to associate the adducts with a specific peptide. Antigens made from hydroquinone-adducted hemoglobin but not hydroquinone-adducted cysteines coupled to carrier proteins effectively elicited adduct-specific antibodies. Interference due to reactivity to hemoglobin was controlled by using uniform quantities of hemoglobin in all wells. The mid-range of the best assays were approximately 12 pmoles HQ per well. Antibodies directed toward hemoglobin adducted with the benzene metabolites phenol, catechol and 1,2,4-trihydroxybenzene were also made. The performance of the anti-1,2,4-trihydroxybenzene were suitable for quantitative immunoassays.

  18. Protein modification by acrolein: Formation and stability of cysteine adducts

    PubMed Central

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2010-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to identify in vitro and in vivo. In this study, model peptides with cysteine, lysine, and histidine residues were used to examine the reactivity of acrolein. Results from these experiments show that acrolein reacts rapidly with cysteine residues through Michael addition to form M+56 Da adducts. These M+56 adducts are, however, not stable, even though spontaneous dissociation of the adduct is slow. Further studies demonstrated that when acrolein and model peptides are incubated at physiological pH and temperature, the M+56 adducts decreased gradually accompanied by the increase of M+38 adducts, which are formed from intra-molecular Schiff base formation. Adduct formation with the side chains of other amino acid residues (lysine and histidine) was much slower than cysteine and required higher acrolein concentration. When cysteine residues were blocked by reaction with iodoacetamide and higher concentrations of acrolein were used, adducts of the N-terminal amino group or histidyl residues were formed but lysine adducts were not detected. Collectively, these data demonstrate that acrolein reacts avidly with protein cysteine residues and that the apparent loss of protein-acrolein Michael adducts over time may be related to the appearance of a novel (M+38) adduct. These findings may be important in identification of in vivo adducts of acrolein with protein cysteine residues. PMID:19231900

  19. Mutagenesis by site-specific arylamine adducts in plasmid DNA: Enhancing replication of the adducted strand alters mutation frequency

    SciTech Connect

    Reid, T.M.; Lee, Meisie; King, C.M. )

    1990-07-03

    Site specifically modified plasmids were used to determine the mutagenic effects of single arylamine adducts in bacterial cells. A synthetic heptadecamer bearing a single N-(guanin-8-yl)-2-aminofluorene (AF) or N-(guanin-8-yl)-2-(acetylamino)fluorene (AAF) adduct was used to introduce the adducts into a specific site in plasmid DNA that contained a 17-base single-stranded region complementary to the modified oligonucleotide. Following transformation of bacterial cells with the adduct-bearing DNA, putative mutants were detected by colony hybridization techniques that allowed unbiased detection of all mutations at or near the site of the adduct. The site-specific AF or AAF adducts were also placed into plasmid DNA that contained uracil residues on the strand opposite that bearing the lesions. The presence of uracil in one strand of the DNA decreases the ability of the bacterial replication system to use the uracil-containing strand, thereby favoring the use of the strand bearing the adducts. In a comparison of the results obtained with site specifically modified DNA, either with or without uracil, the presence of the uracil increased the mutation frequencies of the AF adduct by >7-fold to 2.9% and of the AAF adduct by >12-fold to 0.75%. The AF adduct produced primarily single-base deletions in the absence of uracil but only base substitutions in the uracil-containing constructs. The AAF adduct produced mutations only in the uracil-containing DNA, which included both frame shifts and base substitutions. Mutations produced by both adducts were SOS dependent.

  20. DNA BINDING AND ADDUCT FORMATION OF AFLATOXIN B1 IN CULTURED HUMAN AND ANIMAL TRACHEOBRONCHIAL AND BLADDER TISSUES

    EPA Science Inventory

    DNA binding and adduct formation of aflatoxin B1 (AFB1) was studied in cultured bladder and tracheobronchial explants from human, monkey, dog, hamster and rat. Explants were exposed to (3H)AFB1 (1 micrometer final concentration) in PFHR-4 medium (pH 7.4) without serum for 24 h, a...

  1. Phase II study of concomitant chemoradiotherapy in bulky refractory or chemoresistant relapsed lymphomas

    SciTech Connect

    Girinsky, Theodore . E-mail: girinsky@igr.fr; Lapusan, Simona; Ribrag, Vincent; Koscielny, Serge; Ferme, Christophe; Carde, Patrice

    2005-02-01

    Purpose: To evaluate the local efficacy of concomitant chemoradiotherapy in patients with mostly refractory lymphoma. Methods and materials: Patients with refractory or chemoresistant-relapsed lymphoma and bulky life-threatening masses were included in this study. A split course of concomitant radiotherapy and chemotherapy (mostly cisplatin and etoposide) was delivered during a 6-week period. Weekly blood tests and a clinical examination using the Radiation Therapy Oncology Group guidelines were performed to assess acute toxicity. The tumor response was evaluated 1-3 months after treatment and at regular follow-up visits. Results: We enrolled 21 patients in the study between January 1998 and April 2003. Of the 21 patients, 60% had disseminated disease with bulky tumor masses and 85% had refractory lymphoma, of which most had been treated with at least two different chemotherapy regimens before concomitant chemoradiotherapy. Seventy-five percent received regimens containing cisplatinum and etoposide. The median radiation dose was 40 Gy (range, 12-62.5 Gy). Grade 3-4 hematologic toxicity and mucositis was observed in 70% and 30% of cases respectively, without any deaths. The overall response and complete remission rate was 70% and 20%, respectively. The 1-year overall survival and local progression-free survival rate was 20.4% and 54%, respectively. Three patients with localized disease were still alive 16, 33, and 48 months after treatment. Conclusion: Concomitant chemoradiotherapy for refractory or chemoresistant-relapsed lymphoma induced high hematologic toxicity, but seemed adequate for controlling local bulky tumor masses. No toxicity-related death was observed.

  2. Efficient uptake of dimethyl sulfoxide by the desoxomolybdenum(IV) dithiolate complex containing bulky hydrophobic groups.

    PubMed

    Hasenaka, Yuki; Okamura, Taka-aki; Onitsuka, Kiyotaka

    2015-04-01

    A desoxomolybdenum(IV) complex containing bulky hydrophobic groups and NH···S hydrogen bonds, (Et4N)[Mo(IV)(OSi(t)BuPh2)(1,2-S2-3,6-{(4-(t)BuC6H4)3CCONH}2C6H2)2], was synthesized. This complex promotes the oxygen-atom-transfer (OAT) reaction of DMSO by efficient uptake of the substrate into the active center. The clean OAT reaction of Me3NO is also achieved. PMID:25739371

  3. Antiallergic activity of rosmarinic acid esters is modulated by hydrophobicity, and bulkiness of alkyl side chain.

    PubMed

    Zhu, Fengxian; Xu, Zhongming; Yonekura, Lina; Yang, Ronghua; Tamura, Hirotoshi

    2015-01-01

    Methyl, propyl and hexyl esters of rosmarinic, caffeic and p-coumaric acids were tested for antiallergic activity, and rosmarinic acid propyl ester exhibited the greatest β-hexosaminidase release suppression (IC50, 23.7 μM). Quadratic correlations between pIC50 and cLogP (r(2) = 0.94, 0.98, and 1.00, respectively) were observed in each acid ester series. The antiallergic activity is modulated by hydrophobicity, and alkyl chain bulkiness. PMID:25686361

  4. Cytochrome c adducts with PCB quinoid metabolites.

    PubMed

    Li, Miao; Teesch, Lynn M; Murry, Daryl J; Pope, R Marshal; Li, Yalan; Robertson, Larry W; Ludewig, Gabriele

    2016-02-01

    Polychlorinated biphenyls (PCBs) are a group of 209 individual congeners widely used as industrial chemicals. PCBs are found as by-products in dye and paint manufacture and are legacy, ubiquitous, and persistent as human and environmental contaminants. PCBs with fewer chlorine atoms may be metabolized to hydroxy- and dihydroxy-metabolites and further oxidized to quinoid metabolites both in vitro and in vivo. Specifically, quinoid metabolites may form adducts on nucleophilic sites within cells. We hypothesized that the PCB-quinones covalently bind to cytochrome c and, thereby, cause defects in the function of cytochrome c. In this study, synthetic PCB quinones, 2-(4'-chlorophenyl)-1,4-benzoquinone (PCB3-pQ), 4-4'-chlorophenyl)-1,2-benzoquinone (PCB3-oQ), 2-(3', 5'-dichlorophenyl)-1,4-benzoquinone, 2-(3',4', 5'-trichlorophenyl)-1,4-benzoquinone, and 2-(4'-chlorophenyl)-3,6-dichloro-1,4-benzoquinone, were incubated with cytochrome c, and adducts were detected by liquid chromatography-mass spectrometry (LC-MS) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was employed to separate the adducted proteins, while trypsin digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were applied to identify the amino acid binding sites on cytochrome c. Conformation change of cytochrome c after binding with PCB3-pQ was investigated by SYBYL-X simulation and cytochrome c function was examined. We found that more than one molecule of PCB-quinone may bind to one molecule of cytochrome c. Lysine and glutamic acid were identified as the predominant binding sites. Software simulation showed conformation changes of adducted cytochrome c. Additionally, cross-linking of cytochrome c was observed on the SDS-PAGE gel. Cytochrome c was found to lose its function as electron acceptor after incubation with PCB quinones. These data provide evidence that the covalent

  5. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mannich-based adduct. 721.4590 Section 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4590 Mannich-based adduct....

  6. Intramolecular Tetrylene Lewis Adducts: Synthesis and Reactivity.

    PubMed

    Schneider, Julia; Krebs, Kilian M; Freitag, Sarah; Eichele, Klaus; Schubert, Hartmut; Wesemann, Lars

    2016-07-01

    A series of benzyl(diphenylphosphino) and o-phenyl(diphenlyphosphino) substituted germylenes and plumbylenes were synthesized by nucleophilic substitution between the respective lithium reagent and tetrylene halide. The Lewis pairs were characterized by X-ray crystallography and NMR spectroscopy. The reactivity of the tetrylenes was investigated with respect to azide addition. In the germylene case, the germaniumimide was formed as the kinetically controlled product, which rearranges upon heating to give the phosphinimide. The stannylene and plumbylene derivatives react with adamantylazide to give the azide adducts. 1-Pentene reacts diastereoselectively with the phosphagermirane to give a cyclic addition product. Trimethysilylacetylene shows an addition with the benzylphosphino-substituted germylene and plumbylene to give the cycloheteropentene molecules. The addition product between phenylacetylene and the four membered Ge-P adduct shows after addition at room temperature a 1,4-phenylmigration to give a cyclic phosphine. Alkylnitrene insertion into a Ge-C bond of the alkyne addition product of the phosphagermirane was found in reaction with adamantylazide. PMID:27273819

  7. Outer-membrane translocation of bulky small molecules by passive diffusion

    PubMed Central

    van den Berg, Bert; Prathyusha Bhamidimarri, Satya; Dahyabhai Prajapati, Jigneshkumar; Kleinekathöfer, Ulrich; Winterhalter, Mathias

    2015-01-01

    The outer membrane (OM) of gram-negative bacteria forms a protective layer around the cell that serves as a permeability barrier to prevent unrestricted access of noxious substances. The permeability barrier of the OM results partly from the limited pore diameters of OM diffusion channels. As a consequence, there is an “OM size-exclusion limit,” and the uptake of bulky molecules with molecular masses of more than ∼600 Da is thought to be mediated by TonB-dependent, active transporters. Intriguingly, the OM protein CymA from Klebsiella oxytoca does not depend on TonB but nevertheless mediates efficient OM passage of cyclodextrins with diameters of up to ∼15 Å. Here we show, by using X-ray crystallography, molecular dynamics simulations, and single-channel electrophysiology, that CymA forms a monomeric 14-stranded β-barrel with a large pore that is occluded on the periplasmic side by the N-terminal 15 residues of the protein. Representing a previously unidentified paradigm in OM transport, CymA mediates the passive diffusion of bulky molecules via an elegant transport mechanism in which a mobile element formed by the N terminus acts as a ligand-expelled gate to preserve the permeability barrier of the OM. PMID:26015567

  8. Benzenesulfonamides incorporating bulky aromatic/heterocyclic tails with potent carbonic anhydrase inhibitory activity.

    PubMed

    Bozdag, Murat; Alafeefy, Ahmed M; Vullo, Daniela; Carta, Fabrizio; Dedeoglu, Nurcan; Al-Tamimi, Abdul-Malek S; Al-Jaber, Nabila A; Scozzafava, Andrea; Supuran, Claudiu T

    2015-12-15

    Three series of sulfonamides incorporating long, bulky tails were obtained by applying synthetic strategies in which substituted anthranilic acids, quinazolines and aromatic sulfonamides have been used as starting materials. They incorporate long, bulky diamide-, 4-oxoquinazoline-3-yl- or quinazoline-4-yl moieties in their molecules, and were investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic human (h) hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides showed excellent inhibitory effects against the four isoforms, with KIs of 7.6-322nM against hCA I, of 0.06-85.4nM against hCA II; of 6.7-152nM against hCA IX and of 0.49-237nM against hCA XII; respectively. However no relevant isoform-selective behavior has been observed for any of them, although hCA II and XII, isoforms involved in glaucoma-genesis were the most inhibited ones. The structure-activity relationship for inhibiting the four CAs with these derivatives is discussed in detail. PMID:26639945

  9. Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates

    PubMed Central

    Kong, Xu-Dong; Yuan, Shuguang; Li, Lin; Chen, She; Xu, Jian-He; Zhou, Jiahai

    2014-01-01

    Optically pure epoxides are essential chiral precursors for the production of (S)-propranolol, (S)-alprenolol, and other β-adrenergic receptor blocking drugs. Although the enzymatic production of these bulky epoxides has proven difficult, here we report a method to effectively improve the activity of BmEH, an epoxide hydrolase from Bacillus megaterium ECU1001 toward α-naphthyl glycidyl ether, the precursor of (S)-propranolol, by eliminating the steric hindrance near the potential product-release site. Using X-ray crystallography, mass spectrum, and molecular dynamics calculations, we have identified an active tunnel for substrate access and product release of this enzyme. The crystal structures revealed that there is an independent product-release site in BmEH that was not included in other reported epoxide hydrolase structures. By alanine scanning, two mutants, F128A and M145A, targeted to expand the potential product-release site displayed 42 and 25 times higher activities toward α-naphthyl glycidyl ether than the wild-type enzyme, respectively. These results show great promise for structure-based rational design in improving the catalytic efficiency of industrial enzymes for bulky substrates. PMID:25331869

  10. Monitoring the apple polyphenol oxidase-modulated adduct formation of phenolic and amino compounds.

    PubMed

    Reinkensmeier, Annika; Steinbrenner, Katrin; Homann, Thomas; Bußler, Sara; Rohn, Sascha; Rawel, Hashadrai M

    2016-03-01

    Minimally processed fruit products such as smoothies are increasingly coming into demand. However, they are often combined with dairy ingredients. In this combination, phenolic compounds, polyphenoloxidases, and amino compounds could interact. In this work, a model approach is presented where apple serves as a source for a high polyphenoloxidase activity for modulating the reactions. The polyphenoloxidase activity ranged from 128 to 333nakt/mL in different apple varieties. From these, 'Braeburn' was found to provide the highest enzymatic activity. The formation and stability of resulting chromogenic conjugates was investigated. The results show that such adducts are not stable and possible degradation mechanisms leading to follow-up products formed are proposed. Finally, apple extracts were used to modify proteins and their functional properties characterized. There were retaining antioxidant properties inherent to phenolic compounds after adduct formation. Consequently, such interactions may also be utilized to improve the textural quality of food products. PMID:26471529

  11. Diet-related DNA adduct formation in relation to carcinogenesis.

    PubMed

    Hemeryck, Lieselot Y; Vanhaecke, Lynn

    2016-08-01

    The human diet contributes significantly to the initiation and promotion of carcinogenesis. It has become clear that the human diet contains several groups of natural foodborne chemicals that are at least in part responsible for the genotoxic, mutagenic, and carcinogenic potential of certain foodstuffs. Electrophilic chemicals are prone to attack nucleophilic sites in DNA, resulting in the formation of altered nucleobases, also known as DNA adducts. Since DNA adduct formation is believed to signal the onset of chemically induced carcinogenesis, the DNA adduct-inducing potential of certain foodstuffs has been investigated to gain more insight into diet-related pathways of carcinogenesis. Many studies have investigated diet-related DNA adduct formation. This review summarizes work on known or suspected dietary carcinogens and the role of DNA adduct formation in hypothesized carcinogenesis pathways. PMID:27330144

  12. Role of pyridine in Wyodak-pyridine adducts

    SciTech Connect

    David L. Wertz; Amanda Winters; Tara Craft; Jami Holloway

    2006-02-01

    When pyridine (PYR) is added to powdered Wyodak subbituminous coal (WYO), the sample is converted to a paste, and the molecular-level adduct which is formed is stable for months. After the excess pyridine has evaporated from the WYO-PYR sample, the stoichiometry of the adduct is ca. two pyridine molecules per bilayer of WYO polycyclic units; this adduct exists even after mild vacuum treatment of the sample. The pyridine molecules in this adduct appear to be located between the bilayer lamellae and to be H-bonded to either H-O or H-N moieties attached to the poly-cyclic aromatic units of WYO. An H-bonded N- - -H-X distance of 2.6 {angstrom} has been calculated from a structural model of the WYO-PYR adduct. 37 refs., 12 figs., 4 tabs.

  13. 32P-POSTLABELING DNA ADDUCT ASSAY: CIGARETTE SMOKE-INDUCED DNA ADDUCTS IN THE RESPIRATORY AND NONRESPIRATORY RAT TISSUES

    EPA Science Inventory

    An analysis of the tissue DNA adducts in rats by the sensitive 32P-postlabeling assay showed one to eight detectable DNA adducts in lung, trachea, larynx, heart and bladder of the sham controls. hronic exposure of animals to mainstream cigarette smoke showed a remarkable enhancem...

  14. Molybdenum complex with bulky chelates as a functional model for molybdenum oxidases.

    PubMed

    Leppin, Jana; Förster, Christoph; Heinze, Katja

    2014-12-01

    The novel bulky Schiff base chelate ligand [(4,5-diisopropyl-1H-pyrrole-2-yl)methylene]-4-(tert-butyl)aniline ((iPr2)HL) bearing two isopropyl groups close to the pyrrole nitrogen atom reacts with MoCl2(dme)O2 (dme = 1,2-dimethoxyethane) to give the sterically congested complex Mo(VI)((iPr2)L)2O2 ((iPr2)1; OC-6-4-4 configuration). In spite of the increased steric shielding of the [MoO2] unit (iPr2)1 is active in oxygen-atom transfer to PMe3 and PPh3 to give OPMe3 and OPPh3, respectively. Because of the increased steric bulk of the chelate ligand, formation of dinuclear complexes [Mo(V)((iPr2)L)2O]2(μ-O) ((iPr2)3) by comportionation is effectively prevented in contrast to the highly favored formation of [Mo(V)((H2)L)2O]2(μ-O) ((H2)3) with the less bulky ligand (H2)HL. Instead, the smaller PMe3 ligand coordinates to the resulting pentacoordinate intermediate Mo(IV)((iPr2)L)2O ((iPr2)5), giving the hexacoordinate complex Mo(IV)((iPr2)L)2O(PMe3) ((iPr2)2) with OC-6-3-3 configuration. The larger potential ligands PPh3 and OPPh3 are only able to weakly coordinate to (iPr2)5, giving labile and sensitive Mo(IV)((iPr2)L)2O(L) complexes ((iPr2)6, L = PPh3; (iPr2)7, L = OPPh3). Traces of water and dioxygen in solutions of (iPr2)6/(iPr2)7 yield the di(μ-oxido) complex [Mo(V)((iPr2)L)O]2(μ-O)2 ((iPr2)4) with reduced steric congestion due to dissociation of the bulky chelate ligands. According to electron paramagnetic resonance studies, the much more strongly bound small PMe3 ligand in (iPr2)2 can be slowly liberated by one-electron oxidation to Mo(V), with Ag(+) leaving a free coordination site at Mo(V). Hence, essentially pentacoordinate Mo(IV) and Mo(V) complexes are accessible as a result of the increased steric bulk. PMID:25394287

  15. Biocatalytic Reductions of Baylis - Hillman Adducts

    SciTech Connect

    A Walton; W Conerly; Y Pompeu; B Sullivan; J Stewart

    2011-12-31

    Baylis-Hillman adducts are highly useful synthetic intermediates; to enhance their value further, we sought enantiocomplementary alkene reductases to introduce chirality. Two solutions emerged: (1) a wild-type protein from Pichia stipitis (OYE 2.6), whose performance significantly outstrips that of the standard enzyme (Saccharomyces pastorianus OYE1), and (2) a series of OYE1 mutants at position 116 (Trp in the wild-type enzyme). To understand how mutations could lead to inverted enantioselectivity, we solved the X-ray crystal structure of the Trp116Ile OYE1 variant complexed with a cyclopentenone substrate. This revealed key protein-ligand interactions that control the orientation of substrate binding above the FMN cofactor.

  16. DNA adduct formation by alachlor metabolites

    SciTech Connect

    Brown, M.A.; Kimmel, E.C.; Casida, J.E.

    1988-01-01

    The extent of DNA adduct formation by alachlor (ArN(CH/sub 2/OCH/sub 3/)C(O)CH/sub 2/Cl wherein Ar is 2,6-diethylphenyl) and its metabolites is used as a guide to deduce the causal agent(s) in the carcinogenicity of this major herbicide. (/sup 14/C-phenyl)Alachlor is compared to its two metabolic cleavage products, (/sup 14/C-phenyl) 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) (ArNHC(O)CH/sub 2/Cl) and (/sup 14/C-phenyl)2,6-diethylaniline (DEA) (ArNH/sub 2/), and to (/sup 14/C-methoxy)alachlor in various in vitro and in vivo systems. Horseradish peroxidase and hydrogen peroxide activate DEA, but not CEDPA or alachlor, for formation of adducts with calf thymus DNA, which probably involves 2,6-diethylnitrosobenzene (ArNO) as an intermediate. Mouse liver microsomes and NADPH are both required to enhance the binding from each labeled preparation to calf thymus DNA; 4-fold higher labeling is observed from (/sup 14/C-methoxy)- than from (/sup 14/C-phenyl)alachlor. This 4-fold preferential DNA labeling from the /sup 14/C-methoxy compound is likewise found in the liver of mice treated intraperitoneally. Mouse liver protein and hemoglobin are also labeled, in vivo, with (/sup 14/C-phenyl)alachlor, -CDEPA and -DEA, and, as with the DNA, the labeling of these proteins is 1.5- to 2-fold higher with (/sup 14/C-methoxy)alachlor.

  17. Glottal Adduction and Subglottal Pressure in Singing.

    PubMed

    Herbst, Christian T; Hess, Markus; Müller, Frank; Švec, Jan G; Sundberg, Johan

    2015-07-01

    Previous research suggests that independent variation of vocal loudness and glottal configuration (type and degree of vocal fold adduction) does not occur in untrained speech production. This study investigated whether these factors can be varied independently in trained singing and how subglottal pressure is related to average glottal airflow, voice source properties, and sound level under these conditions. A classically trained baritone produced sustained phonations on the endoscopic vowel [i:] at pitch D4 (approximately 294 Hz), exclusively varying either (a) vocal register; (b) phonation type (from "breathy" to "pressed" via cartilaginous adduction); or (c) vocal loudness, while keeping the others constant. Phonation was documented by simultaneous recording of videokymographic, electroglottographic, airflow and voice source data, and by percutaneous measurement of relative subglottal pressure. Register shifts were clearly marked in the electroglottographic wavegram display. Compared with chest register, falsetto was produced with greater pulse amplitude of the glottal flow, H1-H2, mean airflow, and with lower maximum flow declination rate (MFDR), subglottal pressure, and sound pressure. Shifts of phonation type (breathy/flow/neutral/pressed) induced comparable systematic changes. Increase of vocal loudness resulted in increased subglottal pressure, average flow, sound pressure, MFDR, glottal flow pulse amplitude, and H1-H2. When changing either vocal register or phonation type, subglottal pressure and mean airflow showed an inverse relationship, that is, variation of glottal flow resistance. The direct relation between subglottal pressure and airflow when varying only vocal loudness demonstrated independent control of vocal loudness and glottal configuration. Achieving such independent control of phonatory control parameters would be an important target in vocal pedagogy and in voice therapy. PMID:25944295

  18. Immunodetection of Serum Albumin Adducts as Biomarkers for Organophosphorus Exposure

    PubMed Central

    Chen, Sigeng; Zhang, Jun; Lumley, Lucille

    2013-01-01

    A major challenge in organophosphate (OP) research has been the identification and utilization of reliable biomarkers for the rapid, sensitive, and efficient detection of OP exposure. Although Tyr 411 OP adducts to human serum albumin (HSA) have been suggested to be one of the most robust biomarkers in the detection of OP exposure, the analysis of HSA-OP adduct detection has been limited to techniques using mass spectrometry. Herein, we describe the procurement of two monoclonal antibodies (mAb-HSA-GD and mAb-HSA-VX) that recognized the HSA Tyr 411 adduct of soman (GD) or S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), respectively, but did not recognize nonphosphonylated HSA. We showed that mAb-HSA-GD was able to detect the HSA Tyr 411 OP adduct at a low level (i.e., human blood plasma treated with 180 nM GD) that could not be detected by mass spectrometry. mAb-HSA-GD and mAb-HSA-VX showed an extremely low-level detection of GD adducted to HSA (on the order of picograms). mAb-HSA-GD could also detect serum albumin OP adducts in blood plasma samples from different animals administered GD, including rats, guinea pigs, and monkeys. The ability of the two antibodies to selectively recognize nerve agents adducted to serum albumin suggests that these antibodies could be used to identify biomarkers of OP exposure and provide a new biologic approach to detect OP exposure in animals. PMID:23192655

  19. Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis.

