Science.gov

Sample records for burkholderia pseudomallei melioidosis

  1. Melioidosis Caused by Burkholderia pseudomallei in Drinking Water, Thailand, 2012

    PubMed Central

    Wongsuvan, Gumphol; Aanensen, David; Ngamwilai, Sujittra; Saiprom, Natnaree; Rongkard, Patpong; Thaipadungpanit, Janjira; Kanoksil, Manas; Chantratita, Narisara; Day, Nicholas P.J.; Peacock, Sharon J.

    2014-01-01

    We identified 10 patients in Thailand with culture-confirmed melioidosis who had Burkholderia pseudomallei isolated from their drinking water. The multilocus sequence type of B. pseudomallei from clinical specimens and water samples were identical for 2 patients. This finding suggests that drinking water is a preventable source of B. pseudomallei infection. PMID:24447771

  2. Less is more: Burkholderia pseudomallei and chronic melioidosis.

    PubMed

    Nandi, Tannistha; Tan, Patrick

    2013-01-01

    The Gram-negative bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. Once considered an esoteric tropical disease confined to Southeast Asia and northern Australia, research on B. pseudomallei has recently gained global prominence due to its classification as a potential bioterrorism agent by countries such as the United States and also by increasing numbers of case reports from regions where it is not endemic. An environmental bacterium typically found in soil and water, assessing the true global prevalence of melioidosis is challenged by the fact that clinical symptoms associated with B. pseudomallei infection are extremely varied and may be confused with diverse conditions such as lung cancer, tuberculosis, or Staphyloccocus aureus infection. These diagnostic challenges, coupled with lack of awareness among clinicians, have likely contributed to underdiagnosis and the high mortality rate of melioidosis, as initial treatment is often either inappropriate or delayed. Even after antibiotic treatment, relapses are frequent, and after resolution of acute symptoms, chronic melioidosis can also occur, and the symptoms can persist for months to years. In a recent article, Price et al. [mBio 4(4):e00388-13, 2013, doi:10.1128/mBio.00388-13] demonstrate how comparative genomic sequencing can reveal the repertoire of genetic changes incurred by B. pseudomallei during chronic human infection. Their results have significant clinical ramifications and highlight B. pseudomallei's ability to survive in a wide range of potential niches within hosts, through the acquisition of genetic adaptations that optimize fitness and resource utilization. PMID:24065633

  3. Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailandensis

    E-print Network

    Yu, Yiting

    Background: The Gram-negative bacterium Burkholderia pseudomallei (Bp) is the causative agent of the human disease melioidosis. To understand the evolutionary mechanisms contributing to Bp virulence, we performed a comparative ...

  4. Use of Whole-Genome Sequencing to Link Burkholderia pseudomallei from Air Sampling to Mediastinal Melioidosis, Australia

    PubMed Central

    Price, Erin P.; Mayo, Mark; Kaestli, Mirjam; Theobald, Vanessa; Harrington, Ian; Harrington, Glenda; Sarovich, Derek S.

    2015-01-01

    The frequency with which melioidosis results from inhalation rather than percutaneous inoculation or ingestion is unknown. We recovered Burkholderia pseudomallei from air samples at the residence of a patient with presumptive inhalational melioidosis and used whole-genome sequencing to link the environmental bacteria to B. pseudomallei recovered from the patient. PMID:26488732

  5. What drives the occurrence of the melioidosis bacterium Burkholderia pseudomallei in domestic gardens?

    PubMed

    Kaestli, Mirjam; Harrington, Glenda; Mayo, Mark; Chatfield, Mark D; Harrington, Ian; Hill, Audrey; Munksgaard, Niels; Gibb, Karen; Currie, Bart J

    2015-03-01

    Melioidosis is an often fatal infectious disease affecting humans and animals in tropical regions and is caused by the saprophytic environmental bacterium Burkholderia pseudomallei. Domestic gardens are not only a common source of exposure to soil and thus to B. pseudomallei, but they also have been found to contain more B. pseudomallei than other environments. In this study we addressed whether anthropogenic manipulations common to gardens such as irrigation or fertilizers change the occurrence of B. pseudomallei. We conducted a soil microcosm experiment with a range of fertilizers and soil types as well as a longitudinal interventional study over three years on an experimental fertilized field site in an area naturally positive for B. pseudomallei. Irrigation was the only consistent treatment to increase B. pseudomallei occurrence over time. The effects of fertilizers upon these bacteria depended on soil texture, physicochemical soil properties and biotic factors. Nitrates and urea increased B. pseudomallei load in sand while phosphates had a positive effect in clay. The high buffering and cation exchange capacities of organic material found in a commercial potting mix led to a marked increase in soil salinity with no survival of B. pseudomallei after four weeks in the potting mix sampled. Imported grasses were also associated with B. pseudomallei occurrence in a multivariate model. With increasing population density in endemic areas these findings inform the identification of areas in the anthropogenic environment with increased risk of exposure to B. pseudomallei. PMID:25803046

  6. What Drives the Occurrence of the Melioidosis Bacterium Burkholderia pseudomallei in Domestic Gardens?

    PubMed Central

    Kaestli, Mirjam; Harrington, Glenda; Mayo, Mark; Chatfield, Mark D.; Harrington, Ian; Hill, Audrey; Munksgaard, Niels; Gibb, Karen; Currie, Bart J.

    2015-01-01

    Melioidosis is an often fatal infectious disease affecting humans and animals in tropical regions and is caused by the saprophytic environmental bacterium Burkholderia pseudomallei. Domestic gardens are not only a common source of exposure to soil and thus to B. pseudomallei, but they also have been found to contain more B. pseudomallei than other environments. In this study we addressed whether anthropogenic manipulations common to gardens such as irrigation or fertilizers change the occurrence of B. pseudomallei. We conducted a soil microcosm experiment with a range of fertilizers and soil types as well as a longitudinal interventional study over three years on an experimental fertilized field site in an area naturally positive for B. pseudomallei. Irrigation was the only consistent treatment to increase B. pseudomallei occurrence over time. The effects of fertilizers upon these bacteria depended on soil texture, physicochemical soil properties and biotic factors. Nitrates and urea increased B. pseudomallei load in sand while phosphates had a positive effect in clay. The high buffering and cation exchange capacities of organic material found in a commercial potting mix led to a marked increase in soil salinity with no survival of B. pseudomallei after four weeks in the potting mix sampled. Imported grasses were also associated with B. pseudomallei occurrence in a multivariate model. With increasing population density in endemic areas these findings inform the identification of areas in the anthropogenic environment with increased risk of exposure to B. pseudomallei. PMID:25803046

  7. Multilocus Sequence Typing and Evolutionary Relationships among the Causative Agents of Melioidosis and Glanders, Burkholderia pseudomallei and Burkholderia mallei

    PubMed Central

    Godoy, Daniel; Randle, Gaynor; Simpson, Andrew J.; Aanensen, David M.; Pitt, Tyrone L.; Kinoshita, Reimi; Spratt, Brian G.

    2003-01-01

    A collection of 147 isolates of Burkholderia pseudomallei, B. mallei, and B. thailandensis was characterized by multilocus sequence typing (MLST). The 128 isolates of B. pseudomallei, the causative agent of melioidosis, were obtained from diverse geographic locations, from humans and animals with disease, and from the environment and were resolved into 71 sequence types. The utility of the MLST scheme for epidemiological investigations was established by analyzing isolates from captive marine mammals and birds and from humans in Hong Kong with melioidosis. MLST gave a level of resolution similar to that given by pulsed-field gel electrophoresis and identified the same three clones causing disease in animals, each of which was also associated with disease in humans. The average divergence between the alleles of B. thailandensis and B. pseudomallei was 3.2%, and there was no sharing of alleles between these species. Trees constructed from differences in the allelic profiles of the isolates and from the concatenated sequences of the seven loci showed that the B. pseudomallei isolates formed a cluster of closely related lineages that were fully resolved from the cluster of B. thailandensis isolates, confirming their separate species status. However, isolates of B. mallei, the causative agent of glanders, recovered from three continents over a 30-year period had identical allelic profiles, and the B. mallei isolates clustered within the B. pseudomallei group of isolates. Alleles at six of the seven loci in B. mallei were also present within B. pseudomallei isolates, and B. mallei is a clone of B. pseudomallei that, on population genetics grounds, should not be given separate species status. PMID:12734250

  8. Out of the Ground: Aerial and Exotic Habitats of the Melioidosis Bacterium Burkholderia pseudomallei in Grasses in Australia

    PubMed Central

    Kaestli, Mirjam; Schmid, Michael; Mayo, Mark; Rothballer, Michael; Harrington, Glenda; Richardson, Leisha; Hill, Audrey; Hill, Jason; Tuanyok, Apichai; Keim, Paul; Hartmann, Anton; Currie, Bart J.

    2011-01-01

    Summary Melioidosis is an emerging infectious disease of humans and animals in the tropics caused by the soil bacterium Burkholderia pseudomallei. Despite high fatality rates, the ecology of B. pseudomallei remains unclear. We used a combination of field and laboratory studies to investigate B. pseudomallei colonization of native and exotic grasses in northern Australia. Multivariable and spatial analyses were performed to determine significant predictors for B. pseudomallei occurrence in plants and soil collected longitudinally from field sites. In plant inoculation experiments, the impact of B. pseudomallei upon these grasses was studied and the bacterial load semi-quantified. Fluorescence-in-situ-hybridization and confocal laser-scanning microscopy were performed to localize the bacteria in plants. B. pseudomallei was found to inhabit not only the rhizosphere and roots but also aerial parts of specific grasses. This raises questions about the potential spread of B. pseudomallei by grazing animals whose droppings were found to be positive for these bacteria. In particular, B. pseudomallei readily colonized exotic grasses introduced to Australia for pasture. The ongoing spread of these introduced grasses creates new habitats suitable for B. pseudomallei survival and may be an important factor in the evolving epidemiology of melioidosis seen both in northern Australia and elsewhere globally. PMID:22176696

  9. The Core and Accessory Genomes of Burkholderia pseudomallei: Implications for Human Melioidosis

    PubMed Central

    Lin, Chi Ho; Karuturi, R. Krishna M.; Wuthiekanun, Vanaporn; Tuanyok, Apichai; Chua, Hui Hoon; Ong, Catherine; Paramalingam, Sivalingam Suppiah; Tan, Gladys; Tang, Lynn; Lau, Gary; Ooi, Eng Eong; Woods, Donald; Feil, Edward; Peacock, Sharon J.; Tan, Patrick

    2008-01-01

    Natural isolates of Burkholderia pseudomallei (Bp), the causative agent of melioidosis, can exhibit significant ecological flexibility that is likely reflective of a dynamic genome. Using whole-genome Bp microarrays, we examined patterns of gene presence and absence across 94 South East Asian strains isolated from a variety of clinical, environmental, or animal sources. 86% of the Bp K96243 reference genome was common to all the strains representing the Bp “core genome”, comprising genes largely involved in essential functions (eg amino acid metabolism, protein translation). In contrast, 14% of the K96243 genome was variably present across the isolates. This Bp accessory genome encompassed multiple genomic islands (GIs), paralogous genes, and insertions/deletions, including three distinct lipopolysaccharide (LPS)-related gene clusters. Strikingly, strains recovered from cases of human melioidosis clustered on a tree based on accessory gene content, and were significantly more likely to harbor certain GIs compared to animal and environmental isolates. Consistent with the inference that the GIs may contribute to pathogenesis, experimental mutation of BPSS2053, a GI gene, reduced microbial adherence to human epithelial cells. Our results suggest that the Bp accessory genome is likely to play an important role in microbial adaptation and virulence. PMID:18927621

  10. T Cell Immunity to the Alkyl Hydroperoxide Reductase of Burkholderia pseudomallei: A Correlate of Disease Outcome in Acute Melioidosis

    PubMed Central

    Reynolds, Catherine; Goudet, Amélie; Jenjaroen, Kemajittra; Sumonwiriya, Manutsanun; Rinchai, Darawan; Musson, Julie; Overbeek, Saskia; Makinde, Julia; Quigley, Kathryn; Manji, Jiten; Spink, Natasha; Yos, Pagnarith; Wuthiekanun, Vanaporn; Bancroft, Gregory; Robinson, John; Lertmemongkolchai, Ganjana; Dunachie, Susanna; Maillere, Bernard; Holden, Matthew; Altmann, Daniel

    2015-01-01

    There is an urgent need for a better understanding of adaptive immunity to Burkholderia pseudomallei, the causative agent of melioidosis that is frequently associated with sepsis or death in patients in Southeast Asia and Northern Australia. The imperative to identify vaccine targets is driven both by the public health agenda in these regions and biological threat concerns. In several intracellular bacterial pathogens, alkyl hydroperoxidase reductases are upregulated as part of the response to host oxidative stress, and they can stimulate strong adaptive immunity. We show that alkyl hydroperoxidase reductase (AhpC) of B. pseudomallei is strongly immunogenic for T cells of ‘humanized’ HLA transgenic mice and seropositive human donors. Some T cell epitopes, such as p6, are able to bind diverse HLA class II heterodimers and stimulate strong T cell immunity in mice and humans. Importantly, patients with acute melioidosis who survive infection show stronger T cell responses to AhpC relative to those who do not. Although the sequence of AhpC is virtually invariant among global B. pseudomallei clinical isolates, a Cambodian isolate varies only in C-terminal truncation of the p6 T cell epitope, raising the possibility of selection by host immunity. This variant peptide is virtually unable to stimulate T cell immunity. For an infection in which there has been debate about centrality of T cell immunity in defense, these observations support a role for T cell immunity to AhpC in disease protection. PMID:25862821

  11. Evaluation of a biodegradable microparticulate polymer as a carrier for Burkholderia pseudomallei subunit vaccines in a mouse model of melioidosis.

    PubMed

    Schully, K L; Bell, M G; Prouty, A M; Gallovic, M D; Gautam, S; Peine, K J; Sharma, S; Bachelder, E M; Pesce, J T; Elberson, M A; Ainslie, K M; Keane-Myers, A

    2015-11-30

    Melioidosis, a potentially lethal disease of humans and animals, is caused by the soil-dwelling bacterium Burkholderia pseudomallei. Due to B. pseudomallei's classification as a Tier 1 Select Agent, there is substantial interest in the development of an effective vaccine. Yet, despite decades of research, no effective target, adjuvant or delivery vehicle capable of inducing protective immunity against B. pseudomallei infection has been identified. We propose a microparticulate delivery vehicle comprised of the novel polymer acetalated dextran (Ac-DEX). Ac-DEX is an acid-sensitive biodegradable carrier that can be fabricated into microparticles (MPs) that are relatively stable at pH 7.4, but rapidly degrade after phagocytosis by antigen presenting cells where the pH can drop to 5.0. As compared to other biomaterials, this acid sensitivity has been shown to enhance cross presentation of subunit antigens. To evaluate this platform as a delivery system for a melioidosis vaccine, BALB/c mice were vaccinated with Ac-DEX MPs separately encapsulating B. pseudomallei whole cell lysate and the toll-like receptor (TLR) 7/8 agonist resiquimod. This vaccine elicited a robust antibody response that included both Th1 and Th2 immunity. Following lethal intraperitoneal challenge with B. pseudomallei 1026b, vaccinated mice demonstrated a significant delay to time of death compared to untreated mice. The formulation, however, demonstrated incomplete protection indicating that lysate protein offers limited value as an antigen. Nevertheless, our Ac-DEX MPs may offer an effective delivery vehicle for a subunit B. psuedomallei vaccine. PMID:26428631

  12. Cloning, expression and purification of outer membrane protein (OmpA) of Burkholderia pseudomallei and evaluation of its potential for serodiagnosis of melioidosis.

    PubMed

    Arora, Sonia; Thavaselvam, Duraipandian; Kumar, Ashu; Prakash, Archana; Barua, Anita; Sathyaseelan, Kannusamy

    2015-02-01

    Melioidosis is an emerging infectious disease in India and caused by gram-negative, soil saprophyte bacteria Burkholderia pseudomallei. This disease is endemic in Southeast Asia and northern Australia, and sporadic cases of melioidosis are also reported from southern states of India. The present study reports the cloning, expression, and purification of recombinant protein outer membrane protein A (OmpA) of B. pseudomallei and its evaluation in indirect enzyme-linked immunosorbent assay (ELISA) format with 87 serum samples collected from Manipal, Karnataka, India. Twenty-three samples from culture confirmed cases (n=23) of melioidosis, 25 serum samples from patients of other febrile illness and pyrexia of unknown origin (n=25), and 39 serum samples from healthy blood donors (n=39) from Kasturba Medical College, Manipal, were tested in this assay format. The assay showed sensitivity of 82.6% and specificity of 93.75%. The recombinant OmpA based indirect ELISA will be a useful tool for serodiagnosis of melioidosis in large scale rapid screening of clinical samples. PMID:25488273

  13. Recent Advances in Burkholderia mallei and B. pseudomallei Research

    PubMed Central

    Hatcher, Christopher L.; Muruato, Laura A.

    2015-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative organisms, which are etiological agents of glanders and melioidosis, respectively. Although only B. pseudomallei is responsible for a significant number of human cases, both organisms are classified as Tier 1 Select Agents and their diseases lack effective diagnosis and treatment. Despite a recent resurgence in research pertaining to these organisms, there are still a number of knowledge gaps. This article summarizes the latest research progress in the fields of B. mallei and B. pseudomallei pathogenesis, vaccines, and diagnostics. PMID:25932379

  14. Groundwater Seeps Facilitate Exposure to Burkholderia pseudomallei ?

    PubMed Central

    Baker, Anthony; Tahani, Donald; Gardiner, Christopher; Bristow, Keith L.; Greenhill, Andrew R.; Warner, Jeffrey

    2011-01-01

    Burkholderia pseudomallei is a saprophytic bacterium which is the causative agent of melioidosis, a common cause of fatal bacterial pneumonia and sepsis in the tropics. The incidence of melioidosis is clustered spatially and temporally and is heavily linked to rainfall and extreme weather events. Clinical case clustering has recently been reported in Townsville, Australia, and has implicated Castle Hill, a granite monolith in the city center, as a potential reservoir of infection. Topsoil and water from seasonal groundwater seeps were collected around the base of Castle Hill and analyzed by quantitative real-time PCR targeting the type III secretion system genes for the presence of B. pseudomallei. The organism was identified in 65% (95% confidence interval [CI], 49.5 to 80.4) of soil samples (n = 40) and 92.5% (95% CI, 83.9 to 100) of seasonal groundwater samples (n = 40). Further sampling of water collected from roads and gutters in nearby residential areas after an intense rainfall event found that 88.2% (95% CI, 72.9 to 100) of samples (n = 16) contained viable B. pseudomallei at concentrations up to 113 CFU/ml. Comparison of isolates using multilocus sequence typing demonstrated clinical matches and close associations between environmental isolates and isolates derived from clinical samples from patients in Townsville. This study demonstrated that waterborne B. pseudomallei from groundwater seeps around Castle Hill may facilitate exposure to B. pseudomallei and contribute to the clinical clustering at this site. Access to this type of information will advise the development and implementation of public health measures to reduce the incidence of melioidosis. PMID:21873480

  15. Groundwater seeps facilitate exposure to Burkholderia pseudomallei.

    PubMed

    Baker, Anthony; Tahani, Donald; Gardiner, Christopher; Bristow, Keith L; Greenhill, Andrew R; Warner, Jeffrey

    2011-10-01

    Burkholderia pseudomallei is a saprophytic bacterium which is the causative agent of melioidosis, a common cause of fatal bacterial pneumonia and sepsis in the tropics. The incidence of melioidosis is clustered spatially and temporally and is heavily linked to rainfall and extreme weather events. Clinical case clustering has recently been reported in Townsville, Australia, and has implicated Castle Hill, a granite monolith in the city center, as a potential reservoir of infection. Topsoil and water from seasonal groundwater seeps were collected around the base of Castle Hill and analyzed by quantitative real-time PCR targeting the type III secretion system genes for the presence of B. pseudomallei. The organism was identified in 65% (95% confidence interval [CI], 49.5 to 80.4) of soil samples (n = 40) and 92.5% (95% CI, 83.9 to 100) of seasonal groundwater samples (n = 40). Further sampling of water collected from roads and gutters in nearby residential areas after an intense rainfall event found that 88.2% (95% CI, 72.9 to 100) of samples (n = 16) contained viable B. pseudomallei at concentrations up to 113 CFU/ml. Comparison of isolates using multilocus sequence typing demonstrated clinical matches and close associations between environmental isolates and isolates derived from clinical samples from patients in Townsville. This study demonstrated that waterborne B. pseudomallei from groundwater seeps around Castle Hill may facilitate exposure to B. pseudomallei and contribute to the clinical clustering at this site. Access to this type of information will advise the development and implementation of public health measures to reduce the incidence of melioidosis. PMID:21873480

  16. Genomic Sequence of Burkholderia multivorans NKI379, a Soil Bacterium That Inhibits the Growth of Burkholderia pseudomallei

    PubMed Central

    Hsueh, Pei-Tan; Liu, Jong-Kang; Chen, Ya-Lei; Liu, Pei-Ju; Ni, Wen-Fan; Chen, Yao-Shen; Wu, Keh-Ming

    2015-01-01

    Burkholderia multivorans NKI379 is a soil bacterium that exhibits an antagonistic effect against the growth of Burkholderia pseudomallei, the causative agent of the infectious disease melioidosis. We report the draft genomic sequence of B. multivorans NKI379, which has a G+C content of 67% and 5,203 candidate protein-encoding genes. PMID:26586873

  17. Airborne Transmission of Melioidosis to Humans from Environmental Aerosols Contaminated with B. pseudomallei

    PubMed Central

    Lin, Hsi-Hsun; Liu, Pei-Ju; Ni, Wei-Fan; Hsueh, Pei-Tan; Liang, Shih-Hsiung; Chen, Chialin; Chen, Ya-Lei

    2015-01-01

    Melioidosis results from an infection with the soil-borne pathogen Burkholderia pseudomallei, and cases of melioidosis usually cluster after rains or a typhoon. In an endemic area of Taiwan, B. pseudomallei is primarily geographically distributed in cropped fields in the northwest of this area, whereas melioidosis cases are distributed in a densely populated district in the southeast. We hypothesized that contaminated cropped fields generated aerosols contaminated with B. pseudomallei, which were carried by a northwesterly wind to the densely populated southeastern district. We collected soil and aerosol samples from a 72 km2 area of land, including the melioidosis-clustered area and its surroundings. Aerosols that contained B. pseudomallei-specific TTSS (type III secretion system) ORF2 DNA were well distributed in the endemic area but were rare in the surrounding areas during the rainy season. The concentration of this specific DNA in aerosols was positively correlated with the incidence of melioidosis and the appearance of a northwesterly wind. Moreover, the isolation rate in the superficial layers of the contaminated cropped field in the northwest was correlated with PCR positivity for aerosols collected from the southeast over a 2-year period. According to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) analyses, PFGE Type Ia (ST58) was the predominant pattern linking the molecular association among soil, aerosol and human isolates. Thus, the airborne transmission of melioidosis moves from the contaminated soil to aerosols and/or to humans in this endemic area. PMID:26061639

  18. Burkholderia pseudomallei Genotype Distribution in the Northern Territory, Australia.

    PubMed

    Chapple, Stephanie N J; Price, Erin P; Sarovich, Derek S; McRobb, Evan; Mayo, Mark; Kaestli, Mirjam; Spratt, Brian G; Currie, Bart J

    2016-01-01

    Melioidosis is a tropical disease of high mortality caused by the environmental bacterium, Burkholderia pseudomallei. We have collected clinical isolates from the highly endemic Northern Territory of Australia routinely since 1989, and animal and environmental B. pseudomallei isolates since 1991. Here we provide a complete record of all B. pseudomallei multilocus sequence types (STs) found in the Northern Territory to date, and distribution maps of the eight most common environmental STs. We observed surprisingly restricted geographic distributions of STs, which is contrary to previous reports suggesting widespread environmental dissemination of this bacterium. Our data suggest that B. pseudomallei from soil and water does not frequently disperse long distances following severe weather events or by migration of infected animals. PMID:26526925

  19. Clinical definitions of melioidosis.

    PubMed

    Cheng, Allen C; Currie, Bart J; Dance, David A B; Funnell, Simon G P; Limmathurotsakul, Direk; Simpson, Andrew J H; Peacock, Sharon J

    2013-03-01

    Clinical definitions of melioidosis and inhalation-acquired melioidosis (Burkholderia pseudomallei infection) are described together with the evidence used to develop these definitions. Such definitions support accurate public health reporting, preparedness planning for deliberate B. pseudomallei release, design of experimental models, and categorization of naturally acquired melioidosis. PMID:23468355

  20. Pleuropulmonary melioidosis with osteomyelitis rib

    PubMed Central

    Neliyathodi, Suhail; Thazhathethil, Abdul Nazar; Pallivalappil, Lisha; Balakrishnan, Deepu

    2015-01-01

    Melioidosis is a multiorgan infectious disease caused by Burkholderia pseudomallei. Few cases have been reported from south India. This is a case report of pleuropulmonary melioidosis with rib osteomyelitis. PMID:25624602

  1. Morphological Alteration and Survival of Burkholderia pseudomallei in Soil Microcosms.

    PubMed

    Kamjumphol, Watcharaporn; Chareonsudjai, Pisit; Taweechaisupapong, Suwimol; Chareonsudjai, Sorujsiri

    2015-11-01

    The resilience of Burkholderia pseudomallei, the causative agent of melioidosis, was evaluated in control soil microcosms and in soil microcosms containing NaCl or FeSO4 at 30°C. Iron (Fe(II)) promoted the growth of B. pseudomallei during the 30-day observation, contrary to the presence of 1.5% and 3% NaCl. Scanning electron micrographs of B. pseudomallei in soil revealed their morphological alteration from rod to coccoid and the formation of microcolonies. The smallest B. pseudomallei cells were found in soil with 100 ?M FeSO4 compared with in the control soil or soil with 0.6% NaCl (P < 0.05). The colony count on Ashdown's agar and bacterial viability assay using the LIVE/DEAD(®) BacLight(™) stain combined with flow cytometry showed that B. pseudomallei remained culturable and viable in the control soil microcosms for at least 120 days. In contrast, soil with 1.5% NaCl affected their culturability at day 90 and their viability at day 120. Our results suggested that a low salinity and iron may influence the survival of B. pseudomallei and its ability to change from a rod-like to coccoid form. The morphological changes of B. pseudomallei cells may be advantageous for their persistence in the environment and may increase the risk of their transmission to humans. PMID:26324731

  2. Functional Characterization of Burkholderia pseudomallei Trimeric Autotransporters

    PubMed Central

    Campos, Cristine G.; Byrd, Matthew S.

    2013-01-01

    Burkholderia pseudomallei is a tier 1 select agent and the causative agent of melioidosis, a severe and often fatal disease with symptoms ranging from acute pneumonia and septic shock to a chronic infection characterized by abscess formation in the lungs, liver, and spleen. Autotransporters (ATs) are exoproteins belonging to the type V secretion system family, with many playing roles in pathogenesis. The genome of B. pseudomallei strain 1026b encodes nine putative trimeric AT proteins, of which only four have been described. Using a bioinformatic approach, we annotated putative domains within each trimeric AT protein, excluding the well-studied BimA protein, and found short repeated sequences unique to Burkholderia species, as well as an unexpectedly large proportion of ATs with extended signal peptide regions (ESPRs). To characterize the role of trimeric ATs in pathogenesis, we constructed disruption or deletion mutations in each of eight AT-encoding genes and evaluated the resulting strains for adherence to, invasion of, and plaque formation in A549 cells. The majority of the ATs (and/or the proteins encoded downstream) contributed to adherence to and efficient invasion of A549 cells. Using a BALB/c mouse model of infection, we determined the contributions of each AT to bacterial burdens in the lungs, liver, and spleen. At 48 h postinoculation, only one strain, Bp340::pDbpaC, demonstrated a defect in dissemination and/or survival in the liver, indicating that BpaC is required for wild-type virulence in this model. PMID:23716608

  3. An improved selective culture medium enhances the isolation of Burkholderia pseudomallei from contaminated specimens.

    PubMed

    Goodyear, Andrew; Strange, Linda; Rholl, Drew A; Silisouk, Joy; Dance, David A B; Schweizer, Herbert P; Dow, Steven

    2013-11-01

    Burkholderia pseudomallei is a Gram-negative environmental bacterium found in tropical climates that causes melioidosis. Culture remains the diagnostic gold standard, but isolation of B. pseudomallei from heavily contaminated sites, such as fecal specimens, can be difficult. We recently reported that B. pseudomallei is capable of infecting the gastrointestinal tract of mice and suggested that the same may be true in humans. Thus, there is a strong need for new culture techniques to allow for efficient detection of B. pseudomallei in fecal and other specimens. We found that the addition of norfloxacin, ampicillin, and polymyxin B to Ashdown's medium (NAP-A) resulted in increased specificity without affecting the growth of 25 B. pseudomallei strains. Furthermore, recovery of B. pseudomallei from human clinical specimens was not affected by the three additional antibiotics. Therefore, we conclude that NAP-A medium provides a new tool for more sensitive isolation of B. pseudomallei from heavily contaminated sites. PMID:24062483

  4. Purification and characterization of an exopolysaccharide of Burkholderia (Pseudomonas) pseudomallei.

    PubMed Central

    Steinmetz, I; Rohde, M; Brenneke, B

    1995-01-01

    Burkholderia pseudomallei (basonym Pseudomonas pseudomallei) is the causative organism of melioidosis, a disease which is recognized as a major public health problem primarily in Southeast Asia and Northern Australia. In this paper, we report on the identification, purification, and characterization of a species-specific exopolysaccharide of B. pseudomallei. After immunization of mice with a B. pseudomallei strain exhibiting mucoid growth characteristics, we isolated an immunoglobulin G1 monoclonal antibody (MAb) (3015) with specificity for a carbohydrate structure as determined by immunoblotting following sodium dodecyl sulfatepolyacrylamide gel electrophoresis. Electron microscopy studies with MAb 3015 revealed reactivity with an exopolysaccharide with a capsule-like appearance in the immunizing strain. All of the mucoid and nonmucoid B. pseudomallei strains tested from geographically different tropical regions were recognized by MAb 3015 in an enzyme-linked immunosorbent assay or immunoblot, indicating that the exopolysaccharide is constitutively expressed among this species. Intensive testing for cross-reactivity including members of all the Pseudomonas rRNA groups showed no cross-reactivity except in the case of the closely related species Burkholderia mallei. A protocol for purification of the exopolysaccharide which is based principally on mechanical separation from the cell surface followed by repetitive ethanol precipitation steps and finally affinity chromatography using MAb 3015 was established. The exopolysaccharide yielded was of high purity. Gel permeation chromatography was performed, and the molecular mass was estimated to be > 150 kDa. Sera from patients with melioidosis were strongly reactive with the purified exopolysaccharide, indicating its in vivo expression and immunogenicity in natural infection. The diagnostic value of the exopolysaccharide and its role in the pathogenesis of disease must still be determined. PMID:7558305

  5. Differential Toll-Like Receptor-Signalling of Burkholderia pseudomallei Lipopolysaccharide in Murine and Human Models

    PubMed Central

    Weehuizen, Tassili A. F.; Prior, Joann L.; van der Vaart, Thomas W.; Ngugi, Sarah A.; Nepogodiev, Sergey A.; Field, Robert A.; Kager, Liesbeth M.; van ‘t Veer, Cornelis; de Vos, Alex F.; Wiersinga, W. Joost

    2015-01-01

    The Gram-negative bacterium Burkholderia pseudomallei causes melioidosis and is a CDC category B bioterrorism agent. Toll-like receptor (TLR)-2 impairs host defense during pulmonary B.pseudomallei infection while TLR4 only has limited impact. We investigated the role of TLRs in B.pseudomallei-lipopolysaccharide (LPS) induced inflammation. Purified B.pseudomallei-LPS activated only TLR2-transfected-HEK-cells during short stimulation but both HEK-TLR2 and HEK-TLR4-cells after 24 h. In human blood, an additive effect of TLR2 on TLR4-mediated signalling induced by B.pseudomallei-LPS was observed. In contrast, murine peritoneal macrophages recognized B.pseudomallei-LPS solely through TLR4. Intranasal inoculation of B.pseudomallei-LPS showed that both TLR4-knockout(-/-) and TLR2x4-/-, but not TLR2-/- mice, displayed diminished cytokine responses and neutrophil influx compared to wild-type controls. These data suggest that B.pseudomallei-LPS signalling occurs solely through murine TLR4, while in human models TLR2 plays an additional role, highlighting important differences between specificity of human and murine models that may have important consequences for B.pseudomallei-LPS sensing by TLRs and subsequent susceptibility to melioidosis. PMID:26689559

  6. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders

    PubMed Central

    Moustafa, Dina A.; Scarff, Jennifer M.; Garcia, Preston P.; Cassidy, Sara K. B.; DiGiandomenico, Antonio; Waag, David M.; Inzana, Thomas J.; Goldberg, Joanna B.

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine. PMID:26148026

  7. Interrogation of the Burkholderia pseudomallei genome to address differential virulence among isolates

    DOE PAGESBeta

    Challacombe, Jean F.; Stubben, Chris J.; Klimko, Christopher P.; Welkos, Susan L.; Kern, Steven J.; Bozue, Joel A.; Worsham, Patricia L.; Cote, Christopher K.; Wolfe, Daniel N.; Badger, Jonathan H.

    2014-12-23

    Infection by the Gram-negative pathogen Burkholderia pseudomallei results in the disease melioidosis, acquired from the environment in parts of southeast Asia and northern Australia. Clinical symptoms of melioidosis range from acute (fever, pneumonia, septicemia, and localized infection) to chronic (abscesses in various organs and tissues, most commonly occurring in the lungs, liver, spleen, kidney, prostate and skeletal muscle), and persistent infections in humans are difficult to cure. Understanding the basic biology and genomics of B. pseudomallei is imperative for the development of new vaccines and therapeutic interventions. This formidable task is becoming more tractable due to the increasing number ofmore »B. pseudomallei genomes that are being sequenced and compared. Here, we compared three B. pseudomallei genomes, from strains MSHR668, K96243 and 1106a, to identify features that might explain why MSHR668 is more virulent than K96243 and 1106a in a mouse model of B. pseudomallei infection. Our analyses focused on metabolic, virulence and regulatory genes that were present in MSHR668 but absent from both K96243 and 1106a. We also noted features present in K96243 and 1106a but absent from MSHR668, and identified genomic differences that may contribute to variations in virulence noted among the three B. pseudomallei isolates. While this work contributes to our understanding of B. pseudomallei genomics, more detailed experiments are necessary to characterize the relevance of specific genomic features to B. pseudomallei metabolism and virulence. Functional analyses of metabolic networks, virulence and regulation shows promise for examining the effects of B. pseudomallei on host cell metabolism and will lay a foundation for future prediction of the virulence of emerging strains. Continued emphasis in this area will be critical for protection against melioidosis, as a better understanding of what constitutes a fully virulent Burkholderia isolate may provide for better diagnostic and medical countermeasure strategies.« less

  8. Genetic Diversity and Microevolution of Burkholderia pseudomallei in the Environment

    PubMed Central

    Limmathurotsakul, Direk; Vesaratchavest, Mongkol; Thanwisai, Aunchalee; Amornchai, Premjit; Tumapa, Sarinna; Feil, Edward J.; Day, Nicholas P.; Peacock, Sharon J.

