Science.gov

Sample records for buried waste remediation

  1. FY-95 technology catalog. Technology development for buried waste remediation

    SciTech Connect

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  2. Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program

    SciTech Connect

    Stapp, D.C.

    1993-01-01

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  3. Evaluating In Situ Treatment Technologies for Buried Mixed Waste Remediation at the INEEL

    SciTech Connect

    D.F. Nickelson; D.K. Jorgensen; J.J. Jessmore; R.A. Hyde; R.K. Farnsworth

    1999-02-01

    Mixed radioactive and hazardous wastes were buried at the Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL) Subsurface Disposal Area from 1952 to 1969. To begin the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remediation process for the Subsurface Disposal Area, the Environmental Protection Agency (EPA) added the INEEL to its National Priorities List in 1989. DOE's Office of Environmental Restoration is planning several CERCLA treatability studies of remedial technologies that will be evaluated for potential remediation of the buried waste in the Subsurface Disposal Area. This paper discusses the in situ treatability studies that will be performed, including in situ vitrification, in situ grouting, and in situ thermal desorption. The in situ treatability studies will be conducted on simulated and actual buried wastes at the INEEL in 1999 and 2000. Results from the treatability studies will provide substantial information on the feasibility, implementability, and cost of applying these technologies to the INEEL Subsurface Disposal Area. In addition, much of the treatability study data will be applicable to buried waste site remediation efforts across the DOE complex.

  4. Evaluating In Situ Treatment Technologies for Buried Mixed Waste Remediation at the INEEL

    SciTech Connect

    Jorgensen, Douglas Kay; Nickelson, David Frank; Nickelson, Reva Anne; Farnsworth, Richard Kent; Jessmore, James Joseph

    1999-03-01

    Mixed radioactive and hazardous wastes were buried at the Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) Subsurface Disposal Area from 1952 to 1969. To begin the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remediation process for the Subsurface Disposal Area, the Environmental Protection Agency (EPA) added the INEEL to its National Priorities List in 1989. DOE’s Office of Environmental Restoration is planning several CERCLA treatability studies of remedial technologies that will be evaluated for potential remediation of the buried waste in the Subsurface Disposal Area. This paper discusses the in situ treatability studies that will be performed, including in situ vitrification, in situ grouting, and in situ thermal desorption. The in situ treatability studies will be conducted on simulated and actual buried wastes at the INEEL in 1999 and 2000. Results from the treatability studies will provide substantial information on the feasibility, implementability, and cost of applying these technologies to the INEEL Subsurface Disposal Area. In addition, much of the treatability study data will be applicable to buried waste site remediation efforts across the DOE complex.

  5. Remotely controlled vehicles and systems for integrated remediation of buried tru wastes

    SciTech Connect

    Tucker, H.J.; Ballantyne, J.; Rife, G.; Fung, P.

    1996-12-31

    This paper describes the design, implementation and testing of remotely controlled vehicle systems developed for cooperative retrieval and transportation of Transuranic (TRU) buried wastes. The systems described are for the control of a Remote Excavator (REMEX), a Self Guided Transfer Vehicle (SGTV), a Remotely Controlled Materials Handling System and a Virtual Environment for Remote Operations (VERO), using imaging by a 3D Laser Camera.

  6. Implementation of the buried waste integrated demonstration

    SciTech Connect

    Kostelnik, K.M.; Merrill, S.K.

    1992-09-01

    The Department of Energy (DOE), Office of Technology Development (OTD) has initiated the Buried Waste Integrated Demonstration (BWID) to resolve technological deficiencies associated with the remediation of radioactive and hazardous buried waste. The BWID mission is to identify, demonstrate, and transfer innovative technologies for the remediation of DOE buried waste. To accomplish the mission, BWID is using a systems approach which supports the development of a suite of advanced and innovative technologies for the effective and efficient remediation of buried waste. This systems approach includes technologies for theentire remediation cycle. Specifically, BWID sponsors technology development in the following technology categories: site and waste characterization, retrieval, preprocessing, ex situ treatment, packaging, transportation, storage, disposal, and post-disposal monitoring.

  7. Implementation of the buried waste integrated demonstration

    SciTech Connect

    Kostelnik, K.M.; Merrill, S.K.

    1992-01-01

    The Department of Energy (DOE), Office of Technology Development (OTD) has initiated the Buried Waste Integrated Demonstration (BWID) to resolve technological deficiencies associated with the remediation of radioactive and hazardous buried waste. The BWID mission is to identify, demonstrate, and transfer innovative technologies for the remediation of DOE buried waste. To accomplish the mission, BWID is using a systems approach which supports the development of a suite of advanced and innovative technologies for the effective and efficient remediation of buried waste. This systems approach includes technologies for theentire remediation cycle. Specifically, BWID sponsors technology development in the following technology categories: site and waste characterization, retrieval, preprocessing, ex situ treatment, packaging, transportation, storage, disposal, and post-disposal monitoring.

  8. Buried Waste Integrated Demonstration. Technology summary

    SciTech Connect

    Not Available

    1994-03-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that offer promising solutions to the problems associated with the remediation of buried waste. BWID addresses the difficult remediation problems associated with DOE complex-wide buried waste, particularly transuranic (TRU) contaminated buried waste. BWID has implemented a systems approach to the development and demonstration of technologies that will characterize, retrieve, treat, and dispose of DOE buried wastes. This approach encompasses the entire remediation process from characterization to post-monitoring. The development and demonstration of the technology is predicated on how a technology fits into the total remediation process. To address all of these technological issues, BWID has enlisted scientific expertise of individuals and groups from within the DOE Complex, as well as experts from universities and private industry. The BWID mission is to support development and demonstration of a suite of technologies that, when integrated with commercially-available technologies, forms a comprehensive, remediation system for the effective and efficient remediation of buried waste throughout the DOE Complex. BWID will evaluate and validate demonstrated technologies and transfer this information and equipment to private industry to support the Office of Environmental Restoration (ER), Office of Waste Management (WM), and Office of Facility Transition (FT) remediation planning and implementation activities.

  9. In situ vitrification on buried waste

    SciTech Connect

    Bates, S.O.

    1992-01-01

    In situ vitrification (ISV) is being evaluated as a remedial treatment technology for buried mixed and transuranic (TRU) wastes at the Subsurface Disposal Area (SDA) at Idaho National Engineering Laboratory (INEL) and can be related to buried wastes at other Department of Energy (DOE) sites. There are numerous locations around the DOE Complex where wastes were buried in the ground or stored for future burial. The Buried Waste Program (BWP) is conducting a comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation/feasibility study (RI/FS) for the Department of Energy - Field Office Idaho (DOE-ID). As part of the RI/FS, an ISV scoping study on the treatability of the SDA mixed low-level and mixed TRU waste is being performed for applicability to remediation of the waste at the Radioactive Waste Management Complex (RWMC). The ISV project being conducted at the INEL by EG G Idaho, Inc. consists of a treatability investigation to collect data to satisfy nine CERCLA criteria with regards to the SDA. This treatability investigation involves a series of experiments and related efforts to study the feasibility of ISV for remediation of mixed and TRU waste disposed of at the SDA.

  10. In situ vitrification on buried waste

    SciTech Connect

    Bates, S.O.

    1992-08-01

    In situ vitrification (ISV) is being evaluated as a remedial treatment technology for buried mixed and transuranic (TRU) wastes at the Subsurface Disposal Area (SDA) at Idaho National Engineering Laboratory (INEL) and can be related to buried wastes at other Department of Energy (DOE) sites. There are numerous locations around the DOE Complex where wastes were buried in the ground or stored for future burial. The Buried Waste Program (BWP) is conducting a comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation/feasibility study (RI/FS) for the Department of Energy - Field Office Idaho (DOE-ID). As part of the RI/FS, an ISV scoping study on the treatability of the SDA mixed low-level and mixed TRU waste is being performed for applicability to remediation of the waste at the Radioactive Waste Management Complex (RWMC). The ISV project being conducted at the INEL by EG&G Idaho, Inc. consists of a treatability investigation to collect data to satisfy nine CERCLA criteria with regards to the SDA. This treatability investigation involves a series of experiments and related efforts to study the feasibility of ISV for remediation of mixed and TRU waste disposed of at the SDA.

  11. Buried Waste Integrated Demonstration test objectives

    SciTech Connect

    Morrison, J.L.; Heard, R.E.

    1993-05-01

    The mission of the Buried Waste Integrated Demonstration Program (BWID) is to support the development and demonstration of a suite of technologies that when integrated with commercially available baseline technologies form a comprehensive system for the effective and efficient remediation of buried waste throughout the US Department of Energy complex. To accomplish this mission of identifying technology solutions for remediation deficiencies, the Office of Technology Development initiated the BWID at the Idaho National Engineering Laboratory in fiscal year (FY) 1991. This document provides the test objectives against which the demonstrations will be tested during FY-93.

  12. Buried Waste Integrated Demonstration Plan

    SciTech Connect

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  13. Virtual environmental applications for buried waste characterization technology evaluation report

    SciTech Connect

    1995-05-01

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year.

  14. Buried Waste Integrated Demonstration Strategy Plan

    SciTech Connect

    Kostelnik, K.M.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology`s threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report.

  15. Buried Waste Integrated Demonstration Strategy Plan

    SciTech Connect

    Kostelnik, K.M.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology's threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report.

  16. DOE complex buried waste characterization assessment

    SciTech Connect

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m[sup 3] of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  17. DOE complex buried waste characterization assessment. Buried Waste Integrated Demonstration Program

    SciTech Connect

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m{sup 3} of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  18. Buried waste integrated demonstration FY 94 deployment plan

    SciTech Connect

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document.

  19. Buried Waste Integrated Demonstration Plan. Revision 1

    SciTech Connect

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  20. End effectors and attachments for buried waste excavation equipment

    SciTech Connect

    King, R.H.

    1993-09-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. Their efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER&WM) Department`s needs and objectives. The present focus of BWID is to support retrieval and ex-situ treatment configuration options. Future activities will explore and support containment, and stabilization efforts in addition to the retrieval/ex situ treatment options. This report presents a literature search on the state-of-the-art in end effectors and attachments in support of excavator of buried transuranic waste. Included in the report are excavator platforms and a discussion of the various attachments. Also included is it list of vendors and specifications.

  1. Risk and cost tradeoffs for remote retrieval of buried waste

    SciTech Connect

    Hyde, R.A.; Grienbenow, B.E.; Nickelson, D.F.

    1994-12-31

    The Buried Waste Integrated Demonstration is supporting the development, demonstration, testing, and evaluation of a suite of technologies that, when integrated with commercially available technologies, form a comprehensive system for the remediation of radioactive and hazardous buried waste. As a part of the program`s technology development, remote retrieval equipment is being developed and tested for the remediation of buried waste. During remedial planning, several factors are considered when choosing remote versus manual retrieval systems. Time that workers are exposed to radioactivity, chemicals, air particulate, and industrial hazards is one consideration. The generation of secondary waste is also a consideration because it amounts to more waste to treat and some wastes may require special handling or treatment. Cost is also a big factor in determining whether remote or manual operations will be used. Other considerations include implementability, effectiveness, and the number of required personnel. This paper investigates each of these areas to show the risk and cost benefits and limitations for remote versus manual retrieval of buried waste.

  2. Waste remediation

    SciTech Connect

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-12-29

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  3. Field test plan: Buried waste technologies, Fiscal Year 1995

    SciTech Connect

    Heard, R.E.; Hyde, R.A.; Engleman, V.S.; Evans, J.D.; Jackson, T.W.

    1995-06-01

    The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management.

  4. Melter development needs assessment for RWMC buried wastes

    SciTech Connect

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form (Iron-Enriched Basalt (IEB) glass/ceramic). The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended.

  5. Melter development needs assessment for RWMC buried wastes

    SciTech Connect

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form [Iron-Enriched Basalt (IEB) glass/ceramic]. The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended.

  6. FY-94 buried waste integrated demonstration program report

    SciTech Connect

    Not Available

    1994-11-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER/WM) needs and objectives. This document summarizes previous demonstrations and describes the FY-94 BWID technology development and demonstration activities. Sponsored by the DOE Office of Technology Development (OTD), BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process.

  7. Buried Waste Integrated Demonstration FY-95 Deployment Plan

    SciTech Connect

    Stacey, D.E.

    1995-03-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The FY-95 effort will fund 24 technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. Ten of these technologies will take part in the integrated field demonstration that will take place at the Idaho National Engineering Laboratory (INEL) facilities in the summer of 1995. This document is the basic operational planning document for deployment of all BWID projects funded in FY-95. Discussed in this document are the BWID preparations for the INEL integrated field demonstration, INEL research and development (R&D) demonstrations, non-INEL R&D demonstrations, and office research and technical review meetings. Each project will have a test plan detailing the specific procedures, objectives, and tasks of the test. Therefore, information that is specific to testing each technology is intentionally limited in this document.

  8. A process for ensuring regulatory compliance at the INEL`s buried waste integrated demonstrations

    SciTech Connect

    Cannon, P.G.; Watson, L.R.; Blacker, P.B.

    1993-03-01

    The Buried Waste Integrated Demonstration Program is funded by the Department of Energy Office of Technology Development. The mission of this Integrated Demonstration is to identify, evaluate, and demonstrate a suite of innovative technologies for the remediation of radioactive and hazardous waste buried throughout the DOE complex between 1950 and 1970. The program approach to development of a long-range strategy for improving buried waste remediation capabilities is to combine systems analysis with already identified remediation needs for DOE complex buried waste. The systems analysis effort has produced several configuration options (a top-level block diagram of a cradle-to-grave remediation system) capable of remediating the transuranic-contaminated waste pits and trenches at the Idaho National Engineering Laboratory. Technologies for demonstration are selected using three criteria: (a) the ability to satisfy a specific buried waste need, (b) the ability to satisfy functional and operational requirements defined for functional sub-elements in a configuration option, and (c) performance against Comprehensive Environmental Restoration and Compensation Liability Act selection criteria, such as effectiveness, implementability, and cost. Early demonstrations experienced problems with missed requirements, prompting the Buried Waste Integrated Demonstration Program Office to organize a Corrective Action Team to identify the cause and recommend corrective actions. The result of this team effort is the focus of this paper.

  9. ISV technology development plan for buried waste

    SciTech Connect

    Nickelson, D.F.; Callow, R.A. ); Luey, J.K. )

    1992-07-01

    This report identifies the main technical issues facing the in situ vitrification (ISV) application to buried waste, and presents a plan showing the top-level schedule and projected resources needed to develop and demonstrate the technology for meeting Environmental Restoration Department (ERD) needs. The plan also proposes a model strategy for the technology transfer from the Department of Energy's Office of Technology Development (DOE-OTD) to the Office of Environmental Restoration (DOE-ER) as the technology proceeds from issues resolution (development) to demonstration and remedial readiness. Implementation of the plan would require $34,91 1K in total funding to be spread in the years FY-93 through FY-98. Of this amount, $10,183K is planned to be funded by DOE-OTD through the ISV Integrated Program. The remaining amount, $24,728K, is recommended to be split between the Department of Energy (DOE) Office of Technology Development ($6,670K) and DOE Office of Environmental Restoration ($18,058K).

  10. ISV technology development plan for buried waste

    SciTech Connect

    Nickelson, D.F.; Callow, R.A.; Luey, J.K.

    1992-07-01

    This report identifies the main technical issues facing the in situ vitrification (ISV) application to buried waste, and presents a plan showing the top-level schedule and projected resources needed to develop and demonstrate the technology for meeting Environmental Restoration Department (ERD) needs. The plan also proposes a model strategy for the technology transfer from the Department of Energy`s Office of Technology Development (DOE-OTD) to the Office of Environmental Restoration (DOE-ER) as the technology proceeds from issues resolution (development) to demonstration and remedial readiness. Implementation of the plan would require $34,91 1K in total funding to be spread in the years FY-93 through FY-98. Of this amount, $10,183K is planned to be funded by DOE-OTD through the ISV Integrated Program. The remaining amount, $24,728K, is recommended to be split between the Department of Energy (DOE) Office of Technology Development ($6,670K) and DOE Office of Environmental Restoration ($18,058K).

  11. Buried waste integrated demonstration fiscal year 1992 close-out report

    SciTech Connect

    Cannon, P.G.; Kostelnik, K.M.; Owens, K.J.

    1993-02-01

    The mission of the Buried Waste Integrated Demonstration Program (BWID) is to support the development and demonstration of a suite of technologies that when integrated with commercially-available baseline technologies form a comprehensive remediation system for the effective and efficient remediation of buried waste disposed of throughout the US Department of Energy complex. To accomplish this mission of identifying technological solutions for remediation deficiencies, the Office of Technology Development initiated the BWID at the Idaho National Engineering Laboratory in fiscal year (FY)-91. This report summarizes the activities of the BWID Program during FY-92.

  12. Integrated approach to hazardous and radioactive waste remediation

    SciTech Connect

    Hyde, R.A.; Reece, W.J.

    1994-11-01

    The US Department of Energy Office of Technology Development is supporting the demonstration, and evaluation of a suite of waste retrieval technologies. An integration of leading-edge technologies with commercially available baseline technologies will form a comprehensive system for effective and efficient remediation of buried waste throughout the complex of DOE nuclear facilities. This paper discusses the complexity of systems integration, addressing organizational and engineering aspects of integration as well as the impact of human operators, and the importance of using integrated systems in remediating buried hazardous and radioactive waste.

  13. Performance-Based Technology Selection Filter description report. INEL Buried Waste Integrated Demonstration System Analysis project

    SciTech Connect

    O`Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  14. Thermal processing system concepts and considerations for RWMC buried waste

    SciTech Connect

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  15. Sensor system for buried waste containment sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, May Catherine

    2000-01-01

    A sensor system is disclosed for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  16. Xenon Isotope Releases from Buried Transuranic Waste

    NASA Astrophysics Data System (ADS)

    Dresel, P. E.; Waichler, S. R.; Kennedy, B. M.; Hayes, J. C.; McIntyre, J. I.; Giles, J. R.; Sondrup, A. J.

    2004-12-01

    Xenon is an inert rare gas produced as a fission product in nuclear reactors and through spontaneous fission of some transuranic isotopes. Thus, xenon will be released from buried transuranic waste. Two complementary methods are used to measure xenon isotopes: radiometric analysis for short-lived radioxenon isotopes and mass spectrometry for detection of stable xenon isotopes. Initial measurements near disposal facilities at the U.S. Department of Energy's Hanford Site show radioxenon and stable xenon isotopic signatures that are indicative of transuranic waste. Radioxenon analysis has greater sensitivity due to the lower background concentrations and indicates spontaneous fission due to the short half life of the isotopes. Stable isotope ratios may be used to distinguish irradiated fuel sources from pure spontaneous fission sources and are not as dependent on rapid release from the waste form. The release rate is dependent on the type of waste and container integrity and is the greatest unknown in application of this technique. Numerical multi-phase transport modeling of burial grounds at the Idaho National Engineering and Environmental Laboratory indicates that, under generalized conditions, the radioxenon isotopes will diffuse away from the waste and be found in the soil cap and adjacent to the burial ground at levels many orders of magnitude above the detection limit.

  17. Buried waste integrated demonstration Fiscal Year 1993 close-out report

    SciTech Connect

    Owens, K.J.; Hyde, R.A.

    1994-04-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the U.S. Department of Energy Environmental Restoration and Waste Management needs and objectives. BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process. To accomplish this mission of identifying technological solutions for remediation deficiencies, the Office of Technology Development initiated BWID at the Idaho National Engineering Laboratory. This report summarizes the activities of the BWID program during FY-93.

  18. Definition and compositions of standard wastestreams for evaluation of Buried Waste Integrated Demonstration treatment technologies

    SciTech Connect

    Bates, S.O.

    1993-06-01

    The Buried Waste Integrated Demonstration (BWID) Project was organized at the Idaho National Engineering Laboratory to support research, development, demonstration, testing, and evaluation of emerging technologies that offer promising solutions to remediation of buried waste. BWID will identify emerging technologies, screen them for applicability to the identified needs, select technologies for demonstration, and then evaluate the technologies based on prescribed performance objectives. The technical objective of the project is to establish solutions to Environmental Restoration and Waste Management`s technological deficiencies and improve baseline remediation systems. This report establishes a set of standard wastestream compositions that will be used by BWID to evaluate the emerging technologies. Five wastestreams are proposed that use four types of waste and a nominal case that is a homogenized combination of the four wastes. The five wastestreams will provide data on the compositional extremes and indicate the technologies` effectiveness over the complete range of expected wastestream compositions.

  19. Buried waste integrated demonstration technology integration process

    SciTech Connect

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

  20. Buried waste integrated demonstration technology integration process

    SciTech Connect

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

  1. Evaluation of the graphite electrode DC arc furnace for the treatment of INEL buried wastes

    SciTech Connect

    Surma, J.E.; Freeman, C.J.; Powell, T.D.; Cohn, D.R.; Smatlak, D.L.; Thomas, P.; Woskov, P.P.; Hamilton, R.A.; Titus, C.H.; Wittle, J.K.

    1993-06-01

    The past practices of DOE and its predecessor agencies in burying radioactive and hazardous wastes have left DOE with the responsibility of remediating large volumes of buried wastes and contaminated soils. The Buried Waste Integrated Demonstration (BWID), has chosen to evaluate treatment of buried wastes at the Idaho National Engineering Laboratory (INEL). Because of the characteristics of the buried wastes, the potential for using high-temperature thermal treatment technologies is being evaluated. The soil-waste mixture at INEL, when melted or vitrified, produces a glass/ceramic referred to as iron-enriched basalt (IEB). One potential problem with producing the IEB material is the high melting temperature of the waste and soil (1,400-1,600{degrees}C). One technology that has demonstrated capabilities to process high melting point materials is the plasma arc heated furnace. A three-party program was initiated and the program involved testing an engineering-scale DC arc furnace to gain preliminary operational and waste processibility information. It also included the design, fabrication, and evaluation of a second-generation, pilot-scale graphite electrode DC arc furnace. Widely ranging simulants of INEL buried waste were prepared and processed in the Mark I furnace. The tests included melting of soils with metals, sludges, combustibles, and simulated drums. Very promising results in terms of waste product quality, volume reduction, heating efficiency, and operational reliability and versatility were obtained. The results indicate that the graphite electrode DC arc technology would be very well suited for treating high melting point wastes such as those found at INEL. The graphite electrode DC arc furnace has been demonstrated to be very simple, yet effective, with excellent prospects for remote or semi-remote operation.

  2. The problem of burying radioactive wastes containing transplutonium elements (TPE)

    SciTech Connect

    Bryzgalova, R.V.; Krivokhatskii, A.S.; Rogozin, Y.M.; Sinitsyna, G.S.

    1986-09-01

    This paper discusses the problem of burying radioactive wastes containing TPE. The most acceptable and developed method at present is that of disposal into continental, deep-lying, geological formatins. Based on an analysis of estimates of the thermal conditions on burying highly active wastes, including TPE concentrates, data on the filtration and sorption characteristics of rocks, estimates of the diffusion of radionuclide species capable of migrating, and taking into account the retention powers of rocks it is concluded that it is possible to bury such wastes in weakly permeable geological formations possessing shielding characteristics which ensure reliability and safety in burial.

  3. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    SciTech Connect

    Callow, R.A.; Weidner, J.R.; Loehr, C.A.; Bates, S.O. ); Thompson, L.E.; McGrail, B.P. )

    1991-08-01

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designed to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.

  4. Buried transuranic wastes at ORNL: Review of past estimates and reconciliation with current data

    SciTech Connect

    Trabalka, J.R.

    1997-09-01

    Inventories of buried (generally meaning disposed of) transuranic (TRU) wastes at Oak Ridge National Laboratory (ORNL) have been estimated for site remediation and waste management planning over a period of about two decades. Estimates were required because of inadequate waste characterization and incomplete disposal records. For a variety of reasons, including changing definitions of TRU wastes, differing objectives for the estimates, and poor historical data, the published results have sometimes been in conflict. The purpose of this review was (1) to attempt to explain both the rationale for and differences among the various estimates, and (2) to update the estimates based on more recent information obtained from waste characterization and from evaluations of ORNL waste data bases and historical records. The latter included information obtained from an expert panel`s review and reconciliation of inconsistencies in data identified during preparation of the ORNL input for the third revision of the Baseline Inventory Report for the Waste Isolation Pilot Plant. The results summarize current understanding of the relationship between past estimates of buried TRU wastes and provide the most up-to-date information on recorded burials thereafter. The limitations of available information on the latter and thus the need for improved waste characterization are highlighted.

  5. Buried Waste Integrated Demonstration fiscal Year 1994 close-out report

    SciTech Connect

    Owen, K.J.

    1995-07-01

    The Buried Waste integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy Environmental Restoration and Waste Management needs and objectives. BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process. To accomplish this mission of identifying technological solutions for remediation deficiencies, the Department of Energy Office of Technology Development initiated BMD at the Idaho National Engineering Laboratory. This report summarizes the activities of the BWID program during Fiscal Year 1994. In Fiscal Year 1995, these activities are transitioning into the Landfill Stabilization Focus Area.

  6. Tank waste remediation system (TWRS) mission analysis

    SciTech Connect

    Rieck, R.H.

    1996-10-03

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  7. Cryofracture as a tool for preprocessing retrieved buried and stored transuranic waste

    SciTech Connect

    Loomis, G.G.; Winberg, M.R.; Ancho, M.L. ); Osborne, D. )

    1992-01-01

    This paper summarizes important features of an experimental demonstration of applying the Cryofracture process to size-reduce retrieved buried and stored transuranic-contaminated wastes. By size reducing retrieved buried and stored waste, treatment technologies such as thermal treatment can be expedited. Additionally, size reduction of the waste can decrease the amount of storage space required by reducing the volume requirements of storage containers. A demonstration program was performed at the Cryofracture facility by Nuclear Remedial Technologies for the Idaho National Engineering Laboratory. Cryofracture is a size-reducing process whereby objects are frozen to liquid nitrogen temperatures and crushed in a large hydraulic press. Material s at cryogenic temperatures have low ductility and are easily size-reduced by fracturing. Six 55-gallon drums and six 2 {times} 2 {times} 8 ft boxes containing simulated waste with tracers were subjected to the Cryofracture process. Data was obtained on (a) cool-down time, (b) yield strength of the containers, (c) size distribution of the waste before and after the Cryofracture process, (d) volume reduction of the waste, and (e) sampling of air and surface dusts for spread of tracers to evaluate potential contamination spread. The Cryofracture process was compared to conventional shredders and detailed cost estimates were established for construction of a Cryofracture facility at the Idaho National Engineering Laboratory.

  8. Cryofracture as a tool for preprocessing retrieved buried and stored transuranic waste

    SciTech Connect

    Loomis, G.G.; Winberg, M.R.; Ancho, M.L.; Osborne, D.

    1992-08-01

    This paper summarizes important features of an experimental demonstration of applying the Cryofracture process to size-reduce retrieved buried and stored transuranic-contaminated wastes. By size reducing retrieved buried and stored waste, treatment technologies such as thermal treatment can be expedited. Additionally, size reduction of the waste can decrease the amount of storage space required by reducing the volume requirements of storage containers. A demonstration program was performed at the Cryofracture facility by Nuclear Remedial Technologies for the Idaho National Engineering Laboratory. Cryofracture is a size-reducing process whereby objects are frozen to liquid nitrogen temperatures and crushed in a large hydraulic press. Material s at cryogenic temperatures have low ductility and are easily size-reduced by fracturing. Six 55-gallon drums and six 2 {times} 2 {times} 8 ft boxes containing simulated waste with tracers were subjected to the Cryofracture process. Data was obtained on (a) cool-down time, (b) yield strength of the containers, (c) size distribution of the waste before and after the Cryofracture process, (d) volume reduction of the waste, and (e) sampling of air and surface dusts for spread of tracers to evaluate potential contamination spread. The Cryofracture process was compared to conventional shredders and detailed cost estimates were established for construction of a Cryofracture facility at the Idaho National Engineering Laboratory.

  9. In situ grouting of buried transuranic waste with polyacrylamide

    SciTech Connect

    Spalding, B.P.; Lee, S.Y.; Farmer, C.D.; Hyder, L.K.; Supaokit, P.

    1987-01-01

    This project is a demonstration and evaluation of the in situ hydrologic stabilization of buried transuranic waste at a humid site via grout injection. Two small trenches, containing buried transuranic waste, were filled with 34.000 L of polyacrylamide grout. Initial field results have indicated that voids within the trenches were totally filled by the grout and that the intratrench hydraulic conductivity was reduced to below field-measurable values. No evidence of grout constituents were observed in twelve perimeter groundwater monitoring wells indicating that grout was contained completely within the two trenches. Polyacrylamide grout was selected for field demonstration over the polyacrylate grout due to its superior performance in laboratory degradation studies. Also supporting the selection of polyacrylamide was the difficulty in controlling the set time of the acrylate polymerization. Based on preliminary degradation monitoring, the polyacrylamide was estimated to have a microbiological half-life of 362 years in the test soil. 15 refs., 9 figs., 12 tabs.

  10. Full-scale retrieval of simulated buried transuranic waste

    SciTech Connect

    Valentich, D.J.

    1993-09-01

    This report describes the results of a field test conducted to determine the effectiveness of using conventional type construction equipment for the retrieval of buried transuranic (TRU) waste. A cold (nonhazardous and nonradioactive) test pit (1,100 yd{sup 3} volume) was constructed with boxes and drums filled with simulated waste materials, such as metal, plastic, wood, concrete, and sludge. Large objects, including truck beds, tanks, vaults, pipes, and beams, were also placed in the pit. These materials were intended to simulate the type of wastes found in TRU buried waste pits and trenches. A series of commercially available equipment items, such as excavators and tracked loaders outfitted with different end effectors, were used to remove the simulated waste. Work was performed from both the abovegrade and belowgrade positions. During the demonstration, a number of observations, measurements, and analyses were performed to determine which equipment was the most effective in removing the waste. The retrieval rates for the various excavation techniques were recorded. The inherent dust control capabilities of the excavation methods used were observed. The feasibility of teleoperating reading equipment was also addressed.

  11. Technology status report: In situ vitrification applied to buried wastes

    SciTech Connect

    Thompson, L.E.; Bates, S.O.; Hansen, J.E.

    1992-09-01

    This document is a technical status report on In Situ Vitrification (ISV) as applied to buried waste; the report takes both technical and institutional concerns into perspective. The ISV process involves electrically melting such contaminated solid media as soil, sediment, sludge, and mill tailings. The resultant product is a high-quality glass-and-crystalline waste form that possesses high resistance to corrosion and leaching and is capable of long-term environmental exposure without significant degradation. The process also significantly reduces the volume of the treated solid media due to the removal of pore spaces in the soil.

  12. Buried Waste Integrated Demonstration: Selection of potential demonstration locations

    SciTech Connect

    Arrenholz, D.A.; Knight, J.L.

    1991-11-01

    The first step towards identifying primary Buried Waste Integrated Demonstration locations is the selection of potential demonstration sites within the Subsurface Disposal Area. The sites selected are Pits 4, 5, 6, and 9, containing transuranic waste of Rocky Flats origin, the Acid Pit, and Pad A. The criteria and methodology for selection of these sites, as well as a description of the wastes present in each area, are included in this report. At a later date, technology-specific demonstration locations will be selected from these six potential sites. The selected locations will be used as necessary to demonstrate technologies whose potential abilities may be optimal on waste forms present at these identified locations.

  13. Tank waste remediation system program plan

    SciTech Connect

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  14. Hazardous waste treatment and environmental remediation research

    SciTech Connect

    Not Available

    1989-09-29

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

  15. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2003-11-18

    A sensor system for a buried waste containment site having a bottom wall barrier and sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  16. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2005-09-27

    A sensor system for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  17. Remote Excavation System technology evaluation report: Buried Waste Robotics Program

    SciTech Connect

    Not Available

    1993-09-01

    This document describes the results from the Remote Excavation System demonstration and testing conducted at the Idaho National Engineering Laboratory during June and July 1993. The purpose of the demonstration was to ascertain the feasibility of the system for skimming soil and removing various types of buried waste in a safe manner and within all regulatory requirements, and to compare the performances of manual and remote operation of a backhoe. The procedures and goals of the demonstration were previously defined in The Remote Excavation System Test Plan, which served as a guideline for evaluating the various components of the system and discussed the procedures used to conduct the tests.

  18. Analyses of SRS waste glass buried in granite in Sweden and salt in the United States

    SciTech Connect

    Williams, J.P. ); Wicks, G.G. ); Clark, D.E. ); Lodding, A.R. )

    1991-01-01

    Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP.

  19. Analyses of SRS waste glass buried in granite in Sweden and salt in the United States

    SciTech Connect

    Williams, J.P.; Wicks, G.G.; Clark, D.E.; Lodding, A.R.

    1991-12-31

    Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP.

  20. In situ containment and stabilization of buried waste

    SciTech Connect

    Allan, M.L.; Kukacka, L.E.; Heiser, J.H.

    1992-11-01

    The objective of the project was to develop, demonstrate and implement advanced grouting materials for the in-situ installation of impermeable, durable subsurface barriers and caps around waste sites and for the in-situ stabilization of contaminated soils. Specifically, the work was aimed at remediation of the Chemical Waste (CWL) and Mixed Waste Landfills (MWL) at Sandia National Laboratories (SNL) as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). This report documents this project, which was conducted in two subtasks. These were (1) Capping and Barrier Grouts, and (2) In-situ Stabilization of Contaminated Soils. Subtask 1 examined materials and placement methods for in-situ containment of contaminated sites by subsurface barriers and surface caps. In Subtask 2 materials and techniques were evaluated for in-situ chemical stabilization of chromium in soil.

  1. In-situ containment and stabilization of buried waste. Annual report FY 1993

    SciTech Connect

    Allan, M.L.; Kukacka, L.E.

    1993-10-01

    In FY 1993 research continued on development and testing of grout materials for in-situ containment and stabilization of buried waste. Specifically, the work was aimed at remediation of the Chemical Waste Landfill (CWL) at Sandia National Laboratories (SNL) in Albuquerque, New Mexico as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). The work on grouting materials was initiated in FY 1992 and the accomplishments for that year are documented in the previous annual report (Allan, Kukacka and Heiser, 1992). The remediation plan involves stabilization of the chromium plume, placement of impermeable vertical and horizontal barriers to isolate the landfill and installation of a surface cap. The required depth of subsurface barriers is approximately 33 m (100 ft). The work concentrated on optimization of grout formulations for use as grout and soil cement barriers and caps. The durability of such materials was investigated, in addition to shrinkage cracking resistance, compressive and flexural strength and permeability. The potential for using fibers in grouts to control cracking was studied. Small scale field trials were conducted to test the practicality of using the identified formulations and to measure the long term performance. Large scale trials were conducted at Sandia as part of the Subsurface Barrier Emplacement Technology Program. Since it was already determined in FY 1992 that cementitious grouts could effectively stabilize the chromium plume at the CWL after pre-treatment is performed, the majority of the work was devoted to the containment aspect.

  2. Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste

    SciTech Connect

    Turick, C; Berry, C.

    2012-10-15

    Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial

  3. Microwave remediation of hazardous and radioactive wastes

    SciTech Connect

    Wicks, G.G.

    2000-04-28

    A team from the Westinghouse Savannah River Technology Center (WSRC - a DOE Laboratory), and the University of Florida (UF - academia), has been active for about a decade in development of microwave technology for specialized waste management applications. This interaction has resulted in the development of unique equipment and uses of microwave energy for a variety of important applications for remediation of hazardous and radioactive wastes. Discussed are results of this unique technology for processing of electronic circuitry and components, medical wastes, discarded tires, and transuranic radioactive wastes.

  4. Intrinsic remediation of an industrial waste impoundment

    SciTech Connect

    Swindoll, C.M.; Lee, M.D.; Wood, K.N.; Hartten, A.S.; Bishop, A.L.; Connor, J.M.

    1995-12-31

    Intrinsic remediation, also known as natural restoration, was evaluated as a potential corrective action alternative for an industrial surface impoundment previously used for the disposal of waste treatment biosolids, organic wastes, and fly ash. Organic waste constituents included chlorobenzene, aniline, xylenes, benzene, toluene, acetone, p-cresol, 2-butanone, fluorene, and ethylbenzene. The evaluation demonstrated that the impoundment contains an active microbial community including aerobic, denitrifying, sulfate-reducing, and methanogenic microbes, and that environmental conditions were favorable for their growth. Laboratory studies confirmed that these microbes could biodegrade the organic waste constituents under varying redox conditions. The sorptive properties of the residual biosolids and fly ash contribute to the immobilization of chemical constituents and may enhance biodegradation by sequestering chemicals onto surfaces where microbes grow. Based on this field and laboratory evaluation, it was concluded that intrinsic remediation offers significant environmental benefits over other corrective action alternatives that would not allow these natural restoration processes to continue in the surface impoundment.

  5. Radioactive tank waste remediation focus area

    SciTech Connect

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  6. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste

  7. Tank waste remediation system mission analysis report

    SciTech Connect

    Acree, C.D.

    1998-01-09

    This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors` facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission.

  8. Tank waste remediation system mission analysis report

    SciTech Connect

    Acree, C.D.

    1998-01-06

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces.

  9. Remediation of Groundwater Contaminated by Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Parker, Jack; Palumbo, Anthony

    2008-07-01

    A Workshop on Accelerating Development of Practical Field-Scale Bioremediation Models; An Online Meeting, 23 January to 20 February 2008; A Web-based workshop sponsored by the U.S. Department of Energy Environmental Remediation Sciences Program (DOE/ERSP) was organized in early 2008 to assess the state of the science and knowledge gaps associated with the use of computer models to facilitate remediation of groundwater contaminated by wastes from Cold War era nuclear weapons development and production. Microbially mediated biological reactions offer a potentially efficient means to treat these sites, but considerable uncertainty exists in the coupled biological, chemical, and physical processes and their mathematical representation.

  10. Preliminary systems design study assessment report. [Evaluation of using specific technologies and system concepts for testing the buried waste and the surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L. ); Feizollahi, F. ); Del Signore, J.C. )

    1991-09-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  11. Preliminary Systems Design Study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-11-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  12. Methodology to remediate a mixed waste site

    SciTech Connect

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  13. Tank waste remediation system configuration management plan

    SciTech Connect

    Vann, J.M.

    1998-01-08

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.

  14. Regulatory issues and assumptions associated with polymers for subsurface barriers surrounding buried waste

    SciTech Connect

    Heiser, J.; Siskind, B.

    1993-11-01

    One of the options for control of contaminant migration from buried waste sites is the construction of a subsurface barrier that consists of a wall of low permeability material. Subsurface barriers will improve remediation performance by removing pathways for contaminant transport due to groundwater movement, meteorological water infiltration, vapor- and gas-phase transport, transpiration, etc. Subsurface barriers may be used to {open_quotes}direct{close_quotes} contaminant movement to collection sumps/lysimeters in cases of unexpected remediation failures or transport mechanisms, to contain leakage from underground storage tanks, and to restrict in-situ soil cleanup operation and chemicals. Brookhaven National Laboratory is currently investigating advanced polymer materials for subsurface barriers. This report addresses the regulatory aspects of using of non-traditional polymer materials as well as soil-bentonite or cement-bentonite mixtures for such barriers. The regulatory issues fall into two categories. The first category consists of issues associated with the acceptability of subsurface barriers to the Environmental Protection Agency (EPA) as a method for achieving waste site performance improvement. The second category encompasses those regulatory issues concerning health, safety and the environment which must be addressed regarding barrier installation and performance, especially if non-traditional materials are to be used. Since many of EPA`s concerns regarding subsurface barriers focus on the chemicals used during installation of these barriers the authors discuss the results of a search of the Federal Register and the Code of Federal Regulations for references in Titles 29 and 40 pertaining to key chemicals likely to be utilized in installing non-traditional barrier materials. The use of polymeric materials in the construction industry has been accomplished with full compliance with the applicable health, safety, and environmental regulations.

  15. MCNP Modeling Results for Location of Buried TRU Waste Drums

    NASA Astrophysics Data System (ADS)

    Steinman, D. K.; Schweitzer, J. S.

    2006-05-01

    In the 1960's, fifty-five gallon drums of TRU waste were buried in shallow pits on remote U.S. Government facilities such as the Idaho National Engineering Laboratory (now split into the Idaho National Laboratory and the Idaho Completion Project [ICP]). Subsequently, it was decided to remove the drums and the material that was in them from the burial pits and send the material to the Waste Isolation Pilot Plant in New Mexico. Several technologies have been tried to locate the drums non-intrusively with enough precision to minimize the chance for material to be spread into the environment. One of these technologies is the placement of steel probe holes in the pits into which wireline logging probes can be lowered to measure properties and concentrations of material surrounding the probe holes for evidence of TRU material. There is also a concern that large quantities of volatile organic compounds (VOC) are also present that would contaminate the environment during removal. In 2001, the Idaho National Engineering and Environmental Laboratory (INEEL) built two pulsed neutron wireline logging tools to measure TRU and VOC around the probe holes. The tools are the Prompt Fission Neutron (PFN) and the Pulsed Neutron Gamma (PNG), respectively. They were tested experimentally in surrogate test holes in 2003. The work reported here estimates the performance of the tools using Monte-Carlo modelling prior to field deployment. A MCNP model was constructed by INEEL personnel. It was modified by the authors to assess the ability of the tools to predict quantitatively the position and concentration of TRU and VOC materials disposed around the probe holes. The model was used to simulate the tools scanning the probe holes vertically in five centimetre increments. A drum was included in the model that could be placed near the probe hole and at other locations out to forty-five centimetres from the probe-hole in five centimetre increments. Scans were performed with no chlorine in the

  16. Microbial remediation of explosive waste.

    PubMed

    Singh, Baljinder; Kaur, Jagdeep; Singh, Kashmir

    2012-05-01

    Explosives are synthesized globally mainly for military munitions. Nitrate esters, such as GTN and PETN, nitroaromatics like TNP and TNT and nitramines with RDX, HMX and CL20, are the main class of explosives used. Their use has resulted in severe contamination of environment and strategies are now being developed to clean these substances in an economical and eco-friendly manner. The incredible versatility inherited in microbes has rendered these explosives as a part of the biogeochemical cycle. Several microbes catalyze mineralization and/or nonspecific transformation of explosive waste either by aerobic or anaerobic processes. It is likely that ongoing genetic adaptation, with the recruitment of silent sequences into functional catabolic routes and evolution of substrate range by mutations in structural genes, will further enhance the catabolic potential of bacteria toward explosives and ultimately contribute to cleansing the environment of these toxic and recalcitrant chemicals. This review summarizes information on the biodegradation and biotransformation pathways of several important explosives. Isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation are also discussed. This may be useful in developing safer and economic microbiological methods for clean up of soil and water contaminated with such compounds. The necessity of further investigations concerning the microbial metabolism of these substances is also discussed. PMID:22497284

  17. Latex-modified grouts for in-situ stabilization of buried transuranic/mixed waste

    SciTech Connect

    Allan, M.L.

    1996-06-01

    The Department of Applied Science at Brookhaven national Laboratory was requested to investigate latex-modified grouts for in-situ stabilization of buried TRU/mixed waste for INEL. The waste exists in shallow trenches that were backfilled with soil. The objective was to formulate latex-modified grouts for use with the jet grouting technique to enable in-situ stabilization of buried waste. The stabilized waste was either to be left in place or retrieved for further processing. Grouting prior to retrieval reduces the potential release of contaminants. Rheological properties of latex-modified grouts were investigated and compared with those of conventional neat cement grouts used for jet grouting.

  18. Field application of innovative grouting agents for in situ stabilization of buried waste sites

    SciTech Connect

    Loomis, G.G.; Farnsworth, R.K.

    1997-12-31

    This paper presents field applications for two innovative grouting agents that were used to in situ stabilize buried waste sites, via jet grouting. The two grouting agents include paraffin and a proprietary iron oxide based cement grout called TECT. These materials were tested in specially designed cold test pits that simulate buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The field demonstrations were performed at the INEL in an area referred to as the Cold Test Pit, which is adjacent to the INEL Radioactive Waste Management Complex (RWMC). At the RWMC, 56,000 m{sup 3} of transuranic (TRU) waste is co-mingled with over 170,000 m{sup 3} of soil in shallow land burial. Improving the confinement of this waste is one of the options for final disposition of this waste. Using jet-grouting technology to inject these materials into the pore spaces of buried waste sites results in the creation of buried monolithic waste forms that simultaneously protect the waste from subsidence, while eliminating the migratory potential of hazardous and radioactive contaminants in the waste.

  19. Tank waste remediation system dangerous waste training plan

    SciTech Connect

    POHTO, R.E.

    1999-05-13

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench.

  20. Identification of buried structures (aerial surveillance and analysis of buried waste) long-range project plan

    SciTech Connect

    Williams, K.L.

    1991-11-01

    This long-range plan presents the plan (i.e., budget, schedule, justification, and plans for technology deployment) for implementation of the Identification of Buried Structures project. Two subcontractors will test and demonstrate their technologies at the Idaho National Engineering Laboratory during October and November 1991, and will analyze their data and submit final reports to EG&G Idaho, Inc., by the end of December 1991. By February 21, 1992, EG&G Idaho will present a final report to the Department of Energy, assessing the subcontractor`s results and recommending further action.

  1. A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 1

    SciTech Connect

    1995-05-01

    This report presents a comprehensive inventory of the radiological and nonradiological contaminants in waste buried or projected to be buried from 1984 through 2003 in the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory. The project to compile the inventory is referred to as the recent and projected data task. The inventory was compiled primarily for use in a baseline risk assessment under the Comprehensive Environmental Response, Compensation, and Liability Act. The compiled information may also be useful for environmental remediation activities that might be necessary at the RWMC. The information that was compiled has been entered into a database termed CIDRA-the Contaminant Inventory Database for Risk Assessment. The inventory information was organized according to waste generator and divided into waste streams for each generator. The inventory is based on waste information that was available in facility operating records, technical and programmatic reports, shipping records, and waste generator forecasts. Additional information was obtained by reviewing the plant operations that originally generated the waste, by interviewing personnel formerly employed as operators, and by performing nuclear physics and engineering calculations. In addition to contaminant inventories, information was compiled on the physical and chemical characteristics and the packaging of the 99 waste streams. The inventory information for waste projected to be buried at the SDA in the future was obtained from waste generator forecasts. The completeness of the contaminant inventories was confirmed by comparing them against inventories in previous reports and in other databases, and against the list of contaminants detected in environmental monitoring performed at the RWMC.