    PubMed

    Agerbirk, Niels; De Nicola, Gina Rosalinda; Olsen, Carl Erik; Müller, Caroline; Iori, Renato

    2015-10-01

    Isothiocyanates form adducts with a multitude of biomolecules, and these adducts need analytical methods. Likewise, analytical methods for hydrophilic isothiocyanates are needed. We considered reaction with ammonia to form thiourea derivatives. The hydrophilic, glycosylated isothiocyanate moringin, 4-(α-L-rhamnopyranosyloxy)benzyl isothiocyanate, was efficiently derivatized to the thiourea derivative by incubation with ammonia. The hydrophobic benzyl isothiocyanate was also efficiently derivatized to the thiourea derivative. The thiourea group provided a UV absorbing chromophore, and the derivatives showed expectable sodium and hydrogen adducts in ion trap mass spectrometry and were suitable for liquid chromatography analysis. Reactive dithiocarbamate adducts constitute the major type of reactive ITC adduct expected in biological matrices. Incubation of a model dithiocarbamate with ammonia likewise resulted in conversion to the corresponding thiourea derivative, suggesting that a variety of matrix-bound reactive isothiocyanate adducts can be determined using this strategy. As an example of the application of the method, recovery of moringin and benzyl isothiocyanate applied to cabbage leaf discs was studied in simulated insect feeding assays. The majority of moringin was recovered as native isothiocyanate, but a major part of benzyl isothiocyanate was converted to reactive adducts. PMID:26342619

  20. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  1. Protein adduct formation as a molecular mechanism in neurotoxicity.

    PubMed

    Lopachin, Richard M; Decaprio, Anthony P

    2005-08-01

    Chemicals that cause nerve injury and neurological deficits are a structurally diverse group. For the majority, the corresponding molecular mechanisms of neurotoxicity are poorly understood. Many toxicants (e.g., hepatotoxicants) of other organ systems and/or their oxidative metabolites have been identified as electrophiles and will react with cellular proteins by covalently binding nucleophilic amino acid residues. Cellular toxicity occurs when adduct formation disrupts protein structure and/or function, which secondarily causes damage to submembrane organelles, metabolic pathways, or cytological processes. Since many neurotoxicants are also electrophiles, the corresponding pathophysiological mechanism might involve protein adduction. In this review, we will summarize the principles of covalent bond formation that govern reactions between xenobiotic electrophiles and biological nucleophiles. Because a neurotoxicant can form adducts with multiple nucleophilic residues on proteins, the challenge is to identify the mechanistically important adduct. In this regard, it is now recognized that despite widespread chemical adduction of tissue proteins, neurotoxicity can be mediated through binding of specific target nucleophiles in key neuronal proteins. Acrylamide and 2,5-hexanedione are prototypical neurotoxicants that presumably act through the formation of protein adducts. To illustrate both the promise and the difficulty of adduct research, these electrophilic chemicals will be discussed with respect to covalent bond formation, suspected protein sites of adduction, and proposed mechanisms of neurotoxicity. The goals of future investigations are to identify and quantify specific protein adducts that play a causal role in the generation of neurotoxicity induced by electrophilic neurotoxicants. This is a challenging but critical objective that will be facilitated by recent advances in proteomic methodologies. PMID:15901921

  2. Targeting Large Kinase Active Site with Rigid, Bulky Octahedral Ruthenium Complexes

    SciTech Connect

    Maksimoska, Jasna; Feng, Li; Harms, Klaus; Yi, Chunling; Kissil, Joseph; Marmorstein, Ronen; Meggers, Eric

    2009-09-02

    A strategy for targeting protein kinases with large ATP-binding sites by using bulky and rigid octahedral ruthenium complexes as structural scaffolds is presented. A highly potent and selective GSK3 and Pim1 half-sandwich complex NP309 was successfully converted into a PAK1 inhibitor by making use of the large octahedral compounds {Lambda}-FL172 and {Lambda}-FL411 in which the cyclopentadienyl moiety of NP309 is replaced by a chloride and sterically demanding diimine ligands. A 1.65 {angstrom}cocrystal structure of PAK1 with {Lambda}-FL172 reveals how the large coordination sphere of the ruthenium complex matches the size of the active site and serves as a yardstick to discriminate between otherwise closely related binding sites.

  3. Photoinduced and thermal denitrogenation of bulky triazoline crystals: insights into solid-to-solid transformation.

    PubMed

    de Loera, Denisse; Stopin, Antoine; Garcia-Garibay, Miguel A

    2013-05-01

    The photoinduced and thermal denitrogenation of crystalline triazolines with bulky substituents leads to the quantitative formation of aziridines in clean solid-to-solid reactions despite very large structural changes in the transition from reactant to product. Analysis of the reaction progress by powder X-ray diffraction, solid-state (13)C CPMAS NMR, solid-state FTIR spectroscopy, and thermal analysis has revealed that solid-to-solid reactions proceed either through metastable phases susceptible to amorphization or by mechanisms that involve a reconstructive phase transition that culminates in the formation of the stable phase of the product. While the key for a solid-to-solid transformation is that the reaction occurs below the eutectic temperature of the reactant and product two-component system, experimental evidence suggests that those reactions will undergo a reconstructive phase transition when they take place above the glass transition temperature. PMID:23547729

  4. London Dispersion Decisively Contributes to the Thermodynamic Stability of Bulky NHC-Coordinated Main Group Compounds.

    PubMed

    Wagner, J Philipp; Schreiner, Peter R

    2016-01-12

    We evaluated the dispersion stabilization of a series of seemingly reactive main group compounds coordinated to bulky N-heterocyclic carbene ligands. We computed the thermochemistry of hypothetical isodesmic exchange reactions of these ligands with their unsubstituted parent systems employing the B3LYP/6-311G(d,p) level of theory with and without dispersion corrections. The energy difference between these two approaches gave dispersion corrections of 30 kcal mol(-1) and more. We therefore conclude that London dispersion contributes critically to the thermodynamic stabilities of these compounds. As such, these core-shell structures undergo reactions of the reactive core as long as the dispersion stabilization is conserved. PMID:26606127

  5. Tumor regression and histologic clearance after neutron brachytherapy for bulky localized cervical carcinoma

    SciTech Connect

    Maruyama, Y.; Yoneda, J.; Van Nagell, J.R.; Donaldson, E.S.; Hanson, M.; Powell, D.; Muir, W.

    1982-12-15

    The response of bulky, advanced Stage IB and early Stage II carcinoma of the cervix to neutron brachytherapy (NT and radiotherapy) was studied using combined NT radiation) and extrafascial hysterectomy with histologic evaluation. Scheduling of neutron therapy relative to external beam photon therapy, tumor volume, tumor stage, tumor histology, and clinical tumor clearance were assessed in these studies. NT was easily combined with surgery in this study. Low stage tumors, small tumor volume and ''early'' neutron implants (scheduled within +/- one week of the start of fractionated radiation) showed more frequent histologic clearance of tumor. Long-term tumor control has been achieved and failures developed distant metastases without pelvic or local recurrence. This experience indicates that NT was effective for tumor clearance and control and represents a promising new modality for localized, advanced tumor therapy.

  6. Tumor regression and histologic clearance after neutron brachytherapy for bulky localized cervical carcinoma

    SciTech Connect

    Maruyama, Y.; Yoneda, J.; Van Nagell, J.R.; Donaldson, E.S.; Hanson, M.; Powell, D.; Muir, W.

    1982-12-15

    The response of bulky, advanced Stage 1B and early Stage II carcinoma of the cervix to neutron brachytherapy (NT and radiotherapy) was studied using combined NT radiation and extrafascial hysterectomy with histologic evaluation. Scheduling of neutron therapy relative to external beam photon therapy, tumor volume, tumor stage, tumor histology, and clinical tumor clearance were assessed in these studied. NT was easily combined with surgery in this study. Low stage tumors, small tumor volume and early neutron implants (scheduled within +/- one week of the start of fractionated radiation) showed more frequent histologic clearance of tumor. Long-term tumor control has been achieved and failures developed distance metastases without pelvic or local recurrence. This experience indicates that NT was effective for tumor clearance and control and represents and promising new modality for localized, advanced tumor therapy.

  7. Specimen histology after one or two preoperative CF-252 implants for bulky stage IB cervical cancer

    SciTech Connect

    Maruyama, Y.; van Nagell, J.R.; Feola, J.M.; Beach, J.L.; Yoneda, J.; Donaldson, E.; Gallion, H.; Rowley, K.; Powell, D.

    1987-10-01

    Using hysterectomy specimens obtained 1 month after Cf-252 neutron brachytherapy plus fractionated radiotherapy, we determined the fraction of positive and negative specimens with neutron dose for bulky Stage IB cervical cancers. The specimens obtained and studied after an initial Cf-252 insertion when the sources were newer and less decayed were more frequently negative for histological evidence of cancer than after the sources had decayed and 2 insertions were needed. After two insertions to deliver a therapeutic dose preoperatively the specimens were more frequently positive. When a larger initial dose was delivered to the tumor a larger proportion of negative specimens was noted. The size of neutron dose fraction was important to local tumor clearance and to rendering the specimens negative as well as schedule in use.

  8. Distance-Dependent Attractive and Repulsive Interactions of Bulky Alkyl Groups.

    PubMed

    Hwang, Jungwun; Li, Ping; Smith, Mark D; Shimizu, Ken D

    2016-07-01

    The stabilizing and destabilizing effects of alkyl groups on an aromatic stacking interaction were experimentally measured in solution. The size (Me, Et, iPr, and tBu) and position (meta and para) of the alkyl groups were varied in a molecular balance model system designed to measure the strength of an intramolecular aromatic interaction. Opposite stability trends were observed for alkyl substituents at different positions on the aromatic rings. At the closer meta-position, smaller groups were stabilizing and larger groups were destabilizing. Conversely, at the farther para-position, the larger alkyl groups were systematically more stabilizing with the bulky tBu group forming the strongest stabilizing interaction. X-ray crystal structures showed that the stabilizing interactions of the small meta-alkyl and large para-alkyl groups were due to their similar distances and van der Waals contact areas with the edge of opposing aromatic ring. PMID:27159670

  9. Recent developments in DNA adduct analysis by mass spectrometry: a tool for exposure biomonitoring and identification of hazard for environmental pollutants.

    PubMed

    Gavina, Jennilee M A; Yao, Chunhe; Feng, Yong-Lai

    2014-12-01

    DNA adducts represent an important category of biomarkers for detection and exposure surveillance of potential carcinogenic and genotoxic chemicals in the environment. Sensitive and specific analytical methods are required to detect and differentiate low levels of adducts from native DNA from in vivo exposure. In addition to biomonitoring of environmental pollutants, analytical methods have been developed for structural identification of adducts which provides fundamental information for determining the toxic pathway of hazardous chemicals. In order to achieve the required sensitivity, mass spectrometry has been increasingly utilized to quantify adducts at low levels as well as to obtain structural information. Furthermore, separation techniques such as chromatography and capillary electrophoresis can be coupled to mass spectrometry to increase the selectivity. This review will provide an overview of advances in detection of adducted and modified DNA by mass spectrometry with a focus on the analysis of nucleosides since 2007. Instrument advances, sample and instrument considerations, and recent applications will be summarized in the context of hazard assessment. Finally, advances in biomonitoring applying mass spectrometry will be highlighted. Most importantly, the usefulness of DNA adducts measurement and detection will be comprehensively discussed as a tool for assessment of in vitro and in vivo exposure to environmental pollutants. PMID:25159438

  10. Theoretical study of coupling p-aminothiophenol to hydroazo- and azo-adducts on Au(111).

    PubMed

    Lang, Xiufeng; Liang, Yanhong; Liu, Siyan; Zhao, Shanshan; Lau, Woon-Ming

    2016-09-01

    Aminothiophenol/Au(111) has been adopted as an exemplary model in plasmonics research, including surface-enhanced Raman spectroscopy, due to its high plasmonic-induced spectral-signal enhancement. The present work was aimed at clarifying whether aminothiophenol on Au(111) is chemically stable in the absence of any photo- and plasmonic-induced effects. Briefly, first-principles calculations were employed to track the detailed mechanism of oxidative coupling of p-aminothiophenol (PATP) to its azo-adduct with an N = N bond, i.e., p,p'-dimercaptoazobenzene (DMAB). Our results show the following: first, in the presence of adsorbed O2, PATP fractures its N-H bond and transfers the hydrogen to a nearby oxygen. This pathway is more favorable than the transfer of H to Au, but the activation barrier of 0.9 eV is still too high for the reaction to occur in the absence of thermal-, photo-, or plasmonic-activation. If this bar can be lifted, two such dehydrogenated PATP can couple themselves to form an adduct with a N-N bond, i.e., p,p'-dimercaptohydroazobenzene (DMHAB), and this reaction is exoergic with an energy barrier of 0.57 eV. Again, this step is slow in the absence of moderate thermal activation or photo-/plasmonic-activation. Finally, dehydrogenation of DMHAB gives the azo-adduct of DMAB, and this reaction is spontaneous, with no energy barrier. PMID:27488103

  11. The reversibility of the glutathionyl-quercetin adduct spreads oxidized quercetin-induced toxicity

    SciTech Connect

    Boots, Agnes W. . E-mail: a.boots@farmaco.unimaas.nl; Balk, Jiska M.; Bast, Aalt; Haenen, Guido R.M.M.

    2005-12-16

    Quercetin is one of the most prominent dietary antioxidants. During its antioxidant activity, quercetin becomes oxidized into its o-quinone/quinone methide QQ. QQ is toxic since it instantaneously reacts with thiols of, e.g., proteins. In cells, QQ will initially form an adduct with glutathione (GSH), giving GSQ. We have found that GSQ is not stable; it dissociates continuously into GSH and QQ with a half life of 2 min. Surprisingly, GSQ incubated with 2-mercapto-ethanol (MSH), a far less reactive thiol, results in the conversion of GSQ into the MSH-adduct MSQ. A similar conversion of GSQ into relatively stable protein thiol-quercetin adducts is expected. With the dithiol dihydrolipoic acid (L(SH){sub 2}), quercetin is formed out of GSQ. These results indicate that GSQ acts as transport and storage of QQ. In that way, the initially highly focussed toxicity of QQ is dispersed by the formation of GSQ that finally spreads QQ-induced toxicity, probably even over cells.

  12. Cellulose based hybrid hydroxylated adducts for polyurethane foams

    NASA Astrophysics Data System (ADS)

    De Pisapia, Laura; Verdolotti, Letizia; Di Mauro, Eduardo; Di Maio, Ernesto; Lavorgna, Marino; Iannace, Salvatore

    2012-07-01

    Hybrid flexible polyurethane foams (HPU) were synthesized by using a hybrid hydroxilated adduct (HHA) based on renewable resources. In particular the HHA was obtained by dispersing cellulose wastes in colloidal silica at room temperature, pressure and humidity. The colloidal silica was selected for its ability of modifying the cellulose structure, by inducing a certain "destructurization" of the crystalline phase, in order to allow cellulose to react with di-isocyanate for the final synthesis of the polyurethane foam. In fact, cellulose-polysilicate complexes are engaged in the reaction with the isocyanate groups. This study provides evidence of the effects of the colloidal silica on the cellulose structure, namely, a reduction of the microfiber cellulose diameter and the formation of hydrogen bonds between the polysilicate functional groups and the hydroxyl groups of the cellulose, as assessed by IR spectroscopy and solid state NMR. The HHA was added to a conventional polyol in different percentages (between 5 and 20%) to synthesize HPU in presence of catalysts, silicone surfactant and diphenylmethane diisocyanate (MDI). The mixture was expanded in a mold and cured for two hours at room temperature. Thermal analysis, optical microscopy and mechanical tests were performed on the foams. The results highlighted an improvement of thermal stability and a decrease of the cell size with respect neat polyurethane foam. Mechanical tests showed an improvement of the elastic modulus and of the damping properties with increasing HHA amount.

  13. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    DOE PAGESBeta

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T.; Pan, Chong-xian

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid report provides themore » first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.« less

  14. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    SciTech Connect

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T.; Pan, Chong-xian

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.

  15. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity.

    PubMed

    Jiang, Shuai; Pan, Amy W; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T; Pan, Chong-xian

    2015-12-21

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 10(8) nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 10(8) nucleotides per hour in carboplatin alone (p = 0.021). This rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic. PMID:26544157

  16. Relating protein adduction to gene expression changes: a systems approach

    PubMed Central

    Zhang, Bing; Shi, Zhiao; Duncan, Dexter T; Prodduturi, Naresh; Marnett, Lawrence J; Liebler, Daniel C

    2013-01-01

    Modification of proteins by reactive electrophiles such as the 4-hydroxy-2-nonenal (HNE) plays a critical role in oxidant-associated human diseases. However, little is known about protein adduction and the mechanism by which protein damage elicits adaptive effects and toxicity. We developed a systems approach for relating protein adduction to gene expression changes through the integration of protein adduction, gene expression, protein-DNA interaction, and protein-protein interaction data. Using a random walk strategy, we expanded a list of responsive transcription factors inferred from gene expression studies to upstream signaling networks, which in turn allowed overlaying protein adduction data on the network for the prediction of stress sensors and their associated regulatory mechanisms. We demonstrated the general applicability of transcription factor-based signaling network inference using 103 known pathways. Applying our workflow on gene expression and protein adduction data from HNE-treatment not only rediscovered known mechanisms of electrophile stress but also generated novel hypotheses regarding protein damage sensors. Although developed for analyzing protein adduction data, the framework can be easily adapted for phosphoproteomics and other types of protein modification data. PMID:21594272

  17. Crystal structure of a benzo[a]pyrene diol epoxide adduct in a ternary complex with a DNA polymerase.

    PubMed

    Ling, Hong; Sayer, Jane M; Plosky, Brian S; Yagi, Haruhiko; Boudsocq, François; Woodgate, Roger; Jerina, Donald M; Yang, Wei

    2004-02-24

    The first occupation-associated cancers to be recognized were the sooty warts (cancers of the scrotum) suffered by chimney sweeps in 18th century England. In the 19th century, high incidences of skin cancers were noted among fuel industry workers. By the early 20th century, malignant skin tumors were produced in laboratory animals by repeatedly painting them with coal tar. The culprit in coal tar that induces cancer was finally isolated in 1933 and determined to be benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon. A residue of fuel and tobacco combustion and frequently ingested by humans, BP is metabolized in mammals to benzo[a]pyrene diol epoxide (BPDE), which forms covalent DNA adducts and induces tumor growth. In the 70 yr since its isolation, BP has been the most studied carcinogen. Yet, there has been no crystal structure of a BPDE DNA adduct. We report here the crystal structure of a BPDE-adenine adduct base-paired with thymine at a template-primer junction and complexed with the lesion-bypass DNA polymerase Dpo4 and an incoming nucleotide. Two conformations of the BPDE, one intercalated between base pairs and another solvent-exposed in the major groove, are observed. The latter conformation, which can be stabilized by organic solvents that reduce the dielectric constant, seems more favorable for DNA replication by Dpo4. These structures also suggest a mechanism by which mutations are generated during replication of DNA containing BPDE adducts. PMID:14982998

  18. Structural and Dynamic Characterization of Polymerase κ’s Minor Groove Lesion Processing Reveals How Adduct Topology Impacts Fidelity

    PubMed Central

    2015-01-01

    DNA lesion bypass polymerases process different lesions with varying fidelities, but the structural, dynamic, and mechanistic origins of this phenomenon remain poorly understood. Human DNA polymerase κ (Polκ), a member of the Y family of lesion bypass polymerases, is specialized to bypass bulky DNA minor groove lesions in a predominantly error-free manner, by housing them in its unique gap. We have investigated the role of the unique Polκ gap and N-clasp structural features in the fidelity of minor groove lesion processing with extensive molecular modeling and molecular dynamics simulations to pinpoint their functioning in lesion bypass. Here we consider the N2-dG covalent adduct derived from the carcinogenic aromatic amine, 2-acetylaminofluorene (dG-N2-AAF), that is produced via the combustion of kerosene and diesel fuel. Our simulations reveal how the spacious gap directionally accommodates the lesion aromatic ring system as it transits through the stages of incorporation of the predominant correct partner dCTP opposite the damaged guanine, with preservation of local active site organization for nucleotidyl transfer. Furthermore, flexibility in Polκ’s N-clasp facilitates the significant misincorporation of dTTP opposite dG-N2-AAF via wobble pairing. Notably, we show that N-clasp flexibility depends on lesion topology, being markedly reduced in the case of the benzo[a]pyrene-derived major adduct to N2-dG, whose bypass by Polκ is nearly error-free. Thus, our studies reveal how Polκ’s unique structural and dynamic properties can regulate its bypass fidelity of polycyclic aromatic lesions and how the fidelity is impacted by lesion structures. PMID:25148552

  19. Insight on mendable resin made by combining Diels-Alder epoxy adducts with DGEBA

    NASA Astrophysics Data System (ADS)

    Dello Iacono, S.; Martone, A.; Filippone, G.; Acierno, D.; Zarrelli, M.; Giordano, M.; Amendola, E.

    2016-05-01

    Formation of micro-cracks is a critical problem in polymers and polymer composites during their service in structural applications. In this context, materials endowed with self-healing features would lead to the next polymers generation. In the present paper, an epoxy system integrating Diels-Alder epoxy adducts is investigated by thermal and spectroscopic analysis. The direct and retro D-A reaction have been studied by FTIR and specific absorption bands have been identified. Finally, mechanical tests have been performed on the system. The polymer is able to heal fracture and micro-cracks recovering its stiffness after a thermal treatment.

  20. Enhanced thermoelectric performance of PEDOT:PSS flexible bulky papers by treatment with secondary dopants.

    PubMed

    Mengistie, Desalegn A; Chen, Chang-Hsiao; Boopathi, Karunakara M; Pranoto, Ferry W; Li, Lain-Jong; Chu, Chih-Wei

    2015-01-14

    For inorganic thermoelectric materials, Seebeck coefficient and electrical conductivity are interdependent, and hence optimization of thermoelectric performance is challenging. In this work we show that thermoelectric performance of PEDOT:PSS can be enhanced by greatly improving its electrical conductivity in contrast to inorganic thermoelectric materials. Free-standing flexible and smooth PEDOT:PSS bulky papers were prepared using vacuum-assisted filtration. The electrical conductivity was enhanced to 640, 800, 1300, and 1900 S cm(-1) by treating PEDOT:PSS with ethylene glycol, polyethylene glycol, methanol, and formic acid, respectively. The Seebeck coefficient did not show significant variation with the tremendous conductivity enhancement being 21.4 and 20.6 μV K(-1) for ethylene glycol- and formic acid-treated papers, respectively. This is because secondary dopants, which increase electrical conductivity, do not change oxidation level of PEDOT. A maximum power factor of 80.6 μW m(-1) K(-2) was shown for formic acid-treated samples, while it was only 29.3 μW m(-1) K(-2) for ethylene glycol treatment. Coupled with intrinsically low thermal conductivity of PEDOT:PSS, ZT ≈ 0.32 was measured at room temperature using Harman method. We investigated the reasons behind the greatly enhanced thermoelectric performance. PMID:25475257

  1. Catalytic deoxydehydration of diols to olefins by using a bulky cyclopentadiene-based trioxorhenium catalyst.

    PubMed

    Raju, Suresh; Jastrzebski, Johann T B H; Lutz, Martin; Klein Gebbink, Robertus J M

    2013-09-01

    A bulky cyclopentadienyl (Cp)-based trioxorhenium compound was developed for the catalytic deoxydehydration of vicinal diols to olefins. The 1,2,4-tri(tert-butyl)cyclopentadienyl trioxorhenium (2) catalyst was synthesised in a two-step synthesis procedure. Dirhenium decacarbonyl was converted into 1,2,4-tri(tert-butyl)cyclopentadienyl tricarbonyl rhenium, followed by a biphasic oxidation with H2 O2 . These two new three-legged compounds with a 'piano-stool' configuration were fully characterised, including their single crystal X-ray structures. Deoxydehydration reaction conditions were optimised by using 2 mol % loading of 2 for the conversion of 1,2-octanediol into 1-octene. Different phosphine-based and other, more conventional, reductants were tested in combination with 2. Under optimised conditions, a variety of vicinal diols (aromatic and aliphatic, internal and terminal) were converted into olefins in good to excellent yields, and with minimal olefin isomerisation. A high turnover number of 1400 per Re was achieved for the deoxydehydration of 1,2-octanediol. Furthermore, the biomass-derived polyols (glycerol and erythritol) were converted into their corresponding olefinic products by 2 as the catalyst. PMID:23843348

  2. Synthesis and Antiplasmodial Activity of Novel Chloroquine Analogues with Bulky Basic Side Chains.

    PubMed

    Tasso, Bruno; Novelli, Federica; Tonelli, Michele; Barteselli, Anna; Basilico, Nicoletta; Parapini, Silvia; Taramelli, Donatella; Sparatore, Anna; Sparatore, Fabio

    2015-09-01

    Chloroquine is commonly used in the treatment and prevention of malaria, but Plasmodium falciparum, the main species responsible for malaria-related deaths, has developed resistance against this drug. Twenty-seven novel chloroquine (CQ) analogues characterized by a side chain terminated with a bulky basic head group, i.e., octahydro-2H-quinolizine and 1,2,3,4,5,6-hexahydro-1,5-methano-8H-pyrido[1,2-a][1,5]diazocin-8-one, were synthesized and tested for activity against D-10 (CQ-susceptible) and W-2 (CQ-resistant) strains of P. falciparum. Most compounds were found to be active against both strains with nanomolar or sub-micromolar IC50 values. Eleven compounds were found to be 2.7- to 13.4-fold more potent than CQ against the W-2 strain; among them, four cytisine derivatives appear to be of particular interest, as they combine high potency with low cytotoxicity against two human cell lines (HMEC-1 and HepG2) along with easier synthetic accessibility. Replacement of the 4-NH group with a sulfur bridge maintained antiplasmodial activity at a lower level, but produced an improvement in the resistance factor. These compounds warrant further investigation as potential drugs for use in the fight against malaria. PMID:26213237