    2008-01-01

    Background The soil dwelling Gram-negative pathogen Burkholderia pseudomallei is the cause of melioidosis. The diversity and population structure of this organism in the environment is poorly defined. Methods and Findings We undertook a study of B. pseudomallei in soil sampled from 100 equally spaced points within 237.5 m2 of disused land in northeast Thailand. B. pseudomallei was present on direct culture of 77/100 sampling points. Genotyping of 200 primary plate colonies from three independent sampling points was performed using a combination of pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Twelve PFGE types and nine sequence types (STs) were identified, the majority of which were present at only a single sampling point. Two sampling points contained four STs and the third point contained three STs. Although the distance between the three sampling points was low (7.6, 7.9, and 13.3 meters, respectively), only two STs were present in more than one sampling point. Each of the three samples was characterized by the localized expansion of a single B. pseudomallei clone (corresponding to STs 185, 163, and 93). Comparison of PFGE and MLST results demonstrated that two STs contained strains with variable PFGE banding pattern types, indicating geographic structuring even within a single MLST-defined clone. Conclusions We discuss the implications of this extreme structuring of genotype and genotypic frequency in terms of micro-evolutionary dynamics and ecology, and how our results may inform future sampling strategies. PMID:18299706

  9. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells

    PubMed Central

    2010-01-01

    Background Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. Results Comparative sequence analyses identified a gene product in the published genome of B. mallei strain ATCC23344 (locus # BMAA0649) that resembles the well-characterized Yersinia enterocolitica autotransporter adhesin YadA. The gene encoding this B. mallei protein, designated boaA, was expressed in Escherichia coli and shown to significantly increase adherence to human epithelial cell lines, specifically HEp2 (laryngeal cells) and A549 (type II pneumocytes), as well as to cultures of normal human bronchial epithelium (NHBE). Consistent with these findings, disruption of the boaA gene in B. mallei ATCC23344 reduced adherence to all three cell types by ~50%. The genomes of the B. pseudomallei strains K96243 and DD503 were also found to contain boaA and inactivation of the gene in DD503 considerably decreased binding to monolayers of HEp2 and A549 cells and to NHBE cultures. A second YadA-like gene product highly similar to BoaA (65% identity) was identified in the published genomic sequence of B. pseudomallei strain K96243 (locus # BPSL1705). The gene specifying this protein, termed boaB, appears to be B. pseudomallei-specific. Quantitative attachment assays demonstrated that recombinant E. coli expressing BoaB displayed greater binding to A549 pneumocytes, HEp2 cells and NHBE cultures. Moreover, a boaB mutant of B. pseudomallei DD503 showed decreased adherence to these respiratory cells. Additionally, a B. pseudomallei strain lacking expression of both boaA and boaB was impaired in its ability to thrive inside J774A.1 murine macrophages, suggesting a possible role for these proteins in survival within professional phagocytic cells. Conclusions The boaA and boaB genes specify adhesins that mediate adherence to epithelial cells of the human respiratory tract. The boaA gene product is shared by B. pseudomallei and B. mallei whereas BoaB appears to be a B. pseudomallei-specific adherence factor. PMID:20920184

  10. Identification of Burkholderia pseudomallei Near-Neighbor Species in the Northern Territory of Australia

    PubMed Central

    Ginther, Jennifer L.; Mayo, Mark; Warrington, Stephanie D.; Kaestli, Mirjam; Mullins, Travis; Wagner, David M.; Currie, Bart J.; Tuanyok, Apichai; Keim, Paul

    2015-01-01

    Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area. PMID:26121041

  11. Identification of Burkholderia pseudomallei Near-Neighbor Species in the Northern Territory of Australia.

    PubMed

    Ginther, Jennifer L; Mayo, Mark; Warrington, Stephanie D; Kaestli, Mirjam; Mullins, Travis; Wagner, David M; Currie, Bart J; Tuanyok, Apichai; Keim, Paul

    2015-06-01

    Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area. PMID:26121041

  12. Fatal Burkholderia pseudomallei Infection Initially Reported as a Bacillus Species, Ohio, 2013

    PubMed Central

    Doker, Thomas J.; Quinn, Celia L.; Salehi, Ellen D.; Sherwood, Joshua J.; Benoit, Tina J.; Elrod, Mindy Glass; Gee, Jay E.; Shadomy, Sean V.; Bower, William A.; Hoffmaster, Alex R.; Walke, Henry T.; Blaney, David D.; DiOrio, Mary S.

    2014-01-01

    A fatal case of melioidosis was diagnosed in Ohio one month after culture results were initially reported as a Bacillus species. To identify a source of infection and assess risk in patient contacts, we abstracted patient charts; interviewed physicians and contacts; genetically characterized the isolate; performed a Burkholderia pseudomallei antibody indirect hemagglutination assay on household contacts and pets to assess seropositivity; and collected household plant, soil, liquid, and insect samples for culturing and real-time polymerase chain reaction testing. Family members and pets tested were seronegative for B. pseudomallei. Environmental samples were negative by real-time polymerase chain reaction and culture. Although the patient never traveled internationally, the isolate genotype was consistent with an isolate that originated in Southeast Asia. This investigation identified the fifth reported locally acquired non-laboratory melioidosis case in the contiguous United States. Physicians and laboratories should be aware of this potentially emerging disease and refer positive cultures to a Laboratory Response Network laboratory. PMID:25092821

  13. Alteration of the Phenotypic and Pathogenic Patterns of Burkholderia pseudomallei that Persist in a Soil Environment

    PubMed Central

    Chen, Yao-Shen; Shieh, Wun-Ju; Goldsmith, Cynthia S.; Metcalfe, Maureen G.; Greer, Patricia W.; Zaki, Sherif R.; Chang, Hsin-Hou; Chan, Hao; Chen, Ya-Lei

    2014-01-01

    Melioidosis is caused by the soil-borne pathogen Burkholderia pseudomallei. To investigate whether the distinct phenotypic and virulent characteristics result from environmental adaptations in the soil or from the host body, two pairs of isogenic strains were generated by passages in soil or mice. After cultivation in soil, the levels of 3-hydroxytetradecanoic acid, biofilm formation, flagellar expression, and ultrastructure were altered in the bacteria. Uniformly fatal melioidosis developed as a result of infection with mouse-derived strains; however, the survival rates of mice infected with soil-derived strains prolonged. After primary infection or reinfection with soil-derived strains, the mice developed a low degree of bacterial hepatitis and bacterial colonization in the liver and bone marrow compared with mice that were infected with isogenic or heterogenic mouse-derived strains. We suggest that specific phenotypic and pathogenic patterns can be induced through infection with B. pseudomallei that has been cultured in different (soil versus mouse) environments. PMID:24445207

  14. Raman spectroscopic detection and identification of Burkholderia mallei and Burkholderia pseudomallei in feedstuff.

    PubMed

    Stöckel, Stephan; Meisel, Susann; Elschner, Mandy; Melzer, Falk; Rösch, Petra; Popp, Jürgen

    2015-01-01

    Burkholderia mallei (the etiologic agent of glanders in equines and rarely humans) and Burkholderia pseudomallei, causing melioidosis in humans and animals, are designated category B biothreat agents. The intrinsically high resistance of both agents to many antibiotics, their potential use as bioweapons, and their low infectious dose, necessitate the need for rapid and accurate detection methods. Current methods to identify these organisms may require up to 1 week, as they rely on phenotypic characteristics and an extensive set of biochemical reactions. In this study, Raman microspectroscopy, a cultivation-independent typing technique for single bacterial cells with the potential for being a rapid point-of-care analysis system, is evaluated to identify and differentiate B. mallei and B. pseudomallei within hours. Here, not only broth-cultured microbes but also bacteria isolated out of pelleted animal feedstuff were taken into account. A database of Raman spectra allowed a calculation of classification functions, which were trained to differentiate Raman spectra of not only both pathogens but also of five further Burkholderia spp. and four species of the closely related genus Pseudomonas. The developed two-stage classification system comprising two support vector machine (SVM) classifiers was then challenged by a test set of 11 samples to simulate the case of a real-world-scenario, when "unknown samples" are to be identified. In the end, all test set samples were identified correctly, even if the contained bacterial strains were not incorporated in the database before or were isolated out of animal feedstuff. Specifically, the five test samples bearing B. mallei and B. pseudomallei were correctly identified on species level with accuracies between 93.9 and 98.7%. The sample analysis itself requires no biomass enrichment step prior to the analysis and can be performed under biosafety level 1 (BSL 1) conditions after inactivating the bacteria with formaldehyde. PMID:24880875

  15. Interrogation of the Burkholderia pseudomallei genome to address differential virulence among isolates

    SciTech Connect

    Challacombe, Jean F.; Stubben, Chris J.; Klimko, Christopher P.; Welkos, Susan L.; Kern, Steven J.; Bozue, Joel A.; Worsham, Patricia L.; Cote, Christopher K.; Wolfe, Daniel N.; Badger, Jonathan H.

    2014-12-23

    Infection by the Gram-negative pathogen Burkholderia pseudomallei results in the disease melioidosis, acquired from the environment in parts of southeast Asia and northern Australia. Clinical symptoms of melioidosis range from acute (fever, pneumonia, septicemia, and localized infection) to chronic (abscesses in various organs and tissues, most commonly occurring in the lungs, liver, spleen, kidney, prostate and skeletal muscle), and persistent infections in humans are difficult to cure. Understanding the basic biology and genomics of B. pseudomallei is imperative for the development of new vaccines and therapeutic interventions. This formidable task is becoming more tractable due to the increasing number of B. pseudomallei genomes that are being sequenced and compared. Here, we compared three B. pseudomallei genomes, from strains MSHR668, K96243 and 1106a, to identify features that might explain why MSHR668 is more virulent than K96243 and 1106a in a mouse model of B. pseudomallei infection. Our analyses focused on metabolic, virulence and regulatory genes that were present in MSHR668 but absent from both K96243 and 1106a. We also noted features present in K96243 and 1106a but absent from MSHR668, and identified genomic differences that may contribute to variations in virulence noted among the three B. pseudomallei isolates. While this work contributes to our understanding of B. pseudomallei genomics, more detailed experiments are necessary to characterize the relevance of specific genomic features to B. pseudomallei metabolism and virulence. Functional analyses of metabolic networks, virulence and regulation shows promise for examining the effects of B. pseudomallei on host cell metabolism and will lay a foundation for future prediction of the virulence of emerging strains. Continued emphasis in this area will be critical for protection against melioidosis, as a better understanding of what constitutes a fully virulent Burkholderia isolate may provide for better diagnostic and medical countermeasure strategies.

  16. The effect of methanolic extract of Tamarindus indica Linn. on the growth of clinical isolates of Burkholderia pseudomallei.

    PubMed

    Muthu, Shankar Esaki; Nandakumar, Subhadra; Rao, Usha Anand

    2005-12-01

    Burkholderia pseudomallei (Pseudomonas pseudomallei) causes melioidosis, a life-threatening infection common among paddy cultivators in Southeast Asian countries. No plant materials have been investigated for its activity against B. pseudomallei. Therefore, a preliminary study was carried out using disc diffusion and minimum inhibitory concentration (MIC) methods to evaluate the anti-B. pseudomallei activity of five Indian medicinal plants documented to have been used for several ailments in the ancient Indian scriptures. The leaf extracts of Tamarindus indica, Lawsonia inermis, and Hibiscus rosa-sinensis, the rhizome extracts of Curcuma longa and the seeds of Vigna radiata were prepared using methanol as solvent. The disc diffusion and MIC methods were used to assess the anti-B. pseudomallei activity of the plants tested. Only methanol leaf extracts of Tamarindus indica exhibited anti-B. pseudomallei activity starting from disc concentrations of 150 mug by the disc diffusion method. The other plants failed to show any zone of inhibition. MIC assay revealed that the MIC and minimum bactericidal concentration (MBC) for B. pseudomallei were 125 mug/ml. Our preliminary finding showed that methanolic extracts of Tamarindus indica has anti-B. pseudomallei inhibitory potentials under in vitro conditions. Extensive animal studies may be required before investigating the role of Tamarindus indica for treating melioidosis. PMID:16518004

  17. Liver abscess caused by Burkholderia pseudomallei in a young man: A case report and review of literature

    PubMed Central

    Pal, Partha; Ray, Sayantan; Moulick, Avijit; Dey, Subhasis; Jana, Anirban; Banerjee, Kokila

    2014-01-01

    Pyogenic liver abscess is a common entity in Indian subcontinent and is mostly caused by gram negative bacteria. Melioidosis is not commonly seen in India and only a few cases are reported. It can give rise to multiple abscesses at different sites including liver. We report a case of isolated liver abscess caused by Burkholderia pseudomallei (B. pseudomallei) in a 29-year-old recently diagnosed diabetic, immunocompetent male. Diagnosis was made by imaging and culture of pus aspirated from the abscess and he was treated with percutaneous pigtail catheter drainage followed by antibiotics (meropenem and trimethoprim-sulphmethoxazole). Melioidosis is an emerging infection in India and has high mortality rate, so early diagnosis and prompt management is warranted which requires clinical vigilance and an intensive microbiological workup. Clinicians should be aware of isolated liver abscess caused by B. pseudomallei in appropriate clinical settings. PMID:25325075

  18. Melioidosis

    MedlinePLUS

    ... disease, is an infectious disease that can infect humans or animals. The disease is caused by the bacterium Burkholderia pseudomallei. It is predominately a disease of tropical climates, especially in Southeast Asia and northern Australia where ...

  19. Antimicrobial Susceptibility and Genetic Characterisation of Burkholderia pseudomallei Isolated from Malaysian Patients

    PubMed Central

    Khosravi, Yalda; Mariappan, Vanitha; Ng, Shet-Lee

    2014-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics. Ceftazidime (CAZ), the synthetic ?-lactam, is normally used as the first-line antibiotic therapy for treatment of melioidosis. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, leading to mortality if therapy is not switched to a different antibiotic(s) in a timely manner. In this study, susceptibilities of 81 B. pseudomallei isolates to nine different antimicrobial agents were determined using the disk diffusion method, broth microdilution test and Etest. Highest percentage of susceptibility was demonstrated to CAZ, amoxicillin/clavulanic acid, meropenem, imipenem, and trimethoprim/sulfamethoxazole. Although these drugs demonstrated the highest percentage of susceptibility in B. pseudomallei, the overall results underline the importance of the emergence of resistance in this organism. PCR results showed that, of the 81 B. pseudomallei, six multidrug resistant (MDR) isolates carried bpeB, amrB, and BPSS1119 and penA genes. Genotyping of the isolates using random amplified polymorphic DNA analysis showed six different PCR fingerprinting patterns generated from the six MDR isolates clusters (A) and eight PCR fingerprinting patterns generated for the remaining 75 non-MDR isolates clusters (B). PMID:25379514

  20. Within-Host Evolution of Burkholderia pseudomallei over a Twelve-Year Chronic Carriage Infection

    PubMed Central

    Price, Erin P.; Sarovich, Derek S.; Mayo, Mark; Tuanyok, Apichai; Drees, Kevin P.; Kaestli, Mirjam; Beckstrom-Sternberg, Stephen M.; Babic-Sternberg, James S.; Kidd, Timothy J.; Bell, Scott C.; Keim, Paul; Pearson, Talima; Currie, Bart J.

    2013-01-01

    ABSTRACT Burkholderia pseudomallei causes the potentially fatal disease melioidosis. It is generally accepted that B. pseudomallei is a noncommensal bacterium and that any culture-positive clinical specimen denotes disease requiring treatment. Over a 23-year study of melioidosis cases in Darwin, Australia, just one patient from 707 survivors has developed persistent asymptomatic B. pseudomallei carriage. To better understand the mechanisms behind this unique scenario, we performed whole-genome analysis of two strains isolated 139 months apart. During this period, B. pseudomallei underwent several adaptive changes. Of 23 point mutations, 78% were nonsynonymous and 43% were predicted to be deleterious to gene function, demonstrating a strong propensity for positive selection. Notably, a nonsense mutation inactivated the universal stress response sigma factor RpoS, with pleiotropic implications. The genome underwent substantial reduction, with four deletions in chromosome 2 resulting in the loss of 221 genes. The deleted loci included genes involved in secondary metabolism, environmental survival, and pathogenesis. Of 14 indels, 11 occurred in coding regions and 9 resulted in frameshift mutations that dramatically affected predicted gene products. Disproportionately, four indels affected lipopolysaccharide biosynthesis and modification. Finally, we identified a frameshift mutation in both P314 isolates within wcbR, an important component of the capsular polysaccharide I locus, suggesting virulence attenuation early in infection. Our study illustrates a unique clinical case that contrasts a high-consequence infectious agent with a long-term commensal infection and provides further insights into bacterial evolution within the human host. PMID:23860767

  1. Neutrophil Extracellular Traps Exhibit Antibacterial Activity against Burkholderia pseudomallei and Are Influenced by Bacterial and Host Factors

    PubMed Central

    Riyapa, Donporn; Buddhisa, Surachat; Korbsrisate, Sunee; Cuccui, Jon; Wren, Brendan W.; Stevens, Mark P.; Ato, Manabu

    2012-01-01

    Burkholderia pseudomallei is the causative pathogen of melioidosis, of which a major predisposing factor is diabetes mellitus. Polymorphonuclear neutrophils (PMNs) kill microbes extracellularly by the release of neutrophil extracellular traps (NETs). PMNs play a key role in the control of melioidosis, but the involvement of NETs in killing of B. pseudomallei remains obscure. Here, we showed that bactericidal NETs were released from human PMNs in response to B. pseudomallei in a dose- and time-dependent manner. B. pseudomallei-induced NET formation required NADPH oxidase activation but not phosphatidylinositol-3 kinase, mitogen-activated protein kinases, or Src family kinase signaling pathways. B. pseudomallei mutants defective in the virulence-associated Bsa type III protein secretion system (T3SS) or capsular polysaccharide I (CPS-I) induced elevated levels of NETs. NET induction by such mutants was associated with increased bacterial killing, phagocytosis, and oxidative burst by PMNs. Taken together the data imply that T3SS and the capsule may play a role in evading the induction of NETs. Importantly, PMNs from diabetic subjects released NETs at a lower level than PMNs from healthy subjects. Modulation of NET formation may therefore be associated with the pathogenesis and control of melioidosis. PMID:22927051

  2. Biogeography of Burkholderia pseudomallei in the Torres Strait Islands of Northern Australia

    PubMed Central

    Baker, Anthony; Mayo, Mark; Owens, Leigh; Burgess, Graham; Norton, Robert; McBride, William John Hannan; Currie, Bart J.

    2013-01-01

    It has been hypothesized that biogeographical boundaries are a feature of Burkholderia pseudomallei ecology, and they impact the epidemiology of melioidosis on a global scale. This study examined the relatedness of B. pseudomallei sourced from islands in the Torres Strait of Northern Australia to determine if the geography of isolated island communities is a determinant of the organisms' dispersal. Environmental sampling on Badu Island in the Near Western Island cluster recovered a single clone. An additional 32 clinical isolates from the region were sourced. Isolates were characterized using multilocus sequence typing and a multiplex PCR targeting the flagellum gene cluster. Gene cluster analysis determined that 69% of the isolates from the region encoded the ancestral Burkholderia thailandensis-like flagellum and chemotaxis gene cluster, a proportion significantly lower than that reported from mainland Australia and consistent with observations of isolates from southern Papua New Guinea. A goodness-of-fit test indicated that there was geographic localization of sequence types throughout the archipelago, with the exception of Thursday Island, the economic and cultural hub of the region. Sequence types common to mainland Australia and Papua New Guinea were identified. These findings demonstrate for the first time an environmental reservoir for B. pseudomallei in the Torres Strait, and multilocus sequence typing suggests that the organism is not randomly distributed throughout this region and that seawater may provide a barrier to dispersal of the organism. Moreover, these findings support an anthropogenic dispersal hypothesis for the spread of B. pseudomallei throughout this region. PMID:23698533

  3. Sequence- and Structure-Based Immunoreactive Epitope Discovery for Burkholderia pseudomallei Flagellin

    PubMed Central

    Nithichanon, Arnone; Rinchai, Darawan; Gori, Alessandro; Lassaux, Patricia; Peri, Claudio; Conchillio-Solé, Oscar; Ferrer-Navarro, Mario; Gourlay, Louise J.; Nardini, Marco; Vila, Jordi; Daura, Xavier; Colombo, Giorgio; Bolognesi, Martino; Lertmemonkolchai, Ganjana

    2015-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium responsible for melioidosis, a serious and often fatal infectious disease that is poorly controlled by existing treatments. Due to its inherent resistance to the major antibiotic classes and its facultative intracellular pathogenicity, an effective vaccine would be extremely desirable, along with appropriate prevention and therapeutic management. One of the main subunit vaccine candidates is flagellin of Burkholderia pseudomallei (FliCBp). Here, we present the high resolution crystal structure of FliCBp and report the synthesis and characterization of three peptides predicted to be both B and T cell FliCBp epitopes, by both structure-based in silico methods, and sequence-based epitope prediction tools. All three epitopes were shown to be immunoreactive against human IgG antibodies and to elicit cytokine production from human peripheral blood mononuclear cells. Furthermore, two of the peptides (F51-69 and F270-288) were found to be dominant immunoreactive epitopes, and their antibodies enhanced the bactericidal activities of purified human neutrophils. The epitopes derived from this study may represent potential melioidosis vaccine components. PMID:26222657

  4. Evaluation of Polysaccharide-Based Latex Agglutination Assays for the Rapid Detection of Antibodies to Burkholderia pseudomallei

    PubMed Central

    Suttisunhakul, Vichaya; Chantratita, Narisara; Wikraiphat, Chanthiwa; Wuthiekanun, Vanaporn; Douglas, Zakiya; Day, Nicholas P. J.; Limmathurotsakul, Direk; Brett, Paul J.; Burtnick, Mary N.

    2015-01-01

    Melioidosis is a severe disease caused by the Gram-negative bacterium Burkholderia pseudomallei. Diagnosis of melioidosis currently relies on the isolation of B. pseudomallei from clinical samples, which can take several days. An indirect hemagglutination assay (IHA) is widely used for serodiagnosis, but it has a short shelf life, is poorly standardized, and requires a viable bacteria culture performed in a biosafety level 3 (BSL-3) laboratory. To improve the diagnostic methods, we have developed two rapid latex agglutination tests based on purified B. pseudomallei O-polysaccharide (OPS) and capsular polysaccharide (CPS) antigens. The immunodiagnostic potential of these tests was evaluated using serum from culture-confirmed melioidosis patients (N = 143) and healthy donors from either endemic (N = 199) or non-endemic areas (N = 90). The sensitivity of the OPS-based latex agglutination assay (OPS-latex; 84.4%) was significantly higher than both the CPS-latex (69.5%) (P < 0.001) and IHA (69.5%) (P = 0.001). When evaluated with Thai donor serum, the OPS-latex had comparable specificity (56.9%) to the CPS-latex (63.8%) (P = 0.053), but was significantly lower than the IHA (67.6%) (P = 0.002). In contrast, all tests with U.S. donor serum were highly specific (? 97.8%). These results suggest that polysaccharide-based latex agglutination assays may be useful for serodiagnosis of melioidosis in non-endemic areas. PMID:26123956

  5. Characterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and In Vitro Macrophage Assays

    PubMed Central

    Welkos, Susan L.; Klimko, Christopher P.; Kern, Steven J.; Bearss, Jeremy J.; Bozue, Joel A.; Bernhards, Robert C.; Trevino, Sylvia R.; Waag, David M.; Amemiya, Kei; Worsham, Patricia L.; Cote, Christopher K.

    2015-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP) infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational). Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b) were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains and in the macrophage phagocytosis assay. Strains which were more virulent for mice (e.g., HBPU10304a) were often less virulent in the macrophage assays, as determined by several parameters such as intracellular bacterial replication and host cell cytotoxicity. PMID:25909629

  6. CD4+ T cell epitopes of FliC conserved between strains of Burkholderia: implications for vaccines against melioidosis and cepacia complex in cystic fibrosis.

    PubMed

    Musson, Julie A; Reynolds, Catherine J; Rinchai, Darawan; Nithichanon, Arnone; Khaenam, Prasong; Favry, Emmanuel; Spink, Natasha; Chu, Karen K Y; De Soyza, Anthony; Bancroft, Gregory J; Lertmemongkolchai, Ganjana; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M; Robinson, John H

    2014-12-15

    Burkholderia pseudomallei is the causative agent of melioidosis characterized by pneumonia and fatal septicemia and prevalent in Southeast Asia. Related Burkholderia species are strong risk factors of mortality in cystic fibrosis (CF). The B. pseudomallei flagellar protein FliC is strongly seroreactive and vaccination protects challenged mice. We assessed B. pseudomallei FliC peptide binding affinity to multiple HLA class II alleles and then assessed CD4 T cell immunity in HLA class II transgenic mice and in seropositive individuals in Thailand. T cell hybridomas were generated to investigate cross-reactivity between B. pseudomallei and the related Burkholderia species associated with Cepacia Complex CF. B. pseudomallei FliC contained several peptide sequences with ability to bind multiple HLA class II alleles. Several peptides were shown to encompass strong CD4 T cell epitopes in B. pseudomallei-exposed individuals and in HLA transgenic mice. In particular, the p38 epitope is robustly recognized by CD4 T cells of seropositive donors across diverse HLA haplotypes. T cell hybridomas against an immunogenic B. pseudomallei FliC epitope also cross-reacted with orthologous FliC sequences from Burkholderia multivorans and Burkholderia cenocepacia, important pathogens in CF. Epitopes within FliC were accessible for processing and presentation from live or heat-killed bacteria, demonstrating that flagellin enters the HLA class II Ag presentation pathway during infection of macrophages with B. cenocepacia. Collectively, the data support the possibility of incorporating FliC T cell epitopes into vaccination programs targeting both at-risk individuals in B. pseudomallei endemic regions as well as CF patients. PMID:25392525

  7. Environmental Attributes Influencing the Distribution of Burkholderia pseudomallei in Northern Australia

    PubMed Central

    Baker, Anthony L.; Ezzahir, Jessica; Gardiner, Christopher; Shipton, Warren; Warner, Jeffrey M.

    2015-01-01

    Factors responsible for the spatial and temporal clustering of Burkholderia pseudomallei in the environment remain to be elucidated. Whilst laboratory based experiments have been performed to analyse survival of the organism in various soil types, such approaches are strongly influenced by alterations to the soil micro ecology during soil sanitisation and translocation. During the monsoonal season in Townsville, Australia, B. pseudomallei is discharged from Castle Hill (an area with a very high soil prevalence of the organism) by groundwater seeps and is washed through a nearby area where intensive sampling in the dry season has been unable to detect the organism. We undertook environmental sampling and soil and plant characterisation in both areas to ascertain physiochemical and macro-floral differences between the two sites that may affect the prevalence of B. pseudomallei. In contrast to previous studies, the presence of B. pseudomallei was correlated with a low gravimetric water content and low nutrient availability (nitrogen and sulphur) and higher exchangeable potassium in soils favouring recovery. Relatively low levels of copper, iron and zinc favoured survival. The prevalence of the organism was found to be highest under the grasses Aristida sp. and Heteropogon contortus and to a lesser extent under Melinis repens. The findings of this study indicate that a greater variety of factors influence the endemicity of melioidosis than has previously been reported, and suggest that biogeographical boundaries to the organisms’ distribution involve complex interactions. PMID:26398904

  8. Screening for potential anti-infective agents towards Burkholderia pseudomallei infection

    NASA Astrophysics Data System (ADS)

    Eng, Su Anne; Nathan, Sheila

    2014-09-01

    The established treatment for melioidosis is antibiotic therapy. However, a constant threat to this form of treatment is resistance development of the causative agent, Burkholderia pseudomallei, towards antibiotics. One option to circumvent this threat of antibiotic resistance is to search for new alternative anti-infectives which target the host innate immune system and/or bacterial virulence. In this study, 29 synthetic compounds were evaluated for their potential to increase the lifespan of an infected host. The nematode Caenorhabditis elegans was adopted as the infection model as its innate immune pathways are homologous to humans. Screens were performed in a liquid-based survival assay containing infected worms exposed to individual compounds and survival of untreated and compound-treated worms were compared. A primary screen identified nine synthetic compounds that extended the lifespan of B. pseudomallei-infected worms. Subsequently, a disc diffusion test was performed on these selected compounds to delineate compounds into those that enhanced the survival of worms via antimicrobial activity i.e. reducing the number of infecting bacteria, or into those that did not target pathogen viability. Out of the nine hits selected, two demonstrated antimicrobial effects on B. pseudomallei. Therefore, the findings from this study suggest that the other seven identified compounds are potential anti-infectives which could protect a host against B. pseudomallei infection without developing the risk of drug resistance.

  9. Identification of a Predicted Trimeric Autotransporter Adhesin Required for Biofilm Formation of Burkholderia pseudomallei

    PubMed Central

    Lazar Adler, Natalie R.; Dean, Rachel E.; Saint, Richard J.; Stevens, Mark P.; Prior, Joann L.; Atkins, Timothy P.; Galyov, Edouard E.

    2013-01-01

    The autotransporters are a large and diverse family of bacterial secreted and outer membrane proteins, which are present in many Gram-negative bacterial pathogens and play a role in numerous environmental and virulence-associated interactions. As part of a larger systematic study on the autotransporters of Burkholderia pseudomallei, the causative agent of the severe tropical disease melioidosis, we have constructed an insertion mutant in the bpss1439 gene encoding an unstudied predicted trimeric autotransporter adhesin. The bpss1439 mutant demonstrated a significant reduction in biofilm formation at 48 hours in comparison to its parent 10276 wild-type strain. This phenotype was complemented to wild-type levels by the introduction of a full-length copy of the bpss1439 gene in trans. Examination of the wild-type and bpss1439 mutant strains under biofilm-inducing conditions by microscopy after 48 hours confirmed that the bpss1439 mutant produced less biofilm compared to wild-type. Additionally, it was observed that this phenotype was due to low levels of bacterial adhesion to the abiotic surface as well as reduced microcolony formation. In a murine melioidosis model, the bpss1439 mutant strain demonstrated a moderate attenuation for virulence compared to the wild-type strain. This attenuation was abrogated by in trans complementation, suggesting that bpss1439 plays a subtle role in the pathogenesis of B. pseudomallei. Taken together, these studies indicate that BPSS1439 is a novel predicted autotransporter involved in biofilm formation of B. pseudomallei; hence, this factor was named BbfA, Burkholderia biofilm factor A. PMID:24223950

  10. Diverse Burkholderia Species Isolated from Soils in the Southern United States with No Evidence of B. pseudomallei

    PubMed Central

    Hall, Carina M.; Busch, Joseph D.; Shippy, Kenzie; Allender, Christopher J.; Kaestli, Mirjam; Mayo, Mark; Sahl, Jason W.; Schupp, James M.; Colman, Rebecca E.; Keim, Paul; Currie, Bart J.; Wagner, David M.