  2. Assessment of incineration and melting treatment technologies for RWMC buried waste

    SciTech Connect

    Geimer, R.; Hertzler, T.; Gillins, R.; Anderson, G.L.

    1992-02-01

    This report provides an identification, description, and ranking evaluation of the available thermal treatment technologies potentially capable of treating the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried mixed waste. The ranking evaluation focused separately upon incinerators for treatment of combustible wastes and melters for noncombustible wastes. The highest rank incinerators are rotary kilns and controlled air furnaces, while the highest rank melters are the hearth configuration plasma torch, graphite electrode arc, and joule-heated melters. 4 refs.

  3. Training requirements and responsibilities for the Buried Waste Integrated Demonstration at the Radioactive Waste Management Complex

    SciTech Connect

    Vega, H.G.; French, S.B.; Rick, D.L.

    1992-09-01

    The Buried Waste Integrated Demonstration (BWID) is scheduled to conduct intrusive (hydropunch screening tests, bore hole installation, soil sampling, etc.) and nonintrusive (geophysical surveys) studies at the Radioactive Waste Management Complex (RWMC). These studies and activities will be limited to specific locations at the RWMC. The duration of these activities will vary, but most tasks are not expected to exceed 90 days. The BWID personnel requested that the Waste Management Operational Support Group establish the training requirements and training responsibilities for BWID personnel and BWID subcontractor personnel. This document specifies these training requirements and responsibilities. While the responsibilities of BWID and the RWMC are, in general, defined in the interface agreement, the training elements are based on regulatory requirements, DOE orders, DOE-ID guidance, state law, and the nature of the work to be performed.

  4. Environmental remediation and waste management information systems

    SciTech Connect

    Harrington, M.W.; Harlan, C.P.

    1993-12-31

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  5. Inorganic ion exchangers for nuclear waste remediation

    SciTech Connect

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E.

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  6. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling liquid PCB remediation waste... with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase... liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid...

  7. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling liquid PCB remediation waste... with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase... liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid...

  8. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling liquid PCB remediation waste... with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase... liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid...

  9. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling liquid PCB remediation waste... with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase... liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid...

  10. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling liquid PCB remediation waste... with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase... liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid...

  11. Tank waste remediation system engineering plan

    SciTech Connect

    Rifaey, S.H.

    1998-01-09

    This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

  12. Preliminary systems design study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each. This volume contains the descriptions and other relevant information of the four subsystems required for most of the ex situ processing systems. This volume covers the metal decontamination and sizing subsystem, soils processing subsystem, low-level waste subsystem, and retrieval subsystem.

  13. Cooperative expert system reasoning for waste remediations

    SciTech Connect

    Bohn, S.J.; Pennock, K.A.; Franklin, A.L.

    1991-12-01

    The United States Department of Energy (DOE) is facing a large task in completing Remedial Investigations and Feasibility Studies (RI/FS) for hazardous waste sites across the nation. One of the primary objectives of an RI/FS is the specification of viable sequences of technology treatment trains which can provide implementable site solutions. We present a methodology which integrates expert system technology within an object-oriented framework to create a cooperative reasoning system designed to provide a comprehensive list of these implementable solutions. The system accomplishes its goal of specifying technology trains by utilizing a ``team`` of expert system objects. The system distributes the problem solving among the individual expert objects, and then coordinates the combination of individual decisions into a joint solution. Each expert object possesses the knowledge of an expert in a particular technology. An expert object can examine the parameters and characteristics of the waste site, seek information and support from other expert objects, and then make decisions concerning its own applicability. This methodology has at least two primary benefits. First, the creation of multiple expert objects provides a more direct mapping from the actual process to a software system, making the system easier to build. Second, the distribution of the inferencing among a number of loosely connected expert objects allows for a more robust and maintainable final product.

  14. Cooperative expert system reasoning for waste remediations

    SciTech Connect

    Bohn, S.J.; Pennock, K.A.; Franklin, A.L.

    1991-12-01

    The United States Department of Energy (DOE) is facing a large task in completing Remedial Investigations and Feasibility Studies (RI/FS) for hazardous waste sites across the nation. One of the primary objectives of an RI/FS is the specification of viable sequences of technology treatment trains which can provide implementable site solutions. We present a methodology which integrates expert system technology within an object-oriented framework to create a cooperative reasoning system designed to provide a comprehensive list of these implementable solutions. The system accomplishes its goal of specifying technology trains by utilizing a team'' of expert system objects. The system distributes the problem solving among the individual expert objects, and then coordinates the combination of individual decisions into a joint solution. Each expert object possesses the knowledge of an expert in a particular technology. An expert object can examine the parameters and characteristics of the waste site, seek information and support from other expert objects, and then make decisions concerning its own applicability. This methodology has at least two primary benefits. First, the creation of multiple expert objects provides a more direct mapping from the actual process to a software system, making the system easier to build. Second, the distribution of the inferencing among a number of loosely connected expert objects allows for a more robust and maintainable final product.

  15. TECHNICAL GUIDANCE DOCUMENT: CONSTRUCTION QUALITY MANAGEMENT FOR REMEDIAL ACTION AND REMEDIAL DESIGN WASTE CONTAINMENT SYSTEMS

    EPA Science Inventory

    This Technical Guidance Document is intended to augment the numerous construction quality control and construction quality assurance (CQC and CQA) documents that are available far materials associated with waste containment systems developed for Superfund site remediation. In ge...

  16. CONSTRUCTION QUALITY MANAGEMENT FOR REMEDIAL ACTION AND REMEDIAL DESIGN WASTE CONTAINMENT SYSTEMS

    EPA Science Inventory

    This Technical Guidance Document is intended to augment the numerous construction quality control and construction quality assurance (CQC and CQA) documents that are available far materials associated with waste containment systems developed for Superfund site remediation. n gene...

  17. Technology evaluation report for the Buried Waste Robotics Program Subsurface Mapping Project

    SciTech Connect

    Griebenow, B.E.

    1992-01-01

    This document presents a summary of the work performed in support of the Buried Waste Robotics Program Subsurface Mapping Project. The project objective was to demonstrate the feasibility of remotely characterizing buried waste sites. To fulfill this objective, a remotely-operated vehicle, equipped with several sensors, was deployed at the Idaho National Engineering Laboratory. Descriptions of the equipment and areas involved in the project are included in this report. Additionally, this document provides data that was obtained during characterization operations at the Cold Test Pit and the Subsurface Disposal Area, both at the Idaho National Engineering Laboratory`s Radioactive Waste Management Complex, and at the Idaho Chemical Processing Plant. The knowledge gained from the experience, that can be applied to the next generation remote-characterization system, is extensive and is presented in this report.

  18. Technology evaluation report for the Buried Waste Robotics Program Subsurface Mapping Project

    SciTech Connect

    Griebenow, B.E.

    1992-01-01

    This document presents a summary of the work performed in support of the Buried Waste Robotics Program Subsurface Mapping Project. The project objective was to demonstrate the feasibility of remotely characterizing buried waste sites. To fulfill this objective, a remotely-operated vehicle, equipped with several sensors, was deployed at the Idaho National Engineering Laboratory. Descriptions of the equipment and areas involved in the project are included in this report. Additionally, this document provides data that was obtained during characterization operations at the Cold Test Pit and the Subsurface Disposal Area, both at the Idaho National Engineering Laboratory's Radioactive Waste Management Complex, and at the Idaho Chemical Processing Plant. The knowledge gained from the experience, that can be applied to the next generation remote-characterization system, is extensive and is presented in this report.

  19. REMEDIAL RESPONSE AT THE RICHMOND, CALIFORNIA HAZARDOUS WASTE SITE

    EPA Science Inventory

    The U.S. Environmental Protection Agency surveyed 395 uncontrolled hazardous waste sites where some form of remedial action had been planned. A series of reports on 23 sites representative of various remedial response activities has been prepared. The current report from this ser...

  20. System to control contamination during retrieval of buried TRU waste

    DOEpatents

    Menkhaus, D.E.; Loomis, G.G.; Mullen, C.K.; Scott, D.W.; Feldman, E.M.; Meyer, L.C.

    1993-04-20

    A system is described to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  1. System to control contamination during retrieval of buried TRU waste

    DOEpatents

    Menkhaus, Daniel E.; Loomis, Guy G.; Mullen, Carlan K.; Scott, Donald W.; Feldman, Edgar M.; Meyer, Leroy C.

    1993-01-01

    A system to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  2. Engineering-scale in situ vitrification tests of simulated Oak Ridge National Laboratory buried wastes

    SciTech Connect

    1996-12-01

    As part of the Comprehensive Environmental Response, Compensation, and Liability Act process for remediation of Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory, a public meeting was held on the proposed plan. It was recognized that contaminant releases from WAG 6 posed minimal potential risk to the public and environment. The US Department of Energy (DOE) in conjunction with the US Environmental Protection Agency and the Tennessee Department of Environment and Conservation agreed to defer remedial action at WAG 6 until higher risk release sites were first remediated.

  3. Baseline tests for arc melter vitrification of INEL buried wastes. Volume II: Baseline test data appendices

    SciTech Connect

    Oden, L.L.; O`Conner, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.

  4. The development of permanent isolation barriers for buried wastes in cool deserts: Hanford, Washington

    SciTech Connect

    Link, S.O.; Gee, G.W.; Wing, N.R.

    1993-12-01

    The purpose of this report is to present the results of research on surface hydrology and the role of plants and animals on permanent isolation barrier effectiveness at Hanford. These topics are a subset of a larger set of studies on permanent isolation barriers. A complete review of these tasks has been documented. We also discuss current work that tests our integrated scientific and engineering concepts on a large prototype barrier to determine if it can isolate buried wastes from environmental dispersion.

  5. Tank waste remediation system characterization project quality policies. Revision 1

    SciTech Connect

    Trimble, D.J.

    1995-10-02

    These Quality Policies (QPs) describe the Quality Management System of the Tank Waste Characterization Project (hereafter referred to as the Characterization Project), Tank Waste Remediation System (TWRS), Westinghouse Hanford Company (WHC). The Quality Policies and quality requirements described herein are binding on all Characterization Project organizations. To achieve quality, the Characterization Project management team shall implement this Characterization Project Quality Management System.

  6. Process Knowledge Characterization of Radioactive Waste at the Classified Waste Landfill Remediation Project Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    DOTSON,PATRICK WELLS; GALLOWAY,ROBERT B.; JOHNSON JR,CARL EDWARD

    1999-11-03

    This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where

  7. Evaluation and application of cost estimates for hazardous waste remediation

    SciTech Connect

    LeBoeuf, E.J.; Roberts, P.V.; McCarty, P.L.

    1996-11-01

    The remediation of sites contaminated by hazardous wastes is often a very difficult and frustrating task for all parties involved. The public rightfully demands quick elimination of possible health threats caused by the contamination of the subsurface with hazardous chemicals. The government demands the same, but is also concerned with permanence of the remediation process, and ensuring the potentially responsible parties (PRP), are held fully liable for the cleanup. Finally, the PRP is concerned about all of the aforementioned factors, its reputation, and, as important, costs. It is this final aspect of hazardous waste remediation projects that has caused the largest concern. Because business and government often evaluate costs with differing criteria, it is necessary that both parties understand each other`s position, and especially the limitations and uncertainties associated with the preparation or preliminary remediation project cost estimates. Often it is these preliminary estimates that are used to determine which available technology will be employed at a specific site. The purpose of this paper is to describe the development of remediation cost estimates, evaluate available cost assessment programs, and finally compare remediation technologies using the US Environmental Protection Agency`s Cost of Remedial Action (CORA) program in an actual remedial action case study.

  8. Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs

    SciTech Connect

    Not Available

    1993-05-01

    The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

  9. Fundamentals of hazardous waste site remediation

    SciTech Connect

    Sellers, K.

    1999-11-01

    Environmental engineering professionals now have a resource for basic remediation skills. Hazardous materials chemistry, hydrogeology, reaction engineering, and clean-up level development are among the related issues examined in detail. End-of-chapter review problems are included to test comprehension of material. This book offers a cross-disciplinary approach to solving site remediation problems. It also contains proven material, developed in actual teaching situations. In addition this book provides convenient reference for professionals--and a fine introduction for trainees.

  10. Plasma filtering techniques for nuclear waste remediation

    DOE PAGESBeta

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    The economical viability of nuclear waste cleanup e orts could, in some cases, be put at risk due to the difficulties faced in handling unknown and complex feedstocks. Plasma filtering, which operates on dissociated elements, offers advantages over chemical techniques for the processing of such wastes. In this context, the economic feasibility of plasma mass filtering for nuclear waste pretreatment before ultimate disposal is analyzed. Results indicate similar costs for chemical and plasma solid-waste pretreatment per unit mass of waste, but suggest significant savings potential as a result of a superior waste mass minimization. This performance improvement is observed overmore » a large range of waste chemical compositions, representative of legacy waste's heterogeneity. Although smaller, additional savings arise from the absence of a secondary liquid waste stream, as typically produced by chemical techniques.« less

  11. Plasma filtering techniques for nuclear waste remediation

    SciTech Connect

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    The economical viability of nuclear waste cleanup e orts could, in some cases, be put at risk due to the difficulties faced in handling unknown and complex feedstocks. Plasma filtering, which operates on dissociated elements, offers advantages over chemical techniques for the processing of such wastes. In this context, the economic feasibility of plasma mass filtering for nuclear waste pretreatment before ultimate disposal is analyzed. Results indicate similar costs for chemical and plasma solid-waste pretreatment per unit mass of waste, but suggest significant savings potential as a result of a superior waste mass minimization. This performance improvement is observed over a large range of waste chemical compositions, representative of legacy waste's heterogeneity. Although smaller, additional savings arise from the absence of a secondary liquid waste stream, as typically produced by chemical techniques.

  12. Plasma filtering techniques for nuclear waste remediation

    DOE PAGESBeta

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. As a result, this advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  13. Plasma filtering techniques for nuclear waste remediation.

    PubMed

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. PMID:25956646

  14. Process for remediation of plastic waste

    SciTech Connect

    Pol, Vilas G.; Thiyagarajan, Pappannan

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  15. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G; Thiyagarajan, Pappannan

    2013-11-12

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  16. Report for slot cutter proof-of-principle test, Buried Waste Containment System project. Revision 1

    SciTech Connect

    1998-05-21

    Several million cubic feet of hazardous and radioactive waste was buried in shallow pits and trenches within many US Department of Energy (US DOE) sites. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. Many of the hazardous materials in these waste sites are migrating into groundwater systems through plumes and leaching. On-site containment is one of the options being considered for prevention of waste migration. This report describes the results of a proof-of-principle test conducted to demonstrate technology for containing waste. This proof-of-principle test, conducted at the RAHCO International, Inc., facility in the summer of 1997, evaluated equipment techniques for cutting a horizontal slot beneath an existing waste site. The slot would theoretically be used by complementary equipment designed to place a cement barrier under the waste. The technology evaluated consisted of a slot cutting mechanism, muck handling system, thrust system, and instrumentation. Data were gathered and analyzed to evaluate the performance parameters.

  17. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    SciTech Connect

    Not Available

    1990-12-01

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  18. Radiation and Electromagnetic Induction Data Fusion for Detection of Buried Radioactive Metal Waste - 12282

    SciTech Connect

    Long, Zhiling; Wei, Wei; Turlapaty, Anish; Du, Qian; Younan, Nicolas H.; Waggoner, Charles

    2012-07-01

    At the United States Army's test sites, fired penetrators made of Depleted Uranium (DU) have been buried under ground and become hazardous waste. Previously, we developed techniques for detecting buried radioactive targets. We also developed approaches for locating buried paramagnetic metal objects by utilizing the electromagnetic induction (EMI) sensor data. In this paper, we apply data fusion techniques to combine results from both the radiation detection and the EMI detection, so that we can further distinguish among DU penetrators, DU oxide, and non- DU metal debris. We develop a two-step fusion approach for the task, and test it with survey data collected on simulation targets. In this work, we explored radiation and EMI data fusion for detecting DU, oxides, and non-DU metals. We developed a two-step fusion approach based on majority voting and a set of decision rules. With this approach, we fuse results from radiation detection based on the RX algorithm and EMI detection based on a 3-step analysis. Our fusion approach has been tested successfully with data collected on simulation targets. In the future, we will need to further verify the effectiveness of this fusion approach with field data. (authors)

  19. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect

    1995-06-01

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  20. Bases for solid waste volume estimates for tank waste remediation system

    SciTech Connect

    Reddick, G.W., Westinghouse Hanford

    1996-08-01

    This document presents the background and basis for the Tank Waste Remediation System forecast for solid waste submitted in June 1996. The forecast was generated for single-shell tank and double-shell tank activities including operations through retrieval and disposal of chemical tank waste.

  1. 40 CFR 761.61 - PCB remediation waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB remediation waste. 761.61 Section 761.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Storage and Disposal § 761.61...

  2. 40 CFR 761.61 - PCB remediation waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false PCB remediation waste. 761.61 Section 761.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Storage and Disposal § 761.61...

  3. Enhanced research in ground-penetrating radar and multisensor fusion with application to the detection and visualization of buried waste. Final report

    SciTech Connect

    Devney, A.J.; DiMarzio, C.; Kokar, M.; Miller, E.L.; Rappaport, C.M.; Weedon, W.H.

    1996-05-14

    Recognizing the difficulty and importance of the landfill remediation problems faced by DOE, and the fact that no one sensor alone can provide complete environmental site characterization, a multidisciplinary team approach was chosen for this project. The authors have developed a multisensor fusion approach that is suitable for the wide variety of sensors available to DOE, that allows separate detection algorithms to be developed and custom-tailored to each sensor. This approach is currently being applied to the Geonics EM-61 and Coleman step-frequency radar data. High-resolution array processing techniques were developed for detecting and localizing buried waste containers. A soil characterization laboratory facility was developed using a HP-8510 network analyzer and near-field coaxial probe. Both internal and external calibration procedures were developed for de-embedding the frequency-dependent soil electrical parameters from the measurements. Dispersive soil propagation modeling algorithms were also developed for simulating wave propagation in dispersive soil media. A study was performed on the application of infrared sensors to the landfill remediation problem, particularly for providing information on volatile organic compounds (VOC`s) in the atmosphere. A dust-emission lidar system is proposed for landfill remediation monitoring. Design specifications are outlined for a system which could be used to monitor dust emissions in a landfill remediation effort. The detailed results of the investigations are contained herein.

  4. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling bulk PCB remediation waste..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.265 Sampling bulk PCB remediation waste and porous...

  5. Demonstration of close-coupled barriers for subsurface containment of buried waste. Conceptual test plan

    SciTech Connect

    Heiser, J.; Dwyer, B.

    1995-07-01

    Over the past five decades, the US Department of Energy (DOE) Complex sites have experienced numerous loss of confinement failures from underground storage tanks (USTs), piping systems, vaults, landfills, and other structures containing hazardous and mixed wastes. Consequently, efforts are being made to devise technologies that provide interim containment of waste sites while final remediation alternatives are developed. Barrier materials consisting of cement and polymer which will be emplaced beneath a 7500 liter tank. The stresses around the tank shall be evaluated during barrier construction.

  6. Tandem microwave waste remediation and decontamination system

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  7. Thermal and chemical remediation of mixed waste

    DOEpatents

    Nelson, P.A.; Swift, W.M.

    1994-08-09

    A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500 C by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO[sub 3]. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed. 3 figs.

  8. Thermal and chemical remediation of mixed waste

    DOEpatents

    Nelson, Paul A.; Swift, William M.

    1994-01-01

    A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500.degree. C. by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO.sub.3. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed.

  9. In situ containment and stabilization of buried waste. Annual report FY 1992

    SciTech Connect

    Allan, M.L.; Kukacka, L.E.; Heiser, J.H.

    1992-11-01

    The objective of the project was to develop, demonstrate and implement advanced grouting materials for the in-situ installation of impermeable, durable subsurface barriers and caps around waste sites and for the in-situ stabilization of contaminated soils. Specifically, the work was aimed at remediation of the Chemical Waste (CWL) and Mixed Waste Landfills (MWL) at Sandia National Laboratories (SNL) as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). This report documents this project, which was conducted in two subtasks. These were (1) Capping and Barrier Grouts, and (2) In-situ Stabilization of Contaminated Soils. Subtask 1 examined materials and placement methods for in-situ containment of contaminated sites by subsurface barriers and surface caps. In Subtask 2 materials and techniques were evaluated for in-situ chemical stabilization of chromium in soil.

  10. Ultra wide band radar holographic imaging of buried waste at DOE sites

    SciTech Connect

    Collins, H.D.; Gribble, R.P.; Hall, T.E.; Lechelt, W.M.

    1995-04-01

    Ultra wideband linear array holography is a unique real-time imaging technique for in-situ inspection of buried waste at various DOE sites. The array can be mounted on various platforms such as crane booms, pickup trucks, ATVs, and scanned generating ``3-D`` subsurface images in real time. Inspection speeds are 0.5 to 2 meters/sec, if the image is viewed in real time, greater for off-line processing. The Ground Penetrating Holographic (GPH) system developed for inspection of DOE sites employs two 32element arrays of tapered-slot antenna operating at 5-GHz and 2.5-GHz center frequencies. The GPH system, which is mounted on a small trailer with a computer image processor, display, and power supply, is capable of imaging a wide swath (1 to 2 meters) with its linear arrays. The lower frequency array will be used at INEL (for greater depth penetration) because of high soil attenuation. Recent holographic ``3-D`` images of buried waste container lids and dielectrics obtained in Hanford sand and INEL soils at various depths graphically illustrate the unique image resolution capabilities of the system. Experimental results using the 5-GHz array will be presented showing the excellent holographic image quality of various subsurface targets in sand and INEL soil.

  11. CONTAMINATION CONTROL DURING IN SITU JET GROUTING FOR APPLICATION IN A BURIED TRANSURANIC WASTE SITE

    SciTech Connect

    Loomis, Guy G.; Jessmore, Jim J.

    2003-02-27

    Engineers at the Idaho National Engineering and Environmental Laboratory (INEEL) have developed means of contamination control associated with jet-grouting buried radioactive mixed waste sites. Finely divided plutonium/americium oxide particulate can escape as the drill stem of the jet-grouting apparatus exits a waste deposit in preparation for insertion in another injection hole. In studying various options for controlling this potential contamination, engineers found that an elaborate glovebox/drill string shroud system prevents contaminants from spreading. Researchers jet-grouted a pit with nonradioactive tracers to simulate the movement of plutonium fines during an actual application. Data from the testing indicate that the grout immobilizes the tracer material by locking it up in particles large enough to resist aerosolization.

  12. Contamination Control During In Situ Jet Grouting for Application in a Buried Transuranic Waste Site

    SciTech Connect

    Loomis, Guy George; Jessmore, James Joseph

    2003-02-01

    Engineers at the Idaho National Engineering and Environmental Laboratory (INEEL) have developed means of contamination control associated with jet-grouting buried radioactive mixed waste sites. Finely divided plutonium/americium oxide particulate can escape as the drill stem of the jet-grouting apparatus exits a waste deposit in preparation for insertion in another injection hole. In studying various options for controlling this potential contamination, engineers found that an elaborate glovebox/drill string shroud system prevents contaminants from spreading. Researchers jet-grouted a pit with nonradioactive tracers to simulate the movement of plutonium fines during an actual application. Data from the testing indicate that the grout immobilizes the tracer material by locking it up in particles large enough to resist aerosolization.

  13. Treatment of simulated INEL buried wastes using a graphite electrode DC arc furnace

    SciTech Connect

    Surma, J.E.; Lawrence, W.E.; Titus, C.H.; Wittle, J.K.; Hamilton, R.A.; Cohn, D.R.; Rhea, D.; Thomas, P.; Woskov, P.P.

    1994-08-01

    A program has been established under the auspices of the Department of Energy (DOE), Office of Technology Development (OTD), to develop the graphite electrode DC arc technology for the application of treating buried heterogenous solid wastes. A three way {open_quotes}National Laboratory-University-Industry{close_quotes} partnership was formed to develop this technology in the most timely and cost effective manner. This program is presently testing a newly fabricated pilot-scale DC arc furnace with associated diagnostics at the Plasma Fusion Center at the Massachusetts Institute of Technology. Initial testing in a smaller engineering scale furnace has established the viability of this technology for the treatment of solid heterogeneous wastes. Two diagnostic tools were developed under this program which support the evaluation of the DC arc technology. The diagnostics provide for both spatially resolved temperature measurements within the furnace and real time monitoring of the furnace metal emissions.

  14. INEL cold test pit demonstration of improvements in information derived from non-intrusive geophysical methods over buried waste sites. Phase 2, Final report

    SciTech Connect

    Not Available

    1994-04-29

    Under Contract between US DOE Idaho National Engineering Laboratory (INEL) and the Blackhawk Geosciences Division of Coleman Research Corporation (BGD-CRC), geophysical investigations were conducted to improve the detection of buried wastes. Site characterization is a costly and time consuming process with the most costly components being drilling, sampling, and chemical analysis of samples. There is a focused effort at US DOE and other agencies to investigate methodologies that reduce costs and shorten the time between characterization and clean-up. These methodologies take the form of employing non-invasive (geophysical) and minimal invasive (e.g., cone penetrometer driving) techniques of characterization, and implementing a near real-time, rational decision-making process (Expedited Site Characterization). Over the Cold Test Pit (CTP) at INEL, data were acquired with multiple sensors on a dense grid. Over the CTP the interpretations inferred from geophysical data are compared with the known placement of various waste forms in the pit. The geophysical sensors employed were magnetics, frequency and time domain electromagnetics, and ground penetrating radar. Also, because of the high data density acquired, filtering and other data processing and imaging techniques were tested. The conclusions derived from the geophysical surveys were that pit boundaries, berms between cells within the pit, and individual objects placed in the pit were best mapped by the new Geonics EM61 time domain EM metal detector. Part of the reason for the effectiveness of the time domain metal detector is that objects buried in the pit are dominantly metallic. Also, the utility of geophysical data is significantly enhanced by dimensional and 3-dimensional imaging formats. These images will particularly assist remediation engineers in visualizing buried wastes.

  15. Thermal and chemical remediation of mixed wastes

    DOEpatents

    Nelson, P.A.; Swift, W.M.

    1997-12-16

    A process is described for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500 C with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO{sub 2} gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO{sub 2} gas from the particulate-free oxidation product. The CO{sub 2} absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described. 8 figs.

  16. Thermal and chemical remediation of mixed wastes

    DOEpatents

    Nelson, Paul A.; Swift, William M.

    1997-01-01

    A process for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500.degree. C. with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO.sub.2 gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO.sub.2 gas from the particulate-free oxidation product. The CO.sub.2 absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described.

  17. A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 3

    SciTech Connect

    1995-05-01

    This is the third volume of this comprehensive report of the inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the Idaho National Engineering Laboratory. Appendix B contains a complete printout of contaminant inventory and other information from the CIDRA Database and is presented in volumes 2 and 3 of the report.

  18. A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 2

    SciTech Connect

    1995-05-01

    This is the second volume of this comprehensive report of the inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the Idaho National Engineering Laboratory. Appendix B contains a complete printout of contaminant inventory and other information from the CIDRA Database and is presented in volumes 2 and 3 of the report.

  19. Hanford site tank waste remediation system programmatic environmental review report

    SciTech Connect

    Haass, C.C.

    1998-09-03

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

  20. Demonstration of close-coupled barriers for subsurface containment of buried waste

    SciTech Connect

    Dwyer, B.P.; Heiser, J.; Stewart, W.

    1996-12-01

    The primary objective of this project is to develop and demonstrate a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification.

  1. Tank waste remediation system program plan

    SciTech Connect

    Powell, R.W.

    1998-01-09

    This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste.

  2. A remote characterization system for subsurface mapping of buried waste sites

    SciTech Connect

    Sandness, G.A.; Bennett, D.W.

    1992-10-01

    Mapping of buried objects and regions of chemical and radiological contamination is required at US Department of Energy (DOE) buried waste sites. The DOE Office of Technology Development Robotics Integrated Program has initiated a project to develop and demonstrate a remotely controlled subsurface sensing system, called the Remote Characterization System (RCS). This project, a collaborative effort by five of the National Laboratories, involves the development of a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface. To minimize interference with on-board sensors, the survey vehicle has been constructed predominatantly of non-metallic materials. The vehicle is self-propelled and will be guided by an operator located at a remote base station. The RCS sensors will be environmentally sealed and internally cooled to preclude contamination during use. Ground-penetrating radar, magnetometers, and conductivity devices are planned for geophysical surveys. Chemical and radiological sensors will be provided to locate hot spots and to provide isotopic concentration data.

  3. Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites

    SciTech Connect

    1995-09-01

    The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release to the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool.

  4. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  5. Tank waste remediation system risk management list

    SciTech Connect

    Collard, L.B.

    1995-10-31

    The Tank Waste Remedation System (TWRS) Risk Management List and it`s subset of critical risks, the Critical Risk Management List, provide a tool to senior RL and WHC management (Level-1 and -2) to manage programmatic risks that may significantly impact the TWRS program. The programmatic risks include cost, schedule, and performance risks. Performance risk includes technical risk, supportability risk (such as maintainability and availability), and external risk (i.e., beyond program control, for example, changes in regulations). The risk information includes a description, its impacts, as evaluation of the likelihood, consequences and risk value, possible mitigating actions, and responsible RL and WHC managers. The issues that typically form the basis for the risks are presented in a separate table and the affected functions are provided on the management lists.

  6. The Hanford Site Tank Waste Remediation System: An update

    SciTech Connect

    Alumkal, W.T.; Babad, H.; Harmon, H.D.; Wodrich, D.D.

    1994-01-27

    The U.S. Department of Energy`s Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of highly radioactive waste in the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m{sup 3} (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have {sup 137}Cs accumulated in 177 tanks. In addition, significant amounts of {sup 90}Sr and were removed from the tank waste, converted to salts, doubly encapsulated in metal containers., and stored in water basins. A Tank Waste Remediation System Program was established by the U.S. Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, progress has been made resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal.

  7. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    SciTech Connect

    Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-03-01

    Hanford`s underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report.

  8. Technology needs for remediation: Hanford and other DOE sites

    SciTech Connect

    Stapp, D.C.

    1993-01-01

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy's (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL's Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  9. Hazardous Waste Site Remediation, Neighborhood Change, and Neighborhood Quality.

    PubMed Central

    Greenberg, M; Schneider, D

    1994-01-01

    We tested the hypothesis that neighborhoods with hazardous waste sites may no longer be undesirable places to live if they have been at least partly remediated. We collected 377 questionnaires (42% response rate) administered from within one-half mile of the number 1, 4, and 12 hazardous waste sites on the National Priority List (Superfund). These neighborhoods were rated higher quality than neighborhoods with unremediated hazardous waste sites and about the same as neighborhoods in northern New Jersey and the United States as a whole. Newer residents considered these formerly tainted areas to be opportunities to upgrade their housing and living conditions. Long-term residents retained the negative image of the blemished neighborhood. Images p542-a PMID:9679112

  10. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    ERIC Educational Resources Information Center

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  11. Regulatory issues and assumptions associated with barriers in the vadose zone surrounding buried waste

    SciTech Connect

    Siskind, B.; Heiser, J.

    1993-02-01

    One of the options for control of contaminant migration from buried waste sites is the construction of a subsurface barrier that consists of a wall of low permeability material. The barrier material should be compatible with soil and waste conditions specific to the site and have as low an effective diffusivity as is reasonably achievable to minimize or inhibit transport of moisture and contaminants. This report addresses the regulatory issues associated with the use of non-traditional organic polymer barriers as well as the use of soil-bentonite or cement-bentonite mixtures for such barriers, considering barriers constructed from these latter materials to be a regulatory baseline. The regulatory issues fall into two categories. The first category consists of issues associated with the acceptability of such barriers to the EPA as a method for achieving site or performanceimprovement. The second category encompasses those regulatory issues concerning health, safety and the environment which must be addressed regarding barrier installation and performance, especially if non-traditional materials are to be used.

  12. PERFORMANCE OF A BURIED RADIOACTIVE HIGH LEVEL WASTE GLASS AFTER 24 YEARS

    SciTech Connect

    Jantzen, C; Daniel Kaplan, D; Ned Bibler, N; David Peeler, D; John Plodinec, J

    2008-05-05

    A radioactive high level waste glass was made in 1980 with Savannah River Site (SRS) Tank 15 waste. This glass was buried in the SRS burial ground for 24 years but lysimeter data was only available for the first 8 years. The glass was exhumed and analyzed in 2004. The glass was predicted to be very durable and laboratory tests confirmed the durability response. The laboratory results indicated that the glass was very durable as did analysis of the lysimeter data. Scanning electron microscopy of the glass burial surface showed no significant glass alteration consistent with the results of the laboratory and field tests. No detectable Pu, Am, Cm, Np, or Ru leached from the glass into the surrounding sediment. Leaching of {beta}/{delta} from {sup 90}Sr and {sup 137}Cs in the glass was diffusion controlled. Less than 0.5% of the Cs and Sr in the glass leached into the surrounding sediment, with >99% of the leached radionuclides remaining within 8 centimeters of the glass pellet.

  13. Tank waste remediation system integrated technology plan. Revision 2

    SciTech Connect

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P.

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  14. The Sonophysics and Sonochemistry of Liquid Waste Quantification and Remediation

    SciTech Connect

    Matula, Thomas J.

    1998-06-01

    This research is being conducted to (a) perform an in-depth and comprehensive study of the fundamentals of acoustic cavitation and nonlinear bubble dynamics, (b) elucidate the fundamental physics of sonochemical reactions, (c) examine the potential of sonoluminescence to quantify and monitor the presence of alkali metals and other elements in waste liquids, (d) design and evaluate more effective sonochemical reactors for waste remediation, and (e) determine the optimal acoustical parameters in the use of sonochemistry for liquid-waste-contaminant remediation. So far cells have been designed for multibubble sonoluminescence (MBSL) and single-bubble sonoluminescence (SBSL) spectroscopy experiments. Positive results have been obtained in both systems using a Raman system which covers the wavelength range from 790 to 1,070 nm. Further progress from year-1 involved the use of the newly discovered technique of changing the pressure head above the cavitation field to increase the light emission from MBSL. A second method for changing the pressure head involves pressure-jumping, whereby the pressure in the head space above the solution is quickly increased to a new steady value.

  15. Demonstration of close-coupled barriers for subsurface containment of buried waste

    SciTech Connect

    Dwyer, B.P.

    1996-05-01

    A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration was installed at a benign site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington. The composite barrier was emplaced beneath a 7,500 liter tank. The tank was chosen to simulate a typical DOE Complex waste form. The stresses induced on the waste form were evaluated during barrier construction. The barrier was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a conical shaped barrier with the waste form inside the cone. Two overlapping rows of cylindrical cement columns were grouted in a honeycomb fashion to form the secondary backdrop barrier layer. The primary barrier, a high molecular weight polymer manufactured by 3M Company, was then installed providing a relatively thin inner liner for the secondary barrier. The primary barrier was emplaced by panel jet grouting with a dual wall drill stem, two phase jet grouting system.

  16. Demonstration of close-coupled barriers for subsurface containment of buried waste

    SciTech Connect

    Heiser, J.; Dwyer, B.

    1995-11-01

    The primary objective of this project is to develop and demonstrate a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper will discuss the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration will take place at a cold site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington.

  17. Dynamic simulation of the Hanford tank waste remediation system

    SciTech Connect

    Harmsen, R.W., Westinghouse Hanford

    1996-05-03

    Cleaning up and disposing of approximately 50 years of nuclear waste is the main mission at the U.S. Department of Energy`s Hanford Nuclear Reservation, located in the southeastern part of the state of Washington. A major element of the total cleanup effort involves retrieving, processing, and disposing of radioactive and hazardous waste stored in 177 underground storage tanks. This effort, referred to as the Tank Waste Remediation System (TWRS), is expected to cost billions of dollars and take approximately 25 years to complete. Several computer simulations of this project are being created, focusing on both programmatic and detailed engineering issues. This paper describes one such simulation activity, using the ithink(TM)computer simulation software. The ithink(TM) simulation includes a representation of the complete TWRS cleanup system, from retrieval of waste through intermediate processing and final vitrification of waste for disposal. Major issues addressed to date by the simulation effort include the need for new underground storage tanks to support TWRS activities, and the estimated design capacities for various processing facilities that are required to support legally mandated program commitment dates. This paper discusses how the simulation was used to investigate these questions.

  18. High altitude mine waste remediation -- Implementation of the Idarado remedial action plan

    SciTech Connect

    Hardy, A.J.; Redmond, J.V.; River, R.A.; Davis, C.S.

    1999-07-01

    The Idarado Mine in Colorado's San Juan Mountains includes 11 tailing areas, numerous waste rock dumps, and a large number of underground openings connected by over 100 miles of raises and drifts. The tailings and mine wastes were generated from different mining and milling operations between 1975 and 1978. the Idarado Remedial Action Plan (RAP) was an innovative 5-year program developed for remediating the impacts of historic mining activities in the San Miguel River and Red Mountain Creek drainages. The challenges during implementation included seasonal access limitations due to the high altitude construction areas, high volumes of runoff during snow melt, numerous abandoned underground openings and stopped-out veins, and high profile sites adjacent to busy jeep trails and a major ski resort town. Implementation of the RAP has included pioneering efforts in engineering design and construction of remedial measures. Innovative engineering designs included direct revegetation techniques for the stabilization of tailings piles, concrete cutoff walls and French drains to control subsurface flows, underground water controls that included pipelines, weeplines, and portal collection systems, and various underground structures to collect and divert subsurface flows often exceeding 2,000 gpm. Remote work locations have also required the use of innovative construction techniques such as heavy lift helicopters to move construction materials to mines above 10,000 feet. This paper describes the 5-year implementation program which has included over 1,000,000 cubic yards of tailing regrading, application of 5,000 tons of manure and 26,000 tons of limestone, and construction of over 10,000 feet of pipeline and approximately 45,000 feet of diversion channel.

  19. Glassy slags as novel waste forms for remediating mixed wastes with high metal contents

    SciTech Connect

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

    1994-03-01

    Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms.

  20. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    SciTech Connect

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.

  1. Light Duty Utility Arm System applications for tank waste remediation

    SciTech Connect

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy`s (DOE`s) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE`s underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE`s environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE`s environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design.

  2. Remediation of Hanford's N-Reactor Liquid Waste Disposal Sites.

    PubMed

    Sitsler, Robert B.; DeMers, Steven K.

    2003-02-01

    Hanford's N-Reactor operated from 1963 to 1987 generating approximately 9 x 10 m of radioactive and hazardous liquid effluent as a result of reactor operations. Two liquid waste disposal sites, essentially large trenches designed to filter contaminants from the water as it percolates through the soil column, were established to dispose of the effluent. The discharges to the sites included cooling water from the reactor primary, spent fuel storage, and periphery systems, along with miscellaneous drainage from reactor support facilities. Today, both sites are classified as Treatment Storage and Disposal Facilities under the Resource Conservation and Recovery Act of 1976, which makes them priority sites for remediation. The two sites cover approximately 4,100 m and 9,300 m, respectively. Remediation of the sites requires removing a combined total of approximately 2.6 x 10 kg of contaminated soil and debris. Principal radionuclides contained in the soil/debris are Co, Cs, Pu, and Sr. Remediation of these waste sites requires demolishing concrete structures and excavating, hauling, and disposing of contaminated soils in work areas containing high levels of contamination and whole body dose rates in excess of 1 mSv h. The work presents unique radiological control challenges, such as minimizing external dose to workers in a constantly changing outdoor work environment, maintaining contamination control during removal of a water distribution trough filled with highly contaminated sludge, and minimizing outdoor airborne contamination during size reduction of highly contaminated pipelines. Through innovative approaches to dose reduction and contamination control, Hanford's Environmental Restoration Contractor has met the challenge, completing the first phase on schedule and with a total project exposure below the goal of 0.1 person-Sv. PMID:12555036

  3. Remediation of Hanford's N-reactor liquid waste disposal sites.

    PubMed

    Sitsler, Robert B; DeMers, Steven K

    2003-02-01

    Hanford's N-Reactor operated from 1963 to 1987 generating approximately 9 x 10(7) m3 of radioactive and hazardous liquid effluent as a result of reactor operations. Two liquid waste disposal sites, essentially large trenches designed to filter contaminants from the water as it percolates through the soil column, were established to dispose of the effluent. The discharges to the sites included cooling water from the reactor primary, spent fuel storage, and periphery systems, along with miscellaneous drainage from reactor support facilities. Today, both sites are classified as Treatment Storage and Disposal Facilities under the Resource Conservation and Recovery Act of 1976, which makes them priority sites for remediation. The two sites cover approximately 4,100 m2 and 9,300 m2, respectively. Remediation of the sites requires removing a combined total of approximately 2.6 x 10(8) kg of contaminated soil and debris. Principal radionuclides contained in the soil/debris are 60Co, 137Cs, 239Pu, and 90Sr. Remediation of these waste sites requires demolishing concrete structures and excavating, hauling, and disposing of contaminated soils in work areas containing high levels of contamination and whole body dose rates in excess of 1 mSv h-1. The work presents unique radiological control challenges, such as minimizing external dose to workers in a constantly changing outdoor work environment, maintaining contamination control during removal of a water distribution trough filled with highly contaminated sludge, and minimizing outdoor airborne contamination during size reduction of highly contaminated pipelines. Through innovative approaches to dose reduction and contamination control, Hanford's Environmental Restoration Contractor has met the challenge, completing the first phase on schedule and with a total project exposure below the goal of 0.1 person-Sv. PMID:12564346

  4. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    SciTech Connect

    Swita, W.R.

    1998-01-05

    This document provides a summary of the proposed Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost) developed to demonstrate the Tank Waste Remediation System contractor`s Readiness-to-Proceed in support of the Phase 1B mission.

  5. Remedial strategies for municipal solid waste management in China.

    PubMed

    Wang, H; Nie, Y

    2001-02-01

    The purpose of this investigation is to evaluate the current status and to identify the problems of municipal solid waste (MSW) management in China to determine appropriate remedial strategies. This is the second of two papers proposed on this topic. Major problems or difficulties identified in MSW management in China include MSW land, air, and water pollution, commingled collection, poor administration, shortage of funds, lack of facilities, and problems of training and public awareness. In order to solve these problems and to improve MSW management in China, remedial strategies in three areas are recommended: institutional reform, technology development, and legislation and administrative improvement. The primary principle involved in institutional reform is unifying legislative responsibilities into one body and developing a market mechanism for handling MSW. Composting, landfills, and incineration should be equally developed in accordance with China's needs. The feasibility of developing technology to handle MSW in China is discussed. Also recommended is the establishment of sound regulatory systems, including a service fee system, a source separation system, and a training program. China is presently undergoing economic and institutional reform at the national and local levels. Results of this study will provide useful information on MSW management in China. PMID:11256501

  6. Waste site characterization and remediation: Problems in developing countries

    SciTech Connect

    Kalavapudi, M.; Iyengar, V.

    1996-12-31

    Increased industrial activities in developing countries have degraded the environment, and the impact on the environment is further magnified because of an ever-increasing population, the prime receptors. Independent of the geographical location, it is possible to adopt effective strategies to solve environmental problems. In the United States, waste characterization and remediation practices are commonly used for quantifying toxic contaminants in air, water, and soil. Previously, such procedures were extraneous, ineffective, and cost-intensive. Reconciliation between the government and stakeholders, reinforced by valid data analysis and environmental exposure assessments, has allowed the {open_quotes}Brownfields{close_quotes} to be a successful approach. Certified reference materials and standard reference materials from the National Institute of Standards (NIST) are indispensable tools for solving environmental problems and help to validate data quality and the demands of legal metrology. Certified reference materials are commonly available, essential tools for developing good quality secondary and in-house reference materials that also enhance analytical quality. This paper cites examples of environmental conditions in developing countries, i.e., industrial pollution problems in India, polluted beaches in Brazil, and deteriorating air quality in countries, such as Korea, China, and Japan. The paper also highlights practical and effective approaches for remediating these problems. 23 refs., 7 figs., 1 tab.

  7. Tank waste remediation system systems engineering management plan

    SciTech Connect

    Peck, L.G.

    1998-01-08

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.

  8. Tank waste remediation system functions and requirements document

    SciTech Connect

    Carpenter, K.E

    1996-10-03

    This is the Tank Waste Remediation System (TWRS) Functions and Requirements Document derived from the TWRS Technical Baseline. The document consists of several text sections that provide the purpose, scope, background information, and an explanation of how this document assists the application of Systems Engineering to the TWRS. The primary functions identified in the TWRS Functions and Requirements Document are identified in Figure 4.1 (Section 4.0) Currently, this document is part of the overall effort to develop the TWRS Functional Requirements Baseline, and contains the functions and requirements needed to properly define the top three TWRS function levels. TWRS Technical Baseline information (RDD-100 database) included in the appendices of the attached document contain the TWRS functions, requirements, and architecture necessary to define the TWRS Functional Requirements Baseline. Document organization and user directions are provided in the introductory text. This document will continue to be modified during the TWRS life-cycle.

  9. Tank waste remediation system multi-year work plan

    SciTech Connect

    Not Available

    1994-09-01

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsection for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.

  10. Gas cylinder disposal pit remediation waste minimization and management

    SciTech Connect

    Alas, C.A.; Solow, A.; Criswell, C.W.; Spengler, D.; Brannon, R.; Schwender, J.M.; Eckman, C.K.; Rusthoven, T.