  3. Single-Component Conductors: A Sturdy Electronic Structure Generated by Bulky Substituents.

    PubMed

    Filatre-Furcate, Agathe; Bellec, Nathalie; Jeannin, Olivier; Auban-Senzier, Pascale; Fourmigué, Marc; Íñiguez, Jorge; Canadell, Enric; Brière, Benjamin; Ta Phuoc, Vinh; Lorcy, Dominique

    2016-06-20

    While the introduction of large, bulky substituents such as tert-butyl, -SiMe3, or -Si(isopropyl)3 has been used recently to control the solid state structures and charge mobility of organic semiconductors, this crystal engineering strategy is usually avoided in molecular metals where a maximized overlap is sought. In order to investigate such steric effects in single component conductors, the ethyl group of the known [Au(Et-thiazdt)2] radical complex has been replaced by an isopropyl one to give a novel single component molecular conductor denoted [Au(iPr-thiazdt)2] (iPr-thiazdt: N-isopropyl-1,3-thiazoline-2-thione-4,5-dithiolate). It exhibits a very original stacked structure of crisscross molecules interacting laterally to give a truly three-dimensional network. This system is weakly conducting at ambient pressure (5 S·cm(-1)), and both transport and optical measurements evidence a slowly decreasing energy gap under applied pressure with a regime change around 1.5 GPa. In contrast with other conducting systems amenable to a metallic state under physical or chemical pressure, the Mott insulating state is stable here up to 4 GPa, a consequence of its peculiar electronic structure. PMID:27266960

  4. Trapping of bulky guests inside dimeric molecular capsules formed by a deep-cavity cavitand.

    PubMed

    Qiu, Yanhua; Yi, Song; Kaifer, Angel E

    2012-05-18

    The inclusion of three bulky guests, adamantyl(ferrocenylmethyl)amine (2), adamantylferrocenecarboxylamide (3), and 1,1'-bis(adamantylaminomethyl)ferrocene (4), inside dimeric molecular capsules formed by an octaacid deep-cavity cavitand (1) was investigated using (1)H NMR spectroscopy and voltammetric techniques. Guests 2 and 3 were encapsulated inside 1(2) assemblies, as evidenced by (1)H NMR spectroscopic data. Although both guests are electroactive, the supramolecular complexes 2@1(2) and 3@1(2) showed no voltammetric current responses in the potential window corresponding to the electrochemical oxidation of their ferrocenyl groups. In contrast, each of the adamantyl ends of compound 4 is bound by the cavitand 1, but the central ferrocene residue was not fully encapsulated in this supramolecular assembly and the voltammetric behavior of 4·1(2) was clearly detected. In marked contrast with the experimental results obtained with guests 2 and 3, we could not obtain any evidence for the simultaneous encapsulation of free ferrocene and adamantane inside the 1(2) capsular assembly. PMID:22524404

  5. Covalent thiol adducts arising from reactive intermediates of cocaine biotransformation.

    PubMed

    Schneider, Kevin J; DeCaprio, Anthony P

    2013-11-18

    Exposure to cocaine results in the depletion of hepatocellular glutathione and macromolecular protein binding in humans. Such cocaine-induced responses have generally been attributed to oxidative stress and reactive metabolites resulting from oxidative activation of the cocaine tropane nitrogen. However, little conclusive data exists on the mechanistic pathways leading to protein modification or the structure and specificity of cocaine-derived adduction products. We now report a previously uncharacterized route of cocaine bioactivation leading to the covalent adduction of biological thiols, including cysteine and glutathione. Incubation of cocaine with biological nucleophiles in an in vitro biotransformation system containing human liver microsomes identified a monooxygenase-mediated event leading to the oxidation of, and subsequent sulfhydryl addition to, the cocaine aryl moiety. Adduct structures were confirmed using ultra-high performance liquid chromatography coupled to high resolution, high mass accuracy mass spectrometry. Examination of assays containing transgenic bactosomes expressing single human cytochrome P450 isoforms determined the role of P450s 1A2, 2C19, and 2D6 in the oxidation process resulting in adduct formation. P450-catalyzed aryl epoxide formation and subsequent attack by free nucleophilic moieties is consistent with the resulting adduct structures, mechanisms of formation, and the empirical observation of multiple structural and stereo isomers. Analogous adduction mechanisms were maintained across all sulfhydryl-containing nucleophile models examined; N-acetylcysteine, glutathione, and a synthetic cysteine-containing hexapeptide. Predictive in silico calculations of molecular reactivity and electrophilicity/nucleophilicity were compared to the results of in vitro assay incubations in order to better understand the adduction process using the principles of hard and soft acid and base (HSAB) theory. This study elucidated a novel metabolic

  6. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases

    NASA Astrophysics Data System (ADS)

    Karmakar, Saswata; Harcourt, Emily M.; Hewings, David S.; Lovejoy, Alexander F.; Kurtz, David M.; Ehrenschwender, Thomas; Barandun, Luzi J.; Roost, Caroline; Alizadeh, Ash A.; Kool, Eric T.

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens.

  7. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases.

    PubMed

    Karmakar, Saswata; Harcourt, Emily M; Hewings, David S; Scherer, Florian; Lovejoy, Alexander F; Kurtz, David M; Ehrenschwender, Thomas; Barandun, Luzi J; Roost, Caroline; Alizadeh, Ash A; Kool, Eric T

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens. PMID:26291948

  8. PROTEIN ADDUCTS AS BIOMAKERS OF EXPOSURE TO ORGANOPHOSPHORUS COMPOUNDS

    PubMed Central

    Marsillach, Judit; Costa, Lucio G.; Furlong, Clement E.

    2013-01-01

    Exposure to organophosphorus (OP) compounds can lead to serious neurological damage or death. Following bioactivation by the liver cytochromes P450, the OP metabolites produced are potent inhibitors of serine active-site enzymes including esterases, proteases and lipases. OPs may form adducts on other cellular proteins. Blood cholinesterases (ChEs) have long served as biomarkers of OP exposure in humans. However, the enzymatic assays used for biomonitoring OP exposures have several drawbacks. A more useful approach will focus on multiple biomarkers and avoid problems with the enzymatic activity assays. OP inhibitory effects result from a covalent bond with the active-site serine of the target enzymes. The serine OP adducts become irreversible following a process referred to as aging where one alkyl group dissociates over variable lengths of time depending on the OP adduct. The OP-adducted enzyme then remains in circulation until it is degraded, allowing for a longer window of detection compared with direct analysis of OPs or their metabolites. Mass spectrometry (MS) provides a very sensitive method for identification of post-translational protein modifications. MS analyses of the percentage adduction of the active-site serine of biomarker proteins such as ChEs will eliminate the need for basal activity levels of the individual and will provide for a more accurate determination of OP exposure. MS analysis of biomarker proteins also provides information about the OP that has caused inhibition. Other useful biomarker proteins include other serine hydrolases, albumin, tubulin and transferrin. PMID:23261756

  9. Characterization of deoxyguanosine adducts from hydroquinone/benzoquinone

    SciTech Connect

    Jowa, J.; Winkel, S.; Witz, G.; Snyder, R.

    1986-03-01

    Occupational exposure to benzene has long been associated with the development of pancytopenia and leukemia. This toxicity has been attributed to the action of benzene metabolites. The authors have chosen to investigate the reaction of hydroquinone (HQ)/benzoquinone(BQ) with deoxyguanosine(dG) and DNA. (/sup 14/C)HQ was incubated with (/sup 3/H)dG in potassium phosphate buffer pH7.2 for 24 hours. Two dual labeled products were found by HPLC and presumed to be adducts. The same result was obtained when BQ was substituted in the reaction for HQ. Both adducts were found in isolated DNA from Clostridium perfringens, Micrococcus lysodeikticus, human placenta and calf thymus reacted with HO under similar conditions. One of the dG adducts was proposed to be (/sup 3/'OH) benzetheno(1,N-2)deoxyguanosine based on NMR and mass spectral results. The other adduct was characterized by a molecular weight of 339. The latter adduct was found in greater amounts than the former when HQ was reacted with denatured DNA.

  10. Conformational changes of the phenyl and naphthyl isocyanate-DNA adducts during DNA replication and by minor groove binding molecules

    PubMed Central

    Nakano, Shu-ichi; Uotani, Yuuki; Sato, Yuichi; Oka, Hirohito; Fujii, Masayuki; Sugimoto, Naoki

    2013-01-01

    DNA lesions produced by aromatic isocyanates have an extra bulky group on the nucleotide bases, with the capability of forming stacking interaction within a DNA helix. In this work, we investigated the conformation of the 2′-deoxyadenosine and 2′-deoxycytidine derivatives tethering a phenyl or naphthyl group, introduced in a DNA duplex. The chemical modification experiments using KMnO4 and 1-cyclohexyl-3 -(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate have shown that the 2′-deoxycytidine lesions form the base pair with guanine while the 2′-deoxyadenosine lesions have less ability of forming the base pair with thymine in solution. Nevertheless, the kinetic analysis shows that these DNA lesions are compatible with DNA ligase and DNA polymerase reactions, as much as natural DNA bases. We suggest that the adduct lesions have a capability of adopting dual conformations, depending on the difference in their interaction energies between stacking of the attached aromatic group and base pairing through hydrogen bonds. It is also presented that the attached aromatic groups change their orientation by interacting with the minor groove binding netropsin, distamycin and synthetic polyamide. The nucleotide derivatives would be useful for enhancing the phenotypic diversity of DNA molecules and for exploring new non-natural nucleotides. PMID:23873956

  11. Isolation, identification, and assay of [3H]-porfiromycin adducts of EMT6 mouse mammary tumor cell DNA: effects of hypoxia and dicumarol on adduct patterns.

    PubMed

    Tomasz, M; Hughes, C S; Chowdary, D; Keyes, S R; Lipman, R; Sartorelli, A C; Rockwell, S

    1991-07-01

    [3H]-(N-la-methyl) Porfiromycin (POR) was employed to detect and identify the radiolabeled mono- and bis-adducts formed in living EMT6 mouse mammary tumor cells under different conditions. To provide authentic standard adducts, calf-thymus DNA was treated with POR under reductive activation, then digested to nucleosides and POR-nucleoside adducts. The three major adducts formed were isolated by HPLC and authenticated. Two were mono-adducts, composed of deoxyguanosine linked at its N2-position to C-1 of POR and of 10-decarbamoyl POR. The third was a bis-adduct, in which POR was crosslinked to two deoxyguanosines at their N2-positions. DNA from [3H]-POR treated EMT6 cells was digested an analyzed by HPLC. DNA-associated label was located in thymidine and in two mono-adducts and one bis-adduct identical to those described above. Label in thymidine resulted from N-demethylation of POR and reincorporation of label into new thymidylate residues. Adducts were formed more abundantly in hypoxia than in air. In addition, the mono-adduct to crosslink ratios were different, approximately 1:1 and 2:1 for hypoxic and aerobic cells, respectively. The different patterns of alkylation in air and hypoxia may be related to the greater toxicity of POR in hypoxia. When cells were treated simultaneously with POR and dicumarol, adduct levels were lower, and a new, unknown adduct was observed primarily under hypoxia; these changes may be related to the altered toxicity of POR in the presence of dicumarol. The HPLC assay detected simultaneously the full array of stable mono- and bis-adducts in DNA with good sensitivity (greater than or equal to 2 x 10(6) adducts/nucleotide) and excellent reproducibility. This assay should be generally applicable to all cells and tissues when MC or POR with high specific radioactivity can be employed. PMID:1714285

  12. NMR solution structure of an N2-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: Intercalation from the minor groove with ruptured Watson-Crick base pairing

    PubMed Central

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H.; Cai, Yuqin; Rodriguez, Fabian A.; Sayer, Jane M.; Jerina, Donald M.; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2012-01-01

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the non-planar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely-studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14-position with the exocyclic amino group of guanine. Here, we present the first NMR solution structure of a DB[a,l]P-derived adduct, the 14R (+)-trans-anti-DB[a,l]P–N2-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N2-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3’-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3’-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE - DNA adduct conformation differs from: (1) the classical intercalation motif where Watson-Crick base-pairing is intact at the lesion site, and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix . The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed. PMID:23121427

  13. Conformational preferences of DNA following damage by aristolochic acids: Structural and energetic insights into the different mutagenic potential of the ALI and ALII-N(6)-dA adducts.

    PubMed

    Kathuria, Preetleen; Sharma, Purshotam; Abendong, Minette N; Wetmore, Stacey D

    2015-04-21

    Aristolochic acids (AAI and AAII), produced by the Aristolochiaceae family of plants, are classified as group I (human) carcinogens by the International Agency for Research on Cancer. These acids are metabolized in cells to yield aristolactams (ALI and ALII, respectively), which further form bulky adducts with the purine nucleobases. Specifically, the adenine lesions are more persistent in cells and have been associated with chronic renal diseases and related carcinogenesis. To understand the structural basis of the nephrotoxicity induced by AAs, the ALI-N(6)-dA and ALII-N(6)-dA lesions are systematically studied using computational methods. Density functional theory calculations indicate that the aristolactam moiety intrinsically prefers a planar conformation with respect to adenine. Nucleoside and nucleotide models suggest that the anti and syn orientations about the glycosidic bond are isoenergetic for both adducts. Molecular dynamics simulations and free energy calculations reveal that the anti base-displaced intercalated conformation is the most stable conformer for both types of AL-N(6)-dA adducted DNA, which agrees with previous experimental work on the ALII-N(6)-dA adduct and thereby validates our approach. Interestingly, this conformer differs from the dominant conformations adopted by other N6-linked adenine lesions, including those derived from polycyclic aromatic hydrocarbons. Furthermore, the second most stable syn base-displaced intercalated conformation lies closer in energy to the anti base-displaced intercalated conformation for ALI-N(6)-dA compared to ALII-N(6)-dA. This indicates that a mixture of conformations may be detectable for ALI-N(6)-dA in DNA. If this enhanced conformational flexibility of double-stranded DNA persists when bound to a lesion-bypass polymerase, this provides a possible structural explanation for the previously observed greater nephrotoxic potential for the ALI versus ALII-N(6)-dA adduct. In addition, the structural

  14. Monitoring lipase-catalyzed interesterification for bulky fat modification with FT-IR/NIR spectroscopy.

    PubMed

    Chang, Tinghong; Lai, Xuxin; Zhang, Hong; Søndergaard, Ib; Xu, Xuebing

    2005-12-28

    This work demonstrates the application of FT-IR and FT-NIR spectroscopy to monitor the enzymatic interesterification process for bulky fat modification. The reaction was conducted between palm stearin and coconut oil (70:30, w/w) with the catalysis of Lipozyme TL IM at 70 degrees C in a batch reactor. The blends and interesterified fat samples in liquid form were measured by attenuated total reflectance based FT-IR (spectra region, 1516-781 cm(-1)) and transmission mode based FT-NIR (spectra region, 5369-4752 cm(-1)) with the temperature of both controlled at 70 degrees C. The samples in solid form were also measured by reflectance-based FT-NIR (spectra regions, 7037-6039 and 5995-5612 cm(-1)) at room temperature. Calibrations of FT-IR and FT-NIR for conversion degrees (evaluated by triglyceride profile), solid fat contents (SFC), and dropping points of interesterified products were carried out by using partial least-squares regression. High correlations (r > 0.96) were obtained from cross validations of the data estimated by FT-IR, FT-NIR, and the above-mentioned conventional analytical methods, except for correlations (r = 0.90-0.95) between FT-IR and SFC profiles. Overall, FT-NIR spectroscopy coupled with transmission mode measured at 70 degrees C had the highest correlations, which also had the closest conditions to the sampled products in the process, indicating a great potential for implementation as an on-line control for monitoring the enzymatic interesterification process. PMID:16366664

  15. Coordination complexes of niobium and tantalum pentahalides with a bulky NHC ligand.

    PubMed

    Bortoluzzi, Marco; Ferretti, Eleonora; Marchetti, Fabio; Pampaloni, Guido; Zacchini, Stefano

    2016-04-28

    The 1 : 1 molar reactions of niobium and tantalum pentahalides with the monodentate NHC ligand 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (Ipr), in toluene (or benzene) at ca. 80 °C, afforded the complexes NbX5(Ipr) (X = F, ; Br, ) and TaX5(Ipr) (X = F, ; Cl, ; Br, ), in generally good yields. Complexes represent uncommon cases of stable NHC adducts of metal halides with the metal in an oxidation state higher than +4, and also rare examples of Nb-NHC and Ta-NHC bonding systems. In particular, the X-ray molecular structure determined for provides the unprecedented crystallographic characterization of a tantalum compound with a monodentate NHC ligand. DFT results indicate that the metal-carbon bond in is a purely σ one. According to NMR studies ((1)H, (13)C, (93)Nb), the formation of , , , as well as the previously communicated NbCl5(Ipr), , proceeded with the intermediacy of [MX6](-) salts, presumably due to steric reasons. On the other hand, the intermediate formation of MF6(-) in the pathways to and was not observed, according to (19)F (and (93)Nb in the case of ) NMR. DFT calculations were carried out in order to shed light on structural and mechanistic aspects, and allowed to trace possible reaction routes. PMID:26982241

  16. QUANTITATIVE AND TEMPORAL RELATIONSHIPS BETWEEN DNA ADDUCT FORMATION IN TARGET AND SURROGATE TISSUES: IMPLICATIONS FOR BIOMONITORING

    EPA Science Inventory

    DNA-carcinogen adducts offer a potential dosimeter for environmental genotoxicants reaching the exposed individual. ecause the target tissues for many chemical carcinogens are not readily accessible for monitoring adducts in humans, peripheral blood lymphocytes (PBLS) have served...

  17. Chemistry and Biology of Aflatoxin-DNA Adducts

    SciTech Connect

    Stone, Michael P.; Banerjee, Surajit; Brown, Kyle L.; Egli, Martin

    2012-03-27

    Aspergillus flavus is a fungal contaminant of stored rice, wheat, corn, and other grainstuffs, and peanuts. This is of concern to human health because it produces the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}), which is genotoxic and is implicated in the etiology of liver cancer. AFB{sub 1} is oxidized in vivo by cytochrome P450 to form aflatoxin B{sub 1} epoxide, which forms an N7-dG adduct (AFB{sub 1}-N7-dG) in DNA. The latter rearranges to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative that equilibrates between {alpha} and {beta} anomers of the deoxyribose. In DNA, both the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts intercalate above the 5'-face of the damaged guanine. Each produces G {yields} T transversions in Escherichia coli, but the AFB{sub 1}-{beta}-FAPY adduct is more mutagenic. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) provides a model for understanding error-prone bypass of the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts. It bypasses the AFB{sub 1}-N7-dG adduct, but it conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including mis-insertion of dATP, consistent with the G {yields} T mutations characteristic of AFB{sub 1} mutagenesis in E. coli. Crystallographic analyses of a series of binary and ternary complexes with the Dpo4 polymerase revealed differing orientations of the N7-C8 bond of the AFB{sub 1}-N7-dG adduct as compared to the N{sup 5}-C8 bond in the AFB{sub 1}-{beta}-FAPY adduct, and differential accommodation of the intercalated AFB{sub 1} moieties within the active site. These may modulate AFB{sub 1} lesion bypass by this polymerase.

  18. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    NASA Astrophysics Data System (ADS)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  19. Strategy for identifying unknown hemoglobin adducts using adductome LC-MS/MS data: Identification of adducts corresponding to acrylic acid, glyoxal, methylglyoxal, and 1-octen-3-one.

    PubMed

    Carlsson, Henrik; Törnqvist, Margareta

    2016-06-01

    Electrophilic compounds have the ability to form adducts with nucleophilic sites in proteins and DNA in tissues, and thereby constitute risks for toxic effects. Adductomic approaches are developed for systematic screening of adducts to DNA and blood proteins, with the aim to detect unknown internal exposures to electrophiles. In a previous adductomic screening of adducts to N-terminals in hemoglobin, using LC-MS/MS, 19 unknown adducts were detected in addition to seven previously identified adducts. The present paper describes the identification of four of these unknown adducts, as well as the strategy used to identify them. Using LC-MS data from the screening, hypotheses about adduct identities were formulated: probable precursor electrophiles with matching molecular weights were suggested based on the molecular weights of the modifications and the retention times of the analytes, in combination with comparisons of theoretical Log P calculations and databases. Reference adducts were generated by incubation of blood samples with the hypothesized precursor electrophiles. The four identified precursor electrophiles, corresponding to the observed unknown adducts, were glyoxal, methylglyoxal, acrylic acid and 1-octen-3-one. Possible origins/exposure sources and toxicological information concerning the electrophilic precursors are discussed. The identified adducts could be explored as possible biomarkers for exposure. PMID:27046699

  20. UNUSUALLY STABLE ADDUCT BETWEEN METHANOLYZED AMOXICILLIN OR AMPICILLIN AND THEIR DIKETOPIPERAZINE DERIVATIVES.

    PubMed

    Kosińska, Katarzyna; Frański, Rafał; Frańska, Magdalena

    2016-01-01

    Amoxicillin and ampicillin were subjected to methanolysis. As expected, the methanolysis products were observed by HPLC-ESI-MS. Besides these products, diketopiperazine derivatives were also detected. Additionally, unusually stable adduct formed between the products of methanolysis and diketopiperazine derivatives was also identified. Analogical adducts were detected when ethanolysis was performed instead of methanolysis. HPLC-ESI-MS analysis of the separated adducts confirmed that the adducts were composed of methanolysis products and diketopiperazine derivatives. PMID:27180422

  1. IMPROVED THIN-LAYER CHROMATOGRAPHIC SEPARATION OF 32P-POSTLABELING DNA ADDUCTS

    EPA Science Inventory

    DNA adducts represent the putative initiating event in the chemical process. 2P-Postlabeling is one of several assayswhich have been developed for the sensitive detection of DNA adducts. n integral part of the 32p-postlabeling assay is the separation of adducted nucleotides by mu...

  2. A treatment planning approach to spatially fractionated megavoltage grid therapy for bulky lung cancer

    SciTech Connect

    Costlow, Heather N.; Zhang, Hualin; Das, Indra J.

    2014-10-01

    The purpose of this study was to explore the treatment planning methods of spatially fractionated megavoltage grid therapy for treating bulky lung tumors using multileaf collimator (MLC). A total of 5 patients with lung cancer who had gross tumor volumes ranging from 277 to 635 cm{sup 3} were retrospectively chosen for this study. The tumors were from 6.5 to 9.6 cm at shortest dimension. Several techniques using either electronic compensation or intensity-modulated radiation therapy (IMRT) were used to create a variety of grid therapy plans on the Eclipse treatment planning system. The dose prescription point was calculated to the volume, and a dose of 20 Gy with 6-MV/15-MV beams was used in each plan. The dose-volume histogram (DVH) curves were obtained to evaluate dosimetric characteristics. In addition, DVH curves from a commercially available cerrobend grid collimator were also used for comparison. The linear-quadratic radiobiological response model was used to assess therapeutic ratios (TRs) and equivalent uniform doses (EUD) for all generated plans. A total of 6 different grid therapy plans were created for each patient. Overall, 4 plans had different electronic compensation techniques: Ecomps-Tubes, Ecomps-Circles, Ecomps-Squares, and Ecomps-Weave; the other 2 plans used IMRT and IMRT-Weave techniques. The DVH curves and TRs demonstrated that these MLC-based grid therapy plans can achieve dosimetric properties very similar to those of the cerrobend grid collimator. However, the MLC-based plans have larger EUDs than those with the cerrobend grid collimator. In addition, the field shaping can be performed for targets of any shape in MLC-based plans. Thus, they can deliver a more conformal dose to the targets and spare normal structures better than the cerrobend grid collimator can. The plans generated by the MLC technique demonstrated the advantage over the standard cerrobend grid collimator on accommodating targets and sparing normal structures. Overall, 6

  3. NMR at the Picomole Level of a DNA Adduct

    PubMed Central

    Kautz, Roger; Wang, Poguang; Giese, Roger W.

    2014-01-01

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the pmol level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene 5′-monophosphate (AAF-dGMP), in 1.5 μL of D2O with 10% methanol-d4, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid, and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a several-fold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample into the observed volume realizes the full theoretical mass sensitivity of a microcoil, comparable to a micro-cryo probe. With 80 ng, an NMR spectrum acquired over 40 hr showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a S/N of at least 10, despite broadening due to previously-noted effects of conformational exchange. Also a 2D TOCSY spectrum (total correlation spectroscopy) was acquired on 1.6 μg in 18 hr. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct. PMID:24028148

  4. Distortions induced in DNA by cis-platinum interstrand adducts

    SciTech Connect

    Sip, M.; Schwartz, A.; Vovelle, F.; Ptak, M.; Leng, M. )

    1992-03-10

    A 22 base pair double-stranded oligonucleotide containing a unique interstrand adduct resulting from chelation of the two guanine residues within the central sequence d(TGCT/AGCA) by a cis-platinum residue has been studied by means of gel electrophoresis, chemical probes, and molecular mechanics. The anomalously slow electrophoretic mobility of the multimers of the platinated and ligated oligomers suggests that the platinated oligonucleotide is bent. The two cytosine residues (complementary to the platinated guanines) are hyperreactive to hydroxylamine, indicating a large exposure of the two bases to the solvent. The adduct does not induce a local denaturation within the flanking sequences since the adenine residues are not reactive with diethyl pyrocarbonate. This is confirmed by the nonreactivity of the complementary T residues with osmium tetraoxide. These results and the molecular mechanics modeling suggest that the interstrand adduct bends the double helix by approximately 55{degree} toward the major groove, that the double helix conserves its average twist angle, and that the distortion induced by the adduct is localized at the platinated sequence d(GC/CG).

  5. Mass Spectrometric Analyses of Organophosphate Insecticide Oxon Protein Adducts

    PubMed Central

    Thompson, Charles M.; Prins, John M.; George, Kathleen M.