    2015-01-01

    The global distribution of the soil-dwelling bacterium Burkholderia pseudomallei, causative agent of melioidosis, is poorly understood. We used established culturing methods developed for B. pseudomallei to isolate Burkholderia species from soil collected at 18 sampling sites in three states in the southern United States (Arizona (n = 4), Florida (n = 7), and Louisiana (n = 7)). Using multi-locus sequence typing (MLST) of seven genes, we identified 35 Burkholderia isolates from these soil samples. All species belonged to the B. cepacia complex (Bcc), including B. cenocepacia, B. cepacia, B. contaminans, B. diffusa, B. metallica, B. seminalis, B. vietnamiensis and two unnamed members of the Bcc. The MLST analysis provided a high level of resolution among and within these species. Despite previous clinical cases within the U.S. involving B. pseudomallei and its close phylogenetic relatives, we did not isolate any of these taxa. The Bcc contains a number of opportunistic pathogens that cause infections in cystic fibrosis patients. Interestingly, we found that B. vietnamiensis was present in soil from all three states, suggesting it may be a common component in southern U.S. soils. Most of the Burkholderia isolates collected in this study were from Florida (30/35; 86%), which may be due to the combination of relatively moist, sandy, and acidic soils found there compared to the other two states. We also investigated one MLST gene, recA, for its ability to identify species within Burkholderia. A 365bp fragment of recA recovered nearly the same species-level identification as MLST, thus demonstrating its cost effective utility when conducting environmental surveys for Burkholderia. Although we did not find B. pseudomallei, our findings document that other diverse Burkholderia species are present in soils in the southern United States. PMID:26600238

  11. Persistent Gastric Colonization with Burkholderia pseudomallei and Dissemination from the Gastrointestinal Tract following Mucosal Inoculation of Mice

    PubMed Central

    Goodyear, Andrew; Bielefeldt-Ohmann, Helle; Schweizer, Herbert; Dow, Steven

    2012-01-01

    Melioidosis is a disease of humans caused by opportunistic infection with the soil and water bacterium Burkholderia pseudomallei. Melioidosis can manifest as an acute, overwhelming infection or as a chronic, recurrent infection. At present, it is not clear where B. pseudomallei resides in the mammalian host during the chronic, recurrent phase of infection. To address this question, we developed a mouse low-dose mucosal challenge model of chronic B. pseudomallei infection and investigated sites of bacterial persistence over 60 days. Sensitive culture techniques and selective media were used to quantitate bacterial burden in major organs, including the gastrointestinal (GI) tract. We found that the GI tract was the primary site of bacterial persistence during the chronic infection phase, and was the only site from which the organism could be consistently cultured during a 60-day infection period. The organism could be repeatedly recovered from all levels of the GI tract, and chronic infection was accompanied by sustained low-level fecal shedding. The stomach was identified as the primary site of GI colonization as determined by fluorescent in situ hybridization. Organisms in the stomach were associated with the gastric mucosal surface, and the propensity to colonize the gastric mucosa was observed with 4 different B. pseudomallei isolates. In contrast, B. pseudomallei organisms were present at low numbers within luminal contents in the small and large intestine and cecum relative to the stomach. Notably, inflammatory lesions were not detected in any GI tissue examined in chronically-infected mice. Only low-dose oral or intranasal inoculation led to GI colonization and development of chronic infection of the spleen and liver. Thus, we concluded that in a mouse model of melioidosis B. pseudomallei preferentially colonizes the stomach following oral inoculation, and that the chronically colonized GI tract likely serves as a reservoir for dissemination of infection to extra-intestinal sites. PMID:22624016

  12. Tandem repeat regions within the Burkholderia pseudomallei genome and their application for high resolution genotyping

    PubMed Central

    U'Ren, Jana M; Schupp, James M; Pearson, Talima; Hornstra, Heidie; Friedman, Christine L Clark; Smith, Kimothy L; Daugherty, Rebecca R Leadem; Rhoton, Shane D; Leadem, Ben; Georgia, Shalamar; Cardon, Michelle; Huynh, Lynn Y; DeShazer, David; Harvey, Steven P; Robison, Richard; Gal, Daniel; Mayo, Mark J; Wagner, David; Currie, Bart J; Keim, Paul

    2007-01-01

    Background The facultative, intracellular bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. We identified and categorized tandem repeat arrays and their distribution throughout the genome of B. pseudomallei strain K96243 in order to develop a genetic typing method for B. pseudomallei. We then screened 104 of the potentially polymorphic loci across a diverse panel of 31 isolates including B. pseudomallei, B. mallei and B. thailandensis in order to identify loci with varying degrees of polymorphism. A subset of these tandem repeat arrays were subsequently developed into a multiple-locus VNTR analysis to examine 66 B. pseudomallei and 21 B. mallei isolates from around the world, as well as 95 lineages from a serial transfer experiment encompassing ~18,000 generations. Results B. pseudomallei contains a preponderance of tandem repeat loci throughout its genome, many of which are duplicated elsewhere in the genome. The majority of these loci are composed of repeat motif lengths of 6 to 9 bp with 4 to 10 repeat units and are predominately located in intergenic regions of the genome. Across geographically diverse B. pseudomallei and B.mallei isolates, the 32 VNTR loci displayed between 7 and 28 alleles, with Nei's diversity values ranging from 0.47 and 0.94. Mutation rates for these loci are comparable (>10-5 per locus per generation) to that of the most diverse tandemly repeated regions found in other less diverse bacteria. Conclusion The frequency, location and duplicate nature of tandemly repeated regions within the B. pseudomallei genome indicate that these tandem repeat regions may play a role in generating and maintaining adaptive genomic variation. Multiple-locus VNTR analysis revealed extensive diversity within the global isolate set containing B. pseudomallei and B. mallei, and it detected genotypic differences within clonal lineages of both species that were identical using previous typing methods. Given the health threat to humans and livestock and the potential for B. pseudomallei to be released intentionally, MLVA could prove to be an important tool for fine-scale epidemiological or forensic tracking of this increasingly important environmental pathogen. PMID:17397553

  13. Colony Morphology Variation of Burkholderia pseudomallei Is Associated with Antigenic Variation and O-Polysaccharide Modification

    PubMed Central

    Wikraiphat, Chanthiwa; Saiprom, Natnaree; Tandhavanant, Sarunporn; Heiss, Christian; Azadi, Parastoo; Wongsuvan, Gumphol; Tuanyok, Apichai; Holden, Matthew T. G.; Burtnick, Mary N.; Brett, Paul J.; Peacock, Sharon J.

    2015-01-01

    Burkholderia pseudomallei is a CDC tier 1 select agent that causes melioidosis, a severe disease in humans and animals. Persistent infections are common, and there is currently no vaccine available. Lipopolysaccharide (LPS) is a potential vaccine candidate. B. pseudomallei expresses three serologically distinct LPS types. The predominant O-polysaccharide (OPS) is an unbranched heteropolymer with repeating d-glucose and 6-deoxy-l-talose residues in which the 6-deoxy-l-talose residues are variably replaced with O-acetyl and O-methyl modifications. We observed that primary clinical B. pseudomallei isolates with mucoid and nonmucoid colony morphologies from the same sample expressed different antigenic types distinguishable using an LPS-specific monoclonal antibody (MAb). MAb-reactive (nonmucoid) and nonreactive (mucoid) strains from the same patient exhibited identical LPS banding patterns by silver staining and indistinguishable genotypes. We hypothesized that LPS antigenic variation reflected modification of the OPS moieties. Mutagenesis of three genes involved in LPS synthesis was performed in B. pseudomallei K96243. Loss of MAb reactivity was observed in both wbiA (encoding a 2-O-acetyltransferase) and wbiD (putative methyl transferase) mutants. The structural characteristics of the OPS moieties from isogenic nonmucoid strain 4095a and mucoid strain 4095c were further investigated. Utilizing nuclear magnetic resonance (NMR) spectroscopy, we found that B. pseudomallei 4095a and 4095c OPS antigens exhibited substitution patterns that differed from the prototypic OPS structure. Specifically, 4095a lacked 4-O-acetylation, while 4095c lacked both 4-O-acetylation and 2-O-methylation. Our studies indicate that B. pseudomallei OPS undergoes antigenic variation and suggest that the 9D5 MAb recognizes a conformational epitope that is influenced by both O-acetyl and O-methyl substitution patterns. PMID:25776750

  14. A preliminary X-ray study of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei

    PubMed Central

    Kim, Mi-Sun; Shin, Dong Hae

    2009-01-01

    Sedoheptulose-7-phosphate isomerase (GmhA) converts d-sedoheptulose 7-­phosphate to d,d-heptose 7-phosphate. This is the first step in the biosynthesis pathway of NDP-heptose, which is responsible for the pleiotropic phenotype. This biosynthesis pathway is the target of inhibitors to increase the membrane permeability of Gram-negative pathogens or of adjuvants working synergistically with known antibiotics. Burkholderia pseudomallei is the causative agent of melioidosis, a seriously invasive disease in animals and humans in tropical and subtropical areas. GmhA from B. pseudomallei is one of the targets of antibiotic adjuvants for melioidosis. In this study, GmhA has been cloned, expressed, purified and crystallized. Synchrotron X-ray data were also collected to 1.9?Å resolution. The crystal belonged to the primitive orthorhombic space group P212121, with unit-cell parameters a = 61.3, b = 84.2, c = 142.3?Å. A full structural determination is under way in order to provide insights into the structure–function relationships of this protein. PMID:19923728

  15. Emergence of Melioidosis in Indonesia.

    PubMed

    Tauran, Patricia M; Sennang, Nurhayana; Rusli, Benny; Wiersinga, W Joost; Dance, David; Arif, Mansyur; Limmathurotsakul, Direk

    2015-12-01

    Melioidosis is known to be highly endemic in parts of southeast Asia and northern Australia; however, cases are rarely reported in Indonesia. Here we report three cases of melioidosis in Makassar, South Sulawesi, Indonesia occurring between 2013 and 2014. Two patients died and the other was lost to follow-up. Burkholderia pseudomallei isolates from all three cases were identified by the VITEK2 Compact installed in the hospital in 2012. None of the three patients reported received antimicrobials recommended for melioidosis because of the delayed recognition of the organism. We reviewed the literature and found only seven reports of melioidosis in Indonesia. Five were reported before 1960. We suggest that melioidosis is endemic throughout Indonesia but currently under-recognized. Training on how to identify B. pseudomallei accurately and safely in all available microbiological facilities should be provided, and consideration should be given to making melioidosis a notifiable disease in Indonesia. PMID:26458777

  16. Emergence of Melioidosis in Indonesia

    PubMed Central

    Tauran, Patricia M.; Sennang, Nurhayana; Rusli, Benny; Wiersinga, W. Joost; Dance, David; Arif, Mansyur; Limmathurotsakul, Direk

    2015-01-01

    Melioidosis is known to be highly endemic in parts of southeast Asia and northern Australia; however, cases are rarely reported in Indonesia. Here we report three cases of melioidosis in Makassar, South Sulawesi, Indonesia occurring between 2013 and 2014. Two patients died and the other was lost to follow-up. Burkholderia pseudomallei isolates from all three cases were identified by the VITEK2 Compact installed in the hospital in 2012. None of the three patients reported received antimicrobials recommended for melioidosis because of the delayed recognition of the organism. We reviewed the literature and found only seven reports of melioidosis in Indonesia. Five were reported before 1960. We suggest that melioidosis is endemic throughout Indonesia but currently under-recognized. Training on how to identify B. pseudomallei accurately and safely in all available microbiological facilities should be provided, and consideration should be given to making melioidosis a notifiable disease in Indonesia. PMID:26458777

  17. Quantitative Proteomic Analysis of Burkholderia pseudomallei Bsa Type III Secretion System Effectors Using Hypersecreting Mutants

    PubMed Central

    Vander Broek, Charles W.; Chalmers, Kevin J.; Stevens, Mark P.; Stevens, Joanne M.

    2015-01-01

    Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a severe disease of humans and animals. One of the virulence factors critical for early stages of infection is the Burkholderia secretion apparatus (Bsa) Type 3 Secretion System (T3SS), a molecular syringe that injects bacterial proteins, called effectors, into eukaryotic cells where they subvert cellular functions to the benefit of the bacteria. Although the Bsa T3SS itself is known to be important for invasion, intracellular replication, and virulence, only a few genuine effector proteins have been identified and the complete repertoire of proteins secreted by the system has not yet been fully characterized. We constructed a mutant lacking bsaP, a homolog of the T3SS “gatekeeper” family of proteins that exert control over the timing and magnitude of effector protein secretion. Mutants lacking BsaP, or the T3SS translocon protein BipD, were observed to hypersecrete the known Bsa effector protein BopE, providing evidence of their role in post-translational control of the Bsa T3SS and representing key reagents for the identification of its secreted substrates. Isobaric Tags for Relative and Absolute Quantification (iTRAQ), a gel-free quantitative proteomics technique, was used to compare the secreted protein profiles of the Bsa T3SS hypersecreting mutants of B. pseudomallei with the isogenic parent strain and a bsaZ mutant incapable of effector protein secretion. Our study provides one of the most comprehensive core secretomes of B. pseudomallei described to date and identified 26 putative Bsa-dependent secreted proteins that may be considered candidate effectors. Two of these proteins, BprD and BapA, were validated as novel effector proteins secreted by the Bsa T3SS of B. pseudomallei. PMID:25635268

  18. Evolutionary Analysis of Burkholderia pseudomallei Identifies Putative Novel Virulence Genes, Including a Microbial Regulator of Host Cell Autophagy

    PubMed Central

    Singh, Arvind Pratap; Lai, Shu-chin; Nandi, Tannistha; Chua, Hui Hoon; Ooi, Wen Fong; Ong, Catherine; Boyce, John D.; Adler, Ben

    2013-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, contains a large pathogen genome (7.2 Mb) with ?2,000 genes of putative or unknown function. Interactions with potential hosts and environmental factors may induce rapid adaptations in these B. pseudomallei genes, which can be discerned through evolutionary analysis of multiple B. pseudomallei genomes. Here we show that several previously uncharacterized B. pseudomallei genes bearing genetic signatures of rapid adaptation (positive selection) can induce diverse cellular phenotypes when expressed in mammalian cells. Notably, several of these phenotypes are plausibly related to virulence, including multinuclear giant cell formation, apoptosis, and autophagy induction. Specifically, we show that BPSS0180, a type VI cluster-associated gene, is capable of inducing autophagy in both phagocytic and nonphagocytic mammalian cells. Following infection of macrophages, a B. pseudomallei mutant disrupted in BPSS0180 exhibited significantly decreased colocalization with LC3 and impaired intracellular survival; these phenotypes were rescued by introduction of an intact BPSS0180 gene. The results suggest that BPSS0180 may be a novel inducer of host cell autophagy that contributes to B. pseudomallei intracellular growth. More generally, our study highlights the utility of applying evolutionary principles to microbial genomes to identify novel virulence genes. PMID:24097950

  19. Burkholderia pseudomallei in soil samples from an oceanarium in Hong Kong detected using a sensitive PCR assay

    PubMed Central

    Lau, Susanna KP; Chan, San-Yuen; Curreem, Shirly OT; Hui, Suk-Wai; Lau, Candy CY; Lee, Paul; Ho, Chi-Chun; Martelli, Paolo; Woo, Patrick CY

    2014-01-01

    Melioidosis, caused by Burkholderia pseudomallei, is an emerging infectious disease with an expanding geographical distribution. Although assessment of the environmental load of B. pseudomallei is important for risk assessment in humans or animals in endemic areas, traditional methods of bacterial culture for isolation have low sensitivities and are labor-intensive. Using a specific polymerase chain reaction (PCR) assay targeting a Tat domain protein in comparison with a bacterial culture method, we examined the prevalence of B. pseudomallei in soil samples from an oceanarium in Hong Kong where captive marine mammals and birds have contracted melioidosis. Among 1420 soil samples collected from various sites in the oceanarium over a 15-month period, B. pseudomallei was detected in nine (0.6%) soil samples using bacterial culture, whereas it was detected in 96 (6.8%) soil samples using the specific PCR assay confirmed by sequencing. The PCR-positive samples were detected during various months, with higher detection rates observed during summer months. Positive PCR detection was significantly correlated with ambient temperature (P<0.0001) and relative humidity (P=0.011) but not with daily rainfall (P=0.241) or a recent typhoon (P=0.787). PCR-positive samples were obtained from all sampling locations, with the highest detection rate in the valley. Our results suggest that B. pseudomallei is prevalent and endemic in the oceanarium. The present PCR assay is more sensitive than the bacterial culture method, and it may be used to help better assess the transmission of melioidosis and to design infection control measures for captive animals in this unique and understudied environment. PMID:26038496

  20. Identification of the conserved hypothetical protein BPSL0317 in Burkholderia pseudomallei K96243

    NASA Astrophysics Data System (ADS)

    Yusoff, Nur Syamimi; Damiri, Nadzirah; Firdaus-Raih, Mohd

    2014-09-01

    Burkholderia pseudomallei K96243 is the causative agent of melioidosis, a disease which is endemic in Northern Australia and Southeastern Asia. The genome encodes several essential proteins including those currently annotated as hypothetical proteins. We studied the conservation and the essentiality of expressed hypothetical proteins in normal and different stress conditions. Based on the comparative genomics, we identified a hypothetical protein, BPSL0317, a potential essential gene that is being expressed in all normal and stress conditions. BPSL0317 is also phylogenetically conserved in the Burkholderiales order suggesting that this protein is crucial for survival among the order's members. BPSL0317 therefore has a potential to be a candidate antimicrobial drug target for this group of bacteria.

  1. Characterization of BcaA, a Putative Classical Autotransporter Protein in Burkholderia pseudomallei

    PubMed Central

    Campos, Cristine G.; Borst, Luke

    2013-01-01

    Burkholderia pseudomallei is a tier 1 select agent, and the causative agent of melioidosis, a disease with effects ranging from chronic abscesses to fulminant pneumonia and septic shock, which can be rapidly fatal. Autotransporters (ATs) are outer membrane proteins belonging to the type V secretion system family, and many have been shown to play crucial roles in pathogenesis. The open reading frame Bp1026b_II1054 (bcaA) in B. pseudomallei strain 1026b is predicted to encode a classical autotransporter protein with an approximately 80-kDa passenger domain that contains a subtilisin-related domain. Immediately 3? to bcaA is Bp11026_II1055 (bcaB), which encodes a putative prolyl 4-hydroxylase. To investigate the role of these genes in pathogenesis, large in-frame deletion mutations of bcaA and bcaB were constructed in strain Bp340, an efflux pump mutant derivative of the melioidosis clinical isolate 1026b. Comparison of Bp340?bcaA and Bp340?bcaB mutants to wild-type B. pseudomallei in vitro demonstrated similar levels of adherence to A549 lung epithelial cells, but the mutant strains were defective in their ability to invade these cells and to form plaques. In a BALB/c mouse model of intranasal infection, similar bacterial burdens were observed after 48 h in the lungs and liver of mice infected with Bp340?bcaA, Bp340?bcaB, and wild-type bacteria. However, significantly fewer bacteria were recovered from the spleen of Bp340?bcaA-infected mice, supporting the idea of a role for this AT in dissemination or in survival in the passage from the site of infection to the spleen. PMID:23340315

  2. Genomic Characterization of Burkholderia pseudomallei Isolates Selected for Medical Countermeasures Testing: Comparative Genomics Associated with Differential Virulence

    PubMed Central

    Sahl, Jason W.; Allender, Christopher J.; Colman, Rebecca E.; Califf, Katy J.; Schupp, James M.; Currie, Bart J.; Van Zandt, Kristopher E.; Gelhaus, H. Carl; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis and a potential bioterrorism agent. In the development of medical countermeasures against B. pseudomallei infection, the US Food and Drug Administration (FDA) animal Rule recommends using well-characterized strains in animal challenge studies. In this study, whole genome sequence data were generated for 6 B. pseudomallei isolates previously identified as candidates for animal challenge studies; an additional 5 isolates were sequenced that were associated with human inhalational melioidosis. A core genome single nucleotide polymorphism (SNP) phylogeny inferred from a concatenated SNP alignment from the 11 isolates sequenced in this study and a diverse global collection of isolates demonstrated the diversity of the proposed Animal Rule isolates. To understand the genomic composition of each isolate, a large-scale blast score ratio (LS-BSR) analysis was performed on the entire pan-genome; this demonstrated the variable composition of genes across the panel and also helped to identify genes unique to individual isolates. In addition, a set of ~550 genes associated with pathogenesis in B. pseudomallei were screened against the 11 sequenced genomes with LS-BSR. Differential gene distribution for 54 virulence-associated genes was observed between genomes and three of these genes were correlated with differential virulence observed in animal challenge studies using BALB/c mice. Differentially conserved genes and SNPs associated with disease severity were identified and could be the basis for future studies investigating the pathogenesis of B. pseudomallei. Overall, the genetic characterization of the 11 proposed Animal Rule isolates provides context for future studies involving B. pseudomallei pathogenesis, differential virulence, and efficacy to therapeutics. PMID:25803742

  3. A Burkholderia pseudomallei protein microarray reveals serodiagnostic and cross-reactive antigens

    PubMed Central

    Felgner, Philip L.; Kayala, Matthew A.; Vigil, Adam; Burk, Chad; Nakajima-Sasaki, Rie; Pablo, Jozelyn; Molina, Douglas M.; Hirst, Siddiqua; Chew, Janet S. W.; Wang, Dongling; Tan, Gladys; Duffield, Melanie; Yang, Ron; Neel, Julien; Chantratita, Narisara; Bancroft, Greg; Lertmemongkolchai, Ganjana; Davies, D. Huw; Baldi, Pierre; Peacock, Sharon; Titball, Richard W.

    2009-01-01

    Understanding the way in which the immune system responds to infection is central to the development of vaccines and many diagnostics. To provide insight into this area, we fabricated a protein microarray containing 1,205 Burkholderia pseudomallei proteins, probed it with 88 melioidosis patient sera, and identified 170 reactive antigens. This subset of antigens was printed on a smaller array and probed with a collection of 747 individual sera derived from 10 patient groups including melioidosis patients from Northeast Thailand and Singapore, patients with different infections, healthy individuals from the USA, and from endemic and nonendemic regions of Thailand. We identified 49 antigens that are significantly more reactive in melioidosis patients than healthy people and patients with other types of bacterial infections. We also identified 59 cross-reactive antigens that are equally reactive among all groups, including healthy controls from the USA. Using these results we were able to devise a test that can classify melioidosis positive and negative individuals with sensitivity and specificity of 95% and 83%, respectively, a significant improvement over currently available diagnostic assays. Half of the reactive antigens contained a predicted signal peptide sequence and were classified as outer membrane, surface structures or secreted molecules, and an additional 20% were associated with pathogenicity, adaptation or chaperones. These results show that microarrays allow a more comprehensive analysis of the immune response on an antigen-specific, patient-specific, and population-specific basis, can identify serodiagnostic antigens, and contribute to a more detailed understanding of immunogenicity to this pathogen. PMID:19666533

  4. Genome-Wide Saturation Mutagenesis of Burkholderia pseudomallei K96243 Predicts Essential Genes and Novel Targets for Antimicrobial Development

    PubMed Central

    Moule, Madeleine G.; Hemsley, Claudia M.; Seet, Qihui; Guerra-Assunção, José Afonso; Lim, Jiali; Sarkar-Tyson, Mitali; Clark, Taane G.; Tan, Patrick B. O.; Titball, Richard W.; Cuccui, Jon; Wren, Brendan W.

    2014-01-01

    ABSTRACT Burkholderia pseudomallei is the causative agent of melioidosis, an often fatal infectious disease for which there is no vaccine. B. pseudomallei is listed as a tier 1 select agent, and as current therapeutic options are limited due to its natural resistance to most antibiotics, the development of new antimicrobial therapies is imperative. To identify drug targets and better understand the complex B. pseudomallei genome, we sought a genome-wide approach to identify lethal gene targets. As B. pseudomallei has an unusually large genome spread over two chromosomes, an extensive screen was required to achieve a comprehensive analysis. Here we describe transposon-directed insertion site sequencing (TraDIS) of a library of over 106 transposon insertion mutants, which provides the level of genome saturation required to identify essential genes. Using this technique, we have identified a set of 505 genes that are predicted to be essential in B. pseudomallei K96243. To validate our screen, three genes predicted to be essential, pyrH, accA, and sodB, and a gene predicted to be nonessential, bpss0370, were independently investigated through the generation of conditional mutants. The conditional mutants confirmed the TraDIS predictions, showing that we have generated a list of genes predicted to be essential and demonstrating that this technique can be used to analyze complex genomes and thus be more widely applied. PMID:24520057

  5. The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei, B. mallei and B. thailandensis

    PubMed Central

    2012-01-01

    Background Burkholderia pseudomallei and Burkholderia mallei are gram-negative pathogens responsible for the diseases melioidosis and glanders, respectively. Both species cause disease in humans and animals and have been designated as category B select agents by the Centers for Disease Control and Prevention (CDC). Burkholderia thailandensis is a closely related bacterium that is generally considered avirulent for humans. While it can cause disease in rodents, the B. thailandensis 50% lethal dose (LD50) is typically???104-fold higher than the B. pseudomallei and B. mallei LD50 in mammalian models of infection. Here we describe an alternative to mammalian hosts in the study of virulence and host-pathogen interactions of these Burkholderia species. Results Madagascar hissing cockroaches (MH cockroaches) possess a number of qualities that make them desirable for use as a surrogate host, including ease of breeding, ease of handling, a competent innate immune system, and the ability to survive at 37°C. MH cockroaches were highly susceptible to infection with B. pseudomallei, B. mallei and B. thailandensis and the LD50 was <10 colony-forming units (cfu) for all three species. In comparison, the LD50 for Escherichia coli in MH cockroaches was >105?cfu. B. pseudomallei, B. mallei, and B. thailandensis cluster 1 type VI secretion system (T6SS-1) mutants were all attenuated in MH cockroaches, which is consistent with previous virulence studies conducted in rodents. B. pseudomallei mutants deficient in the other five T6SS gene clusters, T6SS-2 through T6SS-6, were virulent in both MH cockroaches and hamsters. Hemocytes obtained from MH cockroaches infected with B. pseudomallei harbored numerous intracellular bacteria, suggesting that this facultative intracellular pathogen can survive and replicate inside of MH cockroach phagocytic cells. The hemolymph extracted from these MH cockroaches also contained multinuclear giant cells (MNGCs) with intracellular B. pseudomallei, which indicates that infected hemocytes can fuse while flowing through the insect’s open circulatory system in vivo. Conclusions The results demonstrate that MH cockroaches are an attractive alternative to mammals to study host-pathogen interactions and may allow the identification of new Burkholderia virulence determinants. The importance of T6SS-1 as a virulence factor in MH cockroaches and rodents suggests that the primary role of this secretion system is to target evasion of the innate immune system. PMID:22892068

  6. The Multiple Roles of Hypothetical Gene BPSS1356 in Burkholderia pseudomallei

    PubMed Central

    Yam, Hokchai; Abdul Rahim, Ainihayati; Mohamad, Suriani; Mahadi, Nor Muhammad; Abdul Manaf, Uyub; Shu-Chien, Alexander Chong; Najimudin, Nazalan

    2014-01-01

    Burkholderia pseudomallei is an opportunistic pathogen and the causative agent of melioidosis. It is able to adapt to harsh environments and can live intracellularly in its infected hosts. In this study, identification of transcriptional factors that associate with the ?? subunit (RpoC) of RNA polymerase was performed. The N-terminal region of this subunit is known to trigger promoter melting when associated with a sigma factor. A pull-down assay using histidine-tagged B. pseudomallei RpoC N-terminal region as bait showed that a hypothetical protein BPSS1356 was one of the proteins bound. This hypothetical protein is conserved in all B. pseudomallei strains and present only in the Burkholderia genus. A BPSS1356 deletion mutant was generated to investigate its biological function. The mutant strain exhibited reduced biofilm formation and a lower cell density during the stationary phase of growth in LB medium. Electron microscopic analysis revealed that the ?BPSS1356 mutant cells had a shrunken cytoplasm indicative of cell plasmolysis and a rougher surface when compared to the wild type. An RNA microarray result showed that a total of 63 genes were transcriptionally affected by the BPSS1356 deletion with fold change values of higher than 4. The expression of a group of genes encoding membrane located transporters was concurrently down-regulated in ?BPSS1356 mutant. Amongst the affected genes, the putative ion transportation genes were the most severely suppressed. Deprivation of BPSS1356 also down-regulated the transcriptions of genes for the arginine deiminase system, glycerol metabolism, type III secretion system cluster 2, cytochrome bd oxidase and arsenic resistance. It is therefore obvious that BPSS1356 plays a multiple regulatory roles on many genes. PMID:24927285

  7. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells

    PubMed Central

    Al-Maleki, Anis Rageh; Mariappan, Vanitha; Vellasamy, Kumutha Malar; Tay, Sun Tee; Vadivelu, Jamuna

    2015-01-01

    Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis. PMID:25996927

  8. The Effect of Environmental Conditions on Biofilm Formation of Burkholderia pseudomallei Clinical Isolates

    PubMed Central

    Ramli, Nur Siti K.; Eng Guan, Chua; Nathan, Sheila; Vadivelu, Jamuna

    2012-01-01

    Burkholderia pseudomallei, a Gram-negative saprophytic bacterium, is the causative agent of the potentially fatal melioidosis disease in humans. In this study, environmental parameters including temperature, nutrient content, pH and the presence of glucose were shown to play a role in in vitro biofilm formation by 28 B. pseudomallei clinical isolates, including four isolates with large colony variants (LCVs) and small colony variants (SCVs) morphotypes. Enhanced biofilm formation was observed when the isolates were tested in LB medium, at 30°C, at pH 7.2, and in the presence of as little as 2 mM glucose respectively. It was also shown that all SVCs displayed significantly greater capacity to form biofilms than the corresponding LCVs when cultured in LB at 37°C. In addition, octanoyl-homoserine lactone (C8-HSL), a quorum sensing molecule, was identified by mass spectrometry analysis in bacterial isolates referred to as LCV CTH, LCV VIT, SCV TOM, SCV CTH, 1 and 3, and the presence of other AHL's with higher masses; decanoyl-homoserine lactone (C10-HSL) and dodecanoyl-homoserine lactone (C12-HSL) were also found in all tested strain in this study. Last but not least, we had successfully acquired two Bacillus sp. soil isolates, termed KW and SA respectively, which possessed strong AHLs degradation activity. Biofilm formation of B. pseudomallei isolates was significantly decreased after treated with culture supernatants of KW and SA strains, demonstrating that AHLs may play a role in B. pseudomallei biofilm formation. PMID:22970167

  9. Draft Genome Sequences of Burkholderia pseudomallei and Staphylococcus aureus, Isolated from a Patient with Chronic Rhinosinusitis

    PubMed Central

    Cottrell, Kyra; Cervin, Anders

    2015-01-01

    Here, we report the draft genome sequences of Burkholderia pseudomallei and Staphylococcus aureus causing chronic rhinosinusitis. Whole-genome sequencing determined the B. pseudomallei as sequence type (ST) 1381 and the S. aureus as ST8. B. pseudomallei possessed the blaOXA-59 gene. This study illustrates the potential emergence of B. pseudomallei in cases of chronic rhinosinusitis. PMID:26430027

  10. Effects of Colonization of the Roots of Domestic Rice (Oryza sativa L. cv. Amaroo) by Burkholderia pseudomallei

    PubMed Central

    Constantinoiu, Constantin; Gardiner, Christopher; Warner, Jeffrey

    2015-01-01

    Burkholderia pseudomallei is a saprophytic bacterium that causes melioidosis and is often isolated from rice fields in Southeast Asia, where the infection incidence is high among rice field workers. The aim of this study was to investigate the relationship between this bacterium and rice through growth experiments where the effect of colonization of domestic rice (Oryza sativa L. cv Amaroo) roots by B. pseudomallei could be observed. When B. pseudomallei was exposed to surface-sterilized seeds, the growth of both the root and the aerosphere was retarded compared to that in controls. The organism was found to localize in the root hairs and endodermis of the plant. A biofilm formed around the root and root structures that were colonized. Growth experiments with a wild rice species (Oryza meridionalis) produced similar retardation of growth, while another domestic cultivar (O. sativa L. cv Koshihikari) did not show retarded growth. Here we report B. pseudomallei infection and inhibition of O. sativa L. cv Amaroo, which might provide insights into plant interactions with this important human pathogen. PMID:25911477

  11. Characterization of BPSS1521 (bprD), a Regulator of Burkholderia pseudomallei Virulence Gene Expression in the Mouse Model

    PubMed Central

    Wongsurawat, Thidathip; Taweechaisupapong, Suwimol; Karoonutaisiri, Nitsara; Talaat, Adel M.; Wongratanacheewin, Surasakdi; Ernst, Robert K.; Sermswan, Rasana W.

    2014-01-01

    The Gram-negative saprophytic bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a severe infectious disease of both humans and animals. Severity of the disease is thought to be dependent on both the health status of the host, including diabetes mellitus and kidney disease, and bacterial-derived factors. To identify the bacterial factors important during an acute infection, gene expression profiles in the spleen, lung, and liver of BALB/c (Th2 prototype) and C57BL/6 mice (Th1 prototype) were determined using DNA microarrays. This analysis identified BPSS1521 (bprD), a predicted transcriptional regulator located in the type III secretion system (T3SS-3) operon, to be up regulated, specifically in C57BL/6 mice. BALB/c mice infected with a bprD mutant showed a shorter time to death and increased inflammation, as determined by histopathological analysis and enumeration of bacteria in the spleen. Elevated numbers of multinucleated giant cells (MNGCs), which is the hallmark of melioidosis, were detected in both the wild-type and the bprD mutants; a similar elevation occurs in melioidosis patients. One striking observation was the increased expression of BPSS1520 (bprC), located downstream of bprD, in the bprD mutant. BprC is a regulator of T6SS-1 that is required for the virulence of B. pseudomallei in murine infection models. Deletion of bprD led to the overexpression of bprC and a decreased time to death. bprD expression was elevated in C57BL/6 —as compared to BALB/c—mice, suggesting a role for BprD in the natural resistance of C57BL/6 mice to B. pseudomallei. Ultimately, this analysis using mice with different immune backgrounds may enhance our understanding of the outcomes of infection in a variety of models. PMID:25111708

  12. Genomic Islands as a Marker to Differentiate between Clinical and Environmental Burkholderia pseudomallei

    PubMed Central

    Bartpho, Thanatchaporn; Wongsurawat, Thidathip; Wongratanacheewin, Surasakdi; Talaat, Adel M.; Karoonuthaisiri, Nitsara; Sermswan, Rasana W.

    2012-01-01

    Burkholderia pseudomallei, as a saprophytic bacterium that can cause a severe sepsis disease named melioidosis, has preserved several extra genes in its genome for survival. The sequenced genome of the organism showed high diversity contributed mainly from genomic islands (GIs). Comparative genome hybridization (CGH) of 3 clinical and 2 environmental isolates, using whole genome microarrays based on B. pseudomallei K96243 genes, revealed a difference in the presence of genomic islands between clinical and environmental isolates. The largest GI, GI8, of B. pseudomallei was observed as a 2 sub-GI named GIs8.1 and 8.2 with distinguishable %GC content and unequal presence in the genome. GIs8.1, 8.2 and 15 were found to be more common in clinical isolates. A new GI, GI16c, was detected on chromosome 2. Presences of GIs8.1, 8.2, 15 and 16c were evaluated in 70 environmental and 64 clinical isolates using PCR assays. A combination of GIs8.1 and 16c (positivity of either GI) was detected in 70% of clinical isolates and 11.4% of environmental isolates (P<0.001). Using BALB/c mice model, no significant difference of time to mortality was observed between K96243 isolate and three isolates without GIs under evaluation (P>0.05). Some virulence genes located in the absent GIs and the difference of GIs seems to contribute less to bacterial virulence. The PCR detection of 2 GIs could be used as a cost effective and rapid tool to detect potentially virulent isolates that were contaminated in soil. PMID:22675491

  13. Evaluation of Molecular Methods To Improve the Detection of Burkholderia pseudomallei in Soil and Water Samples from Laos.

    PubMed

    Knappik, Michael; Dance, David A B; Rattanavong, Sayaphet; Pierret, Alain; Ribolzi, Olivier; Davong, Viengmon; Silisouk, Joy; Vongsouvath, Manivanh; Newton, Paul N; Dittrich, Sabine

    2015-06-01

    Burkholderia pseudomallei is the cause of melioidosis, a severe and potentially fatal disease of humans and animals. It is endemic in northern Australia and Southeast Asia and is found in soil and surface water. The environmental distribution of B. pseudomallei worldwide and within countries where it is endemic, such as the Lao People's Democratic Republic (Laos), remains unclear. However, this knowledge is important to our understanding of the ecology and epidemiology of B. pseudomallei and to facilitate public health interventions. Sensitive and specific methods to detect B. pseudomallei in environmental samples are therefore needed. The aim of this study was to compare molecular and culture-based methods for the detection of B. pseudomallei in soil and surface water in order to identify the optimal approach for future environmental studies in Laos. Molecular detection by quantitative real-time PCR (qPCR) was attempted after DNA extraction directly from soil or water samples or after an overnight enrichment step. The positivity rates obtained by qPCR were compared to those obtained by different culture techniques. The rate of detection from soil samples by qPCR following culture enrichment was significantly higher (84/100) than that by individual culture methods and all culture methods combined (44/100; P < 0.001). Similarly, qPCR following enrichment was the most sensitive method for filtered river water compared with the sensitivity of the individual methods and all individual methods combined. In conclusion, molecular detection following an enrichment step has proven to be a sensitive and reliable approach for B. pseudomallei detection in Lao environmental samples and is recommended as the preferred method for future surveys. PMID:25819969

  14. Proteomic Analysis of the Burkholderia pseudomallei Type II Secretome Reveals Hydrolytic Enzymes, Novel Proteins, and the Deubiquitinase TssM

    PubMed Central

    Burtnick, Mary N.; Brett, Paul J.