    1995-02-01

    A remediation of a gas cylinder disposal pit at Sandia National Laboratories, New Mexico has recently been completed. The cleanup prevented possible spontaneous releases of hazardous gases from corroded cylinders that may have affected nearby active test areas at Sandia`s Technical Area III. Special waste management, safety, and quality plans were developed and strictly implemented for this project. The project was conceived from a waste management perspective, and waste minimization and management were built into the planning and implementation phases. The site layout was planned to accommodate light and heavy equipment, storage of large quantities of suspect soil, and special areas to stage and treat gases and reactive chemicals removed from the pit, as well as radiation protection areas. Excavation was a tightly controlled activity using experienced gas cylinder and reactive chemical specialists. Hazardous operations were conducted at night under lights, to allow nearby daytime operations to function unhindered. The quality assurance plan provided specific control of, and documentation for, critical decisions, as well as the record of daily operations. Both hand and heavy equipment excavation techniques were utilized. Hand excavation techniques were utilized. Hand excavation techniques allows sealed glass containers to be exhumed unharmed. In the end, several dozen thermal batteries; 5 pounds (2.3 kg) of lithium metal; 6.6 pounds (3.0 kg) of rubidium metal; several kilograms of unknown chemicals; 140 cubic yards (107 cubic meters) of thorium-contaminated soil; 270 cubic yards (205 cubic meters) of chromium-contaminated soil; and 450 gas cylinders, including 97 intact cylinders containing inert, flammable, toxic, corrosive, or oxidizing gases were removed and effectively managed to minimize waste.

  11. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    SciTech Connect

    Berry, D.L.; Jardine, L.J.

    1993-10-01

    Hanford`s underground storage tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report. The IRG`s Preliminary Report assessed retrieval systems for underground storage tank wastes at Hanford in 1992. Westinghouse Hanford Company (WHC) concurred with the report`s recommendation that a tool should be developed for evaluating retrieval concepts. The report recommended that this tool include (1) important considerations identified previously by the IRG, (2) a means of documenting important decisions concerning retrieval systems, and (3) a focus on evaluations and assessments for the Tank Waste Remediation System (TWRS) and the Underground Storage Tank-Integrated Demonstration (UST-ID).

  12. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOEpatents

    Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  13. Improving Hazardous Waste Remediation and Restoration Decisions Using Ecosystem Services

    EPA Science Inventory

    Hazardous site management in the US includes remediation of contaminated environmental media and restoration of injured natural resources. Site remediation decisions are informed by ecological risk assessment (ERA), while restoration and compensation decisions are informed by the...

  14. COSTS OF REMEDIAL RESPONSE ACTIONS AT UNCONTROLLED HAZARDOUS WASTE SITES

    EPA Science Inventory

    The primary purpose of this study was to update conceptual design cost estimates for remedial action unit operations portrayed in earlier reports. Thirty-five remedial action unit operations conceptual designs, addressing uncontrolled landfill or impoundment disposal sites, were ...

  15. Department of Energy hazardous waste remedial actions program: Quality assurance program

    SciTech Connect

    Horne, T.E.

    1988-01-01

    This paper describes the Quality Assurance Program developed for the Hazardous Waste Remedial Actions Program Support Contractor Office (HAZWRAP SCO). Key topics discussed include an overview of the HAZWRAP SCO mission and organization, the basic quality assurance program requirements and the requirements for the control of quality for the Department of Energy and Work for Others hazardous waste management programs, and the role of ensuring quality through the project team concept for the management of remedial response actions. The paper focuses on planning for quality assurance for this remedial waste management process from preliminary assessments of remedial sites to feasibility studies. Some observations concerning the control of quality during the implementation of remedial actions are presented. (2 refs.)

  16. COSTS OF REMEDIAL ACTIONS AT UNCONTROLLED HAZARDOUS WASTE SITES: WORKER HEALTH AND SAFETY CONSIDERATIONS

    EPA Science Inventory

    Superfund resources are currently being spent to clean up many uncontrolled hazardous waste sites. Pursuant to requirements stipulated in Section 105 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, the cost-effectiveness of remedial ...

  17. Tank waste remediation system privatization infrastructure program requirements and document management process guide

    SciTech Connect

    ROOT, R.W.

    1999-05-18

    This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems.

  18. Tank waste remediation system process engineering instruction manual

    SciTech Connect

    ADAMS, M.R.

    1998-11-04

    The purpose of the Tank Waste Remediation System (TWRS) Process Engineering Instruction Manual is to provide guidance and direction to TWRS Process Engineering staff regarding conduct of business. The objective is to establish a disciplined and consistent approach to business such that the work processes within TWRS Process Engineering are safe, high quality, disciplined, efficient, and consistent with Lockheed Martin Hanford Corporation Policies and Procedures. The sections within this manual are of two types: for compliance and for guidance. For compliance sections are intended to be followed per-the-letter until such time as they are formally changed per Section 2.0 of this manual. For guidance sections are intended to be used by the staff for guidance in the conduct of work where technical judgment and discernment are required. The guidance sections shall also be changed per Section 2.0 of this manual. The required header for each manual section is illustrated in Section 2.0, Manual Change Control procedure. It is intended that this manual be used as a training and indoctrination resource for employees of the TWRS Process Engineering organization. The manual shall be required reading for all TWRS Process Engineering staff, matrixed, and subcontracted employees.

  19. An integrated systems approach to remote retrieval of buried transuranic waste using a telerobotic transport vehicle, innovative end effector, and remote excavator

    SciTech Connect

    Smith, A.M.; Rice, P.; Hyde, R.; Peterson, R.

    1995-02-01

    Between 1952 and 1970, over two million cubic feet of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory Radioactive Waste Management Complex. Commingled with this two million cubic feet of waste is up to 10 million cubic feet of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate technologies for excavating, and transporting buried transuranic wastes at the INEL, and other hazardous or radioactive waste sites throughout the US Department of Energy complex. The full-scale demonstration, conduced at RAHCO Internationals facilities in Spokane, Washington, in the summer of 1994, evaluated equipment performance and techniques for digging, dumping, and transporting buried waste. Three technologies were evaluated in the demonstration: an Innovative End Effector for dust free dumping, a Telerobotic Transport Vehicle to convey retrieved waste from the digface, and a Remote Operated Excavator to deploy the Innovative End Effector and perform waste retrieval operations. Data were gathered and analyzed to evaluate retrieval performance parameters such as retrieval rates, transportation rates, human factors, and the equipment`s capability to control contamination spread.

  20. A Title 40 Code of Federal Regulations Part 191 Evaluation of Buried Transuranic Waste at the Nevada Test Site

    SciTech Connect

    G. J. Shott, V. Yucel, L. Desotell

    2008-04-01

    In 1986, 21 m{sup 3} of transuranic (TRU) waste was inadvertently buried in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site (NTS). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is considered five options for management of the buried TRU waste. One option is to leave the waste in-place if the disposal can meet the requirements of Title 40 Code of Federal Regulations (CFR) Part 191, 'Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes'. This paper describes analyses that assess the likelihood that TRU waste in shallow land burial can meet the 40 CFR 191 standards for a geologic repository. The simulated probability of the cumulative release exceeding 1 and 10 times the 40 CFR 191.13 containment requirements is estimated to be 0.009 and less than 0.0001, respectively. The cumulative release is most sensitive to the number of groundwater withdrawal wells drilled through the disposal trench. The mean total effective dose equivalent for a member of the public is estimated to reach a maximum of 0.014 milliSievert (mSv) at 10,000 years, or approximately 10 percent of the 0.15 mSv 40 CFR 191.15 individual protection requirement. The dose is predominantly from inhalation of short-lived Rn-222 progeny in air produced by low-level waste disposed in the same trench. The transuranic radionuclide released in greatest amounts, Pu-239, contributes only 0.4 percent of the dose. The member of public dose is most sensitive to the U-234 inventory and the radon emanation coefficient. Reasonable assurance of compliance with the Subpart C groundwater protection standard is provided by site characterization data and hydrologic processes modeling which support a conclusion of no groundwater pathway within 10,000 years. Limited quantities of transuranic waste in a shallow land burial trench at the NTS can

  1. A Title 40 Code of Federal Regulations Part 191 Evaluation of Buried Transuranic Waste at the Nevada Test Site

    SciTech Connect

    Shott, G.J.; Yucel, V.; Desotell, L.; Pyles, G.; Carilli, J.

    2008-07-01

    In 1986, 21 m{sup 3} of transuranic (TRU) waste was inadvertently buried in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site (NTS). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is considered five options for management of the buried TRU waste. One option is to leave the waste in-place if the disposal can meet the requirements of Title 40 Code of Federal Regulations (CFR) Part 191, 'Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes'. This paper describes analyses that assess the likelihood that TRU waste in shallow land burial can meet the 40 CFR 191 standards for a geologic repository. The simulated probability of the cumulative release exceeding 1 and 10 times the 40 CFR 191.13 containment requirements is estimated to be 0.009 and less than 0.0001, respectively. The cumulative release is most sensitive to the number of groundwater withdrawal wells drilled through the disposal trench. The mean total effective dose equivalent for a member of the public is estimated to reach a maximum of 0.014 milli-Sievert (mSv) at 10,000 years, or approximately 10 percent of the 0.15 mSv 40 CFR 191.15 individual protection requirement. The dose is predominantly from inhalation of short-lived Rn-222 progeny in air produced by low-level waste disposed in the same trench. The transuranic radionuclide released in greatest amounts, Pu-239, contributes only 0.4 percent of the dose. The member of public dose is most sensitive to the U-234 inventory and the radon emanation coefficient. Reasonable assurance of compliance with the Subpart C groundwater protection standard is provided by site characterization data and hydrologic processes modeling which support a conclusion of no groundwater pathway within 10,000 years. Limited quantities of transuranic waste in a shallow land burial trench at the NTS can

  2. Hazardous waste site remediation and community acceptance: Beyond regulatory compliance

    SciTech Connect

    Howard, M.A.; Moreau, J.P.

    1998-12-31

    Community acceptance is an important criteria in securing regulatory approval of remediation alternatives, and yet the legal requirements for public consultation during the preparation of site investigation and feasibility study reports are minimal. Usually the only provision for formal public input on remedial plans is at the final stages of preparation through the formalistic constraints of a public meeting and limited comment period. This is often too late for meaningful public input and precludes constructive dialogue between responsible parties, local citizens, and regulatory representatives. Often the public opposes proposed remediation alternatives because of insufficient information leading to mistrust and irreconcilable differences. This paper suggests that responsible parties run the risk of community rejection of remediation plans, and costly project delays, if they follow the minimum regulatory requirements for public involvement. Through the use of active and meaningful citizen participation throughout project planning, success in securing community acceptance for preferred remedial alternatives in potentially controversial remediation projects is greatly enhanced.

  3. MANAGEING THE RETRIEVAL RISK OF BURIED TRANSURANIC (TRU) WASTE WITH UNIQUE CHARACTERISTICS

    SciTech Connect

    WOJTASEK, R.D.; GREENWELL, R.D.

    2005-11-17

    United States-Department of Energy (DOE) sites that store transuranic (TRU) waste are almost certain to encounter waste packages with characteristics that are so unique as to warrant special precautions for retrieval. At the Hanford Site, a subgroup of stored TRU waste (12 drums) had special considerations due to the radioactive source content of plutonium oxide (PuO{sub 2}), and the potential for high heat generation, pressurization, criticality, and high radiation. These characteristics bear on the approach to safely retrieve, overpack, vent, store, and transport the waste package. Because of the potential risk to personnel, contingency planning for unexpected conditions played an effective roll in work planning and in preparing workers for the field inspection activity. As a result, the integrity inspections successfully confirmed waste package configuration and waste confinement without experiencing any perturbations due to unanticipated packaging conditions. This paper discusses the engineering and field approach to managing the risk of retrieving TRU waste with unique characteristics.

  4. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... bulk PCB remediation waste that is in a single container. (1) Use a core sampler to collect a minimum... minimum of 50 cm3 of waste for analysis. (2) If more than one core sample is taken, thoroughly mix all samples into a composite sample. Take a subsample of a minimum of 50 cm3 from the mixed composite...

  5. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... bulk PCB remediation waste that is in a single container. (1) Use a core sampler to collect a minimum... minimum of 50 cm3 of waste for analysis. (2) If more than one core sample is taken, thoroughly mix all samples into a composite sample. Take a subsample of a minimum of 50 cm3 from the mixed composite...

  6. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... bulk PCB remediation waste that is in a single container. (1) Use a core sampler to collect a minimum... minimum of 50 cm3 of waste for analysis. (2) If more than one core sample is taken, thoroughly mix all samples into a composite sample. Take a subsample of a minimum of 50 cm3 from the mixed composite...

  7. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... bulk PCB remediation waste that is in a single container. (1) Use a core sampler to collect a minimum... minimum of 50 cm3 of waste for analysis. (2) If more than one core sample is taken, thoroughly mix all samples into a composite sample. Take a subsample of a minimum of 50 cm3 from the mixed composite...

  8. PROGRESS REPORT. REACTIVITY OF PEROXYNITRITE: IMPLICATIONS FOR HANFORD WASTE MANAGEMENT AND REMEDIATION

    EPA Science Inventory

    This project provides information relevant to: (i) the extent of radiation-induced accumulation of peroxynitrite in the Hanford waste and its roles in waste degradation and (ii) the potential applications of peroxynitrite in remediation technologies. These studies include: (1) De...

  9. ANNUAL REPORT. REACTIVITY OF PEROXYNITRITE: IMPLICATIONS FOR HANFORD WASTE MANAGEMENT AND REMEDIATION

    EPA Science Inventory

    This project provides information relevant to: (i) the extent of radiation-induced accumulation of peroxynitrite in the Hanford waste and its roles in waste chemistry and ii) the potential applications of peroxynitrite in remediation technologies. These studies include: (1) Det...

  10. Waste Management Plan for the Oak Ridge National Remedial Investigation/Feasibility Study

    SciTech Connect

    Not Available

    1988-04-01

    In accordance with the requirements of the Remedial Investigation/Feasibility Study (RI/FS) Project Quality Assurance Plan, this Waste Management Plan establishes clear lines of responsibility and authority, documentation requirements, and operational guidance for the collection, identification, segregation, classification, packaging, certification, and storage/disposal of wastes. These subjects are discussed in the subsequent sections of this document.

  11. Tank waste remediation system (TWRS) privatization contractor samples waste envelope D material 241-C-106

    SciTech Connect

    Esch, R.A.

    1997-04-14

    This report represents the Final Analytical Report on Tank Waste Remediation System (TWRS) Privatization Contractor Samples for Waste Envelope D. All work was conducted in accordance with ''Addendum 1 of the Letter of Instruction (LOI) for TWRS Privatization Contractor Samples Addressing Waste Envelope D Materials - Revision 0, Revision 1, and Revision 2.'' (Jones 1996, Wiemers 1996a, Wiemers 1996b) Tank 241-C-1 06 (C-106) was selected by TWRS Privatization for the Part 1A Envelope D high-level waste demonstration. Twenty bottles of Tank C-106 material were collected by Westinghouse Hanford Company using a grab sampling technique and transferred to the 325 building for processing by the Pacific Northwest National Laboratory (PNNL). At the 325 building, the contents of the twenty bottles were combined into a single Initial Composite Material. This composite was subsampled for the laboratory-scale screening test and characterization testing, and the remainder was transferred to the 324 building for bench-scale preparation of the Privatization Contractor samples.

  12. The Effect of Corrosion on the Seismic Behavior of Buried Pipelines and a Remedy for Their Seismic Retrofit

    SciTech Connect

    Hosseini, Mahmood; Moradi, Masoud

    2008-07-08

    The effect of corrosion phenomenon has been investigated by performing some sets of 3-Dimensional Nonlinear Time History Analysis (3-D NLTHA) in which soil structure interaction as well as wave propagation effects have been taken into consideration. The 3-D NLTHA has been performed by using a finite element computer program, and both states of overall and local corrosions have been considered for the study. The corrosion has been modeled in the computer program by introducing decreased values of either pipe wall thickness or modulus of elasticity and Poisson ratio. Three sets of 3-component accelerograms have been used in analyses, and some appropriate numbers of zeros have been added at the beginning of records to take into account the wave propagation in soil and its multi-support excitation effect. The soil has been modeled by nonlinear springs in longitudinal, lateral, and vertical directions. A relatively long segment of the pipeline has been considered for the study and the effect of end conditions has been investigated by assuming different kinds end supports for the segment. After studying the corroded pipeline, a remedy has been considered for the seismic retrofit of corroded pipe by using a kind of Fiber Reinforced Polymers (FRP) cover. The analyses have been repeated for the retrofitted pipeline to realize the adequacy of FRP cover. Numerical results show that if the length of the pipeline segment is large enough, comparing to the wave length of shear wave in the soil, the end conditions do not have any major effect on the maximum stress and strain values in the pipe. Results also show that corrosion can lead to the increase in plastic strain values in the pipe up to 4 times in the case of overall corrosion and up to 20 times in the case of local corrosion. The satisfactory effect of using FRP cover is also shown by the analyses results, which confirm the decrease of strain values to 1/3.

  13. The Effect of Corrosion on the Seismic Behavior of Buried Pipelines and a Remedy for Their Seismic Retrofit

    NASA Astrophysics Data System (ADS)

    Hosseini, Mahmood; Salek, Shamila; Moradi, Masoud

    2008-07-01

    The effect of corrosion phenomenon has been investigated by performing some sets of 3-Dimensional Nonlinear Time History Analysis (3-D NLTHA) in which soil structure interaction as well as wave propagation effects have been taken into consideration. The 3-D NLTHA has been performed by using a finite element computer program, and both states of overall and local corrosions have been considered for the study. The corrosion has been modeled in the computer program by introducing decreased values of either pipe wall thickness or modulus of elasticity and Poisson ratio. Three sets of 3-component accelerograms have been used in analyses, and some appropriate numbers of zeros have been added at the beginning of records to take into account the wave propagation in soil and its multi-support excitation effect. The soil has been modeled by nonlinear springs in longitudinal, lateral, and vertical directions. A relatively long segment of the pipeline has been considered for the study and the effect of end conditions has been investigated by assuming different kinds end supports for the segment. After studying the corroded pipeline, a remedy has been considered for the seismic retrofit of corroded pipe by using a kind of Fiber Reinforced Polymers (FRP) cover. The analyses have been repeated for the retrofitted pipeline to realize the adequacy of FRP cover. Numerical results show that if the length of the pipeline segment is large enough, comparing to the wave length of shear wave in the soil, the end conditions do not have any major effect on the maximum stress and strain values in the pipe. Results also show that corrosion can lead to the increase in plastic strain values in the pipe up to 4 times in the case of overall corrosion and up to 20 times in the case of local corrosion. The satisfactory effect of using FRP cover is also shown by the analyses results, which confirm the decrease of strain values to 1/3.

  14. Remediating while preserving wetland habitat at an LLR waste site in Canada

    SciTech Connect

    Kleb, H.R.; Zelmer, R.L.

    2007-07-01

    The Low-Level Radioactive Waste Management Office was established in 1982 to carry out the federal government's responsibilities for low-level radioactive (LLR) waste management in Canada. The Office operates programs to characterize, delineate, decontaminate and consolidate historic LLR waste for interim and long-term storage. In this capacity, the Office is currently considering the remediation of 9,000 cubic metres of contaminated sediment in a coastal marsh in the context of a major remediation project involving multiple urban sites. The marsh is situated between the Lake Ontario shoreline and the urban fringe of the Town of Port Hope. The marsh is designated a Cattail Mineral Shallow Marsh under the Ecological Land Classification system for Southern Ontario and was recently named the A.K. Sculthorpe Marsh in memory of a local community member. The marsh remediation will therefore require trade off between the disruption of a sensitive wetland and the removal of contaminated sediment. This paper discusses the issues and trade-off relating to the waste characterization, environmental assessment and regulatory findings and thus the remediation objectives for the marsh. Considerations include the spatial distribution of contaminated sediment, the bioavailability of contaminants, the current condition of the wetland and the predicted effects of remediation. Also considered is the significance of the wetland from provincial and municipal regulatory perspectives and the resulting directives for marsh remediation. (authors)

  15. Remediation; An overview

    SciTech Connect

    Bishop, J.

    1988-09-01

    The U.SD. government began committing the nation legally and financially in the last decade to the ultimate remediation of virtually all of the hazardous wastes that were produced in the past and remain to threaten human health and the environment, all that continue to be generated, and all that will be created in the future. Whether engendered by acts of God or human industry, the laws and regulations mandate, hazardous wastes and the threats they pose will be removed or rendered harmless. As mobilization for tackling the monumental task implied by those commitments has progressed, key concepts have changed in meaning. The remedy of remediation once literally meant burying our hazardous waste problems in landfills, for example, a solution now officially defined as the least desirable-although still commonly chosen - course of action. The process of identifying hazardous substances and determining in what quantities they constitute health and environmental hazards continues apace. As measurement technologies become increasingly precise and capable to detecting more 9s to the right of the decimal point, acceptable levels of emissions into the air and concentrations in the ground or water are reduced. This article is intended as a sketch of where the national commitment of remediation currently stands, with examples of implications for both generators of hazardous wastes and those who have entered-or seek to enter-the rapidly growing business of remediation.

  16. A demonstration of remote survey and characterization of a buried waste site using the SRIP (Soldier Robot Interface Project) testbed

    SciTech Connect

    Burks, B.L.; Richardson, B.S.; Armstrong, G.A.; Hamel, W.R.; Jansen, J.F.; Killough, S.M.; Thompson, D.H.; Emery, M.S.

    1990-01-01

    During FY 1990, the Oak Ridge National Laboratory (ORNL) supported the Department of Energy (DOE) Environmental Restoration and Waste Management (ER WM) Office of Technology Development through several projects including the development of a semiautonomous survey of a buried waste site using a remotely operated all-terrain robotic testbed borrowed from the US Army. The testbed was developed for the US Army's Human Engineering Laboratory (HEL) for the US Army's Soldier Robot Interface Project (SRIP). Initial development of the SRIP testbed was performed by a team including ORNL, HEL, Tooele Army Depot, and Odetics, Inc., as an experimental testbed for a variety of human factors issues related to military applications of robotics. The SRIP testbed was made available to the DOE and ORNL for the further development required for a remote landfill survey. The robot was modified extensively, equipped with environmental sensors, and used to demonstrate an automated remote survey of Solid Waste Storage Area No. 3 (SWSA 3) at ORNL on Tuesday, September 18, 1990. Burial trenches in this area containing contaminated materials were covered with soil nearly twenty years ago. This paper describes the SRIP testbed and work performed in FY 1990 to demonstrate a semiautonomous landfill survey at ORNL. 5 refs.

  17. Tank waste remediation system optimized processing strategy with an altered treatment scheme

    SciTech Connect

    Slaathaug, E.J.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  18. Burying uncertainty: Risk and the case against geological disposal of nuclear waste

    SciTech Connect

    Shrader-Frechette, K.S.

    1996-12-31

    The author of this book asserts that moral and ethical issues must be considered in the development of nuclear waste disposal policies. The book develops this theme showing that to date no technology has provided a fool-proof method of isolating high-level nuclear wastes and that technological advances alone will not increase public acceptance. She supports a plan for the federal government to negotiate construction of MRS facilities that would safely house high-level nuclear waste for about 100 years, providing a temporary solution and a moral and ethical alternative to permanent storage.

  19. Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Request

    SciTech Connect

    L. Davison

    2009-06-30

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

  20. Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Report

    SciTech Connect

    Lee Davison

    2009-06-30

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

  1. COMBINED GEOPHYSICAL INVESTIGATION TECHNIQUES TO IDENTIFY BURIED WASTE IN AN UNCONTROLLED LANDFILL AT THE PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    SciTech Connect

    Miller, Peter T.; Starmer, R. John

    2003-02-27

    The primary objective of the investigation was to confirm the presence and determine the location of a cache of 30 to 60 buried 55-gallon drums that were allegedly dumped along the course of the pre-existing, northsouth diversion ditch (NSDD) adjacent to permitted landfills at the Paducah Gaseous Diffusion Plant, Kentucky. The ditch had been rerouted and was being filled and re-graded at the time of the alleged dumping. Historic information and interviews with individuals associated with alleged dumping activities indicated that the drums were dumped prior to the addition of other fill materials. In addition, materials alleged to have been dumped in the ditch, such as buried roofing materials, roof flashing, metal pins, tar substances, fly ash, and concrete rubble complicated data interpretation. Some clean fill materials have been placed over the site and graded. This is an environment that is extremely complicated in terms of past waste dumping activities, construction practices and miscellaneous landfill operations. The combination of site knowledge gained from interviews and research of existing site maps, variable frequency EM data, classical total magnetic field data and optimized GPR lead to success where a simpler less focused approach by other investigators using EM-31 and EM-61 electromagnetic methods and unfocused ground penetrating radar (GPR)did not produce results and defined no real anomalies. A variable frequency electromagnetic conductivity unit was used to collect the EM data at 3,030 Hz, 5,070 Hz, 8,430 Hz, and 14,010 Hz. Both in-phase and quadrature components were recorded at each station point. These results provided depth estimates for targets and some information on the subsurface conditions. A standard magnetometer was used to conduct the magnetic survey that showed the locations and extent of buried metal, the approximate volume of ferrous metal present within a particular area, and allowed estimation of approximate target depths. The GPR

  2. Waste area Grouping 2 Phase I remedial investigation: Sediment and Cesium-137 transport modeling report

    SciTech Connect

    Clapp, R.B.; Bao, Y.S.; Moore, T.D.; Brenkert, A.L.; Purucker, S.T.; Reece, D.K.; Burgoa, B.B.

    1996-06-01

    This report is one of five reports issued in 1996 that provide follow-up information to the Phase I Remedial Investigation (RI) Report for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). The five reports address areas of concern that may present immediate risk to public health at the Clinch River and ecological risk within WAG 2 at ORNL. A sixth report, on groundwater, in the series documenting WAG 2 RI Phase I results were part of project activities conducted in FY 1996. The five reports that complete activities conducted as part of Phase I of the Remedial Investigation (RI) for WAG 2 are as follows: (1) Waste Area Grouping 2, Phase I Task Data Report: Seep Data Assessment, (2) Waste Area Grouping 2, Phase I Task Data Report: Tributaries Data Assessment, (3) Waste Area Grouping 2, Phase I Task Data Report: Ecological Risk Assessment, (4) Waste Area Grouping 2, Phase I Task Data Report: Human Health Risk Assessment, (5) Waste Area Grouping 2, Phase I Task Data Report: Sediment and {sup 137}Cs Transport Modeling In December 1990, the Remedial Investigation Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory was issued (ORNL 1990). The WAG 2 RI Plan was structured with a short-term component to be conducted while upgradient WAGs are investigated and remediated, and a long-term component that will complete the RI process for WAG 2 following remediation of upgradient WAGs. RI activities for the short-term component were initiated with the approval of the Environmental Protection Agency, Region IV (EPA), and the Tennessee Department of Environment and Conservation (TDEC). This report presents the results of an investigation of the risk associated with possible future releases of {sup 137}Cs due to an extreme flood. The results are based on field measurements made during storms and computer model simulations.

  3. Effective remediation of fish processing waste using mixed culture biofilms capable of simultaneous nitrification and denitrification.

    PubMed

    Markande, Anoop R; Kapagunta, Chandrika; Patil, Pooja S; Nayak, Binaya B

    2016-09-01

    Fish processing waste water causes pollution and eutrophication of water bodies when released untreated. Use of bacteria capable of simultaneous nitrification and denitrification (SND) as biofilms on carriers in a moving bed bioreactor (MBBR) is a popular approach but seldom used for fish processing waste water remediation. Here, we studied the variations in biofilm formation and application activities by isolates Lysinibacillus sp. HT13, Alcaligenes sp. HT15 and Proteus sp. HT37 previously reported by us. While HT13 and HT15 formed significantly higher biofilms in polystyrene microtitre plates than on carriers, HT37 exhibited highest on carriers. A consortium of the three selected bacteria grown as biofilm on MBBR carriers exhibited better remediation of ammonia (200-600 ppm and 50 mM) than the individual isolates on carriers. The mixed biofilm set on the carriers was used for nitrogenous waste removal from fish processing waste water in 2 and 20 L setups. The total nitrogen estimated by elemental analysis showed complete remediation from 250 ppm in both 2 and 20 L waste water systems within 48 h. The usual toxic nitrogenous components-ammonia, nitrite and nitrate were also remediated efficiently. PMID:27213464

  4. The highly successful safe remediation of the Fernald waste pits undertaken under the privatization model

    SciTech Connect

    Cherry, Mark; Lojek, Dave; Murphy, Con

    2003-02-23

    Remediation of eight waste pits at the Department of Energy (DOE) Fernald site, located northwest of Cincinnati, Ohio, involves excavating approximately one million tonnes in-situ of low-level waste which were placed in pits during Fernald's production era. This unique project, one of the largest in the history of CERCLA/Superfund, includes uranium and thorium contaminated waste, soils and sludges. These wet soils and sludges are thermally dried in a processing facility to meet Department of Transportation (DOT) transportation and disposal facility waste acceptance criteria, loaded into railcars and shipped to the Envirocare waste disposal facility at Clive, Utah. This project is now approximately 60% complete with more than 415,000 tonnes (460,000 tons) of waste material safely shipped in 74 unit trains to Envirocare. Work is scheduled to be completed in early 2005. Success to date demonstrates that a major DOE site remediation project can be safely and successfully executed in partnership with private industry, utilizing proven commercial best practices, existing site labor resources and support of local stakeholders. In 1997 under the DOE's privatization initiative, Fluor Fernald, Inc. (Fluor Fernald) solicited the services of the remediation industry to design, engineer, procure, construct, own and operate a facility that would undertake the remediation of the waste pits. The resulting procurement was awarded to IT Corporation, currently Shaw Environmental and Infrastructure, Inc. (Shaw). The contractor was required to finance the procurement and construction of its facilities and infrastructure. The contract was performance-based and payment would be made on the successful loadout of the waste from the facility on a per-ton basis meeting the Envirocare waste acceptance criteria. This paper details the performance to date, the challenges encountered, and the seamless partnering between DOE, the Environmental Protection Agency (EPA), Fluor Fernald, Shaw, labor

  5. Is It Better to Burn or Bury Waste for Clean Electricity Generation?

    EPA Science Inventory

    The generation of electricity through renewables has increased 5% since 2002. Although considerably less prominent than solar and wind, the use of municipal solid waste (MSW) to generate electricity represents roughly 14 percent of U.S. non-hydro renewable electricity generation....

  6. REMEDIAL ACTION, TREATMENT AND DISPOSAL OF HAZARDOUS WASTE: PROCEEDINGS OF THE SIXTEENTH ANNUAL HAZARDOUS WASTE RESEARCH SYMPOSIUM

    EPA Science Inventory

    The Sixteenth Annual Research Symposium on Remedial Action, Treatment and Disposal of Hazardous Waste was held in Cincinnati, Ohio, April 3-5, 1990. he purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed projects f...

  7. REMEDIAL ACTION, TREATMENT AND DISPOSAL OF HAZARDOUS WASTE: PROCEEDINGS OF THE SEVENTEENTH ANNUAL HAZARDOUS WASTE RESEARCH SYMPOSIUM

    EPA Science Inventory

    The Seventeenth Annual RREL Research Symposium on Remedial Action, Treatment and Disposal of Hazardous Waste was held in Cincinnati, Ohio, April 9-11, 1991. he purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed pr...

  8. Environmental health: an analysis of available and proposed remedies for victims of toxic waste contamination.

    PubMed

    Hurwitz, W J

    1981-01-01

    Past and present residents of the Love Canal area near Niagara Falls, New York, fear that they and their homes have been contaminated by toxic wastes seeping out from nearby chemical disposal sites. Hundreds of landfills nationwide are as potentially dangerous as Love Canal. In the absence of a statutory remedy, victims of contamination must rely upon common law theories of lability in order to recover damages for injuries suffered as a result of toxic waste contamination. This Note examines the merits and deficiencies of four common law theories: negligence, strict liability, nuisance and trespass. The Note concludes that none of these remedies is adequate to assure recovery to a person injured by toxic waste disposal, and recommends that legislation be adopted to ensure that victims of toxic waste contamination can be compensated for their injuries. PMID:7258193

  9. Uranium Mill Tailings remedial action project waste minimization and pollution prevention awareness program plan

    SciTech Connect

    Not Available

    1994-07-01

    The purpose of this plan is to establish a waste minimization and pollution prevention awareness (WM/PPA) program for the U.S. Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The program satisfies DOE requirements mandated by DOE Order 5400.1. This plan establishes planning objectives and strategies for conserving resources and reducing the quantity and toxicity of wastes and other environmental releases.

  10. A Remote Characterization System for subsurface mapping of buried waste sites

    SciTech Connect

    Sandness, G.A.; Bennett, D.W.; Martinson, L.

    1992-06-01

    This paper describes a development project that will provide new technology for characterizing hazardous waste burial sites. The project is a collaborative effort by five of the national laboratories, involving the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface.

  11. Is it better to burn or bury waste for clean electricity generation?

    PubMed

    Kaplan, P Ozge; Decarolis, Joseph; Thorneloe, Susan

    2009-03-15

    The use of municipal solid waste (MSW) to generate electricity through landfill-gas-to-energy (LFGTE) and waste-to-energy (WTE) projects represents roughly 14% of U.S. nonhydro renewable electricity generation. Although various aspects of LFGTE and WTE have been analyzed in the literature, this paper is the first to present a comprehensive set of life-cycle emission factors per unit of electricity generated for these energy recovery options. In addition, sensitivity analysis is conducted on key inputs (e.g., efficiency of the WTE plant landfill gas management schedules, oxidation rate, and waste composition) to quantify the variability in the resultant life-cycle emissions estimates. While methane from landfills results from the anaerobic breakdown of biogenic materials, the energy derived from WTE results from the combustion of both biogenic and fossil materials. The greenhouse gas emissions for WTE ranges from 0.4 to 1.5 MTCO2e/MWh, whereas the most agressive LFGTE scenerio results in 2.3 MTCO2e/MWh. WTE also produces lower NO(x) emissions than LFGTE, whereas SO(x) emissions depend on the specific configurations of WTE and LFGTE. PMID:19368161

  12. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    SciTech Connect

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W.

    2013-07-01

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

  13. UNITED STATES AND GERMAN BILATERAL AGREEMENT ON REMEDIATION OF HAZARDOUS WASTE SITES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Germany's Bundesministerium fur Forschung und Technologie (BMFT) are involved in a collaborative effort called the U.S. and German Bilateral Agreement on Remediation of Hazardous Waste Sites. he purpose of this interim status rep...

  14. CONTROL TECHNOLOGIES FOR REMEDIATION OF CONTAMINATED SOIL AND WASTE DEPOSITS AT SUPERFUND LEAD BATTERY RECYCLING SITES

    EPA Science Inventory

    This paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. A defunct LBRS is a facility at which battery breaking, secondary lead smelting, or both operations...

  15. CONTROL TECHNOLOGIES FOR REMEDIATION OF CONTAMINATED SOIL AND WASTE DEPOSITS AT SUPERFUND LEAD BATTERY SITES

    EPA Science Inventory

    This paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. efunct LBRS is a facility at which battery breaking, secondary lead smelting, or both operations we...

  16. 76 FR 63509 - Small Business Size Standards: Administrative and Support, Waste Management and Remediation Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ...The U.S. Small Business Administration (SBA) proposes to increase small business size standards for 37 industries in North American Industry Classification System (NAICS) Sector 56, Administrative and Support, Waste Management and Remediation Services. As part of its ongoing comprehensive review of all size standards, SBA has evaluated all receipts based standards in NAICS Sector 56 to......

  17. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... management activities under a RAP at a location removed from the area where the remediation wastes originated... Plans (RAPs) Obtaining A Rap for An Off-Site Location § 270.230 May I perform remediation waste management activities under a RAP at a location removed from the area where the remediation wastes...

  18. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... management activities under a RAP at a location removed from the area where the remediation wastes originated... Plans (RAPs) Obtaining A Rap for An Off-Site Location § 270.230 May I perform remediation waste management activities under a RAP at a location removed from the area where the remediation wastes...

  19. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... management activities under a RAP at a location removed from the area where the remediation wastes originated... Plans (RAPs) Obtaining A Rap for An Off-Site Location § 270.230 May I perform remediation waste management activities under a RAP at a location removed from the area where the remediation wastes...

  20. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... management activities under a RAP at a location removed from the area where the remediation wastes originated... Plans (RAPs) Obtaining A Rap for An Off-Site Location § 270.230 May I perform remediation waste management activities under a RAP at a location removed from the area where the remediation wastes...

  1. In-situ containment and stabilization of buried waste: Annual report FY 1994

    SciTech Connect

    Allan, M.L.; Kukacka, L.E.

    1994-10-01

    The two landfills of specific interest are the Chemical Waste Landfill (CWL) and the Mixed Waste Landfill (MWL), both located at Sandia National Laboratory. The work is comprised of two subtasks: (1) In-Situ Barriers and (2) In-Situ Stabilization of Contaminated Soils. The main environmental concern at the CWL is a chromium plume resulting from disposal of chromic acid and chromic sulfuric acid into unlined pits. This program has investigated means of in-situ stabilization of chromium contaminated soils and placement of containment barriers around the CWL. The MWL contains a plume of tritiated water. In-situ immobilization of tritiated water with cementitious grouts was not considered to be a method with a high probability of success and was not pursued. This is discussed further in Section 5.0. Containment barriers for the tritium plume were investigated. FY 94 work focused on stabilization of chromium contaminated soil with blast furnace slag modified grouts to bypass the stage of pre-reduction of Cr(6), barriers for tritiated water containment at the MWL, continued study of barriers for the CWL, and jet grouting field trials for CWL barriers at an uncontaminated site at SNL. Cores from the FY 93 permeation grouting field trails were also tested in FY 94.

  2. Use of a Paraffin Based Grout to Stabilize Buried Beryllium and Other Wastes

    SciTech Connect

    Gretchen Matthern; Duane Hanson; Neal Yancey; Darrell Knudson

    2005-12-01

    The long term durability of WAXFIXi, a paraffin based grout, was evaluated for in situ grouting of activated beryllium wastes in the Subsurface Disposal Area (SDA), a radioactive landfill at the Radioactive Waste Management Complex, part of the Idaho National Laboratory (INL). The evaluation considered radiological and biological mechanisms that could degrade the grout using data from an extensive literature search and previous tests of in situ grouting at the INL. Conservative radioactive doses for WAXFIX were calculated from the "hottest" (i.e., highest-activity) Advanced Test Reactor beryllium block in the SDA.. These results indicate that WAXFIX would not experience extensive radiation damage for many hundreds of years. Calculation of radiation induced hydrogen generation in WAXFIX indicated that grout physical performance should not be reduced beyond the effects of radiation dose on the molecular structure. Degradation of a paraffin-based grout by microorganisms in the SDA is possible and perhaps likely, but the rate of degradation will be at a slower rate than found in the literature reviewed. The calculations showed the outer 0.46 m (18 in.) layer of each monolith, which represents the minimum expected distance to the beryllium block, was calculated to require 1,000 to 3,600 years to be consumed. The existing data and estimations of biodegradation and radiolysis rates

  3. In-situ stabilization of radioactively contaminated low-level solid wastes buried in shallow trenches: an assessment

    SciTech Connect

    Arora, H.S.; Tamura, T.; Boegly, W.J.

    1980-09-01

    The potential effectiveness of materials for in-situ encapsulation of low-level, radioactively contaminated solid waste buried in shallow trenches is enumerated. Cement, clay materials, and miscellaneous sorbents, aqueous and nonaqueous gelling fluids and their combinations are available to solidify contaminated free water in trenches, to fill open voids, and to minimize radionuclide mobility. The success of the grouting technique will depend on the availability of reliable geohydrologic data and laboratory development of a mix with enhanced sorption capacity for dominant radionuclides present in the trenches. A cement-bentonite-based grout mix with low consistency for pumping, several hours controlled rate of hardening, negligible bleeding, and more than 170 kPa (25 psi) compressive strength are a few of the suggested parameters in laboratory mix development. Cost estimates of a cement-bentonite-based grout mix indicate that effective and durable encapsulation can be accomplished at a reasonable cost (about $113 per cubic meter). However, extensive implementation of the method suggests the need for a field demonstration of the method. 53 references.

  4. Application of non-radiometric methods to the determination of plutonium. Literature review conducted for the Buried Waste Integrated Program

    SciTech Connect

    Edelson, M.C.

    1992-03-05

    This literature review was motivated by discussions that took place during a review of contamination control technologies proposed for INEL (buried waste). It should be a useful tool in identifying non-radiation measurement techniques for Pu and Am such as ICP-MS, which should fulfill the following criteria: apparatus must be field deployable; up to 100 samples per day; and lower levels of detection and required time must be listed. The sensitivity of ICP and RIMS is compared against that needed for contamination monitoring at INEL. Only Pu-241, with a required detection limit of 400 ppt, would challenge the sensitivity of ICP-MS; Pu-238 would be easily determined. The need to determine Pu-238 and Am-241 in the presence of U-238 and Pu-241 seems to preclude the possibility of using laser ablation ICP-MS for Pu monitoring. ICP-AES and -LEAFS methods may not have enough sensitivity to determine Pu-238 at 2 ppb level with confidence, but RIMS (resonance ionization mass spectroscopy) should be adequate. 47 refs, figs.

  5. HANDBOOK FOR REMEDIAL ACTION AT WASTE DISPOSAL SITES

    EPA Science Inventory

    This handbook is directed toward technical personnel in federal, state, regional, and municipal agencies involved in the cleanup of hazardous waste disposal sites, industrial surface impoundments, and municipal, industrial, and combined landfills. It contains a summary of the flo...

  6. Safety-Related Activities of the IAEA for Radioactive Waste, Decommissioning and Remediation - 13473

    SciTech Connect

    Hahn, Pil-Soo; Vesterlind, Magnus

    2013-07-01

    To fulfil its mandate and serve the needs of its Member States, the IAEA is engaged in a wide range of safety-related activities pertaining to radioactive waste management, decommissioning and remediation. One of the statutory obligations of the IAEA is to establish safety standards and to provide for the application of these standards. The present paper describes recent developments in regard to the IAEA's waste safety standards, and some of the ways the IAEA makes provision for their application. The safety standards and supporting safety demonstration projects seek to establish international consensus on methodologies and approaches for dealing with particular subject areas, for example, safety assessment for radioactive waste disposal. (authors)

  7. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Wickline, Alfred

    2007-06-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

  8. INEL cold test pit demonstration of improvements in information derived from non-intrusive geophysical methods over buried waste sites. Phase 1, Final report

    SciTech Connect

    Not Available

    1993-09-08

    The objectives of this research project were to lay the foundation for further improvement in the use of geophysical methods for detection of buried wastes, and to increase the information content derived from surveys. Also, an important goal was to move from mere detection to characterization of buried wastes. The technical approach to achieve these objectives consisted of: (1) Collect a data set of high spatial density; (2) Acquire data with multiple sensors and integrate the interpretations inferred from the various sensors; (3) Test a simplified time domain electromagnetic system; and (4) Develop imaging and display formats of geophysical data readily understood by environmental scientists and engineers. The breadth of application of this work is far reaching. Not only are uncontrolled waste pits and trenches, abandoned underground storage tanks, and pipelines found throughout most US DOE facilities, but also at military installations and industrial facilities. Moreover, controlled land disposal sites may contain ``hot spots`` where drums and hazardous material may have been buried. The technologies addressed by the R&D will benefit all of these activities.

  9. Experimental logistics plan in support of Extensive Separations for Hanford tank waste remediation systems

    SciTech Connect

    Enderlin, W.I.; Swanson, J.L.; Carlson, C.D.; Hirschi, E.J.

    1993-12-01

    All proposed methods for remediating the radioactive and chemical waste stored in single- and double-shell tanks (SSTs and DSTs) at the Hanford Site require the separation of the waste mixtures in the tank into high-level and low-level fractions, the safe transport of this separated waste to appropriate immobilization facilities, and the long-term disposal of the immobilized waste forms. Extensive experimentation, especially in waste separations, will be required to develop the technologies and to produce the data that support the most effective and safe cleanup processes. As part of this effort, Pacific Northwest Laboratory (PNL) is developing this detailed experimental logistics plan to determine the logistical/resource requirements, and ultimately the critical paths, necessary to effectively and safely conduct the multitude of experiments within the Extensive Separations Development Program, which addresses the experimental needs of a concept that provides a high degree of separation for the high-level and low-level waste fractions. The logistics issues developed for this program are expected to be similar to those for other programs aimed at remediating and disposing of the wastes.

  10. In-situ containment of buried waste at Brookhaven National Laboratory

    SciTech Connect

    Dwyer, B.P.; Heiser, J.; Stewart, W.; Phillips, S.

    1997-12-31

    The primary objective of this project was to further develop close-coupled barrier technology for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and chemically resistant polymer layer. The technology has matured from a regulatory investigation of issues concerning barriers and barrier materials to a pilot-scale, multiple individual column injections at Sandia National Labs (SNL) to full scale demonstration. The feasibility of this barrier concept was successfully proven in a full scale {open_quotes}cold test{close_quotes} demonstration at Hanford, WA. Consequently, a full scale deployment of the technology was conducted at an actual environmental restoration site at Brookhaven National Lab (BNL), Long Island, NY. This paper discusses the installation and performance of a technology deployment implemented at OU-1 an Environmental Restoration Site located at BNL.

  11. Cost-effective remediation of mine waste sites on a catchment scale

    NASA Astrophysics Data System (ADS)

    Destouni, G.; Baresel, C.

    2003-04-01

    Mine waste deposits from historic and active mining within the Swedish Dal River catchment are sources of heavy metals that may pollute groundwater and surface water in the catchment, as well as the Baltic Sea. Implemented and planned mine waste remediation measures are based on environmental legislation that handles different sources, in this case the mine waste sites, uniformly. The new EU Water Framework Directive (WFD) demands new tools for water quality management and decision-making within a catchment, including quantification of catchment-scale economic efficiency in chosen remediation measures, the allocation of which may then be non-uniform among the different sources of a certain water pollutant in a catchment. We present a cost-minimization model for determining cost-effective mine waste remediation allocation in the Dal River catchment, in order to achieve targeted zinc, copper and cadmium load reductions to selected recipients, including the Dal River itself. We consider various, practically feasible remediation measures and designs, including soil and water covering of sources, and downstream wetland construction close to or at compliance boundaries (CBs). We calculate the cost-efficient measure allocation, and associated total and marginal costs for minimum-cost compliance to different environmental targets (ETs; in terms of metal load reduction) and CB locations (recipients), and for different scenarios of technological efficiency, cost and lifetime. Total abatement cost for achieving a certain ET (load reduction) may then be as high for a local water environment as for the Dal River (entire catchment-scale), thus implying much higher marginal costs for the former, local compliance. The WFD allows for the possibility to use heavily modified waters, for instance close to sources, as pollutant sinks, and focus remediation on achieving good water quality in downstream, more practically restorable water bodies. The active choice of CB location is then

  12. USE OF ELECTROKINETICS FOR HAZARDOUS WASTE SITE REMEDIATION

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) program was authorized as part of the 1986 amendments to the Superfund legislation. t represents a joint effort between the U.S. EPA's Office of Research and Development and Office of Solid Waste and Emergency Response. he pro...