    2010-01-01

    Objective Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. Data sources and extraction We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. Data synthesis A number of OP-based insecticides share common structural elements that result in predictable OP–protein adducts. The resultant OP–protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. Conclusions MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure. PMID:20056576

  6. CARCINOGEN-DNA ADDUCTS: INTRODUCTION, LITERATURE SUMMARY, AND RECOMMENDATIONS

    EPA Science Inventory

    The report summarizes the literature concerning adducts formed by xenobiotics with DNA and/or protein and discusses their feasibility as a monitoring tool for use in exposure and risk assessment. The report is divided into three segments. The first segment provides an introductio...

  7. CANCER BIOMARKERS IN HUMAN ATHEROSCLEROTIC LESIONS: DETECTION OF DNA ADDUCTS

    EPA Science Inventory

    Since somatic mutations are suspected to contribute to the pathogenesis not only of cancer but also of atherosclerotic plaques, we measured DNA adducts in the smooth muscle layer of atherosclerotic lesions in abnormal aorta specimens taken at surgery from seven patients. NA adduc...

  8. DETERMINATION OF HEMOGLOBIN ADDUCTS IN HUMANS OCCUPATIONALLY EXPOSED TO ACRYLAMIDE

    EPA Science Inventory

    Hemoglobin (Hb) adduct determinations were used to monitor occupational exposure to acrylamide (AA) and acrylonitrile (AN). orth-one workers in a factory in the People's Republic of China who were involved in the synthesis of a AA by catalytic hydration of AN and the manufacturin...

  9. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting. (1) The chemical substance generically identified as a Mannich-based adduct (PMN P-93-66) is.... Requirements as specified in § 721.80(h). (ii) Release to water. Requirements as specified in § 721.90 (a)(4... 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  10. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting. (1) The chemical substance generically identified as a Mannich-based adduct (PMN P-93-66) is.... Requirements as specified in § 721.80(h). (ii) Release to water. Requirements as specified in § 721.90 (a)(4... 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  11. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting. (1) The chemical substance generically identified as a Mannich-based adduct (PMN P-93-66) is.... Requirements as specified in § 721.80(h). (ii) Release to water. Requirements as specified in § 721.90 (a)(4... 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  12. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting. (1) The chemical substance generically identified as a Mannich-based adduct (PMN P-93-66) is.... Requirements as specified in § 721.80(h). (ii) Release to water. Requirements as specified in § 721.90 (a)(4... 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  13. Probing myo-inositol 1-phosphate synthase with multisubstrate adducts

    PubMed Central

    Deranieh, Rania M.; Greenberg, Miriam L.; Le Calvez, Pierre-B.; Mooney, Maura C.; Migaud, Marie E.

    2015-01-01

    The synthesis of a series of carbohydrate-nucleotide hybrids, designed to be multisubstrate adducts mimicking myo-inositol 1-phosphate synthase first oxidative transition state, is reported. Their ability to inhibit the synthase has been assessed and results have been rationalised computationally to estimate their likely binding mode. PMID:23132282

  14. Bulky metallocavitands with a chiral cavity constructed by aluminum and magnesium atrane-likes: enantioselective recognition and separation of racemic alcohols.

    PubMed

    Li, Yingguo; Yu, Dawei; Dai, Zhongran; Zhang, Jinjin; Shao, Yongliang; Tang, Ning; Wu, Jincai

    2015-03-28

    Seven new type metallocavitand complexes 1–7 were synthesized via the self-assembly of aluminum and magnesium atrane-likes. The recognition of R-2-butanol from racemic 2-butanol can be achieved in the chiral cavity of metallocavitand complex 5. The crystal structure of complex 5 showed that the enantioselectivity of the center cavity for the inclusion of two 2-butanol molecules is higher than that of the groups at the outer rim, which indicates that the size-limited cavity is more sensitive to the chirality of 2-butanol. Furthermore, desorption of R-2-butanol is successful through vacuumization which afforded complex 6 and gives R-2-butanol with an enantiomeric excess (ee) value of 53(±1)%. The reaction of enantiopure H3L2, MgnBu2, and racemic 1-phenylethanol afforded complex 7. The structure of complex 7 showed that the center cavity was occupied by three H2O molecules and one molecular R-1-phenylethanol suspended in the outer rim of the metallocavitand via a hydrogen bond, which indicated that 1-phenylethanol is too bulky for the size-limited cavity. Because a certain amount of racemic 1-phenylethanol is also co-crystallized in the unit cell, the final separated 1-phenylethanol has an ee value of 33(±1)%. The host–guest mechanism for the separation is clearly determined through X-ray crystal structural analysis. PMID:25710446

  15. Ion-molecule adduct formation in tandem mass spectrometry.

    PubMed

    Alechaga, Élida; Moyano, Encarnación; Galceran, Maria Teresa

    2016-02-01

    Nowadays most LC-MS methods rely on tandem mass spectrometry not only for quantitation and confirmation of compounds by multiple reaction monitoring (MRM), but also for the identification of unknowns from their product ion spectra. However, gas-phase reactions between charged and neutral species inside the mass analyzer can occur, yielding product ions at m/z values higher than that of the precursor ion, or at m/z values difficult to explain by logical losses, which complicate mass spectral interpretation. In this work, the formation of adduct ions in the mass analyzer was studied using several mass spectrometers with different mass analyzers (ion trap, triple quadrupole, and quadrupole-Orbitrap). Heterocyclic amines (AαC, MeAαC, Trp-P-1, and Trp-P-2), photo-initiators (BP and THBP), and pharmaceuticals (phenacetin and levamisole) were selected as model compounds and infused in LCQ Classic, TSQ Quantum Ultra AM, and Q-Exactive Orbitrap (ThermoFisher Scientific) mass spectrometers using electrospray as ionization method. The generation of ion-molecule adducts depended on the compound and also on the instrument employed. Adducts with neutral organic solvents (methanol and acetonitrile) were only observed in the ion trap instrument (LCQ Classic), because of the ionization source on-axis configuration and the lack of gas-phase barriers, which allowed inertial entrance of the neutrals into the analyzer. Adduct formation (only with water) in the triple quadrupole instruments was less abundant than in the ion trap and quadrupole-Orbitrap mass spectrometers, because of the lower residence time of the reactive product ions in the mass analyzer. The moisture level of the CID and/or damper gas had a great effect in beam-like mass analyzers such as triple quadrupole, but not in trap-like mass analyzers, probably because of the long residence time that allowed adduct formation even with very low concentrations of water inside the mass spectrometer. PMID:26700446

  16. Detection of protein adduction derived from dauricine by alkaline permethylation.

    PubMed

    Xie, Honglei; Liu, Yuyang; Peng, Ying; Zhao, Dongmei; Zheng, Jiang

    2016-06-01

    Dauricine is a bisbenzylisoquinoline alkaloid derivative and has shown multiple pharmacological properties. Despite this, our previous study demonstrated that dauricine induced severe lung toxicity in experimental animals. Metabolic activation of dauricine to the corresponding quinone methide intermediate is suggested to play an important role in dauricine-induced cytotoxicity. Protein adduction derived from the reactive intermediate is considered to initiate the process of the toxicity. In the present study, we developed an alkaline permethylation- and mass spectrometry-based approach to detect dauricine-derived protein adduction. Protein samples were permethylated in the presence of NaOH and CH3I at 80 °C, followed by LC-MS/MS analysis. A thioether product was produced in the reaction. Not only does this technique quantify dauricine-derived protein adduction but also it tells the nature of the interaction between the target proteins and the reactive intermediate of dauricine. The recovery, precision, limit of detection, limit of quantity, and method detection limit were found to be 102.8 %±1.7 %, 1.89 %, 1.32 fmol/mL, 4.93 fmol/mL and 3.37 fmol/mL respectively. The surrogate recovery and surrogate RSD values were 81.5-103.0 % and 2.59 %, respectively. This analytical method has proven sensitive, selective, reliable, and feasible to assess total protein adduction derived from dauricine, and will facilitate the mechanistic investigation of dauricine and other bisbenzylisoquinoline toxicities. Graphical Abstract Alkaline permethylation of dauricine derived protein adduct. PMID:27071763

  17. Quantification of Carnosine-Aldehyde Adducts in Human Urine.

    PubMed

    da Silva Bispo, Vanderson; Di Mascio, Paolo; Medeiros, Marisa

    2014-10-01

    Lipid peroxidation generates several reactive carbonyl species, including 4-hydroxy-2-nonenal (HNE), acrolein (ACR), 4-hydroxy-2-hexenal (HHE) and malondialdehyde. One major pathwayof aldehydes detoxification is through conjugation with glutathione catalyzed by glutathione-S-transferases or, alternatively, by conjugation with endogenous histidine containing dipeptides, such as carnosine (CAR). In this study, on-line reverse-phase high-performance liquid chromatography (HPLC) separation with tandem mass spectrometry detection was utilized for the accurate quantification of CAR- ACR, CAR-HHE and CAR-HNE adducts in human urinary samples from non-smokers young adults. Standard adducts were prepared and isolated by HPLC. The results showed the presence of a new product from the reaction of CAR with ACR. This new adduct was completely characterized by HPLC/MS-MSn, 1H RMN, COSY and HSQC. The new HPLC/MS/MS methodology employing stable isotope-labeled internal standards (CAR-HHEd5 and CAR-HNEd11) was developed for adducts quantification. This methodology permits quantification of 10pmol CAR-HHE and 1pmol of CAR-ACR and CAR-HNE. Accurate determinations in human urine sample were performed and showed 4.65±1.71 to CAR-ACR, 5.13±1.76 to CAR-HHE and 5.99±3.19nmol/mg creatinine to CAR-HNE. Our results indicate that carnosine pathways can be an important detoxification route of a, ß -unsaturated aldehydes. Moreover, carnosine adducts may be useful as redox stress indicator. PMID:26461323

  18. 32P-postlabeling DNA adduct assay: cigarette smoke-induced dna adducts in the respiratory and nonrespiratory rat tissues. Book chapter

    SciTech Connect

    Gupta, R.C.; Gairola, C.G.

    1990-01-01

    An analysis of the tissue DNA adducts in rats by the sensitive (32)p-postlabeling assay showed one to eight detectable DNA adducts in lung, trachea, larynx, heart and bladder of the sham controls. Chronic exposure of animals to mainstream cigarette smoke showed a remarkable enhancement of most adducts in the lung and heart DNA. Since cigarette smoke contains several thousand chemicals and a few dozen of them are known or potential carcinogens, the difference between the DNA adducts of nasal and the other tissues may reflect the diversity of reactive constituents and their differential absorption in different tissues. In comparison to the lung DNA adducts, the adducts in nasal DNA were less hydrophobic. Identity of the predominant adducts was further investigated by comparison with several reference DNA adducts from 10 PAH and aromatic amines. Since some of these chemicals are present in cigarette smoke, the results suggest that these constituents of cigarette smoke may not be directly responsible for formation of DNA adducts in the lung and heart of the smoke-exposed animals.

  19. Detection of benzo[a]pyrene diol epoxide-DNA adducts in peripheral blood lymphocytes and antibodies to the adducts in serum from coke oven workers.

    PubMed Central

    Harris, C C; Vahakangas, K; Newman, M J; Trivers, G E; Shamsuddin, A; Sinopoli, N; Mann, D L; Wright, W E

    1985-01-01

    Coke oven workers are exposed to high levels of carcinogenic polycyclic aromatic hydrocarbons, including benzo[a]pyrene (B[a]P), and are at increased risk of lung cancer. Since B[a]P is enzymatically activated to 7 beta,8 alpha-dihydroxy(9 alpha, 10 alpha)epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (B[a]PDE) that forms adducts with DNA, the presence of these adducts was measured in DNA from peripheral blood lymphocytes by synchronous fluorescence spectrophotometry and enzyme radioimmunoassay. Approximately two-thirds of the workers had detectable levels of B[a]PDE-DNA adducts. Antibodies to the DNA adducts were also found in the serum of 27% of the workers. B[a]PDE-DNA adducts were not detectable in lymphocytes and antibodies to the adducts were not detected in sera from a control group of nonsmoking laboratory workers. DNA adducts and/or antibodies to the adducts indicate exposure to B[a]P and its metabolic activation to the carcinogenic metabolite that covalently binds to and damages DNA. Detection of adducts and antibodies to them may also be useful as internal dosimeters of the pathobiological effective doses of chemical carcinogens. PMID:2413443

  20. Chloroethyinitrosourea-derived ethano cytosine and adenine adducts are substrates for escherichia coli glycosylases excising analogous etheno adducts

    SciTech Connect

    Guliaev, Anton B.; Singer, B.; Hang, Bo

    2004-05-05

    Exocyclic ethano DNA adducts are saturated etheno ring derivatives formed mainly by therapeutic chloroethylnitrosoureas (CNUs), which are also mutagenic and carcinogenic. In this work, we report that two of the ethano adducts, 3,N{sup 4}-ethanocytosine (EC) and 1,N{sup 6}-ethanoadenine (EA), are novel substrates for the Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug) and 3-methyladenine DNA glycosylase II (AlkA), respectively. It has been shown previously that Mug excises 3,N{sup 4}-ethenocytosine ({var_epsilon}C) and AlkA releases 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using synthetic oligonucleotides containing a single ethano or etheno adduct, we found that both glycosylases had a {approx}20-fold lower excision activity toward EC or EA than that toward their structurally analogous {var_epsilon}C or {var_epsilon}A adduct. Both enzymes were capable of excising the ethano base paired with any of the four natural bases, but with varying efficiencies. The Mug activity toward EC could be stimulated by E. coli endonuclease IV and, more efficiently, by exonuclease III. Molecular dynamics (MD) simulations showed similar structural features of the etheno and ethano derivatives when present in DNA duplexes. However, also as shown by MD, the stacking interaction between the EC base and Phe 30 in the Mug active site is reduced as compared to the {var_epsilon}C base, which could account for the lower EC activity observed in this study.

  1. Human Biomonitoring of DNA Adducts by Ion Trap Multistage Mass Spectrometry.

    PubMed

    Guo, Jingshu; Turesky, Robert J

    2016-01-01

    Humans are continuously exposed to hazardous chemicals in the environment. These chemicals or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. The identification of DNA adducts is required for understanding exposure and the etiological role of a genotoxic chemical in cancer risk. The analytical chemist is confronted with a great challenge because the levels of DNA adducts generally occur at <1 adduct per 10(7) nucleotides, and the amount of tissue available for measurement is limited. Ion trap mass spectrometry has emerged as an important technique to screen for DNA adducts because of the high level sensitivity and selectivity, particularly when employing multi-stage scanning (MS(n) ). The product ion spectra provide rich structural information and corroborate the adduct identities even at trace levels in human tissues. Ion trap technology represents a significant advance in measuring DNA adducts in humans. © 2016 by John Wiley & Sons, Inc. PMID:27584705

  2. UVR Exposure Sensitizes Keratinocytes to DNA Adduct Formation

    PubMed Central

    Nair, Sudhir; Kekatpure, Vikram D.; Judson, Benjamin L.; Rifkind, Arleen B.; Granstein, Richard D.; Boyle, Jay O.; Subbaramaiah, Kotha; Guttenplan, Joseph B.; Dannenberg, Andrew J.

    2009-01-01

    Ultraviolet radiation (UVR) and exposure to tobacco smoke, a source of polycyclic aromatic hydrocarbons (PAH), have been linked to skin carcinogenesis. UVR-mediated activation of the aryl hydrocarbon receptor (AhR) stimulates the transcription of CYP1A1 and CYP1B1, which encode proteins that convert PAH to genotoxic metabolites. We determined whether UVR exposure sensitized human keratinocytes to PAH-induced DNA adduct formation. UVR exposure induced CYP1A1 and CYP1B1 in HaCaT cells, an effect that was mimicked by photooxidized tryptophan (aTRP) and FICZ, a component of aTRP. UVR exposure or pretreatment with aTRP or FICZ also sensitized cells to benzo[a]pyrene (B[a]P) induced DNA adduct formation. α-Naphthoflavone (αNF), an AhR antagonist, suppressed UVR-, aTRP- and FICZ-mediated induction of CYP1A1 and CYP1B1 and inhibited B[a]P induced DNA adduct formation. Treatment with 17-AAG, a Hsp90 inhibitor, caused a marked decrease in levels of AhR, inhibited UVR-, aTRP- and FICZ-mediated induction of CYP1A1 and CYP1B1 and blocked the sensitization of HaCaT cells to B[a]P induced DNA adduct formation. FICZ has been suggested to be a physiological ligand of the AhR that may have systemic effects. Hence, studies of FICZ were also carried out in MSK-Leuk1 cells, a model of oral leukoplakia. Pretreatment with αNF or 17-AAG blocked FICZ-mediated induction of CYP1A1 and CYP1B1, and suppressed the increased B[a]P-induced DNA adduct formation. Collectively, these results suggest that sunlight may activate AhR signaling and thereby sensitize cells to PAH-mediated DNA adduct formation. Antagonists of AhR signaling may have a role in the chemoprevention of photocarcinogenesis. PMID:19789301

  3. Proteomic analysis of adducted butyrylcholinesterase for biomonitoring organophosphorus exposures

    PubMed Central

    Marsillach, Judit; Hsieh, Edward J.; Richter, Rebecca J.; MacCoss, Michael J.; Furlong, Clement E.

    2014-01-01

    Organophosphorus (OP) compounds include a broad group of toxic chemicals such as insecticides, chemical warfare agents and antiwear agents. The liver cytochromes P450 bioactivate many OPs to potent inhibitors of serine hydrolases. Cholinesterases were the first OP targets discovered and are the most studied. They are used to monitor human exposures to OP compounds. However, the assay that is currently used has limitations. The mechanism of action of OP compounds is the inhibition of serine hydrolases by covalently modifying their active-site serine. After structural rearrangement, the complex OP inhibitor-enzyme is irreversible and will remain in circulation until the modified enzyme is degraded. Mass spectrometry is a sensitive technology for analyzing protein modifications, such as OP-adducted enzymes. These analyses also provide some information about the nature of the OP adduct. Our aim is to develop high-throughput protocols for monitoring OP exposures using mass spectrometry. PMID:23123252

  4. Smoking related carcinogen-DNA adducts in biopsy samples of human urinary bladder: Identification of N-(deoxyguanosin-8-yl)-4-aminobiphenyl as a major adduct

    SciTech Connect

    Talaska, G. Univ. of Cincinnati, OH ); Al-Juburi, A.Z.S.S. ); Kadlubar, F.F. )

    1991-06-15

    The prevalence of covalent modifications to DNA (carcinogen-DNA adducts) in 42 human urinary bladder biopsy samples was investigated by {sup 32}P-postlabeling methods, with enhancement by both nuclease P1 treatment and 1-butanol extraction. Total mean carcinogen-DNA adduct levels and the mean levels of several specific adducts were significantly elevated in DNA samples of 13 current smokers, as opposed to 9 never smokers or 20 ex-smokers (5 years abstinence). There was no significant difference between the latter two groups. Several DNA adducts enhanced by nuclease P1 treatment were chromatographically similar to putative hydrocarbon DNA adducts reported earlier for placenta and lung DNA samples obtained from cigarette smokers. Putative aromatic amine adducts were detected by 1-butanol extraction that were not present when the samples were treated with nuclease P1. One of these displayed chromatographic behavior identical to the predominant adduct induced by the human urinary bladder carcinogen, 4-aminobiphenyl, which is present in cigarette smoke. This adduct comigrated in several thin-layer chromatographic systems with a synthetic N-(deoxyguanosin-8-yl)-4-amino(2,2{prime}-{sup 3}H)biphenyl-3{prime},5{prime}-bisphosphate marker. These data reinforce an association between cigarette smoking and DNA damage and suggest a molecular basis for the initiation of human urinary bladder cancer by cigarette smoke.

  5. 2' and 3' Carboranyl uridines and their diethyl ether adducts

    DOEpatents

    Soloway, Albert H.; Barth, Rolf F.; Anisuzzaman, Abul K.; Alam, Fazlul; Tjarks, Werner

    1992-01-01

    There is disclosed a process for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. Said carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of said compounds in methods for boron neutron capture therapy in mammalian tumor cells.

  6. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    SciTech Connect

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  7. Dispersant additives derived from lactone modified amido-amine adducts

    SciTech Connect

    Gutierrez, A.; Lundberg, R.D.

    1990-10-16

    This patent describes a lactone modified dispersant additive. It comprises one adduct of a polyolefin of 300 to 10,000 number average molecular weight substituted with at least 0.8 (e.g., from about 1 to 4) dicarboxylic acid producing moieties (preferably acid or anhydride moieties) per polyolefin molecule, an amido-amine or thioamido-amine characterized by being a reaction product of at least a polyamine and an alpha, beta-unsaturated compound.

  8. Ion Pairs or Neutral Molecule Adducts? Cooperativity in Hydrogen Bonding

    ERIC Educational Resources Information Center

    DeKock, Roger L.; Schipper, Laura A.; Dykhouse, Stephanie C.; Heeringa, Lee P.; Brandsen, Benjamin M.

    2009-01-01

    We performed theoretical studies on the systems NH[subscript 3] times HF times mH[subscript 2]O, NH[subscript 3] times HCl times mH[subscript 2]O, with m = 0, 1, 2, and 6. The molecules with m = 0 form hydrogen-bonded adducts with little tendency to form an ion-pair structure. The molecule NH[subscript 3] times HCl times H[subscript 2]O cannot be…

  9. Effect of phytochemical intervention on dibenzo[a,l]pyrene-induced DNA adduct formation.

    PubMed

    Russell, Gilandra K; Gupta, Ramesh C; Vadhanam, Manicka V

    2015-04-01

    Dibenzo[a,l]pyrene (DBP) has been found to be the most potent carcinogen of the polycyclic aromatic hydrocarbons (PAHs). Primary sources for DBP in the environment are combustion of wood and coal burning, gasoline and diesel exhaust, and tires. Given the likelihood of environmental exposure to DBP and strong experimental evidence of its potency, it is likely to contribute to lung cancer development. Intervention with compounds of natural origin ("phytochemicals") is considered an effective means to prevent cancer development and favorably modulate the underlying mechanisms, including DNA adduct formation. In this study, several agents have been identified that inhibit environmental carcinogen-induced DNA adduct formation using a cell-free microsomal system. Of the ten agents tested, resveratrol (648 ± 26 adducts/10(9) nucleotides), oltipraz (1007 ± 348 adducts/10(9) nucleotides), delphinidin (1252 ± 142 adducts/10(9) nucleotides), tanshinone I (1981 ± 213 adducts/10(9) nucleotides), tanshinone IIA (2606 ± 478 adducts/10(9) nucleotides) and diindoylmethane (3643 ± 469 adducts/10(9) nucleotides) were the most effective compared to vehicle treatment (14,062 ± 1097 adducts/10(9) nucleotides). DBP is metabolized by phase I metabolizing enzymes CYP1A1, CYP1A2, and CYP1B1. DBP-induced DNA adducts can be inhibited by several mechanisms. We found that all the test agents inhibited DNA adducts by inhibiting one or more of these enzymes. Oltipraz inhibited DNA adducts entirely by inhibiting the CYP450s, while resveratrol and delphinidin inhibited DNA adducts by also interacting directly with the carcinogenic metabolite, anti-dibenzo(a,l)pyrene-11,12-dihydrodiol-13,14-epoxide. PMID:25794985

  10. Effect of phytochemical intervention on dibenzo[a,l]pyrene-induced DNA adduct formation

    PubMed Central

    Russell, Gilandra K.; Gupta, Ramesh C.; Vadhanam, Manicka V.

    2015-01-01

    Dibenzo[a,l]pyrene (DBP) has been found to be the most potent carcinogen of the polycyclic aromatic hydrocarbons (PAHs). Primary sources for DBP in the environment are combustion of wood and coal burning, gasoline and diesel exhaust, and tires. Given the likelihood of environmental exposure to DBP and strong experimental evidence of its potency, it is likely to contribute to lung cancer development. Intervention with compounds of natural origin (“phytochemicals”) is considered an effective means to prevent cancer development and favorably modulate the underlying mechanisms, including DNA adduct formation. In this study, several agents have been identified that inhibit environmental carcinogen-induced DNA adduct formation using a cell-free microsomal system. Of the ten agents tested, resveratrol (648 ± 26 adducts/109 nucleotides), oltipraz (1007 ± 348 adducts/109 nucleotides), delphinidin (1252 ± 142 adducts/109 nucleotides), tanshinone I (1981 ± 213 adducts/109 nucleotides), tanshinone IIA (2606 ± 478 adducts/109 nucleotides) and diindoylmethane (3643 ± 469 adducts/109 nucleotides) were the most effective compared to vehicle treatment (14,062 ± 1097 adducts/109 nucleotides). DBP is metabolized by phase I metabolizing enzymes CYP1A1, CYP1A2, and CYP1B1. DBP-induced DNA adducts can be inhibited by several mechanisms. We found that all the test agents inhibited DNA adducts by inhibiting one or more of these enzymes. Oltipraz inhibited DNA adducts entirely by inhibiting the CYP450s, while resveratrol and delphinidin inhibited DNA adducts by also interacting directly with the carcinogenic metabolite, anti-dibenzo(a,l)pyrene-11,12-dihydrodiol-13,14-epoxide. PMID:25794985

  11. Thermal stability of DNA adducts induced by cyanomorpholinoadriamycin in vitro.

    PubMed Central

    Cullinane, C; Phillips, D R

    1993-01-01

    The Adriamycin derivative, cyanomorpholinoadriamycin (CMA) was reacted with DNA in vitro to form apparent interstrand crosslinks. The extent of interstrand crosslink formation was monitored by a gel electrophoresis assay and maximal crosslinking of DNA was observed within 1 hr with 5 microM of drug. The interstrand crosslinks were heat labile, with a midpoint melting temperature of 70 degrees C (10 min exposure to heat) in 45% formamide. When CMA-induced adducts were detected as blockages of lambda-exonuclease, 12 blockage sites were observed with 8 being prior to 5'-GG sequences, one prior to 5'-CC, one prior to 5'-GC and 2 at unresolved combinations of these sequences. These exonuclease-detected blockages reveal the same sites of CMA-induced crosslinking as detected by in vitro transcription footprinting and primer-extension blockages on single strand DNA, where the blockages at 5'-GG and 5'-CC were identified as sites of intrastrand crosslinking and the 5'-GC blockage as a probable site of interstrand crosslinking. The thermal stability of both types of crosslink (10 min exposure to heat) ranged from 63-70 degrees C at individual sites. High levels of adduct were detected with poly (dG-dC) but not with poly (dI-dC). These results suggest adduct formation involving an aminal linkage between the 3 position of the morpholino moiety and N2 of guanine. Images PMID:8493102

  12. Structural Characterization of Hydroxyl Radical Adducts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2015-06-01

    The oxidation by the hydroxyl (OH) radical is one of the most widely studied reactions because of its central role in chemistry, biology, organic synthesis, and photocatalysis in aqueous environments, wastewater treatment, and numerous other chemical processes. Although the redox potential of OH is very high, direct electron transfer (ET) is rarely observed. If it happens, it mostly proceeds through the formation of elusive OH adduct intermediate which facilitates ET and formation of hydroxide anion. Using time resolved resonance Raman technique we structurally characterized variety of OH adducts to sulfur containing organic compounds, halide ions as well as some metal cations. The bond between oxygen of OH radical and the atom of oxidized molecule differs depending on the nature of solute that OH radical reacts with. For most of sulfur containing organics, as well as halide and pseudo-halide ions, our observation suggested that this bond has two-center three-electron character. For several metal aqua ions studied, the nature of the bond depends on type of the cation being oxidized. Discussion on spectral parameters of all studied hydroxyl radical adducts as well as the role solvent plays in their stabilization will be presented.