    2014-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is an opportunistic pathogen that harbors a wide array of secretion systems, including a type II secretion system (T2SS), three type III secretion systems (T3SS), and six type VI secretion systems (T6SS). The proteins exported by these systems provide B. pseudomallei with a growth advantage in vitro and in vivo, but relatively little is known about the full repertoire of exoproducts associated with each system. In this study, we constructed deletion mutations in gspD and gspE, T2SS genes encoding an outer membrane secretin and a cytoplasmic ATPase, respectively. The secretion profiles of B. pseudomallei MSHR668 and its T2SS mutants were noticeably different when analyzed by SDS-PAGE. We utilized liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify proteins present in the supernatants of B. pseudomallei MSHR668 and B. pseudomallei ?gspD grown in rich and minimal media. The MSHR668 supernatants contained 48 proteins that were either absent or substantially reduced in the supernatants of ?gspD strains. Many of these proteins were putative hydrolytic enzymes, including 12 proteases, two phospholipases, and a chitinase. Biochemical assays validated the LC-MS/MS results and demonstrated that the export of protease, phospholipase C, and chitinase activities is T2SS dependent. Previous studies had failed to identify the mechanism of secretion of TssM, a deubiquitinase that plays an integral role in regulating the innate immune response. Here we present evidence that TssM harbors an atypical signal sequence and that its secretion is mediated by the T2SS. This study provides the first in-depth characterization of the B. pseudomallei T2SS secretome. PMID:24866793

  15. Evaluation of Molecular Methods To Improve the Detection of Burkholderia pseudomallei in Soil and Water Samples from Laos

    PubMed Central

    Knappik, Michael; Dance, David A. B.; Rattanavong, Sayaphet; Pierret, Alain; Ribolzi, Olivier; Davong, Viengmon; Silisouk, Joy; Vongsouvath, Manivanh; Newton, Paul N.

    2015-01-01

    Burkholderia pseudomallei is the cause of melioidosis, a severe and potentially fatal disease of humans and animals. It is endemic in northern Australia and Southeast Asia and is found in soil and surface water. The environmental distribution of B. pseudomallei worldwide and within countries where it is endemic, such as the Lao People's Democratic Republic (Laos), remains unclear. However, this knowledge is important to our understanding of the ecology and epidemiology of B. pseudomallei and to facilitate public health interventions. Sensitive and specific methods to detect B. pseudomallei in environmental samples are therefore needed. The aim of this study was to compare molecular and culture-based methods for the detection of B. pseudomallei in soil and surface water in order to identify the optimal approach for future environmental studies in Laos. Molecular detection by quantitative real-time PCR (qPCR) was attempted after DNA extraction directly from soil or water samples or after an overnight enrichment step. The positivity rates obtained by qPCR were compared to those obtained by different culture techniques. The rate of detection from soil samples by qPCR following culture enrichment was significantly higher (84/100) than that by individual culture methods and all culture methods combined (44/100; P < 0.001). Similarly, qPCR following enrichment was the most sensitive method for filtered river water compared with the sensitivity of the individual methods and all individual methods combined. In conclusion, molecular detection following an enrichment step has proven to be a sensitive and reliable approach for B. pseudomallei detection in Lao environmental samples and is recommended as the preferred method for future surveys. PMID:25819969

  16. Curcumin rescues Caenorhabditis elegans from a Burkholderia pseudomallei infection

    PubMed Central

    Eng, Su-Anne; Nathan, Sheila

    2015-01-01

    The tropical pathogen Burkholderia pseudomallei requires long-term parenteral antimicrobial treatment to eradicate the pathogen from an infected patient. However, the development of antibiotic resistance is emerging as a threat to this form of treatment. To meet the need for alternative therapeutics, we proposed a screen of natural products for compounds that do not kill the pathogen, but in turn, abrogate bacterial virulence. We suggest that the use of molecules or compounds that are non-bactericidal (bacteriostatic) will reduce or abolish the development of resistance by the pathogen. In this study, we adopted the established Caenorhabditis elegans-B. pseudomallei infection model to screen a collection of natural products for any that are able to extend the survival of B. pseudomallei infected worms. Of the 42 natural products screened, only curcumin significantly improved worm survival following infection whilst not affecting bacterial growth. This suggested that curcumin promoted B. pseudomallei-infected worm survival independent of pathogen killing. To validate that the protective effect of curcumin was directed toward the pathogen, bacteria were treated with curcumin prior to infection. Worms fed with curcumin-treated bacteria survived with a significantly extended mean-time-to-death (p < 0.0001) compared to the untreated control. In in vitro assays, curcumin reduced the activity of known virulence factors (lipase and protease) and biofilm formation. To determine if other bacterial genes were also regulated in the presence of curcumin, a genome-wide transcriptome analysis was performed on curcumin-treated pathogen. A number of genes involved in iron acquisition and transport as well as genes encoding hypothetical proteins were induced in the presence of curcumin. Thus, we propose that curcumin may attenuate B. pseudomallei by modulating the expression of a number of bacterial proteins including lipase and protease as well as biofilm formation whilst concomitantly regulating iron transport and other proteins of unknown function. PMID:25914690

  17. Curcumin rescues Caenorhabditis elegans from a Burkholderia pseudomallei infection.

    PubMed

    Eng, Su-Anne; Nathan, Sheila

    2015-01-01

    The tropical pathogen Burkholderia pseudomallei requires long-term parenteral antimicrobial treatment to eradicate the pathogen from an infected patient. However, the development of antibiotic resistance is emerging as a threat to this form of treatment. To meet the need for alternative therapeutics, we proposed a screen of natural products for compounds that do not kill the pathogen, but in turn, abrogate bacterial virulence. We suggest that the use of molecules or compounds that are non-bactericidal (bacteriostatic) will reduce or abolish the development of resistance by the pathogen. In this study, we adopted the established Caenorhabditis elegans-B. pseudomallei infection model to screen a collection of natural products for any that are able to extend the survival of B. pseudomallei infected worms. Of the 42 natural products screened, only curcumin significantly improved worm survival following infection whilst not affecting bacterial growth. This suggested that curcumin promoted B. pseudomallei-infected worm survival independent of pathogen killing. To validate that the protective effect of curcumin was directed toward the pathogen, bacteria were treated with curcumin prior to infection. Worms fed with curcumin-treated bacteria survived with a significantly extended mean-time-to-death (p < 0.0001) compared to the untreated control. In in vitro assays, curcumin reduced the activity of known virulence factors (lipase and protease) and biofilm formation. To determine if other bacterial genes were also regulated in the presence of curcumin, a genome-wide transcriptome analysis was performed on curcumin-treated pathogen. A number of genes involved in iron acquisition and transport as well as genes encoding hypothetical proteins were induced in the presence of curcumin. Thus, we propose that curcumin may attenuate B. pseudomallei by modulating the expression of a number of bacterial proteins including lipase and protease as well as biofilm formation whilst concomitantly regulating iron transport and other proteins of unknown function. PMID:25914690

  18. Caspase-1-Dependent and -Independent Cell Death Pathways in Burkholderia pseudomallei Infection of Macrophages

    PubMed Central

    Schmidt, Imke H. E.; Pudla, Matsayapan; Brakopp, Stefanie; Hopf, Verena; Breitbach, Katrin; Steinmetz, Ivo

    2014-01-01

    The cytosolic pathogen Burkholderia pseudomallei and causative agent of melioidosis has been shown to regulate IL-1? and IL-18 production through NOD-like receptor NLRP3 and pyroptosis via NLRC4. Downstream signalling pathways of those receptors and other cell death mechanisms induced during B. pseudomallei infection have not been addressed so far in detail. Furthermore, the role of B. pseudomallei factors in inflammasome activation is still ill defined. In the present study we show that caspase-1 processing and pyroptosis is exclusively dependent on NLRC4, but not on NLRP3 in the early phase of macrophage infection, whereas at later time points caspase-1 activation and cell death is NLRC4- independent. In the early phase we identified an activation pathway involving caspases-9, -7 and PARP downstream of NLRC4 and caspase-1. Analyses of caspase-1/11-deficient infected macrophages revealed a strong induction of apoptosis, which is dependent on activation of apoptotic initiator and effector caspases. The early activation pathway of caspase-1 in macrophages was markedly reduced or completely abolished after infection with a B. pseudomallei flagellin FliC or a T3SS3 BsaU mutant. Studies using cells transfected with the wild-type and mutated T3SS3 effector protein BopE indicated also a role of this protein in caspase-1 processing. A T3SS3 inner rod protein BsaK mutant failed to activate caspase-1, revealed higher intracellular counts, reduced cell death and IL-1? secretion during early but not during late macrophage infection compared to the wild-type. Intranasal infection of BALB/c mice with the BsaK mutant displayed a strongly decreased mortality, lower bacterial loads in organs, and reduced levels of IL-1?, myeloperoxidase and neutrophils in bronchoalveolar lavage fluid. In conclusion, our results indicate a major role for a functional T3SS3 in early NLRC4-mediated caspase-1 activation and pyroptosis and a contribution of late caspase-1-dependent and -independent cell death mechanisms in the pathogenesis of B. pseudomallei infection. PMID:24626296

  19. Cross-Species Comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei Quorum-Sensing Regulons

    PubMed Central

    Majerczyk, Charlotte D.; Brittnacher, Mitchell J.; Jacobs, Michael A.; Armour, Christopher D.; Radey, Matthew C.; Bunt, Richard; Hayden, Hillary S.; Bydalek, Ryland

    2014-01-01

    Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei (the Bptm group) are close relatives with very different lifestyles: B. pseudomallei is an opportunistic pathogen, B. thailandensis is a nonpathogenic saprophyte, and B. mallei is a host-restricted pathogen. The acyl-homoserine lactone quorum-sensing (QS) systems of these three species show a high level of conservation. We used transcriptome sequencing (RNA-seq) to define the quorum-sensing regulon in each species, and we performed a cross-species analysis of the QS-controlled orthologs. Our analysis revealed a core set of QS-regulated genes in all three species, as well as QS-controlled factors shared by only two species or unique to a given species. This global survey of the QS regulons of B. pseudomallei, B. thailandensis, and B. mallei serves as a platform for predicting which QS-controlled processes might be important in different bacterial niches and contribute to the pathogenesis of B. pseudomallei and B. mallei. PMID:25182491

  20. Oropharyngeal Aspiration of Burkholderia mallei and Burkholderia pseudomallei in BALB/c Mice

    PubMed Central

    Schully, Kevin L.; Bell, Matthew G.; Ward, Jerrold M.; Keane-Myers, Andrea M.

    2014-01-01

    Burkholderia mallei and Burkholderia pseudomallei are potentially lethal pathogens categorized as biothreat agents due, in part, to their ability to be disseminated via aerosol. There are no protective vaccines against these pathogens and treatment options are limited and cumbersome. Since disease severity is greatest when these agents are inhaled, efforts to develop pre- or post-exposure prophylaxis focus largely on inhalation models of infection. Here, we demonstrate a non-invasive and technically simple method for affecting the inhalational challenge of BALB/c mice with B. pseudomallei and B. mallei. In this model, two investigators utilized common laboratory tools such as forceps and a micropipette to conduct and characterize an effective and reproducible inhalational challenge of BALB/c mice with B. mallei and B. pseudomallei. Challenge by oropharyngeal aspiration resulted in acute disease. Additionally, 50% endpoints for B. pseudomallei K96243 and B. mallei ATCC 23344 were nearly identical to published aerosol challenge methods. Furthermore, the pathogens disseminated to all major organs typically targeted by these agents where they proliferated. The pro-inflammatory cytokine production in the proximal and peripheral fluids demonstrated a rapid and robust immune response comparable to previously described murine and human studies. These observations demonstrate that OA is a viable alternative to aerosol exposure. PMID:25503969

  1. Clinical, Environmental, and Serologic Surveillance Studies of Melioidosis in Gabon, 2012–2013

    PubMed Central

    Birnie, Emma; Weehuizen, Tassili A.F.; Alabi, Abraham S.; Huson, Michaëla A.M.; in ’t Veld, Robert A. G. Huis; Mabala, Harry K.; Adzoda, Gregoire K.; Raczynski-Henk, Yannick; Esen, Meral; Lell, Bertrand; Kremsner, Peter G.; Visser, Caroline E.; Wuthiekanun, Vanaporn; Peacock, Sharon J.; van der Ende, Arie; Limmathurotsakul, Direk; Grobusch, Martin P.

    2015-01-01

    Burkholderia pseudomallei, an environmental gram-negative bacillus, is the causative agent of melioidosis and a bio-threat agent. Reports of B. pseudomallei isolation from soil and animals in East and West Africa suggest that melioidosis might be more widely distributed than previously thought. Because it has been found in equatorial areas with tropical climates, we hypothesized that B. pseudomallei could exist in Gabon. During 2012–2013, we conducted a seroprevalance study in which we set up microbiology facilities at a large clinical referral center and prospectively screened all febrile patients by conducting blood cultures and testing for B. pseudomallei and related species; we also determined whether B. pseudomallei could be isolated from soil. We discovered a novel B. pseudomallei sequence type that caused lethal septic shock and identified B. pseudomallei and B. thailandensis in the environment. Our data suggest that melioidosis is emerging in Central Africa but is unrecognized because of the lack of diagnostic microbiology facilities. PMID:25530077

  2. A rare cause of septic arthritis: melioidosis.

    PubMed

    Caldera, Aruna Sanjeewa; Kumanan, Thirunavukarasu; Corea, Enoka

    2013-10-01

    Melioidosis is a pyogenic infection with high mortality caused by the bacterium Burkholderia pseudomallei. As the clinical presentation is not distinctive, a high index of clinical suspicion is required for diagnosis. We present a case of a 50-year-old farmer who was diabetic and a chronic alcoholic, who presented to us with pneumonia, followed by septic arthritis. He was ultimately diagnosed as having melioidosis. PMID:24067292

  3. Association of Melioidosis Incidence with Rainfall and Humidity, Singapore, 2003–2012

    PubMed Central

    Liu, Xiang; Pang, Long; Sim, Siew Hoon; Goh, Kee Tai; Ravikumar, Sharada; Win, Mar Soe; Tan, Gladys; Cook, Alex Richard; Fisher, Dale

    2015-01-01

    Soil has been considered the natural reservoir for the bacterium Burkholderia pseudomallei, which causes melioidosis. We examined 550 melioidosis cases that occurred during a 10-year period in the highly urbanized city of Singapore, where soil exposure is rare, and found that rainfall and humidity levels were associated with disease incidence. PMID:25531547

  4. Functional Characterization and Evaluation of In Vitro Protective Efficacy of Murine Monoclonal Antibodies BURK24 and BURK37 against Burkholderia pseudomallei

    PubMed Central

    Peddayelachagiri, Bhavani V.; Paul, Soumya; Makam, Shivakiran S.; Urs, Radhika M.; Kingston, Joseph J.; Tuteja, Urmil; Sripathy, Murali H.; Batra, Harsh V.

    2014-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis has been recognized by CDC as a category B select agent. Although substantial efforts have been made for development of vaccine molecules against the pathogen, significant hurdles still remain. With no licensed vaccines available and high relapse rate of the disease, there is a pressing need for development of alternate protection strategies. Antibody-mediated passive protection is promising in this regard and our primary interest was to unravel this frontier of specific mAbs against Burkholderia pseudomallei infections, as functional characterization of antibodies is a pre-requisite to demonstrate them as protective molecules. To achieve this, we designed our study on in vitro-based approach and assessed two mAbs, namely BURK24 and BURK37, reactive with outer membrane proteins and lipopolysaccharide of the pathogen respectively, for their ability to manifest inhibitory effects on the pathogenesis mechanisms of B. pseudomallei including biofilm formation, invasion and induction of apoptosis. The experiments were performed using B. pseudomallei standard strain NCTC 10274 and a clinical isolate, B. pseudomallei 621 recovered from a septicemia patient with diabetic ailment. The growth kinetic studies of the pathogen in presence of various concentrations of each individual mAb revealed their anti-bacterial properties. Minimal inhibitory concentration and minimal bactericidal concentration of both the mAbs were determined by using standards of Clinical and Laboratory Standards Institute (CLSI) and experiments were performed using individual mAbs at their respective bacteriostatic concentration. As an outcome, both mAbs exhibited significant anti-Burkholderia pseudomallei properties. They limited the formation of biofilm by the bacterium and completely crippled its invasion into human alveolar adenocarcinoma epithelial cells. Also, the mAbs were appreciably successful in preventing the bacterium to induce apoptosis in A549 cells. The present study design revealed the protection attributes possessed by BURK24 and BURK37 that has to be further substantiated by additional in vivo studies. PMID:24614539

  5. Utilization of Whole-Cell MALDI-TOF Mass Spectrometry to Differentiate Burkholderia pseudomallei Wild-Type and Constructed Mutants

    PubMed Central

    Jaresitthikunchai, Janthima; Roytrakul, Sittiruk; Tungpradabkul, Sumalee

    2015-01-01

    Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has been widely adopted as a useful technology in the identification and typing of microorganisms. This study employed the whole-cell MALDI-TOF MS to identify and differentiate wild-type and mutants containing constructed single gene mutations of Burkholderia pseudomallei, a pathogenic bacterium causing melioidosis disease in both humans and animals. Candidate biomarkers for the B. pseudomallei mutants, including rpoS, ppk, and bpsI isolates, were determined. Taxon-specific and clinical isolate-specific biomarkers of B. pseudomallei were consistently found and conserved across all average mass spectra. Cluster analysis of MALDI spectra of all isolates exhibited separate distribution. A total of twelve potential mass peaks discriminating between wild-type and mutant isolates were identified using ClinProTools analysis. Two peaks (m/z 2721 and 2748 Da) were specific for the rpoS isolate, three (m/z 3150, 3378, and 7994 Da) for ppk, and seven (m/z 3420, 3520, 3587, 3688, 4623, 4708, and 5450 Da) for bpsI. Our findings demonstrated that the rapid, accurate, and reproducible mass profiling technology could have new implications in laboratory-based rapid differentiation of extensive libraries of genetically altered bacteria. PMID:26656930

  6. Disarming Burkholderia pseudomallei: Structural and Functional Characterization of a Disulfide Oxidoreductase (DsbA) Required for Virulence In Vivo

    PubMed Central

    McMahon, Róisín M.; Marshall, Laura E.; Halili, Maria; Furlong, Emily; Tay, Stephanie; Sarkar-Tyson, Mitali

    2014-01-01

    Abstract Aims: The intracellular pathogen Burkholderia pseudomallei causes the disease melioidosis, a major source of morbidity and mortality in southeast Asia and northern Australia. The need to develop novel antimicrobials is compounded by the absence of a licensed vaccine and the bacterium's resistance to multiple antibiotics. In a number of clinically relevant Gram-negative pathogens, DsbA is the primary disulfide oxidoreductase responsible for catalyzing the formation of disulfide bonds in secreted and membrane-associated proteins. In this study, a putative B. pseudomallei dsbA gene was evaluated functionally and structurally and its contribution to infection assessed. Results: Biochemical studies confirmed the dsbA gene encodes a protein disulfide oxidoreductase. A dsbA deletion strain of B. pseudomallei was attenuated in both macrophages and a BALB/c mouse model of infection and displayed pleiotropic phenotypes that included defects in both secretion and motility. The 1.9 Å resolution crystal structure of BpsDsbA revealed differences from the classic member of this family Escherichia coli DsbA, in particular within the region surrounding the active site disulfide where EcDsbA engages with its partner protein E. coli DsbB, indicating that the interaction of BpsDsbA with its proposed partner BpsDsbB may be distinct from that of EcDsbA-EcDsbB. Innovation: This study has characterized BpsDsbA biochemically and structurally and determined that it is required for virulence of B. pseudomallei. Conclusion: These data establish a critical role for BpsDsbA in B. pseudomallei infection, which in combination with our structural characterization of BpsDsbA will facilitate the future development of rationally designed inhibitors against this drug-resistant organism. Antioxid. Redox Signal. 20, 606–617. PMID:23901809

  7. Structural characterization of Burkholderia pseudomallei adenylate kinase (Adk): Profound asymmetry in the crystal structure of the 'open' state

    SciTech Connect

    Buchko, G.W.; Robinson, H.; Abendroth, J.; Staker, B. L.; Myler, P. J.

    2010-04-16

    In all organisms adenylate kinases (Adks) play a vital role in cellular energy metabolism and nucleic acid synthesis. Due to differences in catalytic properties between the Adks found in prokaryotes and in the cytoplasm of eukaryotes, there is interest in targeting this enzyme for new drug therapies against infectious bacterial agents. Here we report the 2.1 {angstrom} resolution crystal structure for the 220-residue Adk from Burkholderia pseudomallei (BpAdk), the etiological agent responsible for the infectious disease melioidosis. The general structure of apo BpAdk is similar to other Adk structures, composed of a CORE subdomain with peripheral ATP-binding (ATP{sub bd}) and LID subdomains. The two molecules in the asymmetric unit have significantly different conformations, with a backbone RMSD of 1.46 {angstrom}. These two BpAdk conformations may represent 'open' Adk sub-states along the preferential pathway to the 'closed' substrate-bound state.

  8. From crystal structure to in silico epitope discovery in the Burkholderia pseudomallei flagellar hook-associated protein FlgK.

    PubMed

    Gourlay, Louise J; Thomas, Rachael J; Peri, Claudio; Conchillo-Solé, Oscar; Ferrer-Navarro, Mario; Nithichanon, Arnone; Vila, Jordi; Daura, Xavier; Lertmemongkolchai, Ganjana; Titball, Richard; Colombo, Giorgio; Bolognesi, Martino

    2015-04-01

    Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a potentially fatal infection that is endemic in Southeast Asia and Northern Australia that is poorly controlled by antibiotics. Research efforts to identify antigenic components for a melioidosis vaccine have led to the identification of several proteins, including subunits forming the flagella that mediate bacterial motility, host colonization, and virulence. This study focuses on the B. pseudomallei flagellar hook-associated protein (FlgK(Bp)), and provides the first insights into the 3D structure of FlgK proteins as targets for structure-based antigen engineering. The FlgK(Bp) crystal structure (presented here at 1.8-Å resolution) reveals a multidomain fold, comprising two small ?-domains protruding from a large elongated ?-helical bundle core. The evident structural similarity to flagellin, the flagellar filament subunit protein, suggests that, depending on the bacterial species, flagellar hook-associated proteins are likely to show a conserved, elongated ?-helical bundle scaffold coupled to a variable number of smaller domains. Furthermore, we present immune serum recognition data confirming, in agreement with previous findings, that recovered melioidosis patients produce elevated levels of antibodies against FlgK(Bp), in comparison with seronegative and seropositive healthy subjects. Moreover, we show that FlgK(Bp) has cytotoxic effects on cultured murine macrophages, suggesting an important role in bacterial pathogenesis. Finally, computational epitope prediction methods applied to the FlgK(Bp) crystal structure, coupled with in vitro mapping, allowed us to predict three antigenic regions that locate to discrete protein domains. Taken together, our results point to FlgK(Bp) as a candidate for the design and production of epitope-containing subunits/domains as potential vaccine components. PMID:25645451

  9. Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles

    PubMed Central

    Nandi, Tannistha; Holden, Matthew T.G.; Didelot, Xavier; Mehershahi, Kurosh; Boddey, Justin A.; Beacham, Ifor; Peak, Ian; Harting, John; Baybayan, Primo; Guo, Yan; Wang, Susana; How, Lee Chee; Sim, Bernice; Essex-Lopresti, Angela; Sarkar-Tyson, Mitali; Nelson, Michelle; Smither, Sophie; Ong, Catherine; Aw, Lay Tin; Hoon, Chua Hui; Michell, Stephen; Studholme, David J.; Titball, Richard; Chen, Swaine L.; Parkhill, Julian

    2015-01-01

    Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity. PMID:25236617

  10. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    SciTech Connect

    Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.; Edwards, Thomas E.; Leonard, Jess T.; Abendroth, Jan; Burris, Courtney A.; Bhandari, Janhavi; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.

    2011-09-28

    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.

  11. Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles.

    PubMed

    Nandi, Tannistha; Holden, Matthew T G; Holden, Mathew T G; Didelot, Xavier; Mehershahi, Kurosh; Boddey, Justin A; Beacham, Ifor; Peak, Ian; Harting, John; Baybayan, Primo; Guo, Yan; Wang, Susana; How, Lee Chee; Sim, Bernice; Essex-Lopresti, Angela; Sarkar-Tyson, Mitali; Nelson, Michelle; Smither, Sophie; Ong, Catherine; Aw, Lay Tin; Hoon, Chua Hui; Michell, Stephen; Studholme, David J; Titball, Richard; Chen, Swaine L; Parkhill, Julian; Tan, Patrick

    2015-01-01

    Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity. PMID:25236617

  12. Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in Burkholderia pseudomallei bpsI, ppk, and rpoS mutant strains.

    PubMed

    Mongkolrob, Rungrawee; Taweechaisupapong, Suwimol; Tungpradabkul, Sumalee

    2015-11-01

    Burkholderia pseudomallei is the cause of melioidosis, a fatal tropical infectious disease, which has been reported to have a high rate of recurrence, even when an intensive dose of antibiotics is used. Biofilm formation is believed to be one of the possible causes of relapse because of its ability to increase drug resistance. EPS in biofilms have been reported to be related to the limitation of antibiotic penetration in B. pseudomallei. However, the mechanisms by which biofilms restrict the diffusion of antibiotics remain unclear. The present study presents a correlation between exopolysaccharide production in biofilm matrix and antibiotic resistance in B. pseudomallei using bpsI, ppk, and rpoS mutant strains. CLSM revealed a reduction in exopolysaccharide production and disabled micro-colony formation in B. pseudomallei mutants, which paralleled the antibiotic resistance. Different ratios of carbohydrate contents in the exopolysaccharides of the mutants were detected, although they have the same components, including glucose, galactose, mannose, and rhamnose, with the exception being that no detectable rhamnose peak was observed in the bpsI mutant. These results indicate that the correlation between these phenomena in the B. pseudomallei biofilm at least results from the exopolysaccharide, which may be under the regulation of bpsI, ppk, or rpoS genes. PMID:26486518

  13. Characterization of the mrgRS locus of the opportunistic pathogen Burkholderia pseudomallei: temperature regulates the expression of a two-component signal transduction system

    PubMed Central

    Mahfouz, Magdy E; Grayson, T Hilton; Dance, David AB; Gilpin, Martyn L

    2006-01-01

    Background Burkholderia pseudomallei is a saprophyte in tropical environments and an opportunistic human pathogen. This versatility requires a sensing mechanism that allows the bacterium to respond rapidly to altered environmental conditions. We characterized a two-component signal transduction locus from B. pseudomallei 204, mrgR and mrgS, encoding products with extensive homology with response regulators and histidine protein kinases of Escherichia coli, Bordetella pertussis, and Vibrio cholerae. Results The locus was present and expressed in a variety of B. pseudomallei human and environmental isolates but was absent from other Burkholderia species, B. cepacia, B. cocovenenans, B. plantarii, B. thailandensis, B. vandii, and B. vietnamiensis. A 2128 bp sequence, including the full response regulator mrgR, but not the sensor kinase mrgS, was present in the B. mallei genome. Restriction fragment length polymorphism downstream from mrgRS showed two distinct groups were present among B. pseudomallei isolates. Our analysis of the open reading frames in this region of the genome revealed that transposase and bacteriophage activity may help explain this variation. MrgR and MrgS proteins were expressed in B. pseudomallei 204 cultured at different pH, salinity and temperatures and the expression was substantially reduced at 25°C compared with 37°C or 42°C but was mostly unaffected by pH or salinity, although at 25°C and 0.15% NaCl a small increase in MrgR expression was observed at pH 5. MrgR was recognized by antibodies in convalescent sera pooled from melioidosis patients. Conclusion The results suggest that mrgRS regulates an adaptive response to temperature that may be essential for pathogenesis, particularly during the initial phases of infection. B. pseudomallei and B. mallei are very closely related species that differ in their capacity to adapt to changing environmental conditions. Modifications in this region of the genome may assist our understanding of the reasons for this difference. PMID:16893462

  14. Crystallization and preliminary X-ray diffraction analysis of BipD, a virulence factor from Burkholderia pseudomallei

    SciTech Connect

    Knight, M. J.; Ruaux, A.; Mikolajek, H.; Erskine, P. T.; Gill, R.; Wood, S. P.; Wood, M.; Cooper, J. B.

    2006-08-01

    BipD is likely to be a component of a type-III protein secretion system (TTSS) in B. pseudomallei. Native and selenomethionyl-BipD proteins have been expressed and crystals have been obtained which diffract to 2.1 Å. Burkholderia pseudomallei, the causative agent of melioidosis, possesses a protein-secretion apparatus that is similar to those found in Salmonella and Shigella. A major function of these secretion systems is to secrete virulence-associated proteins into target cells of the host organism. The BipD gene of B. pseudomallei encodes a secreted virulence factor that is similar in sequence and most likely functionally analogous to IpaD from Shigella and SipD from Salmonella. Thus, the BipD protein is likely to be a component of a type III protein-secretion system (TTSS) in B. pseudomallei. Proteins in the same class as BipD, such as IpaD and SipD, are thought to act as extracellular chaperones to help the hydrophobic translocator proteins enter the target cell membrane, where they form a pore and might even link the translocon pore with the secretion needle. There is evidence that the translocator proteins also bind an integrin which stimulates actin-mediated insertion of the bacterium into the host-cell membrane. Native BipD has been crystallized in a monoclinic crystal form that diffracts X-rays to 2.5 Å resolution. BipD protein which incorporates selenomethionine (SeMet-BipD) has also been expressed and forms crystals which diffract to a higher resolution of 2.1 Å.

  15. Burkholderia pseudomallei Type III Secretion System Cluster 3 ATPase BsaS, a Chemotherapeutic Target for Small-Molecule ATPase Inhibitors

    PubMed Central

    Gong, Lan; Lai, Shu-Chin; Treerat, Puthayalai; Prescott, Mark; Adler, Ben

    2015-01-01

    Melioidosis is an infectious disease of high mortality for humans and other animal species; it is prevalent in tropical regions worldwide. The pathogenesis of melioidosis depends on the ability of its causative agent, the Gram-negative bacterium Burkholderia pseudomallei, to enter and survive in host cells. B. pseudomallei can escape from the phagosome into the cytosol of phagocytic cells where it replicates and acquires actin-mediated motility, avoiding killing by the autophagy-dependent process, LC3 (microtubule-associated protein light chain 3)-associated phagocytosis (LAP). The type III secretion system cluster 3 (TTSS3) facilitates bacterial escape from phagosomes, although the mechanism has not been fully elucidated. Given the recent identification of small-molecule inhibitors of the TTSS ATPase, we sought to determine the potential of the predicted TTSS3 ATPase, encoded by bsaS, as a target for chemotherapeutic treatment of infection. A B. pseudomallei bsaS deletion mutant was generated and used as a control against which to assess the effect of inhibitor treatment. Infection of RAW 264.7 cells with wild-type bacteria and subsequent treatment with the ATPase inhibitor compound 939 resulted in reduced intracellular bacterial survival, reduced escape from phagosomes, and increased colocalization with both LC3 and the lysosomal marker LAMP1 (lysosome-associated membrane protein 1). These changes were similar to those observed for infection of RAW 264.7 cells with the bsaS deletion mutant. We propose that treatment with the ATPase inhibitor compound 939 decreased intracellular bacterial survival through a reduced ability of bacteria to escape from phagosomes and increased killing via LAP. Therefore, small-molecule inhibitors of the TTSS3 ATPase have potential as therapeutic treatments against melioidosis. PMID:25605762

  16. The In vitro Antibiotic Tolerant Persister Population in Burkholderia pseudomallei is Altered by Environmental Factors

    PubMed Central

    Nierman, William C.; Yu, Yan; Losada, Liliana

    2015-01-01

    Bacterial persistence due to antibiotic tolerance is a critical aspect of antibiotic treatment failure, disease latency, and chronic or reemergent infections. The levels of persisters is especially notable for the opportunistic Gram-negative pathogens from the Burkholderia and Pseudomonas genera. We examined the rate of drug tolerant persisters in Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia cepacia complex organisms, and Pseudomonas aeruginosa at mid-log growth in LB broth culture. We found that a fraction of the antibiotic-sensitive cells from every species were tolerant to a 24 h high-dose antibiotic challenge. All tested Burkholderia strains demonstrated a drug tolerant persister population at a rate that was at least 100–500 times higher than P. aeruginosa. When challenged with at least a 10X minimum inhibitory concentration (MIC) 24 h exposure to three different antibiotics with different modes of action we found that in B. pseudomallei Bp82 each of the tree antibiotics revealed different persister fractions at each of two different growth states. This observation suggests that our assay is detecting heterogeneous persister subpopulations. Persistence in B. pseudomallei Bp82 was highly dependent on growth stage, with a surprisingly high persister fraction of >64% of the late stationary phase cells being antibiotic tolerant to 100XMIC cefotaxime. Adaptation of B. pseudomallei to distilled water storage resulted in a population of drug tolerant cells up to 100% of the non-drug-challenged viable cell count in the same cefotaxime assay. Cultivation of B. pseudomallei with a sub-inhibitory concentration of several antibiotics resulted in altered persister fractions within the population relative to cultures lacking the antibiotic. Our study provides insight into the sensitivity of the persister fraction within the population of B. pseudomallei due to environmental variables and suggests diversity within the persister population revealed by different challenge antibiotics. PMID:26696964

  17. Extended Loop Region of Hcp1 is Critical for the Assembly and Function of Type VI Secretion System in Burkholderia pseudomallei

    PubMed Central

    Lim, Yan Ting; Jobichen, Chacko; Wong, Jocelyn; Limmathurotsakul, Direk; Li, Shaowei; Chen, Yahua; Raida, Manfred; Srinivasan, Nalini; MacAry, Paul Anthony; Sivaraman, J.; Gan, Yunn-Hwen

    2015-01-01

    The Type VI Secretion System cluster 1 (T6SS1) is essential for the pathogenesis of Burkholderia pseudomallei, the causative agent of melioidosis, a disease endemic in the tropics. Inside host cells, B. pseudomallei escapes into the cytosol and through T6SS1, induces multinucleated giant cell (MNGC) formation that is thought to be important for bacterial cell to cell spread. The hemolysin-coregulated protein (Hcp) is both a T6SS substrate, as well as postulated to form part of the T6SS secretion tube. Our structural study reveals that Hcp1 forms hexameric rings similar to the other Hcp homologs but has an extended loop (Asp40-Arg56) that deviates significantly in position compared to other Hcp structures and may act as a key contact point between adjacent hexameric rings. When two residues within the loop were mutated, the mutant proteins were unable to stack as dodecamers, suggesting defective tube assembly. Moreover, infection with a bacterial mutant containing in situ substitution of these hcp1 residues abolishes Hcp1 secretion inside infected cells and MNGC formation. We further show that Hcp has the ability to preferentially bind to the surface of antigen-presenting cells, which may contribute to its immunogenicity in inducing high titers of antibodies seen in melioidosis patients. PMID:25648885

  18. Finished Annotated Genome Sequence of Burkholderia pseudomallei Strain Bp1651, a Multidrug-Resistant Clinical Isolate

    PubMed Central

    Sue, David; Hakovirta, Janetta; Loparev, Vladimir N.; Knipe, Kristen; Sammons, Scott A.; Ranganathan-Ganakammal, Satishkumar; Changayil, Shankar; Srinivasamoorthy, Ganesh; Weil, Michael R.; Tatusov, Roman L.; Gee, Jay E.; Elrod, Mindy G.; Hoffmaster, Alex R.; Weigel, Linda M.