  13. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... application of particular disposal and cleanup regulatory requirements regarding PCB- contaminated building... PCB-contaminated building materials. The Toxic Substances Control Act (TSCA) regulations at 40 CFR 761...-contaminated building material depend on whether the material is classified as PCB bulk product waste or...

  14. DEVELOPMENT OF INORGANIC ION EXCHANGERS FOR NUCLEAR WASTE REMEDIATION

    EPA Science Inventory

    This research is concerned with the development of highly selective inorganic ion exchangers for the removal of primarily Cs+ and Sr2+ from nuclear tank waste and from groundwater. In this study, we will probe the, origins of selectivity through detailed structural studies and th...

  15. USE OF ELECTROKINETICS FOR HAZARDOUS WASTE SITE REMEDIATION

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) program was authorized as part of the 1986 amendments to the Superfund legislation. It represents a joint effort between U.S. EPA`s Office of Research and Development and Office of Solid Waste and Emergency Response. The progr...

  16. The Use of Waste Materials in the Passive Remediation of Mine Water Polution

    NASA Astrophysics Data System (ADS)

    Batty, Lesley C.; Younger, Paul L.

    2004-01-01

    The contamination and resulting degradation of water courses by effluents from abandoned and active mines is a world-wide problem. Traditional methods of remediating the discharges from mines involve the addition of chemicals and the utilisation of artificial energy sources. Over the last 15-20 years passive treatment systems have been developed that harness natural chemical and biological processes to ameliorate the potentially toxic effects of such discharges. There are many different types of passive system, including compost wetlands, reducing and alkalinity producing systems (RAPS), permeable reactive barriers and inorganic media passive systems. Different waste materials can be utilised as reactive media within each of these systems, dependent upon the type of mine water and treatment technology. In many cases the reactivity of these recycled waste materials is key to the remedial performance of these systems. The materials used may be organic (e.g., composts) or inorganic (e.g., blast furnace slag) and where possible are sourced locally in order to minimise transport costs. The remediation of mine waters in itself can produce large quantities of waste products in the form of iron oxide sludge. Potential uses of this material in the production of pigments and in the treatment of phosphate contaminated waters is also currently under investigation. The exploitation of what are traditionally thought of as waste materials within treatment systems for polluted waters is an expanding technology which provides great scope for recycling.

  17. Tank waste remediation system fiscal year 1997 multi-year workplan WBS 1.1

    SciTech Connect

    Wilson, C.E.

    1996-09-23

    The U.S. Department of Energy (DOE) established the Tank Waste Remediation System (TWRS) Program to manage and immobilize for disposal the waste contained in underground storage tanks at the Hanford Site. The TWRS program was established as a DOE major system acquisition under an approved Justification of Mission Need (JMN) dated January 19, 1993. The JMN states that the purpose of the TWRS Program is to: Resolve the tank waste safety issues; Integrate the waste disposal mission with the ongoing waste management mission; Assess the technical bases for tank waste management and disposal; Determine the technology available and develop any needed technologies; and Establish a dedicated organization and provide the resources to meet the technical challenge. The principal objectives of management of existing and future tank wastes is to cost-effectively minimize the environmental, safety, and health risks associated with stored wastes, with reduction of safety risks given the highest priority. The potentials must be minimized for release of tank wastes to the air and to the ground (and subsequently to the groundwater) and for exposure of the operating personnel to tank wastes.

  18. Cesium and Strontium Specific Exchangers for Nuclear Waste Effluent Remediation

    SciTech Connect

    A. Clearfield; A. I. Bortun; L. A. Bortun; E. A. Bhlume; P. Sylvester; G. M. Graziano

    2000-09-01

    During the past 50 years, nuclear defense activities have produced large quantities of nuclear waste that now require safe and permanent disposal. The general procedure to be implemented involves the removal of cesium and strontium from the waste solutions for disposal in permanently vitrified media. This requires highly selective sorbents or ion exchangers. Further, at the high radiation doses present in the solution, organic exchangers or sequestrants are likely to decompose over time. Inorganic ion exchangers are resistant to radiation damage and can exhibit remarkably high selectivities. We have synthesized three families of tunnel-type ion exchangers. The crystal structures of these compounds as well as their protonated phases, coupled with ion exchange titrations, were determined and this information was used to develop an understanding of their ion exchange behavior. The ion exchange selectivities of these phases could be regulated by isomorphous replacement of the framework metals by larger or smaller radius metals. In the realm of layered compounds, we prepared alumina, silica, and zirconia pillared clays and sodium micas. The pillared clays yielded very high Kd values for Cs+ and were very effective in removing Cs+ from groundwaters. The sodium micas also had a high affinity for Cs+ but an even greater attraction for S42+. They also possess the property of trapping these ions permanently as the layers slowly decrease their interlayer distance as loading occurs. Sodium nonatitanate exhibited extremely high Kd values for Sr2+ in alkaline tank wastes and should be considered for removal of Sr2+ in such cases. For tank wastes containing complexing agents, we have found that adding Ca2+ to the solution releases the complexed Sr2+ which may then be removed with the CST exchanger.

  19. Thermal plasma waste remediation technology: Historical perspective and current trends. Final report

    SciTech Connect

    Counts, D.A.; Sartwell, B.D.; Peterson, S.H.; Kirkland, R.; Kolak, N.P.

    1999-01-29

    The idea of utilizing thermal plasma technology for waste processing goes back to the mid-1970`s during the energy crisis. Since then, more interest has been shown by universities, industry, and government in developing thermal plasma waste processing technology for hazardous and non-hazardous waste treatment. Much of the development has occurred outside of the United States, most significantly in Japan and France, while the market growth for thermal plasma waste treatment technology has remained slow in the United States. Despite the slow expansion of the market in the United States, since the early 1990`s there has been an increase in interest in utilizing thermal plasma technology for environmental remediation and treatment in lieu of the more historical methods of incineration and landfilling. Currently within the Department of Defense there are several demonstration projects underway, and details of some of these projects are provided. Prior to these efforts by the U.S. Government, the State of New York had investigated the use of thermal plasma technology for treating PCB contaminated solvent wastes from the Love Canal cleanup. As interest continues to expand in the application of thermal plasma technology for waste treatment and remediation, more and more personnel are becoming involved with treatment, regulation, monitoring, and commercial operations and many have little understanding of this emerging technology. To address these needs, this report will describe: (1) characteristics of plasmas; (2) methods for generating sustained thermal plasmas; (3) types of thermal plasma sources for waste processing; (4) the development of thermal plasma waste treatment systems; and (5) Department of Defense plasma arc waste treatment demonstration projects.

  20. Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227

    SciTech Connect

    Freihammer, Till; Chaput, Barb; Vandergaast, Gary; Arey, Jimi

    2013-07-01

    The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow

  1. Control of a long reach manipulator with suspension cables for waste storage tank remediation. Final report

    SciTech Connect

    Wang, S.L.

    1994-12-30

    A long reach manipulator will be used for waste remediation in large underground storage tanks. The manipulator`s slenderness makes it flexible and difficult to control. A low-cost and effective method to enhance the manipulator`s stiffness is proposed in this research by using suspension cables. These cables can also be used to accurately measure the position of the manipulator`s wrist.

  2. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false May I perform remediation waste management activities under a RAP at a location removed from the area where the remediation wastes originated... Plans (RAPs) Obtaining A Rap for An Off-Site Location § 270.230 May I perform remediation...

  3. Tank waste remediation system vadose zone program plan

    SciTech Connect

    Fredenburg, E.A.

    1998-07-27

    The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities.

  4. DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary

    SciTech Connect

    DeMuth, S.F.

    1996-10-01

    This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis.

  5. Medical waste management in Trachea region of Turkey: suggested remedial action.

    PubMed

    Uysal, Füsun; Tinmaz, Esra

    2004-10-01

    The main objective of this paper was to analyse the present status of medical waste management in the Trachea region of Turkey and subsequently to draw up a policy regarded with generation, collection, on-site handling, storage, processing, recycling, transportation and safe disposal of medical wastes. This paper also presents the results of study about awareness on how to handle expired drugs. Initially all health-care establishments in Tekirdağ, Edirne and Kýrklareli provinces in Trachea region were identified and the amounts of hospital wastes generated by each of them were determined. Current medical waste-management practices, including storage, collection, transportation and disposal, in surveyed establishments were identified. Finally, according to results, remedial measurements for medical waste management in these establishments were suggested. Unfortunately, medical wastes are not given proper attention and these wastes are disposed of together with municipal and industrial solid wastes. The current disposal method is both a public health and environmental hazard. When landfill sites are visited, many scavengers can be seen sorting for recyclable materials, a practice which is dangerous for the scavengers. In addition, it was found that some staff in health-care establishments are unaware of the hazard of medical wastes. It is concluded that a new management system, which consists of segregation, material substitution, minimization, sanitary landfilling and alternative medical waste treatment methods should be carried out. For the best appropriate medical waste management system, health-care establishment employers, managers and especially the members of house- keeping divisions should be involved in medical waste management practice. PMID:15560445

  6. Tank waste remediation system operation and utilization plan,vol. I {ampersand} II

    SciTech Connect

    Kirkbride, R.A.

    1997-09-01

    The U.S. Department of Energy Richland Operations Office (RL) is in the first stages of contracting with private companies for the treatment and immobilization of tank wastes. The components of tank waste retrieval, treatment, and immobilization have been conceived in two phases (Figure 1.0-1). To meet RL's anticipated contractual requirements, the Project Hanford Management Contractor (PHMC) companies will be required to provide waste feeds to the private companies consistent with waste envelopes that define the feeds in terms of quantity, and concentration of both chemicals and radionuclides. The planning that supports delivery of the feed must be well thought out in four basic areas: (1) Low-activity waste (LAW)/high-level waste (HLW) feed staging plans. How is waste moved within the existing tanks to deliver waste that corresponds to the defined feed envelopes to support the Private Contractor's processing schedule and processing rate? (2) Single-shell tank (SST) retrieval sequence. How are Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1994) milestones for SST retrieval integrated into the Phase I processing to set the stage for Phase II processing to complete the mission? (3) Tank Waste Remediation System (TWRS) process flowsheet. How do materials flow from existing tank inventories through: (1) blending and pretreatment functions in the double-shell tanks (DSTs), (2) contractor processing facilities, and (3) stored waste forms (Figure 1.0-2); (4) Storage and disposal of the immobilized low-activity waste (ILAW) and immobilized high-level waste (IHLW) product. How is the ILAW and IHLW product received from the private companies, the ILAW disposed onsite, and the IHLW stored onsite until final disposal?

  7. Tank Waste Remediation System fiscal year 1996 multi-year program plan WBS 1.1. Revision 1, Appendix A

    SciTech Connect

    1995-09-01

    This document is a compilation of data relating to the Tank Waste Remediation System Multi-Year Program. Topics discussed include: management systems; waste volume, transfer and evaporation management; transition of 200 East and West areas; ferricyanide, volatile organic vapor, and flammable gas management; waste characterization; retrieval from SSTs and DSTs; heat management; interim storage; low-level and high-level radioactive waste management; and tank farm closure.

  8. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    SciTech Connect

    Goranson, C.

    1992-09-01

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities.

  9. Biofilm treatment of soil for waste containment and remediation

    SciTech Connect

    Turner, J.P.; Dennis, M.L.; Osman, Y.A.; Chase, J.; Bulla, L.A.

    1997-12-31

    This paper examines the potential for creating low-permeability reactive barriers for waste treatment and containment by treating soils with Beijerinckia indica, a bacterium which produces an exopolysaccharide film. The biofilm adheres to soil particles and causes a decrease in soil hydraulic conductivity. In addition, B. Indica biodegrades a variety of polycyclic aromatic hydrocarbons and chemical carcinogens. The combination of low soil hydraulic conductivity and biodegradation capabilities creates the potential for constructing reactive biofilm barriers from soil and bacteria. A laboratory study was conducted to evaluate the effects of B. Indica on the hydraulic conductivity of a silty sand. Soil specimens were molded with a bacterial and nutrient solution, compacted at optimum moisture content, permeated with a nutrient solution, and tested for k{sub sat} using a flexible-wall permeameter. Saturated hydraulic conductivity (k{sub sat}) was reduced from 1 x 10{sup -5} cm/sec to 2 x 10{sup -8} cm/sec: by biofilm treatment. Permeation with saline, acidic, and basic solutions following formation of a biofilm was found to have negligible effect on the reduced k{sub sat}, for up to three pore volumes of flow. Applications of biofilm treatment for creating low-permeability reactive barriers are discussed, including compacted liners for bottom barriers and caps and creation of vertical barriers by in situ treatment.

  10. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    SciTech Connect

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  11. Alternatives for management of wastes generated by the formerly utilized sites remedial action program and supplement

    SciTech Connect

    Gilbert, T.L.; Peterson, J.M.; Vocke, R.W.; Alexander, J.K.

    1983-03-01

    Alternatives for disposal or stabilization of the wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP) are identified and compared, with emphasis on the long-term aspects. These wastes consist of soil material and rubble containing trace amounts of radionuclides. A detailed pathway analysis for the dose to the maximally exposed individual is carried out using an adaptation of the natural analogue method. Comparisons of the different alternatives, based on the results of the pathway analysis and qualitative cost considerations, indicate that, if the hazard is such that the wastes must be removed and disposed of rather than stabilized in place, disposal by immediate dispersal is preferable to containment, and containment followed by slow planned dispersal is preferable to containment without dispersal. The Supplement presents refinements of work that was reported at the 1982 International Decommissioning Symposium. The new material consists of revisions of the estimates of the predicted potential dose to the maximally exposed individual and a more detailed comparative assessment of the radiological impacts of alternatives for management of wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP).

  12. Comparative life-cycle cost analysis for low-level mixed waste remediation alternatives

    SciTech Connect

    Jackson, J.A.; White, T.P.; Kloeber, J.M.; Toland, R.J.; Cain, J.P.; Buitrago, D.Y.

    1995-03-01

    The purpose of this study is two-fold: (1) to develop a generic, life-cycle cost model for evaluating low-level, mixed waste remediation alternatives, and (2) to apply the model specifically, to estimate remediation costs for a site similar to the Fernald Environmental Management Project near Cincinnati, OH. Life-cycle costs for vitrification, cementation, and dry removal process technologies are estimated. Since vitrification is in a conceptual phase, computer simulation is used to help characterize the support infrastructure of a large scale vitrification plant. Cost estimating relationships obtained from the simulation data, previous cost estimates, available process data, engineering judgment, and expert opinion all provide input to an Excel based spreadsheet for generating cash flow streams. Crystal Ball, an Excel add-on, was used for discounting cash flows for net present value analysis. The resulting LCC data was then analyzed using multi-attribute decision analysis techniques with cost and remediation time as criteria. The analytical framework presented allows alternatives to be evaluated in the context of budgetary, social, and political considerations. In general, the longer the remediation takes, the lower the net present value of the process. This is true because of the time value of money and large percentage of the costs attributed to storage or disposal.

  13. Simulation and optimization technologies for petroleum waste management and remediation process control.

    PubMed

    Qin, X S; Huang, G H; He, L

    2009-01-01

    Leakage and spill of petroleum hydrocarbons from underground storage tanks and pipelines have posed significant threats to groundwater resources across many petroleum-contaminated sites. Remediation of these sites is essential for protecting the soil and groundwater resources and reducing risks to local communities. Although many efforts have been made, effective design and management of various remediation systems are still challenging to practitioners. In recent years, the subsurface simulation model has been combined with techniques of optimization to address important problems of contaminated site management. The combined simulation-optimization system accounts for the complex behavior of the subsurface system and identifies the best management strategy under consideration of the management objectives and constraints. During the past decades, a large number of studies were conducted to simulate contaminant flow and transport in the subsurface and seek cost-effective remediation designs. This paper gives a comprehensive review on recent developments, advancements, challenges, and barriers associated with simulation and optimization techniques in supporting process control of petroleum waste management and site remediation. A number of related methodologies and applications were examined. Perspectives of effective site management were investigated, demonstrating many demanding areas for enhanced research efforts, which include issues of data availability and reliability, concerns in uncertainty, necessity of post-modeling analysis, and usefulness of development of process control techniques. PMID:18694620

  14. The Excavation and Remediation of the Sandia National Laboratories Chemical Waste Landfill

    SciTech Connect

    KWIECINSKI,DANIEL ALBERT; METHVIN,RHONDA KAY; SCHOFIELD,DONALD P.; YOUNG,SHARISSA G.

    1999-11-23

    The Chemical Waste Landfill (CWL) at Sandia National Laboratories/New Mexico (SNL/NM) is a 1.9-acre disposal site that was used for the disposal of chemical wastes generated by many of SNL/NM research laboratories from 1962 until 1985. These laboratories were primarily involved in the design, research and development of non-nuclear components of nuclear weapons and the waste generated by these labs included small quantities of a wide assortment of chemical products. A Resource Conservation and Recovery Act (RCRA) Closure Plan for the Chemical Waste Landfill was approved by the New Mexico Environment Department (NMED) in 1992. Subsequent site characterization activities identified the presence of significant amounts of chromium in the soil as far as 80 feet below ground surface (fbgs) and the delineation of a solvent plume in the vadose zone that extends to groundwater approximately 500 fbgs. Trichloroethylene (TCE) was detected in some groundwater samples at concentrations slightly above the drinking water limit of 5 parts per billion. In 1997 an active vapor extraction system reduced the size of the TCE vapor plume and for the last six quarterly sampling events groundwater samples have not detected TCE above the drinking water standard. A source term removal, being conducted as a Voluntary Corrective Measure (VCM), began in September 1998 and is expected to take up to two years. Four distinct disposal areas were identified from historical data and the contents of disposal pits and trenches in these areas, in addition to much of the highly contaminated soil surrounding the disposal cells, are currently being excavated. Buried waste and debris are expected to extend to a depth of 12 to 15 fbgs. Excavation will focus on the removal of buried debris and contaminated soil in a sequential, area by area manner and will proceed to whatever depth is required in order to remove all pit contents. Up to 50,000 cubic yards of soil and debris will be removed and managed during

  15. The use of historical imagery in the remediation of an urban hazardous waste site

    USGS Publications Warehouse

    Slonecker, E.T.

    2011-01-01

    The information derived from the interpretation of historical aerial photographs is perhaps the most basic multitemporal application of remote-sensing data. Aerial photographs dating back to the early 20th century can be extremely valuable sources of historical landscape activity. In this application, imagery from 1918 to 1927 provided a wealth of information about chemical weapons testing, storage, handling, and disposal of these hazardous materials. When analyzed by a trained photo-analyst, the 1918 aerial photographs resulted in 42 features of potential interest. When compared with current remedial activities and known areas of contamination, 33 of 42 or 78.5% of the features were spatially correlated with areas of known contamination or other remedial hazardous waste cleanup activity.

  16. Anthropology and decision making about chronic technological disasters: Mixed waste remediation on the Oak Ridge Reservation

    SciTech Connect

    Wolfe, A.K.; Schweitzer, M.

    1996-12-31

    This paper discusses two related case studies of decision making about the remediation of mixed (hazardous and radioactive) wastes on the Oak Ridge Reservation in Tennessee. The three goals of the paper are to (1) place current decision-making efforts in the varied and evolving social, political, regulatory, economic, and technological contexts in which they occur; (2) present definitions and attributes of {open_quotes}successful{close_quotes} environmental decision making from the perspectives of key constituency groups that participate in decision making; and (3) discuss the role of anthropology in addressing environmental decision making. Environmental decision making about remediation is extraordinarily complex, involving human health and ecological risks; uncertainties about risks, technological ability to clean up, the financial costs of clean up; multiple and sometimes conflicting regulations; social equity and justice considerations; and decreasing budgets. Anthropological theories and methods can contribute to better understanding and, potentially, to better decision making.

  17. Superfund Record of Decision (EPA Region 5): Forest Waste Disposal, MI. (Second remedial action), March 1988

    SciTech Connect

    Not Available

    1988-03-31

    The Forest Waste Disposal site consists of an 11-acre, abandoned municipal and industrial waste landfill and 9 surface impoundments. It is located in Genesee County, Michigan, 20 miles northeast of Flint, and is surrounded by agricultural land and undeveloped woodlands and wetlands. Forest Waste Disposal conducted landfill operations from 1972-1978, receiving limited types of liquid industrial waste, general household refuse, and drummed waste until 1978. Specific waste material found within the landfill includes PBB-contaminated feed, septic sludge, and drums containing primarily solid and liquid VOCs in high concentrations. The primary contaminants of concern affecting the soil and ground water are VOCs including toluene and TCE; other organics including pesticides, PAHs and PBBs; and metals including arsenic and lead. The selected remedial action for the site includes: removal and incineration of contaminated soil; installation of a containment system including a RCRA cap, slurry wall, dewatering system and a leachate collection system; and treatment and disposal of collected leachate; deed restrictions to prevent use of the ground water as a drinking water source; access restrictions; and ground water monitoring.

  18. Tank waste remediation system retrieval and disposal mission phase 1 financial analysis

    SciTech Connect

    Wells, M.W.

    1998-01-09

    The purpose of the Tank Waste Remediation System (TWRS) Retrieval and Disposal Mission Phase 1 Financial Analysis is to provide a quantitative and qualitative cost and schedule risk analysis of HNF-1946, Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (Swita et al. 1998). The Updated Baseline (Section 3.0) is compared to the current TWRS Project Multi-Year Work Plan (MYWP) for fiscal year (FY) 1998 and target budgets for FY 1999 through FY 2011 (Section 4.1). The analysis then evaluates the executability of HNF-1946 (Sections 4.2 through 4.5) and recommends a path forward for risk mitigation (Sections 4.6, 4.7, and 5.0). A sound systems engineering approach was applied to understand and analyze the Phase 1B Retrieval and Disposal mission. Program and Level 1 Logics were decomposed to Level 8 of the Work Breakdown Structure (WBS) where logic was detailed, scope was defined, detail durations and estimates prepared, and resource loaded schedules developed. Technical Basis Review (TBR) packages were prepared which include this information and, in addition, defined the enabling assumptions for each task, and the risks associated with performance. This process is discussed in Section 2.1. Detailed reviews at the subactivity within the Level 1 Logic TBR levels were conducted to provide the recommended solution to the Phase 1B Retrieval and Disposal Mission. Independent cost analysis and risk assessments were performed by members of the Lockheed Martin Hanford Corporation (LMHC) Business Management and Chief Financial Officer organization along with specialists in risk analysis from TRW, Inc. and Lockheed Martin Energy Systems. The process evaluated technical, schedule, and cost risk by category (program specific fixed and variable, integrated program, and programmatic) based on risk certainly from high probability well defined to very low probability that is not bounded or priceable as discussed in Section 2.2. The results have been

  19. Tank waste remediation system phase I high-level waste feed processability assessment report

    SciTech Connect

    Lambert, S.L.; Stegen, G.E., Westinghouse Hanford

    1996-08-01

    This report evaluates the effects of feed composition on the Phase I high-level waste immobilization process and interim storage facility requirements for the high-level waste glass.Several different Phase I staging (retrieval, blending, and pretreatment) scenarios were used to generate example feed compositions for glass formulations, testing, and glass sensitivity analysis. Glass models and data form laboratory glass studies were used to estimate achievable waste loading and corresponding glass volumes for various Phase I feeds. Key issues related to feed process ability, feed composition, uncertainty, and immobilization process technology are identified for future consideration in other tank waste disposal program activities.

  20. Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill

    SciTech Connect

    Studer, J.E.; Mariner, P.; Jin, M.

    1996-05-01

    Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection.

  1. Targeted Health Assessment for Wastes Contained at the Niagara Falls Storage Site to Guide Planning for Remedial Action Alternatives - 13428

    SciTech Connect

    Busse, John; Keil, Karen; Staten, Jane; Miller, Neil; Barker, Michelle; MacDonell, Margaret; Peterson, John; Chang, Young-Soo; Durham, Lisa

    2013-07-01

    The U.S. Army Corps of Engineers (USACE) is evaluating potential remedial alternatives at the 191-acre Niagara Falls Storage Site (NFSS) in Lewiston, New York, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) brought radioactive wastes to the site during the 1940's and 1950's, and the U.S. Department of Energy (US DOE) consolidated these wastes into a 10-acre interim waste containment structure (IWCS) in the southwest portion of the site during the 1980's. The USACE is evaluating remedial alternatives for radioactive waste contained within the IWCS at the NFSS under the Feasibility Study phase of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process. A preliminary evaluation of the IWCS has been conducted to assess potential airborne releases associated with uncovered wastes, particularly during waste excavation, as well as direct exposures to uncovered wastes. Key technical issues for this assessment include: (1) limitations in waste characterization data; (2) representative receptors and exposure routes; (3) estimates of contaminant emissions at an early stage of the evaluation process; (4) consideration of candidate meteorological data and air dispersion modeling approaches; and (5) estimates of health effects from potential exposures to both radionuclides and chemicals that account for recent updates of exposure and toxicity factors. Results of this preliminary health risk assessment indicate if the wastes were uncovered and someone stayed at the IWCS for a number of days to weeks, substantial doses and serious health effects could be incurred. Current controls prevent such exposures, and the controls that would be applied to protect onsite workers during remedial action at the IWCS would also effectively protect the public nearby. This evaluation provides framing context for the upcoming development and detailed evaluation of

  2. Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification.

    PubMed

    Wang, Lei; Tsang, Daniel C W; Poon, Chi-Sun

    2015-03-01

    Navigational/environmental dredging of contaminated sediment conventionally requires contained marine disposal and continuous monitoring. This study proposed a green remediation approach to treat and recycle the contaminated sediment by means of stabilization/solidification enhanced by the addition of selected solid wastes. With an increasing amount of contaminated sediment (20-70%), the 28-d compressive strength of sediment blocks decreased from greater than 10MPa to slightly above 1MPa. For augmenting the cement hydration, coal fly ash was more effective than lime and ground seashells, especially at low sediment content. The microscopic and spectroscopic analyses showed varying amounts of hydration products (primarily calcium hydroxide and calcium silicate hydrate) in the presence of coal fly ash, signifying the influence of pozzolanic reaction. To facilitate the waste utilization, cullet from beverage glass bottles and bottom ashes from coal combustion and waste incineration were found suitable to substitute coarse aggregate at 33% replacement ratio, beyond which the compressive strength decreased accordingly. The mercury intrusion porosimetry analysis indicated that the increase in the total pore area and average pore diameter were linearly correlated with the decrease of compressive strength due to waste replacement. All the sediment blocks complied with the acceptance criteria for reuse in terms of metal leachability. These results suggest that, with an appropriate mixture design, contaminated sediment and waste materials are useful resources for producing non-load-bearing masonry units or fill materials for construction uses. PMID:25522855

  3. Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste.

    PubMed

    McCann, Clare M; Gray, Neil D; Tourney, Janette; Davenport, Russell J; Wade, Matthew; Finlay, Nina; Hudson-Edwards, Karen A; Johnson, Karen L

    2015-11-01

    A natural Mn oxide (NMO) waste was assessed as an in situ remediation amendment for Pb contaminated sites. The viability of this was investigated using a 10 month lysimeter trial, wherein a historically Pb contaminated soil was amended with a 10% by weight model NMO. The model NMO was found to have a large Pb adsorption capacity (qmax 346±14 mg g(-1)). However, due to the heterogeneous nature of the Pb contamination in the soils (3650.54-9299.79 mg kg(-1)), no treatment related difference in Pb via geochemistry could be detected. To overcome difficulties in traditional geochemical techniques due to pollutant heterogeneity we present a new method for unequivocally proving metal sorption to in situ remediation amendments. The method combines two spectroscopic techniques; namely electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). Using this we showed Pb immobilisation on NMO, which were Pb free prior to their addition to the soils. Amendment of the soil with exogenous Mn oxide had no effect on microbial functioning, nor did it perturb the composition of the dominant phyla. We conclude that NMOs show excellent potential as remediation amendments. PMID:26073590

  4. High-level waste tank remediation technology integration summary. Revision 1

    SciTech Connect

    DeLannoy, C.R.; Susiene, C.; Fowler, K.M.; Robson, W.M.; Cruse, J.M.

    1994-07-01

    The U.S. Department of Energy`s Environmental Restoration and Waste Management and Technology Development Programs are engaged in a number of projects to develop, demonstrate, test, and evaluate new technologies to support the cleanup and site remediation of more than 300 underground storage tanks containing over 381,000 m{sup 3} (100 million gal) of liquid radioactive mixed waste at the Hanford Reservation. Significant development is needed within primary functions and in determining an overall bounding strategy. This document is an update of continuing work to summarize the overall strategy and to provide data regarding technology development activities within the strategy. It is intended to serve as an information resource to support understanding, decision making, and integration of multiple program technology development activities. Recipients are encouraged to provide comments and input to the authors for incorporation in future revisions.

  5. In Situ Remediation Integrated Program: Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  6. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    SciTech Connect

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

  7. Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572

    SciTech Connect

    Gilles, Michael L.; Gilmour, John C.

    2013-07-01

    Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

  8. Control technologies for remediation of contaminated soil and waste deposits at Superfund lead-battery recycling sites

    SciTech Connect

    Royer, M.D.; Selvakumar, A.; Gaire, R.

    1992-01-01

    The paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. Metallic lead and lead compounds are generally the principal contaminants of concern in soils and waste deposits. Other metals (e.g., cadmium, copper, arsenic, antimony, and selenium) are often present at LBRS. The article is primarily based on experience gained from: (1) Superfund site investigation, removal, and remedial actions, and (2) development and demonstration of control technologies under the Superfund Innovative Technology Evaluation (SITE) Program. The primary remedial options for lead contaminated soils and waste deposits include: (1) no action, (2) off-site disposal, (3) containment, (4) immobilization, (5) separation with resource recovery, and (6) separation without resource recovery.

  9. Mitigation/remediation concepts for Hanford Site flammable gas generating waste tanks

    SciTech Connect

    Babad, H.; Deichman, J.L.; Johnson, B.M.; Lemon, D.K.; Strachan, D.M.

    1992-04-01

    This report presents a preliminary assessment of concepts for the mitigation and/or remediation of the hydrogen gas generation, storage, and periodic release in Tank 241-SY-101 (101-SY) and 22 other tanks. The 22 other tanks exhibit much less hydrogen generation (volume and concentration of released flammable gases) than Tank 101-SY and have not had the focus nor attention that has been given to Tank 101-SY. These tanks have been listed as potential hydrogen gas-generating tanks from analysis of tank performance and data from flowsheets and Track Radioactive Constituents Reports (TRAC). These lesser hydrogen-generating tanks will also need to be revisited and revalidated. Of the 23 hydrogen class tanks, 5 are double-shell tanks (DST) and 18 are single-shell tanks (SST). Options for mitigation or remediation are different for the two types of tanks because of age, configuration, and waste form. While this document principally focuses on Tank 101-SY, the information presented has been useful to address other tanks containing hydrogen-generating waste.

  10. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    SciTech Connect

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List

  11. Tank waste remediation system high-level waste feed processability assessment report

    SciTech Connect

    Lambert, S.L.; Kim, D.S.

    1994-12-01

    This study evaluates the effect of feed composition on the performance of the high-level vitrification process. It is assumed in this study that the tank wastes are retrieved and blended by tank farms, producing 12 different blends from the single-shell tank farms, two blends of double-shell tank waste, and a separately defined all-tank blend. This blending scenario was chosen only for evaluating the impact of composition on the volume of high- level waste glass produced. Special glass compositions were formulated for each waste blend based on glass property models and the properties of similar glasses. These glasses were formulated to meet the applicable viscosity, electrical conductivity, and liquidus temperature constraints for the identified candidate melters. Candidate melters in this study include the low-temperature stirred melter, which operates at 1050{degrees}C; the reference Hanford Waste Vitrification Plant liquid-fed ceramic melter, which operates at 1150{degrees}C; and the high-temperature, joule-heated melter and the cold-crucible melter, which operate over a temperature range of 1150{degrees}C to 1400{degrees}C. In the most conservative case, it is estimated that 61,000 MT of glass will be produced if the Site`s high-level wastes are retrieved by tank farms and processed in the reference joule-heated melter. If an all-tank blend was processed under the same conditions, the reference melter would produce 21,250 MT of glass. If cross-tank blending were used, it is anticipated that $2.0 billion could be saved in repository disposal costs (based on an average disposal cost of $217,000 per canister) by blending the S, SX, B, and T Tank Farm wastes with other wastes prior to vitrification. General blending among all the tank farms is expected to produce great potential benefit.

  12. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    SciTech Connect

    Swita, W.R.

    1998-01-09

    This document provides a summary of the Tank Waste Remediation System (TWRS) Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost), developed to demonstrate Readiness-to-Proceed (RTP) in support of the TWRS Phase 1B mission. This Updated Baseline is the proposed TWRS plan to execute and measure the mission work scope. This document and other supporting data demonstrate that the TWRS Project Hanford Management Contract (PHMC) team is prepared to fully support Phase 1B by executing the following scope, schedule, and cost baseline activities: Deliver the specified initial low-activity waste (LAW) and high-level waste (HLW) feed batches in a consistent, safe, and reliable manner to support private contractors` operations starting in June 2002; Deliver specified subsequent LAW and HLW feed batches during Phase 1B in a consistent, safe, and reliable manner; Provide for the interim storage of immobilized HLW (IHLW) products and the disposal of immobilized LAW (ILAW) products generated by the private contractors; Provide for disposal of byproduct wastes generated by the private contractors; and Provide the infrastructure to support construction and operations of the private contractors` facilities.

  13. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    SciTech Connect

    Honeyman, J.O.

    1998-01-09

    This Management Assessment of Tank Waste Remediation System (TWRS) Contractor Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on-line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.

  14. Khazar Iodine Production Plant Site Remediation in Turkmenistan. NORM Contaminated Waste Repository Establishment - 12398

    SciTech Connect

    Gelbutovskiy, Alexander B.; Cheremisin, Peter I.; Troshev, Alexander V.; Egorov, Alexander J.; Boriskin, Mikhail M.; Bogod, Mikhail A.

    2012-07-01

    Radiation safety provisions for NORM contaminated areas are in use in a number of the former Soviet republics. Some of these areas were formed by absorbed radionuclides at the iodine and bromine extraction sites. As a rule, there are not any plant radiation monitoring systems nor appropriate services to ensure personnel, population and environmental radiation safety. The most hazardous sites are those which are situated in the Caspian Sea coastal zone. The bulk of the accumulated waste is represented by a loose mixture of sand and charcoal, which was basically used as the iodine extraction sorbent. The amounts of these wastes were estimated to be approximately 20,000 metric tons. The waste contamination is mainly composed of Ra-226 (U-238 decay series) and Ra-224, Ra-228 (Th-232 decay series). In 2009, the 'ECOMET-S', a Closed Joint-Stock Company from St. Petersburg, Russian Federation, was authorized by the Turkmenistan government to launch the rehabilitation project. The project includes D and D activities, contaminated areas remediation, collected wastes safe transportation to the repository and its disposal following repository closure. The work at the Khazar chemical plant started in September, 2010. Comprehensive radiological surveys to estimate the waste quantities were carried out in advance. In course of the rehabilitation work at the site of the Khazar chemical plant additional waste quantities (5,000 MT, 10,000 m{sup 3}) were discovered after the sludge was dumped and drained. Disposal volumes for this waste was not provided initially. The additional volume of the construction wastes was required in order to accommodate all the waste to be disposed. For the larger disposal volume the project design enterprise VNIPIET, offered to erect a second wall outside the existing one and this solution was adopted. As of May, 2011, 40,575 m{sup 3} of contaminated waste were collected and disposed safely. This volume represents 96.6% of the initial repository volume

  15. Manufactured gas plant sites: Characterization of wastes and IGT`s innovative remediation alternatives

    SciTech Connect

    Srivastava, V.J.

    1993-12-31

    Manufactured gas plants (MGP)--often referred to as town gas plants--have existed in many parts of the world, including the United States, during the nineteenth and twentieth centuries. Consequently, many of these plants disposed of process wastes and less valuable by-products onsite, contaminated with coal-tar wastes, light oils, naphthalene, etc. Polynuclear aromatic hydrocarbons (PAHs) are components of coal-tar wastes and other wastes that remain at many of these town gas sites. PAH- containing soils, as a result, represent the largest waste type at most MGP sites. Also, certain PAHs are recognized today as being potential animal and/or human carcinogens and, as such, represent an environmental hazard. The Institute of Gas Technology (IGT) has developed and/or evaluated several techniques/processes to improve the biodegradation of PAHs present at MGP sites. As a result of extensive studies, IGT has successfully developed and demonstrated an integrated Chemical/Biological Treatment (CBT) process that is capable of enhancing the rate as well as the extent of PAH degradation. This process combines two complementary as well as powerful remedial techniques: (1) chemical pretreatment using Fenton`s reagent and (2) a biological system using native aerobic microorganisms. This paper presents the general characteristics of MGP sites and wastes and the innovative IGT processes at various stages of development and demonstration. This paper also discusses the IGT/GRI treatability protocol that can be used to determine the potential of bioremediation for any MGP site soil within a 2 to 3-month period.

  16. The sonophysics and sonochemistry of liquid waste quantification and remediation. 1998 annual progress report

    SciTech Connect

    Matula, T.J.

    1998-06-01

    'To perform an in-depth and comprehensive study of the fundamentals of acoustic cavitation and nonlinear bubble dynamics, to elucidate the fundamental physics of sonochemical reactions, to examine the potential of sonoluminescence to quantify and to monitor the presence of alkali metals and other elements in waste liquids, to design and to evaluate more effective sonochemical reactors for waste remediation, and to determine the optimal acoustical parameters in the use of sonochemistry for liquid-waste-contaminant remediation. This report summarizes work performed during year 2 of a 3-year project. The goals included performing near-IR spectroscopy of sonoluminescence. Cells have been designed for multi-bubble sonoluminescence (MBSL) and single-bubble sonoluminescence (SBSL) spectroscopy experiments. The MBSL cells are designed around a 20 kHz acoustic horn with replaceable titanium tips from Sonics and Materials. The horn is pressure-fitted into a stainless steel cell via O-rings and a compression ring, to seal the cell up to 100 psi for pressure experiments. The cell is thermostated by circulating coolant in a jacket, as well as flowing the cell fluid (at 4L/min.) through a temperature control bath. Several ports are located on the cell for gas ports (one for headspace, another for bubbling), a pressure transducer, a thermocouple, a needle hydrophone, and a septum port for addition or withdrawal of samples. The total volume is approximately 80 mL with a 10 mL head space. Directly opposite the horn tip is a 2 cm quartz window against which a fiber optic bundle is placed. Light collected through the fiber optic is imaged onto one of several detection systems.'

  17. FY 1995 remedial investigation work plan for Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Watkins, D.R.; Herbes, S.E.

    1994-09-01

    Field activities to support the remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) include characterization of the nature and extent of contamination in WAG 2, specifically to support risk-based remediation decisions. WAG 2 is the major drainage system downgradient of other WAGs containing significant sources of contamination at ORNL. The RI of WAG 2 is developed in three phases: Phase 1, initial scoping characterization to determine the need for early action; Phase 2, interim activities during remediation of upgradient WAGs to evaluate potential changes in the contamination status of WAG 2 that would necessitate reevaluation of the need for early action; and Phase 3, completion of the RI process following remediation of upslope WAGs. Specifically, Phase 2 activities are required to track key areas to determine if changes have occurred in WAG 2 that would require (1) interim remedial action to protect human health and the environment or (2) changes in remedial action plans and schedules for WAG2 because of changing contaminant release patterns in upslope WAGs or because of the effects of interim remedial or removal actions in other WAGs. This report defines activities to be conducted in FY 1995 for completion of the Phase 1 RI and initiation of limited Phase 2 field work.

  18. Enhanced electrokinetic (E/K) remediation on copper contaminated soil by CFW (carbonized foods waste).

    PubMed

    Han, Jung-Geun; Hong, Ki-Kwon; Kim, Young-Woong; Lee, Jong-Young

    2010-05-15

    The E/K remediation method is presented to purify low permeable contaminated soils due to Cu(2+), and carbonized foods waste (CFW) was used as a permeable reactive barrier (PRB) material. For adsorption and precipitation of the Cu(2+) in the PRB during its motion, PRB was installed in a zone of rapidly changing pH values. The adsorption efficiency of CFW used as PRB material was found to be 4-8 times more efficient than that of Zeolite. Throughout the experiment, a voltage slope of 1V/cm was implemented and acetic acid was injected on the anode to increase the remediation efficiency. The electrode exchange was executed to more completely remove precipitated heavy metals in the vicinity of the cathode. The majority of Cu(2+) was adsorbed or sedimented by CFW prior to the exchange of the electrode, and the remaining quantity of precipitated Cu(2+) on the cathode had decreased with an increase in the operating time. Experiments of seven cases with different E/K operating times were performed, and the average removal ratios were 53.4-84.6%. The removal efficiencies for the majority of cases increased proportionally with an increase in the operating time. After the experiments were completed, the adsorbed Cu(2+) on CFW was 75-150 mg. This means that the role of CFW as the material in PRB for remediating heavy metals was confirmed. The cost of energies needed to remove Cu(2+), CFW, and acetic acid are estimated at US$ 13.3-40/m(3). PMID:20080337

  19. USEPA'S RESEARCH PROGRAM ON REMEDIATION AND CONTAINMENT OF ARSENIC AND MERCURY IN SOILS, INDUSTRIAL WASTES, AND GROUNDWATER

    EPA Science Inventory

    In the U.S. and around the world, mercury and arsenic contaminated soils, industrial wastes, and groundwater are difficult to effectively and cheaply remediate and contain. Mercury is a serious health concern and has been identified as a contaminant in the air, soil, sediment, su...

  20. Tank waste remediation system FSAR hazard identification/facility configuration verification report

    SciTech Connect

    Mendoza, D.P., Westinghouse Hanford

    1996-05-01

    This document provides the results of the Tank Waste Remediation System Final Safety Analysis Report (TWRS FSAR) hazards identification/facility configuration activities undertaken from the period of March 7, 1996 to May 31, 1996. The purpose of this activity was to provide an independent overview of the TWRS facility specific hazards and configurations that were used in support of the TWRS FSAR hazards and accident analysis development. It was based on a review of existing published documentation and field inspections. The objective of the verification effort was to provide a `snap shot` in time of the existing TWRS facility hazards and configurations and will be used to support hazards and accident analysis activities.

  1. Interface control document for tank waste remediation system privatization phase 1 infrastructure support Project W-519

    SciTech Connect

    Parazin, R.J.

    1998-04-23

    This document describes the functional and physical interfaces between the Tank Waste Remediation System (TWRS) Privatization Phase 1 Infrastructure Project W-519 and the various other projects (i.e., Projects W-314, W-464, W-465, and W-520) supporting Phase 1 that will require the allocation of land in and about the Privatization Phase 1 Site and/or interface with the utilities extended by Project W-519. Project W-519 will identify land use allocations and upgrade/extend several utilities in the 200-East Area into the Privatization Phase 1 Site (formerly the Grout Disposal Compound) in preparation for the Privatization Contractors (PC) to construct treatment facilities. The project will upgrade/extend: Roads, Electrical Power, Raw Water (for process and fire suppression), Potable Water, and Liquid Effluent collection. The replacement of an existing Sanitary Sewage treatment system that may be displaced by Phase 1 site preparation activities may also be included.

  2. Effective utilization of waste water through recycling, reuse, and remediation for sustainable agriculture.

    PubMed

    Raman, Rajamani; Krishnamoorthy, Renga

    2014-01-01

    Water is vital for human, animal, and plant life. Water is one of the most essential inputs for the production of crops. Plants need it in enormous quantities continuously during their life. The role of water is felt everywhere; its scarcity causes droughts and famines, its excess causes floods and deluge. During the next two decades, water will increasingly be considered a critical resource for the future survival of the arid and semiarid countries. The requirement of water is increasing day by day due to intensive agriculture practices, urbanization, population growth, industrialization, domestic use, and other uses. On the other hand, the availability of water resources is declining and the existing water is not enough to meet the needs. To overcome this problem, one available solution is utilization of waste water by using recycling, reuse, and remediation process. PMID:24663224

  3. New tailor-made bio-organoclays for the remediation of olive mill waste water

    NASA Astrophysics Data System (ADS)

    Calabrese, Ilaria; Gelardi, Giulia; Merli, Marcello; Rytwo, Giora; Sciascia, Luciana; Liria Turco Liveri, Maria

    2013-12-01

    A systematic study aimed at obtaining new organoclays for the treatment of Olive Mill Waste water (OMW) has been performed. Several organoclays have been prepared by loading different amounts of the biocompatible surfactant Tween20 onto the K10 montmorillonite (MMT). Complementary kinetic and equilibrium studies on the adsorption of the Tween20 onto the MMT have been carried out and the characterization of the new tailor-made bio-materials has been performed by means of the XRD and FT-IR measurements. Finally the prepared bio-organoclays have been successfully applied for the OMW remediation and they proved to be highly effective in decreasing the organic content (OC) to an extent that depends on both the amount of loaded surfactant and the experimental protocols applied.

  4. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    SciTech Connect

    Howden, G.F.

    1994-10-24

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  5. Configuration management plan for waste tank farms and the 242-A evaporator of tank waste remediation system

    SciTech Connect

    Laney, T.

    1994-08-30

    The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ``Guide for Operational Configuration Management Program.`` The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management.`` The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System.