  13. Variants of mouse DNA polymerase κ reveal a mechanism of efficient and accurate translesion synthesis past a benzo[a]pyrene dG adduct

    PubMed Central

    Liu, Yang; Yang, Yeran; Tang, Tie-Shan; Zhang, Hui; Wang, Zhifeng; Friedberg, Errol; Yang, Wei; Guo, Caixia

    2014-01-01

    DNA polymerase κ (Polκ) is the only known Y-family DNA polymerase that bypasses the 10S (+)-trans-anti-benzo[a]pyrene diol epoxide (BPDE)-N2-deoxyguanine adducts efficiently and accurately. The unique features of Polκ, a large structure gap between the catalytic core and little finger domain and a 90-residue addition at the N terminus known as the N-clasp, may give rise to its special translesion capability. We designed and constructed two mouse Polκ variants, which have reduced gap size on both sides [Polκ Gap Mutant (PGM) 1] or one side flanking the template base (PGM2). These Polκ variants are nearly as efficient as WT in normal DNA synthesis, albeit with reduced accuracy. However, PGM1 is strongly blocked by the 10S (+)-trans-anti-BPDE-N2-dG lesion. Steady-state kinetic measurements reveal a significant reduction in efficiency of dCTP incorporation opposite the lesion by PGM1 and a moderate reduction by PGM2. Consistently, Polκ-deficient cells stably complemented with PGM1 GFP-Polκ remained hypersensitive to BPDE treatment, and complementation with WT or PGM2 GFP-Polκ restored BPDE resistance. Furthermore, deletion of the first 51 residues of the N-clasp in mouse Polκ (mPolκ52–516) leads to reduced polymerization activity, and the mutant PGM252–516 but not PGM152–516 can partially compensate the N-terminal deletion and restore the catalytic activity on normal DNA. However, neither WT nor PGM2 mPolκ52–516 retains BPDE bypass activity. We conclude that the structural gap physically accommodates the bulky aromatic adduct and the N-clasp is essential for the structural integrity and flexibility of Polκ during translesion synthesis. PMID:24449898

  14. DNA adducts and carcinogenicity of nitro-polycyclic aromatic hydrocarbons

    SciTech Connect

    Fu, P.P.; Herreno-Saenz, D.; Von Tungeln, L.S.

    1994-10-01

    We have been interested in the structure-activity relationships of nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), and have focused on the correlation of structural and electronic features with biological activities, including mutagenicity and tumorigenicity. In our studies, we have emphasized 1-, 2-, 3-, and 6-nitrobenzo[a]pyrenes (nitro-B[a]Ps) and related compounds, all of which are derived from the potent carcinogen benzo[a]pyrene. While 1-, 2-, and 3-nitro-B[a]P are potent mutagens in Salmonella, 6-nitro-B[a]P is a weak mutagen. In vitro metabolism of 1- and 3-nitro-B[a]P has been found to generate multiple pathways for mutagenic activation. The formation of the corresponding trans-7,8-dihydrodiols and 7,8,9,10-tetrahydrotetrols suggests that 1- and 3-nitro-B[a]P trans-7,8-diol-anti-9, 10--epoxides are ultimate metabolites of the parent nitro-B[a]Ps. We have isolated a DNA adduct from the reaction between 3-nitro-B[a]P trans-7,8-diol-anti-9, 10-epoxide and calf thymus DNA, and identified it as 10-(deoxyguanosin-N{sup 2}-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-3-nitro-B[a]P. The same adduct was identified from in vitro metabolism of [{sup 3}H]3-nitro-B[a]P by rat liver microsomes in the presence of calf thymus DNA. A DNA adduct of 3-nitro-B[a]P formed from reaction of N-hydroxy-3-amino-B[a]P, prepared in situ with calf thymus DNA was also isolated. This adduct was identified as 6-(deoxyguanosin-N{sup 2}-yl)-3-amino-B[a]P. The same adduct was obtained from incubating DNA with 3-nitro-B[a]P in the presence of the mammalian nitroreductase, xanthine oxidase, and hypoxanthine. 48 refs., 6 figs., 1 tab.

  15. DNA adducts of ethylene dibromide: Aspects of formation and mutagenicity

    SciTech Connect

    Cmarik, J.L.

    1991-01-01

    1,2-Dibromoethane (ethylene dibromide, EDB), a potential human carcinogen, undergoes bioactivation by the pathway of glutathione (GSH) conjugation, which generates a reactive intermediate capable of alkylating DNA. The major DNA adduct formed is S-[2-(N[sup 7]-guanyl)ethyl]GSH. This dissertation examined the bioactivation of EDB and the formation of DNA adducts. The selectivity of purified rat and human GSH S-transferases for EDB was examined in vitro. An assay was developed to measure the formation of S,S[prime]-ethylene-bis(GSH). The [alpha] class of the GSH S-transferases was responsible for the majority of EDB-GSH conjugation with both the rat and human enzymes. Human tissue samples for a victim of EDB poisoning were analyzed for S-[2-(N[sup 7]-guanyl)ethyl]GSH utilizing electrochemical detection. No adducts were detected in samples of brain, heart, or kidney. The pattern of alkylation of guanines in fragments of plasmid pBR322 DNA by S-(2-chloroethyl)GSH and related compounds was determined. Alkylation varied approximately ten-fold in intensity and was strongest in runs of guanines. Few differences were observed in the alkylation patterns generated by the different compounds tested. The spectrum of mutations caused by S-(2-chloroethyl)GSH was determined using an M13 bacteriophage forward mutation assay. The majority of mutations (70%) were G:C to A:T transitions. Participation of the N[sup 7]-guanyl adduct in the mutagenic process is strongly implicated. The sequence selectivity of alkylation in the region of M13 sequenced in the mutation assay was determined. Comparison of the sequence selectivity with the mutation spectrum revealed no obligate relationship between the extent of adduct formation and the number of mutations which resulted at different sites. Sequence context appears to exert a strong influence on the processing of lesions. These studies strongly implicate S-[2-(N[sup 7]-guanyl)-ethyl]GSH as a mutagenic lesion formed by EDB.

  16. External Beam Radiotherapy Followed by {sup 90}Y Ibritumomab Tiuxetan in Relapsed or Refractory Bulky Follicular Lymphoma

    SciTech Connect

    Burdick, Michael J.; Neumann, Donald; Pohlman, Brad; Reddy, Chandana A.; Tendulkar, Rahul D.; Macklis, Roger

    2011-03-15

    Purpose: We combined external beam radiotherapy (EBRT) with yttrium-90 ibritumomab tiuxetan ({sup 90}Y-IT) in an attempt to improve therapeutic response in patients with relapsed or refractory bulky follicular lymphoma (RRBFL). Methods and Materials: Between February 2006 and September 2007, 11 patients with RRBFL were treated with EBRT followed by {sup 90}Y-IT. Bulky disease (BD) was defined as >5 cm. EBRT was delivered to BD as 2,400 cGy in eight fractions using computed tomography (CT)-based planning. BD was contoured as the gross tumor volume. A planning margin of 1 to 2 cm was added depending on anatomical location. After recovery of complete blood counts (CBC), {sup 90}Y-IT was administered at a dose of 0.3 or 0.4 mCi/kg depending on platelet counts. Hematologic toxicity was monitored through weekly CBC. Response was measured by positron emission tomography/CT or CT 3-4 months after {sup 90}Y-IT. Results: Only 2 patients required prolonged breaks between EBRT and {sup 90}Y-IT. The median time after {sup 90}Y-IT for platelets to recover to >100,000/ml was 55 days (range, 41-128 days). Platelet counts for 1 patient, who had received 4 previous chemotherapy regimens, never reached 100,000/ml. The complete and overall responses to combined therapy as measured 3-4 months after {sup 90}Y-IT were 64%. No patients relapsed within the EBRT field. With a median follow-up of 36.1 months, 6 patients have relapsed, 2 of whom have died. Median progression-free survival was 17.5 months. Conclusions: In contrast to prior failure analysis data for RRBFL patients treated with {sup 90}Y-IT alone, a brief course of EBRT prevented relapse in sites of BD. EBRT used to pretreat bulky sites may improve clinical outcomes and potentially extend survival when combined with {sup 90}Y-IT.

  17. Low response in white blood cell DNA adducts among workers in a highly polluted cokery environment.

    PubMed

    Kuljukka, T; Savela, K; Vaaranrinta, R; Mutanen, P; Veidebaum, T; Sorsa, M; Peltonen, K

    1998-06-01

    Coke oven workers are often heavily exposed to polynuclear aromatic hydrocarbons (PAHs); this exposure has been associated with higher cancer rates among these workers. We assessed the exposure of cokery workers in an oil shale processing plant. Personal hygienic monitoring, measurement of urinary 1-hydroxypyrene (1-OHP), and analysis of PAH-DNA adducts in white blood cells (WBCs) were performed. The 32P-postlabeling method was used for adduct measurement. The mean adduct value, 1.6 adducts per 10(8) nucleotides, did not differ significantly from the control value (P = 0.098). Smokers had significantly higher adduct levels than non-smoking workers (P = 0.002). 1-OHP levels measured in post-shift samples correlated with DNA adducts found in white blood cells (WBCs). We conclude that hygienic monitoring and measurement of urinary metabolites are essential background exposure data when the biologically effective dose of chemical carcinogens is assessed. PMID:9636933

  18. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  19. Structure of adducts of isoindolo[2,1-a]benzimidazole derivatives with maleimides

    NASA Astrophysics Data System (ADS)

    Korolev, Oleksandr; Yegorova, Tatyana; Levkov, Igor; Malytskyy, Volodymyr; Shishkin, Oleg; Zubatyuk, Roman; Palamarchuk, Genadiy; Vedrenne, Marc; Baltas, Michel; Voitenko, Zoia

    2015-03-01

    The selectivity of formation and some mechanistic insights during the synthesis of substituted isoindolo[2,1-a]benzimidazoles are discussed. Furthermore, the reactions of the obtained products with maleimides were carried out. Two types rearrangement adducts together with intermediate Michael type adducts were isolated. The influence of the reaction conditions and reagents ratio is discussed. Specific spectral criteria for the identification of the Michael type adducts are indicated.

  20. Structural aspects of adducts of N-phthaloylglycine and its derivatives

    NASA Astrophysics Data System (ADS)

    Barooah, Nilotpal; Sarma, Rupam J.; Batsanov, Andrei S.; Baruah, Jubaraj B.

    2006-06-01

    N-phthaloylglycine forms 2:1 adduct with 1,3-dihydroxybenzene and 1:2 adduct with 2-aminopyrimidine. Whereas N-phthaloylglycine form salts with 2,6-diaminopyridine and with 8-hydroxyquinoline. The 1:1 adduct of N, N'-bis(glycinyl)pyromellitic diimide with dimethylsulphoxide, 2-aminopyrimidine and 4,4'-dihydroxybiphenyl are prepared and characterised. The reaction of N, N'-bis(glycinyl)pyromellitic diimide with 2,6-diaminopyridine gives corresponding salt.

  1. Uranium(III) complexes with bulky aryloxide ligands featuring metal-arene interactions and their reactivity toward nitrous oxide.

    PubMed

    Franke, Sebastian M; Tran, Ba L; Heinemann, Frank W; Hieringer, Wolfgang; Mindiola, Daniel J; Meyer, Karsten

    2013-09-16

    We report the synthesis and use of an easy-to-prepare, bulky, and robust aryloxide ligand starting from inexpensive precursor materials. Based on this aryloxide ligand, two reactive, coordinatively unsaturated U(III) complexes were prepared that are masked by a metal-arene interaction via δ-backbonding. Depending on solvent and uranium starting material, both a tetrahydrofuran (THF)-bound and Lewis-base-free U(III) precursor can easily be prepared on the multigram scale. The reaction of these trivalent uranium species with nitrous oxide, N2O, was studied and an X-ray diffraction (XRD) study on single crystals of the product revealed the formation of a five-coordinate U(V) oxo complex with two different molecular geometries, namely, square pyramidal and trigonal bipyramidal. PMID:23987649

  2. The effect of bulky groups on the electro-optic coefficient r33 of a pyridine-donor nonlinear optical chromophore

    NASA Astrophysics Data System (ADS)

    Quilty, J. W.; Thomas, D. G.; Clarke, D. J.; Breukers, R. D.

    2016-04-01

    The effect of bulky groups attached to pyridine-donor chromophores on the electro-optic coefficient r33 of host-guest polymers was measured by modulation ellipsometry. Overall, the experimental results indicated no significant beneficial effect of the bulky groups on r33 . The maximum r33 achieved was just under 6 pm/V for the plain chromophore, compared with the expected 20 pm/V based on the molecular properties. Decomposition of the chromophore absorption band revealed significant aggregation, with the monomer fraction estimated to be marginally less than 1 / 3 for all chromophores studied. We attribute the lower achieved r33 values to increased molecular aggregation.

  3. Lifetimes and stabilities of familiar explosives molecular adduct complexes during ion mobility measurements

    PubMed Central

    McKenzie, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-01-01

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailors the stability of the molecular adduct complex. TIMS flexibility to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments / low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with higher confidence levels. PMID:26153567

  4. Glutathione transferase A4-4 resists adduction by 4-hydroxynonenal☆

    PubMed Central

    Shireman, Laura M.; Kripps, Kimberly A.; Balogh, Larissa M.; Conner, Kip P.; Whittington, Dale; Atkins, William M.

    2010-01-01

    4-Hydroxy-2-trans-nonenal (HNE) is a lipid peroxidation product that contributes to the pathophysiology of several diseases with components of oxidative stress. The electrophilic nature of HNE results in covalent adduct formation with proteins, fatty acids and DNA. However, it remains unclear whether enzymes that metabolize HNE avoid inactivation by it. Glutathione transferase A4-4 (GST A4-4) plays a significant role in the elimination of HNE by conjugating it with glutathione (GSH), with catalytic activity toward HNE that is dramatically higher than the homologous GST A1-1 or distantly related GSTs. To determine whether enzymes that metabolize HNE resist its covalent adduction, the rates of adduction of these GST isoforms were compared and the functional effects of adduction on catalytic properties were determined. Although GST A4-4 and GST A1-1 have striking structural similarity, GST A4-4 was insensitive to adduction by HNE under conditions that yield modest adduction of GST A1-1 and extensive adduction of GST P1-1. Furthermore, adduction of GST P1-1 by HNE eliminated its activity toward the substrates 1-chloro- 2,4-dinitrobenzene (CDNB) and toward HNE itself. HNE effects on GST A4-4 and A1-1 were less significant. The results indicate that enzymes that metabolize HNE may have evolved structurally to resist covalent adduction by it. PMID:20836986

  5. Glutathione transferase A4-4 resists adduction by 4-hydroxynonenal.

    PubMed

    Shireman, Laura M; Kripps, Kimberly A; Balogh, Larissa M; Conner, Kip P; Whittington, Dale; Atkins, William M

    2010-12-15

    4-Hydroxy-2-trans-nonenal (HNE) is a lipid peroxidation product that contributes to the pathophysiology of several diseases with components of oxidative stress. The electrophilic nature of HNE results in covalent adduct formation with proteins, fatty acids and DNA. However, it remains unclear whether enzymes that metabolize HNE avoid inactivation by it. Glutathione transferase A4-4 (GST A4-4) plays a significant role in the elimination of HNE by conjugating it with glutathione (GSH), with catalytic activity toward HNE that is dramatically higher than the homologous GST A1-1 or distantly related GSTs. To determine whether enzymes that metabolize HNE resist its covalent adduction, the rates of adduction of these GST isoforms were compared and the functional effects of adduction on catalytic properties were determined. Although GST A4-4 and GST A1-1 have striking structural similarity, GST A4-4 was insensitive to adduction by HNE under conditions that yield modest adduction of GST A1-1 and extensive adduction of GST P1-1. Furthermore, adduction of GST P1-1 by HNE eliminated its activity toward the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and toward HNE itself. HNE effects on GST A4-4 and A1-1 were less significant. The results indicate that enzymes that metabolize HNE may have evolved structurally to resist covalent adduction by it. PMID:20836986

  6. Comparison of DNA adducts from exposure to complex mixtures in various human tissues and experimental systems

    PubMed Central

    Lewtas, Joellen; Mumford, Judy; Everson, Richard B.; Hulka, Barbara; Wilcosky, Tim; Kozumbo, Walter; Thompson, Claudia; George, Michael; Dobiáš, Lubomir; Šrám, Radim; Li, Xueming; Gallagher, Jane

    1993-01-01

    DNA adducts derived from complex mixtures of polycyclic aromatic compounds emitted from tobacco smoke are compared to industrial pollution sources (e.g., coke ovens and aluminum smelters), smoky coal burning, and urban air pollution. Exposures to coke oven emissions and smoky coal, both potent rodent skin tumor initiators and lung carcinogens in humans, result in high levels of DNA adducts compared to tobacco smoke in the in vitro calf thymus DNA model system, in cultured lymphocytes, and in the mouse skin assay. Using tobacco smoke as a model in human studies, we have compared relative DNA adduct levels detected in blood lymphocytes, placental tissue, bronchoalveolar lung lavage cells, sperm, and autopsy tissues of smokers and nonsmokers. Adduct levels in DNA isolated from smokers were highest in human heart and lung tissue with smaller but detectable differences in placental tissue and lung lavage cells. Comparison of the DNA adduct levels resulting from human exposure to different complex mixtures shows that emissions from coke ovens, aluminum smelters, and smoky coal result in higher DNA adduct levels than tobacco smoke exposure. These studies suggest that humans exposed to complex combustion mixtures will have higher DNA adduct levels in target cells (e.g., lung) as compared to nontarget cells (e.g., lymphocytes) and that the adduct levels will be dependent on the genotoxic and DNA adduct-forming potency of the mixture. ImagesFIGURE 1.FIGURE 1.FIGURE 2.FIGURE 3.FIGURE 3.FIGURE 3.FIGURE 3.FIGURE 3.FIGURE 3.FIGURE 4. PMID:8319665

  7. Detection and comparison of DNA adducts after in vitro and in vivo diesel emission exposures

    SciTech Connect

    Gallagher, J.; George, M.; Kohan, M.; Thompson, C.; Shank, T.

    1993-01-01

    Development of methodologies to evaluate certain classes of polycyclic aromatic compounds (PAC) detected in complex mixtures to which humans are exposed would greatly improve the diagnostic potential of (32)P-postlabeling analysis. Identification of DNA adduct patterns of specific exposure-related marker adducts would strengthen associations between observed DNA adducts and exposures to different environmental pollutants (e.g., kerosene, cigarette smoke, coke oven, and diesel). Diesel-modified DNA adduct patterns were compared in various in vitro and in vivo rodent model systems and then compared to DNA reactive oxidative and reductive metabolites of 1-nitropyrene. The formation of nitrated-polycyclic aromatic hydrocarbon (nitrated-PAH) DNA adducts, derived from the metabolism of diesel extract constituents, was enhanced relative to other PAH-derived DNA adducts via xanthine oxidase-catalyzed nitroreduction. These adducts were detectable only by the butanol extraction version of the postlabeling analysis. Marker adducts detected in the various test systems presented here will assist in characterizing nuclease-P1-sensitive nitrated PAH adducts in humans.

  8. Chromatographic and fluorescence spectroscopic studies of individual 7,12-dimethylbenz(a)anthracene--deoxyribonucleoside adducts

    SciTech Connect

    Moschel, R.C.; Pigott, M.A.; Costantino, N.; Dipple, A.

    1983-09-01

    Compared with standard Sephadex LH-20 column chromatography, a newly developed high pressure liquid chromatographic separation of hydrocarbon deoxyribonucleoside adducts derived from the DNA of mouse embryo cell cultures exposed to 7,12-dimethylbenz(a)anthracene (DMBA) provides markedly superior resolution. Once resolved, the fluorescence spectroscopic properties of the three major DMBA--DNA adducts indicate that the fluorescence exhibited by adducts derived from a bay region syn dihydrodiol epoxide of DMBA differs subtly from that exhibited by adducts derived from the isomeric anti dihydrodiol epoxide.

  9. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin

    SciTech Connect

    Batal, Mohamed; Boudry, Isabelle; Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Bérard, Izabel; and others

    2013-12-15

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM–DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. - Highlights: • Sulfur mustard adducts are formed in DNA after skin exposure. • DNA damage formation is an early event in the pathological process of skin burn. • The amount of SM–DNA adducts is maximal at the earliest time point investigated. • Adducts are still detected 3 weeks after exposure. • Sulfur mustard diffuses in skin especially when large doses are applied.

  10. Detection of mitomycin C-DNA adducts in vivo by 32P-postlabeling: time course for formation and removal of adducts and biochemical modulation.