    2015-01-01

    Burkholderia pseudomallei strain Bp1651, a human isolate, is resistant to all clinically relevant antibiotics. We report here on the finished genome sequence assembly and annotation of the two chromosomes of this strain. This genome sequence may assist in understanding the mechanisms of antimicrobial resistance for this pathogenic species. PMID:26634765

  19. Melioidosis: Molecular Aspects of Pathogenesis

    PubMed Central

    Stone, Joshua K.; DeShazer, David; Brett, Paul J.; Burtnick, Mary N.

    2015-01-01

    SUMMARY Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis, a multifaceted disease that is highly endemic in Southeast Asia and northern Australia. This facultative intracellular pathogen possesses a large genome that encodes a wide array of virulence factors that promote survival in vivo by manipulating host cell processes and disarming elements of the host immune system. Antigens and systems that play key roles in B. pseudomallei virulence include capsular polysaccharide, lipopolysaccharide, adhesins, specialized secretion systems, actin-based motility and various secreted factors. This review provides an overview of the current and steadily expanding knowledge regarding the molecular mechanisms used by this organism to survive within a host and their contribution to the pathogenesis of melioidosis. PMID:25312349

  20. The Burkholderia pseudomallei Proteins BapA and BapC Are Secreted TTSS3 Effectors and BapB Levels Modulate Expression of BopE

    PubMed Central

    Treerat, Puthayalai; Alwis, Priyangi; D’Cruze, Tanya; Cullinane, Meabh; Vadivelu, Jamunarani; Devenish, Rodney J.; Prescott, Mark; Adler, Ben; Boyce, John D.

    2015-01-01

    Many Gram-negative pathogens use a type III secretion system (TTSS) for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC)-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness. PMID:26624293

  1. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    SciTech Connect

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interim report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.

  2. Melioidosis: evolving concepts in epidemiology, pathogenesis, and treatment.

    PubMed

    Currie, Bart J

    2015-02-01

    Infection with Burkholderia pseudomallei can result in asymptomatic seroconversion, a single skin lesion that may or may not heal spontaneously, a pneumonia which can be subacute or chronic and mimic tuberculosis or rapidly progressive resulting in fatal overwhelming sepsis. Latency with subsequent activation of disease is well recognized, but very uncommon. Melioidosis also has a myriad of other clinical presentations and diagnosis is often delayed because of this and because of difficulties with laboratory diagnosis and lack of recognition outside melioidosis-endemic regions. The perception of B. pseudomallei as a top tier biothreat agent has driven large funding for research, yet resources for diagnosis and therapy of melioidosis in many endemic locations remain extremely limited, with mortality as high as 50% in comparison to around 10% in regions where state-of-the-art intensive care therapy for sepsis is available. Fatal melioidosis is extremely unlikely from natural infection in a healthy person, provided the diagnosis is made early, ceftazidime or meropenem is commenced and intensive care therapy is available. While biothreat research is directed toward potential aerosol exposure to B. pseudomallei, the overall proportion of melioidosis cases resulting from inhalation rather than from percutaneous inoculation remains entirely uncertain, although the epidemiology supports a shift to inhalation during severe weather events such as cyclones and typhoons. What makes B. pseudomallei such a dangerous organism for patients with diabetes and other selective risk factors remains unclear, but microbial genome-wide association studies linking clinical aspects of melioidosis cases to nonubiquitous or polymorphic B. pseudomallei genes or genomic islands are beginning to uncover specific virulence signatures. Finally, what also remains uncertain is the global phylogeography of B. pseudomallei and whether melioidosis is spreading beyond historical locations or is just being unmasked in Africa and the Americas by better recognition and increased surveillance. PMID:25643275

  3. Endemic melioidosis in residents of desert region after atypically intense rainfall in central Australia, 2011.

    PubMed

    Yip, Teem-Wing; Hewagama, Saliya; Mayo, Mark; Price, Erin P; Sarovich, Derek S; Bastian, Ivan; Baird, Robert W; Spratt, Brian G; Currie, Bart J

    2015-06-01

    After heavy rains and flooding during early 2011 in the normally arid interior of Australia, melioidosis was diagnosed in 6 persons over a 4-month period. Although the precise global distribution of the causal bacterium Burkholderia pseudomallei remains to be determined, this organism can clearly survive in harsh and even desert environments outside the wet tropics. PMID:25988301

  4. The role of NOD2 in murine and human melioidosis

    PubMed Central

    Myers, Nicolle D.; Chantratita, Narisara; Berrington, William R.; Chierakul, Wirongrong; Limmathurotsakul, Direk; Wuthiekanun, Vanaporn; Robertson, Johanna D.; Liggitt, H. Denny; Peacock, Sharon J.; Skerrett, Shawn J.; West, T. Eoin

    2013-01-01

    NOD2 is a cytosolic pathogen recognition receptor that regulates susceptibility to a variety of infections and chronic diseases. Burkholderia pseudomallei, a facultative intracellular bacterium, causes the tropical infection melioidosis. We hypothesized that NOD2 may participate in host defense in melioidosis. We performed a series of in vitro assays and in vivo experiments, and analyzed the association of human genetic variation with infection to delineate the contribution of NOD2 to the host response to B. pseudomallei. We found that transfection with NOD2 mediated NF-?B activation induced by B. pseudomallei stimulation of HEK293 cells. After low dose inoculation with aerosolized B. pseudomallei, Nod2-deficient mice showed impaired clinical responses and permitted greater bacterial replication in the lung and dissemination to the spleen compared to wild type mice. IL-6 and KC levels were higher in the lungs of Nod2-deficient mice. In a cohort of 1,562 Thai subjects, a common genetic polymorphism in the NOD2 region, rs7194886, was associated with melioidosis and this effect was most pronounced in women. rs7194886 was not associated with differences in cytokine production induced by whole blood stimulation with the NOD2 ligand, MDP, or B. pseudomallei. These findings are the first to characterize the role of NOD2 in host defense in mammalian melioidosis. PMID:24298015

  5. Identification and cloning of four riboswitches from Burkholderia pseudomallei strain K96243

    NASA Astrophysics Data System (ADS)

    Munyati-Othman, Noor; Fatah, Ahmad Luqman Abdul; Piji, Mohd Al Akmarul Fizree Bin Md; Ramlan, Effirul Ikhwan; Raih, Mohd Firdaus

    2015-09-01

    Structured RNAs referred as riboswitches have been predicted to be present in the genome sequence of Burkholderia pseudomallei strain K96243. Four of the riboswitches were identified and analyzed through BLASTN, Rfam search and multiple sequence alignment. The RNA aptamers belong to the following riboswitch classifications: glycine riboswitch, cobalamin riboswitch, S-adenosyl-(L)-homocysteine (SAH) riboswitch and flavin mononucleotide (FMN) riboswitch. The conserved nucleotides for each aptamer were identified and were marked on the secondary structure generated by RNAfold. These riboswitches were successfully amplified and cloned for further study.

  6. Intracerebral coinfection with Burkholderia pseudomallei and Cryptococcus neoformans in a patient with systemic lupus erythematosus.

    PubMed

    Samad, Irenawati; Wang, Margaret Choon Lee; Chong, Vui Heng

    2014-03-01

    Infections are a serious complication in patients with systemic lupus erythematosus (SLE), and are an important cause of morbidity and mortality. SLE patients are particularly susceptible to infection due to immune suppression from underlying disease or treatment. Most infections are due to common bacterial organisms. Clinicians also need to be aware of the possibility of polymicrobial infections as these may cause diagnostic delay and affect outcomes. We report the case of an intra-cerebral coinfection with Burkholderia pseudomallei and Cryptococcus neoformans in a 34-year-old woman with SLE. The diagnosis in this case was delayed since coinfection was not suspected. PMID:24968675

  7. Melioidosis--a report from Pondicherry, South India.

    PubMed

    Kanungo, Reba; Padhan, P; Bhattacharya, S; Srimannarayana, J; Jayanthi, S; Swaminathan, R P

    2002-11-01

    Melioidosis is an acute infectious disease caused by a safety-pin-shaped gram-negative bacteria called Burkholderia pseudomallei. Here, we report the first case of melioidosis in a middle aged male agricultural worker, from Pondicherry. The isolation of this organism from subcutaneous nodules on the extensor aspect of his limbs underlines the diversity of its clinical presentation. Difficulty in identifying the organism which mimics any other non-fementing gram-negative bacilli (NFGNB) on cursory examination, highlights the importance of identification of NFGNB in endemic areas for specific treatment and prevention. PMID:12583480

  8. Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery

    PubMed Central

    Garcia-Quintanilla, Fatima; Iwashkiw, Jeremy A.; Price, Nancy L.; Stratilo, Chad; Feldman, Mario F.

    2014-01-01

    Vaccines developing immune responses toward surface carbohydrates conjugated to proteins are effective in preventing infection and death by bacterial pathogens. Traditional production of these vaccines utilizes complex synthetic chemistry to acquire and conjugate the glycan to a protein. However, glycoproteins produced by bacterial protein glycosylation systems are significantly easier to produce, and could possible be used as vaccine candidates. In this work, we functionally expressed the Burkholderia pseudomallei O polysaccharide (OPS II), the Campylobacter jejuni oligosaccharyltransferase (OTase), and a suitable glycoprotein (AcrA) in a designer E. coli strain with a higher efficiency for production of glycoconjugates. We were able to produce and purify the OPS II-AcrA glycoconjugate, and MS analysis confirmed correct glycan was produced and attached. We observed the attachment of the O-acetylated deoxyhexose directly to the acceptor protein, which expands the range of substrates utilized by the OTase PglB. Injection of the glycoprotein into mice generated an IgG immune response against B. pseudomallei, and this response was partially protective against an intranasal challenge. Our experiments show that bacterial engineered glycoconjugates can be utilized as vaccine candidates against B. pseudomallei. Additionally, our new E. coli strain SDB1 is more efficient in glycoprotein production, and could have additional applications in the future. PMID:25120536

  9. Population-Sequencing as a Biomarker of Burkholderia mallei and Burkholderia pseudomallei Evolution through Microbial Forensic Analysis.

    PubMed

    Jakupciak, John P; Wells, Jeffrey M; Karalus, Richard J; Pawlowski, David R; Lin, Jeffrey S; Feldman, Andrew B

    2013-01-01

    Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations. PMID:24455204

  10. Population-Sequencing as a Biomarker of Burkholderia mallei and Burkholderia pseudomallei Evolution through Microbial Forensic Analysis

    PubMed Central

    Jakupciak, John P.; Wells, Jeffrey M.; Karalus, Richard J.; Pawlowski, David R.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-01-01

    Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations. PMID:24455204

  11. Regulatory role of GSK3? in the activation of NF-?B and modulation of cytokine levels in Burkholderia pseudomallei-infected PBMC isolated from streptozotocin-induced diabetic animals.

    PubMed

    Maniam, P; Nurul Aiezzah, Z; Mohamed, R; Embi, N; Hasidah, M S

    2015-03-01

    Increased susceptibility of diabetics to melioidosis, a disease caused by the Burkholderia pseudomallei bacterium is believed to be attributed to dysfunction of the innate immune system. However, the underlying mechanism of the innate susceptibility is not well-understood. Glycogen synthase kinase-3? (GSK3?) plays an important role in the innate inflammatory response caused by bacterial pathogens. The present study was conducted to investigate the effects of GSK3? inhibition by LiCl on levels of pro- and anti-inflammatory cytokines; and the activity of transcription factor NF-?B in B. pseudomallei-infected peripheral blood mononuclear cells (PBMC) derived from diabetic-induced and normal Sprague Dawley rats. In addition, the effects of LiCl on intracellular bacterial counts were also investigated. Infection of PBMC from diabetic and normal rats with B. pseudomallei resulted in elevated levels of cytokines (TNF-?, IL-12 and IL-10) and phosphorylation of NF-?B in both cell types. Intracellular bacterial counts decreased with time in both cell types during infection. However bacterial clearance was less prominent in diabetic PBMC. Burkholderia pseudomallei infection also caused inactivation (Ser9 phosphorylation) of GSK3? in normal PBMC, an effect absent in infected diabetic PBMC. Inhibition of GSK3? by LiCl lowered the levels of pro-inflammatory cytokines (TNF-? and IL-12) in both normal and diabetic PBMC. Similarly, phosphorylated NF- ?B (pNF-?B) levels in both cell types were decreased with LiCl treatment. Also, LiCl was able to significantly decrease the intracellular bacterial count in normal as well as diabetic PBMC. Interestingly, the levels of anti-inflammatory cytokine IL-10 in both normal and diabetic PBMC were further elevated with GSK3? inhibition. More importantly, GSK3? in infected diabetic PBMC was inactivated as in their non-diabetic counterparts upon LiCl treatment. Taken together, our results suggest that inhibition of dysregulated GSK3? in diabetic PBMC resulted in the inactivation of NF-?B and modulation of inflammatory cytokine levels. This is evidence that dysregulation of GSK3? is a contributing factor in the molecular basis of innate dysfunction and susceptibility of diabetic host to melioidosis infection. PMID:25801253

  12. Genetic Analysis of the CDI Pathway from Burkholderia pseudomallei 1026b

    PubMed Central

    Edman, Natasha; Chaudhuri, Swarnava; Poole, Stephen J.; Manoil, Colin; Hayes, Christopher S.; Low, David A.

    2015-01-01

    Contact-dependent growth inhibition (CDI) is a mode of inter-bacterial competition mediated by the CdiB/CdiA family of two-partner secretion systems. CdiA binds to receptors on susceptible target bacteria, then delivers a toxin domain derived from its C-terminus. Studies with Escherichia coli suggest the existence of multiple CDI growth-inhibition pathways, whereby different systems exploit distinct target-cell proteins to deliver and activate toxins. Here, we explore the CDI pathway in Burkholderia using the CDIIIBp1026b system encoded on chromosome II of Burkholderia pseudomallei 1026b as a model. We took a genetic approach and selected Burkholderia thailandensis E264 mutants that are resistant to growth inhibition by CDIIIBp1026b. We identified mutations in three genes, BTH_I0359, BTH_II0599, and BTH_I0986, each of which confers resistance to CDIIIBp1026b. BTH_I0359 encodes a small peptide of unknown function, whereas BTH_II0599 encodes a predicted inner membrane transport protein of the major facilitator superfamily. The inner membrane localization of BTH_II0599 suggests that it may facilitate translocation of CdiA-CTIIBp1026b toxin from the periplasm into the cytoplasm of target cells. BTH_I0986 encodes a putative transglycosylase involved in lipopolysaccharide (LPS) synthesis. ?BTH_I0986 mutants have altered LPS structure and do not interact with CDI+ inhibitor cells to the same extent as BTH_I0986+ cells, suggesting that LPS could function as a receptor for CdiAIIBp1026b. Although ?BTH_I0359, ?BTH_II0599, and ?BTH_I0986 mutations confer resistance to CDIIIBp1026b, they provide no protection against the CDIE264 system deployed by B. thailandensis E264. Together, these findings demonstrate that CDI growth-inhibition pathways are distinct and can differ significantly even between closely related species. PMID:25786241

  13. T-Cell Responses Are Associated with Survival in Acute Melioidosis Patients

    PubMed Central

    Jenjaroen, Kemajittra; Chumseng, Suchintana; Sumonwiriya, Manutsanun; Ariyaprasert, Pitchayanant; Chantratita, Narisara; Sunyakumthorn, Piyanate; Hongsuwan, Maliwan; Wuthiekanun, Vanaporn; Fletcher, Helen A.; Teparrukkul, Prapit; Limmathurotsakul, Direk; Day, Nicholas P. J.; Dunachie, Susanna J.

    2015-01-01

    Background Melioidosis is an increasingly recognised cause of sepsis and death across South East Asia and Northern Australia, caused by the bacterium Burkholderia pseudomallei. Risk factors include diabetes, alcoholism and renal disease, and a vaccine targeting at-risk populations is urgently required. A better understanding of the protective immune response in naturally infected patients is essential for vaccine design. Methods We conducted a longitudinal clinical and immunological study of 200 patients with melioidosis on admission, 12 weeks (n = 113) and 52 weeks (n = 65) later. Responses to whole killed B. pseudomallei were measured in peripheral blood mononuclear cells (PBMC) by interferon-gamma (IFN-?) ELIspot assay and flow cytometry and compared to those of control subjects in the region with diabetes (n = 45) and without diabetes (n = 43). Results We demonstrated strong CD4+ and CD8+ responses to B. pseudomallei during acute disease, 12 weeks and 52 weeks later. 28-day mortality was 26% for melioidosis patients, and B. pseudomallei-specific cellular responses in fatal cases (mean 98 IFN-? cells per million PBMC) were significantly lower than those in the survivors (mean 142 IFN-? cells per million PBMC) in a multivariable logistic regression model (P = 0.01). A J-shaped curve association between circulating neutrophil count and mortality was seen with an optimal count of 4000 to 8000 neutrophils/?l. Melioidosis patients with known diabetes had poor diabetic control (median glycated haemoglobin HbA1c 10.2%, interquartile range 9.2–13.1) and showed a stunted B. pseudomallei-specific cellular response during acute illness compared to those without diabetes. Conclusions The results demonstrate the role of both CD4+ and CD8+ T-cells in protection against melioidosis, and an interaction between diabetes and cellular responses. This supports development of vaccine strategies that induce strong T-cell responses for the control of intracellular pathogens such as B. pseudomallei. PMID:26495852

  14. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates

    PubMed Central

    Spring-Pearson, Senanu M.; Stone, Joshua K.; Doyle, Adina; Allender, Christopher J.; Okinaka, Richard T.; Mayo, Mark; Broomall, Stacey M.; Hill, Jessica M.; Karavis, Mark A.; Hubbard, Kyle S.; Insalaco, Joseph M.; McNew, Lauren A.; Rosenzweig, C. Nicole; Gibbons, Henry S.; Currie, Bart J.; Wagner, David M.; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is ‘open’, with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order. PMID:26484663

  15. Distinct human antibody response to the biological warfare agent Burkholderia mallei

    PubMed Central

    Varga, John J.; Vigil, Adam; DeShazer, David; Waag, David M.; Felgner, Philip; Goldberg, Joanna B.

    2012-01-01

    The genetic similarity between Burkholderia mallei (glanders) and Burkholderia pseudomallei (melioidosis) had led to the general assumption that pathogenesis of each bacterium would be similar. In 2000, the first human case of glanders in North America since 1945 was reported in a microbiology laboratory worker. Leveraging the availability of pre-exposure sera for this individual and employing the same well-characterized protein array platform that has been previously used to study a large cohort of melioidosis patients in southeast Asia, we describe the antibody response in a human with glanders. Analysis of 156 peptides present on the array revealed antibodies against 17 peptides with a > 2-fold increase in this infection. Unexpectedly, when the glanders data were compared with a previous data set from B. pseudomallei infections, there were only two highly increased antibodies shared between these two infections. These findings have implications in the diagnosis and treatment of B. mallei and B. pseudomallei infections. PMID:23076276

  16. Distinct human antibody response to the biological warfare agent Burkholderia mallei.

    PubMed

    Varga, John J; Vigil, Adam; DeShazer, David; Waag, David M; Felgner, Philip; Goldberg, Joanna B

    2012-10-01

    The genetic similarity between Burkholderia mallei (glanders) and Burkholderia pseudomallei (melioidosis) had led to the general assumption that pathogenesis of each bacterium would be similar. In 2000, the first human case of glanders in North America since 1945 was reported in a microbiology laboratory worker. Leveraging the availability of pre-exposure sera for this individual and employing the same well-characterized protein array platform that has been previously used to study a large cohort of melioidosis patients in southeast Asia, we describe the antibody response in a human with glanders. Analysis of 156 peptides present on the array revealed antibodies against 17 peptides with a > 2-fold increase in this infection. Unexpectedly, when the glanders data were compared with a previous data set from B. pseudomallei infections, there were only two highly increased antibodies shared between these two infections. These findings have implications in the diagnosis and treatment of B. mallei and B. pseudomallei infections. PMID:23076276

  17. Brief communication genotyping of Burkholderia pseudomallei revealed high genetic variability among isolates from a single population group

    PubMed Central

    Zueter, Abdelrahman Mohammad; Rahman, Zaidah Abdul; Yean, Chan Yean; Harun, Azian

    2015-01-01

    Burkholderia pseudomallei is a soil dwelling Gram-negative bacteria predominates in Southeast Asia zone and the tropical part of Australia. Genetic diversity has been explored among various populations and environments worldwide. To date, little data is available on MLST profiling of clinical B. pseudomallei isolates in peninsular Malaysia. In this brief report, thirteen culture positive B. pseudomallei cases collected from a single population of Terengganu state in the Western Peninsular Malaysia and were confirmed by In-house TTS1-PCR. Isolates were subjected for multi-locus sequence typing (MLST) to explore their genotypic diversity and to investigate for possible clonal clustering of a certain sequence type. Patient’s clinical information was examined to investigate for clinical correlation among the different genotypes. In spite of small sample set, MLST results indicated predictive results; considerable genotypic diversity, predominance and novelty among B. pseudomallei collected over a single geographically-located population in Malaysia. Massive genotypic heterogeneity was observed; 8 different sequence types with predominance of sequence type 54 and discovery of two novel sequence types. However, no clear pathogenomic or organ tropism clonal relationships were predicted. PMID:26417404

  18. Source-Identifying Biomarker Ions between Environmental and Clinical Burkholderia pseudomallei Using Whole-Cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS)

    PubMed Central

    Srisanga, Kitima; Roytrakul, Sittiruk; Tungpradabkul, Sumalee

    2014-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, which is an endemic disease in Northeast Thailand and Northern Australia. Environmental reservoirs, including wet soils and muddy water, serve as the major sources for contributing bacterial infection to both humans and animals. The whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has recently been applied as a rapid, accurate, and high-throughput tool for clinical diagnosis and microbiological research. In this present study, we employed a whole-cell MALDI-TOF MS approach for assessing its potency in clustering a total of 11 different B. pseudomallei isolates (consisting of 5 environmental and 6 clinical isolates) with respect to their origins and to further investigate the source-identifying biomarker ions belonging to each bacterial group. The cluster analysis demonstrated that six out of eleven isolates were grouped correctly to their sources. Our results revealed a total of ten source-identifying biomarker ions, which exhibited statistically significant differences in peak intensity between average environmental and clinical mass spectra using ClinProTools software. Six out of ten mass ions were assigned as environmental-identifying biomarker ions (EIBIs), including, m/z 4,056, 4,214, 5,814, 7,545, 7,895, and 8,112, whereas the remaining four mass ions were defined as clinical-identifying biomarker ions (CIBIs) consisting of m/z 3,658, 6,322, 7,035, and 7,984. Hence, our findings represented, for the first time, the source-specific biomarkers of environmental and clinical B. pseudomallei. PMID:24914956

  19. Pulmonary melioidosis presenting with pleural effusion: A case report and review of literature

    PubMed Central

    Soo, Chun Ian; Abdul Wahab, Sopian; Abdul Hamid, Faisal

    2015-01-01

    Melioidosis is a serious infection, which can involve multiple systems. We report a case of pulmonary melioidosis with the initial presentation mimicking a partially treated pneumonia complicated by right-sided pleural effusion. The patient is a 49-year old man who did not respond to parenteral ceftriaxone and tazobactam/piperacillin therapy. However, upon culture and sensitivity results from blood and pleural samples isolated Burkholderia pseudomallei; antimicrobial therapy was de-escalated to parenteral ceftazidime. Within 72 h duration, his fever subsided and other respiratory symptoms improved tremendously. This case highlights the importance of early recognition of B. pseudomallei in pulmonary infection in order for prompt institution of appropriate antibiotics treatment; thus reducing morbidity and mortality.

  20. Construction and characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei

    PubMed Central

    Su, Shengchang; Bangar, Hansraj; Saldanha, Roland; Pemberton, Adin; Aronow, Bruce; Dean, Gary E; Lamkin, Thomas J; Hassett, Daniel J

    2014-01-01

    Here, we constructed stable, chromosomal, constitutively expressed, green and red fluorescent protein (GFP and RFP) as reporters in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei. Using bioinformatic approaches and other experimental analyses, we identified P0253 and P1 as potent promoters that drive the optimal expression of fluorescent reporters in single copy in B. anthracis and Burkholderia spp. as well as their surrogate strains, respectively. In comparison, Y. pestis and its surrogate strain need two chromosomal copies of cysZK promoter (P2cysZK) for optimal fluorescence. The P0253-, P2cysZK-, and P1-driven GFP and RFP fusions were first cloned into the vectors pRP1028, pUC18R6KT-mini-Tn7T-Km, pmini-Tn7-gat, or their derivatives. The resultant constructs were delivered into the respective surrogates and subsequently into the select agent strains. The chromosomal GFP- and RFP-tagged strains exhibited bright fluorescence at an exposure time of less than 200 msec and displayed the same virulence traits as their wild-type parental strains. The utility of the tagged strains was proven by the macrophage infection assays and lactate dehydrogenase release analysis. Such strains will be extremely useful in high-throughput screens for novel compounds that could either kill these organisms, or interfere with critical virulence processes in these important bioweapon agents and during infection of alveolar macrophages. PMID:25044501

  1. An intriguing case of locked jaw secondary to melioidosis.

    PubMed

    Vaid, Tejasvini; Rao, Karthik; Hande, Handattu Manjunath

    2015-01-01

    A 56-year-old woman presented with fever, pain and restriction of movement of the right temporomandibular joint. She was premorbidly diagnosed to have type 2 diabetes mellitus and rheumatoid arthritis. Local examination revealed a poorly demarcated severely tender, erythematous swelling in the right preauricular region. All haematological and biochemical investigations were within normal limits. MRI of the neck revealed the presence of a masticator space infection with intramuscular abscess involving the masseter and the temporalis muscles along with intracranial extension. Osteomyelitic changes were detected in the right mandibular condyle, temporal bone and in the temporomandibular joint. Melioidosis was suspected due to this unique clinical presentation of an abscess at an unusual and atypical site. Blood cultures identified the Gram-negative bacilli Burkholderia pseudomallei, which established the diagnosis of Melioidosis. Remarkable improvement was attained with antibiotics meropenem and cotrimoxazole, deferring the need for any surgical intervention. PMID:26628312

  2. Consensus on the Development of Vaccines against Naturally Acquired Melioidosis

    PubMed Central

    Funnell, Simon G.P.; Torres, Alfredo G.; Morici, Lisa A.; Brett, Paul J.; Dunachie, Susanna; Atkins, Timothy; Altmann, Daniel M.; Bancroft, Gregory; Peacock, Sharon J.

    2015-01-01

    Several candidates for a vaccine against Burkholderia pseudomallei, the causal bacterium of melioidosis, have been developed, and a rational approach is now needed to select and advance candidates for testing in relevant nonhuman primate models and in human clinical trials. Development of such a vaccine was the topic of a meeting in the United Kingdom in March 2014 attended by international candidate vaccine developers, researchers, and government health officials. The focus of the meeting was advancement of vaccines for prevention of natural infection, rather than for protection from the organism’s known potential for use as a biological weapon. A direct comparison of candidate vaccines in well-characterized mouse models was proposed. Knowledge gaps requiring further research were identified. Recommendations were made to accelerate the development of an effective vaccine against melioidosis. PMID:25992835

  3. Comprehensive identification of virulence factors required for respiratory melioidosis using Tn-seq mutagenesis

    PubMed Central

    Gutierrez, Maria G.; Yoder-Himes, Deborah R.; Warawa, Jonathan M.

    2015-01-01

    Respiratory melioidosis is a disease presentation of the biodefense pathogen, Burkholderia pseudomallei, which is frequently associated with a lethal septicemic spread of the bacteria. We have recently developed an improved respiratory melioidosis model to study the pathogenesis of Burkholderia pseudomallei in the lung (intubation-mediated intratracheal [IMIT] inoculation), which more closely models descriptions of human melioidosis, including prominent septicemic spread from the lung and reduced involvement of the upper respiratory tract. We previously demonstrated that the Type 3 Secretion System cluster 3 (T3SS3) is a critical virulence determinant for B. pseudomallei when delivered directly into the lung. We decided to comprehensively identify all virulence determinants required for respiratory melioidosis using the Tn-seq phenotypic screen, as well as to investigate which virulence determinants are required for dissemination to the liver and spleen. While previous studies have used Tn-seq to identify essential genes for in vitro cultured B. pseudomallei, this represents the first study to use Tn-seq to identify genes required for in vivo fitness. Consistent with our previous findings, we identified T3SS3 as the largest genetic cluster required for fitness in the lung. Furthermore, we identified capsular polysaccharide and Type 6 Secretion System cluster 5 (T6SS5) as the two additional major genetic clusters facilitating respiratory melioidosis. Importantly, Tn-seq did not identify additional, novel large genetic systems supporting respiratory melioidosis, although these studies identified additional small gene clusters that may also play crucial roles in lung fitness. Interestingly, other previously identified virulence determinants do not appear to be required for lung fitness, such as lipopolysaccharide. The role of T3SS3, capsule, and T6SS5 in lung fitness was validated by competition studies, but only T3SS3 was found to be important for respiratory melioidosis when delivered as a single strain challenge, suggesting that competition studies may provide a higher resolution analysis of fitness factors in the lung. The use of Tn-seq phenotypic screening also provided key insights into the selective pressure encountered in the liver. PMID:26583079

  4. Melioidosis: It is not Far from here.

    PubMed

    Darazam, Ilad Alavi; Kiani, Arda; Ghasemi, Shahin; Sadeghi, Hosein; Alavi, Farhad; Moosavi, Mohammad Jafar; Akbari, Asghar; Shahidi, Mojtaba; Jalali, Mehran; Pourfarziani, Vahid; Saba, Hossein; Nazari, Shahram; Mohammadi, Forozan; Mansouri, Seyed Davood

    2011-01-01

    In the modern world, with developed traveling facilities, tourism is an important factor in emerging new infectious diseases in non-endemic areas. Therefore, the epidemiology of infections is a considerable issue for physicians and should be taken into account. We report a case of melioidosis in a 69-year-old Iranian man during his trip to Southeast Asia. On admission, he was febrile with tachycardia and tachypnea and had diabetes mellitus and hypertension since eleven years ago. Bronchoscopy and bronchoalveolar lavage (BAL) were performed. Blood and BAL cultures revealed heavy growth of Burkholderia pseudomallei. According to the aforementioned culture results, the patient was treated with meropenem and TMP-SMX, while other antibiotics were discontinued. After 3 weeks, the patient was discharged with stable status and normal pulmonary function; and eradication therapy with TMP-SMX continued for about 3 months. The control lung CT scan after one month demonstrated significant improvement. PMID:25191391

  5. Type 3 Secretion System Cluster 3 Is a Critical Virulence Determinant for Lung-Specific Melioidosis

    PubMed Central

    Gutierrez, Maria G.; Pfeffer, Tia L.; Warawa, Jonathan M.

    2015-01-01

    Burkholderia pseudomallei, the bacterial agent of melioidosis, causes disease through inhalation of infectious particles, and is classified as a Tier 1 Select Agent. Optical diagnostic imaging has demonstrated that murine respiratory disease models are subject to significant upper respiratory tract (URT) colonization. Because human melioidosis is not associated with URT colonization as a prominent presentation, we hypothesized that lung-specific delivery of B. pseudomallei may enhance our ability to study respiratory melioidosis in mice. We compared intranasal and intubation-mediated intratracheal (IMIT) instillation of bacteria and found that the absence of URT colonization correlates with an increased bacterial pneumonia and systemic disease progression. Comparison of the LD50 of luminescent B. pseudomallei strain, JW280, in intranasal and IMIT challenges of albino C57BL/6J mice identified a significant decrease in the LD50 using IMIT. We subsequently examined the LD50 of both capsular polysaccharide and Type 3 Secretion System cluster 3 (T3SS3) mutants by IMIT challenge of mice and found that the capsule mutant was attenuated 6.8 fold, while the T3SS3 mutant was attenuated 290 fold, demonstrating that T3SS3 is critical to respiratory melioidosis. Our previously reported intranasal challenge studies, which involve significant URT colonization, did not identify a dissemination defect for capsule mutants; however, we now report that capsule mutants exhibit significantly reduced dissemination from the lung following lung-specific instillation, suggesting that capsule mutants are competent to spread from the URT, but not the lung. We also report that a T3SS3 mutant is defective for dissemination following lung-specific delivery, and also exhibits in vivo growth defects in the lung. These findings highlight the T3SS3 as a critical virulence system for respiratory melioidosis, not only in the lung, but also for subsequent spread beyond the lung using a model system uniquely capable to characterize the fate of lung-delivered pathogen. PMID:25569630

  6. Mutagenesis of Burkholderia pseudomallei with Tn5-OT182: isolation of motility mutants and molecular characterization of the flagellin structural gene.