  6. Multi-point injection demonstration for solidification of shallow buried waste at Oak Ridge Reservation, Oak Ridge, Tennessee

    SciTech Connect

    1996-10-01

    The multi-point injection (MPI) technology is a precision, high-velocity jetting process for the in situ delivery of various agents to treat radiological and/or chemical wastes. A wide variety of waste forms can be treated, varying from heterogeneous waste dumped into shallow burial trenches to contaminated soils consisting of sands/gravels, silts/clays and soft rock. The robustness of the MPI system is linked to its broad range of applications which vary from in situ waste treatment to creation of both vertical and horizontal barriers. The only major constraint on the type of in situ treatment which can be delivered by the NTI system is that agents must be in a slurry form.

  7. Demonstration of In-Situ Stabilization of Buried Waste at Pit G-11 at the Brookhaven National laboratory Glass Pits Disposal Site

    SciTech Connect

    Dwyer, B.P.; Gilbert, J.; Heiser, J.

    1999-01-01

    In 1989 BNL was added to the EPAs National Priorities List. The site is divided into seven operable units (OU). OU-I includes the former landfill area. The field task site is noted as the AOC 2C Glass Holes location. Beginning in the 1960s and continuing into the 1980s, BNL disposed of laboratory waste (glassware, chemicals and animal carcasses) in numerous shallow pits. The drivers for remediating the pits are; historical records that indicate hazardous materials may have been disposed of in the pits; ground water contamination down gradient of the pits; a test excavation of one of the glass holes that unearthed laboratory glass bottles with unidentified liquids still contained; and the fact that BNL rests atop an EPA designated sole-source aquifer. The specific site chosen for this demonstration was pit G-11. The requirements that lead to choosing this pit were; a well characterized pit and a relatively isolated pit where our construction operations would not impact on adjacent pits. The glass holes area, including pit G-11, was comprehensively surveyed using a suite of geophysical techniques (e.g., EM-31, EM-61, GPR). Prior to stabilizing the waste form a subsurface barrier was constructed to contain the entire waste pit. The pit contents were then stabilized using a cement grout applied via jet grouting. The stabilization was performed to make removal of the waste from the pit easier and safer in terms of worker exposure. The grouting process would mix and masticate the waste and grout and form a single monolithic waste form. This large monolith would then be subdivided into smaller 4 foot by 4 foot by 10-12 foot block using a demolition grout. The smaller blocks would then be easily removed from the site and disposed of in a CERCLA waste site.

  8. Cleanup Verification Package for the 118-B-6, 108-B Solid Waste Burial Ground

    SciTech Connect

    M. L. Proctor

    2006-06-13

    This cleanup verification package documents completion of remedial action for the 118-B-6, 108-B Solid Waste Burial Ground. The 118-B-6 site consisted of 2 concrete pipes buried vertically in the ground and capped by a concrete pad with steel lids. The site was used for the disposal of wastes from the "metal line" of the P-10 Tritium Separation Project.

  9. TNX Burying Ground: Environmental information document

    SciTech Connect

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    The TNX Burying Ground, located within the TNX Area of the Savannah River Plant (SRP), was originally built to dispose of debris from an experimental evaporator explosion at TNX in 1953. This evaporator contained approximately 590 kg of uranyl nitrate. From 1980 to 1984, much of the waste material buried at TNX was excavated and sent to the SRP Radioactive Waste Burial Grounds for reburial. An estimated 27 kg of uranyl nitrate remains buried at TNX. The TNX Burying Ground consists of three sites known to contain waste and one site suspected of containing waste material. All four sites are located within the TNX security fenceline. Groundwater at the TNX Burying Ground was not evaluated because there are no groundwater monitoring wells installed in the immediate vicinity of this waste site. The closure options considered for the TNX Burying Ground are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated.

  10. Microwave remediation of electronic circuitry waste and the resulting gaseous emissions

    NASA Astrophysics Data System (ADS)

    Schulz, Rebecca L.

    The global community has become increasingly dependent on computer and electronic technology. As a result, society is faced with an increasing amount of obsolete equipment and electronic circuitry waste. Electronic waste is generally disposed of in landfills. While convenient, this action causes a substantial loss of finite resources and poses an environmental threat as the circuit board components breakdown and are exposed to the elements. Hazardous compounds such as lead, mercury and cadmium may leach from the circuitry and find their way into the groundwater supply. For this dissertation, a microwave waste remediation system was developed. The system was designed to remove the organic components from a wide variety of electronic circuitry. Upon additional heating of the resulting ash material in an industrial microwave, a glass and metal product can be recovered. Analysis of the metal reveals the presence of precious metals (gold, silver) that can be sold to provide a return on investment. a glass and metal product can be recovered. Analysis of the metal reveals the presence of precious metals (gold, silver) that can be sold to provide a return on investment. Gaseous organic compounds that were generated as a result of organic removal were treated in a microwave off gas system that effectively reduced the concentration of the products emitted by several orders of magnitude, and in some cases completely destroying the waste gas. Upon further heating in an industrial microwave, a glass and metal product were recovered. In order to better understand the effects of processing parameters on the efficiency of the off-gas system, a parametric study was developed. The study tested the microwave system at 3 flow rates (10, 30, and 50 ft 3/min) and three temperatures (400, 700 and 1000°C. In order to test the effects of microwave energy, the experiments were repeated using a conventional furnace. While microwave energy is widely used, the mechanisms of interaction with

  11. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    SciTech Connect

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  12. An analysis of alternative New Technical Strategy flowsheets for tank waste remediation system

    SciTech Connect

    Booker, C.P.

    1994-06-01

    The Hanford Tank remediation plans have gone through a few revisions for the best waste processing system. Some designs have been complex while others have been fairly simple. One of the key means in understanding and selecting among the various proposed systems is a discrete events modeling of the system. This modeling provides insight into (1) The total required size of the system; (2) The amount of material, such as reagents and other added materials that must be supplied; (3) The final mass of waste that must be stored; and (4) Areas within the system where a small change can greatly effect the total system. Discrete events modeling also provides the means by which various proposed systems may be compared. It is the framework in which variations within a particular system may be explored and compared to other instantiations. This study examines the current New Technical Strategy flowsheet system with discrete event modeling. Some of the possible variations within that system are examined and compared. Further, an previously proposed, more complex system is examined.

  13. Public values related to decisions in the Tank Waste Remediation System Program

    SciTech Connect

    Armacost, L.L.; Robershotte, M.; von Winterfeldt, D.; Creighton, J.

    1994-10-01

    Managers of the Tank Waste Remediation System (TWRS) Program have to make numerous decisions, ranging from the strategic decisions on the fundamental tank cleanup goals to technical decisions on which types of equipment to use in mechanical retrieval of wastes. Furthermore, many of these decisions have to be made repeatedly (e.g., the annual allocation of research and development funds to TWRS activities). These decisions have many potential consequences in terms of risks to workers, risks to the public, environmental impacts, and economic development and cost. Because these consequences affect the values of many parties, the consequences need to be evaluated in terms that are accepted and understood by the interested parties. Therefore, an effort needs to be made to incorporate public concerns and values into the TWRS decision-making process. The purpose of this report is to review and integrate this past work on values and to create a maser list of values in order to create a consistent value framework for the numerous TWRS decisions; efficiently and effectively use public values in the decision-making process by updating this report on a regular basis to ensure that the information represents the public`s current views; provide guidance about using values in technical TWRS decisions.

  14. FY 1995 Remedial Investigation Work Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Watkins, D.R.; Herbes, S.E.

    1994-12-01

    The purpose of this project is to provide key information needed by decision makers to expedite the process of environmental restoration and to provide the data base required by the Remedial Investigation/Feasibility Study (RI/FS) for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). WAG 2 is the major drainage system downgradient of other WAGs that contain significant sources of contamination at ORNL. Field activities to support the remedial investigation for the RI portion include characterization of the nature and extent of contamination in WAG 2 [consisting of White Oak Creek (WOC) and associated tributaries and floodplain, White Oak Lake (WOL), and White Oak Creek Embayment (WOCE)], specifically to support risk-based remediation decisions. The project consists of three phases: Phase 1, initial scoping characterization to determine the need for early action; Phase 2, interim activities during remediation of upslope WAGs to evaluate potential changes in the contamination status of WAG 2 that would necessitate revaluation of the need for early action; and Phase 3, completion of the RI process following remediation of upslope WAGs. Overall RI objectives, consistent with ORNL Environmental Restoration (ER) Program strategic objectives to reduce risks and comply with environmental regulations, are discussed in the WAG 2 Remedial Investigation Plan.

  15. Waste Area Grouping 2 Remedial Investigation Phase 1 Seep Task data report: Contaminant source area assessment

    SciTech Connect

    Hicks, D.S.

    1996-03-01

    This report presents the findings of the Waste Area Grouping (WAG) 2, Phase 1 Remedial Investigation (RI) Seep Task efforts during 1993 and 1994 at Oak Ridge National Laboratory (ORNL). The results presented here follow results form the first year of sampling, 1992, which are contained in the Phase 1 RI report for WAG 2 (DOE 1995a). The WAG 2 Seep Task efforts focused on contaminants in seeps, tributaries, and main streams within the White Oak Creek (WOC) watershed. This report is designed primarily as a reference for contaminants and a resource for guiding remedial decisions. Additional in-depth assessments of the Seep Task data may provide clearer understandings of contaminant transport from the different source areas in the WOC watershed. WAG 2 consists of WOC and its tributaries downstream of the ORNL main plant area, White Oak Lake, the White Oak Creek Embayment of the Clinch River, and the associated flood plains and subsurface environment. The WOC watershed encompasses ORNL and associated WAGs. WAG 2 acts as an integrator for contaminant releases from the contaminated sites at ORNL and as the conduit transporting contaminants to the Clinch River. The main objectives of the Seep Task were to identify and characterize seeps, tributaries and source areas that are responsible for the contaminant releases to the main streams in WAG 2 and to quantify their input to the total contaminant release from the watershed at White Oak Dam (WOD). Efforts focused on {sup 90}Sr, {sup 3}H, and {sup 137}Cs because these contaminants pose the greatest potential human health risk from water ingestion at WOD. Bimonthly sampling was conducted throughout the WOC watershed beginning in March 1993 and ending in August 1994. Samples were also collected for metals, anions, alkalinity, organics, and other radionuclides.

  16. REMEDIAL INVESTIGATIONS (RI) OF REGION 4 SUPERFUND HAZARDOUS WASTE SITES: OCTOBER 2005 – SEPTEMBER 2006

    EPA Science Inventory

    Remedial Investigation projects conducted by the Region 4 Science and Ecosystem Support DIvision (SESD) require developing and implementing Remedial Investigation (RI) Work Plans which include a Project Operations Plan, Field Sampling and Analysis Plan, Quality Assurance Plan, an...

  17. Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation.

    PubMed

    Chandrasekhar, K; Amulya, K; Mohan, S Venkata

    2015-11-01

    A novel solid state bio-electrofermentation system (SBES), which can function on the self-driven bioelectrogenic activity was designed and fabricated in the laboratory. SBES was operated with food waste as substrate and evaluated for simultaneous production of electrofuels viz., bioelectricity, biohydrogen (H2) and bioethanol. The system illustrated maximum open circuit voltage and power density of 443 mV and 162.4 mW/m(2), respectively on 9 th day of operation while higher H2 production rate (21.9 ml/h) was observed on 19th day of operation. SBES system also documented 4.85% w/v bioethanol production on 20th day of operation. The analysis of end products confirmed that H2 production could be generally attributed to a mixed acetate/butyrate-type of fermentation. Nevertheless, the presence of additional metabolites in SBES, including formate, lactate, propionate and ethanol, also suggested that other metabolic pathways were active during the process, lowering the conversion of substrate into H2. SBES also documented 72% substrate (COD) removal efficiency along with value added product generation. Continuous evolution of volatile fatty acids as intermediary metabolites resulted in pH drop and depicted its negative influence on SBES performance. Bio-electrocatalytic analysis was carried out to evaluate the redox catalytic capabilities of the biocatalyst. Experimental data illustrated that solid-state fermentation can be effectively integrated in SBES for the production of value added products with the possibility of simultaneous solid waste remediation. PMID:26117418

  18. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    SciTech Connect

    1995-09-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.

  19. Remedial investigation report on Waste Area Group 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    SciTech Connect

    1995-03-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.

  20. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    SciTech Connect

    Johnson, G.L.

    1988-09-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store lightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97{degree}C and whether the cladding of the stored spent fuel ever exceeds 350{degree}C. Limiting the borehole to temperatures of 97{degree}C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350{degree}C cladding limit minimizes the possibility of creep-related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97{degree}C for the full 1000-yr analysis period.

  1. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    SciTech Connect

    Bamberger, J.A.; Boris, G.F.

    1999-10-07

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

  2. Electrokinetic remediation of plutonium-contaminated nuclear site wastes: results from a pilot-scale on-site trial.

    PubMed

    Agnew, Kieran; Cundy, Andrew B; Hopkinson, Laurence; Croudace, Ian W; Warwick, Phillip E; Purdie, Philip

    2011-02-28

    This paper examines the field-scale application of a novel low-energy electrokinetic technique for the remediation of plutonium-contaminated nuclear site soils, using soil wastes from the Atomic Weapons Establishment (AWE) Aldermaston site, Berkshire, UK as a test medium. Soils and sediments with varying composition, contaminated with Pu through historical site operations, were electrokinetically treated at laboratory-scale with and without various soil pre-conditioning agents. Results from these bench-scale trials were used to inform a larger on-site remediation trial, using an adapted containment pack with battery power supply. 2.4 m(3) (ca. 4t onnes) of Pu-contaminated soil was treated for 60 days at a power consumption of 33 kWh/m(3), and then destructively sampled. Radiochemical data indicate mobilisation of Pu in the treated soil, and migration (probably as a negatively charged Pu-citrate complex) towards the anodic compartment of the treatment cell. Soil in the cathodic zone of the treatment unit was remediated to a level below free-release disposal thresholds (1.7 Bq/g, or <0.4 Bq/g above background activities). The data show the potential of this method as a low-cost, on-site tool for remediation of radioactively contaminated soils and wastes which can be operated remotely on working sites, with minimal disruption to site infrastructure or operations. PMID:21227583

  3. Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico.

    PubMed

    Ortega-Larrocea, María del Pilar; Xoconostle-Cázares, Beatriz; Maldonado-Mendoza, Ignacio E; Carrillo-González, Rogelio; Hernández-Hernández, Jani; Garduño, Margarita Díaz; López-Meyer, Melina; Gómez-Flores, Lydia; González-Chávez, Ma del Carmen A

    2010-05-01

    Plant establishment, presence of arbuscular mycorrhizal fungi (AMF) and other rhizospheric fungi were studied in mine wastes from Zimapan, Hidalgo state, Mexico, using a holistic approach. Two long-term afforested and three non-afforested mine tailings were included in this research. Fifty-six plant species belonging to 29 families were successfully established on the afforested sites, while unmanaged tailings had only a few native plant species colonizing the surrounding soils. Almost all plant roots collected were associated to AMF in these sites. The genus Glomus was the most abundant AMF species found in their rhizosphere; however, the Acaulospora genus was also observed. Other rhizospheric fungi were identified by 18S rDNA sequencing analysis. Their role in these substrates, i.e. biocontrol, pollutant- and organic matter-degradation, and aides that increase plant metal tolerance is discussed. Our results advance the understanding of fungal diversity in sites polluted with metals and present alternative plants for remediation use. PMID:19910092

  4. Pyrolysis of wetland biomass waste: Potential for carbon sequestration and water remediation.

    PubMed

    Cui, Xiaoqiang; Hao, Hulin; He, Zhenli; Stoffella, Peter J; Yang, Xiaoe

    2016-05-15

    Management of biomass waste is crucial to the efficiency and sustainable operation of constructed wetlands. In this study, biochars were prepared using the biomass of 22 plant species from constructed wetlands and characterized by BET-N2 surface area analysis, FTIR, TGA, SEM, EDS, and elemental compositions analysis. Biochar yields ranged from 32.78 to 49.02%, with mesopores dominating the pore structure of most biochars. The biochars had a R50 recalcitrance index of class C and the carbon sequestration potential of 19.4-28%. The aquatic plant biomass from all the Chinese constructed wetlands if made into biochars has the potential to sequester 11.48 Mt carbon yr(-1) in soils over long time periods, which could offset 0.4% of annual CO2 emissions from fossil fuel combustion in China. In terms of adsorption capacity for selected pollutants, biochar derived from Canna indica plant had the greatest adsorption capacity for Cd(2+) (98.55 mg g(-1)) and NH4(+) (7.71 mg g(-1)). Whereas for PO4(3-), Hydrocotyle verticillata derived biochar showed the greatest adsorption capacities (2.91 mg g(-1)). The results from this present study demonstrated that wetland plants are valuable feedstocks for producing biochars with potential application for carbon sequestration and contaminant removal in water remediation. PMID:26978731

  5. The risk implications of approaches to setting soil remediation goals at hazardous waste contaminated sites

    SciTech Connect

    Labieniec, P.A.

    1994-08-01

    An integrated exposure and carcinogenic risk assessment model for organic contamination in soil, SoilRisk, was developed and used for evaluating the risk implications of both site-specific and uniform-concentration approaches to setting soil remediation goals at hazardous-waste-contaminated sites. SoilRisk was applied to evaluate the uncertainty in the risk estimate due to uncertainty in site conditions at a representative site. It was also used to evaluate the variability in risk across a region of sites that can occur due to differences in site characteristics that affect contaminant transport and fate when a uniform concentration approach is used. In evaluating regional variability, Ross County, Ohio and the State of Ohio were used as examples. All analyses performed considered four contaminants (benzene, trichloroethylene (TCE), chlordane, and benzo[a]pyrene (BAP)) and four exposure scenarios (commercial, recreational and on- and offsite residential). Regardless of whether uncertainty in risk at a single site or variability in risk across sites was evaluated, the exposure scenario specified and the properties of the target contaminant had more influence than variance in site parameters on the resulting variance and magnitude of the risk estimate. In general, variance in risk was found to be greater for the relatively less degradable and more mobile of the chemicals studied (TCE and chlordane) than for benzene which is highly degradable and BAP which is very immobile in the subsurface.

  6. Performance evaluation of vibrorecovery as remediation technology at hazardous waste sites

    SciTech Connect

    Reddi, L.N.; Wu, H.

    1994-12-31

    The effects of vibrations on soils containing immiscible liquids were described in the context of soil remediation. Vibrations when augmented with flow gradients have the beneficial effect of dislodging immiscible liquid blobs and mobilizing them toward the point of intended collection. Several bench-scale experiments were conducted using a laboratory vibrator on sandy soils contaminated with Soltro, a non-volatile oil. The experiments were conducted under controlled conditions using a 4-ft diameter tank. The effect of vibrations on the soil-contaminant medium was measured via pore pressure transducers installed at various radial distances from the vibrator. Soil samples from the tank were analyzed for contaminant concentrations before and after inducing vibrations. The effectiveness of vibrations was assessed in terms of reduction of residual saturation of the liquids. The results were analyzed to assess the effects of various test parameters on the process such as frequency of vibrations, flow velocities in the tank, duration of vibrations, and density of soil. The lateral zone of influence of vibratory mobilization was also assessed. In order to predict the in-situ effectiveness of the process, mobilization criteria were developed as functions of soil, contaminant and vibration parameters. The zone of influence obtained using these mobilization criteria agreed well with the observed values for bench-scale experiments. Finally, a prototype design integrating vibrator and pumping mechanism was recommended for in-situ use at hazardous waste sites.

  7. A Remote Characterization System and a fault-tolerant tracking system for subsurface mapping of buried waste sites

    SciTech Connect

    Sandness, G.A.; Bennett, D.W. ); Martinson, L. ); Bingham, D.N.; Anderson, A.A. )

    1992-08-01

    This paper describes two closely related projects that will provide new technology for characterizing hazardous waste burial sites. The first project, a collaborative effort by five of the national laboratories, involves the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for noninvasive inspection of the surface and subsurface. The second project, conducted by the Idaho National Engineering Laboratory (INEL), involves the development of a position sensing system that can track a survey vehicle or instrument in the field. This system can coordinate updates at a rate of 200/s with an accuracy better than 0.1% of the distance separating the target and the sensor. It can employ acoustic or electromagnetic signals in a wide range of frequencies and can be operated as a passive or active device.

  8. Thermal processing systems for TRU mixed waste

    SciTech Connect

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-08-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

  9. Thermal processing systems for TRU mixed waste

    SciTech Connect

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-01-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

  10. Radiological criteria for the remediation of sites for spent fuel and radioactive waste storage in the Russian Northwest.

    PubMed

    Shandala, N K; Sneve, M K; Titov, A V; Smith, G M; Novikova, N Ya; Romanov, V V; Seregin, V A

    2008-12-01

    In the 1960s, two technical bases of the Northern Fleet were created in Northwest Russia, at Andreeva Bay in the Kola Peninsula and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, performing receipt and storage of radioactive waste and spent nuclear fuel, and are now designated sites of temporary storage (STSs). An analysis of the radiation situation at these sites demonstrates that substantial long-term remediation work will be required after the removal of the waste and spent nuclear fuel. Regulatory guidance is under development to support this work. Having in mind modern approaches to guaranteeing radiation safety, the primary regulatory focus is on a justification of dose constraints for determining acceptable residual contamination which might lead to exposure to workers and the public. For these sites, four principal options for remediation have been considered-renovation, conversion, conservation and liquidation. This paper describes a system of recommended dose constraints and derived control levels formulated for each option. The unconditional guarantee of long-term radioecological protection provides the basis for criteria development. Non-exceedance of these dose constraints and control levels implies compliance with radiological protection objectives related to the residual contamination. Dose reduction below proposed dose constraint values must also be carried out according to the optimisation principle. The developed criteria relate to the condition of the facilities and the STS areas after the termination of remediation activities. The proposed criteria for renovation, conversion, conservation and liquidation are entirely within the dose limits adopted in Russia for the management of man-made radiation sources, and are consistent with ICRP recommendations and national practice in other countries. The proposed criteria for STS remediation and new industrial (non-radiation-hazardous) facilities and buildings on

  11. Waste management plan for the remedial investigation/feasibility study of Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1992-12-01

    This plan defines the criteria and methods to be used for managing waste generated during activities associated with Waste Area Grouping (WAG) 5 at Oak Ridge National Laboratory (ORNL). WAG 5 is located in Melton Valley, south of the main ORNL plant area. It contains 17 solid waste management units (SWMUs) to be evaluated during the remedial investigation. The SWMUs include three burial areas, two hydrofracture facilities, two settling ponds, eight tanks, and two low-level liquid waste leak sites. These locations are all considered to be within the WAG 5 area of contamination (AOC). The plan contains provisions for safely and effectively managing soils, rock cuttings, development and sampling water, decontamination fluids, and disposable personal protective equipment (PPE) consistent with the Environmental Protection Agency (EPA) guidance of May 1991 (EPA 1991). Consistent with EPA guidance, this plan is designed to protect the environment and the health and safety of workers and the public.

  12. Waste management plan for the remedial investigation/feasibility study of Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoratin Program

    SciTech Connect

    Not Available

    1992-12-01

    This plan defines the criteria and methods to be used for managing waste generated during activities associated with Waste Area Grouping (WAG) 5 at Oak Ridge National Laboratory (ORNL). WAG 5 is located in Melton Valley, south of the main ORNL plant area. It contains 17 solid waste management units (SWMUs) to be evaluated during the remedial investigation. The SWMUs include three burial areas, two hydrofracture facilities, two settling ponds, eight tanks, and two low-level liquid waste leak sites. These locations are all considered to be within the WAG 5 area of contamination (AOC). The plan contains provisions for safely and effectively managing soils, rock cuttings, development and sampling water, decontamination fluids, and disposable personal protective equipment (PPE) consistent with the Environmental Protection Agency (EPA) guidance of May 1991 (EPA 1991). Consistent with EPA guidance, this plan is designed to protect the environment and the health and safety of workers and the public.

  13. Phase I remedial investigation report of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Miller, D.E.

    1995-07-01

    This report presents the activities and findings of the first phase of a three-phase remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, and updates the scope and strategy for WAG-2-related efforts. WAG 2 contains White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake, White Oak Creek Embayment on the Clinch River, and the associated floodplain and subsurface environment. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This report includes field activities completed through October 1992. The remediation of WAG 2 is scheduled to follow the cessation of contaminant input from hydrologically upgradient WAGs. While upgradient areas are being remediated, the strategy for WAG 2 is to conduct a long-term monitoring and investigation program that takes full advantage of WAG 2`s role as an integrator of contaminant fluxes from other ORNL WAGs and focuses on four key goals: (1) Implement, in concert with other programs, long-term, multimedia environmental monitoring and tracking of contaminants leaving other WAGs, entering WAG 2, and being transported off-site. (2) Provide a conceptual framework to integrate and develop information at the watershed-level for pathways and processes that are key to contaminant movement, and so support remedial efforts at ORNL. (3) Provide periodic updates of estimates of potential risk (both human health and ecological) associated with contaminants accumulating in and moving through WAG 2 to off-site areas. (4) Support the ORNL Environmental Restoration Program efforts to prioritize, remediate, and verify remedial effectiveness for contaminated sites at ORNL, through long-term monitoring and continually updated risk assessments.

  14. Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 2, Detailed description of first example flowsheet

    SciTech Connect

    Swanson, J.L.

    1993-09-01

    Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and waste minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.

  15. Potential enhancements to addressing programmatic risk in the tank waste remediation system (TWRS) program

    SciTech Connect

    Brothers, A.; Fassbender, L.; Bilyard, G.; Levine, L.

    1996-04-01

    Pacific Northwest National Laboratory (PNNL) conducted a Tank Waste Remediation System (TWRS) Risk Management methodology development task. The objective of this task was to develop risk management methodology focused on (1) the use of programmatic risk information in making TWRS architecture selection decisions and (2) the identification/evaluation/selection of TWRS risk-handling actions. Methods for incorporating programmatic risk/uncertainty estimates into trade studies are provided for engineers/analysts. Methods for identifying, evaluating, and selecting risk-handling actions are provided for managers. The guidance provided in this report is designed to help decision-makers make difficult judgments. Current approaches to architecture selection decisions and identification/evaluation/selection of risk-handling actions are summarized. Three categories of sources of programmatic risk (parametric, external, and organizational) are examined. Multiple analytical approaches are presented to enhance the current alternative generation and analysis (AGA) and risk-handling procedures. Appendix A describes some commercially available risk management software tools and Appendix B provides a brief introduction to quantification of risk attitudes. The report provides three levels of analysis for enhancing the AGA Procedure: (1) qualitative discussion coupled with estimated uncertainty ranges for scores in the alternatives-by-criteria matrix; (2) formal elicitation of probability distributions for the alternative scores; and (3) a formal, more structured, comprehensive risk analysis. A framework is also presented for using the AGA programmatic risk analysis results in making better decisions. The report also presents two levels of analysis for evaluation and selection of risk-handling actions: (1) qualitative analysis and judgmental rankings of alternative actions, and (2) Simple Multi-Attribute Rating Technique (SMART).

  16. Remediation of acid mine drainage within strip mine spoil by sulfate reduction using waste organic matter

    SciTech Connect

    Stalker, J.; Rose, A.W.; Michaud, L.H.

    1996-12-31

    Many treatment options for AMD, like wetlands and anoxic limestone drains, are limited by acidity, metal loadings, flow rate or areal requirements so as to be inapplicable at many sites. In-situ bacterial sulfate reduction is proposed as a solution for certain settings. Requirements for successful in-situ bacterial sulfate reduction include dissolved sulfate, an organic substrate, permanent anaerobic conditions, a mixed culture of bacteria, appropriate nutrients, and a sufficient AMD contact time. These requirements can be provided within mine spoil by injection of waste organic matter into an extensive zone of saturated spoil. Laboratory experiments on cheese whey, lactate, non-degraded sawdust, partially degraded sawdust, pulped newspaper and mushroom compost have all yielded sulfate reduction, increased alkalinity and iron sulfide precipitate in AMD with pH < 4.0. The addition of a small amount of dolomite to the organic matter creates alkaline microenvironments that facilitate the initiation of sulfate reduction. The rates of sulfate reduction using cellulose materials are slow but the rate for milk products is much more rapid. A field test utilizing partially degraded sawdust is underway. A total of 11.3 tons of sawdust mixed with 5% dolomite, 5% sewage sludge and a mixed bacterial culture was successfully injected into 4 drill holes in mine spoil as 13% w/v suspension, The spoil had enough coarse porosity for injection into the saturated subsurface at about 300 L/min, Data on in-situ SO{sub 4} reduction rates and water quality are being collected in preparation for a full remediation program at the site, which has an extensive zone of saturated spoil 10-20 m thick.

  17. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 1: Executive summary

    SciTech Connect

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program to aid technology development funding decisions for radioactive tank waste remediation. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. These methods do not show the relative effect of new technologies on tank remediation systems as a whole. Consequently, DOE may spend its resources on technologies that promise to improve a single function but have a small or possibly negative, impact on the overall system, or DOE may overlook a technology that does not address a high priority problem in the system but that does, if implemented, offer sufficient overall improvements. Systems engineering and detailed analyses often conducted under the National Environmental Policy Act (NEPA 1969) use a ``whole system`` approach but are costly, too time-consuming, and often not sufficiently focused to support the needs of the technology program decision-makers. An alternative approach is required to evaluate these systems impacts but still meet the budget and schedule needs of the technology program.

  18. Case Study of Anomalies Encountered During Remediation of Mixed Low-Level Waste Burial Grounds in the 100 and 300 Areas of the Hanford Site

    SciTech Connect

    Haass, M.J.; Zacharias, P.E.; Zacharias, A.E.

    2007-07-01

    Under the U.S. Department of Energy's River Corridor Closure Project, Washington Closure Hanford has completed remediation of more than 10 mixed low-level waste burial grounds in the 100 and 300 Areas of the Hanford Site. The records of decision for the burial grounds required excavation, characterization, and transport of contaminated material to a Resource Conservation and Recovery Act of 1976-compliant hazardous waste landfill. This paper discusses a sample of the anomalous waste found during remediation and provides an overview of the waste excavation activities. The 100 Area burial grounds received plutonium production reactor waste and waste associated with various test programs. Examples of 100 Area anomalies include spent nuclear fuel, elemental mercury, reactor hardware, and the remains of animals used in testing the effects of radionuclides on living organisms. The 300 Area burial grounds received waste from research and development laboratories and fuel manufacturing operations. Of the seven 300 Area burial grounds remediated to date, the most challenging has been the 618-2 Burial Ground. It presented significant challenges because of the potential for airborne alpha contamination and the discovery of plutonium in an isotopically pure form. Anomalies encountered in the 618-2 Burial Ground included a combination safe that contained gram quantities of plutonium, miscellaneous containers of unknown liquids, and numerous types of shielded shipping casks. Information presented in this paper will be an aid to those involved in remediation activities throughout the U.S. Department of Energy complex and at other nuclear waste disposal sites. (authors)

  19. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    SciTech Connect

    J. D. Ludowise

    2006-12-12

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

  20. REMEDIAL INVESTIGATIONS (RI) OF REGION 4 SUPERFUND HAZARDOUS WASTE SITES: JUNE 2004 - SEPT. 2005

    EPA Science Inventory

    These projects require developing and implementing Remedial Investigation (RI) Work Plans which include a Project Operations Plan, Field Sampling and Analysis Plan, Quality Assurance Plan, and a Health and Safety Plan. In general, these large complex RIs involve: collecting soil,...

  1. SESD REMEDIAL INVESTIGATIONS OF REGION 4 HAZARDOUS WASTE SUPERFUND SITES: APRIL 1, 2003 - MAY 31, 2004

    EPA Science Inventory

    These projects require developing and implementing Remedial Investigation Work Plans which include the Project Operations Plan, Field Sampling and Analysis Plan, Quality Assurance Plan and the Health and Safety Plan. In general these large complex investigations involve: collecti...

  2. Waste Management Plan for the Remedial Investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Not Available

    1993-10-01

    This Waste Management Plan (WMP) supplements the Remedial Investigation/Feasibility Study (RI/FS) Project WMP and defines the criteria and methods to be used for managing and characterizing waste generated during activities associated with the RI of 23 wells near the Old Hydrofracture Facility (OHF). These wells are within the Waste Area Grouping (WAG) 5 area of contamination (AOC) at Oak Ridge National Laboratory (ORNL). Field activities for the limited RI of Operable Unit (OU) 3 of WAG 10 will involve sampling and measurement of various environmental media (e.g., liquids and gases). Many of these activities will occur in areas known to be contaminated with radioactive materials or hazardous chemical substances, and it is anticipated that contaminated solid and liquid wastes and noncontaminated wastes will be generated as a result of these activities. On a project-wide basis, handling of these waste materials will be accomplished in accordance with the RI/FS Project WMP and the procedures referenced throughout the plan.

  3. Corrective Action Decision Document/Closure Report for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Alfred Wickline

    2008-04-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, in Areas 2, 3, 9, and 20 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended February 2008). Corrective Action Unit 545 is comprised of the following eight Corrective Action Sites (CASs): • 02-09-01, Mud Disposal Area • 03-08-03, Mud Disposal Site • 03-17-01, Waste Consolidation Site 3B • 03-23-02, Waste Disposal Site • 03-23-05, Europium Disposal Site • 03-99-14, Radioactive Material Disposal Area • 09-23-02, U-9y Drilling Mud Disposal Crater • 20-19-01, Waste Disposal Site While all eight CASs are addressed in this CADD/CR, sufficient information was available for the following three CASs; therefore, a field investigation was not conducted at these sites: • For CAS 03-08-03, though the potential for subsidence of the craters was judged to be extremely unlikely, the data quality objective (DQO) meeting participants agreed that sufficient information existed about disposal and releases at the site and that a corrective action of close in place with a use restriction is recommended. Sampling in the craters was not considered necessary. • For CAS 03-23-02, there were no potential releases of hazardous or radioactive contaminants identified. Therefore, the Corrective Action Investigation Plan for CAU 545 concluded that: “Sufficient information exists to conclude that this CAS does not exist as originally identified. Therefore, there is no environmental concern associated with CAS 03-23-02.” This CAS is closed with no further action. • For CAS 03-23-05, existing information about the two buried sources and lead pig was considered to be

  4. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect

    Johnson, G.D.

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  5. Quality Assurance Plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Atwood, G.P.; Miller, D.E. )

    1992-12-01

    The Oak Ridge National Laboratory (ORNL) Waste Area Grouping (WAG) 2 Site Investigation (SI)includes the lower portion of the White Oak Creek (WOC) drainage and enbayment, and associated floodplain and subsurface environment. The ORNL main plant and the major waste storage and disposal facilities at ORNL are located in the WOC watershed and are drained by the WOC system to the Clinch River, located off-site. Environmental media are contaminated and continue to receive contaminants from hydrologically upgradient WAGS. WAG 2 is important as a conduit from upgradient areas to the Clinch River. The general objectives of the WAG 2 SI Project are to conduct a multimedia monitoring and characterization program to define and monitor the input of contaminants from adjacent WAGS, monitor and gather sufficient information for processes controlling or driving contaminant fluxes to construct an appropriate conceptual model for WAG 2, and prepare for the eventual remediation of WAG 2.

  6. Toxic remediation

    DOEpatents

    Matthews, Stephen M.; Schonberg, Russell G.; Fadness, David R.

    1994-01-01

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  7. Responsiveness summary for the remedial investigation/feasibility study for management of the bulk wastes at the Weldon Spring quarry, Weldon Spring, Missouri

    SciTech Connect

    Peterson, J.M.; MacDonell, M.M.

    1990-08-01

    The US Department of Energy (DOE) is responsible for conducting remedial actions at the Weldon Spring site in St. Charles County, Missouri, under its Surplus Facilities Management Program. The site consists of a quarry and a chemical plant area located about 6.4 km (4 mi) northeast of the quarry. The quarry is surrounded by the Weldon Spring Wildfire Area and is near an alluvial well field that constitutes a major source of potable water for St. Charles County; the nearest supply well is located about 0.8 km (0.5 mi) southeast of the quarry. From 1942 to 1969, the quarry was used for the disposal of various radioactively and chemically contaminated materials. Bulk wastes in the quarry consist of contaminated soils and sediments, rubble, metal debris, and equipment. As part of overall site remediation, DOE is proposing to conduct an interim remedial action at the quarry to manage the radioactively and chemically contaminated bulk wastes contained therein. Potential remedial action alternatives for managing the quarry bulk wastes have been evaluated consistent with US Environmental Protection Agency (EPA) guidance for conducting remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. The contents of these documents were developed in consultation with EPA Region VII and the state of Missouri and reflect the focused scope defined for this interim remedial action. 9 refs.

  8. EM-54 Technology Development In Situ Remediation Integrated Program. Annual report

    SciTech Connect

    Not Available

    1993-08-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of Environmental Restoration and Waste Management (EM) in November 1989. EM manages remediation of all DOE sites as well as wastes from current operations. The goal of the EM program is to minimize risks to human health, safety and the environment, and to bring all DOE sites into compliance with Federal, state, and local regulations by 2019. EM-50 is charged with developing new technologies that are safer, more effective and less expensive than current methods. The In Situ Remediation Integrated Program (the subject of this report) is part of EM-541, the Environmental Restoration Research and Development Division of EM-54. The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: Significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces; in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP tends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years.

  9. Humic Acids Enhanced U(VI) Attenuation in Acidic Waste Plumes: An In-situ Remediation Approach

    NASA Astrophysics Data System (ADS)

    Wan, J.; Dong, W.; Tokunaga, T. K.

    2010-12-01

    In the process of extracting plutonium for nuclear weapons production during the Cold War, large volumes of acidic waste solutions containing low-level radionuclides were discharged for decades into unlined seepage basins in several US Department of Energy (DOE) weapon facilities such as the Savannah River Site (SRS), Oak Ridge (OR), and 300 Area of the Hanford Site. Although the basins have been capped and some sites have gone through many years of active remediation, groundwaters currently remain acidic with pH values as low as 3.0 near the basins, and uranium concentrations remain much higher than its maximum contaminant level (MCL). A sustainable U biogeochemical remediation method has not yet been developed, especially under acidic conditions (pH 3-5). Bioreduction-based U remediation requires permanent maintenance of reducing conditions through indefinite supply of electron donor, and when applied in acidic plumes a high-cost pretreatment procedure is required. Methods based on precipitation of phosphate minerals depend on maintenance of high P concentrations. Precipitating of uranyl vanadates can lower U to below its MCL, but this approach is only effective at near-neutral pH. There is an urgent need for developing a sustainable method to control U mobility in acidic conditions. In this paper, we propose a method of using humic acids (HAs) to attenuate contaminant U mobility in acidic waste plumes. Our laboratory experiment results show that HAs are able to strongly and quickly adsorb onto aquifer sediments from the DOE’s SRS and OR. With a moderate addition of HA, U adsorption increased to near 100% at pH below 5.0. Because U partitioning onto the HA modified mineral surfaces is so strong, U concentration in groundwaters can be sustainably reduced to below its MCL. We conducted flow through experiments for U desorption by acidic groundwater leaching at pH 3.5 and 4.5 from HA-treated SRS contaminated sediments. The results show that desorption of both U

  10. A Mobile, Teleoperated, Tool Platform for use in Waste Tank Remediation Efforts

    SciTech Connect

    Nance, T.A.

    1998-10-06

    This paper will discuss the cleaning challenge, possible solutions and their evaluation and selection, design, development, and mockup testing results of a low cost, mobile, teleoperated, tool platform for breaking up large waste deposits remaining in underground waste storage tanks.

  11. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.

    PubMed

    Dhal, B; Thatoi, H N; Das, N N; Pandey, B D

    2013-04-15

    Chromium is a highly toxic non-essential metal for microorganisms and plants, and its occurrence is rare in nature. Lower to higher chromium containing effluents and solid wastes released by activities such as mining, metal plating, wood preservation, ink manufacture, dyes, pigments, glass and ceramics, tanning and textile industries, and corrosion inhibitors in cooling water, induce pollution and may cause major health hazards. Besides, natural processes (weathering and biochemical) also contribute to the mobility of chromium which enters in to the soil affecting the plant growth and metabolic functions of the living species. Generally, chemical processes are used for Cr- remediation. However, with the inference derived from the diverse Cr-resistance mechanism displayed by microorganisms and the plants including biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux, bioremediation is emerging as a potential tool to address the problem of Cr(VI) pollution. This review focuses on the chemistry of chromium, its use, and toxicity and mobility in soil, while assessing its concentration in effluents/wastes which becomes the source of pollution. In order to conserve the environment and resources, the chemical/biological remediation processes for Cr(VI) and their efficiency have been summarised in some detail. The interaction of chromium with various microbial/bacterial strains isolated and their reduction capacity towards Cr(VI) are also discussed. PMID:23467183

  12. Remedial investigation plan for Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee: Responses to regulator comments

    SciTech Connect

    Not Available

    1991-05-01

    This document, ES/ER-6 D2, is a companion document to ORNL/RAP/Sub-87/99053/4 R1, Remedial Investigation Plan for ORNL Waste Area Grouping 1, dated August 1989. This document lists comments received from the Environmental Protection Agency, Region 4 (EPA) and the Tennessee Department of Health and Environment (TDHE) and responses to each of these comments. As requested by EPA, a revised Remedial Investigation (RI) Plan for Waste Area Grouping (WAG) 1 will not be submitted. The document is divided into two Sections and Appendix. Section I contains responses to comments issued on May 22, 1990, by EPA's Region 4 program office responsible for implementing the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Section 2 contains responses to comments issued on April 7, 1989, by EPA's program office responsible for implementing the Resource Conservation and Recovery Act (RCRA); these comments include issues raised by the TDHE. The Appendix contains the attachments referenced in a number of the responses. 35 refs.

  13. DEVELOPMENT OF MONITORING AND DIAGNOSTIC METHODS FOR ROBOTS USED IN REMEDIATION OF WASTE SITES

    EPA Science Inventory

    In the Environmental Restoration and Waste Management Program of the Department of Energy (DOE), extensive use of robots is planned for safe and efficient clean up of hazardous and radioactive waste sites. Robots operating at these waste sites will be exposed to a variety of life...

  14. Environmental assessment and management of metal-rich wastes generated in acid mine drainage passive remediation systems.

    PubMed

    Macías, Francisco; Caraballo, Manuel A; Nieto, José Miguel

    2012-08-30

    As acid mine drainage (AMD) remediation is increasingly faced by governments and mining industries worldwide, the generation of metal-rich solid residues from the treatments plants is concomitantly raising. A proper environmental management of these metal-rich wastes requires a detailed characterization of the metal mobility as well as an assessment of this new residues stability. The European standard leaching test EN 12457-2, the US EPA TCLP test and the BCR sequential extraction procedure were selected to address the environmental assessment of dispersed alkaline substrate (DAS) residues generated in AMD passive treatment systems. Significant discrepancies were observed in the hazardousness classification of the residues according to the TCLP or EN 12457-2 test. Furthermore, the absence of some important metals (like Fe or Al) in the regulatory limits employed in both leaching tests severely restricts their applicability for metal-rich wastes. The results obtained in the BCR sequential extraction suggest an important influence of the landfill environmental conditions on the metals released from the wastes. To ensure a complete stability of the pollutants in the studied DAS-wastes the contact with water or any other leaching solutions must be avoided and a dry environment needs to be provided in the landfill disposal selected. PMID:22717063

  15. Superfund Record of Decision (EPA Region 5): Forest Waste Disposal Site, Genesee County,, Michigan (action memorandum for initial remedial measure), February 1984. Final report

    SciTech Connect

    Not Available

    1984-02-29

    Forest Waste Disposal is located on a 112-acre tract of land, in a rural, residential area in the southeast quarter of Forest Township, Genesee County, Michigan. This location is approximately 12 miles northeast of Flint, and approximately 2 miles northwest of the city of Otisville. Forest Waste Disposal is a closed, 15-acre landfill which was licensed from 1972 to 1978 to accept general refuse and industrial wastes. During the course of operations, the facility accepted a variety of industrial wastes, including plating wastes, paint sludges, and waste oils. The facility also accepted PBB and PCB-contaminated wastes, refuse from a chemical warehouse fire, and unidentified barrels from Berlin and Farro hazardous waste site in Swartz Creek, Michigan. Although the landfill was permitted by the Michigan Department of Natural Resources to accept most of these wastes, the facility was run in a haphazard manner. County Health Department records on the site state that trenches were dug randomly, industrial wastes were buried with general refuse, and liquid wastes were discharged into the landfill and onto the ground throughout the landfill's operation.

  16. Electromagnetic scattering from buried objects

    SciTech Connect

    Brock, B.C.; Sorensen, K.W.

    1994-10-01

    Radar imaging and detection of objects buried in soil has potentially important applications in the areas of nonproliferation of weapons, environmental monitoring, hazardous-waste site location and assessment, and even archeology. In order to understand and exploit this potential, it is first necessary to understand how the soil responds to an electromagnetic wave, and how targets buried within the soil scatter the electromagnetic wave. We examine the response of the soil to a short pulse, and illustrate the roll of the complex dielectric permittivity of the soil in determining radar range resolution. This leads to a concept of an optimum frequency and bandwidth for imaging in a particular soil. We then propose a new definition for radar cross section which is consistent with the modified radar equation for use with buried targets. This radar cross section plays the same roll in the modified radar equation as the traditional radar cross section does in the free-space radar equation, and is directly comparable to it. The radar cross section of several canonical objects in lossy media is derived, and examples are given for several object/soil combinations.

  17. REMEDIAL INVESTIGATIONS (RI) OF REGION 4 SUPERFUND HAZARDOUS WASTE SITES: AUGUST 2007 – SEPTEMBER 2008

    EPA Science Inventory

    The Region 4 Science and Ecosystem Support Division (SESD) conducts and/or provides technical assistance to Remedial Investigation (RI) projects of Region 4 Superfund sites. These RI projects require developing and implementing RI Work Plans which include a Project Operations Pla...

  18. REMEDIAL INVESTIGATIONS (RI) OF REGION 4 SUPERFUND HAZARDOUS WASTE SITES: OCTOBER 2006 – JULY 2007

    EPA Science Inventory

    The Region 4 Science and Ecosystem Support Division (SESD) conducts and/or provides technical assistance to Remedial Investigation (RI) projects of Region 4 Superfund sites. These RI projects require developing and implementing RI Work Plans which include a Project Operations Pla...