    PubMed

    Warren, A J; Maccubbin, A E; Hamilton, J W

    1998-02-01

    Mitomycin C (MMC) is a DNA cross-linking agent that has been used in cancer chemotherapy for over 20 years, yet little is known either qualitatively or quantitatively about MMC-induced DNA adduct formation and repair in vivo. As an initial means of investigating this, we used a recently developed 32P-postlabeling assay to examine the formation and loss of MMC-DNA adducts in the tissues of a simple in vivo model test system, the chick embryo, following treatment with a chemotherapeutic dose of MMC. As early as 15 min after MMC treatment, four adducts could be detected in the liver which were tentatively identified as the (CpG) N2G-MMC-N2G interstrand cross-link, the bifunctionally activated MMC-N2G monoadduct, and two isomers (alpha and beta) of the monofunctionally activated MMC-N2G monoadduct. The (GpG) N2G-MMC-N2G intrastrand cross-link appears to be a poor substrate for nuclease P1 and/or T4 kinase and was not evaluable by this assay. Levels of all four detectable adducts increased substantially within the first 2 h after MMC treatment, reached maximal levels by 6 h, and decreased progressively thereafter through 24 h, although low levels of certain adducts persisted beyond 24 h. Lung and kidney had comparable levels of total MMC adducts, which were approximately 60% those of the liver, and there were no significant differences in the proportion of specific adducts among the three tissues. The interstrand cross-link represented approximately 13-14% of the total MMC adducts, which is approximately 5-fold greater than the proportion of CpG sites in the genome. In addition, the interstrand cross-link was selectively decreased after 16 h relative to the three monoadducts, suggesting preferential repair. The effect of modulating different components of the Phase I and Phase II drug metabolism on MMC adduct formation, using either glutethimide, 3,4,3',4'-tetrachlorobiphenyl, dexamethasone, buthionine sulfoximine, ethacrynic acid, or N-acetylcysteine pretreatments, was

  11. Group 13 Superacid Adducts of [PCl2N]3.

    PubMed

    Tun, Zin-Min; Heston, Amy J; Panzner, Matthew J; Scionti, Vincenzo; Medvetz, Doug A; Wright, Brian D; Johnson, Nicholas A; Li, Linlin; Wesdemiotis, Chrys; Rinaldi, Peter L; Youngs, Wiley J; Tessier, Claire A

    2016-04-01

    Irrespective of the order of the addition of reagents, the reactions of [PCl2N]3 with MX3 (MX3 = AlCl3, AlBr3, GaCl3) in the presence of water or gaseous HX give the air- and light-sensitive superacid adducts [PCl2N]3·HMX4. The reactions are quantitative when HX is used. These reactions illustrate a Lewis acid/Brønsted acid dichotomy in which Lewis acid chemistry can become Brønsted acid chemistry in the presence of adventitious water or HX. The crystal structures of all three [PCl2N]3·HMX4 adducts show that protonation weakens the two P-N bonds that flank the protonated nitrogen atom. Variable-temperature NMR studies indicate that exchange in solution occurs in [PCl2N]3·HMX4, even at lower temperatures than those for [PCl2N]3·MX3. The fragility of [PCl2N]3·HMX4 at or near room temperature and in the presence of light suggests that such adducts are not involved directly as intermediates in the high-temperature ring-opening polymerization (ROP) of [PCl2N]3 to give [PCl2N]n. Attempts to catalyze or initiate the ROP of [PCl2N]3 with the addition of [PCl2N]3·HMX4 at room temperature or at 70 °C were not successful. PMID:26974866

  12. Metabolites and DNA adduct formation from flavoenzyme-activated porfiromycin.

    PubMed

    Pan, S S; Iracki, T

    1988-08-01

    Porfiromycin was reductively metabolized by NADPH cytochrome P-450 reductase and xanthine oxidase under anaerobic conditions. The production of metabolites varied with the pH and the contents of the reaction buffer. In Tris buffer, two major metabolites were produced at pH 7.5 and above, whereas one major metabolite was produced at pH 6.5. The three major metabolites were separated and isolated by HPLC. Identification by californium-252 plasma desorption mass spectrometry showed that the two major metabolites from pH 7.5 were (trans) and (cis)-forms of 7-amino-1-hydroxyl-2-methylaminomitosene and the major metabolite from pH 6.5 was 7-amino-2-methylaminomitosene. All three major metabolites showed substitutions at the C-1 position. DNA was alkylated readily by enzyme-activated porfiromycin. Digestion of porfiromycin-alkylated DNA by DNase, snake venom phosphodiesterase, and alkaline phosphatase resulted in an insoluble nuclease-resistant fraction and a soluble fraction. The nuclease-resistant fraction reflected a high content of cross-linked adducts. Upon HPLC analysis, the solubilized fraction contained two monofunctionally linked porfiromycin adducts and a possibly cross-linked dinucleotide. The major adduct was isolated by HPLC and identified by NMR, as N2-(2'-deoxyguanosyl)-7-amino-2-methylaminomitosene. The N2 position of deoxyguanosine appeared as the major monofunctional alkylating site for DNA alkylation by porfiromycin. Thus, mitomycin C and porfiromycin (which differs from mitomycin C only by the addition of a methyl group to the aziridine nitrogen) share the same enzymatic activating mechanism that leads to the formation of the same types of metabolites and the same specificity of DNA alkylation. PMID:3412325

  13. First Crystal Structure for a Gold Carbene-Protein Adduct.

    PubMed

    Ferraro, Giarita; Gabbiani, Chiara; Merlino, Antonello

    2016-07-20

    The X-ray structure of the adduct formed in the reaction between the gold N-heterocyclic carbene compound Au(NHC)Cl (with NHC = 1-butyl-3-methyl-imidazole-2-ylidene) and the model protein thaumatin is reported here. The structure reveals binding of Au(NHC)(+) fragments to distinct protein sites. Notably, binding of the gold compound occurs at lysine side chains and at the N-terminal tail; the metal binds the protein after releasing Cl(-) ligand, but retaining NHC fragment. PMID:27364343

  14. Unraveling the Photoswitching Mechanism in Donor-Acceptor Stenhouse Adducts.

    PubMed

    Lerch, Michael M; Wezenberg, Sander J; Szymanski, Wiktor; Feringa, Ben L

    2016-05-25

    Molecular photoswitches have opened up a myriad of opportunities in applications ranging from responsive materials and control of biological function to molecular logics. Here, we show that the photoswitching mechanism of donor-acceptor Stenhouse adducts (DASA), a recently reported class of photoswitches, proceeds by photoinduced Z-E isomerization, followed by a thermal, conrotatory 4π-electrocyclization. The photogenerated intermediate is manifested by a bathochromically shifted band in the visible absorption spectrum of the DASA. The identification of the role of this intermediate reveals a key step in the photoswitching mechanism that is essential to the rational design of switching properties via structural modification. PMID:27152878

  15. Lack of Involvement of CEP Adducts in TLR Activation and in Angiogenesis

    PubMed Central

    Gounarides, John; Cobb, Jennifer S.; Zhou, Jing; Cook, Frank; Yang, Xuemei; Yin, Hong; Meredith, Erik; Rao, Chang; Huang, Qian; Xu, YongYao; Anderson, Karen; De Erkenez, Andrea; Liao, Sha-Mei; Crowley, Maura; Buchanan, Natasha; Poor, Stephen; Qiu, Yubin; Fassbender, Elizabeth; Shen, Siyuan; Woolfenden, Amber; Jensen, Amy; Cepeda, Rosemarie; Etemad-Gilbertson, Bijan; Giza, Shelby; Mogi, Muneto; Jaffee, Bruce; Azarian, Sassan

    2014-01-01

    Proteins that are post-translationally adducted with 2-(ω-carboxyethyl)pyrrole (CEP) have been proposed to play a pathogenic role in age-related macular degeneration, by inducing angiogenesis in a Toll Like Receptor 2 (TLR2)-dependent manner. We have investigated the involvement of CEP adducts in angiogenesis and TLR activation, to assess the therapeutic potential of inhibiting CEP adducts and TLR2 for ocular angiogenesis. As tool reagents, several CEP-adducted proteins and peptides were synthetically generated by published methodology and adduction was confirmed by NMR and LC-MS/MS analyses. Structural studies showed significant changes in secondary structure in CEP-adducted proteins but not the untreated proteins. Similar structural changes were also observed in the treated unadducted proteins, which were treated by the same adduction method except for one critical step required to form the CEP group. Thus some structural changes were unrelated to CEP groups and were artificially induced by the synthesis method. In biological studies, the CEP-adducted proteins and peptides failed to activate TLR2 in cell-based assays and in an in vivo TLR2-mediated retinal leukocyte infiltration model. Neither CEP adducts nor TLR agonists were able to induce angiogenesis in a tube formation assay. In vivo, treatment of animals with CEP-adducted protein had no effect on laser-induced choroidal neovascularization. Furthermore, in vivo inactivation of TLR2 by deficiency in Myeloid Differentiation factor 88 (Myd88) had no effect on abrasion-induced corneal neovascularization. Thus the CEP-TLR2 axis, which is implicated in other wound angiogenesis models, does not appear to play a pathological role in a corneal wound angiogenesis model. Collectively, our data do not support the mechanism of action of CEP adducts in TLR2-mediated angiogenesis proposed by others. PMID:25343517

  16. Dynamic and static control of the human knee joint in abduction-adduction.

    PubMed

    Zhang, L Q; Wang, G

    2001-09-01

    It is unclear whether humans can voluntarily control dynamic and static properties in knee abduction-adduction, which may be important in performing functional tasks and preventing injuries, whether the main load is about the abduction axis or not. A joint-driving device was used to perturb the knee in abduction-adduction at full knee extension under both passive (muscle relaxed) and active (muscle contracted in abduction or adduction) conditions. Dynamic control properties in knee abduction-adduction were characterized by joint stiffness, viscosity, and limb inertia, and quasi-static knee torque-angle relationship was characterized by knee abduction-adduction laxity and quasi-static stiffness (at a 20Nm moment). It was found that the subjects were capable of generating net abduction and adduction moment through differential co-contraction of muscles crossing the medial and lateral sides of the knee, which helped to reduce the abduction-adduction joint laxity (p< or =0.01) and increase stiffness (p<0.027) and viscous damping. Knee abduction laxity was significantly lower than adduction laxity (p=0.043) and the quasi-static abduction stiffness was significantly higher than adduction stiffness (p<0.001). The knee joint showed significantly higher stiffness and viscosity in abduction-adduction than their counterparts in knee flexion-extension at comparable levels of joint torque (p<0.05). Similar to dynamic flexion-extension properties, the system damping ratio remained constant over different levels of contraction, indicating simplified control tasks for the central nervous system; while the natural undamped frequency increased considerably with abduction-adduction muscle contraction, presumably making the knee a quicker system during strenuous tasks involving strong muscle contraction. PMID:11506781

  17. Covalent adducts arising from the decomposition products of lipid hydroperoxides in the presence of cytochrome C

    PubMed Central

    Williams, Michelle V.; Wishnok, John S.; Tannenbaum, Steven R.

    2008-01-01

    Polyunsaturated fatty acids can be converted to lipid hydroperoxides through non-enzymatic and enzymatic pathways. The prototypic ω-6 lipid hydroperoxide 13-hydroperoxy-octadecadienoic acid (13-HPODE) decomposes homolytically to form highly reactiveα,β-unsaturated aldehydes, such as 9,12-dioxo-10(E)-dodecenoic acid (DODE), 4-oxo-2(E)-nonenal (ONE), 4,5-epoxy-2(E)-decenal (EDE), and 4-hydroxy-2(E)-nonenal (HNE), that can form covalent adducts with DNA. Both 4-oxo-2(E)-nonenal and 4-hydroxy-2(E)-nonenal can also modify proteins to form products that can potentially serve as biomarkers of lipid hydroperoxide-mediated macromolecule damage. In this study cytochrome C was used to identify and characterize the modification sites individually for each of these aldehydes and also to determine the most abundant adduct formed following decomposition of 13-HPODE. The adducts were characterized by ESI-TOF/MS analysis of the intact proteins and by a combination of ESI-ion-trap/MSn and quadrupole-TOF/MS/MS analysis of the tryptic and chymotryptic peptides. The major adducts included an HNE-His Michael adduct on H33, EDE-Lys adducts on K7 and K8, ONE-Lys ketoamide adducts on K5, K7, and K8, an apparent ONE-Lys Michael adduct on K5, and DODE-Lys carboxyl ketoamide adducts on K86 and K87. DODE was the most reactive aldehyde toward cytochrome C. The major adduct from this reaction was analogous to the most abundant adduct resulting from the decomposition of 13-HPODE in the presence of cytochrome C. PMID:17407328

  18. Ultrasensitive isolation, identification and quantification of DNA-protein adducts by ELISA-based RADAR assay.

    PubMed

    Kiianitsa, Kostantin; Maizels, Nancy

    2014-07-01

    Enzymes that form transient DNA-protein covalent complexes are targets for several potent classes of drugs used to treat infectious disease and cancer, making it important to establish robust and rapid procedures for analysis of these complexes. We report a method for isolation of DNA-protein adducts and their identification and quantification, using techniques compatible with high-throughput screening. This method is based on the RADAR assay for DNA adducts that we previously developed (Kiianitsa and Maizels (2013) A rapid and sensitive assay for DNA-protein covalent complexes in living cells. Nucleic Acids Res., 41:e104), but incorporates three key new steps of broad applicability. (i) Silica-assisted ethanol/isopropanol precipitation ensures reproducible and efficient recovery of DNA and DNA-protein adducts at low centrifugal forces, enabling cell culture and DNA precipitation to be carried out in a single microtiter plate. (ii) Rigorous purification of DNA-protein adducts by a procedure that eliminates free proteins and free nucleic acids, generating samples suitable for detection of novel protein adducts (e.g. by mass spectroscopy). (iii) Identification and quantification of DNA-protein adducts by direct ELISA assay. The ELISA-based RADAR assay can detect Top1-DNA and Top2a-DNA adducts in human cells, and gyrase-DNA adducts in Escherichia coli. This approach will be useful for discovery and characterization of new drugs to treat infectious disease and cancer, and for development of companion diagnostics assays for individualized medicine. PMID:24914050

  19. MULTIPLE DNA ADDUCTS IN LYMPHOCYTES OF SMOKERS AND NONSMOKERS DETERMINED BY 32P-POSTLABELING ANALYSIS

    EPA Science Inventory

    Identification of DNA adducts in peripheral lymphocytes could serve as a means of monitoring human exposure to potential genotoxic agents. n this study, DNA from peripheral lymphocytes of smokers and nonsmokers was examined for adducts by the P1 nuclease 32P-postlabeling techniqu...

  20. CIGARETTE SMOKE-INDUCED DNA ADDUCTS IN THE RESPIRATORY AND NONRESPIRATORY TISSUE OF RATS

    EPA Science Inventory

    Formation of DNA adducts is regarded a- an essential initial step in the process of chemical carcinogenesis. To determine how chronic exposure to cigarette smoke affects the distribution of DNA adducts In selected respiratory and nonrespiratory tissues, we exposed male Sprague-Da...

  1. FORMATION OF HEMOGLOBIN ADDUCTS OF ACRYLAMIDE AND ITS EPOXIDE METABOLITE GLYCIDAMIDE IN THE RAT

    EPA Science Inventory

    A method was developed for the determination of hemoglobin (Hb) adducts form by the neurotoxic agent acrylamide and its mutagenic epoxide metabolite glycidamide. he method was based on simultaneous measurements of the cysteine adducts formed by these two agents by means of gas ch...

  2. Cyclooctyne [60]fullerene hexakis adducts: a globular scaffold for copper-free click chemistry.

    PubMed

    Ramos-Soriano, Javier; Reina, José J; Pérez-Sánchez, Alfonso; Illescas, Beatriz M; Rojo, Javier; Martín, Nazario

    2016-08-18

    The synthesis of a new highly symmetric hexakis adduct of C60 appended with 12 cyclooctyne moieties has been carried out. This compound has been used for the copper-free strain-promoted cycloaddition reaction to a series of azides with excellent yields. This strategy for the obtention of clicked adducts of [60]fullerene is of special interest for biological applications. PMID:27492263

  3. Significance of DNA adduct studies in animal models for cancer molecular dosimetry and risk assessment.

    PubMed Central

    Beland, F A; Poirier, M C

    1993-01-01

    To elucidate the relationship between DNA adduct formation and tumorigenesis, a number of experiments have been conducted to measure DNA adducts in target tissues from experimental animals during continuous exposure to carcinogens. With aflatoxins, aromatic amines, and polycyclic aromatic hydrocarbons, tumor induction appears to be associated with the major DNA adduct detected, whereas with N-nitrosamines the response is normally correlated with minor forms of DNA damage. During continuous carcinogen administration, steady-state adduct concentrations are generally obtained in the target tissues, and there is often a linear correlation between the carcinogen concentration and the steady-state DNA adduct level. Exceptions exist when the mechanism of activation changes or with the onset of significant toxicity. Steady-state DNA adduct levels are often linearly related to the tumorigenic response. Carcinogen-induced cell proliferation occurs when significant deviations from linearity are observed. Because DNA adducts detected in humans are chemically identical to those found in experimental animals, DNA adduct data in animals may contribute to our understanding of human cancer risk. PMID:8319658

  4. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ester with pentaerythritol. 721.3680 Section 721.3680 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  5. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ester with pentaerythritol. 721.3680 Section 721.3680 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  6. Spontaneous dehydrocoupling in peri-substituted phosphine-borane adducts.

    PubMed

    Taylor, Laurence J; Surgenor, Brian A; Wawrzyniak, Piotr; Ray, Matthew J; Cordes, David B; Slawin, Alexandra M Z; Kilian, Petr

    2016-02-01

    Bis(borane) adducts Acenap(PiPr2·BH3)(PRH·BH3) (Acenap = acenaphthene-5,6-diyl; 4a, R = Ph; 4b, R = ferrocenyl, Fc; 4c, R = H) were synthesised by the reaction of excess H3B·SMe2 with either phosphino-phosphonium salts [Acenap(PiPr2)(PR)](+)Cl(-) (1a, R = Ph; 1b, R = Fc), or bis(phosphine) Acenap(PiPr2)(PH2) (3). Bis(borane) adducts 4a-c were found to undergo dihydrogen elimination at room temperature, this spontaneous catalyst-free phosphine-borane dehydrocoupling yields BH2 bridged species Acenap(PiPr2)(μ-BH2)(PR·BH3) (5a, R = Ph; 5b, R = Fc; 5c, R = H). Thermolysis of 5c results in loss of the terminal borane moiety to afford Acenap(PiPr2)(μ-BH2)(PH) (14). Single crystal X-ray structures of 3, 4b and 5a-c are reported. PMID:26314761

  7. Turned head--adducted hip--truncal curvature syndrome.

    PubMed Central

    Hamanishi, C; Tanaka, S

    1994-01-01

    One hundred and eight neonates and infants who showed the clinical triad of a head turned to one side, adduction contracture of the hip joint on the occipital side of the turned head, and truncal curvature, which we named TAC syndrome, were studied. These cases included seven with congenital and five with late infantile dislocations of the hip joint and 14 who developed muscular torticollis. Forty one were among 7103 neonates examined by one of the authors. An epidemiological analysis confirmed the aetiology of the syndrome to be environmental. The side to which the head was turned and that of the adducted hip contracture showed a high correlation with the side of the maternal spine on which the fetus had been lying. TAC syndrome is an important asymmetrical deformity that should be kept in mind during neonatal examination, and may be aetiologically related to the unilateral dislocation of the hip joint, torticollis, and infantile scoliosis which develop after a vertex presentation. Images PMID:8048823

  8. Kinetics, mechanism and thermodynamics of bisulfite-aldehyde adduct formation

    SciTech Connect

    Olson, T.M.; Boyce, S.D.; Hoffmann, M.R.

    1986-04-01

    The kinetics and mechanism of bisulfite addition to benzaldehyde were studied at low pH in order to assess the importance of this reaction in stabilizing S(IV) in fog-, cloud-, and rainwater. Previously, the authors established that appreciable concentrations of the formaldehyde-bisulfite adduct (HMSA) are often present in fogwater. Measured HMSA concentrations in fogwater often do not fully account for observed excess S(IV) concentrations, however, so that other S(IV)-aldehyde adducts may be present. Reaction rates were determined by monitoring the disappearance of benzaldehyde by U.V. spectrophotometry under pseudo-first order conditions, (S(IV))/sub T/ >>(phi-CHO)/sub T/, in the pH range 0 - 4.4 at 25/sup 0/C. The equilibrium constant was determined by dissolving the sodium salt of the addition compound in a solution adjusted to pH 3.9, and measuring the absorbance of the equilibrated solution at 250 nm. A literature value of the extinction coefficient for benzaldehyde was used to calculate the concentration of free benzaldehyde. All solutions were prepared under an N/sub 2/ atmosphere using deoxygenated, deionized water and ionic strength was maintained at 1.0 M with sodium chloride.

  9. Quantitation of 4,4′-methylene diphenyl diisocyanate human serum albumin adducts

    PubMed Central

    Luna, Leah G.; Green, Brett J.; Zhang, Fagen; Arnold, Scott M.; Siegel, Paul D.; Bartels, Michael J.

    2016-01-01

    4,4′-Methylene diphenyl diisocyanate (herein 4,4′-MDI) is used in the production of polyurethane foams, elastomers, coatings, adhesives and the like for a wide range of commercial products. Occupational exposure to MDI levels above current airborne exposure limits can elicit immune mediated hypersensitivity reactions such as occupational asthma in sensitive individuals. To accurately determine exposure, there has been increasing interest in developing analytical methods to measure internal biomarkers of exposure to MDI. Previous investigators have reported methodologies for measuring MDI diamine metabolites and MDI-Lysine (4,4′-MDI-Lys) adducts. The purpose of this study was to develop and validate an ultra performance liquid chromatography isotope dilution tandem mass spectrometry (UPLC-ID/MS/MS) quantitation method via a signature peptide approach to enable biomonitoring of 4,4′-MDI adducted to human serum albumin (HSA) in plasma. A murine, anti-4,4′-MDI monoclonal IgM antibody was bound to magnetic beads and utilized for enrichment of the MDI adducted HSA. Following enrichment, trypsin digestion was performed to generate the expected 414 site (primary site of adduction) 4,4′-MDI-adducted HSA signature peptide that was quantified by UPLC-ID/MS/MS. An Agilent 6530 UPLC/quadrupole time of flight MS (QTOF) system was utilized for intact adducted protein analysis and an Agilent 6490 UPLC/MS/MS system operated in multiple reaction monitoring (MRM) mode was utilized for quantification of the adducted signature peptide biomarker both for in chemico and worker serum samples. Worker serum samples were initially screened utilizing the previously developed 4,4′-MDI-Lys amino acid method and results showed that 12 samples were identified as quantifiable for 4,4′-MDI-Lys adducts. The signature peptide adduct approach was applied to the 12 worker samples identified as quantifiable for 4,4′-MDI-Lys adducts. Results indicated no positive results were obtained

  10. Increasing Ubiquitin Ion Resistance to Unfolding in the Gas Phase Using Chloride Adduction: Preserving More "Native-Like" Conformations Despite Collisional Activation.

    PubMed

    Wagner, Nicole D; Kim, Doyong; Russell, David H

    2016-06-01

    Electrospray ionization (ESI) of ubiquitin from acidified (0.1%) aqueous solution produces abundant ubiquitin-chloride adduct ions, [M + nH + xCl]((n - x)+), that upon mild heating react via elimination of neutral HCl. Ion mobility collision cross section (CCS) measurements show that ubiquitin ions retaining chloride adducts exhibit CCS values similar to those of the "native-state" of the protein. Coupled with results from recent molecular dynamics (MD) simulations for the evolution of a salt-containing electrospray droplet, this study provides a more complete picture for how the presence of salts affects the evolution of protein conformers in the final stages of dehydration of the ESI process and within the instrument. PMID:27137645

  11. Chirped-Pulse and Cavity Based Fourier Transform Microwave Spectroscopy of the Methyl Lactate-Ammonia Adduct

    NASA Astrophysics Data System (ADS)

    Thomas, Javix; Sukhorukov, Oleksandr; Jaeger, Wolfgang; Xu, Yunjie

    2012-06-01

    The hydrogen bonded complex of ammonia with methyl lactate, a chiral alpha-hydroxyester, has been studied using rotational spectroscopy and high level ab initio calculations. Previous studies showed that methyl lactate can exist in a number of conformers. However, only the most stable one which has an intramolecular hydrogen bonded ring formed with its alcoholic hydroxyl and its carbonyl oxygen atom was detected experimentally An extensive ab initio search has been performed to locate all possible low energy conformers of the methyl lactate-ammonia contact pair. Five lowest energy conformers have been identified at the MP2/6-311++G(d,p) level. The lowest energy conformer favors an insertion arrangement, where ammonia is inserted into the existing intramolecular hydrogen bonded ring in the most stable methyl lactate conformer. Broadband scans for the rotational spectra of possible binary conformers have been carried out using a chirped-pulse Fourier transform microwave (FTMW) instrument. The most stable binary adduct was identified and assigned. The final frequency measurements have been done with a cavity based FTMW instrument. The spectrum observed shows complicated fine and hyperfine splitting patterns, likely due to the internal rotations of the methyl groups of methyl lactate and that of ammonia, as well as the 14N quadrupolar nucleus. The binary adduct with 15NH3 has also been studied to simplify the splitting pattern and to aid the assignments of the extensive splittings. The isotopic data and the fine and hyperfine structures will be discussed in terms of internal rotation dynamics and geometry of the hydrogen bonded adduct.

  12. DNA adducts in marine mussel and fresh water fishes living in polluted and unpolluted environments

    SciTech Connect

    Kurelec, B.; Checko, M.; Krca, S.; Garg, A.; Gupta, R.C. Baylor College of Medicine, Houston, TX )

    1988-09-01

    {sup 32}P-postlabeling analysis of DNA adducts in the digestive gland of marine mussel Mytilus galloprovincialis from polluted and unpolluted sites near Rovinj, Northern Adriatic, revealed that majority of adducts are caused by natural environmental factors rather than by man-made chemicals. The only pollutant-specific adducts were observed in a mussel exposed to seawater experimentally polluted with aminofluorene, and in a population of mussel living at a site heavily polluted with a waste waters of an oil refinery. Fresh water fish species Leuciscus cephalus, Barbus barbus, Abramis brama and Rutilus pigus virgo living in a polluted Sava River, Yugoslavia, or in its unpolluted tributary Korana River, have induced in their livers qualitatively identical and quantitatively similar DNA adducts. These DNA adducts had a species-specific patterns and their appearance was seasonally-dependent.

  13. Liquid chromatography-thermospray mass spectrometry of DNA adducts formed with mitomycin C, porfiromycin and thiotepa.