    PubMed Central

    DeShazer, D; Brett, P J; Carlyon, R; Woods, D E

    1997-01-01

    Burkholderia pseudomallei is a human and animal pathogen in tropical regions, especially Southeast Asia and northern Australia. Currently little is known about the genetics and molecular biology of this organism. In this report, we describe the mutagenesis of B. pseudomallei with the transposon Tn5-OT182. B. pseudomallei 1026b transposon mutants were obtained at a frequency of 4.6 x 10(-4) per initial donor cell, and the transposon inserted randomly into the chromosome. We used Tn5-OT182 to identify the flagellin structural gene, fliC. We screened 3,500 transposon mutants and identified 28 motility mutants. Tn5-OT182 integrated into 19 unique genetic loci encoding proteins with homology to Escherichia coli and Salmonella typhimurium flagellar and chemotaxis proteins. Two mutants, MM35 and MM36, contained Tn5-OT182 integrations in fliC. We cloned and sequenced fliC and used it to complement MM35 and MM36 in trans. The fliC transcriptional start site and a sigmaF-like promoter were identified by primer extension analysis. We observed a significant difference in the expression of two distinct fliC-lacZ transcriptional fusions during bacterial growth, suggesting the presence of a latent intragenic transcriptional terminator in fliC. There was no significant difference in the virulence of 1026b compared to that of MM36 in diabetic rats or Syrian hamsters, suggesting that flagella and/or motility are probably not virulence determinants in these animal models of B. pseudomallei infection. A phylogenetic analysis based on the flagellins from a variety of bacterial species supported the recent transfer of B. pseudomallei from the genus Pseudomonas to Burkholderia. PMID:9079894

  7. Nitric Oxide from IFN?-Primed Macrophages Modulates the Antimicrobial Activity of ?-Lactams against the Intracellular Pathogens Burkholderia pseudomallei and Nontyphoidal Salmonella

    PubMed Central

    Jones-Carson, Jessica; Zweifel, Adrienne E.; Tapscott, Timothy; Austin, Chad; Brown, Joseph M.; Jones, Kenneth L.; Voskuil, Martin I.; Vázquez-Torres, Andrés

    2014-01-01

    Our investigations show that nonlethal concentrations of nitric oxide (NO) abrogate the antibiotic activity of ?-lactam antibiotics against Burkholderia pseudomallei, Escherichia coli and nontyphoidal Salmonella enterica serovar Typhimurium. NO protects B. pseudomallei already exposed to ?-lactams, suggesting that this diatomic radical tolerizes bacteria against the antimicrobial activity of this important class of antibiotics. The concentrations of NO that elicit antibiotic tolerance repress consumption of oxygen (O2), while stimulating hydrogen peroxide (H2O2) synthesis. Transposon insertions in genes encoding cytochrome c oxidase-related functions and molybdenum assimilation confer B. pseudomallei a selective advantage against the antimicrobial activity of the ?-lactam antibiotic imipenem. Cumulatively, these data support a model by which NO induces antibiotic tolerance through the inhibition of the electron transport chain, rather than by potentiating antioxidant defenses as previously proposed. Accordingly, pharmacological inhibition of terminal oxidases and nitrate reductases tolerizes aerobic and anaerobic bacteria to ?-lactams. The degree of NO-induced ?-lactam antibiotic tolerance seems to be inversely proportional to the proton motive force (PMF), and thus the dissipation of ?H+ and ?? electrochemical gradients of the PMF prevents ?-lactam-mediated killing. According to this model, NO generated by IFN?-primed macrophages protects intracellular Salmonella against imipenem. On the other hand, sublethal concentrations of imipenem potentiate the killing of B. pseudomallei by NO generated enzymatically from IFN?-primed macrophages. Our investigations indicate that NO modulates the antimicrobial activity of ?-lactam antibiotics. PMID:25121731

  8. Nitric oxide from IFN?-primed macrophages modulates the antimicrobial activity of ?-lactams against the intracellular pathogens Burkholderia pseudomallei and Nontyphoidal Salmonella.

    PubMed

    Jones-Carson, Jessica; Zweifel, Adrienne E; Tapscott, Timothy; Austin, Chad; Brown, Joseph M; Jones, Kenneth L; Voskuil, Martin I; Vázquez-Torres, Andrés

    2014-08-01

    Our investigations show that nonlethal concentrations of nitric oxide (NO) abrogate the antibiotic activity of ?-lactam antibiotics against Burkholderia pseudomallei, Escherichia coli and nontyphoidal Salmonella enterica serovar Typhimurium. NO protects B. pseudomallei already exposed to ?-lactams, suggesting that this diatomic radical tolerizes bacteria against the antimicrobial activity of this important class of antibiotics. The concentrations of NO that elicit antibiotic tolerance repress consumption of oxygen (O2), while stimulating hydrogen peroxide (H2O2) synthesis. Transposon insertions in genes encoding cytochrome c oxidase-related functions and molybdenum assimilation confer B. pseudomallei a selective advantage against the antimicrobial activity of the ?-lactam antibiotic imipenem. Cumulatively, these data support a model by which NO induces antibiotic tolerance through the inhibition of the electron transport chain, rather than by potentiating antioxidant defenses as previously proposed. Accordingly, pharmacological inhibition of terminal oxidases and nitrate reductases tolerizes aerobic and anaerobic bacteria to ?-lactams. The degree of NO-induced ?-lactam antibiotic tolerance seems to be inversely proportional to the proton motive force (PMF), and thus the dissipation of ?H+ and ?? electrochemical gradients of the PMF prevents ?-lactam-mediated killing. According to this model, NO generated by IFN?-primed macrophages protects intracellular Salmonella against imipenem. On the other hand, sublethal concentrations of imipenem potentiate the killing of B. pseudomallei by NO generated enzymatically from IFN?-primed macrophages. Our investigations indicate that NO modulates the antimicrobial activity of ?-lactam antibiotics. PMID:25121731

  9. Backbone chemical shift assignments for the sensor domain of the Burkholderia pseudomallei histidine kinase RisS: "missing" resonances at the dimer interface.

    PubMed

    Buchko, Garry W; Edwards, Thomas E; Hewitt, Stephen N; Phan, Isabelle Q H; Van Voorhis, Wesley C; Miller, Samuel I; Myler, Peter J

    2015-10-01

    Using a deuterated sample, all the observable backbone (1)H(N), (15)N, (13)C(a), and (13)C' chemical shifts for the dimeric, periplasmic sensor domain of the Burkholderia pseudomallei histidine kinase RisS were assigned. Approximately one-fifth of the amide resonances are "missing" in the (1)H-(15)N HSQC spectrum and map primarily onto ?-helices at the dimer interface observed in a crystal structure suggesting this region either undergoes intermediate timescale motion (?s-ms) and/or is heterogeneous. PMID:25957069

  10. Use of various common isolation media to evaluate the new VITEK 2 colorimetric GN Card for identification of Burkholderia pseudomallei.

    PubMed

    Lowe, Peter; Haswell, Helen; Lewis, Kirsty

    2006-03-01

    The use of automated systems in the modern microbiology laboratory is becoming commonplace as the pressure of cost containment impacts on staff resources. With increased international travel and threats of bioterrorism, recognition and accurate identification of organisms such as Burkholderia pseudomallei is important. In areas where this organism is endemic, identification is not usually problematic. This study evaluates the performance of the new VITEK 2 colorimetric GN card for the identification of this organism. A total of 103 previously identified clinical isolates were tested with the new card with isolates taken from MacConkey agar, Columbia horse blood agar, Columbia sheep blood agar, and Trypticase soy agar in order to determine identification performance and to see if there was any variability in results due to the agar. Columbia horse blood agar produced the highest rates of identification (81%), followed by Trypticase soy agar (78%), Columbia sheep blood agar (75%), and MacConkey agar (63%). There was considerable variability in some of the reactions obtained. Seven isolates failed to identify from any of the agars used. This study highlights issues with the identification of this organism with the new VITEK 2 GN card. Enhancements of the algorithm parameters for the GN card are warranted and are in progress. Laboratory personnel need to be aware of the current limitations with this GN card and the software (version 4.02 or older for the VITEK 2 60/XL and version 1.02 or older for VITEK 2 Compact) and rely on clinical history, a high index of suspicion, and basic microbiology tests to confirm the identification of this organism. PMID:16517866

  11. Spectroscopic and kinetic investigation of the reactions of peroxyacetic acid with Burkholderia pseudomallei catalase-peroxidase, KatG.

    PubMed

    Ivancich, Anabella; Donald, Lynda J; Villanueva, Jacylyn; Wiseman, Ben; Fita, Ignacio; Loewen, Peter C

    2013-10-15

    Catalase-peroxidases or KatGs can utilize organic peroxyacids and peroxides instead of hydrogen peroxide to generate the high-valent ferryl-oxo intermediates involved in the catalase and peroxidase reactions. In the absence of peroxidatic one-electron donors, the ferryl intermediates generated with a low excess (10-fold) of peroxyacetic acid (PAA) slowly decay to the ferric resting state after several minutes, a reaction that is demonstrated in this work by both stopped-flow UV-vis absorption measurements and EPR spectroscopic characterization of Burkholderia pseudomallei KatG (BpKatG). EPR spectroscopy showed that the [Fe(IV)?O Trp330(•+)], [Fe(IV)?O Trp139(•)], and [Fe(IV)?O Trp153(•)] intermediates of the peroxidase-like cycle of BpKatG ( Colin, J. Wiseman, B. Switala, J. Loewen, P. C. Ivancich, A. ( 2009 ) J. Am. Chem. Soc. 131 , 8557 - 8563 ), formed with a low excess of PAA at low temperature, are also generated with a high excess (1000-fold) of PAA at room temperature. However, under high excess conditions, there is a rapid conversion to a persistent [Fe(IV)?O] intermediate. Analysis of tryptic peptides of BpKatG by mass spectrometry before and after treatment with PAA showed that specific tryptophan (including W330, W139, and W153), methionine (including Met264 of the M-Y-W adduct), and cysteine residues are either modified with one, two, or three oxygen atoms or could not be identified in the spectrum because of other undetermined modifications. It was concluded that these oxidized residues were the source of electrons used to reduce the excess of PAA to acetic acid and return the enzyme to the ferric state. Treatment of BpKatG with PAA also caused a loss of catalase activity towards certain substrates, consistent with oxidative disruption of the M-Y-W adduct, and a loss of peroxidase activity, consistent with accumulation of the [Fe(IV)?O] intermediate and the oxidative modification of the W330, W139, and W153. PAA, but not H2O2 or tert-butyl hydroperoxide, also caused subunit cross-linking. PMID:24044787

  12. BurkDiff: A Real-Time PCR Allelic Discrimination Assay for Burkholderia Pseudomallei and B. mallei

    PubMed Central

    Bowers, Jolene R.; Engelthaler, David M.; Ginther, Jennifer L.; Pearson, Talima; Peacock, Sharon J.; Tuanyok, Apichai; Wagner, David M.; Currie, Bart J.; Keim, Paul S.

    2010-01-01

    A real-time PCR assay, BurkDiff, was designed to target a unique conserved region in the B. pseudomallei and B. mallei genomes containing a SNP that differentiates the two species. Sensitivity and specificity were assessed by screening BurkDiff across 469 isolates of B. pseudomallei, 49 isolates of B. mallei, and 390 isolates of clinically relevant non-target species. Concordance of results with traditional speciation methods and no cross-reactivity to non-target species show BurkDiff is a robust, highly validated assay for the detection and differentiation of B. pseudomallei and B. mallei. PMID:21103048

  13. Use of the phytopathogenic effect for studies of Burkholderia virulence.

    PubMed

    Molchanova, E V; Ageeva, N P

    2015-02-01

    The phytopathogenic effect of the pseudomallei group Burkholderia is demonstrated on the Peireskia aculeata model. A method for evaluation of the effect is suggested. The effect correlates with the levels of Burkholderia pseudomallei, Burkholderia mallei, and Burkholderia thailandensis virulence for laboratory animals. P. aculeata can be used as a model for preliminary studies of the virulence of the above species. PMID:25705037

  14. The Epidemiology and Clinical Spectrum of Melioidosis: 540 Cases from the 20 Year Darwin Prospective Study

    PubMed Central

    Currie, Bart J.; Ward, Linda; Cheng, Allen C.

    2010-01-01

    Background Over 20 years, from October 1989, the Darwin prospective melioidosis study has documented 540 cases from tropical Australia, providing new insights into epidemiology and the clinical spectrum. Principal Findings The principal presentation was pneumonia in 278 (51%), genitourinary infection in 76 (14%), skin infection in 68 (13%), bacteremia without evident focus in 59 (11%), septic arthritis/osteomyelitis in 20 (4%) and neurological melioidosis in 14 (3%). 298 (55%) were bacteremic and 116 (21%) developed septic shock (58 fatal). Internal organ abscesses and secondary foci in lungs and/or joints were common. Prostatic abscesses occurred in 76 (20% of 372 males). 96 (18%) had occupational exposure to Burkholderia pseudomallei. 118 (22%) had a specific recreational or occupational incident considered the likely infecting event. 436 (81%) presented during the monsoonal wet season. The higher proportion with pneumonia in December to February supports the hypothesis of infection by inhalation during severe weather events. Recurrent melioidosis occurred in 29, mostly attributed to poor adherence to therapy. Mortality decreased from 30% in the first 5 years to 9% in the last five years (p<0.001). Risk factors for melioidosis included diabetes (39%), hazardous alcohol use (39%), chronic lung disease (26%) and chronic renal disease (12%). There was no identifiable risk factor in 20%. Of the 77 fatal cases (14%), 75 had at least one risk factor; the other 2 were elderly. On multivariate analysis of risk factors, age, location and season, the only independent predictors of mortality were the presence of at least one risk factor (OR 9.4; 95% CI 2.3–39) and age ?50 years (OR 2.0; 95% CI 1.2–2.3). Conclusions Melioidosis should be seen as an opportunistic infection that is unlikely to kill a healthy person, provided infection is diagnosed early and resources are available to provide appropriate antibiotics and critical care. PMID:21152057

  15. The Blood Transcriptome of Experimental Melioidosis Reflects Disease Severity and Shows Considerable Similarity with the Human Disease.

    PubMed

    Conejero, Laura; Potempa, Krzysztof; Graham, Christine M; Spink, Natasha; Blankley, Simon; Salguero, Francisco J; Pankla-Sranujit, Rungnapa; Khaenam, Prasong; Banchereau, Jacques F; Pascual, Virginia; Chaussabel, Damien; Lertmemongkolchai, Ganjana; O'Garra, Anne; Bancroft, Gregory J

    2015-10-01

    Melioidosis, a severe human disease caused by the bacterium Burkholderia pseudomallei, has a wide spectrum of clinical manifestations ranging from acute septicemia to chronic localized illness or latent infection. Murine models have been widely used to study the pathogenesis of infection and to evaluate novel therapies or vaccines, but how faithfully they recapitulate the biology of human melioidosis at a molecular level is not known. In this study, mice were intranasally infected with either high or low doses of B. pseudomallei to generate either acute, chronic, or latent infection and host blood and tissue transcriptional profiles were generated. Acute infection was accompanied by a homogeneous signature associated with induction of multiple innate immune response pathways, such as IL-10, TREM1, and IFN signaling, largely found in both blood and tissue. The transcriptional profile in blood reflected the heterogeneity of chronic infection and quantitatively reflected the severity of disease. Genes associated with fibrosis and tissue remodeling, including matrix metalloproteases and collagen, were upregulated in chronically infected mice with severe disease. Transcriptional signatures of both acute and chronic melioidosis revealed upregulation of iNOS in tissue, consistent with the expression of IFN-?, but also Arginase-1, a functional antagonist of the iNOS pathway, and was confirmed by immunohistochemistry. Comparison of these mouse blood datasets by pathway and modular analysis with the blood transcriptional signature of patients with melioidosis showed that many genes were similarly perturbed, including Arginase-1, IL-10, TREM1, and IFN signaling, revealing the common immune response occurring in both mice and humans. PMID:26311902

  16. Neutrophil Elastase Causes Tissue Damage That Decreases Host Tolerance to Lung Infection with Burkholderia Species

    PubMed Central

    Miller, Mark A.; Re, Fabio

    2014-01-01

    Two distinct defense strategies can protect the host from infection: resistance is the ability to destroy the infectious agent, and tolerance is the ability to withstand infection by minimizing the negative impact it has on the host's health without directly affecting pathogen burden. Burkholderia pseudomallei is a Gram-negative bacterium that infects macrophages and causes melioidosis. We have recently shown that inflammasome-triggered pyroptosis and IL-18 are equally important for resistance to B. pseudomallei, whereas IL-1? is deleterious. Here we show that the detrimental role of IL-1? during infection with B. pseudomallei (and closely related B. thailandensis) is due to excessive recruitment of neutrophils to the lung and consequent tissue damage. Mice deficient in the potentially damaging enzyme neutrophil elastase were less susceptible than the wild type C57BL/6J mice to infection, although the bacterial burdens in organs and the extent of inflammation were comparable between C57BL/6J and elastase-deficient mice. In contrast, lung tissue damage and vascular leakage were drastically reduced in elastase-deficient mice compared to controls. Bradykinin levels were higher in C57BL/6 than in elastase-deficient mice; administration of a bradykinin antagonist protected mice from infection, suggesting that increased vascular permeability mediated by bradykinin is one of the mechanisms through which elastase decreases host tolerance to melioidosis. Collectively, these results demonstrate that absence of neutrophil elastase increases host tolerance, rather than resistance, to infection by minimizing host tissue damage. PMID:25166912

  17. Activities of Daily Living Associated with Acquisition of Melioidosis in Northeast Thailand: A Matched Case-Control Study

    PubMed Central

    Limmathurotsakul, Direk; Kanoksil, Manas; Wuthiekanun, Vanaporn; Kitphati, Rungrueng; deStavola, Bianca; Day, Nicholas P. J.; Peacock, Sharon J.

    2013-01-01

    Background Melioidosis is a serious infectious disease caused by the Category B select agent and environmental saprophyte, Burkholderia pseudomallei. Most cases of naturally acquired infection are assumed to result from skin inoculation after exposure to soil or water. The aim of this study was to provide evidence for inoculation, inhalation and ingestion as routes of infection, and develop preventive guidelines based on this evidence. Methods/Principal Findings A prospective hospital-based 1?2 matched case-control study was conducted in Northeast Thailand. Cases were patients with culture-confirmed melioidosis, and controls were patients admitted with non-infectious conditions during the same period, matched for gender, age, and diabetes mellitus. Activities of daily living were recorded for the 30-day period before onset of symptoms, and home visits were performed to obtain drinking water and culture this for B. pseudomallei. Multivariable conditional logistic regression analysis based on 286 cases and 512 controls showed that activities associated with a risk of melioidosis included working in a rice field (conditional odds ratio [cOR]?=?2.1; 95% confidence interval [CI] 1.4–3.3), other activities associated with exposure to soil or water (cOR?=?1.4; 95%CI 0.8–2.6), an open wound (cOR?=?2.0; 95%CI 1.2–3.3), eating food contaminated with soil or dust (cOR?=?1.5; 95%CI 1.0–2.2), drinking untreated water (cOR?=?1.7; 95%CI 1.1–2.6), outdoor exposure to rain (cOR?=?2.1; 95%CI 1.4–3.2), water inhalation (cOR?=?2.4; 95%CI 1.5–3.9), current smoking (cOR?=?1.5; 95%CI 1.0–2.3) and steroid intake (cOR?=?3.1; 95%CI 1.4–6.9). B. pseudomallei was detected in water source(s) consumed by 7% of cases and 3% of controls (cOR?=?2.2; 95%CI 0.8–5.8). Conclusions/Significance We used these findings to develop the first evidence-based guidelines for the prevention of melioidosis. These are suitable for people in melioidosis-endemic areas, travelers and military personnel. Public health campaigns based on our recommendations are under development in Thailand. PMID:23437412

  18. Development of an acute model of inhalational melioidosis in the common marmoset (Callithrix jacchus).

    PubMed

    Nelson, Michelle; Dean, Rachel E; Salguero, Francisco J; Taylor, Christopher; Pearce, Peter C; Simpson, Andrew J H; Lever, Mark S

    2011-12-01

    Studies of inhalational melioidosis were undertaken in the common marmoset (Callithrix jacchus). Following exposure to an inhaled challenge with aerosolized Burkholderia pseudomallei, lethal infection was observed in marmosets challenged with doses below 10 cfu; a precise LD(50) determination was not possible. The model was further characterized using a target challenge dose of approximately 10(2) cfu. A separate pathogenesis time-course experiment was also conducted. All animals succumbed, between 27 and 78 h postchallenge. The challenge dose received and the time to the humane endpoint (1 °C below normal body temperature postfever) were correlated. The first indicator of disease was an increased core body temperature (T(c) ), at 22 h postchallenge. This coincided with bacteraemia and bacterial dissemination. Overt clinical signs were first observed 3-5 h later. A sharp decrease (typically within 3-6 h) in the T(c) was observed prior to humanely culling the animals in the lethality study. Pathology was noted in the lung, liver and spleen. Disease progression in the common marmoset appears to be consistent with human infection in terms of bacterial spread, pathology and physiology. The common marmoset can therefore be considered a suitable animal model for further studies of inhalational melioidosis. PMID:22122591

  19. Whole-Genome Assemblies of 56 Burkholderia Species

    PubMed Central

    Daligault, H. E.; Davenport, K. W.; Minogue, T. D.; Bishop-Lilly, K. A.; Broomall, S. M.; Bruce, D. C.; Chain, P. S.; Coyne, S. R.; Frey, K. G.; Gibbons, H. S.; Jaissle, J.; Koroleva, G. I.; Ladner, J. T.; Lo, C.-C.; Munk, C.; Palacios, G. F.; Redden, C. L.; Rosenzweig, C. N.; Scholz, M. B.

    2014-01-01

    Burkholderia is a genus of betaproteobacteria that includes three notable human pathogens: B. cepacia, B. pseudomallei, and B. mallei. While B. pseudomallei and B. mallei are considered potential biowarfare agents, B. cepacia infections are largely limited to cystic fibrosis patients. Here, we present 56 Burkholderia genomes from 8 distinct species. PMID:25414490

  20. Complete Genome Sequences for 59 Burkholderia Isolates, Both Pathogenic and Near Neighbor

    DOE PAGESBeta

    Johnson, Shannon L.; Bishop-Lilly, Kimberly A.; Ladner, Jason T.; Daligault, Hajnalka E.; Davenport, Karen W.; Jaissle, James; Frey, Kenneth G.; Koroleva, Galina I.; Bruce, David C.; Coyne, Susan R.; et al

    2015-04-30

    The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Presented in this document are full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development.

  1. Complete Genome Sequences for 59 Burkholderia Isolates, Both Pathogenic and Near Neighbor

    PubMed Central

    Bishop-Lilly, Kimberly A.; Ladner, Jason T.; Daligault, Hajnalka E.; Davenport, Karen W.; Jaissle, James; Frey, Kenneth G.; Koroleva, Galina I.; Bruce, David C.; Coyne, Susan R.; Broomall, Stacey M.; Li, Po-E; Teshima, Hazuki; Gibbons, Henry S.; Palacios, Gustavo F.; Rosenzweig, C. Nicole; Redden, Cassie L.; Xu, Yan; Minogue, Timothy D.; Chain, Patrick S.

    2015-01-01

    The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Here we present full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development. PMID:25931592

  2. Melioidosis Diagnostic Workshop, 20131

    PubMed Central

    AuCoin, David; Baccam, Prasith; Baggett, Henry C.; Baird, Rob; Bhengsri, Saithip; Blaney, David D.; Brett, Paul J.; Brooks, Timothy J.G.; Brown, Katherine A.; Chantratita, Narisara; Cheng, Allen C.; Dance, David A.B.; Decuypere, Saskia; Defenbaugh, Dawn; Gee, Jay E.; Houghton, Raymond; Jorakate, Possawat; Lertmemongkolchai, Ganjana; Limmathurotsakul, Direk; Merlin, Toby L.; Mukhopadhyay, Chiranjay; Norton, Robert; Peacock, Sharon J.; Rolim, Dionne B.; Simpson, Andrew J.; Steinmetz, Ivo; Stoddard, Robyn A.; Stokes, Martha M.; Sue, David; Tuanyok, Apichai; Whistler, Toni; Wuthiekanun, Vanaporn; Walke, Henry T.

    2015-01-01

    Melioidosis is a severe disease that can be difficult to diagnose because of its diverse clinical manifestations and a lack of adequate diagnostic capabilities for suspected cases. There is broad interest in improving detection and diagnosis of this disease not only in melioidosis-endemic regions but also outside these regions because melioidosis may be underreported and poses a potential bioterrorism challenge for public health authorities. Therefore, a workshop of academic, government, and private sector personnel from around the world was convened to discuss the current state of melioidosis diagnostics, diagnostic needs, and future directions. PMID:25626057

  3. Characterization of the Burkholderia mallei tonB Mutant and Its Potential as a Backbone Strain for Vaccine Development

    PubMed Central

    Mott, Tiffany M.; Vijayakumar, Sudhamathi; Sbrana, Elena; Endsley, Janice J.; Torres, Alfredo G.

    2015-01-01

    Background In this study, a Burkholderia mallei tonB mutant (TMM001) deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis. Methodology/Principal Findings Compared to the wild-type, TMM001 exhibits slower growth kinetics, siderophore hyper-secretion and the inability to utilize heme-containing proteins as iron sources. A series of animal challenge studies showed an inverse correlation between the percentage of survival in BALB/c mice and iron-dependent TMM001 growth. Upon evaluation of TMM001 as a potential protective strain against infection, we found 100% survival following B. mallei CSM001 challenge of mice previously receiving 1.5 x 104 CFU of TMM001. At 21 days post-immunization, TMM001-treated animals showed significantly higher levels of B. mallei-specific IgG1, IgG2a and IgM when compared to PBS-treated controls. At 48 h post-challenge, PBS-treated controls exhibited higher levels of serum inflammatory cytokines and more severe pathological damage to target organs compared to animals receiving TMM001. In a cross-protection study of acute inhalational melioidosis with B. pseudomallei, TMM001-treated mice were significantly protected. While wild type was cleared in all B. mallei challenge studies, mice failed to clear TMM001. Conclusions/Significance Although further work is needed to prevent chronic infection by TMM001 while maintaining immunogenicity, our attenuated strain demonstrates great potential as a backbone strain for future vaccine development against both glanders and melioidosis. PMID:26114445

  4. Pediatric Melioidosis in Southern India.

    PubMed

    Mukhopadhyay, Chiranjay; Eshwara, Vandana K; Kini, Pushpa; Bhat, Vinod

    2015-08-01

    Melioidosis in children is increasingly detected from the coastal region of Southern India during monsoon. We present 11 cases of melioidosis, ranging from localized to disseminated, treated successfully, barring one death. It calls for awareness and upgrading laboratory facilities for better diagnosis and management of pediatric melioidosis. PMID:26388638

  5. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis

    PubMed Central

    Blower, Ryan J.; Barksdale, Stephanie M.; van Hoek, Monique L.

    2015-01-01

    Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly “highly resistant” to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis. PMID:26196513

  6. Public Awareness of Melioidosis in Thailand and Potential Use of Video Clips as Educational Tools

    PubMed Central

    Chansrichavala, Praveen; Wongsuwan, Nittayasee; Suddee, Suthee; Malasit, Mayura; Hongsuwan, Maliwan; Wannapinij, Prapass; Kitphati, Rungreung; Day, Nicholas P. J.; Michie, Susan; Peacock, Sharon J.; Limmathurotsakul, Direk

    2015-01-01

    Background Melioidosis causes more than 1,000 deaths in Thailand each year. Infection occurs via inoculation, ingestion or inhalation of the causative organism (Burkholderia pseuodmallei) present in soil and water. Here, we evaluated public awareness of melioidosis using a combination of population-based questionnaire, a public engagement campaign to obtain video clips made by the public, and viewpoints on these video clips as potential educational tools about the disease and its prevention. Methods A questionnaire was developed to evaluate public awareness of melioidosis, and knowledge about its prevention. From 1 March to 31 April 2012, the questionnaire was delivered to five randomly selected adults in each of 928 districts in Thailand. A video clip contest entitled “Melioidosis, an infectious disease that Thais must know” was run between May and October 2012. The best 12 video clips judged by a contest committee were shown to 71 people at risk from melioidosis (diabetics). Focus group interviews were used to evaluate their perceptions of the video clips. Results Of 4,203 Thais who completed our study questionnaire, 74% had never heard of melioidosis, and 19% had heard of the disease but had no further knowledge. Most participants in all focus group sessions felt that video clips were beneficial and could positively influence them to increase adherence to recommended preventive behaviours, including drinking boiled water and wearing protective gear if in contact with soil or environmental water. Participants suggested that video clips should be presented in the local dialect with simple words rather than medical terms, in a serious manner, with a doctor as the one presenting the facts, and having detailed pictures of each recommended prevention method. Conclusions In summary, public awareness of melioidosis in Thailand is very low, and video clips could serve as a useful medium to educate people and promote disease prevention. Presented in Part World Melioidosis Congress 2013, Bangkok, Thailand, 18–20 September 2013 (abstract OS VII-04). PMID:25803048

  7. E?ux pump-mediated drug resistance in Burkholderia

    PubMed Central

    Podnecky, Nicole L.; Rhodes, Katherine A.; Schweizer, Herbert P.

    2015-01-01

    Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of e?ux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although e?ux pumps have been described in several Burkholderia species, they have been best studied in Burkholderia cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, e?ux pumps of the resistance nodulation cell division (RND) family are the clinically most significant e?ux systems in these two species. Several e?ux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA, and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An e?ux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, e?ux pumps are significant players in Burkholderia drug resistance. PMID:25926825

  8. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species

    PubMed Central

    Sawana, Amandeep; Adeolu, Mobolaji; Gupta, Radhey S.

    2014-01-01

    The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for the demarcation of different groups of Burkholderia spp. and they also offer novel and useful targets for the development of diagnostic assays for the clinically important members of the BCC or the pseudomallei groups. Based upon the results of phylogenetic analyses, the identified CSIs and the pathogenicity profile of Burkholderia species, we are proposing a division of the genus Burkholderia into two genera. In this new proposal, the emended genus Burkholderia will correspond to the Clade I and it will contain only the clinically relevant and phytopathogenic Burkholderia species. All other Burkholderia spp., which are primarily environmental, will be transferred to a new genus Paraburkholderia gen. nov. PMID:25566316

  9. Divergent homologs of the predicted small RNA BpCand697 in Burkholderia spp.

    NASA Astrophysics Data System (ADS)

    Damiri, Nadzirah; Mohd-Padil, Hirzahida; Firdaus-Raih, Mohd

    2015-09-01

    The small RNA (sRNA) gene candidate, BpCand697 was previously reported to be unique to Burkholderia spp. and is encoded at 3' non-coding region of a putative AraC family transcription regulator gene. This study demonstrates the conservation of BpCand697 sequence across 32 Burkholderia spp. including B. pseudomallei, B. mallei, B. thailandensis and Burkholderia sp. by integrating both sequence homology and secondary structural analyses of BpCand697 within the dataset. The divergent sequence of BpCand697 was also used as a discriminatory power in clustering the dataset according to the potential virulence of Burkholderia spp., showing that B. thailandensis was clearly secluded from the virulent cluster of B. pseudomallei and B. mallei. Finally, the differential co-transcript expression of BpCand697 and its flanking gene, bpsl2391 was detected in Burkholderia pseudomallei D286 after grown under two different culture conditions using nutrient-rich and minimal media. It is hypothesized that the differential expression of BpCand697-bpsl2391 co-transcript between the two standard prepared media might correlate with nutrient availability in the culture media, suggesting that the physical co-localization of BpCand697 in B. pseudomallei D286 might be directly or indirectly involved with the transcript regulation of bpsl2391 under the selected in vitro culture conditions.

  10. Development of reagents and assays for the detection of pathogenic Burkholderia species

    PubMed Central

    Qazi, Omar; Rani, Mridula; Gnanam, Annie J.; Cullen, Thomas W.; Stead, Christopher M.; Kensing, Haley; McCaul, Kate; Ngugi, Sarah; Prior, Joann L; Lipka, Alexandria; Whitlock, Gregory C.; Judy, Barbara M.; Harding, Sarah V.; Titball, Richard W.; Sidhu, Sachdev S.; Trent, M. Stephen; Kitto, G Barrie; Torres, Alfredo; Estes, D. Mark; Iverson, Brent; Georgiou, George; Brown, Katherine A.

    2013-01-01

    Rapid detection of the category B biothreat agents Burkholderia pseudomallei and Burkholderia mallei in acute infections is critical to ensure that appropriate treatment is administered quickly to reduce an otherwise high probability of mortality (ca. 40% for B. pseudomallei). We are developing assays that can be used in clinical laboratories or security applications for the direct detection of surface-localized and secreted macromolecules produced by these organisms. We present our current medium-throughout approach for target selection and production of Burkholderia macromolecules and describe the generation of a Fab molecule targeted to the B. mallei BimA protein. We also present development of prototype assays for detecting Burkholderia species using anti-lipopolysaccharide antibodies. PMID:21413172

  11. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein

    E-print Network

    number of proteins as putative viru- lence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine pro- teome libraries to detect and identify interactions among each, a disease primarily affecting horses but transmittable to humans; and Burkholderia pseudomallei, which

  12. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    PubMed Central

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  13. A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection

    PubMed Central

    Bachert, Beth A.; Choi, Soo J.; Snyder, Anna K.; Rio, Rita V. M.; Durney, Brandon C.; Holland, Lisa A.; Amemiya, Kei; Welkos, Susan L.; Bozue, Joel A.; Cote, Christopher K.; Berisio, Rita; Lukomski, Slawomir

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer’s exact test and Cramer’s V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates. PMID:26356298

  14. Human melioidosis reported by ProMED

    PubMed Central

    Nasner-Posso, Katherinn Melissa; Cruz-Calderón, Stefania; Montúfar-Andrade, Franco E.; Dance, David A.B.; Rodriguez-Morales, Alfonso J.