  19. Study of biomedical waste management practices in a private hospital and evaluation of the benefits after implementing remedial measures for the same.

    PubMed

    Nandwani, Sumi

    2010-03-01

    A study has been carried out to ascertain, whether biomedical Waste generated in private hospitals being segregated and managed properly? The study was carried out in a private tertiary care 620 bedded hospital located in an urban area in Delhi, India to assess the awareness and attitude of the hospital staff, to document the ongoing practices, enlisting the deficiencies, to identify the root causes and to suggest remedial measures for proper biomedical waste management and assess the benefits of implementing them. A process flow chart was made of the existing waste system of the hospital. An anonymous questionnaire survey was conducted to determine the awareness about the policies and practices. A training programme was organised and a manual for waste management was made and distributed in the hospital. The quantum of waste generated per day in the hospital was 610 kg with 150 kg being biomedical waste. It was observed that although the waste generated was being disinfected properly before disposal the hospital staff was not segregating the waste properly, with delays in lifting of waste compounded with improper disposal. The hospital has its own incinerator but it was underutilized. After the remedial measures including training and distribution of manuals, an improvement was found in the segregation process resulting in decrease in amount of infectious waste load to 50%. The survey shows that no appropriate strategy exists and there is an urgent need to increase awareness about rules, regulations and procedures regarding this vital issue. PMID:22468550

  20. An assessment of dioxin contamination from the intermittent operation of a municipal waste incinerator in Japan and associated remediation.

    PubMed

    Takeda, Nobuo; Takaoka, Masaki

    2013-04-01

    Significant dioxin (polychlorinated dibenzo-para-dioxins (PCDDs)/polychlorinated dibenzo-furans (PCDFs)) pollution from a municipal solid waste incinerator was discovered in 1997 in Osaka prefecture/Japan. The cause and mechanism of pollution was identified by a detailed assessment of the environment and incinerator plant. The primary sources of PCDD/PCDF pollution were high dioxin releases from an intermittently operated waste incinerator with PCDD/PCDF emissions of 150 ng-TEQ/Nm(3). PCDD/PCDF also accumulated in the wet scrubber system (3,000 μg TEQ/L) by adsorption and water recirculation in the incinerator. Scrubber water was air-cooled with a cooling tower located on the roof of the incinerator. High concentrations of dioxins in the cooling water were released as aerosols into the surrounding and caused heavy soil pollution in the area near the plant. These emissions were considered as the major contamination pathway from the plant. Decontamination and soil remediation in and around the incinerator plant were conducted using a variety of destruction technologies (including incineration, photochemical degradation and GeoMelt technology). Although the soil remediation process was successfully finished in December 2006 about 3% of the waste still remains. The case demonstrates that releases from incinerators which do not use best available technology or which are not operated according to best environmental practices can contaminate their operators and surrounding land. This significant pollution had a large impact on the Japanese government's approach toward controlling dioxin pollution. Since this incident, a ministerial conference on dioxins has successfully strengthened control measures. PMID:23263763

  1. Prospective for remediation and purification of wastes from Xikuangshan mine by using Si-based substances.

    PubMed

    Saihua, Liu; Xionghui, Ji; Yunhe, Xie; Jiang, John; Bocharnikova, Elena; Matichenkov, Vladimir

    2016-05-01

    Heavy metal mining includes several procedures producing water and solid wastes. These wastes may have high content of heavy metals and other pollutants. Usually, traditional technologies for purification of solid and liquid wastes are expensive and require a lot of special constructions. Recent investigations have shown that some Si-rich substances enable to regulate the mobility of pollutants in soil and water and enhance the plant resistance to its toxicity. Based on these findings, new way for purification of waste-waters and detoxification of pollutants can be elaborated. Laboratory test was conducted with contaminated solid and liquid wastes from Xikuangshan mine. In column and incubation tests, the contents and mobility of the following pollutants were evaluated in Si-treated and untreated samples: As, Cd, Co, Cr, Cu, Hg, Pb, Ni and Zn. The investigations have shown that the Si-rich substances can be used for filtration of contaminated waste-water. The concentrations of soluble pollutants were reduced by 5-10 times and more. The incubation tests with solid wastes and Si-rich compounds have demonstrated that some Si-based substances reduced the contaminant mobility by 2-4 times. The efficiency of tested substances depended on their solubility on Si. The data has demonstrated that some types of local materials including industrial wastes can be used for purification of waste-waters and detoxification of solid wastes. PMID:26921568

  2. Tank waste remediation system retrieval and disposal mission authorization basis amendment task plan

    SciTech Connect

    Goetz, T.G.

    1998-01-08

    This task plan is a documented agreement between Nuclear Safety and Licensing and the Process Development group within the Waste Feed Delivery organization. The purpose of this task plan is to identify the scope of work, tasks and deliverables, responsibilities, manpower, and schedules associated with an authorization basis amendment as a result of the Waste Feed Waste Delivery Program, Project W-211, and Project W-TBD.

  3. Tank waste remediation system fiscal year 1998 multi-year work plan WBS 1.1

    SciTech Connect

    Lenseigne, D. L.

    1997-09-15

    The TWRS Project Mission is to manage and immobilize for disposal the Hanford Site radioactive tank waste and cesium (Cs)/strontium (Sr) capsules in a safe, environmentally sound, and cost-effective manner. The scope includes all activities needed to (1) resolve safety issues; (2) operate, maintain, and upgrade the tank farms and supporting infrastructure; (3) characterize, retrieve, pretreat, and immobilize the waste for disposal and tank farm closure; and (4) use waste minimization and evaporation to manage tank waste volumes to ensure that the tank capacities of existing DSTs are not exceeded. The TWRS Project is responsible for closure of assigned operable units and D&D of TWRS facilities.

  4. Preventing remediation problems

    SciTech Connect

    Fleming, W.H.

    1994-12-31

    Remediation, the design and construction of a remedy, typically represents the most significant portion of the cleanup process. The cost may be 5 to 10 times the cost of earlier investigation and feasibility efforts. Furthermore, the risks associated with remediation activities and their ability to meet ultimate cleanup goals and objectives are far greater than those associated with earlier efforts. Often times there are unrealistic expectations interjected throughout the design and construction process in the remediation field. The simple fact that most problems are buried, and one cannot see all that is below the ground surface provides sufficient uncertainty to result in problems. There are three key points during the remediation process which provide opportunities to prevent and avoid problems. These are: (1) during design; (2) during procurement and contracting; and (3) during construction. This paper examines actions which the author has found or believes will assist in providing a formula for success.

  5. Remediation of radiocesium-contaminated liquid waste, soil, and ash: a mini review since the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Ding, Dahu; Zhang, Zhenya; Lei, Zhongfang; Yang, Yingnan; Cai, Tianming

    2016-02-01

    The radiation contamination after the Fukushima Daiichi Nuclear Power Plant accident attracts considerable concern all over the world. Many countries, areas, and oceans are greatly affected by the emergency situation other than Japan. An effective remediation strategy is in a highly urgent demand. Though plenty of works have been carried out, progressive achievements have not yet been well summarized. Here, we review the recent advances on the remediation of radiocesium-contaminated liquid waste, soil, and ash. The overview of the radiation contamination is firstly given. Afterwards, the current remediation strategies are critically reviewed in terms of the environmental medium. Special attentions are paid on the adsorption/ion exchange and electrically switched ion exchange methods. Finally, the present review outlines the possible works to do for the large-scale application of the novel remediation strategies. PMID:26604196

  6. Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches

    SciTech Connect

    Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

    1989-01-01

    As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

  7. FINAL REPORT. DEVELOPMENT OF MONITORING AND DIAGNOSTIC METHODS FOR ROBOTS USED IN REMEDIATION OF WASTE SITES

    EPA Science Inventory

    In the Environmental Management Science Program (EMSP) of the Department of Energy (DOE), extensive use of robots is planned for safe and efficient cleanup of hazardous and radioactive waste sites. Robots operating at these waste sites will be exposed to a variety of life-limitin...

  8. RCRA delisting of agent-decontaminated waste and remediation waste at Dugway Proving Ground: A program update

    SciTech Connect

    Kimmell, T.A.; Anderson, A.W.; O`Neill, H.J.

    1996-03-01

    In July 1988, the state of Utah issued regulations that declared residues resulting from the demilitarization, treatment, and testing of military chemical agents to be hazardous wastes. These residues were designated as corrosive, reactive, toxic, and acute hazardous (Hazardous Waste No. F999). These residues are not listed by the U.S. Environmental Protection Agency (EPA) as hazardous waste under the Resource Conservation and Recovery Act (RCRA), which is the primary law governing management of hazardous waste in the United States. The RCRAI regulations (40 CFR 260-280), the Utah Administrative Code (R-315), and other state hazardous waste programs list specific wastes as hazardous but allow generators to petition the regulator to {open_quotes}delist{close_quotes} if it can be demonstrated that such wastes are not hazardous. In 1994, the U.S. Army Test and Evaluation Command FECOM initiated a project with the Argonne National Laboratory (Argonne) to demonstrate that certain categories of F999 residues are not hazardous waste and to achieve delisting. The initial focus is on delisting agent-decontaminated residues and soil with a history of contamination at the U.S. Army Dugway Proving Ground (DPG), Utah. An overview of the DPG delisting program was presented at the 1995 American Defense Preparedness Association Environmental Symposium. Since that time, much progress has been made. The purpose of this paper is to review the DPG delisting program and discuss overall progress. Emphasis is placed on progress with regard to analytical methods that will be used to demonstrate that the target residues do not contain hazardous amounts of chemical agent.

  9. Mobile teleoperated tool platform for use in waste tank remediation efforts

    NASA Astrophysics Data System (ADS)

    Nance, Thomas A.; Fogle, Robert F.

    1999-01-01

    For several decades at the Department of Energy's Savannah River Site, large underground storage tanks have been used to contain highly radioactive waste. This waste must be now transported out of the tanks to be processed into a more suitable long-term storage medium. In addition, the emptied tanks must be cleaned in adherence to both state and federal requirements before being permanently closed. Unfortunately, transfer of the waste by pump leaves behind several types of waste forms away from pump suction: highly alkaline and radioactive sludge, rock-like solid masses called clinkers, or large, solidified salt formations known as tank heels. These waste forms must be dissolved and moved on the tank bottom to pump locations prior to being removed from the tank.

  10. Office of Technology Development integrated program for development of in situ remediation technologies

    SciTech Connect

    Peterson, M.

    1992-08-01

    The Department of Energy's Office of Technology Development has instituted an integrated program focused on development of in situ remediation technologies. The development of in situ remediation technologies will focus on five problem groups: buried waste, contaminated soils, contaminated groundwater, containerized wastes and underground detonation sites. The contaminants that will be included in the development program are volatile and non volatile organics, radionuclides, inorganics and highly explosive materials as well as mixtures of these contaminants. The In Situ Remediation Integrated Program (ISR IP) has defined the fiscal year 1993 research and development technology areas for focusing activities, and they are described in this paper. These R D topical areas include: nonbiological in situ treatment, in situ bioremediation, electrokinetics, and in situ containment.

  11. Office of Technology Development integrated program for development of in situ remediation technologies

    SciTech Connect

    Peterson, M.

    1992-08-01

    The Department of Energy`s Office of Technology Development has instituted an integrated program focused on development of in situ remediation technologies. The development of in situ remediation technologies will focus on five problem groups: buried waste, contaminated soils, contaminated groundwater, containerized wastes and underground detonation sites. The contaminants that will be included in the development program are volatile and non volatile organics, radionuclides, inorganics and highly explosive materials as well as mixtures of these contaminants. The In Situ Remediation Integrated Program (ISR IP) has defined the fiscal year 1993 research and development technology areas for focusing activities, and they are described in this paper. These R&D topical areas include: nonbiological in situ treatment, in situ bioremediation, electrokinetics, and in situ containment.

  12. Long-Term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal, and Radionuclide Contaminants

    SciTech Connect

    Gerlach, Robin; Cunningham, Al; Peyton, Brent

    2005-06-01

    The collaborative project was designed to evaluate the possibility developing a subsurface remediation technology for mixed wastes at Department of Energy sites using a group of common soil bacteria of the genus Cellulomonas. We have been gaining a better understanding of microbial transformation of chromium, uranium, iron minerals, and trinitrotoluene (TNT) by Cellulomonas spp. in simulated subsurface environments.

  13. Development of monitoring and diagnostic methods for robots used in remediation of waste sites. 1997 annual progress report

    SciTech Connect

    Tecza, J.

    1998-06-01

    'Safe and efficient clean up of hazardous and radioactive waste sites throughout the DOE complex will require extensive use of robots. This research effort focuses on developing Monitoring and Diagnostic (M and D) methods for robots that will provide early detection, isolation, and tracking of impending faults before they result in serious failure. The utility and effectiveness of applying M and D methods to hydraulic robots has never been proven. The present research program is utilizing seeded faults in a laboratory test rig that is representative of an existing hydraulically-powered remediation robot. This report summarizes activity conducted in the first 9 months of the project. The research team has analyzed the Rosie Mobile Worksystem as a representative hydraulic robot, developed a test rig for implanted fault testing, developed a test plan and agenda, and established methods for acquiring and analyzing the test data.'

  14. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    SciTech Connect

    Dionne, B.J.; Morris, S. III; Baum, J.W.

    1998-03-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  15. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    SciTech Connect

    Dionne, B.J.; Morris, S.C. III; Baum, J.W.

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report.

  16. Passive Neutron Non-Destructive Assay for Remediation of Radiological Waste at Hanford Burial Grounds- 13189

    SciTech Connect

    Simpson, A.; Pitts, M.; Ludowise, J.D.; Valentinelli, P.; Grando, C.J.; Haggard, D.L.

    2013-07-01

    The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removes outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)

  17. In Situ Modular Waste Retrieval and Treatment System

    SciTech Connect

    Walker, M.S.

    1996-10-01

    As part of the Comprehensive Environmental Response, Compensation, and Liability Act process from remediation of Waste Area Grouping (WAG 6) at ORNL, a public meeting was held for the Proposed Plan. It was recognized that contaminant releases from WAG 6 posed minimal potential risk to the public and the environment. The US DOE in conjunction with the US EPA and the TDEC agreed to defer remedial action at WAG 6 until higher risk release sites were first remediated. This report presents the results of a conceptual design for an In Situ Modular Retrieval and Treatment System able to excavate, shred, and process buried waste on site, with minimum disturbance and distribution of dust and debris. the system would bring appropriate levels of treatment to the waste then encapsulate and leave it in place. The system would be applicable to areas in which waste was disposed in long trenches.

  18. Performance Assessment of the Waste Dislodging Conveyance System During the Gunite And Associated Tanks Remediation Project

    SciTech Connect

    Lloyd, P.D.

    2001-02-21

    The Waste Dislodging and Conveyance System (WD and CS) and other components of the Tank Waste Retrieval System (TWRS) were developed to address the need for removal of hazardous wastes from underground storage tanks (USTs) in which radiation levels and access limitations make traditional waste retrieval methods impractical. Specifically, these systems were developed for cleanup of the Gunite and Associated Tanks (GAAT) Operable Unit (OU) at the Oak Ridge National Laboratory (ORNL). The WD and CS is comprised of a number of different components. The three primary hardware subsystems are the Hose Management System (HMS), the Confined Sluicing End-Effector (CSEE), and the Flow Control Equipment and Containment Box (FCE/CB). In addition, a Decontamination Spray Ring (DSR) and a control system were developed for the system. The WD and CS is not a stand-alone system; rather, it is designed for deployment with either a long-reach manipulator like the Modified Light Duty Utility Arm (MLDUA) or a remotely operated vehicle system such as the Houdini{trademark}. The HMS was designed to act as a pipeline for the transfer of dislodged waste; as a hose-positioning and tether-management system; and as a housing for process equipment such as the water-powered jet pump that provides the necessary suction to vacuum slurried waste from the UST. The HMS was designed to facilitate positioning of an end-effector at any point within the 25-ft- or 50-ft-diameter USTs in the GAAT OU.

  19. Waste explosives and other hazardous materials--hazard potential and remedial measures: an overview.

    PubMed

    Pandey, R K; Asthana, S N; Bhattacharya, B; Tiwari, Ila; Ghole, V S

    2007-07-01

    A large amount of energetic materials including propellants, high explosives, pyrotechnics are subjected to disposal either due to expiry of their useful life or rejection in the manufacturing process. The environmental regulations do not allow the hazardous materials for open burning / detonation in view of the health hazard involved in these operations. The present paper describes the hazard potential of energetic materials and associated hazardous chemicals. It also deals with global technological status for remedial measures of hazardous chemicals along with their merits and demerits. PMID:18476443

  20. Environmental impact of phosphogypsum stockpile in remediated Schistos waste site (Piraeus, Greece) using a combination of γ-ray spectrometry with geographic information systems.

    PubMed

    Papageorgiou, F; Godelitsas, A; Mertzimekis, T J; Xanthos, S; Voulgaris, N; Katsantonis, G

    2016-03-01

    From 1979 to 1989, ten million tons of phosphogypsum, a waste by-product of the Greek phosphate fertilizer industry, was disposed into an abandoned limestone quarry in Schistos former waste site, Piraeus (Greece). The quarry has been recently closed and remediated using geomembranes and thick soil cover with vegetation. A part of the deposited phosphogypsum has been exposed due to intense rainfall episodes leading to concerns about how could potentially released radioactivity affect the surrounding environment. This study seeks to assess the environmental impact of the phosphogypsum deposited in the Schistos quarry, using laboratory-based γ-ray spectrometry measurements and geographical information systems. Radioactivity concentrations were mapped onto spatial-data to yield a spatial-distribution of radioactivity in the area. The data indicate elevated (226)Ra concentrations in a specific area on the steep south-eastern cliff of the remediated waste site that comprises uncovered phosphogypsum and is known to be affected by local weather conditions. (226)Ra concentrations range from 162 to 629 Bq/kg, with an average activity being on the low side, compared to the global averages for phosphogypsum. Nevertheless, the low environmental risk may be minimized by remediating this area with geomembranes and thick soil cover with vegetation, a technique, which has worked successfully over the remainder of the remediated quarry. PMID:26837381

  1. Environmental Assessment and Finding of No Significant Impact: Waste Remediation Activities at Elk Hills (Former Naval petroleum Reserve No. 1), Kern County, California

    SciTech Connect

    N /A

    1999-12-17

    DOE proposes to conduct a variety of post-sale site remediation activities, such as characterization, assessment, clean-up, and formal closure, at a number of inactive waste sites located at Elk Hills. The proposed post-sale site remediation activities, which would be conducted primarily in developed portions of the oil field, currently are expected to include clean-up of three basic categories of waste sites: (1) nonhazardous solid waste surface trash scatters, (2) produced wastewater sumps, and (3) small solid waste landfills. Additionally, a limited number of other inactive waste sites, which cannot be typified under any of these three categories, have been identified as requiring remediation. Table 2.1-1 presents a summary, organized by waste site category, of the inactive waste sites that require remediation per the PSA, the ASA, and/or the UPCTA. The majority of these sites are known to contain no hazardous waste. However, one of the surface scatter sites (2G) contains an area of burn ash with hazardous levels of lead and zinc, another surface scatter site (25S) contains an area with hazardous levels of lead, a produced wastewater sump site (23S) and a landfill (42-36S) are known to contain hazardous levels of arsenic, and some sites have not yet been characterized. Furthermore, additional types of sites could be discovered. For example, given the nature of oil field operations, sites resulting from either spills or leaks of hazardous materials could be discovered. Given the nature of the agreements entered into by DOE regarding the required post-sale clean-up of the inactive waste sites at Elk Hills, the Proposed Action is the primary course of action considered in this EA. The obligatory remediation activities included in the Proposed Action are standard procedures such that possible variations of the Proposed Action would not vary substantially enough to require designation as a separate, reasonable alternative. Thus, the No Action Alternative is the only

  2. Capping as an alternative for remediating radioactive and mixed waste landfills

    SciTech Connect

    Hakonson, T.E.

    1994-03-01

    This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years.

  3. Roles of Historical Photography in Waste Site Characterization, Closure, and Remediation

    SciTech Connect

    Mackey, H.

    1998-07-01

    Over 40,000 frames of vertical historical photography from 1938 to 1996 and over 10,000 frames of oblique photography from 1981 to 1991 of the 777-square kilometer Savannah River Site in south central South Carolina were reviewed, cataloged, and referenced utilizing ARCView and associated ArcInfo tools. This allows environmental reviews of over 400 potential waste units on the SRS to be conducted in a rapid fashion to support preparation of work plans, characterization, risk assessments, and closure of the waste units in a more cost effective manner.

  4. EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT

    SciTech Connect

    Crawford, C.; Jantzen, C.

    2012-02-02

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates

  5. REMEDIATION OF SOILS CONTAMINATED WITH WOOD PRESERVING WASTES: CROSSCURRENT AND COUNTERCURRENT SOLVENT WASHING

    EPA Science Inventory

    solvent washing was evaluated as a method to remove pentachlorophenol (PCP) from aged field soils contaminated with wood treating wastes. Several soil:solvent contact ratios were considered. Solvent washing processes were evaluated based on the removal of PCP from the soil throug...

  6. Tank Waste Remediation System (TWRS) Retrieval Authorization Basis Amendment Task Plan

    SciTech Connect

    HARRIS, J.P.

    2000-03-27

    This task plan is a documented agreement between Nuclear Safety and Licensing and Retrieval Engineering. The purpose of this task plan is to identify the scope of work, tasks and deliverables, responsibilities, manpower, and schedules associated with an authorization basis amendment as a result of the Waste Feed Delivery Program, Project W-211, Project W-521, and Project W-522.

  7. Tank Waste Remediation System (TWRS) Retrieval Authorization Basis Amendment Task Plan

    SciTech Connect

    HARRIS, J.P.

    1999-08-31

    This task plan is a documented agreement between Nuclear Safety and Licensing and Retrieval Engineering. The purpose of this task plan is to identify the scope of work, tasks and deliverables, responsibilities, manpower, and schedules associated with an authorization basis amendment as a result of the Waste Feed Delivery Program, Project W-211, Project W-521, and Project W-522.

  8. FINAL REPORT. THE SONOPHYSICS AND SONOCHEMISTRY OF LIQUID WASTE QUANTIFICATION AND REMEDIATION

    EPA Science Inventory

    The objective of this proposal was to study the physics and chemistry of acoustic cavitation--thatis, the formation, growth, and violent collapse of bubbles--for its eventual application as both an analytical tool for toxic waste identification and monitoring, as well as a cost-...

  9. Analysis for remedial alternatives of unregulated municipal solid waste landfills leachate-contaminated groundwater

    NASA Astrophysics Data System (ADS)

    An, Da; Jiang, Yonghai; Xi, Beidou; Ma, Zhifei; Yang, Yu; Yang, Queping; Li, Mingxiao; Zhang, Jinbao; Bai, Shunguo; Jiang, Lei

    2013-09-01

    A groundwater flow and solute transport model was developed using Visual Modflow for forecasting contaminant transport and assessing effects of remedial alternatives based on a case study of an unregulated landfill leachate-contaminated groundwater in eastern China. The results showed that arsenic plume was to reach the pumping well in the downstream farmland after eight years, and the longest lateral and longitudinal distance of arsenic plume was to reach 200 m and 260 m, respectively. But the area of high concentration region of arsenic plume was not to obviously increase from eight years to ten years and the plume was to spread to the downstream river and the farmland region after 20 years; while the landfill's ground was hardened, the plume was not to reach the downstream farmland region after eight years; when the pumping well was installed in the plume downstream and discharge rate was 200m3/d, the plume was to be effectively restrained; for leakage-proof barriers, it might effectively protect the groundwater of sensitive objects within an extent time range. But for the continuous point source, the plume was still to circle the leakage-proof barrier; when discharge rate of drainage ditches was 170.26 m3/d, the plume was effectively controlled; the comprehensive method combining ground-harden with drainage ditches could get the best effect in controlling contaminant diffusion, and the discharge rate was to be reduced to 111.43 m3/d. Therefore, the comprehensive remedial alternative combining ground-harden with drainage ditch will be recommended for preventing groundwater contamination when leachate leakage has happened in unregulated landfills.

  10. Superfund record of decision (EPA Region 4): Whitehouse Waste Oil Pits Site, Duval County, Jacksonville, FL. (First remedial action), (Amendment), June 1992. Final report

    SciTech Connect

    Not Available

    1992-06-16

    The 7-acre Whitehouse Waste Oil Pits site was used by Allied Petroleum Products (Allied) to dispose of acidic waste oil sludges from its oil reclamation process in Whitehouse, Duval County, Florida. A cypress swamp system and residential area are immediately adjacent to the site. The acid sludge produced in the first step and clay used to decolorize the oil were dumped into the unlined pits at the site. A 1985 ROD addressed source control as a containment remedy consisting of a slurry wall construction, soil cap, and a ground water recovery and treatment system; however, EPA has re-evaluated the 1985 ROD selection and determined that the containment remedy failed to meet the requirements of SARA. As a result, the ROD Amendment focuses on an alternative for treating Whitehouse wastes by eliminating direct contact risk associated with pit soil/sludge wastes and preventing contaminated ground water in the surficial aquifer from migrating laterally. The primary contaminants of concern that affect the soil, sediment, surface water, and ground water are VOCs, including benzene, toluene, and xylenes; organics, including PCBs and phenols; and metals, including arsenic, chromium, and lead. The amended remedial action for the site are included.

  11. Tank waste remediation system retrieval and disposal mission key enabling assumptions

    SciTech Connect

    Baldwin, J.H.

    1998-01-09

    An overall systems approach has been applied to develop action plans to support the retrieval and immobilization waste disposal mission. The review concluded that the systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed. An analysis of the programmatic, management and technical activities necessary to declare Readiness to Proceed with execution of the mission demonstrates that the system, people, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and immobilized waste disposal mission requirements and evaluating the readiness of the TWRS contractor to supply waste feed to the private contractors in June 2002. The Phase 1 feed delivery requirements from the Private Contractor Request for Proposals were reviewed, transfer piping routes were mapped on it, existing systems were evaluated, and upgrade requirements were defined. Technical Basis Reviews were completed to define work scope in greater detail, cost estimates and associated year by year financial analyses were completed. Personnel training, qualifications, management systems and procedures were reviewed and shown to be in place and ready to support the Phase 1B mission. Key assumptions and risks that could negatively impact mission success were evaluated and appropriate mitigative actions plans were planned and scheduled.

  12. Site characterization and containment/remediation of acid mine drainage at an abandoned mine waste dump

    SciTech Connect

    Djahanguiri, F.; Snodgrass, J.; Koerth, J.

    1996-12-31

    This paper focuses on the preliminary results of laboratory tests to evaluate a new suspension grout consisting of a mixture of a naturally occurring lignite coal based wax {open_quotes}montan wax{close_quotes}, sodium bentonite {open_quotes}pure gold grout{close_quotes}, and water. The test program assesses the suitability of the grout for creating subsurface containment barriers in coal waste dump sites for acid mine seepage control to surface and ground waters. The laboratory activities evaluated the reduction in permeability that could be achieved in a coal waste dump site under optimum conditions and the compatibility of the grout with representative waste from the test site. Information on geological, geochemical and geophysical about the test site is presented. Laboratory formulation of the grout is complete and simulation of field condition is in progress. Pregrout geophysical surveys for determination of hydrogeologic conditions at the site are also completed. Based on geophysical surveys, a grout curtain is proposed which will consist of two rows of grout placement holes in an array across the seepage area toward Belt Creek in Montana, Post-grout geophysical survey will be carried out immediately after grouting work. Performance of the grout curtain will be monitored by collection of water samples from monitoring wells in the Belt Creek and seepage area.

  13. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    SciTech Connect

    Certa, P.J.

    1998-01-07

    Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.

  14. SRL in-situ tests in the United Kingdom: Part 2, Surface analyses of SRS waste glass buried for one and two years in limestone at Ballidon, UK

    SciTech Connect

    Namboodri, C.G. Jr.; Wicks, G.G.

    1991-02-26

    A multiphase experimental program to assess and understand waste glass behavior under a wide range of conditions has been in progress at the Savannah River Laboratory (SRL) for over a decade. An important part of this experimental effort is to assess the effects of repository relevant conditions on performance of SRS waste glass, in both controlled laboratory tests, as well as in actual field experiments. In laboratory test, SRS waste glass, simulated and in many cases also fully radioactive, has been tested in environments of salt, basalt, shale, granite, clay and tuff. In field experiments, there are four joint international programs being conducted in four different countries, involving burial of SRS simulated waste glass in granite, limestone, clay and salt geologies. This report discusses the SRS waste glass studies in limestone at Ballidon, UK..

  15. Waste management and contaminated site remediation practices after oil spill: a case study.

    PubMed

    Oliveira, Fernando Jorge Santos; da Rocha Calixto, Renata Oliveira; Felippe, Carlos Eduardo Cunha; de Franca, Francisca Pessoa

    2013-12-01

    A case study is presented on waste management practices implemented after a residual fuel oil spill from a steam-generating boiler in an industrial area, and on the technical feasibility of monitored natural attenuation as a treatment option for a recently contaminated tropical soil. One day after contamination, surface soil total petroleum hydrocarbons and phenanthrene concentrations varied from 3.1 to 7.9 g kg(-1) and 149 to 287 µg kg(-1), respectively. Petroleum hydrocarbon concentrations decayed along the monitored time and after 90 days of processes the soil was considered rehabilitated for future industrial use. PMID:24163378

  16. Gunite and associated tanks remediation project recycling and waste minimization effort

    SciTech Connect

    Van Hoesen, S.D.; Saunders, A.D.

    1998-05-01

    The Department of Energy`s Environmental Management Program at Oak Ridge National Laboratory has initiated clean up of legacy waste resulting from the Manhattan Project. The gunite and associated tanks project has taken an active pollution prevention role by successfully recycling eight tons of scrap metal, reusing contaminated soil in the Area of Contamination, using existing water (supernate) to aid in sludge transfer, and by minimizing and reusing personal protective equipment (PPE) and on-site equipment as much as possible. Total cost savings for Fiscal Year 1997 activities from these efforts are estimated at $4.2 million dollars.

  17. Hazardous Waste Water Remediation by Ecoresin-Dry Cow Dung Powder

    NASA Astrophysics Data System (ADS)

    Bagla, Hemlata; Barot, Nisha

    2013-04-01

    Water, the matter, matrix, medium and the mother of our life, is indeed one of the drivers of Nature. Through water cycle only the intra and inter equilibrium is maintained constantly between entire 'green' and 'blue'. Unfortunately, with each successive epoch of industrialization and urbanization, human societies have produced non-biodegradable waste hulk with far beyond handling capacities of mankind. At this juncture the very need is to appreciate and move towards the cost as well as time effective scientific alternatives for the removal of aqueous heavy metal pollutants. Green chemistry advocates the utilization of naturally available bio-resins which are environmentally benign alternative to current synthetic materials and technologies employed for waste water treatment. This explicit investigation aims to explore Dry Cow dung powder, DCP, a natural biosorbent as a green and clean alternative for the aqueous waste water treatment. It is naturally available bio-organic, complex, polymorphic humified fecal matter of cow and is enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic - aromatic species such as 'Humic acid'(HA). The HA has been successfully extracted by authors from DCP and this piece of work has been published in the International Journal [1]. We have developed simple, efficient and eco-friendly method for the removal of aqueous heavy metal pollutant such as Cr(VI) [2], Cd(II), Cr(III) [3] and Hg(II) as well radiotoxic 90Sr(II) [4], employing DCP. DCP is employed without any pre or post treatment. Being freely and easily available DCP has an edge over processed natural adsorbent considering their cost, time and energy efficiency. In nutshell we have to remember that prevention is better than the cure. If we fail to meet this, the situation will surely augment which will drain our water, our life, to slaughters knife..! Reference: 1. H.K.Bagla, N.S.Barot, Soil Amendement by Green Supplement: Dry Cowdung powder, EGUGA - 11

  18. Data Base Management Plan for the remedial investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Not Available

    1993-10-01

    This Data Base Management Plan describes the gathering, verifying, analyzing, reporting, and archiving of data generated during the remedial investigation of Waste Area Grouping 10, Operable Unit 3. This investigation will produce data documenting wellhead surveys, well headspace gas pressure measurements, geophysical surveys, water level measurements, and borehole geophysical logs. Close Support Laboratory analyses will be performed on well headspace gas and well water samples.

  19. Maximizing Operational Efficiencies in Waste Management on the Hanford Plateau Remediation Contract in a Down-turned Market - 13484

    SciTech Connect

    Simiele, Connie J.; Blackford, L. Ty; West, Lori D.

    2013-07-01

    Recent changes in DOE priorities and funding have pressed DOE and its contractors to look for innovative methods to sustain critical operations at sites across the Complex. At the Hanford Site, DOE Richland Operations and its prime contractor, CH2M Hill Plateau Remediation Company (CHPRC), have completed in-depth assessments of the Plateau Remediation Contract (PRC) operations that compared available funding to mission and operational objectives in an effort to maintain requisite safety and compliance margins while realizing cost savings that meet funding profiles. These assessments included confirmation of current baseline activities, identification of potential efficiencies, barriers to implementation, and potential increased risks associated with implementation. Six operating PRC waste management facilities were evaluated against three possible end-states: complete facility closure, maintaining base operations, and performing minimum safe surveillance and maintenance activities. The costs to completely close evaluated facilities were determined to be prohibitively high and this end-state was quickly dropped from consideration. A summary of the analysis of remaining options by facility, efficiencies identified, impact to risk profiles, and expected cost savings is provided in Table I. The expected cost savings are a result of: - right-sizing and cross-training work crews to address maintenance activities across facilities; - combining and sequencing 'like-moded' operational processes; - cross-cutting emergency planning and preparedness staffing; - resource redistribution and optimization; - reducing areas requiring routine surveillance and inspection. For the efficiencies identified, there are corresponding increases in risk, including a loss of breadth and depth of available resources; lengthened response time to emergent issues; inability to invest in opportunities for improvement (OFIs); potential single-point failures or non-compliancies due to resource

  20. Remediation of textile dye waste water using a white-rot fungus Bjerkandera adusta through solid-state fermentation (SSF).

    PubMed

    Robinson, Tim; Nigam, Poonam Singh

    2008-12-01

    A strict screening strategy for microorganism selection was followed employing a number of white-rot fungi for the bioremediation of textile effluent, which was generated from one Ireland-based American textile industry. Finally, one fungus Bjerkandera adusta has been investigated in depth for its ability to simultaneously degrade and enrich the nutritional quality of highly coloured textile effluent-adsorbed barley husks through solid-state fermentation (SSF). Certain important parameters such as media requirements, moisture content, protein/biomass production and enzyme activities were examined in detail. A previously optimised method of dye desorption was employed to measure the extent of dye remediation through effluent decolorisation achieved as a result of fungal activity in SSF. B. adusta was capable of decolourising a considerable concentration of the synthetic dye effluent (up to 53%) with a moisture content of 80-85%. Protein enrichment of the fermented mass was achieved to the extent of 229 g/kg dry weight initial substrate used. Lignin peroxidase and laccase were found to be the two main enzymes produced during SSF of the dye-adsorbed lignocellulosic waste residue. PMID:18496771

  1. Minutes from Department of Energy/Hazardous Waste Remedial Actions Program, research and development technology needs assessment review meeting for FY 1990, September 1989, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1990-08-01

    On September 20--21, 1989, representatives of the Department of Energy (DOE) Headquarters, DOE Operations Offices, DOE contractors, and the Hazardous Waste Remedial Actions Program met in Oak Ridge, Tennessee, to select and prioritize candidate waste problems in need of research and development. The information gained will be used in planning for future research and development tasks and in restructuring current research activities to address the priority needs. Consistent with the ongoing reevaluation of DOE's plans for environmental restoration and waste management, an attempt was made to relate the needs developed in this meeting to the needs expressed in the draft Applied Research, Development, Demonstration, Testing, and Evaluation Plan. Operations Offices were represented either by DOE staff or by contractor delegates from the area. This document summarizes the results of the meeting and lists the priority waste problems established.

  2. In Situ Remediation Integrated Program: FY 1994 program summary

    SciTech Connect

    1995-04-01

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials.

  3. Modified agricultural waste biomass with enhanced responsive properties for metal-ion remediation: a green approach

    NASA Astrophysics Data System (ADS)

    Mahajan, Garima; Sud, Dhiraj

    2012-12-01

    Dalbergia sissoo pods, a lignocellulosic nitrogenous waste biomass, was evaluated for sequestering of Cr(VI) from synthetic wastewater. Dalbergia sissoo pods (DSP) were used in three different forms, viz. natural (DSPN), impregnated in the form of hydrated beads (DSPB), and in carbonized form (DSPC) for comparative studies. Batch experiments were performed for the removal of hexavalent chromium. Effects of pH adsorbent dose, initial metal-ion concentration, stirring speed, and contact time were investigated. The removal of metal ions was dependent on the physico-chemical characteristics of the adsorbent, adsorbate concentration, and other studied process parameters. Maximum metal removal for Cr(VI) was observed at pH 2.0. The experimental data were analyzed based on Freundlich and Langmuir adsorption isotherms. Kinetic studies indicated that the adsorption of metal ions followed a pseudo-second-order equation.

  4. Prioritization Risk Integration Simulation Model (PRISM) For Environmental Remediation and Waste Management - 12097

    SciTech Connect

    Pentz, David L.; Stoll, Ralph H.; Greeves, John T.; Miller, R. Ian; Nutt, W. Mark

    2012-07-01

    The PRISM (Prioritization Risk Integration Simulation Model), a computer model was developed to support the Department of Energy's Office of Environmental Management (DOE-EM) in its mission to clean up the environmental legacy from the Nation's nuclear weapons materials production complex. PRISM provides a comprehensive, fully integrated planning tool that can tie together DOE-EM's projects. It is designed to help DOE managers develop sound, risk-informed business practices and defend program decisions. It provides a better ability to understand and manage programmatic risks. The underlying concept for PRISM is that DOE-EM 'owns' a portfolio of environmental legacy obligations (ELOs), and that its mission is to transform the ELOs from their current conditions to acceptable conditions, in the most effective way possible. There are many types of ELOs - - contaminated soils and groundwater plumes, disused facilities awaiting D and D, and various types of wastes waiting for processing or disposal. For a given suite of planned activities, PRISM simulates the outcomes as they play out over time, allowing for all key identified uncertainties and risk factors. Each contaminated building, land area and waste stream is tracked from cradle to grave, and all of the linkages affecting different waste streams are captured. The progression of the activities is fully dynamic, reflecting DOE-EM's prioritization approaches, precedence requirements, available funding, and the consequences of risks and uncertainties. The top level of PRISM is the end-user interface that allows rapid evaluation of alternative scenarios and viewing the results in a variety of useful ways. PRISM is a fully probabilistic model, allowing the user to specify uncertainties in input data (such as the magnitude of an existing groundwater plume, or the total cost to complete a planned activity) as well as specific risk events that might occur. PRISM is based on the GoldSim software that is widely used for risk

  5. Threats to water resources from hexachlorobenzene waste at Kalush City (Ukraine)--a review of the risks and the remediation options.

    PubMed

    Lysychenko, Georgii; Weber, Roland; Kovach, Valeria; Gertsiuk, Modest; Watson, Alan; Krasnova, Iryna

    2015-10-01

    The production of chlorinated solvents such as tetrachloroethylene and tetrachloromethane has resulted in large stockpiles of unintentionally produced persistent organic pollutants (POPs) including high content of hexachlorobenzene (HCB waste). HCB waste of 15,000 t arising from the production of chlorinated solvents at the Kalush factory in Ukraine was landfilled. In 2008, it was discovered that HCB and other pollutants were escaping from the landfill into local environment including the Sapogi-Limnytsia Rivers, tributaries of the Dniester River. This showed that the HCB waste was not appropriately contained and represented a threat to the Dniester River basin. A Presidential Decree of Ukraine was therefore issued requiring remediation of the site and excavation of the waste. Between 2010 and 2013, approximately 29,445 t of HCB waste and associated contaminated soil was excavated and exported to various EU countries for incineration. This excavation revealed that these wastes can corrode through their drums within a few decades with release of pollutants. Other sites at which chlorinated solvents were produced should therefore be assessed for possible similar pollution. Despite the remediation efforts and the excavation of the landfill, the Kalush area remains a POP-contaminated site requiring further assessment. A part of the waste was exported to Poland and is stored close to the Baltic Sea and is treated in an incinerator with small capacity over a time frame of years. This case and recent similar cases reveal that the control of POP waste for destruction even in EU countries needs to be improved. PMID:26286800

  6. Characterization of energy critical elements in ore resources and associated waste tailings: Implications for recovery and remediation

    NASA Astrophysics Data System (ADS)

    McClenaghan, Sean H.

    2015-04-01

    The occurrence of Energy Critical Elements (ECE) in primary ore minerals and their subsequent enrichment in waste tailings is of great metallurgical interest. Recovery of many ECEs, in particular In, Ge, and Ga have come chiefly as a by-product of base-metal production (smelting and refining); these elements are found only at very low levels in the Earth's crust and do not typically form economic deposits on their own. As the ECEs become more important for a growing number of technological applications, it is critical to map the distribution of these elements in ore and waste (gangue) minerals to optimize their recovery and remediation. The characterization and beneficiation of ECEs is best illustrated for Zn-rich ore systems, where a mineral such as sphalerite (ZnS) will concentrate a number of major (Fe, Mn) and important trace elements (Cd, Se, In, Ge, Te, Sn, Bi, Sb, Hg). Interestingly, the mineral chemistry of sphalerite will often differ between different styles of mineralization (i.e., granite-hosted veins versus volcanic-hosted massive sulfides) and can even exhibit considerable variability within a deposit in response to metal zonation across hydrothermal facies. This has significant metallurgical implications for the blending of ore resources, the efficient production of Zn concentrates, and their ultimate value during the smelting and refining stages. Gangue minerals transferred to waste tailings may also exhibit significant enrichment in ECEs and precious metals; including Au in pyrite-arsenopyrite, and rare earth elements in a range of carbonate and phosphate minerals. In situ micro-analytical techniques are ideal for the quantitative measurement of trace elements in ore minerals as well as associated gangue materials. Recent advances in ICP-MS and ICP-OES technology coupled with newer classes of UV Excimer lasers (native 193 nm light) have allowed for more discrete analyses, permitting micro-chemical mapping at small scales (<10 microns). Further

  7. Effect of Biostimulation and Bioaugmentation on Degradation of Polyurethane Buried in Soil▿

    PubMed Central

    Cosgrove, L.; McGeechan, P. L.; Handley, P. S.; Robson, G. D.

    2010-01-01

    This work investigated biostimulation and bioaugmentation as strategies for removing polyurethane (PU) waste in soil. Soil microcosms were biostimulated with the PU dispersion agent “Impranil” and/or yeast extract or were bioaugmented with PU-degrading fungi, and the degradation of subsequently buried PU was determined. Fungal communities in the soil and colonizing buried PU were enumerated on solid media and were analyzed using denaturing gradient gel electrophoresis (DGGE). Biostimulation with yeast extract alone or in conjunction with Impranil increased PU degradation 62% compared to the degradation in untreated control soil and was associated with a 45% increase in putative PU degraders colonizing PU. Specific fungi were enriched in soil following biostimulation; however, few of these fungi colonized the surface of buried PU. Fungi used for soil bioaugmentation were cultivated on the surface of sterile wheat to form a mycelium-rich inoculum. Wheat, when added alone to soil, increased PU degradation by 28%, suggesting that wheat biomass had a biostimulating effect. Addition of wheat colonized with Nectria haematococca, Penicillium viridicatum, Penicillium ochrochloron, or an unidentified Mucormycotina sp. increased PU degradation a further 30 to 70%, suggesting that biostimulation and bioaugmentation were operating in concert to enhance PU degradation. Interestingly, few of the inoculated fungi could be detected by DGGE in the soil or on the surface of the PU 4 weeks after inoculation. Bioaugmentation did, however, increase the numbers of indigenous PU-degrading fungi and caused an inoculum-dependent change in the composition of the native fungal populations, which may explain the increased degradation observed. These results demonstrate that both biostimulation and bioaugmentation may be viable tools for the remediation of environments contaminated with polyurethane waste. PMID:19948849

  8. Notice of construction for tank waste remediation system vadose zone characterization

    SciTech Connect

    HILL, J.S.

    1999-05-04

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of constriction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection - Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 millirem/year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the 200-East and 200-West Areas of the Hanford Site. Vadose zone characterization activities include the drilling and sampling

  9. Fiscal year 1992 program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect

    Johnson, G.D.

    1992-06-01

    The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. This safety issue involves flammable gas mixtures, consisting mainly of hydrogen, nitrous oxide, and that are generated and periodically released in concentrations that nitrogen, exceed the lower flamability limit. Initial activities of the program have been directed at tank 241-SY-101 because it exhibits the largest risk. Activities conducted in fiscal year (FY) 1991 included waste sampling, waste sample analysis, development of tank models, conducting laboratory tests with synthetic wastes, upgrading of tank instrumentation and ventilation systems, evaluation of new methods for characterizing waste, and development of remedial actions. In addition to the work being conducted to resolve the flammable gas issue, programs have been established (Gasper and Reep 1992) to develop corrective actions for high priority safety issues associated with potential explosive mixtures of ferrocyanides in tanks, potential organic-nitrate reactions in tanks, and for the continued cooling for heat generation in tank 106{degrees}C. The purpose of this document is to provide a brief description of the FY 1992 priorities, logic, work breakdown structure (WBS), and task descriptions for the Waste Tank Flammable Gas Stabilization Program.

  10. Fiscal year 1992 program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks. Revision 1

    SciTech Connect

    Johnson, G.D.