    PubMed

    Musser, S M; Pan, S S; Callery, P S

    1989-07-14

    High-performance liquid chromatography (HPLC) and thermospray mass spectrometry were combined for the analysis of DNA adducts formed from the interaction of the anticancer drugs mitomycin C, porfiromycin and thiotepa with calf thymus DNA. The adducts formed from reaction of mitomycin C and porfiromycin with DNA were separated from unmodified nucleosides by HPLC on a C18 column and identified by thermospray mass spectrometry. Thiotepa DNA adducts readily depurinated from DNA and were chromatographed and identified by thermospray liquid chromatography-mass spectrometry as the modified bases without the ribose moiety attached. The utility of thermospray mass spectrometry for the identification of microgram quantities of nucleoside adducts and depurinated base adducts of these anticancer drugs was demonstrated. PMID:2504760

  14. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II–DNA adducts

    PubMed Central

    Aparicio, Tomas; Baer, Richard; Gottesman, Max

    2016-01-01

    Repair of DNA double-strand breaks (DSBs) with complex ends poses a special challenge, as additional processing is required before DNA ligation. For example, protein–DNA adducts must be removed to allow repair by either nonhomologous end joining or homology-directed repair. Here, we investigated the processing of topoisomerase II (Top2)–DNA adducts induced by treatment with the chemotherapeutic agent etoposide. Through biochemical analysis in Xenopus laevis egg extracts, we establish that the MRN (Mre11, Rad50, and Nbs1) complex, CtIP, and BRCA1 are required for both the removal of Top2–DNA adducts and the subsequent resection of Top2-adducted DSB ends. Moreover, the interaction between CtIP and BRCA1, although dispensable for resection of endonuclease-generated DSB ends, is required for resection of Top2-adducted DSBs, as well as for cellular resistance to etoposide during genomic DNA replication. PMID:26880199

  15. Effects of Bulky Substituents of Push-Pull Porphyrins on Photovoltaic Properties of Dye-Sensitized Solar Cells.

    PubMed

    Higashino, Tomohiro; Kawamoto, Kyosuke; Sugiura, Kenichi; Fujimori, Yamato; Tsuji, Yukihiro; Kurotobi, Kei; Ito, Seigo; Imahori, Hiroshi

    2016-06-22

    To evaluate the effects of substituent bulkiness around a porphyrin core on the photovoltaic properties of porphyrin-sensitized solar cells, long alkoxy groups were introduced at the meso-phenyl group (ZnPBAT-o-C8) and the anchoring group (ZnPBAT-o-C8Cn, n = 4, 8) of an asymmetrically substituted push-pull porphyrin with double electron-donating diarylamino groups and a single electron-withdrawing carboxyphenylethynyl anchoring group. The spectroscopic and electrochemical properties of ZnPBAT-o-C8 and ZnPBAT-o-C8Cn were found to be superior to those of a push-pull porphyrin reference (YD2-o-C8), demonstrating their excellent light-harvesting and redox properties for dye-sensitized solar cells. A power conversion efficiency (η) of the ZnPBAT-o-C8-sensitized solar cell (η = 9.1%) is higher than that of the YD2-o-C8-sensitized solar cell (η = 8.6%) using iodine-based electrolyte due to the enhanced light-harvesting ability of ZnPBAT-o-C8. In contrast, the solar cells based on ZnPBAT-o-C8Cn, possessing the additional alkoxy chains in the anchoring group, revealed the lower η values of 7.3% (n = 4) and 7.0% (n = 8). Although ZnPBAT-o-C8Cn exhibited higher resistance at the TiO2-dye-electrolyte interface by virtue of the extra alkoxy chains, the reduced amount of the porphyrins on TiO2 by excessive addition of coadsorbent chenodeoxycholic acid (CDCA) for mitigating the aggregation on TiO2 resulted in the low η values. Meanwhile, the ZnPBAT-o-C8-sensitized solar cell showed the lower η value of 8.1% than the YD2-o-C8-sensitized solar cell (η = 9.8%) using cobalt-based electrolyte. The smaller η value of the ZnPBAT-o-C8-sensitized solar cell may be attributed to the insufficient blocking effect of the bulky substituents of ZnPBAT-o-C8 under the cobalt-based electrolyte conditions. Overall, the alkoxy chain length and substitution position around the porphyrin core are important factors to affect the cell performance. PMID:27267428

  16. DNA adducts as a measure of lung cancer risk in humans exposed to polycyclic aromatic hydrocarbons.

    PubMed Central

    Kriek, E; Van Schooten, F J; Hillebrand, M J; Van Leeuwen, F E; Den Engelse, L; De Looff, A J; Dijkmans, A P

    1993-01-01

    Workers in the coking, foundry, and aluminum industry can be exposed to high concentrations of polycyclic aromatic hydrocarbons (PAHs) and are at increased risk for lung cancer, as are cigarette smokers. In recent years several studies on workers in the foundry and coking industries have been reported. In these studies, white blood cell(WBC) DNA was used for analysis of PAH-DNA adducts. Theoretically, DNA adduct formation is a more relevant biological parameter for assessing exposure risk than PAH in the work atmosphere, or the amount of a metabolite in the urine, because adduct levels reflect that part of the dose that escapes detoxification and binds to DNA. We analyzed WBC DNA from coke-oven workers and from workers in an aluminum production plant and demonstrated the presence of PAH-DNA adducts. Forty-seven percent of the coke-oven workers had detectable levels of PAH-DNA adducts in their WBC compared with 27% of the controls (p < 0.05), measured with ELISA. In both groups, smokers had significantly higher levels of PAH-DNA adducts than did nonsmokers. In the aluminum workers, no PAH-DNA adducts were detected by ELISA, although the benzo[a]pyrene concentrations in the work atmosphere were comparable to those of the coke-oven workers. The more sensitive 32P-postlabeling assay showed the presence of PAH-DNA adducts in 91% of the aluminum workers. There was no correlation of WBC adduct levels with the concentration of PAH in the work atmosphere. Recently we showed that total PAH-DNA adduct levels in WBC from lung cancer patients were much higher than those generally found in healthy smokers.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8319662

  17. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    SciTech Connect

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7{beta}, 8{alpha}-dihydoxy-9{alpha}, l0{alpha}-epoxy-7,8,9, 10-tetrahydrobenzo[{alpha}]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, ({minus})-trans-, (+)-cis- and ({minus})-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( {approximately} 25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant {pi}-{pi} stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G{sub 2} or G{sub 3} (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N{sup 2}-dG in DNA isolated from the skin of mice treated topically with benzo[{alpha}]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N{sup 2}-dG.

  18. Depurinating estrogen-DNA adducts, generators of cancer initiation: their minimization leads to cancer prevention.

    PubMed

    Cavalieri, Ercole L; Rogan, Eleanor G

    2016-03-01

    Estrogens can initiate cancer by reacting with DNA. Specific metabolites of endogenous estrogens, the catechol estrogen-3,4-quinones, react with DNA to form depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating mutations that can lead to the initiation of cancer. A variety of endogenous and exogenous factors can disrupt estrogen homeostasis, which is the normal balance between estrogen activating and protective enzymes. In fact, if estrogen metabolism becomes unbalanced and generates excessive catechol estrogen 3,4-quinones, formation of depurinating estrogen-DNA adducts increases and the risk of initiating cancer is greater. The levels of depurinating estrogen-DNA adducts are high in women diagnosed with breast cancer and those at high risk for the disease. High levels of depurinating estrogen-DNA adducts before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Women with thyroid or ovarian cancer also have high levels of estrogen-DNA adducts, as do men with prostate cancer or non-Hodgkin lymphoma. Depurinating estrogen-DNA adducts are initiators of many prevalent types of human cancer. These findings and other discoveries led to the recognition that reducing the levels of estrogen-DNA adducts could prevent the initiation of human cancer. The dietary supplements N-acetylcysteine and resveratrol inhibit formation of estrogen-DNA adducts in cultured human breast cells and in women. These results suggest that the two supplements offer an approach to reducing the risk of developing various prevalent types of human cancer. Graphical abstract Major metabolic pathway in cancer initiation by estrogens. PMID:26979321

  19. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  20. (32)P-POSTLABELING ANALYSIS OF DNA ADDUCTS OF TWO NITRATED POLYCYCLIC AROMATIC HYDROCARBONS IN RABBIT TRACHEAL EPITHELIAL CELLS

    EPA Science Inventory

    The 1-nitropyrene (1-NPP and 3-nitrofluoranthene (3-NF) adducts have been analyzed by (32)P-postlabeling and with 1-NP have been compared to the total number of adducts estimated from (14)C binding in rabbit trachael epithelial (RTE) DNA samples. One adduct spot, by (32)P-postlab...

  1. ON BENZO[A]PYRENE DERIVED DNA ADDUCTS FORMED IN LUNG TISSUE OF MICE

    EPA Science Inventory

    On Benzo [a] pyrene Derived DNA Adducts Formed in Lung Tissue of Mice
    The previously identified major DNA adducts of benzo[a]pyrene (BP) in vitro and in vivo are the stable and unstable adducts formed by reaction of the bay-region diol epoxide of BP (BPDE) and BP radical catio...

  2. IR spectra and structure of 4-hydroxybenzylidenemalononitrile, its oxyanion, cyanide adduct and adduct-oxyanion: experimental and ab initio studies

    NASA Astrophysics Data System (ADS)

    Velcheva, Evelina A.; Binev, Yuri I.; Petrova, Milena J.

    1999-01-01

    The structures of 4-hydroxybenzylidenemalononitrile (HO-C 6H 4-CHC(CN) 2, I), its oxyanion ( -O-C 6H 4-CHC(CN) 2, II), cyanide adduct (HO-C 6H 4-CH(CN)-C¯(CN) 2, III) and adduct-oxyanion ( -O-C 6H 4-CH(CN)-C¯(CN) 2, IV) have been studied by means of both quantitative IR spectra and ab initio force field calculations. The conversion of ( I) into the anionic species causes strong changes in the IR spectra: decreases in the ν CN frequency down to 110 cm -1, up to 7-fold increases in the ACN intensity, up to 58 cm -1 ν CN splitting, etc. The charge analysis shows that the intramolecular charge transfer between the electronegative [C(CN) 2] and electropositive fragments of ( I) is 0.34 e -. Nearly 0.6 e - of the oxyanionic charge of ( II) remains within the oxyphenylene fragment and nearly 0.5 e - of the carbanionic charge of ( III) delocalizes within the dicyanomethide fragment. The two charges in ( IV) are spread over the whole species.

  3. Tuning the self-assembly of the bioactive dipeptide L-carnosine by incorporation of a bulky aromatic substituent.

    PubMed

    Castelletto, V; Cheng, G; Greenland, B W; Hamley, I W; Harris, P J F

    2011-03-15

    The dipeptide L-carnosine has a number of important biological properties. Here, we explore the effect of attachment of a bulky hydrophobic aromatic unit, Fmoc [N-(fluorenyl-9-methoxycarbonyl)] on the self-assembly of Fmoc-L-carnosine, i.e., Fmoc-β-alanine-histidine (Fmoc-βAH). It is shown that Fmoc-βAH forms well-defined amyloid fibrils containing β sheets above a critical aggregation concentration, which is determined from pyrene and ThT fluorescence experiments. Twisted fibrils were imaged by cryogenic transmission electron microscopy. The zinc-binding properties of Fmoc-βAH were investigated by FTIR and Raman spectroscopy since the formation of metal ion complexes with the histidine residue in carnosine is well-known, and important to its biological roles. Observed changes in the spectra may reflect differences in the packing of the Fmoc-dipeptides due to electrostatic interactions. Cryo-TEM shows that this leads to changes in the fibril morphology. Hydrogelation is also induced by addition of an appropriate concentration of zinc ions. Our work shows that the Fmoc motif can be employed to drive the self-assembly of carnosine into amyloid fibrils. PMID:21338121

  4. DNA adducts in human placenta as related to air pollution and to GSTM1 genotype.

    PubMed

    Topinka, J; Binková, B; Mracková, G; Stávková, Z; Benes, I; Dejmek, J; Lenícek, J; Srám, R J

    1997-04-24

    DNA adducts in human placenta have been studied in relation to metabolic genotype for glutathione S-transferase M1 (GSTM1) in 98 mothers living in two regions with a different annual average air pollution levels: Northern Bohemia-the district of Teplice as polluted industrial area (mines, brown coal power plants) and Southern Bohemia-the district of Prachatice as agricultural area without heavy industry. Forty-nine placenta samples (25 from the Teplice district and 24 from the Prachatice district) from non-smoking mothers with the date of delivery in the summer period and 49 placenta samples (25 from the Teplice district and 24 from Prachatice district) from mothers with the date of delivery in the winter period were analysed. The total DNA adduct levels were calculated as the sum of adducts in the diagnoal radioactive zone (DRZ) and one distinct spot outside of the DRZ (termed X), which was detected in almost all placenta samples. We found total DNA adduct levels of 1.40 +/- 0.87 (0.04-3.65) and 1.04 +/- 0.63 (0.11-3.08) adducts per 10(8) nucleotides for the Teplice and Prachatice districts, respectively. The significant difference between both districts in placental DNA adduct levels was found for the winter sampling period only (1.49 vs. 0.96 adducts per 10(8) nucleotides; p = 0.023). No seasonal variation was observed for DNA adduct levels in the overall population studied. A positive GSTM1 genotype was detected in 51 subjects, while GSTM1-null genotype was found in 47 subjects. Higher DNA adduct levels were detected in a group with GSTM1-null genotype (p = 0.009). This finding seems more significant for subjects in the Teplice district (p = 0.047) than for those in the Prachatice district (p = 0.092). Significant district and seasonal differences were found in subgroups carrying the GSTM1-null genotype. DNA adduct levels in placentas of mothers with GSTM1-null genotype living in the polluted district of Teplice were higher than those in Prachatice (p = 0

  5. Preparation and Characterization of Cysteine Adducts of Deoxynivalenol.

    PubMed

    Stanic, Ana; Uhlig, Silvio; Solhaug, Anita; Rise, Frode; Wilkins, Alistair L; Miles, Christopher O

    2016-06-15

    Conjugation with the biologically relevant thiol glutathione is one of the metabolic pathways for the mycotoxin deoxynivalenol (DON) in wheat. The occurrence of putative DON-cysteine conjugates has also been shown in wheat, likely in part as a result of degradation of the glutathione conjugates. It was reported that thiols react in vitro with DON at two positions: reversibly at C-10 of the α,β-unsaturated ketone and irreversibly at C-13 of the epoxy group. We synthesized pure DON-cysteine adducts and made analytical standards using quantitative NMR experiments. Compounds were characterized using NMR and LC-HRMS/MS and tested in vitro for toxicity. Cysteine conjugates were much less toxic than DON at the same concentration, and LC-HRMS analysis demonstrated that there was no detectable metabolism of the conjugates in human monocytes or human macrophages. PMID:27229448

  6. Vitamin A-aldehyde adducts: AMD risk and targeted therapeutics.

    PubMed

    Sparrow, Janet R

    2016-04-26

    Although currently available treatment options for age-related macular degeneration (AMD) are limited, particularly for atrophic AMD, the identification of predisposing genetic variations has informed clinical studies addressing therapeutic options such as complement inhibitors and anti-inflammatory agents. To lower risk of early AMD, recommended lifestyle interventions such as the avoidance of smoking and the intake of low glycemic antioxidant-rich diets have largely followed from the identification of nongenetic modifiable factors. On the other hand, the challenge of understanding the complex relationship between aging and cumulative damage leading to AMD has fueled investigations of the visual cycle adducts that accumulate in retinal pigment epithelial (RPE) cells and are a hallmark of aging retina. These studies have revealed properties of these compounds that provide insights into processes that may compromise RPE and could contribute to disease mechanisms in AMD. This work has also led to the design of targeted therapeutics that are currently under investigation. PMID:27071115

  7. The gas-phase structure and some reactions of the bulky primary silane (Me(3)Si)(3)CSiH(3) and the solid-state structure of the bulky dialkyl disilane [(Me(3)Si)(3)CSiH(2)](2).

    PubMed

    Masters, Sarah L; Rankin, David W H; Cordes, David B; Bätz, Karin; Lickiss, Paul D; Boag, Neil M; Redhouse, Alan D; Whittaker, Stephen M

    2010-10-21

    The molecular structure of the bulky primary silane, (Me(3)Si)(3)CSiH(3), in the gas phase has been determined by electron diffraction. Photolysis of (Me(3)Si)(3)CSiH(3) affords a convenient route to the bulky dialkyl disilane, [(Me(3)Si)(3)CSiH(2)](2), which is the first 1,2-dialkyldisilane to be structurally characterised by single-crystal X-ray diffraction. The disilane has an unusually large Si-Si-C angle of 120.05(9)°. PMID:20697646

  8. Non Covalent Interactions and Internal Dynamics in Adducts of Freons

    NASA Astrophysics Data System (ADS)

    Caminati, Walther; Gou, Qian; Evangelisti, Luca; Feng, Gang; Spada, Lorenzo; Vallejo-López, Montserrat; Lesarri, Alberto; Cocinero, Emilio J.

    2014-06-01

    The complexation of chlorofluorocarbons (CFCs) with atmospheric water and pollutants of the atmosphere affects their reactivity and it seems to accelerate, for example, the decomposition rate of freons in the atmosphere [1]. For this reason we characterized shapes, stabilities, nature of the non-covalent interactions, structures and internal dynamics of a number of complexes of CFCs with water and of their dimers or oligomers by rotational spectroscopy. It has been found that hydrogenated CFCs form adducts with other molecules through weak hydrogen bonds (WHBs). Their C-H groups can act as proton donors, enhanced by the electron withdrawing of the halogen atoms, interacting with the electron rich regions of the partner molecules [2]. Also in adducts or oligomers of hydrogenated CFCs the monomer units are held together by nets of WHBs [3]. When CFCs are perhalogenated, the positive electrostatic region ("σ-hole") can interact electrostatically with negative sites of another, or of the same molecular entity, giving rise, according to IUPAC, to the so called halogen bond (HaB). However, it has been observed that when the perhalogenated CFCs has a Π electron system, a lone pair•••Π interaction (Bürgi-Dunitz) is favoured [4]. We describe here the HaBs that CF4 and CF3Cl form with a variety of partner molecules such as water, ammonia, dimethyl ether, etc. Important spectroscopic features outline strong dynamics effects taking place in this kind of complex. References [1] V. Vaida, H. G. Kjaergaard, K. J. Feierabend, Int. Rev. Phys. Chem. 22 (2003) 203. [2] See, for example: W. Caminati, S. Melandri, A. Maris, P. Ottaviani, Angew. Chem. Int. Ed. 45 (2006) 2438. [3] G. Feng, L. Evangelisti, I. Cacelli, L. Carbonaro, G. Prampolini, W. Caminati, Chem. Commun. 50 (2014) 171. [4] Q. Gou, G. Feng, L. Evangelisti, W. Caminati, Angew. Chem. Int. Ed. 52 (2013) 52 11888.

  9. A mathematical model for intracellular effects of toxins on DNA adduction and repair

    SciTech Connect

    Gaver, D.P.; Jacobs, P.A.; Carpenter, R.L.; Burkhart, J.G.

    1997-01-01

    The processes by which certain classes of toxic compounds or their metabolites may react with DNA to alter the genetic information contained in subsequent generations of cells or organisms are a major component of hazard associated with exposure to chemicals in the environment. Many classes of chemicals may form DNA adducts and there may or may not be a defined mechanism to remove a particular adduct from DNA independent of replication. Many compounds and metabolites that bind DNA also readily bind existing proteins; some classes of toxins and DNA adducts have the capacity to inactive a repair enzyme and divert the repair process competitively. This paper formulates an intracellular dynamic model for one aspect of the action of toxins that form DNA adducts, recognizing a capacity for removal of those adducts by a repair enzyme combined with reaction of the toxin and/or the DNA adduct to inactive the repair enzyme. This particular model illustrates the possible saturation of repair enzyme capacity by the toxin dosage and shows that bistable behavior can occur, with the potential to induce abrupt shifts away from steady-state equilibria. The model suggests that bistable behavior, dose and variation between individuals or tissues may combine under certain conditions to amplify the biological effect of dose observed as DNA adduction and its consequences as mutation. A model recognizing stochastic phenomena also indicates that variation in within-cell toxin concentration may promote jumps between stable equilibria.

  10. Polycyclic aromatic hydrocarbon-DNA adducts and the CYP1A1 restriction fragment length polymorphism

    SciTech Connect

    Shields, P.G.; Bowman, E.D.; Weston, A.; Harris, C.C.; Sugimura, H.; Caporaso, N.E.; Petruzzelli, S.F. ); Trump, B.F. )

    1992-11-01

    Human cancer risk assessment at a genetic level involves the investigation of carcinogen metabolism and DNA adduct formation. Wide interindividual differences in metabolism result in different DNA adduct levels. For this and other reasons, many laboratories have considered DNA adducts to be a measure of the biologically effective dose of a carcinogen. Techniques for studying DNA adducts using chemically specific assays are becoming available. A modification of the [sup 32]P-postlabeling assay for polycyclic aromatic hydrocarbon DNA adducts described here provides potential improvements in quantification. DNA adducts, however, reflect only recent exposure to carcinogens; in contrast, genetic testing for metabolic capacity indicates the extent to which carcinogens can be activated and exert genotoxic effects. Such studies may reflect both separate and integrated risk factors together with DNA adduct levels. A recently described restriction fragment length polymorphism for the CYP1A1, which codes for the cytochrome P450 enzyme primarily responsible for the metabolic activation of carcinogenic polycyclic aromatic hydrocarbons, has been found to be associated with lung cancer risk in a Japanese population. In a subset of individuals enrolled in a US lung cancer case-control study, no association with lung cancer was found. 17 refs., 3 figs.

  11. Synthesis and mutagenesis of the butadiene-derived N3 2'-deoxyuridine adducts.

    PubMed

    Fernandes, Priscilla H; Hackfeld, Linda C; Kozekov, Ivan D; Hodge, Richard P; Lloyd, R Stephen

    2006-07-01

    1,3-Butadiene is a known carcinogen and mutagen that acts through a variety of metabolic intermediates that react with DNA, forming stable and unstable lesions on dG, dA, dC, and dT. The N3 2'-deoxyuridine adducts are a highly stable, stereoisomeric mixture of adducts derived from the reaction of cytosine with the monoepoxide metabolite of butadiene, followed by spontaneous deamination. In this study, the phosphoramidites and subsequent oligodeoxynucleotides containing the N3 2'-deoxyuridine adducts have been constructed and characterized. Using a single-stranded shuttle vector DNA, the mutagenic potential of these adducts has been tested following replication in mammalian cells. Replication past the N3 2'-deoxyuridine adducts was found to be highly mutagenic with an overall mutation yield of approximately 97%. The major mutations that were observed were C to T transitions and C to A transversions. In vitro, these adducts posed a complete block to both the Klenow fragment of Escherichia coli polymerase I and polymerase epsilon, while these lesions significantly blocked polymerase delta. These data suggested a possible involvement of bypass polymerases in the in vivo replication of these lesions. Overall, these findings indicate that the N3 2'-deoxyuridine adducts are highly mutagenic lesions that may contribute to butadiene-mediated carcinogenesis. PMID:16841966

  12. Conformational Properties of Equilenin-DNA Adducts: Stereoisomer and Base Effects

    PubMed Central

    Ding, Shuang; Shapiro, Robert; Cai, Yuqin; Geacintov, Nicholas E.; Broyde, Suse

    2008-01-01

    Equilin and equilenin, components of the hormone replacement therapy drug Premarin, can be metabolized to the catechol 4-hydroxyequilenin (4-OHEN). The quinoids produced by 4-OHEN oxidation react with dC, dA and dG to form unusual stable cyclic adducts, which have been found in human breast tumor tissue. Four stereoisomeric adducts have been identified for each base. These twelve Premarin-derived adducts provide a unique opportunity for analyzing effects of stereochemistry and base damage on DNA structure, and consequently its function. Our computational studies have shown that these adducts, with obstructed Watson-Crick hydrogen bond edges and near-perpendicular ring systems, have limited conformational flexibility, and near-mirror image conformations in stereoisomer pairs. The dC and dA adducts can adopt major and minor groove positions in the double helix, but the dG adducts are positioned only in the major groove. In all cases, opposite orientations of the equilenin rings with respect to the 5'→3' direction of the damaged strand are found in stereoisomer pairs derived from the same base, and no Watson-Crick pairing is possible. However, detailed structural properties in DNA duplexes are distinct for each stereoisomer of each damaged base. These differences may underlie observed differential stereoisomer and base-dependent mutagenicities and repair susceptibilities of these adducts. PMID:18416538

  13. Determinants of 4-aminobiphenyl-DNA adducts in bladder cancer biopsies.

    PubMed

    Airoldi, Luisa; Orsi, Federica; Magagnotti, Cinzia; Coda, Renato; Randone, Donato; Casetta, Giovanni; Peluso, Marco; Hautefeuille, Agnes; Malaveille, Christian; Vineis, Paolo

    2002-05-01

    Exposure to 4-aminobiphenyl (4-ABP) is an important determinant of urinary bladder cancer in humans. We have analyzed by gas chromatography-mass spectrometry the DNA adducts of 4-ABP in 75 bladder cancer biopsies. The purpose was to understand whether smoking, N-acetyltransferase 2 (NAT2) polymorphism, diet or tumor grade were determinants of 4-ABP-DNA levels. 4-ABP-DNA adducts were above the detection limit of 0.1 fmol/microg DNA for 37/75 patients. Overall the level of adducts was 2.7 +/- 0.7 (mean +/- SE) fmol/microg DNA (86 +/- 22 adducts/10(8) normal nucleotides, mean +/- SE). A strong association with grade was observed. In the group of patients with detectable 4-ABP-DNA adducts the odds ratio for having a tumor grade of 2 or 3 was respectively 4.3 (95% CI 0.8-21.9) and 6 (1.3-27.5), compared with grade 1. A non-statistically significant association was found between adduct levels and the deduced slow acetylator phenotype in grades 2 and 3. The intake of fruit and vegetables produced a lower frequency of detectable adducts, though the association was not statistically significant. Detectable 4-ABP-DNA adducts were clearly associated with current smoking in higher tumor grades (grade 3 versus grades 1 + 2, odds ratios 10.4; 95% CI 1.7-63.1). Overall, our findings indicate that higher levels of DNA adducts characterize more invasive tumors (higher tumor grades). This seems to be facilitated by smoking and contrasted by the intake of fruit and vegetables. PMID:12016161

  14. 32P analysis of DNA adducts in tissues of benzene-treated rats.

    PubMed

    Reddy, M V; Blackburn, G R; Schreiner, C A; Mehlman, M A; Mackerer, C R

    1989-07-01

    Solid tumors have been reported in the Zymbal gland, oral and nasal cavities, liver, and mammary gland of Sprague-Dawley rats following chronic, high-dose administration of benzene. The carcinogenic activity of benzene is thought to be caused by activation to toxic metabolites that can interact with DNA, forming covalent adducts. A nuclease P1-enhanced 32P-postlabeling assay, having a sensitivity limit of 1 adduct in 10(9-10) DNA nucleotides, was found suitable for measuring aromatic DNA adducts derived in vitro from catechol, benzenetriol (BT), phenol, hydroquinone (HQ), and benzoquinone (BQ), potential metabolites of benzene. When DNA specimens isolated from tissues of female Sprague-Dawley rats at 24 hr after an oral gavage dose of 200 to 500 mg/kg, 5 days/week, in olive oil (3 mL/kg) for 1 day, 1 week, 5 weeks, and 10 weeks were analyzed by the 32P-postlabeling procedure, no aromatic adducts were detected unequivocally with DNA samples of liver, kidney, bone marrow, and mammary gland. With Zymbal gland DNA, three weak spots at levels totaling four lesions per 10(9) DNA nucleotides were seen only after 10 weeks of treatment, and these adducts did not correspond chromatographically to major adducts in vitro from the above specified compounds. Consequently, this finding requires confirmatory experiments. This distinct adduct pattern may relate to tumor induction in this organ following benzene administration. Our results also indicate that DNA adducts derived from catechol, BT, phenol, HQ, and BQ are either not formed in vivo with benzene or formed at levels below the detection limit of 1 adduct per 10(9-10) DNA nucleotides. PMID:2792046

  15. 32P analysis of DNA adducts in tissues of benzene-treated rats.