    2015-01-01

    Summary Objective There are limited sources describing the global burden of emerging diseases. A review of human melioidosis reported by ProMED was performed and the reliability of the data retrieved assessed in comparison to published reports. The effectiveness of ProMED was evaluated as a source of epidemiological data by focusing on melioidosis. Methods Using the keyword ‘melioidosis’ in the ProMED search engine, all of the information from the reports and collected data was reviewed using a structured form, including the year, country, gender, occupation, number of infected individuals, and number of fatal cases. Results One hundred and twenty-four entries reported between January 1995 and October 2014 were identified. A total of 4630 cases were reported, with death reported in 505 cases, suggesting a misleadingly low overall case fatality rate (CFR) of 11%. Of 20 cases for which the gender was reported, 12 (60%) were male. Most of the cases were reported from Australia, Thailand, Singapore, Vietnam, and Malaysia, with sporadic reports from other countries. Conclusions Internet-based reporting systems such as ProMED are useful to gather information and synthesize knowledge on emerging infections. Although certain areas need to be improved, ProMED provided good information about melioidosis. PMID:25975651

  15. Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis

    PubMed Central

    Fong, Stephanie; Yerrapragada, Shailaja; Estrada-de los Santos, Paulina; Yang, Paul; Song, Nannie; Kano, Stephanie; de Faria, Sergio M.; Dakora, Felix D.; Weinstock, George; Hirsch, Ann M.

    2014-01-01

    Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low. PMID:24416172

  16. Biological Materials that REQUIRE an Export License ALL biological agents and biologically derived substances specifically developed, configured,

    E-print Network

    Jornsten, Rebecka

    · Brucella abortus · Brucella melitensis · Brucella suis · Burkholderia mallei (Pseudomonas mallei) · Burkholderia pseudomallei (Pseudomonas pseudomallei) · Chlamydophila psittaci (formerly known as Chlamydia

  17. Distinct colicin M-like bacteriocin-immunity pairs in Burkholderia

    PubMed Central

    Ghequire, Maarten G. K.; De Mot, René

    2015-01-01

    The Escherichia coli bacteriocin colicin M (ColM) acts via degradation of the cell wall precursor lipid II in target cells. ColM producers avoid self-inhibition by a periplasmic immunity protein anchored in the inner membrane. In this study, we identified colM-like bacteriocin genes in genomes of several ?-proteobacterial strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. Two selected Burkholderia ambifaria proteins, designated burkhocins M1 and M2, were produced recombinantly and showed antagonistic activity against Bcc strains. In their considerably sequence-diverged catalytic domain, a conserved aspartate residue equally proved pivotal for cytotoxicity. Immunity to M-type burkhocins is conferred upon susceptible strains by heterologous expression of a cognate gene located either upstream or downstream of the toxin gene. These genes lack homology with currently known ColM immunity genes and encode inner membrane-associated proteins of two distinct types, differing in predicted transmembrane topology and moiety exposed to the periplasm. The addition of burkhocins to the bacteriocin complement of Burkholderia reveals a wider phylogenetic distribution of ColM-like bacteriotoxins, beyond the ?-proteobacterial genera Escherichia, Pectobacterium and Pseudomonas, and illuminates the diversified nature of immunity-providing proteins. PMID:26610609

  18. Burkholderia species are ancient symbionts of legumes.

    PubMed

    Bontemps, Cyril; Elliott, Geoffrey N; Simon, Marcelo F; Dos Reis Júnior, Fábio B; Gross, Eduardo; Lawton, Rebecca C; Neto, Nicolau Elias; de Fátima Loureiro, Maria; De Faria, Sergio M; Sprent, Janet I; James, Euan K; Young, J Peter W

    2010-01-01

    Burkholderia has only recently been recognized as a potential nitrogen-fixing symbiont of legumes, but we find that the origins of symbiosis in Burkholderia are much deeper than previously suspected. We sampled 143 symbionts from 47 native species of Mimosa across 1800 km in central Brazil and found that 98% were Burkholderia. Gene sequences defined seven distinct and divergent species complexes within the genus Burkholderia. The symbiosis-related genes formed deep Burkholderia-specific clades, each specific to a species complex, implying that these genes diverged over a long period within Burkholderia without substantial horizontal gene transfer between species complexes. PMID:20002602

  19. Unraveling the B. pseudomallei Heptokinase WcbL: From Structure to Drug Discovery.

    PubMed

    Vivoli, Mirella; Isupov, Michail N; Nicholas, Rebecca; Hill, Andrew; Scott, Andrew E; Kosma, Paul; Prior, Joann L; Harmer, Nicholas J

    2015-12-17

    Gram-negative bacteria utilize heptoses as part of their repertoire of extracellular polysaccharide virulence determinants. Disruption of heptose biosynthesis offers an attractive target for novel antimicrobials. A critical step in the synthesis of heptoses is their 1-O phosphorylation, mediated by kinases such as HldE or WcbL. Here, we present the structure of WcbL from Burkholderia pseudomallei. We report that WcbL operates through a sequential ordered Bi-Bi mechanism, loading the heptose first and then ATP. We show that dimeric WcbL binds ATP anti-cooperatively in the absence of heptose, and cooperatively in its presence. Modeling of WcbL suggests that heptose binding causes an elegant switch in the hydrogen-bonding network, facilitating the binding of a second ATP molecule. Finally, we screened a library of drug-like fragments, identifying hits that potently inhibit WcbL. Our results provide a novel mechanism for control of substrate binding and emphasize WcbL as an attractive anti-microbial target for Gram-negative bacteria. PMID:26687481

  20. Screening and expression of selected taxonomically conserved and unique hypothetical proteins in Burkholderia pseudomallei K96243

    NASA Astrophysics Data System (ADS)

    Akhir, Nor Azurah Mat; Nadzirin, Nurul; Mohamed, Rahmah; Firdaus-Raih, Mohd

    2015-09-01

    Hypothetical proteins of bacterial pathogens represent a large numbers of novel biological mechanisms which could belong to essential pathways in the bacteria. They lack functional characterizations mainly due to the inability of sequence homology based methods to detect functional relationships in the absence of detectable sequence similarity. The dataset derived from this study showed 550 candidates conserved in genomes that has pathogenicity information and only present in the Burkholderiales order. The dataset has been narrowed down to taxonomic clusters. Ten proteins were selected for ORF amplification, seven of them were successfully amplified, and only four proteins were successfully expressed. These proteins will be great candidates in determining the true function via structural biology.

  1. Isolation and characterization of Pseudomonas pseudomallei flagellin proteins.

    PubMed Central

    Brett, P J; Mah, D C; Woods, D E

    1994-01-01

    Flagellin proteins from several different strains of Pseudomonas pseudomallei have been isolated and purified to homogeneity by mechanical shearing and differential centrifugation techniques. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis yielded flagellin monomer protein bands with an estimated M(r) of 43,400. No lipopolysaccharide contamination of the purified protein preparations was detectable by silver staining of flagellin displayed on polyacrylamide gels and by Western immunoblotting with P. pseudomallei antilipopolysaccharide monoclonal antibody. NH2-terminal amino acid sequence analysis of the flagellin protein of P. pseudomallei 319a revealed significant homology with flagellins from Proteus mirabilis, Bordetella bronchiseptica, and Pseudomonas aeruginosa PAK. Rabbit polyclonal antiserum raised against the 319a flagellin protein reacted with 64 of 65 P. pseudomallei strains tested. The polyclonal antiserum proved effective in inhibiting the motility of these organisms in motility agar plates. Passive immunization studies demonstrated that 319a flagellin-specific antiserum was capable of protecting diabetic rats from challenge with a heterologous P. pseudomallei strain. Images PMID:7513308

  2. Melioidosis as a Cause of Acute Abdomen in Immuno-Competent Male from Eastern India

    PubMed Central

    Karuna, Tadepalli; Khadanga, Sagar; Dugar, Dharmendra; Sau, Biyanka; Bhoi, Priyadarshini

    2015-01-01

    Though melioidosis is rare in India, it has gained importance as one of the most potent emerging infections. In India, the cases have been under-reported because of the lack of awareness. The majority of cases present with multifocal pyogenic infections with septicemia. We present an unusual case of melioidosis presenting as acute intestinal perforation. The organism was ceftazidime resistant, and we successfully treated the case with imipenem and doxycyclin. This case highlights ruling out the possibility of melioidosis in acute abdomen and existence of ceftazidime resistant cases in India. PMID:25949062

  3. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Burkholderia cepacia complex. 725.1075 Section...Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism...microorganisms identified as the Burkholderia cepacia complex defined as...

  4. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Burkholderia cepacia complex. 725.1075 Section...Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism...microorganisms identified as the Burkholderia cepacia complex defined as...

  5. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    EPA Science Inventory

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  6. Host Evasion by Burkholderia cenocepacia

    PubMed Central

    Ganesan, Shyamala; Sajjan, Umadevi S.

    2012-01-01

    Burkholderia cenocepacia is an opportunistic respiratory pathogen of individuals with cystic fibrosis (CF). Some strains of B. cenocepacia are highly transmissible and resistant to almost all antibiotics. Approximately one-third of B. cenocepacia infected CF patients go on to develop fatal “cepacia syndrome.” During the last two decades, substantial progress has been made with regards to evasion of host innate defense mechanisms by B. cenocepacia. Almost all strains of B. cenocepacia have the capacity to survive and replicate intracellularly in both airway epithelial cells and macrophages, which are primary sentinels of the lung and play a pivotal role in clearance of infecting bacteria. Those strains of B. cenocepacia, which express both cable pili and the associated 22?kDa adhesin are also capable of transmigrating across airway epithelium and persist in mouse models of infection. In this review, we will discuss how this type of interaction between B. cenocepacia and host may lead to persistence of bacteria as well as lung inflammation in CF patients. PMID:22919590

  7. GENOME ANALYSIS OF BURKHOLDERIA CEPACIA AC1100

    EPA Science Inventory

    Burkholderia cepacia is an important organism in bioremediation of environmental pollutants and it is also of increasing interest as a human pathogen. The genomic organization of B. cepacia is being studied in order to better understand its unusual adaptive capacity and genome pl...

  8. Splenic Abscesses in a Returning Traveler

    PubMed Central

    Guo, Richard F.; Wong, Frances L.; Perez, Mario L.

    2015-01-01

    Burkholderia, an aerobic gram-negative rod, is the causative organism behind melioidosis and is a common soil and water organism found predominantly in South-East Asia. We report the case of a 68 year-old man returning from an extended trip to the Philippines, with splenic hypodense lesions on abdominal computer tomography scan, later confirmed to be culture-positive for Burkholderia pseudomallei. The patient was treated with a course of intravenous ceftazidime followed by eradication therapy with oral doxycycline and trimethoprim-sulfamethoxazole. He recovered with complete resolution of symptoms at follow up. In a returning traveler from an endemic area, melioidosis should be considered as part of the differential for any febrile illness with abscesses. PMID:25874071

  9. Discrimination of Burkholderia multivorans and Burkholderia vietnamiensis from Burkholderia cepacia Genomovars I, III, and IV by PCR

    PubMed Central

    Bauernfeind, Adolf; Schneider, Ines; Jungwirth, Renate; Roller, Carsten

    1999-01-01

    We present a PCR procedure for identification of Burkholderia cepacia, Burkholderia multivorans, and Burkholderia vietnamiensis. 16S and 23S ribosomal DNAs (rDNAs) of B. multivorans and B. vietnamiensis were sequenced and aligned with published sequences for definition of species-specific 18-mer oligonucleotide primers. Specific antisense 16S rDNA primers (for B. cepacia, 5?-AGC ACT CCC RCC TCT CAG-3?; for B. multivorans, 5?-AGC ACT CCC GAA TCT CTT-3?) and 23S rDNA primers (for B. vietnamiensis, 5?-TCC TAC CAT GCG TGC AA-3?) were paired with a general sense primer of 16S rDNAs (5?-AGR GTT YGA TYM TGG CTC AG-3?) or with a sense primer of 23S rDNA (5?-CCT TTG GGT CAT CCT GGA-3?). PCR with these primers under optimized conditions is appropriate to specifically and rapidly identify B. multivorans, B. vietnamiensis, and B. cepacia (genomovars I, III, and IV are not discriminated). In comparison with the polyphasic taxonomic analyses presently necessary for species and genomovar identification within the B. cepacia complex, our procedure is more rapid and easier to perform and may contribute to clarifying the clinical significance of individual members of the complex in cystic fibrosis. PMID:10203482

  10. Draft Genomes for Eight Burkholderia mallei Isolates from Turkey.

    PubMed

    Daligault, H E; Johnson, S L; Davenport, K W; Minogue, T D; Bishop-Lilly, K A; Broomall, S M; Bruce, D C; Coyne, S R; Frey, K G; Gibbons, H S; Jaissle, J; Koroleva, G I; Ladner, J T; Lo, C-C; Munk, C; Wolcott, M J; Palacios, G F; Redden, C L; Rosenzweig, C N; Scholz, M B; Chain, P S

    2016-01-01

    Burkholderia mallei, the etiologic agent of glanders, is a Gram-negative, nonmotile, facultative intracellular pathogen. Although glanders has been eradicated from many parts of the world, the threat of B. mallei being used as a weapon is very real. Here we present draft genome assemblies of 8 Burkholderia mallei strains that were isolated in Turkey. PMID:26744368

  11. In vitro activities of the newer beta-lactam and quinolone antimicrobial agents against Pseudomonas pseudomallei.

    PubMed Central

    Ashdown, L R

    1988-01-01

    Imipenem was highly active and bactericidal against all 100 strains of Pseudomonas pseudomallei tested, followed in activity by piperacillin, carumonam, ceftazidime, cefotaxime, and ceftriaxone. The addition of clavulanic acid significantly increased the activities of both amoxicillin and ticarcillin. Ciprofloxacin and norfloxacin showed poor activity against test strains. PMID:3196005

  12. Draft Genome Sequences of Burkholderia contaminans, a Burkholderia cepacia Complex Species That Is Increasingly Recovered from Cystic Fibrosis Patients

    PubMed Central

    Bloodworth, Ruhi A. M.; Selin, Carrie; López De Volder, Maria Agustina; Drevinek, Pavel; Galanternik, Laura; Degrossi, José

    2015-01-01

    Burkholderia contaminans belongs to the Burkholderia cepacia complex (BCC), a group of bacteria that are ubiquitous in the environment and capable of infecting the immunocompromised and people with cystic fibrosis. We report here draft genome sequences for the B. contaminans type strain LMG 23361 and an Argentinian cystic fibrosis sputum isolate. PMID:26251482

  13. Serological Diagnosis of Human Melioidosis with Indirect Hemagglutination and Complement Fixation Tests

    PubMed Central

    Alexander, Aaron D.; Huxsoll, David L.; Warner, Albert R.; Shepler, Virginia; Dorsey, Arthur

    1970-01-01

    An indirect hemagglutination (IHA) test and a complement fixation (CF) test were evaluated from test results on sera from 212 human melioidosis patients of which 119 were culturally proved cases. Significant antibody titers (IHA titers of 1:40 or greater and CF titers of 1:4 or greater) were demonstrated with either test in all except five patients. IHA and CF titers ranged as high as 1:20,480 and 1:1,024, respectively. Antibodies were usually demonstrated by both tests 1 week after onset of disease. Transient seronegative reactions during the course of disease were seen in sera of approximately 19% of the patients with either IHA and CF but rarely with both tests. High titers in either test were obtained by the third week of disease and reached maximum levels in 4 to 5 months. Titers usually were detectable for 9 or more months. Antibodies were detected by IHA and CF tests in 80 to 100% of the sera obtained at various time intervals from 9 months to 2 or more years after disease onset. Antibody persistence occurred in patients who had a short disease course, as well as in patients with prolonged, complicated infections. The IHA test had excellent specificity when evaluated with normal human sera and diverse antimicrobial sera from hyperimmunized rabbits and human patients. The CF antigen appeared to contain common antigens with some but not all types of Pseudomonas aeruginosa. The specificity of the CF antigen could be enhanced without appreciable effect on its sensitivity by use of a titer of 1:8 in lieu of 1:4 as a criterion for a significant reaction. Either test could be used advantageously for the laboratory diagnosis of melioidosis. PMID:5530276

  14. VgrG-5 Is a Burkholderia Type VI Secretion System-Exported Protein Required for Multinucleated Giant Cell Formation and Virulence

    PubMed Central

    Singh, Pragya; Robertson, Johanna D.; LeRoux, Michele; Skerrett, Shawn J.; Goodlett, David R.; West, T. Eoin; Mougous, Joseph D.

    2014-01-01

    The type VI secretion system (T6SS) has emerged as a critical virulence factor for the group of closely related Burkholderia spp. that includes Burkholderia pseudomallei, B. mallei, and B. thailandensis. While the genomes of these bacteria, referred to as the Bptm group, appear to encode several T6SSs, we and others have shown that one of these, type VI secretion system 5 (T6SS-5), is required for virulence in mammalian infection models. Despite its pivotal role in the pathogenesis of the Bptm group, the effector repertoire of T6SS-5 has remained elusive. Here we used quantitative mass spectrometry to compare the secretome of wild-type B. thailandensis to that of a mutant harboring a nonfunctional T6SS-5. This analysis identified VgrG-5 as a novel secreted protein whose export depends on T6SS-5 function. Bioinformatics analysis revealed that VgrG-5 is a specialized VgrG protein that harbors a C-terminal domain (CTD) conserved among Bptm group species. We found that a vgrG-5 ?CTD mutant is avirulent in mice and is unable to stimulate the fusion of host cells, a hallmark of the Bptm group previously shown to require T6SS-5 function. The singularity of VgrG-5 as a detected T6SS-5 substrate, taken together with the essentiality of its CTD for virulence, suggests that the protein is critical for the effector activity of T6SS-5. Intriguingly, we show that unlike the bacterial-cell-targeting T6SSs characterized so far, T6SS-5 localizes to the bacterial cell pole. We propose a model whereby the CTD of VgrG-5—, propelled by T6SS-5—, plays a key role in inducing membrane fusion, either by the recruitment of other factors or by direct participation. PMID:24452686

  15. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...abscesses, and meningitis (inflammation of brain membranes). Pseudomonas pseudomallei causes melioidosis, a chronic pneumonia. (b) Classification. Class II (special controls). The device is exempt from the premarket notification...

  16. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...abscesses, and meningitis (inflammation of brain membranes). Pseudomonas pseudomallei causes melioidosis, a chronic pneumonia. (b) Classification. Class II (special controls). The device is exempt from the premarket notification...

  17. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...abscesses, and meningitis (inflammation of brain membranes). Pseudomonas pseudomallei causes melioidosis, a chronic pneumonia. (b) Classification. Class II (special controls). The device is exempt from the premarket notification...

  18. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...abscesses, and meningitis (inflammation of brain membranes). Pseudomonas pseudomallei causes melioidosis, a chronic pneumonia. (b) Classification. Class II (special controls). The device is exempt from the premarket notification...

  19. Burkholderia Species Are Major Inhabitants of White Lupin Cluster Roots?†

    PubMed Central

    Weisskopf, Laure; Heller, Stefanie; Eberl, Leo

    2011-01-01

    The formation of cluster roots by plants represents a highly efficient strategy for acquisition of sparingly available phosphate. This particular root type is characterized by a densely branched structure and high exudation of organic acids and protons, which are likely to influence the resident bacterial community. Until now, the identity of the bacterial populations living in cluster roots has not been investigated. We applied cultivation-dependent and cultivation-independent methods to characterize the dominant bacterial genera inhabiting the growing cluster roots of white lupin. We observed a high relative abundance of Burkholderia species (up to 58% of all isolated strains and 44% of all retrieved 16S rRNA sequences) and a significant enrichment with increasing cluster root age. Most of the sequences retrieved clustered together with known plant- or fungus-associated Burkholderia species, while only one of 98 sequences was affiliated with the Burkholderia cepacia complex. In vitro assays revealed that Burkholderia strains were much more tolerant to low pH than non-Burkholderia strains. Moreover, many strains produced large amounts of siderophores and were able to utilize citrate and oxalate as carbon sources. These features seem to represent important traits for the successful colonization and maintenance of Burkholderia species in white lupin cluster roots. PMID:21908626

  20. 9 CFR 121.9 - Responsible official.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...immediately reported by telephone, facsimile, or email: African horse sickness virus, African swine fever virus, avian influenza virus (highly pathogenic), Bacillus anthracis, Burkholderia mallei, Burkholderia pseudomallei, classical...

  1. 9 CFR 121.9 - Responsible official.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...immediately reported by telephone, facsimile, or email: African horse sickness virus, African swine fever virus, avian influenza virus (highly pathogenic), Bacillus anthracis, Burkholderia mallei, Burkholderia pseudomallei, classical...

  2. Effect of colony morphology variation of Burkholderia pseudomallei on intracellular survival and resistance to antimicrobial environments in human macrophages in vitro

    E-print Network

    Tandhavanant, Sarunporn; Thanwisai, Aunchalee; Limmathurotsakul, Direk; Korbsrisate, Sunee; Day, Nicholas P. J.; Peacock, Sharon J.; Chantratita, Narisara

    2010-11-30

    e) 200 500 0 50 100 150 200 250 300 350 4 5 6 7 8 In tr ac el lu la r b ac te ri a (× 10 3 C FU /m l) Time (h) 153 Type I Type II Type III B 0 50 100 150 200 250 300 350 4 5 6 7 8 In tr ac el lu la r b ac te ri a (× 10 3 C FU /m l) Time (h) 164C 0 50... 100 150 200 250 300 350 4 6 8 In tr ac el lu la r b ac te ri a (× 10 3 C FU /m l) Time (h) K96243D 0 50 100 150 200 250 300 350 4 5 6 7 8 In tr ac el lu la r b ac te ri a (× 10 3 C FU /m l) Time (h) B3E 0 50 100 150 200 250 300 350 4 6 8 In tr ac el lu...

  3. Evaluation of biodegradation potential of foam embedded Burkholderia cepacia

    E-print Network

    Hazen, Terry

    Evaluation of biodegradation potential of foam embedded Burkholderia cepacia G4 JoAnn C. Radway for embedding B. cepacia in hydrophilic polyurethane foam in such a manner that cells are effectively entrapped of this study was to evaluate the potential of polyurethane embed- ded bacteria for the remediation

  4. Removal of Burkholderia cepacia biofilms with oxidants

    NASA Technical Reports Server (NTRS)

    Koenig, D. W.; Mishra, S. K.; Pierson, D. L.

    1995-01-01

    Iodine is used to disinfect the water system aboard US space shuttles and is the anticipated biocide for the international space station. Water quality on spacecraft must be maintained at the highest possible levels for the safety of the crew. Furthermore, the treatment process used to maintain the quality of water on research must be robust and operate for long periods with minimal crew intervention. Biofilms are recalcitrant and pose a major threat with regard to chronic contamination of spacecraft water systems. We measured the effectiveness of oxidizing biocides on the removal and regrowth of Burkholderia (Pseudomonas) cepacia biofilms. B. cepacia, isolated from the water distribution system of the space shuttle Discovery, was grown in continuous culture to produce a bacterial contamination source for biofilm formation and removal studies. A 10(7) CFU ml-1 B. cepacia suspension, in distilled water, was used to form biofilms on 3000 micrometers2 glass surfaces. Rates of attachment were measured directly with image analysis and were found to be 7.8, 15.2, and 22.8 attachment events h-1 for flow rates of 20.7, 15.2, and 9.8 ml min-1, respectively. After 18 h of formation, the B. cepacia biofilms were challenged with oxidants (ozone, chlorine, and iodine) and the rates of biofilm removal determined by image analysis. Fifty percent of the biofilm material was removed in the first hour of continous treatment with 24 mg l-1 chlorine or 2 mg l-1 ozone. Iodine (48 mg l-1) did not remove any measurable cellular material after 6 h continuous contact. After this first removal of biofilms by the oxidants, the surface was allowed to refoul and was again treated with the biocide. Iodine was the only compound that was unable to remove cellular debris from either primary or secondary biofilms. Moreover, treating primary biofilms with iodine increased the rate of formation of secondary biofilms, from 4.4 to 5.8 attachment events h-1. All the oxidants tested inactivated the B. cepacia associated with both primary and secondary biofilms. The amount of biocide needed to inactivate 50% of planktonic B. cepacia in 10 min at 25 degrees C was 8.4, 0.5, and 0.2 mg l-1 for iodine, chlorine, and ozone, respectively. The data suggest that iodine maynot be the best chemical for treating of biofilms when removal of cellular material is required.

  5. Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale

    PubMed Central

    Bragina, Anastasia; Cardinale, Massimiliano; Berg, Christian; Berg, Gabriele

    2013-01-01

    The betaproteobacterial genus Burkholderia is known for its versatile interactions with its hosts that can range from beneficial to pathogenic. A plant-beneficial-environmental (PBE) Burkholderia cluster was recently separated from the pathogen cluster, yet still little is known about burkholderial diversity, distribution, colonization, and transmission patterns on plants. In our study, we applied a combination of high-throughput molecular and microscopic methods to examine the aforementioned factors for Burkholderia communities associated with Sphagnum mosses – model plants for long-term associations – in Austrian and Russian bogs. Analysis of 16S rRNA gene amplicons libraries revealed that most of the Burkholderia are part of the PBE group, but a minor fraction was closely related to B. glathei and B. andropogonis from the pathogen cluster. Notably, Burkholderia showed highly similar composition patterns for each moss species independent of the geographic region, and Burkholderia-specific fluorescent in situ hybridization of Sphagnum gametophytes exhibited similar colonization patterns in different Sphagnum species at multi-geographic scales. To explain these patterns, we compared the compositions of the surrounding water, gametophyte-, and sporophyte-associated microbiome at genus level and discovered that Burkholderia were present in the Sphagnum sporophyte and gametophyte, but were absent in the flark water. Therefore, Burkholderia is a part of the core microbiome transmitted from the moss sporophyte to the gametophyte. This suggests a vertical transmission of Burkholderia strains, and thus underlines their importance for the plants themselves. PMID:24391630

  6. Acyldepsipeptide HDAC inhibitor production induced in Burkholderia thailandensis

    PubMed Central

    Biggins, John B.; Gleber, Conrad D.; Brady, Sean F.

    2011-01-01

    Natural product gene clusters are often tightly regulated, resulting in gene cluster silencing in laboratory fermentation studies. The systematic overexpression of transcription factors (TFs) associated with biosynthetic gene clusters found in the genome of Burkholderia thailandensis E264 identified a set of TFs that, when overexpressed, alter the secondary metabolome of this bacterium. The isolation and characterization of burkholdacs A and B, two new acyldepsitripeptide histone deacetylase inhibitors produced by B. thailandensis overexpressing the TF bhcM is reported. PMID:21348454

  7. Draft Genome Sequence of the Organophosphorus Compound-Degrading Burkholderia zhejiangensis Strain CEIB S4-3

    PubMed Central

    Hernández-Mendoza, Armando; Martínez-Ocampo, Fernando; Lozano-Aguirre Beltrán, Luis Fernando; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, Laura; Sánchez-Salinas, Enrique

    2014-01-01

    Burkholderia species are widely distributed in the environment. A Burkholderia zhejiangensis strain was isolated from pesticide-contaminated soil from an agricultural field in Mexico and identified as an organophosphorus compound-degrading bacterium. In this study, we report the draft genome sequence of Burkholderia zhejiangensis strain CEIB S4-3. PMID:25523778

  8. Immunoproteomic Analysis of Proteins Expressed by Two Related Pathogens, Burkholderia multivorans and Burkholderia cenocepacia, during Human Infection

    PubMed Central

    Shinoy, Minu; Dennehy, Ruth; Coleman, Lorraine; Carberry, Stephen; Schaffer, Kirsten; Callaghan, Máire; Doyle, Sean; McClean, Siobhán

    2013-01-01

    Burkholderia cepacia complex (Bcc) is an opportunistic bacterial pathogen that causes chronic infections in people with cystic fibrosis (CF). It is a highly antibiotic resistant organism and Bcc infections are rarely cleared from patients, once they are colonized. The two most clinically relevant species within Bcc are Burkholderia cenocepacia and Burkholderia multivorans. The virulence of these pathogens has not been fully elucidated and the virulence proteins expressed during human infection have not been identified to date. Furthermore, given its antibiotic resistance, prevention of infection with a prophylactic vaccine may represent a better alternative than eradication of an existing infection. We have compared the immunoproteome of two strains each from these two species of Bcc, with the aim of identifying immunogenic proteins which are common to both species. Fourteen immunoreactive proteins were exclusive to both B. cenocepacia strains, while 15 were exclusive to B. multivorans. A total of 15 proteins were immunogenic across both species. DNA-directed RNA polymerase, GroEL, 38kDa porin and elongation factor-Tu were immunoreactive proteins expressed by all four strains examined. Many proteins which were immunoreactive in both species, warrant further investigations in order to aid in the elucidation of the mechanisms of pathogenesis of this difficult organism. In addition, identification of some of these could also allow the development of protective vaccines which may prevent colonisation. PMID:24260482

  9. Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria.

    PubMed

    DiSalvo, Susanne; Haselkorn, Tamara S; Bashir, Usman; Jimenez, Daniela; Brock, Debra A; Queller, David C; Strassmann, Joan E

    2015-09-01

    Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed "farmers") stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon. PMID:26305954

  10. Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria

    PubMed Central

    DiSalvo, Susanne; Haselkorn, Tamara S.; Bashir, Usman; Jimenez, Daniela; Brock, Debra A.; Queller, David C.; Strassmann, Joan E.

    2015-01-01

    Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed “farmers”) stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon. PMID:26305954

  11. Colloids and Surfaces B: Biointerfaces 59 (2007) 4651 Adhesion characteristics of two Burkholderia cepacia strains examined

    E-print Network

    2007-01-01

    Colloids and Surfaces B: Biointerfaces 59 (2007) 46­51 Adhesion characteristics of two Burkholderia cepacia strains examined using colloid probe microscopy and gradient force analysis Michael B. Salernoa Colloid probe atomic force microscopy (CP-AFM) was used to investigate two strains of Burkholderia cepacia

  12. Draft Genome Sequence of Burkholderia cordobensis Type Strain LMG 27620, Isolated from Agricultural Soils in Argentina

    PubMed Central

    Draghi, Walter Omar; Mancini Villagra, Ulises M.; Wall, Luis Gabriel

    2015-01-01

    Bacteria of the genus Burkholderia are commonly found in diverse ecological niches in nature. We report here the draft genome sequence of Burkholderia cordobensis type strain LMG 27620, isolated from agricultural soil in Córdoba, Argentina. This strain harbors several genes involved in chitin utilization and phenol degradation, which make it an interesting candidate for biocontrol purposes and xenobiotic degradation in polluted environments. PMID:26494680

  13. South African Papilionoid Legumes Are Nodulated by Diverse Burkholderia with Unique Nodulation and

    E-print Network

    South African Papilionoid Legumes Are Nodulated by Diverse Burkholderia with Unique Nodulation Council (ARC), Plant Protection Research Institute, Pretoria, Gauteng, South Africa Abstract The root-nodule reports suggest the occurrence of nodulating Burkholderia species unique to the region. In this study, we

  14. Recurrent urinary tract infection by Burkholderia cepacia in a live related renal transplant recipient.

    PubMed

    Zeeshan, Mohammad; Aziz, Tahir; Naqvi, Farah

    2012-05-01

    Burkholderia cepacia is high virulent organism usually causing lower respiratory tract infections especially in Cystic fibrosis (CF) patients and post lung transplant. Urinary tract infections with Burkholderia cepacia have been associated after bladder irrigation or use of contaminated hospital objects. Post renal transplant urinary tract infection (UTI) is the most common infectious complications. Recurrent urinary tract infection with Burkholderia cepacia is a rare finding. Complete anatomical evaluation is essential in case recurrent urinary tract infections (UTI) after renal transplant. Vesico-ureteric reflux (VUR) and neurogenic urinary bladder was found to be important risk factors. PMID:22755318

  15. Evaluation of three oligonucleotide primer sets in PCR for the identification of Burkholderia cepacia and their differentiation from Burkholderia gladioli.

    PubMed Central

    Clode, F E; Kaufmann, M E; Malnick, H; Pitt, T L

    1999-01-01

    AIMS: To evaluate three oligonucleotide primer pairs--two specific for 16S and 23S rRNA sequences of Burkholderia cepacia, and the third specific for internal transcribed spacer region of 16S-23S sequences of B gladioli--for the identification and differentiation of reference and clinical strains of these and other species. METHODS: The three primers sets were applied in polymerase chain reaction (PCR) to a collection of 177 clinical isolates submitted for identification from diagnostic laboratories as presumed B cepacia. RESULTS: At an annealing temperature of 63 degrees C, all eight B cepacia and four B gladioli reference strains reacted with their specific primers. B vandii was the only other species that was positive with both B cepacia primers but five Burkholderia or Ralstonia species reacted with one of these primers. Seventy eight isolates were typical of B cepacia in biochemical tests and 75 of these reacted with specific primers; three, however, were positive with the B gladioli primers. Fifteen asaccharolytic isolates were confirmed as B cepacia by PCR but other non-fermenting Gram negative species were negative with each of the primers. CONCLUSIONS: PCR using 16S rRNA sequences is recommended for identification of B cepacia that give atypical results in biochemical tests. Images PMID:10450174

  16. A case of melioidosis probably acquired by inhalation of dusts during a helicopter flight in a healthy traveler returning from Singapore.

    PubMed

    Amadasi, Silvia; Dal Zoppo, Sarah; Bonomini, Annalisa; Bussi, Anna; Pedroni, Palmino; Balestrieri, Gianpaolo; Signorini, Liana; Castelli, Francesco

    2015-01-01

    We present a case of melioidosis in an Italian male returning from Singapore after a short travel. He probably acquired the disease by inhalation, which is not the typical mode of transmission, in the absence of evident risk factors. The diagnosis was confirmed by real-time polymerase chain reaction of the culture while serology was useful to assess professional exposure among laboratory workers. Treatment consisted of an initial intensive phase with meropenem and trimethoprim-sulfamethaxazole (TMP-SMX), followed by 6?months of eradication therapy with TMP-SMX. PMID:25183194

  17. BIOAUGMENTATION WITH BURKHOLDERIA CEPACIA PR1301 FOR IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE CONTAMINATED GROUNDWATER (RESEARCH BRIEF)

    EPA Science Inventory

    A pilot field study was conducted at the Moffett Federal Airfield, Mountain View, California, to determine whether effective in-situ aerobic cometabolic biodegradation of TCE could be accomplished through bioaugmentation with a genetically modified strain of Burkholderia cepacia ...

  18. Biosynthesis pathway & transport of endotoxin - promising antibacterial drug targets in the Burkholderia cepacia Complex (BCC) 

    E-print Network

    Bodewits, Karin

    2011-11-23

    Burkholderia cepacia complex (Bcc) species are opportunistic pathogens in patients with cystic fibrosis (CF), which are able to cause lethal infections. The Bcc are inherently resistant to most classes of antibiotics, ...