    1992-06-01

    The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. This safety issue involves flammable gas mixtures, consisting mainly of hydrogen, nitrous oxide, and that are generated and periodically released in concentrations that nitrogen, exceed the lower flamability limit. Initial activities of the program have been directed at tank 241-SY-101 because it exhibits the largest risk. Activities conducted in fiscal year (FY) 1991 included waste sampling, waste sample analysis, development of tank models, conducting laboratory tests with synthetic wastes, upgrading of tank instrumentation and ventilation systems, evaluation of new methods for characterizing waste, and development of remedial actions. In addition to the work being conducted to resolve the flammable gas issue, programs have been established (Gasper and Reep 1992) to develop corrective actions for high priority safety issues associated with potential explosive mixtures of ferrocyanides in tanks, potential organic-nitrate reactions in tanks, and for the continued cooling for heat generation in tank 106{degrees}C. The purpose of this document is to provide a brief description of the FY 1992 priorities, logic, work breakdown structure (WBS), and task descriptions for the Waste Tank Flammable Gas Stabilization Program.

  11. Notice of Construction for Tank Waste Remediation System Vadose Zone Characterization

    SciTech Connect

    HILL, J.S.

    2000-04-20

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions and Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. The original NOC was submitted in May of 1999 as DOm-99-34. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 milliredyear total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial start-up in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the 200-East and 200-West Areas of the Hanford Site. Vadose zone

  12. Notice of Construction for Tank Waste Remediation System Vadose Zone Characterization

    SciTech Connect

    HILL, J.S.

    2000-03-08

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection--Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. The original NOC was submitted in May of 1999 as DOE/TU-99-34. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 millirem/year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(axl), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the 200-East and 200-West Areas of the Hanford Site. Vadose zone

  13. Remedial Action Assessment System (RAAS): Evaluation of selected feasibility studies of CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) hazardous waste sites

    SciTech Connect

    Whelan, G. ); Hartz, K.E.; Hilliard, N.D. and Associates, Seattle, WA )

    1990-04-01

    Congress and the public have mandated much closer scrutiny of the management of chemically hazardous and radioactive mixed wastes. Legislative language, regulatory intent, and prudent technical judgment, call for using scientifically based studies to assess current conditions and to evaluate and select costeffective strategies for mitigating unacceptable situations. The NCP requires that a Remedial Investigation (RI) and a Feasibility Study (FS) be conducted at each site targeted for remedial response action. The goal of the RI is to obtain the site data needed so that the potential impacts on public health or welfare or on the environment can be evaluated and so that the remedial alternatives can be identified and selected. The goal of the FS is to identify and evaluate alternative remedial actions (including a no-action alternative) in terms of their cost, effectiveness, and engineering feasibility. The NCP also requires the analysis of impacts on public health and welfare and on the environment; this analysis is the endangerment assessment (EA). In summary, the RI, EA, and FS processes require assessment of the contamination at a site, of the potential impacts in public health or the environment from that contamination, and of alternative RAs that could address potential impacts to the environment. 35 refs., 7 figs., 1 tab.

  14. LIFETIME PREDICTIONS OF TOXIC AND RADIOACTIVE WASTE DISPOSAL AND REMEDIATION SCHEMES

    SciTech Connect

    D.J. Wesolowski; R.C. Ewing; J. Bruno

    2005-06-28

    order to have a significant impact on global carbon emissions, worldwide nuclear and other carbon-free energy sources would have to increase tenfold by 2050. If this increase came entirely from electrical power plants using the once-through nuclear fuel cycle, about 3,500 new 1-GW plants would be needed, that would generate enough spent fuel to fill a Yucca Mountain-sized repository every year. Though this extreme scenario is not likely to unfold, it seems inevitable that we need this source of energy, if the public can be assured that the operation of these plants, and the disposal of the wastes generated from their operation, can be made acceptably safe. The Yucca Mountain field trip provided an excellent opportunity for a diverse cross section of engineers and geoscientists to gain a clearer perspective on the nature and problems related to this particular type of repository. The symposium not only brought together a similar broad cross section of scientists and engineers, but provided a forum for comparing and contrasting different repository designs being considered throughout the world, different methods of assessing their performance characteristics, and the surprisingly broad array of geochemical inputs needed in order to succeed in this Grand Challenge.

  15. Performance of remedial response, activities at uncontrolled hazardous waste sites (REM II) remedial investigation first operable unit, Rocky Mountain Arsenal Offpost R1/fS site

    SciTech Connect

    Smith, M.J.

    1986-12-01

    The objective of this remedial investigation (RI) is to evaluate, as part of the first operable unit for site remediation, the nature and extent of contamination as it relates to the existing public water supply wells operated by the South Adams County Water and Sanitation District. A public health endangerment assessment was conducted to identify compounds which could pose a significant health threat. These investigations have identified ground water as the major migration pathway. The six volatile organic chemicals of primary concern are 1,1-DCE, 1,1-DCLE, t-1,2-DCE, 1,1,1-TCE, TRClE, and TClEE. A comprehensive investigation analysis was conducted to (1) characterize the hydrogeologic system and (2) quantify the ground water flow and containment transport processes. A three dimensional ground water flow and containment transfer model was developed and calibrated on a preliminary basis to aid in projection of future TRClE concentrations. This first operable unit RI report is not in intended to address the identity of contributing sources or their relative contributions to the contamination.

  16. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendix B, Technical findings and conclusions

    SciTech Connect

    1995-03-01

    This Remedial Investigation Report on Waste Area Grouping, (NVAG) 5 at Oak Ridge National Laboratory was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting, the results of a site chacterization for public review. This work was performed under Work Breakdown Structure 1.4.12.6.1.05.40.02 (Activity Data Sheet 3305, ``WAG 5``). Publication of this document meets a Federal Facility Agreement milestone of March 31, 1995. This document provides the Environmental Restoration Program with information about the results of investigations performed at WAG 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding, the need for subsequent remediation work at WAG 5.

  17. Superfund record of decison (EPA Region 4): USDOE Paducah Gas Diffusion Plant, Solid Waste Management Units 2 and 3 of Waste Area Group 22, Paducah, KY, August 22, 1995

    SciTech Connect

    1995-09-01

    This decision document presents the selected interim remedial action for Solid Waste Management Units (SWMUs) 2 and 3 of Waste Area Group (WAG) 22 at the Paducah Gaseous Diffusion Plant (PGDP) near Paducah, Kentucky. The primary objective of this interim remedial action, or corrective measure, is to reduce the infiltration of precipitation into buried waste and mitigate any leaching of chemicals of concern from the wastes while the DOE collects additional data to support evaluation of a final remedial action. The prinicipal threat associated with SWMU 2 is the potential for transport of contaminants to the ground water operable unit and subsequent threats associated with the potential contamination of an aquifer and transport of contaminants beyond DOE property.

  18. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods; Revision 1

    SciTech Connect

    Johnson, G.L.

    1991-11-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97{degrees}C and whether the cladding of the stored spent fuel ever exceeds 350{degrees}C. Limiting the borehole to temperatures of 97{degrees}C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350{degrees}C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 {times} 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97{degrees}C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350{degrees}C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft {times} 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40{degrees}C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation.

  19. Review of buried cystalline rocks of Eastern United States in selected hydrogeologic environments potentially suitable for isolating high-level radioactive wastes

    SciTech Connect

    Davis, R.W.

    1984-01-01

    Among the concepts suggested for the deep disposal of high-level radioactive wastes from nuclear power reactors is the excavation of a repository in suitable crystalline rocks overlain by a thick sequence of sedimentary strata in a hydrogeologic environment that would effectively impede waste transport. To determine the occurrence of such environments in the Eastern United States, a review was made of available sources of published or unpublished information, using the following hydrogeologic criteria: The top of the crystalline basement rock is 1000 to 4000 feet below and surface, the crystalline rock is overlain by sedimentary rock whose lowermost part, at least, contains ground water with a dissolved-solids concentration of 10,000 milligrams per liter or more, shale or clay confining beds overlie the saline-water aquifer, and the flow system in the saline-water aquifer is known or determinable from presently available data. All of these hydrogeologic conditions occur in two general areas: (1) parts of Indiana, Ohio, and Kentucky, underlain by part of the geologic structure known as the Cincinnati arch, and (2) parts of the Atlantic Coastal Plain from Georgia to New Jersey. 34 refs., 4 figs.

  20. Review of buried crystalline rocks of eastern United States in selected hydrogeologic environments potentially suitable for isolating high-level radioactive wastes

    USGS Publications Warehouse

    Davis, R.W.

    1984-01-01

    Among the concepts suggested for the deep disposal of high-level radioactive wastes from nuclear power reactors is the excavation of a repository in suitable crystalline rocks overlain by a thick sequence of sedimentary strata in a hydrogeologic environment that would effectively impede waste transport. To determine the occurrence of such environments in the Eastern United States, a review was made of available sources of published or unpublished information, using the following hydrogeologic criteria: (1) the top of the crystalline basement rock is 1,000 to 4,000 feet below land surface; (2) the crystalline rock is overlain by sedimentary rock whose lowermost part, at least, contains groundwater with a dissolved-solids concentration of 10,000 milligrams per liter or more; (3) shale and or clay confining beds overlie the saline-water aquifer; and (4) the flow system in the saline-water aquifer is known or determinable from presently available data. All of these hydrogeologic conditions occur in two general areas: (1) parts of Indiana, Ohio, and Kentucky, underlain by part of the geologic structure known as the Cincinnati arch, and (2) parts of the Atlantic Coastal Plain from Georgia to New Jersey. (USGS)

  1. Oak Ridge K-25 Site Technology Logic Diagram. Volume 3, Technology evaluation data sheets; Part B, Remedial action, robotics/automation, waste management

    SciTech Connect

    Fellows, R.L.

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration (ER) and waste management (WN) problems at the Oak Ridge K-25 Site. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remediation, decontamination, and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This volume 3 B provides the Technology Evaluation Data Sheets (TEDS) for ER/WM activities (Remedial Action Robotics and Automation, Waste Management) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than each technology in Vol. 2. The TEDS are arranged alphanumerically by the TEDS code number in the upper right corner of each data sheet. Volume 3 can be used in two ways: (1) technologies that are identified from Vol. 2 can be referenced directly in Vol. 3 by using the TEDS codes, and (2) technologies and general technology areas (alternatives) can be located in the index in the front of this volume.

  2. Closure report for CAU Number 430: Buried Depleted Uranium Artillery Round Number 1, Tonopah Test Range

    SciTech Connect

    1997-02-01

    Corrective Action Unit (CAU) 430 consists of the Buried Depleted Uranium (DU) Artillery Round No. 1. This Closure Report presents the information obtained from investigate actions performed to justify the decision for clean closure of CAU 430 through ``No Further Action``. The site was thought to consist of a potentially unexploded W-79 Joint Test Assembly (JTA) test artillery projectile with high explosives (HE) and DU. The DU was substituted for Special Nuclear Materials to prevent a nuclear explosion and yet retain the physical characteristics of uranium for ballistic and other mechanical tests. The projectile was reportedly buried in one pit, approximately 5 to 10 feet (ft) deep. The objectives of the activities were to prepare the site for closure through locating and identifying the projectile, destroying the projectile and any remaining components, collecting soil samples to detect residual contamination resulting from projectile destruction, and finally, remediating residual contamination. This report contains the following five sections. Section 1.0 introduces the CAU and scope of work. Section 2.0 of this report presents the closure activities performed as part of this investigation. Waste disposition is discussed in Section 3.0. Closure investigation results are presented in Section 4.0, and references are presented in Section 5.0.

  3. SESD REMEDIAL INVESTIGATIONS OF REGION 4 HAZARDOUS WASTE SUPERFUND SITES (5) : JUNE 1, 2001- MAY 31, 2002

    EPA Science Inventory

    These projects require developing and implementing Remedial Investigation Work Plans which include the Project Operations Plan, Field Sampling and Analysis Plan, Quality Assurance Plan and the Health and Safety Plan. In general these large complex investigations involve: colle...

  4. Waste Area Group 10, Operable Unit 10-08, Remedial Investigation/Feasibility Study Annual Status Report for Fiscal Year 2006

    SciTech Connect

    R. P. Wells

    2007-05-09

    This report provides a status of the progress made in Fiscal Year 2006 on tasks identified in the Waste Area Group 10, Operable Unit 10-08, Remedial Investigation/Feasibility Study Work Plan. Major accomplishments include: (1) groundwater sampling and review of the groundwater monitoring data, (2) installation of a Sitewide groundwater-level monitoring network, (3) update of the Groundwater Monitoring and Field Sampling Plan of Operable Unit 10-08, (4) re-evaluation of the risk at Site TSF-08, (5) progress on the Operable Unit 10-08 Sitewide Groundwater Model.

  5. Data Management Plan and Functional System Design for the Information Management System of the Clinch River Remedial Investigation and Waste Area Grouping 6

    SciTech Connect

    Ball, T.; Brandt, C.; Calfee, J.; Garland, M.; Holladay, S.; Nickle, B.; Schmoyer, D.; Serbin, C.; Ward, M.

    1994-03-01

    The Data Management Plan and Functional System Design supports the Clinch River Remedial Investigation (CRRI) and Waste Area Grouping (WAG) 6 Environmental Monitoring Program. The objective of the Data Management Plan and Functional System Design is to provide organization, integrity, security, traceability, and consistency of the data generated during the CRRI and WAG 6 projects. Proper organization will ensure that the data are consistent with the procedures and requirements of the projects. The Information Management Groups (IMGs) for these two programs face similar challenges and share many common objectives. By teaming together, the IMGs have expedited the development and implementation of a common information management strategy that benefits each program.

  6. Integrated management of organic wastes for remediation of massive tailings storage facilities under semiarid mediterranean climate type: efficacy of organic pork residues as study case

    NASA Astrophysics Data System (ADS)

    Ginocchio, Rosanna; Arellano, Eduardo; España, Helena; Gardeweg, Rosario; Bas, Fernando; Gandarillas, Mónica

    2016-04-01

    Remediation of large surface areas of massive mine wastes, such as tailings storage facilities (TSFs) is challenging, particularly when no topsoils have been stored for the mine closure stage. Worldwide, it has been demonstrated that the use of organic wastes as substrate amendments for remediation of hard rock mine wastes is a useful alternative to topsoils material. In the case of semi-arid climate conditions of north-central Chile, the copper mining industry has generated massive TSF (between 400 ha and 3,000 ha) which needs now to be properly closed according to recently established mine closure regulations. However, in most of the cases, there have been no topsoils savage that facilitate the initial stage of the site remediation. Industrial organic wastes (i.e. biosolids) are found in the area, but their availability is normally below the demand needed for remediation of TSFs and salt content is normally elevated, thus posing salinization risks to the substrate and negative plant growth. We focused on a large organic waste producing industry, the pork industry, whose growth has been restricted due to the limited possibilities for using pig slurries as amendments for croplands in north-central Chile and the strong odor generated, resulting in conflicts with local communities. Incorporation of pig slurries as amendments to post-operative TSFs has been scarcely evaluated at international level (i.e. Spain) and no evaluation at all exists for the solid organic fraction generated from pig slurry treatment plants (PSTP). In the present study, we evaluated the efficacy of both pig slurries (PS) and the solid fraction of PSTP (SF-PSTP) as tailings amendment for creating good plant productivity on TSFs located under semi-arid Mediterranean climate conditions in north-central Chile. A short-term greenhouse study was developed. Copper mine tailings were mixed either with PS (0, 40, 80, and 120 m3 ha-1) or SF-PSTP (0, 25, 50 and 75 t ha-1), distributed in 3 L pots, and

  7. Health and safety plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Cofer, G.H.; Holt, V.L.; Roupe, G.W.

    1993-11-01

    This health and safety plan (HASP) was developed by the members of the Measurement Applications and Development Group of the Health Science Research Division at the Oak Ridge National Laboratory (ORNL). This plan was prepared to ensure that health and safety related items for the Waste Area Grouping (WAG) 2 Remedial Investigation (RI)/Feasibility Study and Site Investigation projects conform with the requirements of 29 CFR 1910.120 (April 18, 1992). The RI Plan calls for the characterization, monitoring, risk assessment, and identification of remedial needs and alternatives that have been structured and staged with short-term and long-term objectives. In early FY 1992, the WAG 2 RI was integrated with the ORNL Environmental Restoration (ER) Site Investigations program in order to achieve the complimentary objectives of the projects more effectively by providing an integrated basis of support. The combined effort was named the WAG 2 Remedial Investigation and Site Investigations Program (WAG 2 RI&SI). The Site Investigation activities are a series of monitoring efforts and directed investigations that support other ER activities by providing information about (1) watershed hydrogeology; (2) contaminants, pathways, and fluxes for groundwater at ORNL; (3) shallow subsurface areas that can act as secondary sources of contaminants; and (4) biological populations and contaminants in biota, in addition to other support and coordination activities.

  8. Quality Assurance Plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Atwood, G.P.; Miller, D.E.

    1992-12-01

    The Oak Ridge National Laboratory (ORNL) Waste Area Grouping (WAG) 2 Site Investigation (SI)includes the lower portion of the White Oak Creek (WOC) drainage and enbayment, and associated floodplain and subsurface environment. The ORNL main plant and the major waste storage and disposal facilities at ORNL are located in the WOC watershed and are drained by the WOC system to the Clinch River, located off-site. Environmental media are contaminated and continue to receive contaminants from hydrologically upgradient WAGS. WAG 2 is important as a conduit from upgradient areas to the Clinch River. The general objectives of the WAG 2 SI Project are to conduct a multimedia monitoring and characterization program to define and monitor the input of contaminants from adjacent WAGS, monitor and gather sufficient information for processes controlling or driving contaminant fluxes to construct an appropriate conceptual model for WAG 2, and prepare for the eventual remediation of WAG 2.

  9. 1993 International conference on nuclear waste management and environmental remediation, Prague, Czech Republic, September 5--11, 1993. Combined foreign trip report

    SciTech Connect

    Slate, S.C.; Allen, R.E.

    1993-12-01

    The purpose of the trip was to attend the 1993 International Conference on Nuclear Waste Management and Environmental Remediation. The principal objective of this conference was to facilitate a truly international exchange of information on the management of nuclear wastes as well as contaminated facilities and sites emanating from nuclear operations. The conference was sponsored by the American Society of Mechanical Engineers, the Czech and Slovak Mechanical Engineering Societies, and the Czech and Slovak Nuclear Societies in cooperation with the Commission of the European Communities, the International Atomic Energy Agency, and the OECD Nuclear Agency. The conference was cosponsored by the American Nuclear Society, the Atomic Energy Society of Japan, the Canadian Nuclear Society, the (former USSR) Nuclear Society, and the Japan Society of Mechanical Engineers. This was the fourth in a series of biennial conferences, which started in Hong Kong, in 1987. This report summarizes shared aspects of the trip; however, each traveler`s observations and recommendations are reported separately.

  10. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2 -- Appendix A: Characterization methods and data summary

    SciTech Connect

    1995-09-01

    This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. This appendix presents background regulatory and technical information regarding the solid waste management units (SWMUs) at WAG 5 to address requirements established by the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). The US Department of Energy (DOE) agreed to conduct remedial investigations (RIs) under the FFA at various sites at Oak Ridge National Laboratory (ORNL), including SWMUs and other areas of concern on WAG 5. The appendix gives an overview of the regulatory background to provide the context in which the WAG 5 RI was planned and implemented and documents how historical sources of data, many of which are SWMU-specific, were evaluated and used.

  11. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3 -- Appendix B: Technical findings and conclusions

    SciTech Connect

    1995-09-01

    This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. Sections B1.1 through B1.4 present an overview of the environmental setting of WAG 5, including location, population, land uses, ecology, and climate, and Sects. B1.5 through B1.7 give site-specific details (e.g., topography, soils, geology, and hydrology). The remediation investigation (RI) of WAG 5 did not entail en exhaustive characterization of all physical attributes of the site; the information presented here focuses on those most relevant to the development and verification of the WAG 5 conceptual model. Most of the information presented in this appendix was derived from the RI field investigation, which was designed to complement the existing data base from earlier, site-specific studies of Solid Waste Storage Area (SWSA) 5 and related areas.

  12. In-situ stabilization of TRU/mixed waste project at the INEEL

    SciTech Connect

    Milian, L.W.; Heiser, J.H.; Adams, J.W.; Rutenkroeger, S.P.

    1997-08-01

    Throughout the DOE complex, buried waste poses a threat to the environment by means of contaminant transport. Many of the sites contain buried waste that is untreated, prior to disposal, or insufficiently treated, by today`s standards. One option to remedy these disposal problems is to stabilize the waste in situ. This project was in support of the Transuranic/Mixed Buried Waste - Arid Soils product line of the Landfill Focus Area, which is managed currently by the Idaho National Engineering Laboratory (BNL) provided the analytical laboratory and technical support for the various stabilization activities that will be performed as part of the In Situ Stabilization of TRU/Mixed Waste project at the INEL. More specifically, BNL was involved in laboratory testing that included the evaluation of several grouting materials and their compatibility, interaction, and long-term durability/performance, following the encapsulation of various waste materials. The four grouting materials chosen by INEL were: TECT 1, a two component, high density cementious grout, WAXFIX, a two component, molten wax product, Carbray 100, a two component elastomeric epoxy, and phosphate cement, a two component ceramic. A simulated waste stream comprised of sodium nitrate, Canola oil, and INEL soil was used in this study. Seven performance and durability tests were conducted on grout/waste specimens: compressive strength, wet-dry cycling, thermal analysis, base immersion, solvent immersion, hydraulic conductivity, and accelerated leach testing.

  13. In Situ Remediation Integrated Program: Evaluation and assessment of containment technology

    SciTech Connect

    Gerber, M.A.; Fayer, M.J.

    1994-06-01

    Containment technology refers to a broad range of methods that are used to contain waste or contaminated groundwater and to keep uncontaminated water from entering a waste site. The U.S. Department of Energy`s (DOE) Office of Technology Development has instituted the In Situ Remediation Integrated Program (ISRIP) to advance the state-of-the-art of innovative technologies that contain or treat, in situ, contaminated media such as soil and groundwater, to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. The information provided here is an overview of the state-of-the-art of containment technology and includes a discussion of ongoing development projects; identifies the technical gaps; discusses the priorities for resolution of the technical gaps; and identifies the site parameters affecting the application of a specific containment method. The containment technology described in this document cover surface caps; vertical barriers such as slurry walls, grout curtains, sheet pilings, frozen soil barriers, and vitrified barriers; horizontal barriers; sorbent barriers; and gravel layers/curtains. Within DOE, containment technology could be used to prevent water infiltration into buried waste; to provide for long-term containment of pits, trenches, and buried waste sites; for the interim containment of leaking underground storage tanks and piping; for the removal of contaminants from groundwater to prevent contamination from migrating off-site; and as an interim measure to prevent the further migration of contamination during the application of an in situ treatment technology such as soil flushing. The ultimate goal is the implementation of containment technology at DOE sites as a cost-effective, efficient, and safe choice for environmental remediation and restoration activities.

  14. An overview of in situ waste treatment technologies

    SciTech Connect

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-08-01

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified.

  15. An overview of in situ waste treatment technologies

    SciTech Connect

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-01-01

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified.

  16. Savannah River Site, Liquid Waste Program, Savannah River Remediation American Recovery and Reinvestment Act Benefits and Lessons Learned - 12559

    SciTech Connect

    Schmitz, Mark A.; Crouse, Thomas N.

    2012-07-01

    Utilizing funding provided by the American Recovery and Reinvestment Act (ARRA), the Liquid Waste Program at Savannah River site successfully executed forty-one design, procurement, construction, and operating activities in the period from September 2009 through December 2011. Project Management of the program included noteworthy practices involving safety, integrated project teams, communication, and cost, schedule and risk management. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure were accomplished. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually identified and applied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. The funding of a portion of the Liquid Waste Program at SRS by ARRA was a major success. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure was accomplished. Integrated Project Teams ensured quality products and services were provided to the Operations customers. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually reviewed and reapplied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. (authors)

  17. Success of the Melton Valley Watershed Remediation at the ORNL - 12351

    SciTech Connect

    Adler, David; Wilkerson, Laura; Sims, Lynn; Ketelle, Richard; Garland, Sid

    2012-07-01

    The source remediation of the Melton Valley (MV) Watershed at the U.S. Department of Energy's (DOE's) Oak Ridge National Laboratory was completed 5 years ago (September 2006). Historic operations at the laboratory had resulted in chemical and radionuclide contaminant releases and potential risks or hazards within 175 contaminated units scattered across an area of 430 hectares (1062 acres) within the watershed. Contaminated areas included burial grounds, landfills, underground tanks, surface impoundments, liquid disposal pit/trenches, hydrofracture wells, leak and spill spites, inactive surface structures, and contaminated soil and sediments. The remediation of the watershed was detailed in the MV Interim Action Record of Decision (ROD) and included a combination of actions encompassing containment, isolation, stabilization, removal, and treatment of sources within the watershed and established the monitoring and land use controls that would result in protection of human health. The actions would take place over 5 years with an expenditure of over $340 M. The MV remedial actions left hazardous wastes in-place (e.g., buried wastes beneath hydraulic isolation caps) and cleanup at levels that do not allow for unrestricted access and unlimited exposure. The cleanup with the resultant land use would result in a comprehensive monitoring plan for groundwater, surface water, and biological media, as well as the tracking of the land use controls to assure their completion. This paper includes an overview of select performance measures and monitoring results, as detailed in the annual Remediation Effectiveness Report and the Five-Year Report. (authors)

  18. FY 1999 cold demonstration of the Multi-Point Injection (MPI) process for stabilizing contaminated sludge in buried horizontal tanks with limited access at the Oak Ridge National Laboratory

    SciTech Connect

    Kauschinger, J.L.; Lewis, B.E.; Spence, R.D.

    2000-01-01

    A major problem faced by the U.S. Department of Energy is the remediation of buried tank waste. Exhumation of the sludge is currently the preferred remediation method. However, exhumation does not typically remove all the contaminated material from the tank. The best management practices for in-tank treatment of wastes require an integrated approach to develop appropriate treatment agents that can be safely delivered and uniformly mixed with the sludge. Ground Environmental Services, Inc., has developed and demonstrated a remotely controlled, high-velocity, jet-delivery system, which is termed Multi-Point-Injection (MPI{trademark}). This robust jet-delivery system has been used to create homogeneous monoliths containing shallow-buried miscellaneous waste in trenches [fiscal year (FY) 1995] and surrogate sludge in a cylindrical test tank (FY 1998). During the FY 1998 demonstration, the MPI process was able to successfully form a 32-ton uniform monolith in about 8 min. Analytical data indicated that 10 tons of a zeolite-type physical surrogate were uniformly mixed within the 40-inch-thick monolith without lifting the MPI jetting tools off the tank floor. Over 1,000 lb of cohesive surrogates, with consistencies of Gunite and Associated Tanks (GAATs) TH-4 and Hanford tank sludges, were easily mixed into the monolith without exceeding a core temperature of 100 F during curing.

  19. In situ technology evaluation and functional and operational guidelines for treatability studies at the radioactive waste management complex at the Idaho National Engineering Laboratory

    SciTech Connect

    Hyde, R.A.; Donehey, A.J.; Piper, R.B.; Roy, M.W.; Rubert, A.L.; Walker, S.

    1991-07-01

    The purpose of this document is to provide EG G Idaho's Waste Technology Development Department with a basis for selection of in situ technologies for demonstration at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL) and to provide information for Feasibility Studies to be performed according to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The demonstrations will aid in meeting Environmental Restoration/Waste Management (ER/WM) schedules for remediation of waste at Waste Area Group (WAG) 7. This report is organized in six sections. Section 1, summarizes background information on the sites to be remediated at WAG-7, specifically, the acid pit, soil vaults, and low-level pits and trenches. Section 2 discusses the identification and screening of in situ buried waste remediation technologies for these sites. Section 3 outlines the design requirements. Section 4 discusses the schedule (in accordance with Buried Waste Integrated Demonstration (BWID) scoping). Section 5 includes recommendations for the acid pit, soil vaults, and low-level pits and trenches. A listing of references used to compile the report is given in Section 6. Detailed technology information is included in the Appendix section of this report.

  20. Electromagnetic modeling of buried objects

    SciTech Connect

    Lee, C.F.

    1994-12-31

    In this paper, radar cross section (RCS) models of buried dipoles, surface steel pipe, and buried steel pipes are discussed. In all these models, the ground is assumed to be a uniform half space. The calculated results for the buried dipoles and the surface steel pipe compare favorably with those measured in the 1993 Yuma ground penetration radar (GPR) experiment. For the buried dipoles, a first-order RCS model is developed. In this model, a solution for an infinitely long conducting cylinder, together with a mirror image approximation (which accounts for the coupling between the dipole and the ground-air interface) is used to calculate the dipole RCS. This RCS model of the buried dipoles explains the observed loss of dipole RCS. For the surface steel pipe, a geometrical optics model, which includes the multipath interaction, is developed. This model explains the observed multipath gain/loss. For the buried steel pipes, a zero order physical optics model is developed. Also discussed is desert radar clutter statistics as a function of depression angle. Preliminary analysis, based on samples of Yuma desert surface profiles, indicates that simple rough-surface models cannot explain the observed average backscatter from desert clutter.

  1. A history of solid waste packaging at the Hanford Site

    SciTech Connect

    Duncan, D.R.; Weyns-Rollosson, D.I.; Pottmeyer, J.A.; Stratton, T.J.

    1995-02-01

    Since the initiation of the defense materials product mission, a total of more than 600,000 m{sup 3} of radioactive solid waste has been stored or disposed at the US Department of Energy`s (DOE) Hanford Site, located in southeastern Washington State. As the DOE complex prepares for its increasing role in environmental restoration and waste remediation, the characterization of buried and retrievably stored waste will become increasingly important. Key to this characterization is an understanding of the standards and specifications to which waste was packaged; the regulations that mandated these standards and specifications; the practices used for handling and packaging different waste types; and the changes in these practices with time.

  2. Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report

    SciTech Connect

    Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

    1989-01-01

    As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

  3. Biotechnological potential of Bacillus salmalaya 139SI: a novel strain for remediating water polluted with crude oil waste.

    PubMed

    Ismail, Salmah; Dadrasnia, Arezoo

    2015-01-01

    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater. PMID:25875763

  4. Biotechnological Potential of Bacillus salmalaya 139SI: A Novel Strain for Remediating Water Polluted with Crude Oil Waste

    PubMed Central

    2015-01-01

    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater. PMID:25875763

  5. Waste minimization opportunities at the U.S. Uranium Mill Tailings Remedial Action (UMTRA) Project, Rifle, Colorado, site

    SciTech Connect

    Hartmann, G.L.; Arp, S.; Hempill, H.

    1993-12-31

    At two uranium mill sites in Rifle, Colorado, the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is removing uranium mill tailings and contaminated subgrade soils. This remediation activity will result in the production of groundwater contaminated with uranium, heavy metals, ammonia, sulfates, and total dissolved solids (TDS). The initial remediation plan called for a wastewater treatment plant for removal of the uranium, heavy metals, and ammonia, with disposal of the treated water, which still includes the sulfates and TDSS, to the Colorado River. The National Pollutant Discharge Elimination (NPDES) permit issued by the Colorado Department of Health for the two Rifle sites contained more restrictive discharge limits than originally anticipated. During the detailed review of alternate treatment systems to meet these more restrictive limits, the proposed construction procedures were reviewed emphasizing the methods to minimize groundwater production to reduce the size of the water treatment facility, or to eliminate it entirely. It was determined that with changes to the excavation procedures and use of the contaminated groundwater for use in dust suppression at the disposal site, discharge to the river could be eliminated completely.

  6. System description for DART (Decision Analysis for Remediation Technologies)

    SciTech Connect

    Nonte, J.; Bolander, T.; Nickelson, D.; Nielson, R.; Richardson, J.; Sebo, D.

    1997-09-01

    DART is a computer aided system populated with influence models to determine quantitative benefits derived by matching requirements and technologies. The DART database is populated with data from over 900 DOE sites from 10 Field Offices. These sites are either source terms, such as buried waste pits, or soil or groundwater contaminated plumes. The data, traceable to published documents, consists of site-specific data (contaminants, area, volume, depth, size, remedial action dates, site preferred remedial option), problems (e.g., offsite contaminant plume), and Site Technology Coordinating Group (STCG) need statements (also contained in the Ten-Year Plan). DART uses this data to calculate and derive site priorities, risk rankings, and site specific technology requirements. DART is also populated with over 900 industry and DOE SCFA technologies. Technology capabilities can be used to match technologies to waste sites based on the technology`s capability to meet site requirements and constraints. Queries may be used to access, sort, roll-up, and rank site data. Data roll-ups may be graphically displayed.

  7. Fall Protection Procedures for Sealing Bulk Waste Shipments by Rail Cars at Formerly Utilized Sites Remedial Action Program (FUSRAP) Sites - 13509

    SciTech Connect

    Boyle, J.D.; Fort, E. Joseph; Lorenz, William; Mills, Andy

    2013-07-01

    Rail-cars loaded with radioactive materials must be closed and fastened to comply with United States Department of Transportation (DOT) requirements before they shipped. Securing waste shipments in a manner that meets these regulations typically results in the use of a sealable rail-car liner. Workers accessing the tops of the 2.74 m high rail-cars to seal and inspect liners for compliance prior to shipment may be exposed to a fall hazard. Relatively recent revisions to the Fall Protection requirements in the Safety and Health Requirements Manual (EM385-1-1, U.S. Army Corps of Engineers) have necessitated modifications to the fall protection systems previously employed for rail-car loading at Formerly Utilized Sites Remedial Action Program (FUSRAP) sites. In response these projects have developed site-specific procedures to protect workers and maintain compliance with the improved fall protection regulations. (authors)

  8. Environmental, safety, and health plan for the remedial investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Not Available

    1993-10-01

    This document outlines the environmental, safety, and health (ES&H) approach to be followed for the remedial investigation of Waste Area Grouping (WAG) 10 at Oak at Ridge National Laboratory. This ES&H Plan addresses hazards associated with upcoming Operable Unit 3 field work activities and provides the program elements required to maintain minimal personnel exposures and to reduce the potential for environmental impacts during field operations. The hazards evaluation for WAG 10 is presented in Sect. 3. This section includes the potential radiological, chemical, and physical hazards that may be encountered. Previous sampling results suggest that the primary contaminants of concern will be radiological (cobalt-60, europium-154, americium-241, strontium-90, plutonium-238, plutonium-239, cesium-134, cesium-137, and curium-244). External and internal exposures to radioactive materials will be minimized through engineering controls (e.g., ventilation, containment, isolation) and administrative controls (e.g., procedures, training, postings, protective clothing).

  9. Long-term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal and Radioactive

    SciTech Connect

    Gerlach, Robin

    2005-06-01

    This project report addresses one part of a 3-way collaboration between researchers (Drs. Robin Gerlach and Al Cunningham) at Montana State University's (MSU's) Center for Biofilm Engineering (CBE), (Dr. Brent Peyton at) the WSU/NSF IGERT Center for Multiphase Environmental Research (CMER) at Washington State University (WSU), and (Drs. William Apel and Frank Roberto at) the Biotechnology Department at the INEEL. Each part of this project is funded under a different contract with the Science Division of the US Department of Energy. The project is designed to evaluate the possibility to develop a subsurface remediation technology for mixed wastes at Department of Energy sites using a group of common soil bacteria of the genus Cellulomonas. We are seeking to gain a better understanding of microbial transformation of chromium, uranium, and carbon tetrachloride by Cellulomonas spp. in simulated subsurface environments.

  10. Continuum soil modeling in the static analysis of buried structures

    SciTech Connect

    Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.

    1993-10-01

    Soil loading traditionally has been modeled as a hydrostatic pressure, a practice acceptable for many design applications. In the analyses of buried structure with predictive goals, soil compliance and load redistribution in the presence of soil plasticity are important factors to consider in determining the appropriate response of the structure. In the analysis of existing buried waste-storage tanks at the US Department of Energy`s Hanford Site, three soil-tank interaction modeling considerations are addressed. First, the soil interacts with the tank as the tank expands and contracts during thermal cycles associated with changes in the heat generated by the waste material as a result of additions and subtractions of the waste. Second, the soil transfers loads from the surface to the tank and provides support by resisting radial displacement of the tank haunch. Third, conventional finite-element mesh development causes artificial stress concentrations in the soil associated with differential settlement.

  11. Field sampling and analysis plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Boston, H.L.; Ashwood, T.L.; Borders, D.M.; Chidambariah, V.; Downing, D.J.; Fontaine, T.A.; Ketelle, R.H.; Lee, S.Y.; Miller, D.E.; Moore, G.K.; Suter, G.W.; Tardiff, M.F.; Watts, J.A.; Wickliff, D.S.

    1992-02-01

    This field sampling and analysis (S & A) plan has been developed as part of the Department of Energy`s (DOE`s) remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) located in Oak Ridge, Tennessee. The S & A plan has been written in support of the remedial investigation (RI) plan for WAG 2 (ORNL 1990). WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake (WOL), White Oak Creek embayment (WOCE) on the Clinch River, and the associated floodplain and subsurface environment (Fig. 1.1). The WOC system is the surface drainage for the major ORNL WAGs and has been exposed to a diversity of contaminants from operations and waste disposal activities in the WOC watershed. WAG 2 acts as a conduit through which hydrologic fluxes carry contaminants from upgradient areas to the Clinch River. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This document describes the following: an overview of the RI plan, background information for the WAG 2 system, and objectives of the S & A plan; the scope and implementation of the first 2 years of effort of the S & A plan and includes recent information about contaminants of concern, organization of S & A activities, interactions with other programs, and quality assurance specific to the S & A activities; provides details of the field sampling plans for sediment, surface water, groundwater, and biota, respectively; and describes the sample tracking and records management plan.

  12. Remediation of Highland Drive Landfill: Technical Challenges of Segregating Co-Mingled LLRW and Municipal Solid Waste in an Urbanized Area - 13319

    SciTech Connect

    Daniel, Jeff; Lawrence, Dave; Case, Glenn; Fergusson Jones, Andrea

    2013-07-01

    Highland Drive Landfill is an inactive Municipal Solid Waste (MSW) Landfill which received waste from the 1940's until its closure in 1991. During a portion of its active life, the Landfill received low-level radioactive waste (LLRW) which currently exists both in a defined layer and co-mingled with MSW. Remediation of this site to remove the LLRW to meet established cleanup criteria, forms part of the Port Hope Project being undertaken by Atomic Energy Canada Limited (AECL) and Public Works and Government Services Canada (PWGSC) as part of the Port Hope Area Initiative (PHAI). The total volume of LLRW and co-mingled LLRW/MSW estimated to require removal from the Highland Drive Landfill is approximately 51,900 cubic metres (m{sup 3}). The segregation and removal of LLRW at the Highland Drive Landfill presents a number of unique technical challenges due to the co-mingled waste and location of the Landfill in an urbanized area. Key challenges addressed as part of the design process included: delineation of the extent of LLRW, development of cut lines, and estimation of the quantity of co-mingled LLRW in a heterogeneous matrix; protection of adjacent receptors in a manner which would not impact the use of adjacent facilities which include residences, a recreational facility, and a school; coordination and phasing of the work to allow management of six separate material streams including clean soil, MSW, co-mingled LLRW/MSW, LLRW, un-impacted water, and impacted water/leachate within a confined environment; and development of a multi-tiered and adaptive program of monitoring and control measures for odour, dust, and water including assessment of risk of exceedance of monitoring criteria. In addition to ensuring public safety and protection of the environment during remedy implementation, significant effort in the design process was paid to balancing the advantages of increased certainty, including higher production rates, against the costs of attaining increased

  13. Recovery of calcium carbonate from waste gypsum and utilization for remediation of acid mine drainage from coal mines.

    PubMed

    Mulopo, J; Radebe, V

    2012-01-01

    The recovery of calcium carbonate from waste gypsum (a waste product of the reverse osmosis (RO) desalination process) was tested using sodium carbonate. Batch recovery of calcium carbonate from waste gypsum slurries by reacting with sodium carbonate under ambient conditions was used to assess the technical feasibility of CaCO(3) recovery and its use for pre-treatment of acid mine drainage (AMD) from coal mines. The effect of key process parameters, such as the slurry concentration (%) and the molar ratio of sodium carbonate to gypsum were considered. It was observed that batch waste gypsum conversion significantly increased with decrease in the slurry concentration or increase in the molar ratio of sodium carbonate to gypsum. The CaCO(3) recovered from the bench-scale batch reactor demonstrated effective neutralization ability during AMD pre-treatment compared with commercial laboratory grade CaCO(3). PMID:22828309

  14. Buried object remote detection technology for law enforcement

    NASA Astrophysics Data System (ADS)

    del Grande, Nancy K.; Clark, Gregory A.; Durbin, Philip F.; Fields, David J.; Hernandez, Jose E.; Sherwood, Robert J.

    1991-08-01

    A precise airborne temperature-sensing technology to detect buried objects for use by law enforcement is developed. Demonstrations have imaged the sites of buried foundations, walls and trenches; mapped underground waterways and aquifers; and been used to locate underground military objects. The methodology is incorporated in a commercially available, high signal-to-noise, dual-band infrared scanner with real-time, 12-bit digital image processing software and display. The method creates color-coded images based on surface temperature variations of 0.2 degree(s)C. Unlike other less-sensitive methods, it maps true (corrected) temperatures by removing the (decoupled) surface emissivity mask equivalent to 1 degree(s)C or 2 degree(s)C; this mask hinders interpretation of apparent (blackbody) temperatures. Once removed, it is possible to identify surface temperature patterns from small diffusivity changes at buried object sites which heat and cool differently from their surroundings. Objects made of different materials and buried at different depths are identified by their unique spectral, spatial, thermal, temporal, emissivity and diffusivity signatures. The authors have successfully located the sites of buried (inert) simulated land mines 0.1 to 0.2 m deep; sod-covered rock pathways alongside dry ditches, deeper than 0.2 m; pavement covered burial trenches and cemetery structures as deep as 0.8 m; and aquifers more than 6 m and less than 60 m deep. The technology could be adapted for drug interdiction and pollution control. For the former, buried tunnels, underground structures built beneath typical surface structures, roof-tops disguised by jungle canopies, and covered containers used for contraband would be located. For the latter, buried waste containers, sludge migration pathways from faulty containers, and the juxtaposition of groundwater channels, if present, nearby, would be depicted. The precise airborne temperature-sensing technology has a promising potential

  15. "Final Report for Grant No. DE-FG02-97ER62492 "Engineering Deinococcus radiodurans for Metal Remediation in Radioactive Mixed Waste Sites"

    SciTech Connect

    Michael J. Daly, Ph.D.

    2005-03-17

    The groundwater and sediments of numerous U. S. Department of Energy (DOE) field sites are contaminated with mixtures of heavy metals (e.g., Hg, Cr, Pd) and radionuclides (e.g., U, Tc), as well as the fuel hydrocarbons benzene, toluene, ethylbenzene and xylenes (BTEX); chlorinated hydrocarbons, such as trichloroethylene (TCE); and polychlorinated biphenyls (PCBs). The remediation of such mixed wastes constitutes an immediate and complex waste management challenge for DOE, particularly in light of the costliness and limited efficacy of current physical and chemical strategies for treating mixed wastes. In situ bioremediation via natural microbial processes (e.g., metal reduction) remains a potent, potentially cost-effective approach to the reductive immobilization or detoxification of environmental contaminants. Seventy million cubic meters of soil and three trillion liters of groundwater have been contaminated by leaking radioactive waste generated in the United States during the Cold War. A cleanup technology is being developed based on the extremely radiation resistant bacterium Deinococcus radiodurans. Our recent isolation and characterization of D. radiodurans from a variety of DOE environments, including highly radioactive sediments beneath one of the leaking tanks (SX-108) at the Hanford Site in south-central Washington state, underscores the potential for this species to survive in such extreme environments. Research aimed at developing D. radiodurans for metal remediation in radioactive waste sites was started by this group in September 1997 with support from DOE NABIR grant DE-FG02-97ER62492. Our grant was renewed for the period 2000-2003, which includes work on the thermophilic radiation resistant bacterium Deinococcus geothermalis. Work funded by the existing grant contributed to 18 papers in the period 1997-2004 on the fundamental biology of D. radiodurans and its design for bioremediation of radioactive waste environments. Our progress since September

  16. Developing a strategy and closure criteria for radioactive and mixed waste sites in the ORNL remedial action program: Regulatory interface

    SciTech Connect

    Trabalka, J.R.

    1987-09-01

    Some options for stabilization and treatment of contaminated sites can theoretically provide a once-and-for-all solution (e.g., removal or destruction of contaminants). Most realizable options, however, leave contaminants in place (in situ), potentially isolated by physical or chemical, but more typically, by hydrologic measures. As a result of the dynamic nature of the interactions between contaminants, remedial measures, and the environment, in situ stablization measures are likely to have limited life spans, and maintenance and monitoring of performance become an essential part of the scheme. The length of formal institutional control over the site and related questions about future uses of the land and waters are of paramount importance. Unique features of the ORNL site and environs appear to be key ingredients in achieving the very long term institutional control necessary for successful financing and implementation of in situ stabilization. Some formal regulatory interface is necessary to ensure that regulatory limitations and new guidance which can affect planning and implementation of the ORNL Remedial Action Program are communicated to ORNL staff and potential technical and financial limitations which can affect schedules or alternatives for achievement of long-term site stabilization and the capability to meet environmental regulations are provided to regulatory bodies as early as possible. Such an interface should allow decisions on closure criteria to be based primarily on technical merit and protection of human health and the environment. A plan for interfacing with federal and state regulatory authorities is described. 93 refs., 1 fig., 4 tabs.

  17. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  18. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  19. Ultrasonic isolation of buried pipes

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2016-02-01

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such

  20. Crystallization control for remediation of an FetO-rich CaO-SiO2-Al2O3-MgO EAF waste slag.

    PubMed

    Jung, Sung Suk; Sohn, Il

    2014-01-01

    In this work, the crystallization behavior of synthesized FetO-rich electric arc furnace (EAF) waste slags with a basicity range of 0.7 to 1.08 was investigated. Crystal growth in the melts was observed in situ using a confocal laser scanning microscope, and a delayed crystallization for higher-basicity samples was observed in the continuous cooling transformation and time temperature transformation diagrams. This result is likely due to the polymerization of the melt structure as a result of the increased number of network-forming FeO4 and AlO4 units, as suggested by Raman analysis. The complex incorporation of Al and Fe ions in the form of AlO4 and FeO4 tetrahedral units dominant in the melt structure at a higher basicity constrained the precipitation of a magnetic, nonstoichiometric, and Fe-rich MgAlFeO4 primary phase. The growth of this spinel phase caused a clear compositional separation from amorphous phase during isothermal cooling at 1473 K leading to a clear separation between the primary and amorphous phases, allowing an efficient magnetic separation of Fe compounds from the slag for effective remediation and recycling of synthesized EAF waste slags for use in higher value-added ordinary Portland cement. PMID:24410350

  1. Risk-based prioritization for the interim remediation of inactive low-level liquid radioactive waste underground storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Chidambariah, V.; Travis, C.C.; Trabalka, J.R.; Thomas, J.K.