    PubMed Central

    Reddy, M V; Blackburn, G R; Schreiner, C A; Mehlman, M A; Mackerer, C R

    1989-01-01

    Solid tumors have been reported in the Zymbal gland, oral and nasal cavities, liver, and mammary gland of Sprague-Dawley rats following chronic, high-dose administration of benzene. The carcinogenic activity of benzene is thought to be caused by activation to toxic metabolites that can interact with DNA, forming covalent adducts. A nuclease P1-enhanced 32P-postlabeling assay, having a sensitivity limit of 1 adduct in 10(9-10) DNA nucleotides, was found suitable for measuring aromatic DNA adducts derived in vitro from catechol, benzenetriol (BT), phenol, hydroquinone (HQ), and benzoquinone (BQ), potential metabolites of benzene. When DNA specimens isolated from tissues of female Sprague-Dawley rats at 24 hr after an oral gavage dose of 200 to 500 mg/kg, 5 days/week, in olive oil (3 mL/kg) for 1 day, 1 week, 5 weeks, and 10 weeks were analyzed by the 32P-postlabeling procedure, no aromatic adducts were detected unequivocally with DNA samples of liver, kidney, bone marrow, and mammary gland. With Zymbal gland DNA, three weak spots at levels totaling four lesions per 10(9) DNA nucleotides were seen only after 10 weeks of treatment, and these adducts did not correspond chromatographically to major adducts in vitro from the above specified compounds. Consequently, this finding requires confirmatory experiments. This distinct adduct pattern may relate to tumor induction in this organ following benzene administration. Our results also indicate that DNA adducts derived from catechol, BT, phenol, HQ, and BQ are either not formed in vivo with benzene or formed at levels below the detection limit of 1 adduct per 10(9-10) DNA nucleotides. Images FIGURE 1. FIGURE 2. FIGURE 3. PMID:2792046

  16. Inhaled cigarette smoke induces the formation of DNA adducts in lungs of rats

    SciTech Connect

    Bond, J.A.; Chen, B.T.; Griffith, W.C.; Mauderly, J.L.

    1989-06-01

    Cigarette smoking causes a variety of adverse human health effects, including lung cancer. The molecular events associated with smoke-induced carcinogenesis are thought to be related in part to the genotoxic activities of the chemicals associated with smoke. The purpose of this investigation was to determine the molecular dosimetry of compounds in cigarette smoke in lungs of rats exposed by inhalation. These studies investigated the effects of exposure mode, sex, and time (adduct persistence) on the level of DNA adducts. Male and female F344/N rats were exposed 6 hr/day, 5 days/week for 22 days to cigarette smoke by nose-only intermittent (NOI), nose-only continuous (NOC), or whole-body continuous (WBC) exposures. Separate groups of rats were sham-exposed nose-only (NOS) or whole-body (WBS) to filtered air. All smoke exposure modes yielded daily smoke exposure concentration X time products of 600 mg particulate.hr/m3 for the first week and 1200 mg particulate.hour/m3 thereafter. Groups of rats were killed at 18 hr and 3 weeks after the 22-day exposure period and DNA adducts in lung tissues were quantified by the /sup 32/P-postlabeling method. There were significant (p less than 0.05) increases in levels of clearly resolved lung DNA adducts in male and female rats exposed to smoke compared to sham-exposed rats. There were no significant effects of exposure mode or sex on lung DNA adducts. Mean levels (+/- SE) of clearly resolved lung DNA adducts for both sexes combined in NOI, NOC, WBC, NOS, and WBS groups were 50 +/- 4, 52 +/- 6, 52 +/- 7, 21 +/- 6, and 22 +/- 4 adducts per 10(9) bases, respectively. Levels of clearly resolved DNA adducts were significantly less in lungs of rats killed 3 weeks after exposure and had declined to near control levels, suggesting that smoke-induced adducts are repaired by lung DNA repair enzymes.

  17. Polycyclic aromatic hydrocarbon-DNA adducts and survival among women with breast cancer

    SciTech Connect

    Sagiv, Sharon K. Gaudet, Mia M.; Eng, Sybil M.; Abrahamson, Page E.; Shantakumar, Sumitra; Teitelbaum, Susan L.; Bell, Paula; Thomas, Joyce A.; Neugut, Alfred I.; Santella, Regina M.; Gammon, Marilie D.

    2009-04-15

    Polycyclic aromatic hydrocarbons (PAH) are mammary carcinogens in animal studies, and a few epidemiologic studies have suggested a link between elevated levels of PAH-DNA adducts and breast cancer incidence. An association between PAH-DNA adducts and survival among breast cancer cases has not been previously reported. We conducted a survival analysis among women with newly diagnosed invasive breast cancer between 1996 and 1997, enrolled in the Long Island Breast Cancer Study Project. DNA was isolated from blood samples that were obtained from cases shortly after diagnosis and assayed for PAH-DNA adducts using ELISA. Among the 722 cases with PAH-DNA adduct measurements, 97 deaths (13.4%) from all causes and 54 deaths (7.5%) due to breast cancer were reported to National Death Index (NDI) by December 31, 2002. Using Cox proportional hazards models and controlling for age at diagnosis, we did not find evidence that all-cause mortality (hazard ratio (HR)=0.88; 95% confidence interval (CI): 0.57-1.37), or breast cancer mortality (HR=1.20; 95% CI: 0.63-2.28) was strongly associated with detectable PAH-DNA adduct levels compared with non-detectable adducts; additionally, no dose-response association was observed. Among a subgroup with treatment data (n=520), adducts were associated with over a two-fold higher mortality among those receiving radiation, but mortality for adducts was reduced among hormone therapy users. Results from this large population-based study do not provide strong support for an association between detectable PAH-DNA adducts and survival among women with breast cancer, except perhaps among those receiving radiation treatment.

  18. 7-Alkylguanine adduct levels in urine, lungs and liver of mice exposed to styrene by inhalation

    SciTech Connect

    Vodicka, Pavel Erik . E-mail: pvodicka@biomed.cas.cz; Linhart, Igor; Novak, Jan; Koskinen, Mikko; Vodickova, Ludmila; Hemminki, Kari

    2006-01-15

    This study describes urinary excretion of two nucleobase adducts derived from styrene 7,8-oxide (SO), i.e., 7-(2-hydroxy-1-phenylethyl)guanine (N7{alpha}G) and 7-(2-hydroxy-2-phenylethyl)guanine (N7{beta}G), as well as a formation of N7-SO-guanine adducts in lungs and liver of two month old male NMRI mice exposed to styrene by inhalation in a 3-week subacute study. Strikingly higher excretion of both isomeric nucleobase adducts in the first day of exposure was recorded, while the daily excretion of nucleobase adducts in following time intervals reached the steady-state level at 4.32 + 1.14 and 6.91 + 1.17 pmol/animal for lower and higher styrene exposure, respectively. {beta}-SO-guanine DNA adducts in lungs increased with exposure in a linear way (F = 13.7 for linearity and 0.17 for non-linearity, respectively), reaching at the 21st day the level of 23.0 adducts/10{sup 8} normal nucleotides, i.e., 0.74 fmol/{mu}g DNA of 7-alkylguanine DNA adducts for the concentration of 1500 mg/m{sup 3}, while no 7-SO-guanine DNA adducts were detected in the liver after 21 days of inhalation exposure to both of styrene concentrations. A comparison of 7-alkylguanines excreted in urine with 7-SO-guanines in lungs (after correction for depurination and for missing {alpha}-isomers) revealed that persisting 7-SO-guanine DNA adducts in lungs account for about 0.5% of the total alkylation at N7 of guanine. The total styrene-specific 7-guanine alkylation accounts for about 1.0 x 10{sup -5}% of the total styrene uptake, while N1-adenine alkylation contributes to this percentage only negligibly.

  19. Urinary biomarkers suggest that estrogen-DNA adducts may play a role in the aetiology of non-Hodgkin lymphoma

    PubMed Central

    Gaikwad, Nilesh W.; Yang, Li; Weisenburger, Dennis D.; Vose, Julie; Beseler, Cheryl; Rogan, Eleanor G.; Cavalieri, Ercole L.

    2015-01-01

    A variety of evidence suggests that estrogens may induce non-Hodgkin lymphoma (NHL). The reaction of catechol estrogen quinones with DNA to form depurinating estrogen-DNA adducts is hypothesized to initiate this process. These adducts are released from DNA, shed from cells into the bloodstream and excreted in urine. The aim of this study was to determine whether or not the depurinating estrogen-DNA adducts might be involved in the aetiology of human NHL. Estrogen metabolites, conjugates and depurinating DNA adducts were identified and quantified in spot urine samples from 15 men with NHL and 30 healthy control men by using ultraperformance liquid chromatography/tandem mass spectrometry. The levels of estrogen-DNA adducts were significantly higher in the men with NHL than in the healthy control men. Thus, formation of estrogen-DNA adducts may play a critical role in the aetiology of NHL, and these adducts could be potential biomarkers of NHL risk. PMID:19863189

  20. The role of polycyclic aromatic hydrocarbon-DNA adducts in inducing mutations in mouse skin

    PubMed Central

    Chakravarti, Dhrubajyoti; Venugopal, Divya; Mailander, Paula C.; Meza, Jane L.; Higginbotham, Sheila; Cavalieri, Ercole L.; Rogan, Eleanor G.

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) form stable and depurinating DNA adducts in mouse skin to induce preneoplastic mutations. Some mutations transform cells, which then clonally expand to establish tumors. Strong clues about the mutagenic mechanism can be obtained if the PAH-DNA adducts can be correlated with both preneoplastic and tumor mutations. To this end, we studied mutagenesis in PAH-treated early preneoplastic skin (1 day after exposure) and in the induced papillomas in SENCAR mice. Papillomas were studied by PCR amplification of the H-ras gene and sequencing. For benzo[a]pyrene (BP), BP-7,8-dihydrodiol (BPDHD), 7,12-dimethylbenz[a]anthracene (DMBA) and dibenzo[a,l]pyrene (DB[a,l]P), the codon 13 (GGC to GTC) and codon 61 (CAA to CTA) mutations in papillomas corresponded to the relative levels of Gua and Ade-depurinating adducts, despite BP and BPDHD forming significant amounts of stable DNA adducts. Such a relationship was expected for DMBA and DB[a,l]P, as they formed primarily depurinating adducts. These results suggest that depurinating adducts play a major role in forming the tumorigenic mutations. To validate this correlation, preneoplastic skin mutations were studied by cloning H-ras PCR products and sequencing individual clones. DMBA- and DB[a,l]P-treated skin showed primarily A.T to G.C mutations, which correlated with the high ratio of the Ade/Gua-depurinating adducts. Incubation of skin DNA with T.G-DNA glycosylase eliminated most of these A.T to G.C mutations, indicating that they existed as G.T heteroduplexes, as would be expected if they were formed by errors in the repair of abasic sites generated by the depurinating adducts. BP and its metabolites induced mainly G.C to T.A mutations in preneoplastic skin. However, PCR over unrepaired anti-BPDE-N2dG adducts can generate similar mutations as artifacts of the study protocol, making it difficult to establish an adduct-mutation correlation for determining which BP-DNA adducts induce the early

  1. Base-Displaced Intercalated Structure of the N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone DNA Adduct.

    PubMed

    Politica, Dustin A; Malik, Chanchal K; Basu, Ashis K; Stone, Michael P

    2015-12-21

    3-Nitrobenzanthrone (3-NBA), an environmental mutagen found in diesel exhaust and a suspected carcinogen, undergoes metabolic reduction followed by reaction with DNA to form aminobenzanthrone (ABA) adducts, with the major alkylation product being N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (C8-dG-ABA). Site-specific synthesis of the C8-dG-ABA adduct in the oligodeoxynucleotide 5'-d(GTGCXTGTTTGT)-3':5'-d(ACAAACACGCAC)-3'; X = C8-dG-ABA adduct, including codons 272-275 of the p53 gene, has allowed for investigation into the structural and thermodynamic properties of this adduct. The conformation of the C8-dG-ABA adduct was determined using NMR spectroscopy and was refined using molecular dynamics (MD) calculations restrained by experimentally determined interproton distance restraints obtained from NOE experiments. The refined structure revealed that the C8-dG-ABA adduct formed a base-displaced intercalated conformation. The adducted guanine was shifted into the syn conformation about the glycosidic bond. The 5'- and 3'-neighboring base pairs remained intact. While this facilitated π-stacking interactions between the ABA moiety and neighboring bases, the thermal melting temperature (Tm) of the adduct-containing duplex showed a decrease of 11 °C as compared to the corresponding unmodified oligodeoxynucleotide duplex. Overall, in this sequence, the base-displaced intercalated conformation of the C8-dG-ABA lesion bears similarity to structures of other arylamine C8-dG adducts. However, in this sequence, the base-displaced intercalated conformation for the C8-dG-ABA adduct differs from the conformation of the N(2)-dG-ABA adduct reported by de los Santos and co-workers, in which it is oriented in the minor groove toward the 5' end of the duplex, with the modified guanine remaining in the anti conformation about the glyosidic torsion angle, and the complementary base remaining within the duplex. The results are discussed in relationship to differences between the C8-d

  2. Preferential Formation of Benzo[a]pyrene Adducts at Lung Cancer Mutational Hotspots in P53

    NASA Astrophysics Data System (ADS)

    Denissenko, Mikhail F.; Pao, Annie; Tang, Moon-Shong; Pfeifer, Gerd P.

    1996-10-01

    Cigarette smoke carcinogens such as benzo[a]pyrene are implicated in the development of lung cancer. The distribution of benzo[a]pyrene diol epoxide (BPDE) adducts along exons of the P53 gene in BPDE-treated HeLa cells and bronchial epithelial cells was mapped at nucleotide resolution. Strong and selective adduct formation occurred at guanine positions in codons 157, 248, and 273. These same positions are the major mutational hotspots in human lung cancers. Thus, targeted adduct formation rather than phenotypic selection appears to shape the P53 mutational spectrum in lung cancer. These results provide a direct etiological link between a defined chemical carcinogen and human cancer.

  3. DNA Adduct Formation of 4-Aminobiphenyl and Heterocyclic Aromatic Amines in Human Hepatocytes

    PubMed Central

    Nauwelaers, Gwendoline; Bessette, Erin E.; Gu, Dan; Tang, Yijin; Rageul, Julie; Fessard, Valérie; Yuan, Jian-Min; Yu, Mimi C.; Langouët, Sophie; Turesky, Robert J.

    2011-01-01

    DNA adduct formation of the aromatic amine, 4-aminobiphenyl (4-ABP), a known human carcinogen present in tobacco smoke, and the heterocyclic aromatic amines (HAAs), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), potential human carcinogens, which are also present in tobacco smoke or formed during the high-temperature cooking of meats, was investigated in freshly cultured human hepatocytes. The carcinogens (10 μM) were incubated with hepatocytes derived from eight different donors for time periods up to 24 h. The DNA adducts were quantified by liquid chromatography-electrospray ionization mass spectrometry with a linear quadrupole ion trap mass spectrometer. The principal DNA adducts formed for all of the carcinogens were N-(deoxyguanosin-8-yl) (dG-C8) adducts. The levels of adducts ranged from 3.4 to 140 adducts per 107 DNA bases. The highest level of adduct formation occurred with AαC, followed by 4-ABP, then by PhIP, MeIQx, and IQ. Human hepatocytes formed dG-C8-HAA-adducts at levels that were up to 100-fold greater than the amounts of adducts produced in rat hepatocytes. In contrast to HAA adducts, the levels of dG-C8-4-ABP adduct formation were similar in human and rat hepatocytes. These DNA binding data demonstrate that the rat, an animal model that is used for carcinogenesis bioassays, significantly underestimates the potential hepatic genotoxicity of HAAs in humans. The high level of DNA adducts formed by AαC, a carcinogen produced in tobacco smoke at levels that are up to 100-fold higher than the amounts of 4-ABP, is noteworthy. The possible causal role of AαC in tobacco-associated cancers warrants investigation. PMID:21456541

  4. 90Y-ibritumomab tiuxetan radiotherapy as first-line therapy for early stage low-grade B-cell lymphomas, including bulky disease.

    PubMed

    Samaniego, Felipe; Berkova, Zuzana; Romaguera, Jorge E; Fowler, Nathan; Fanale, Michelle A; Pro, Barbara; Shah, Jatin J; McLaughlin, Peter; Sehgal, Lalit; Selvaraj, Vijairam; Braun, Frank K; Mathur, Rohit; Feng, Lei; Neelapu, Sattva S; Kwak, Larry W

    2014-10-01

    (90) Y-ibritumomab-tiuxetan ((90) YIT) was used as a first-line therapy for patients with early-stage follicular lymphoma (FL) or marginal zone B-cell lymphoma (MZL). Thirty-one patients were treated, with an overall 3-month response rate of 100% (68% complete response, 29% unconfirmed complete response and 3% partial response). At a median follow-up of 56 months, ten patients (32%) had disease relapse or progression. The progression-free rates at 3 and 5 years were lower in males, patients with FL, stage II disease and non-bulky disease, although they did not reach statistical significance. Grade 3-4 neutropenia, thrombocytopenia and anaemia were 61%, 35%, and 3%, respectively. (90) YIT was well tolerated, including in those patients over 60 years old, and achieved high response rates in patients with early-stage low-grade B-cell lymphomas. Bulky disease did not adversely affect tumour response. PMID:25040450

  5. ZSM-5 zeolite single crystals with b-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules.

    PubMed

    Liu, Fujian; Willhammar, Tom; Wang, Liang; Zhu, Longfeng; Sun, Qi; Meng, Xiangju; Carrillo-Cabrera, Wilder; Zou, Xiaodong; Xiao, Feng-Shou

    2012-03-14

    The relatively small and sole micropores in zeolite catalysts strongly influence the mass transfer and catalytic conversion of bulky molecules. We report here aluminosilicate zeolite ZSM-5 single crystals with b-axis-aligned mesopores, synthesized using a designed cationicamphiphilic copolymer as a mesoscale template. This sample exhibits excellent hydrothermal stability. The orientation of the mesopores was confirmed by scanning and transmission electron microscopy. More importantly, the b-axis-aligned mesoporous ZSM-5 shows much higher catalytic activities for bulky substrate conversion than conventional ZSM-5 and ZSM-5 with randomly oriented mesopores. The combination of good hydrothermal stability with high activities is important for design of novel zeolite catalysts. The b-axis-aligned mesoporous ZSM-5 reported here shows great potential for industrial applications. PMID:22380406

  6. Manganese Electrocatalysts with Bulky Bipyridine Ligands: Utilizing Lewis Acids To Promote Carbon Dioxide Reduction at Low Overpotentials.

    PubMed

    Sampson, Matthew D; Kubiak, Clifford P

    2016-02-01

    Earth-abundant manganese bipyridine (bpy) complexes are well-established molecular electrocatalysts for proton-coupled carbon dioxide (CO2) reduction to carbon monoxide (CO). Recently, a bulky bipyridine ligand, 6,6'-dimesityl-2,2'-bipyridine (mesbpy), was utilized to significantly lower the potential necessary to access the doubly reduced states of these manganese catalysts by eliminating their ability to dimerize after one-electron reduction. Although this Mn mesbpy catalyst binds CO2 at very low potentials, reduction of a resulting Mn(I)-COOH complex at significantly more negative potentials is required to achieve fast catalytic rates. Without reduction of Mn(I)-COOH, catalysis occurs slowly via a alternate catalytic pathway-protonation of Mn(I)-COOH to form a cationic tetracarbonyl complex. We report the use of Lewis acids, specifically Mg(2+) cations, to significantly increase the rate of catalysis (by over 10-fold) at these low overpotentials (i.e., the same potential as CO2 binding). Reduction of CO2 occurs at one of the lowest overpotentials ever reported for molecular electrocatalysts (η = 0.3-0.45 V). With Mg(2+), catalysis proceeds via a reductive disproportionation reaction of 2CO2 + 2e(-) → CO and CO3(2-). Insights into the catalytic mechanism were gained by using variable concentration cyclic voltammetry, infrared spectroelectrochemistry, and bulk electrolysis studies. The catalytic Tafel behavior (log turnover frequency vs overpotential relationship) of [Mn(mesbpy)(CO)3(MeCN)](OTf) with added Mg(2+) is compared with those of other commonly studied CO2 reduction catalysts. PMID:26745814

  7. Effect of induction chemotherapy on estimated risk of radiation pneumonitis in bulky non–small cell lung cancer

    SciTech Connect

    Amin, Neha P.; Miften, Moyed; Thornton, Dale; Ryan, Nicole; Kavanagh, Brian; Gaspar, Laurie E

    2013-10-01

    Patients with bulky non–small cell lung cancer (NSCLC) may be at a high risk for radiation pneumonitis (RP) if treated with up-front concurrent chemoradiation. There is limited information about the effect of induction chemotherapy on the volume of normal lung subsequently irradiated. This study aims to estimate the reduction in risk of RP in patients with NSCLC after receiving induction chemotherapy. Between 2004 and 2009, 25 patients with Stage IV NSCLC were treated with chemotherapy alone (no surgery or radiation therapy [RT]) and had computed tomography (CT) scans before and after 2 cycles of chemotherapy. Simulated RT plans were created for the prechemotherapy and postchemotherapy scans so as to deliver 60 Gy to the thoracic disease in patients who had either a >20% volumetric increase or decrease in gross tumor volume (GTV) from chemotherapy. The prechemotherapy and postchemotherapy scans were analyzed to compare the percentage of lung volume receiving≥20 Gy (V20), mean lung dose (MLD), and normal tissue complication probability (NTCP). Eight patients (32%) had a GTV reduction >20%, 2 (8%) had GTV increase >20%, and 15 (60%) had stable GTV. In the 8 responders, there was an absolute median GTV decrease of 88.1 cc (7.3 to 351.6 cc) or a 48% (20% to 62%) relative reduction in tumor burden. One had >20% tumor progression during chemotherapy, yet had an improvement in dosimetric parameters postchemotherapy. Among these 9 patients, the median decrease in V20, MLD, and NTCP was 2.6% (p<0.01), 2.1 Gy (p<0.01), and 5.6% (p<0.01), respectively. Less than one-third of patients with NSCLC obtain >20% volumetric tumor reduction from chemotherapy alone. Even with that amount of volumetric reduction, the 5% reduced risk of RP was only modest and did not convert previously ineligible patients to safely receive definitive thoracic RT.

  8. Evaluation of time-dose and fractionation for sup 252 Cf neutrons in preoperative bulky/barrel-cervix carcinoma radiotherapy

    SciTech Connect

    Maruyama, Y.; Wierzbicki, J. )

    1990-12-01

    Time-dose fractionation factors (TDF) were calculated for 252Cf (Cf) neutron therapy versus 137Cs for intracavitary use in the preoperative treatment of bulky/barrel-shaped Stage IB cervix cancers. The endpoint assessed was gross and microscopic tumor eradication from the hysterectomy specimen. We reviewed the data obtained in clinical trials between 1976-1987 at the University of Kentucky Medical Center. Preoperative photon therapy was approximately 45 Gy of whole pelvis irradiation in 5 weeks for both 137Cs and Cf treated patients. 137Cs implant was done after pelvic irradiation x1 to a mean dose of 2104 +/- 36 cGy at point A at a dose rate of 50.5 cGy/h. There were 37.5% positive specimens. Using Cf intracavitary implants, dose varied from 109 to 459 neutron cGy in 1-2 sessions. Specimens were more frequently cleared of tumor (up to 100% at appropriate dose) and showed a dose-response relationship, both by nominal dose and by TDF adjusted analysis of dose, dose-rate, number of sessions, and overall time. Limited understanding of relative biological effectiveness, schedule, effect of implants, and dose rate all made it difficult to use TDF to study neutron effects. Relative biological effectiveness (RBE) was estimated and showed that for Cf, RBE was a complex function of treatment variables. In the pilot clinical studies, a value of 6.0 had been assumed. The present findings of RBE for tumor destruction are larger than those assumed. Cf was effective for cervix tumor therapy and produced control without significant side effects due to the brachytherapy method used. The TDF model was of limited value in the present analysis and more information is still needed for RBE, dose-rate, and fractionation effects for Cf neutrons to develop a more sophisticated and relevant model.

  9. Treatment of bulky stage IB and IIB cervical cancers with outpatient neutron brachytherapy, external pelvic radiation and extrafascial hysterectomy

    SciTech Connect

    Van Nagell, J.R.; Maruyama, Y.; Yoneda, J.; Donaldson, E.S.; Hanson, M.B.; Gallion, H.H.; Powell, D.E.; Kryscio, R.J.

    1986-01-01

    From January, 1977, to December, 1982, twenty-nine patients with bulky (>4 cms diameter) Stage IB or IIB cervical cancer were treated at the University of Kentucky Medical Center by a combination of out-patient neutron brachytherapy (Cf-252) and external pelvic radiation followed by extrafascial hysterectomy. Residual tumor was present in the hysterectomy specimens of 25 per cent. Complications during and following radiation therapy and surgery were minimal and included vaginal stenosis, proctitis, and hemorrhagic cystitis. The mean duration of hospitalization for surgery in these patients was 6.6 days (range 5-15 days) and postoperative morbidity was low. No patient required blood transfusion. Four patients developed urinary tract infections and two had superficial wound separations. Following treatment, patients were seen at monthly intervals for one year, every three months for two years, and every six months thereafter. No patient has been lost to follow-up. Two patients (7 per cent) developed tumor recurrence and have died of disease (1 of distant metastases; 1 local). The remaining 27 patients (93 per cent) are alive and well with no evidence of disease 24-89 months (mean 48 months) after therapy. No radiogenic fistulae or bowel obstruction were observed. These preliminary results suggest that the combination of outpatient neutron brachytherapy, external pelvic radiation, and extrafascial hysterectomy for patients with Stage IB and IIB cervical cancer is well tolerated. Complications associated with this treatment regimen have been minimal, and the recurrence rate is low. The duration of intracavitary neutron brachytherapy was short, and outpatient therapy was well received by patients.

  10. Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity

    SciTech Connect

    McGill, Mitchell R.; Williams, C. David; Xie, Yuchao; Ramachandran, Anup; Jaeschke, Hartmut

    2012-11-01

    Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites a reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity. Highlights: ► Acetaminophen overdose causes severe liver injury only in mice but not in rats. ► APAP causes hepatic GSH depletion and protein adduct formation in rats and mice. ► Less protein adducts were measured in rat liver mitochondria compared to mouse. ► No oxidant stress, peroxynitrite formation or JNK activation was present in rats. ► The