    1992-09-01

    The paper presents a risk-based approach for rapid prioritization of low-level liquid radioactive waste underground storage tanks (LLLW USTs), for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at Oak Ridge National Laboratory were pumped out when the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include the radionuclides {sup 90}Sr, {sup 137}Cs, and {sup 233}U and the chemicals carbon tetrachloride, trichloroethane, tetrachloroethene, methyl ethyl ketone, mercury, lead, and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank, (2) location of the tanks, and (3) toxic potential of the tank contents. Leaking characteristics of LLLW USTs will aid in establishing the potential for the release of contaminants to environmental media. In this study, only the liquid phase was assumed to be released to the environment. Scoring criteria for release potential of LLLW USTs was determined after consideration of the magnitude of any known leaks and the tank type for those that are not known to leak.

  2. Risk-based prioritization for the interim remediation of inactive low-level liquid radioactive waste underground storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Chidambariah, V.; Travis, C.C.; Trabalka, J.R.; Thomas, J.K.

    1992-09-01

    The paper presents a risk-based approach for rapid prioritization of low-level liquid radioactive waste underground storage tanks (LLLW USTs), for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at Oak Ridge National Laboratory were pumped out when the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include the radionuclides [sup 90]Sr, [sup 137]Cs, and [sup 233]U and the chemicals carbon tetrachloride, trichloroethane, tetrachloroethene, methyl ethyl ketone, mercury, lead, and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank, (2) location of the tanks, and (3) toxic potential of the tank contents. Leaking characteristics of LLLW USTs will aid in establishing the potential for the release of contaminants to environmental media. In this study, only the liquid phase was assumed to be released to the environment. Scoring criteria for release potential of LLLW USTs was determined after consideration of the magnitude of any known leaks and the tank type for those that are not known to leak.

  3. Purification, Characterization, and Potential of Saline Waste Water Remediation of a Polyextremophilic α-Amylase from an Obligate Halophilic Aspergillus gracilis

    PubMed Central

    Ali, Imran; Akbar, Ali; Yanwisetpakdee, Benjawan; Prasongsuk, Sehanat; Lotrakul, Pongtharin; Punnapayak, Hunsa

    2014-01-01

    An obligate halophilic Aspergillus gracilis which was isolated from a hypersaline man-made saltern from Thailand was screened for its potential of producing extracellular α-amylase in the previous studies. In this study the α-amylase was extracted and purified by the help of column chromatography using Sephadex G-100 column. Presence of amylase was verified by SDS-PAGE analysis, showing a single band of approximately 35 kDa. The specific activity of the enzyme was found to be 131.02 U/mg. The Lineweaver-Burk plot showed the Vmax and Km values of 8.36 U/mg and 6.33 mg/mL, respectively. The enzyme was found to have the best activity at 5 pH, 60°C, and 30% of NaCl concentration, showing its polyextremophilic nature. The use of various additives did not show much variation in the activity of enzyme, showing its resilience against inhibitors. The enzyme, when tested for its use for synthetic waste water remediation by comparing its activity with commercial amylase in different salt concentrations showed that the α-amylase from A. gracilis was having better performance at increasing salt concentrations than the commercial one. This shows its potential to be applied in saline waste water and other low water activity effluents for bioremediation. PMID:24949415

  4. Electrosorption on carbon aerogel electrodes as a means of treating low-level radioactive wastes and remediating contaminated ground water

    SciTech Connect

    Tran, Tri Duc; Farmer, Joseph C.; DePruneda, Jean H.; Richardson, Jeffery H.

    1997-07-01

    A novel separation process based upon carbon aerogel electrodes has been recently developed for the efficient removal of ionic impurities from aqueous streams. This process can be used as an electrical y- regenerated alternative to ion exchange, thereby reducing-the need for large quantities of chemical regenerants. Once spent (contaminated), these regenerants contribute to the waste that must be disposed of in landfills. The elimination of such wastes is especially beneficial in situations involving radioactive contaminants, and pump and treat processing of massive volumes of ground water. A review and analysis of potential applications will be presented.

  5. Missouri Department of Natural Resources Hazardous Waste Program Weldon Spring site remedial action project - status to date January 1998

    SciTech Connect

    1998-04-01

    This document describes the progress made by the Missouri Department of Natural Resources (MDNR) during the fifth year (1997) of the Agreement in Support (AIS) in its oversight role of the Weldon Springs Site Remedial Action Project (WSSRAP). Staffing issues this year have been a challenge with the resignation of an Environmental Specialist (ES) in June 1997, and the death of Robert Stovall, an Environmental Engineer (EE) II in August 1997. Progress made during this period includes securing a contract laboratory, participation in several workgroup meetings for activities at the site, oversight of the Feasibility Study/Proposed Plan (FS/PP), coordination between the US Department of Energy and the various State regulatory programs and interactions with the local public drinking water supply agency and health departments.

  6. Corrective action investigation plan: Cactus Spring Waste Trenches. Revision 2

    SciTech Connect

    1997-02-01

    This Correction Action Investigation Plan (CAIP) contains environmental sample collection objectives and logic for the CAU No. 426, which includes the Cactus Spring Waste Trenches, CAS No. RG-08-001-RG-CS. The Cactus Spring Waste Trenches are located at the Tonopah Test Range (TTR) which is part of the Nellis Air Force Range, approximately 255 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air. The purpose of this investigation is to generate sufficient data to establish the types of waste buried in the trenches, identify the presence and nature of contamination, determine the vertical extent of contaminant migration below the Cactus Spring Waste Trenches, and determine the appropriate course of action for the site. The potential courses of action for the site are clean closure, closure in place (with or without remediation), or no further action.

  7. The use of alkaline hydrolysis as a novel strategy for chloroform remediation: the feasibility of using construction wastes and evaluation of carbon isotopic fractionation.

    PubMed

    Torrentó, Clara; Audí-Miró, Carme; Bordeleau, Geneviève; Marchesi, Massimo; Rosell, Mònica; Otero, Neus; Soler, Albert

    2014-01-01

    Laboratory and field-scale pilot experiments were performed to evaluate the feasibility of chloroform degradation by alkaline hydrolysis and the potential of δ(13)C values to assess this induced reaction process at contaminated sites. In batch experiments, alkaline conditions were induced by adding crushed concrete (pH 12.33 ± 0.07), a filtered concrete solution (pH 12.27 ± 0.04), a filtered cement solution (pH 12.66 ± 0.02) and a pH 12 buffer solution (pH 11.92 ± 0.11). The resulting chloroform degradation after 28 days was 94, 96, 99, and 72%, respectively. The experimental data were described using a pseudo-first-order kinetic model, resulting in pseudo-first-order rate constant values of 0.10, 0.12, 0.20, and 0.05 d(-1), respectively. Furthermore, the significant chloroform carbon isotopic fractionation associated with alkaline hydrolysis of chloroform (-53 ± 3‰) and its independence from pH in the admittedly limited tested pH range imply a great potential for the use of δ(13)C values for in situ monitoring of the efficacy of remediation approaches based on alkaline hydrolysis. The carbon isotopic fractionation obtained at the lab scale allowed the calculation of the percentage of chloroform degradation in field-scale pilot experiments where alkaline conditions were induced in two recharge water interception trenches filled with concrete-based construction wastes. A maximum of approximately 30-40% of chloroform degradation was achieved during the two studied recharge periods. Although further research is required, the treatment of chloroform in groundwater through the use of concrete-based construction wastes is proposed. This strategy would also imply the recycling of construction and demolition wastes for use in value-added applications to increase economic and environmental benefits. PMID:24410407

  8. Potential of bioremediation for buried oil removal in beaches after an oil spill.

    PubMed

    Pontes, Joana; Mucha, Ana P; Santos, Hugo; Reis, Izabela; Bordalo, Adriano; Basto, M Clara; Bernabeu, Ana; Almeida, C Marisa R

    2013-11-15

    Bioremediation potential for buried oil removal, an application still lacking thorough research, was assessed in a specifically designed system in which an artificially contaminated oil layer of sand was buried in a sand column subjected to tidal simulation. The efficiency of biostimulation (BS, fertilizer addition) and bioaugmentation (BA, inoculation of pre-stimulated indigenous hydrocarbon-degrading microorganisms plus fertilizer) compared to natural attenuation was tested during a 180-day experimental period. The effect of BA was evident after 60 days (degradation of hydrocarbons reached 80%). BS efficacy was revealed only after 120 days. Microorganisms and nutrients added at the top of the sand column were able to reach the buried oil layer and contributed to faster oil elimination, an important feature for effective bioremediation treatments. Therefore, autochthonous BA with suitable nutritive conditions results in faster oil-biodegradation, appears to be a cost-effective methodology for buried oil remediation and contributes to the recovery of oil-impacted areas. PMID:24054785

  9. The Buried Town of Beaver.

    ERIC Educational Resources Information Center

    Jostad, Karen

    Local history as source material for environmental education is uniquely portrayed in this resource kit. Utilizing a Winona County Historical Society publication, "The Beaver Story" and accompanied by a teacher's guide, "The Buried Town of Beaver," and other teaching aids, a case study of the area can be developed. Based on the reminiscences of…

  10. Characterization and remediation of 91B radioactive waste sites under performance based contracts at Lackland Air Force Base, San Antonio, Texas

    SciTech Connect

    Trujillo, P.A.; Anderson, K.D.

    2007-07-01

    This paper describes the challenges behind the implementation of the characterization, remediation, and the Site Closure for three 91b Radioactive Wastes under a Performance Based Contract at Lackland Air Force Base, San Antonio, Texas. The Defense Environmental Restoration Program (DERP) was established by Section 211 of the Superfund Amendments and Reauthorization Act of 1986 (SARA). A part of the DERP provides for the cleanup of hazardous substances associated with past Department of Defense (DoD) activities and is consistent with the provisions of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). It is the Air Force Installation Restoration Program (IRP) that has responsibility for the cleanup activities associated with CERCLA. Under contract to the Air Force Center for Environmental Excellence (AFCEE), the ECC Project Team, that included ECC, Cabrera Services, and Malcolm Pirnie, was responsible for the implementation of the actions at three sites. The three IRP (91b) sites included RW015, a 0.02 square kilometer (5.5 acre) site, RW017 a 0.003 square kilometer (0.9 acre) site, and RW033 an 0.356 square kilometer (88 acre) site. Adding to the complexities of the project were issues of archaeological areas of interest, jurisdictional wetlands, land open to hunting, issues of security as well as compliance to the myriad of air force base rules, regulations, and Air Force Instructions (AFI). The award of the project task order was July of 2005, the project plan phase started in July of 2005 followed by the remedy implementation that included characterization and remediation as required reached completion in June of 2006. The project closure including the development and approval final status survey reports, proposed plans, and decision documents that parallel the CERCLA process was initiated in June of 2006 and is expected to reach completion in August of 2007. This paper will focus on the issues of working to achieve radiological

  11. Sensor fusion methodology for remote detection of buried land mines

    SciTech Connect

    Del Grande, N.

    1990-04-01

    We are investigation a sensor fusion methodology for remote detection of buried land mines. Our primary approach is sensor intrafusion. Our dual-channel passive IR methodology decouples true (corrected) surface temperature variations of 0.2{degree}C from spatially dependent surface emissivity noise. It produces surface temperature maps showing patterns of conducted heat from buried objects which heat and cool differently from their surroundings. Our methodology exploits Planck's radiation law. It produces separate maps of surface emissivity variations which allow us to reduce false alarms. Our secondary approach is sensor interfusion using other methodologies. For example, an active IR CO{sub 2} laser reflectance channel helps distinguish surface targets unrelated to buried land mines at night when photographic methods are ineffective. Also, the interfusion of ground penetrating radar provides depth information for confirming the site of buried objects. Together with EG G in Las Vegas, we flew a mission at Nellis AFB using the Daedalus dual-channel (5 and 10 micron) IR scanner mounted on a helicopter platform at an elevation of 60 m above the desert sand. We detected surface temperature patterns associated with buried (inert) land mines covered by as much as 10 cm of dry sand. The respective spatial, spectral, thermal, emissivity and temporal signatures associated with buried targets differed from those associated with surface vegetation, rocks and manmade objects. Our results were consistent with predictions based on the annual Temperature Wave Model.They were confirmed by field measurements. The dual-channel sensor fusion methodology is expected to enhance the capabilities of the military and industrial community for standoff mine detection. Other important potential applications are open skies, drug traffic control and environmental restoration at waste burial sites. 11 figs.

  12. 47 CFR 32.2423 - Buried cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Buried cable. 32.2423 Section 32.2423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a) This account shall include the original cost of buried cable as well as the cost of other material...

  13. 47 CFR 32.2423 - Buried cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Buried cable. 32.2423 Section 32.2423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a) This account shall include the original cost of buried cable as well as the cost of other material...

  14. Investigation of biologically-designed metal-specific chelators for potential metal recovery and waste remediation applications.

    SciTech Connect

    Criscenti, Louise Jacqueline; Ockwig, Nathan W.

    2009-01-01

    Bacteria, algae and plants produce metal-specific chelators to capture required nutrient or toxic trace metals. Biological systems are thought to be very efficient, honed by evolutionary forces over time. Understanding the approaches used by living organisms to select for specific metals in the environment may lead to design of cheaper and more effective approaches for metal recovery and contaminant-metal remediation. In this study, the binding of a common siderophore, desferrioxamine B (DFO-B), to three aqueous metal cations, Fe(II), Fe(III), and UO{sub 2}(VI) was investigated using classical molecular dynamics. DFO-B has three acetohydroxamate groups and a terminal amine group that all deprotonate with increasing pH. For all three metals, complexes with DFO-B (-2) are the most stable and favored under alkaline conditions. Under more acidic conditions, the metal-DFO complexes involve chelation with both acetohydroxamate and acetylamine groups. The approach taken here allows for detailed investigation of metal binding to biologically-designed organic ligands.

  15. Characterization of wastes in and around early reactors at the Hanford Site: The use of historical research

    SciTech Connect

    Gerber, M.S.

    1993-10-01

    This paper will present the waste characterization knowledge that has been gained in the first, ``Large-Scale Remediation Study`` to be performed on the reactor areas (100 Areas) of the Hanford Site. Undertaken throughout the past year, this research project has identified thousands of pieces of buried hardware, as well as the volumes of liquid wastes in burial sites in the reactor areas. The author of this landmark study, Dr. Michele Gerber, will discuss historical research as a safe and cost-effective characterization tool.

  16. Tank waste remediation system retrieval and disposal mission readiness-to-proceed responses to internal independent assessment

    SciTech Connect

    Schaus, P.S.

    1998-01-06

    The US Department of Energy (DOE) is planning to make critical decisions during fiscal year (FY) 1998 regarding privatization contracts for the treatment of Hanford tank waste. Specifically, DOE, Richland Operations Office (RL), will make decisions related to proceeding with Phase 1 Privatization. In support of these decisions, the management and integration (M+I) contractor must be able to meet the requirements to support the Phase 1 privatization contractors. As part of the assessment of the Tank Waste Retrieval (TWR) Readiness-To-Proceed (RTP), an independent review of their process and products was required by the RL letter of August 8, 1997. The Independent Review Team reviewed the adequacy of the planning that has been done by the M+I contractor to validate that, if the plans are carried out, there is reasonable assurance of success. Overall, the RTP Independent Review Team concluded that, if the planning by the M+I contractor team is carried out with adequate funding, there is reasonable assurance that the M+I contractor will be able to deliver waste to the privatization contractor for the duration of Phase 1. This conclusion was based on addressing the recommendations contained in the Independent Review Team`s Final Report and in the individual Criteria and Review Approach (CRA) forms completed during the assessment. The purpose of this report is to formally document the independent assessment and the RTP team responses to the Independent Review Team recommendations. It also provides closure logics for selected recommendations from a Lockheed Martin Hanford Corporation (LMHC) internal assessment of the Technical Basis Review (TBR) packages. This report contains the RTP recommendation closure process (Section 2.0); the closure tables (Section 3.0) which provide traceability between each review team recommendation and its corresponding Project Hanford Management Contract closure logic; and two attachments that formally document the Independent Review Team

  17. Design and construction of a circulating fluidized bed combustion facility for use in studying the thermal remediation of wastes

    NASA Astrophysics Data System (ADS)

    Rink, Karl K.; Kozinski, Janusz A.; Lighty, JoAnn S.; Lu, Quing

    1994-08-01

    Fluidized bed combustion systems have been widely applied in the combustion of solid fossil fuels, particularly by the power generation industry. Recently, attention has shifted from the conventional bubbling fluidized bed (BFB) to circulating fluidized bed (CFB) combustion systems. Inherent advantages of CFB combustion such as uniform temperatures, excellent mixing, high combustion efficiencies, and greater fuel flexibility have generated interest in the feasibility of CFB combustion systems applied to the thermal remediation of contaminated soils and sludges. Because it is often difficult to monitor and analyze the combustion phenomena that occurs within a full scale fluidized bed system, the need exists for smaller scale research facilities which permit detailed measurements of temperature, pressure, and chemical specie profiles. This article describes the design, construction, and operation of a pilot-scale fluidized bed facility developed to investigate the thermal remediation characteristics of contaminated soils and sludges. The refractory-lined reactor measures 8 m in height and has an external diameter of 0.6 m. The facility can be operated as a BFB or CFB using a variety of solid fuels including low calorific or high moisture content materials supplemented by natural gas introduced into the fluidized bed through auxiliary fuel injectors. Maximum firing rate of the fluidized bed is approximately 300 kW. Under normal operating conditions, internal wall temperatures are maintained between 1150 and 1350 K over superficial velocities ranging from 0.5 to 4 m/s. Contaminated material can be continuously fed into the fluidized bed or introduced as a single charge at three different locations. The facility is fully instrumented to allow time-resolved measurements of gaseous pollutant species, gas phase temperatures, and internal pressures. The facility has produced reproducible fluidization results which agree well with the work of other researchers. Minimum

  18. Tank Waste Remediation System fiscal year 1996 multi-year program plan WBS 1.1. Revision 1, Volume 1

    SciTech Connect

    1995-09-01

    The 1995 Hanford Mission Plan specifically addresses the tank waste issue and clarifies the link with other initiatives, such as improving management practices and the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan (DOE/RL-91-31). This document captures the results of decision making regarding the application of systems engineering at the Hanford Site, external involvement policy, and site end-state goals. Section 3.5 of the Hanford Mission Plan on Decisions and Directives provides an integrating discussion of the actions of the National Environmental Policy Act (NEPA), and DOE policy, guidance, and decisions associated with binding agreements such as the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). Two significant components of the Hanford Mission Plan 1994 planning basis are (1) the decisions regarding the disposition of onsite material inventory, and the key programs and interfaces to accomplish this; and (2) the Program Interface Issues section, which identified issues that stretch across program boundaries.

  19. ORD WASTE RESEARCH STRATEGY

    EPA Science Inventory

    The "Waste Research Strategy" covers research necessary to support both the proper management of solid and hazardous wastes and the effective remediation of contaminated waste sites.This research includes improving the assessment of existing environmental risks,...

  20. WASTE RESEARCH STRATEGY

    EPA Science Inventory

    The Waste Research Strategy covers research necessary to support both the proper management of solid and hazardous wastes and the effective remediation of contaminated waste sites. This research includes improving the assessment of existing environmental risks, as well as develop...

  1. Innovative Vitrification for Soil Remediation

    SciTech Connect

    Hnat, James G.; Patten, John S.; Jetta, Norman W.

    1996-12-31

    Vortec has successfully completed Phases 1 and 2 of a technology demonstration program for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation.'' The principal objective of the program is to demonstrate the ability of a Vortec Cyclone Melting System (CMS) to remediate DOE contaminated soils and other waste forms containing TM RCRA hazardous materials, low levels of radionuclides and TSCA (PCB) containing wastes. The demonstration program will verify the ability of this vitrification process to produce a chemically stable glass final waste form which passes both TCLP and PCT quality control requirements, while meeting all federal and state emission control regulations. The demonstration system is designed to process 36 ton/day of as-received drummed or bulk wastes. The processing capacity equates to approximately 160 barrels/day of waste materials containing 30% moisture at an average weight of 450 lbs./barrel.

  2. Remediation of inorganic contaminants and polycyclic aromatic hydrocarbons from soils polluted by municipal solid waste incineration residues.

    PubMed

    Jobin, Philippe; Coudert, Lucie; Taillard, Vincent; Blais, Jean-Francois; Mercier, Guy

    2016-08-01

    Three soils polluted by municipal solid waste (MSW) incineration residues and containing various concentrations of Cu, Pb, Sb, Sn and Zn were treated using magnetism, gravity separation (jig and shaking table) and flotation/leaching. The process removed between 18% and 39% of the contaminants present in soil 1, between 31% and 53% of the contaminants present in soil 2 and between 42% and 56% of the contaminants present in soil 3. Polycyclic aromatic hydrocarbons were present only in soil 3, and the process removed 64% of its PAHs total content. Magnetism seemed to be the most efficient technique to remove metals from contaminated soils, followed by gravity separation and finally flotation/leaching. The global efficiency of the process was higher when the initial contaminant concentrations were lower (smaller proportions of MSW incineration residues). The estimated costs of the process, including direct and indirect costs, varied from $82 to $88 per ton of treated soil depending on the proportion of MSW incineration residues mixed with the soil. PMID:26729603

  3. Completion report for the isolation and remediation of inactive liquid low-level radioactive waste tanks WC-5, WC-6, WC-8, WC-19, 3002-A, 7560, and 7562 at Oak Ridge National Laboratory Oak Ridge, Tennessee

    SciTech Connect

    1997-12-01

    The Federal Facility Agreement (FFA) between the U.S. Environmental Protection Agency (EPA), Tennessee Department of Environment and Conservation (TDEC), and U.S. Department of Energy (DOE) requires that all liquid low-level waste tanks at Oak Ridge National Laboratory removed from service, designated in the FFA as Category D, be remediated in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. A human health risk screening assessment was conducted for inactive Tanks WC-5, WC-6, WC-8, WC-19, 3002-A, 7560, and 7562 as part of an evaluation to determine the method of remediation necessary to safely and permanently isolate and remediate the tanks. Risk screening assessment results indicated that the health risks associated with these tanks were within or below the EPA range of concern of 1 x 10{sup -4} to 1 x 10{sup -6}. On the basis of these results and with regulators concurrence, it was determined that either no action or in-place stabilization of the tanks would satisfy risk-based remediation goals. Therefore, decisions were made and approved by DOE to remediate these tanks in-place as maintenance actions rather than actions under the CERCLA process. Letters documenting these decisions were approved by DOE and subsequently submitted to TDEC and EPA, who concurred with the maintenance actions. Tanks WC-5, WC-6, WC-8, WC-19, 3002-A, 7560, and 7562 were isolated from associated piping, electrical systems, and instrumentation and were grouted in-place. Tank 7562 was originally isolated from associated piping and instrumentation and left in-place empty for future remedial consideration. Upon further consideration, the decision was made by DOE, with concurrence by the regulators, to complete the maintenance action of Tank 7562 by grouting it in-place in March 1997.

  4. Chemical Waste and Allied Products.

    PubMed

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert

    2016-10-01

    This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste. PMID:27620094

  5. Radioactive wastes

    SciTech Connect

    Devarakonda, M.S.; Hickox, J.A.

    1996-11-01

    This paper provides a review of literature published in 1995 on the subject of radioactive wastes. Topics covered include: national programs; waste repositories; mixed wastes; decontamination and decommissioning; remedial actions and treatment; and environmental occurrence and transport of radionuclides. 155 refs.

  6. Blast wave from buried charges

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.L.

    1993-08-01

    While much airblast data are available for height-of-burst (HOB) effects, systematic airblast data for depth-of-burst (DOB) effects are more limited. It is logical to ask whether the spherical 0.5-g Nitropenta charges that, proved to be successful for HOB tests at EMI are also suitable for experiments with buried charges in the laboratory scale; preliminary studies indicated in the alternative. Of special interest is the airblast environment generated by detonations just above or below the around surface. This paper presents a brief summary of the test results.

  7. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    SciTech Connect

    Not Available

    1985-01-01

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed.

  8. Aeromagnetic Expression of Buried Basaltic Volcanoes Near Yucca Mountain, Nevada

    USGS Publications Warehouse

    O'Leary, D. W.; Mankinen, E.A.; Blakely, R.J.; Langenheim, V.E.; Ponce, D.A.

    2002-01-01

    A high-resolution aeromagnetic survey has defined a number of small dipolar anomalies indicating the presence of magnetic bodies buried beneath the surface of Crater Flat and the Amargosa Desert. Results of potential-field modeling indicate that isolated, small-volume, highly magnetic bodies embedded within the alluvial deposits of both areas produce the anomalies. Their physical characteristics and the fact that they tend to be aligned along major structural trends provide strong support for the hypothesis that the anomalies reflect buried basaltic volcanic centers. Other, similar anomalies are identified as possible targets for further investigation. High-resolution gravity and ground-magnetic surveys, perhaps along with drilling sources of selected anomalies and radiometric age determinations, can provide valuable constraints in estimating potential volcanic hazard to the potential nuclear waste repository at Yucca Mountain.

  9. Field scale remediation of mine wastes at an abandoned gold mine, Australia II: Effects on plant growth and groundwater

    NASA Astrophysics Data System (ADS)

    Maddocks, Greg; Lin, Chuxia; McConchie, David

    2009-05-01

    This second paper reports the results of plant growth, plant mortality, plant leaf tissue metal and salt concentrations and leachate quality monitoring from lysimeters in four large field trial treatments established on sulfidic waste rock/soil that was used for haul road construction at a closed gold mine in Australia. The TerraB™, lime and clay treatments allowed good tree growth of four Eucalypt species, compared to the control. There was no statistical difference in tree growth between the TerraB™, lime or clay treatments over the 2 years of monitoring in this paper. However, the growth of one tree species was poor in the TerraB™ treatment. Leaf tissue metal and major ion data are also presented. Leachate pH in the control became increasingly acidic (pH 4.57-3.95). The addition of Ca(OH)2 and biosolids led to an initial increase in leachate pH, compared to the control; however, this has decreased over the duration of the study (pH 5.37-4.89) and may affect the sustainable growth of plants in the future. In the TerraB™ and biosolids treatment leachate pH increased to 6.92 after the first rainfall event and continued to increase over the duration of the study to pH 7.4 after 24 months. After 24 months average heavy metal leachate concentrations (mg/L) in the lysimeters for Al, Cd, Cu, Mn and Zn were, control: 32.55, 5.67, 12.71, 39.29, 121.80, TerraB™: 0.07, 0.02, 0.07, 0.57, 0.23, and lime: 2.19, 1.19, 2.33, 3.6, 28.4. No leachate was available for collection from the clay treatment indicating that this technique was functioning in terms of minimizing the infiltration of water into the mine soil.

  10. Nonlinear vibrations of buried landmines.

    PubMed

    Donskoy, Dimitri; Reznik, Alexander; Zagrai, Andrei; Ekimov, Alexander

    2005-02-01

    The seismo-acoustic method is one of the most promising emerging techniques for the detection of landmines. Numerous field tests have demonstrated that buried landmines manifest themselves at the surface through linear and nonlinear responses to acoustic/seismic excitation. The present paper describes modeling of the nonlinear response in the framework of the mass-spring model of the soil-mine system. The perturbation method used in the model allows for the derivation of an analytical solution describing both quadratic and cubic acoustic interactions at the soil-mine interface. This solution has been compared with actual field measurements to obtain nonlinear parameters of the buried mines. These parameters have been analyzed with respect to mine types and burial depths. It was found that the cubic nonlinearity could be a significant contributor to the nonlinear response. This effect has led to the development of a new intermodulation detection algorithm based on dual-frequency excitation. Both quadratic and intermodulation nonlinear algorithms were evaluated at the U.S. Army outdoor testing facilities. The algorithms appear to complement each other in improving the overall detection performance. PMID:15759689

  11. Chemical detection of buried landmines

    SciTech Connect

    Phelan, J.M.; Webb, S.W.

    1998-03-01

    Of all the buried landmine identification technologies currently available, sensing the chemical signature from the explosive components found in landmines is the only technique that can classify non-explosive objects from the real threat. In the last two decades, advances in chemical detection methods has brought chemical sensing technology to the foreground as an emerging technological solution. In addition, advances have been made in the understanding of the fundamental transport processes that allow the chemical signature to migrate from the buried source to the ground surface. A systematic evaluation of the transport of the chemical signature from inside the mine into the soil environment, and through the soil to the ground surface is being explored to determine the constraints on the use of chemical sensing technology. This effort reports on the results of simulation modeling using a one-dimensional screening model to evaluate the impacts on the transport of the chemical signature by variation of some of the principal soil transport parameters.

  12. COST ESTIMATING SYSTEMS FOR REMEDIAL ACTION PROJECTS

    EPA Science Inventory

    This paper details the ongoing collaboration between the U.S. EPA and the U.S. Army Corps of Engineers in the development of complementary micro-computer based cost estimating systems for hazardous waste remediations. he U.S. EPA system, "Remedial Action Cost Estimating System" (...

  13. GROUND WATER REMEDIATION POWERED WITH RENEWABLE ENERGY

    EPA Science Inventory

    Technical challenge: Resource conservation has become a critical concept in the remediation of contaminated ground water supplies. Ground water remedies which include surface discharge of treated ground water are often viewed as wasteful and non-sustainable....

  14. CAVITATIONAL HYDROTHERMAL OXIDATION: A NEW REMEDIATION PROCESS

    EPA Science Inventory

    This research will explore the emerging science of sonochemistry and its technological applications for organic waste remediation, particularly for water and soil purification. Ultrasound can induce unusual high-energy chemistry through the process of acoustic cavitation: the for...

  15. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    SciTech Connect

    D. E. Shanklin

    2006-06-01

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  16. Corrective action investigation plan: Cactus Spring Waste Trenches. Revision 2

    SciTech Connect

    1997-02-01

    This Correction Action Investigation Plan (CAIP) contains environmental sample collection objectives and logic for the Corrective Action Unit No. 426, which includes the Cactus Spring Waste Trenches, located at the Tonopah Test Range. The purpose of this investigation is to generate sufficient data to establish the types of waste buried in the trenches, identify the presence and nature of contamination, determine the vertical extent of contaminant migration below the Cactus Spring Waste Trenches, and determine the appropriate course of action for the site. The potential courses of action for the site are clean closure, closure in place (with or without remediation), or no further action. The scope of this investigation will include drilling and collecting subsurface samples from within and below the trenches. Sampling locations will be biased toward the areas most likely to be contaminated. The Cactus Spring Waste Trenches Site is identified as one of three potential locations for buried, radioactively contaminated materials from the Double Tracks Test. This test was the first of four storage-transportation tests conducted in 1963 as part of Operation Roller Coaster. The experiment involved the use of live animals to assess the inhalation intake of a plutonium aerosol.

  17. Toxic Remediation System And Method

    DOEpatents

    Matthews, Stephen M.; Schonberg, Russell G.; Fadness, David R.

    1996-07-23

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  18. Mining metrics for buried treasure

    NASA Astrophysics Data System (ADS)

    Konkowski, D. A.; Helliwell, T. M.

    2006-06-01

    The same but different: That might describe two metrics. On the surface CLASSI may show two metrics are locally equivalent, but buried beneath may be a wealth of further structure. This was beautifully described in a paper by Malcolm MacCallum in 1998. Here I will illustrate the effect with two flat metrics — one describing ordinary Minkowski spacetime and the other describing a threeparameter family of Gal'tsov-Letelier-Tod spacetimes. I will dig out the beautiful hidden classical singularity structure of the latter (a structure first noticed by Tod in 1994) and then show how quantum considerations can illuminate the riches. I will then discuss how quantum structure can help us understand classical singularities and metric parameters in a variety of exact solutions mined from the Exact Solutions book.

  19. Reimagining Remediation

    ERIC Educational Resources Information Center

    Handel, Stephen J.; Williams, Ronald A.

    2011-01-01

    In 2007, the College Board's Community College Advisory Panel--a group of college presidents that advises the organization's membership on community college issues--asked these authors to write a paper describing effective remedial education programs. They never wrote the paper. The problem was not the lack of dedicated faculty and staff working…

  20. 7 CFR 1755.505 - Buried services.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Buried services. 1755.505 Section 1755.505 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE TELECOMMUNICATIONS POLICIES ON SPECIFICATIONS, ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.505 Buried services. (a)...

  1. 7 CFR 1755.505 - Buried services.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Buried services. 1755.505 Section 1755.505 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE TELECOMMUNICATIONS POLICIES ON SPECIFICATIONS, ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.505 Buried services. (a)...

  2. 40 CFR 270.68 - Remedial Action Plans (RAPs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Remedial Action Plans (RAPs). 270.68 Section 270.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... § 270.68 Remedial Action Plans (RAPs). Remedial Action Plans (RAPs) are special forms of permits...

  3. 40 CFR 270.68 - Remedial Action Plans (RAPs).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Remedial Action Plans (RAPs). 270.68 Section 270.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... § 270.68 Remedial Action Plans (RAPs). Remedial Action Plans (RAPs) are special forms of permits...

  4. 40 CFR 270.68 - Remedial Action Plans (RAPs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Remedial Action Plans (RAPs). 270.68 Section 270.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... § 270.68 Remedial Action Plans (RAPs). Remedial Action Plans (RAPs) are special forms of permits...

  5. 40 CFR 270.68 - Remedial Action Plans (RAPs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Remedial Action Plans (RAPs). 270.68 Section 270.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... § 270.68 Remedial Action Plans (RAPs). Remedial Action Plans (RAPs) are special forms of permits...

  6. 40 CFR 270.68 - Remedial Action Plans (RAPs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Remedial Action Plans (RAPs). 270.68 Section 270.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... § 270.68 Remedial Action Plans (RAPs). Remedial Action Plans (RAPs) are special forms of permits...

  7. SYNOPSES OF FEDERAL DEMONSTRATIONS OF INNOVATIVE REMEDIATION TECHNOLOGIES

    EPA Science Inventory

    This collection of abstracts, compiled by the Federal Remediation Technology Roundtable, describes field demonstrations of innovative technologies to treat hazardous waste. The collection is intended to be an information resource for hazardous waste site project managers for asse...

  8. Saxton soil remediation project

    SciTech Connect

    Holmes, R.D.

    1995-12-31

    The Saxton Nuclear Experimental Facility (SNEF) consists of a 23-MW(thermal) pressurized light water thermal reactor located in south central Pennsylvania. The Saxton Nuclear Experimental Corporation (SNEC), a wholly owned subsidiary of the General Public Utilities (GPU) Corporation, is the licensee for the SNEF. Maintenance and decommissioning activities at the site are conducted by GPU Nuclear, also a GPU subsidiary and operator of the Three Mile Island and Oyster Creek nuclear facilities. The remediation and radioactive waste management of contaminated soils is described.

  9. TREATMENT OF REACTIVE WASTES AT HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    This report is intended to provide an information base for personnel accepting hazardous waste at existing disposal sites, or performing remedial action at uncontrolled waste sites, to make the appropriate decisions regarding the disposition of reactive wastes. It emphasizes simp...

  10. Managing Waste Inventory and License Limits at the Perma-Fix Northwest Facility to Meet CH2M Hill Plateau Remediation Company (CHPRC) American Recovery and Reinvestment Act (ARRA) Deliverables - 12335

    SciTech Connect

    Moak, Don J.; Grondin, Richard L.; Triner, Glen C.; West, Lori D.

    2012-07-01

    CH2M Hill Plateau Remediation Company (CHRPC) is a prime contractor to the U.S. Department of Energy (DOE) focused on the largest ongoing environmental remediation project in the world at the DOE Hanford Site Central Plateau, i.e. the DOE Hanford Plateau Remediation Contract. The East Tennessee Materials and Energy Corporation (M and EC); a wholly owned subsidiary of Perma-Fix Environmental Services, Inc. (PESI), is a small business team member to CHPRC. Our scope includes project management; operation and maintenance of on-site storage, repackaging, treatment, and disposal facilities; and on-site waste management including waste receipt from generators and delivery to on-site and off-site treatment, storage, and disposal facilities. As part of this scope, M and EC staffs the centralized Waste Support Services organization responsible for all waste characterization and acceptance required to support CHPRC and waste generators across the Hanford Site. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m{sup 3}) of legacy waste was defined as 'no-path-forward waste'. A significant portion of this waste (7,650 m{sup 3}) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from the Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed that took advantage of commercial treatment capabilities at a nearby vendor facility, Perma-Fix Northwest (PFNW). In the spring of 2009, CHPRC initiated a pilot program under which they began shipping large package, low gram suspect TRU (<15 g SNM per container), and large package contact and remote handled MLLW to the off-site PFNW facility for treatment. PFNW is restricted by the SNM limits set for the total quantity of SNM allowed at the facility in

  11. INDEPENDENT REVIEW OF THE X-701B GROUNDWATER REMEDY, PORTSMOUTH, OHIO: TECHNICAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect

    Looney, B.; Eddy-Dilek, C.; Costanza, J.; Rossabi, J.; Early, T.; Skubal, K.; Magnuson, C.

    2008-12-15

    recommended, the team should identify the type of injection and target soil horizon for these injections; (2) Consider the feasibility of declaring Technical Impracticability and proceeding with the RCRA Cap for the X-701B; and (3) Provide a summary of other cost-effective technologies that could be implemented (especially for the lower Gallia). The Independent Technical Review team focused its evaluation solely on the X-701B source zone and contaminant plume. It did not review current or planned remedial activities at other plumes, waste areas, or landfills at the Portsmouth site, nor did it attempt to integrate such activities into its recommendations for X-701B. However, the ultimate selection of a remedy for X-701B by site personnel and regulators should take into account potentially synergistic efforts at other waste areas. Assessment of remedial alternatives in the context of site-wide management practices may reveal opportunities for leveraging and savings that would not otherwise be identified. For example, the cost of source-zone excavation or construction of a permeable reactive barrier at X-701B might be substantially reduced if contaminated soil could be buried on site at an existing or planned landfill. This allowance would improve the feasibility and competitiveness of both remedies. A comprehensive examination of ongoing and future environmental activities across the Portsmouth Gaseous Diffusion Plant is necessary to optimize the selection and timing of X-701B remediation with respect to cleanup efficiency, safety, and economics. A selected group of technical experts attended the technical workshop at the Portsmouth Gaseous Diffusion Plant from November 18 through 21, 2008. During the first day of the workshop, both contractor and DOE site personnel briefed the workshop participants and took them on a tour of the X-701B site. The initial briefing was attended by representatives of Ohio EPA who participated in the discussions. On subsequent days, the team

  12. The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes

    SciTech Connect

    David Watson

    2005-04-18

    Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the

  13. Superfund Record of Decision (EPA Region 5): Summit National Site, Deerfield, OH. June 1988. First Remedial Action. Final report

    SciTech Connect

    Not Available

    1988-06-01

    The 11.5-acre Summit National site is a former coal strip mine approximately 45 miles southeast of Cleveland. Summit National Liquid Services operated a solvent-recycling and waste-disposal facility on the site from 1973 to 1978. Solvents, paint sludges, phenols, cyanide, arsenic, and other liquid wastes were stored, incinerated, and buried or dumped during site operations. All onsite media are contaminated with a variety of organic and inorganic compounds, and investigations indicate that offsite areas also are affected. The primary contaminants of concern affecting soil, sediments, ground water, and surface water are VOCs including benzene, toluene, TCE and xylenes, other organics including phenols, PAHs and PCBs, and metals including arsenic and chromium. The selected remedial action for the site includes: excavation and onsite incineration of contaminated soil and sediments and the contents of approximately 1,600 buried drums and 4 tanks, with disposal of incinerator residuals in an onsite RCRA landfill; ground-water pump and treatment and onsite surface-water treatment and discharge of treated water to downgradient surface water; dismantling and onsite disposal of all onsite structures; ground-water and surface water monitoring; and residence relocation.

  14. Probing the Buried Magnetic Interfaces.

    PubMed

    Liu, Wenqing; Zhou, Qionghua; Chen, Qian; Niu, Daxin; Zhou, Yan; Xu, Yongbing; Zhang, Rong; Wang, Jinlan; van der Laan, Gerrit

    2016-03-01

    Understanding magnetism in ferromagnetic metal/semiconductor (FM/SC) heterostructures is important to the development of the new-generation spin field-effect transistor. Here, we report an element-specific X-ray magnetic circular dichroism study of the interfacial magnetic moments for two FM/SC model systems, namely, Co/GaAs and Ni/GaAs, which was enabled using a specially designed FM1/FM2/SC superstructure. We observed a robust room temperature magnetization of the interfacial Co, while that of the interfacial Ni was strongly diminished down to 5 K because of hybridization of the Ni d(eg) and GaAs sp(3) states. The validity of the selected method was confirmed by first-principles calculations, showing only small deviations (<0.02 and <0.07 μB/atom for Co/GaAs and Ni/GaAs, respectively) compared to the real FM/SC interfaces. Our work proved that the electronic structure and magnetic ground state of the interfacial FM2 is not altered when the topmost FM2 is replaced by FM1 and that this model is applicable generally for probing the buried magnetic interfaces in the advanced spintronic materials.. PMID:26887429

  15. Mapping Buried Hydrogen-Bonding Networks.

    PubMed

    Thomas, John C; Goronzy, Dominic P; Dragomiretskiy, Konstantin; Zosso, Dominique; Gilles, Jérôme; Osher, Stanley J; Bertozzi, Andrea L; Weiss, Paul S

    2016-05-24

    We map buried hydrogen-bonding networks within self-assembled monolayers of 3-mercapto-N-nonylpropionamide on Au{111}. The contributing interactions include the buried S-Au bonds at the substrate surface and the buried plane of linear networks of hydrogen bonds. Both are simultaneously mapped with submolecular resolution, in addition to the exposed interface, to determine the orientations of molecular segments and directional bonding. Two-dimensional mode-decomposition techniques are used to elucidate the directionality of these networks. We find that amide-based hydrogen bonds cross molecular domain boundaries and areas of local disorder. PMID:27096290

  16. Retrieval of buried depleted uranium from the T-1 trench

    SciTech Connect

    Burmeister, M.; Castaneda, N.; Greengard, T. |; Hull, C.; Barbour, D.; Quapp, W.J.

    1998-07-01

    The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization.

  17. Remediating munitions contaminated soils

    SciTech Connect

    Shea, P.J.; Comfort, S.D.

    1995-10-01

    The former Nebraska Ordnance Plant (NOP) at Mead, NE was a military loading, assembling, and packing facility that produced bombs, boosters and shells during World War II and the Korean War (1942-1945, 1950-1956). Ordnances were loaded with 2,4,6-trinitrotoluene (TNT), amatol (TNT and NH{sub 4}NO{sub 3}), tritonal (TNT and Al) and Composition B (hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX] and TNT). Process waste waters were discharged into wash pits and drainage ditches. Soils within and surrounding these areas are contaminated with TNT, RDX and related compounds. A continuous core to 300 cm depth obtained from an NOP drainage ditch revealed high concentrations of TNT in the soil profile and substantial amounts of monoamino reduction products, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT). Surface soil contained TNT in excess of 5000 mg kg{sup -1} and is believed to contain solid phase TNT. This is supported by measuring soil solution concentrations at various soil to solution ratios (1:2 to 1:9) and obtaining similar TNT concentrations (43 and 80 mg L{sup -1}). Remediating munitions-contaminated soil at the NOP and elsewhere is of vital interest since many of the contaminants are carcinogenic, mutagenic or otherwise toxic to humans and the environment. Incineration, the most demonstrated remediation technology for munitions-containing soils, is costly and often unacceptable to the public. Chemical and biological remediation offer potentially cost-effective and more environmentally acceptable alternatives. Our research objectives are to: (a) characterize the processes affecting the transport and fate of munitions in highly contaminated soil; (b) identify effective chemical and biological treatments to degrade and detoxify residues; and (c) integrate these approaches for effective and practical remediation of soil contaminated with TNT, RDX, and other munitions residues.

  18. Decomposition of forest products buried in landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; Powell, John S; Barlaz, Morton A

    2013-11-01

    The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C+H) loss of up to 38%, while loss for the other wood types was 0-10% in most samples. The C+H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27gOCg(-1) dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported. PMID:23942265

  19. Decomposition of forest products buried in landfills

    SciTech Connect

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  20. Los Alamos low-level waste performance assessment status

    SciTech Connect

    Wenzel, W.J.; Purtymun, W.D.; Dewart, J.M.; Rodgers, J.E.

    1986-06-01

    This report reviews the documented Los Alamos studies done to assess the containment of buried hazardous wastes. Five sections logically present the environmental studies, operational source terms, transport pathways, environmental dosimetry, and computer model development and use. This review gives a general picture of the Los Alamos solid waste disposal and liquid effluent sites and is intended for technical readers with waste management and environmental science backgrounds but without a detailed familiarization with Los Alamos. The review begins with a wide perspective on environmental studies at Los Alamos. Hydrology, geology, and meteorology are described for the site and region. The ongoing Laboratory-wide environmental surveillance and waste management environmental studies are presented. The next section describes the waste disposal sites and summarizes the current source terms for these sites. Hazardous chemical wastes and liquid effluents are also addressed by describing the sites and canyons that are impacted. The review then focuses on the transport pathways addressed mainly in reports by Healy and Formerly Utilized Sites Remedial Action Program. Once the source terms and potential transport pathways are described, the dose assessment methods are addressed. Three major studies, the waste alternatives, Hansen and Rogers, and the Pantex Environmental Impact Statement, contributed to the current Los Alamos dose assessment methodology. Finally, the current Los Alamos groundwater, surface water, and environmental assessment models for these mesa top and canyon sites are described.