  19. TRACKING THE RESPONSE OF BURKHOLDERIA CEPACIA G4 5223-PR1 IN AQUIFER MICROCOSMS

    EPA Science Inventory

    The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of microbial population dynamics to define persistence and activity from both efficacy and risk assessment perspectives, Burkholderia cepacia G4 5223-P...

  20. Polyclonal outbreak of bacteremia caused by Burkholderia cepacia complex and the presumptive role of ultrasound gel.

    PubMed

    Nannini, Esteban C; Ponessa, Adriana; Muratori, Rosa; Marchiaro, Patricia; Ballerini, Viviana; Flynn, Luis; Limansky, Adriana S

    2015-01-01

    A nosocomial polyclonal outbreak associated to bacteremia caused by different Burkholderia cepacia complex (BCC) species and clones is reported. Molecular characterization identified Burkholderia stabilis, Burkholderia contaminans, and Burkholderia ambifaria among BCC isolates obtained from patients in neonatal and adult intensive care units. BCC was also isolated from an intrinsically contaminated ultrasound gel, which constituted the presumptive BCC source. Prior BCC outbreak related to contaminated ultrasound gels have been described in the setting of transrectal prostate biopsy. Outbreak caused strains and/or clones of BCC have been reported, probably because BCC are commonly found in the natural environment; most BCC species are biofilm producers, and different species may contaminate an environmental source. The finding of multiple species or clones during the analysis of nosocomial BCC cases might not be enough to reject an outbreak from a common source. PMID:26322722

  1. Expression of Caenorhabditis elegans antimicrobial peptide NLP-31 in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Lim, Mei-Perng; Nathan, Sheila

    2014-09-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a fulminant disease endemic in Southeast Asia and Northern Australia. The standardized form of therapy is antibiotics treatment; however, the bacterium has become increasingly resistant to these antibiotics. This has spurred the need to search for alternative therapeutic agents. Antimicrobial peptides (AMPs) are small proteins that possess broad-spectrum antimicrobial activity. In a previous study, the nematode Caenorhabditis elegans was infected by B. pseudomallei and a whole animal transcriptome analysis identified a number of AMP-encoded genes which were induced significantly in the infected worms. One of the AMPs identified is NLP-31 and to date, there are no reports of anti-B. pseudomallei activity demonstrated by NLP-31. To produce NLP-31 protein for future studies, the gene encoding for NLP-31 was cloned into the pET32b expression vector and transformed into Escherichia coli BL21(DE3). Protein expression was induced with 1 mM IPTG for 20 hours at 20°C and recombinant NLP-31 was detected in the soluble fraction. Taken together, a simple optimized heterologous production of AMPs in an E. coli expression system has been successfully developed.

  2. Burkholderia species are the most common and preferred nodulating symbionts of the Piptadenia group (tribe Mimoseae).

    PubMed

    Bournaud, Caroline; de Faria, Sergio Miana; dos Santos, José Miguel Ferreira; Tisseyre, Pierre; Silva, Michele; Chaintreuil, Clémence; Gross, Eduardo; James, Euan K; Prin, Yves; Moulin, Lionel

    2013-01-01

    Burkholderia legume symbionts (also called ?-rhizobia) are ancient in origin and are the main nitrogen-fixing symbionts of species belonging to the large genus Mimosa in Brazil. We investigated the extent of the affinity between Burkholderia and species in the tribe Mimoseae by studying symbionts of the genera Piptadenia (P.), Parapiptadenia (Pp.), Pseudopiptadenia (Ps.), Pityrocarpa (Py.), Anadenanthera (A.) and Microlobius (Mi.), all of which are native to Brazil and are phylogenetically close to Mimosa, and which together with Mimosa comprise the "Piptadenia group". We characterized 196 strains sampled from 18 species from 17 locations in Brazil using two neutral markers and two symbiotic genes in order to assess their species affiliations and the evolution of their symbiosis genes. We found that Burkholderia are common and highly diversified symbionts of species in the Piptadenia group, comprising nine Burkholderia species, of which three are new ones and one was never reported as symbiotic (B. phenoliruptrix). However, ?-rhizobia were also detected and were occasionally dominant on a few species. A strong sampling site effect on the rhizobial nature of symbionts was detected, with the symbiont pattern of the same legume species changing drastically from location to location, even switching from ? to ?-rhizobia. Coinoculation assays showed a strong affinity of all the Piptadenia group species towards Burkholderia genotypes, with the exception of Mi. foetidus. Phylogenetic analyses of neutral and symbiotic markers showed that symbiosis genes in Burkholderia from the Piptadenia group have evolved mainly through vertical transfer, but also by horizontal transfer in two species. PMID:23691052

  3. Burkholderia Species Are the Most Common and Preferred Nodulating Symbionts of the Piptadenia Group (Tribe Mimoseae)

    PubMed Central

    Bournaud, Caroline; de Faria, Sergio Miana; dos Santos, José Miguel Ferreira; Tisseyre, Pierre; Silva, Michele; Chaintreuil, Clémence; Gross, Eduardo; James, Euan K.; Prin, Yves; Moulin, Lionel

    2013-01-01

    Burkholderia legume symbionts (also called ?-rhizobia) are ancient in origin and are the main nitrogen-fixing symbionts of species belonging to the large genus Mimosa in Brazil. We investigated the extent of the affinity between Burkholderia and species in the tribe Mimoseae by studying symbionts of the genera Piptadenia (P.), Parapiptadenia (Pp.), Pseudopiptadenia (Ps.), Pityrocarpa (Py.), Anadenanthera (A.) and Microlobius (Mi.), all of which are native to Brazil and are phylogenetically close to Mimosa, and which together with Mimosa comprise the “Piptadenia group”. We characterized 196 strains sampled from 18 species from 17 locations in Brazil using two neutral markers and two symbiotic genes in order to assess their species affiliations and the evolution of their symbiosis genes. We found that Burkholderia are common and highly diversified symbionts of species in the Piptadenia group, comprising nine Burkholderia species, of which three are new ones and one was never reported as symbiotic (B. phenoliruptrix). However, ?-rhizobia were also detected and were occasionally dominant on a few species. A strong sampling site effect on the rhizobial nature of symbionts was detected, with the symbiont pattern of the same legume species changing drastically from location to location, even switching from ? to ?-rhizobia. Coinoculation assays showed a strong affinity of all the Piptadenia group species towards Burkholderia genotypes, with the exception of Mi. foetidus. Phylogenetic analyses of neutral and symbiotic markers showed that symbiosis genes in Burkholderia from the Piptadenia group have evolved mainly through vertical transfer, but also by horizontal transfer in two species. PMID:23691052

  4. Molecular mechanisms underlying the close association between soil Burkholderia and fungi.

    PubMed

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils. PMID:25989372

  5. Aerosol Phage Therapy Efficacy in Burkholderia cepacia Complex Respiratory Infections

    PubMed Central

    Semler, Diana D.; Goudie, Amanda D.; Finlay, Warren H.

    2014-01-01

    Phage therapy has been suggested as a potential treatment for highly antibiotic-resistant bacteria, such as the species of the Burkholderia cepacia complex (BCC). To address this hypothesis, experimental B. cenocepacia respiratory infections were established in mice using a nebulizer and a nose-only inhalation device. Following infection, the mice were treated with one of five B. cenocepacia-specific phages delivered as either an aerosol or intraperitoneal injection. The bacterial and phage titers within the lungs were assayed 2 days after treatment, and mice that received the aerosolized phage therapy demonstrated significant decreases in bacterial loads. Differences in phage activity were observed in vivo. Mice that received phage treatment by intraperitoneal injection did not demonstrate significantly reduced bacterial loads, although phage particles were isolated from their lung tissue. Based on these data, aerosol phage therapy appears to be an effective method for treating highly antibiotic-resistant bacterial respiratory infections, including those caused by BCC bacteria. PMID:24798268

  6. Pathogens Penetrating the Central Nervous System: Infection Pathways and the Cellular and Molecular Mechanisms of Invasion

    PubMed Central

    Dando, Samantha J.; Mackay-Sim, Alan; Norton, Robert; Currie, Bart J.; St. John, James A.; Ekberg, Jenny A. K.; Batzloff, Michael

    2014-01-01

    SUMMARY The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis. PMID:25278572

  7. Use of the Common Marmoset to Study Burkholderia mallei Infection

    PubMed Central

    Harvey, Stephen B.; Mead, Daniel G.; Shaffer, Teresa L.; Estes, D. Mark; Michel, Frank; Quinn, Frederick D.; Hogan, Robert J.; Lafontaine, Eric R.

    2015-01-01

    Burkholderia mallei is a host-adapted bacterium that does not persist outside of its equine reservoir. The organism causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by B. mallei typically occurs via the respiratory or percutaneous route, and the most common manifestations are life-threatening pneumonia and bacteremia. Glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. There is no vaccine to protect against B. mallei and there is concern regarding its use as a biothreat agent. Thus, experiments were performed to establish a non-human primate model of intranasal infection to study the organism and develop countermeasures. Groups of marmosets (Callithrix jacchus) were inoculated intranasally with B. mallei strain ATCC 23344 and monitored for clinical signs of illness for up to 13 days. We discovered that 83% of marmosets inoculated with doses of 2.5 X 104 to 2.5 X 105 bacteria developed acute lethal infection within 3–4 days. Signs of disease were severe and included lethargy, inappetence, conjunctivitis, mucopurulent and hemorrhagic nasal discharges, and increased respiratory effort with abdominal lifts. Burkholderia mallei was cultured from the lungs, spleen and liver of these animals, and pathologic examination of tissues revealed lesions characteristic of glanders. Challenge experiments also revealed that 91% of animals infected with doses ranging from 25 to 2.5 X 103 bacteria exhibited mild non-specific signs of illness and were culture negative. One marmoset inoculated with 2.5 X 103 organisms developed moderate signs of disease and reached humane end-points 8 days post-infection. The liver and spleen of this animal were colonized with the agent and pathological analysis of tissues showed nasal, splenic and hepatic lesions. Taken together, these data indicate that the marmoset is a suitable model to study respiratory infection by B. mallei. PMID:25860021

  8. 40 CFR 180.1325 - Heat-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Heat-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption...Heat-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption...heat-killed Burkholderia spp. strain A396 cells and spent fermentation media in or...

  9. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans

    PubMed Central

    Kost, Thomas; Stopnisek, Nejc; Agnoli, Kirsty; Eberl, Leo

    2014-01-01

    Plant roots and shoots harbor complex bacterial communities. Early seed and plantlet colonization plays a key role in determining which bacterial populations will successfully invade plant tissues, yet the mechanisms enabling plants to select for beneficial rather than harmful populations are largely unknown. In this study, we demonstrate a role of oxalate as a determinant in this selection process, using members of the genus Burkholderia as model organisms. Oxalotrophy, i.e., the ability to use oxalate as a carbon source, was found to be a property strictly associated with plant-beneficial species of the Burkholderia genus, while plant pathogenic (B. glumae, B. plantarii) or human opportunistic pathogens (Burkholderia cepacia complex strains) were unable to degrade oxalate. We further show that oxalotrophy is required for successful plant colonization by the broad host endophyte Burkholderia phytofirmans PsJN: an engineered ?oxc mutant, which lost the ability to grow on oxalate, was significantly impaired in early colonization of both lupin and maize compared with the wild-type. This work suggests that in addition to the role of oxalate in heavy metal tolerance of plants and in virulence of phytopathogenic fungi, it is also involved in specifically recruiting plant-beneficial members from complex bacterial communities. PMID:24409174

  10. Whole-Genome Sequence of Burkholderia sp. Strain RPE67, a Bacterial Gut Symbiont of the Bean Bug Riptortus pedestris

    PubMed Central

    Takeshita, Kazutaka; Shibata, Tomoko F.; Nikoh, Naruo; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Fukatsu, Takema; Shigenobu, Shuji

    2014-01-01

    Burkholderia sp. strain RPE67 is a bacterial symbiont isolated from a field-collected bean bug, Riptortus pedestris. To understand the genetic basis of the insect-microbe symbiosis, we performed whole-genome sequencing of the Burkholderia strain, revealing an 8.69-Mb genome consisting of three chromosomes and three plasmids. PMID:24948758

  11. Draft Genome Sequence of Burkholderia sp. MR1, a Methylarsenate-Reducing Bacterial Isolate from Florida Golf Course Soil.

    PubMed

    Pawitwar, Shashank S; Utturkar, Sagar M; Brown, Steven D; Yoshinaga, Masafumi; Rosen, Barry P

    2015-01-01

    To elucidate the environmental organoarsenical biocycle, we isolated a soil organism, Burkholderia sp. MR1, which reduces relatively nontoxic pentavalent methylarsenate to the more toxic trivalent methylarsenite, with the goal of identifying the gene for the reductase. Here, we report the draft genome sequence of Burkholderia sp. MR1. PMID:26044439

  12. Draft Genome Sequence of Burkholderia sp. MR1, a Methylarsenate-Reducing Bacterial Isolate from Florida Golf Course Soil

    PubMed Central

    Pawitwar, Shashank S.; Utturkar, Sagar M.; Brown, Steven D.; Yoshinaga, Masafumi

    2015-01-01

    To elucidate the environmental organoarsenical biocycle, we isolated a soil organism, Burkholderia sp. MR1, which reduces relatively nontoxic pentavalent methylarsenate to the more toxic trivalent methylarsenite, with the goal of identifying the gene for the reductase. Here, we report the draft genome sequence of Burkholderia sp. MR1. PMID:26044439

  13. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil.

    PubMed

    Liu, Xu-Yun; Li, Chun-Xiu; Luo, Xiao-Jing; Lai, Qi-Liang; Xu, Jian-He

    2014-09-01

    A methyl parathion (MP) degrading bacterial strain, designated MP-1(T), was isolated from a waste land where pesticides were formerly manufactured in Jiangsu province, China. Polyphasic taxonomic studies showed that MP-1(T) is a Gram-stain-negative, non-spore-forming, rod-shaped and motile bacterium. The bacterium could grow at salinities of 0-1?% (w/v) and temperatures of 15-40 °C. Strain MP-1(T) could reduce nitrate to nitrite, utilize d-glucose and l-arabinose, but not produce indole, or hydrolyse gelatin. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that MP-1(T) belongs to the genus Burkholderia, showing highest sequence similarity to Burkholderia grimmiae DSM 25160(T) (98.5?%), and similar strains including Burkholderia zhejiangensis OP-1(T) (98.2?%), Burkholderia choica LMG 22940(T) (97.5?%), Burkholderia glathei DSM 50014(T) (97.4?%), Burkholderia terrestris LMG 22937(T) (97.2?%) and Burkholderia telluris LMG 22936(T) (97.0?%). In addition, the gyrB and recA gene segments of strain MP-1(T) exhibited less than 89.0?% and 95.1?% similarities with the most highly-related type strains indicated above. The G+C content of strain MP-1(T) was 62.6 mol%. The major isoprenoid quinone was ubiquinone Q-8. The predominant polar lipids comprised phosphatidyl ethanolamine, phosphatidyl glycerol, aminolipid and phospholipid. The principal fatty acids in strain MP-1(T) were C18?:?1?7c/C18?:?1?6c (23.3?%), C16?:?0 (16.8?%), cyclo-C17?:?0 (15.0?%), C16?:?1?7c/C16?:?1?6 (8.5?%), cyclo-C19?:?0?8c (8.1?%), C16?:?1 iso I/C14?:?0 3-OH (5.7?%), C16?:?0 3-OH (5.6?%) and C16?:?02-OH (5.1?%). The DNA-DNA relatedness values between strain MP-1(T) and the three type strains (B. grimmiae DSM 25160(T), B. zhejiangensis OP-1(T) and B. glathei DSM 50014(T)) ranged from 24.6?% to 37.4?%. In accordance with phenotypic and genotypic characteristics, strain MP-1(T) represents a novel species of the genus Burkholderia, for which the name Burkholderia jiangsuensis sp. nov. is proposed, the type strain is MP-1(T) (LMG 27927(T)?=?MCCC 1K00250(T)). PMID:24981326

  14. A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico.

    PubMed

    Estrada, Paulina; Mavingui, Patrick; Cournoyer, Benoit; Fontaine, Fanette; Balandreau, Jacques; Caballero-Mellado, Jesus

    2002-04-01

    In the frame of a survey of potentially endophytic N2-fixing Burkholderia associated with maize in Mexico, its country of origin, the soil of an indigenous maize field near Oaxaca was studied. Under laboratory conditions, plant seedlings of two ancient maize varieties were used as a trap to select endophyte candidates from the soil sample. Among the N2 fixers isolated from inside plant tissues and able to grow on PCAT medium, the most abundant isolates belonged to genus Burkholderia (API 20NE, rrs sequences). Representative isolates obtained from roots and shoots of different plants appeared identical (rrs and nifH RFLP), showing that they were closely related. In addition, their 16S rDNA sequences differed from described Burkholderia species and, phylogenetically, they constituted a separate deep-branching new lineage in genus Burkholderia. This indicated that these isolates probably constituted a new species. An inoculation experiment confirmed that these N2-fixing Burkholderia isolates could densely colonize the plant tissues of maize. More isolates of this group were subsequently obtained from field-grown maize and teosinte plants. It was hypothesized that strains of this species had developed a sort of primitive symbiosis with one of their host plants, teosinte, which persisted during the domestication of teosinte into maize. PMID:12030700

  15. Burkholderia of Plant-Beneficial Group are Symbiotically Associated with Bordered Plant Bugs (Heteroptera: Pyrrhocoroidea: Largidae)

    PubMed Central

    Takeshita, Kazutaka; Matsuura, Yu; Itoh, Hideomi; Navarro, Ronald; Hori, Tomoyuki; Sone, Teruo; Kamagata, Yoichi; Mergaert, Peter; Kikuchi, Yoshitomo

    2015-01-01

    A number of phytophagous stinkbugs (order Heteroptera: infraorder Pentatomomorpha) harbor symbiotic bacteria in a specific midgut region composed of numerous crypts. Among the five superfamilies of the infraorder Pentatomomorpha, most members of the Coreoidea and Lygaeoidea are associated with a specific group of the genus Burkholderia, called the “stinkbug-associated beneficial and environmental (SBE)” group, which is not vertically transmitted, but acquired from the environment every host generation. A recent study reported that, in addition to these two stinkbug groups, the family Largidae of the superfamily Pyrrhocoroidea also possesses a Burkholderia symbiont. Despite this recent finding, the phylogenetic position and biological nature of Burkholderia associated with Largidae remains unclear. Based on the combined results of fluorescence in situ hybridization, cloning analysis, Illumina deep sequencing, and egg inspections by diagnostic PCR, we herein demonstrate that the largid species are consistently associated with the “plant-associated beneficial and environmental (PBE)” group of Burkholderia, which are phylogenetically distinct from the SBE group, and that they maintain symbiosis through the environmental acquisition of the bacteria. Since the superfamilies Coreoidea, Lygaeoidea, and Pyrrhocoroidea are monophyletic in the infraorder Pentatomomorpha, it is plausible that the symbiotic association with Burkholderia evolved at the common ancestor of the three superfamilies. However, the results of this study strongly suggest that a dynamic transition from the PBE to SBE group, or vice versa, occurred in the course of stinkbug evolution. PMID:26657305

  16. CHLORINE INACTIVATION OF CATEGORY "A" BIO-TERRORISM AGENTS

    EPA Science Inventory

    This poster presents information on the inactivation of select bioterrorist agents. Information will be presented on chlorine disinfection of vegetative cells of Brucella suis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis and endos...

  17. Rhizonin A from Burkholderia sp. KCTC11096 and its growth promoting role in lettuce seed germination.

    PubMed

    Kang, Sang-Mo; Khan, Abdul Latif; Hussain, Javid; Ali, Liaqat; Kamran, Muhammad; Waqas, Muhammad; Lee, In-Jung

    2012-01-01

    We isolated and identified a gibberellin-producing Burkholderia sp. KCTC 11096 from agricultural field soils. The culture filtrate of plant growth promoting rhizobacteria (PGPR) significantly increased the germination and growth of lettuce and Chinese cabbage seeds. The ethyl acetate extract of the PGPR culture showed significantly higher rate of lettuce seed germination and growth as compared to the distilled water treated control. The ethyl acetate fraction of the Burkholderia sp. was subjected to bioassay-guided isolation and we obtained for the first time from a Burkholderia sp. the plant growth promoting compound rhizonin A (1), which was characterized through NMR and MS techniques. Application of various concentrations of 1 significantly promoted the lettuce seed germination as compared to control. PMID:22759911

  18. Binding of protegrin-1 to Pseudomonas aeruginosa and Burkholderia cepacia

    PubMed Central

    Albrecht, Mark T; Wang, Wei; Shamova, Olga; Lehrer, Robert I; Schiller, Neal L

    2002-01-01

    Background Pseudomonas aeruginosa and Burkholderia cepacia infections of cystic fibrosis patients' lungs are often resistant to conventional antibiotic therapy. Protegrins are antimicrobial peptides with potent activity against many bacteria, including P. aeruginosa. The present study evaluates the correlation between protegrin-1 (PG-1) sensitivity/resistance and protegrin binding in P. aeruginosa and B. cepacia. Methods The PG-1 sensitivity/resistance and PG-1 binding properties of P. aeruginosa and B. cepacia were assessed using radial diffusion assays, radioiodinated PG-1, and surface plasmon resonance (BiaCore). Results The six P. aeruginosa strains examined were very sensitive to PG-1, exhibiting minimal active concentrations from 0.0625–0.5 ?g/ml in radial diffusion assays. In contrast, all five B. cepacia strains examined were greater than 10-fold to 100-fold more resistant, with minimal active concentrations ranging from 6–10 ?g/ml. When incubated with a radioiodinated variant of PG-1, a sensitive P. aeruginosa strain bound considerably more protegrin molecules per cell than a resistant B. cepacia strain. Binding/diffusion and surface plasmon resonance assays revealed that isolated lipopolysaccharide (LPS) and lipid A from the sensitive P. aeruginosa strains bound PG-1 more effectively than LPS and lipid A from resistant B. cepacia strains. Conclusion These findings support the hypothesis that the relative resistance of B. cepacia to protegrin is due to a reduced number of PG-1 binding sites on the lipid A moiety of its LPS. PMID:11980587

  19. Monitoring Therapeutic Treatments against Burkholderia Infections Using Imaging Techniques

    PubMed Central

    Mott, Tiffany M.; Johnston, R. Katie; Vijayakumar, Sudhamathi; Estes, D. Mark; Motamedi, Massoud; Sbrana, Elena; Endsley, Janice J.; Torres, Alfredo G.

    2013-01-01

    Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidence supporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections. PMID:24349761

  20. Incidence of Burkholderia mallei infection among indigenous equines in India

    PubMed Central

    Malik, Praveen; Singha, Harisankar; Goyal, Sachin K; Khurana, Sandip K; Tripathi, Badri Naryan; Dutt, Abha; Singh, Dabal; Sharma, Neeraj; Jain, Sanjay

    2015-01-01

    Burkholderia mallei is the causative agent of glanders which is a highly contagious and fatal disease of equines. Considering the nature and severity of the disease in equines, and potential of transmission to human beings, glanders is recognised as a ‘notifiable’ disease in many countries. An increasing number of glanders outbreaks throughout the Asian continents, including India, have been noticed recently. In view of the recent re-emergence of the disease, the present study was undertaken to estimate the prevalence of glanders among indigenous equines from different parts of India. Serum samples were analysed by complement fixation test (CFT) and ELISA for the detection of B mallei specific antibodies. A total of 7794 equines, which included 4720 horses, 1881 donkeys and 1193 mules were sampled from April 2011 to December 2014 from 10 states of India. Serologically, 36 equines (pony=7, mules=10, horses=19) were found to be positive for glanders by CFT and indirect-ELISA. The highest number of cases were detected in Uttar Pradesh (n=31) followed by Himachal Pradesh (n=4) and Chhattisgarh (n=1). Isolation of B mallei was attempted from nasal and abscess swabs collected from seropositive equines. Four isolates of B mallei were cultured from nasal swabs of two mules and two ponies. Identity of the isolates was confirmed by PCR and sequencing of fliP gene fragment. The study revealed circulation of B mallei in northern India and the need for continued surveillance to support the eradication. PMID:26457190

  1. Burkholderia Sepsis in Children as a Hospital-Acquired Infection

    PubMed Central

    Kim, Kyu Yeun; Yong, Dongeun; Lee, Kyungwon; Kim, Ho-Seong

    2016-01-01

    Purpose Hospital-acquired Burkholderia cepacia (B. cepacia) infection are not commonly recorded in patients without underlying lung disease, such as cystic fibrosis and chronic granulomatous disease. However, in 2014, B. cepacia appeared more frequently in pediatric blood samples than in any other year. In order to access this situation, we analyzed the clinical characteristics of B. cepacia infections in pediatric patients at our hospital. Materials and Methods We conducted a retrospective study of blood isolates of B. cepacia taken at our hospital between January 2004 and December 2014. Patient clinical data were obtained by retrospective review of electronic medical records. We constructed a dendrogram for B. cepacia isolates from two children and five adult patients. Results A total of 14 pediatric patients and 69 adult patients were identified as having B. cepacia bacteremia. In 2014, higher rates of B. cepacia bacteremia were observed in children. Most of them required Intensive Care Unit (ICU) care (12/14). In eleven children, sputum cultures were examined, and five of these children had the same strain of B. cepacia that grew out from their blood samples. Antibiotics were administered based on antibiotic sensitivity results. Four children expired despite treatment. Compared to children, there were no demonstrative differences in adults, except for history of ICU care. Conclusion Although there were not many pediatric cases at our hospital, awareness of colonization through hospital-acquired infection and effective therapy for infection of B. cepacia is needed, as it can cause mortality and morbidity. PMID:26632388

  2. Identification of quorum sensing-controlled genes in Burkholderia ambifaria

    PubMed Central

    Chapalain, Annelise; Vial, Ludovic; Laprade, Natacha; Dekimpe, Valérie; Perreault, Jonathan; Déziel, Eric

    2013-01-01

    The Burkholderia cepacia complex (Bcc) comprises strains with a virulence potential toward immunocompromised patients as well as plant growth–promoting rhizobacteria (PGPR). Owing to the link between quorum sensing (QS) and virulence, most studies among Bcc species have been directed toward QS of pathogenic bacteria. We have investigated the QS of B. ambifaria, a PGPR only infrequently recovered from patients. The cepI gene, responsible for the synthesis of the main signaling molecule N-octanoylhomoserine lactone (C8-HSL), was inactivated. Phenotypes of the B. ambifaria cepI mutant we observed, such as increased production of siderophores and decreased proteolytic and antifungal activities, are in agreement with those of other Bcc cepI mutants. The cepI mutant was then used as background strain for a whole-genome transposon-insertion mutagenesis strategy, allowing the identification of 20 QS-controlled genes, corresponding to 17 loci. The main functions identified are linked to antifungal and antimicrobial properties, as we have identified QS-controlled genes implicated in the production of pyrrolnitrin, burkholdines (occidiofungin-like molecules), and enacyloxins. This study provides insights in the QS-regulated functions of a PGPR, which could lead to beneficial potential biotechnological applications. PMID:23382083

  3. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution.

    PubMed

    Estrada-De Los Santos, P; Bustillos-Cristales, R; Caballero-Mellado, J

    2001-06-01

    The genus Burkholderia comprises 19 species, including Burkholderia vietnamiensis which is the only known N(2)-fixing species of this bacterial genus. The first isolates of B. vietnamiensis were recovered from the rhizosphere of rice plants grown in a phytotron, but its existence in natural environments and its geographic distribution were not reported. In the present study, most N(2)-fixing isolates recovered from the environment of field-grown maize and coffee plants cultivated in widely separated regions of Mexico were phenotypically identified as B. cepacia using the API 20NE system. Nevertheless, a number of these isolates recovered from inside of maize roots, as well as from the rhizosphere and rhizoplane of maize and coffee plants, showed similar or identical features to those of B. vietnamiensis TVV75(T). These features include nitrogenase activity with 10 different carbon sources, identical or very similar nifHDK hybridization patterns, very similar protein electrophoregrams, identical amplified 16S rDNA restriction (ARDRA) profiles, and levels of DNA-DNA reassociation higher than 70% with total DNA from strain TVV75(T). Although the ability to fix N(2) is not reported to be a common feature among the known species of the genus Burkholderia, the results obtained show that many diazotrophic Burkholderia isolates analyzed showed phenotypic and genotypic features different from those of the known N(2)-fixing species B. vietnamiensis as well as from those of B. kururiensis, a bacterium identified in the present study as a diazotrophic species. DNA-DNA reassociation assays confirmed the existence of N(2)-fixing Burkholderia species different from B. vietnamiensis. In addition, this study shows the wide geographic distribution and substantial capability of N(2)-fixing Burkholderia spp. for colonizing diverse host plants in distantly separated environments. PMID:11375196

  4. Burkholderia, a Genus Rich in Plant-Associated Nitrogen Fixers with Wide Environmental and Geographic Distribution

    PubMed Central

    Estrada-De Los Santos, Paulina; Bustillos-Cristales, Rocío; Caballero-Mellado, Jesús

    2001-01-01

    The genus Burkholderia comprises 19 species, including Burkholderia vietnamiensis which is the only known N2-fixing species of this bacterial genus. The first isolates of B. vietnamiensis were recovered from the rhizosphere of rice plants grown in a phytotron, but its existence in natural environments and its geographic distribution were not reported. In the present study, most N2-fixing isolates recovered from the environment of field-grown maize and coffee plants cultivated in widely separated regions of Mexico were phenotypically identified as B. cepacia using the API 20NE system. Nevertheless, a number of these isolates recovered from inside of maize roots, as well as from the rhizosphere and rhizoplane of maize and coffee plants, showed similar or identical features to those of B. vietnamiensis TVV75T. These features include nitrogenase activity with 10 different carbon sources, identical or very similar nifHDK hybridization patterns, very similar protein electrophoregrams, identical amplified 16S rDNA restriction (ARDRA) profiles, and levels of DNA-DNA reassociation higher than 70% with total DNA from strain TVV75T. Although the ability to fix N2 is not reported to be a common feature among the known species of the genus Burkholderia, the results obtained show that many diazotrophic Burkholderia isolates analyzed showed phenotypic and genotypic features different from those of the known N2-fixing species B. vietnamiensis as well as from those of B. kururiensis, a bacterium identified in the present study as a diazotrophic species. DNA-DNA reassociation assays confirmed the existence of N2-fixing Burkholderia species different from B. vietnamiensis. In addition, this study shows the wide geographic distribution and substantial capability of N2-fixing Burkholderia spp. for colonizing diverse host plants in distantly separated environments. PMID:11375196

  5. Genomic acquisition of a capsular polysaccharide virulence cluster by non-pathogenic Burkholderia isolates

    E-print Network

    Sim, Bernice Meng Qi; Chantratita, Narisara; Ooi, Wen Fong; Nandi, Tannistha; Tewhey, Ryan; Wuthiekanun, Vanaporn; Thaipadungpanit, Janjira; Tumapa, Sarinna; Ariyaratne, Pramila; Sung, Wing-Kin; Sem, Xiao Hui; Chua, Hui Hoon; Ramnarayanan, Kalpana; Lin, Chi Ho; Liu, Yichun; Feil, Edward J.; Glass, Mindy B.; Tan, Gladys; Peacock, Sharon J.; Tan, Patrick

    2010-08-27

    acquisition of a capsular polysaccharide virulence cluster by non-pathogenic Burkholderia isolates Bernice Meng Qi Sim1, Narisara Chantratita2,3, Wen Fong Ooi1, Tannistha Nandi1, Ryan Tewhey4, Vanaporn Wuthiekanun3, Janjira Thaipadungpanit3, Sarinna Tumapa3... , Pramila Ariyaratne1, Wing-Kin Sung1,5, Xiao Hui Sem1, Hui Hoon Chua1, Kalpana Ramnarayanan6, Chi Ho Lin1, Yichun Liu7, Edward J Feil8, Mindy B Glass9, Gladys Tan7, Sharon J Peacock2,10, Patrick Tan1,11* Abstract Background: Burkholderia thailandensis is a...

  6. Epidemiology and Clinical Course of Burkholderia cepacia Complex Infections, Particularly Those Caused by Different Burkholderia cenocepacia Strains, among Patients Attending an Italian Cystic Fibrosis Center

    PubMed Central

    Manno, Graziana; Dalmastri, Claudia; Tabacchioni, Silvia; Vandamme, Peter; Lorini, Renata; Minicucci, Laura; Romano, Luca; Giannattasio, Alessandro; Chiarini, Luigi; Bevivino, Annamaria

    2004-01-01

    In this study, the epidemiology of Burkholderia cepacia complex (Bcc) recovered from the sputum of 75 patients attending the Genoa Cystic Fibrosis (CF) Center at the Gaslini Children's Hospital (Genoa, Italy) was investigated, and the clinical course of the CF patients infected with the different species and genomovars of Bcc was evaluated. All isolates were analyzed for genomovar status by recA gene polymorphism and subsequently random amplified polymorphic DNA fingerprinting. Burkholderia cenocepacia is the predominant species recovered from the CF patients infected with Bcc at the Genoa CF Center. Of the other eight species comprising the Bcc, only a few isolates belonging to B. cepacia genomovar I, Burkholderia stabilis, and Burkholderia pyrrocinia were found. Of the four recA lineages of B. cenocepacia, most patients were infected by epidemic strains belonging to lineages IIIA and IIID, whereas only a few patients harbored IIIB strains. Patient-to-patient spread of Bcc among CF patients was mostly associated with B. cenocepacia, in particular with strains belonging to recA lineages IIIA and IIID. The mortality of CF patients infected with Bcc at the Genoa CF Center was significantly higher than mortality among CF patients not infected with Bcc. All of the deaths were associated with the presence of B. cenocepacia, except the case of a patient infected with B. cepacia genomovar I. Within B. cenocepacia, infection with epidemic strains belonging to lineages IIIA and IIID was associated with higher rates of mortality than was infection with lineage IIIB strains. No significant differences in lung function, body weight, and mortality rate were observed between patients infected with epidemic strains belonging to either B. cenocepacia IIIA or B. cenocepacia IIID. PMID:15070994

  7. Burkholderia aspalathi sp. nov., isolated from root nodules of the South African legume Aspalathus abietina Thunb.

    PubMed

    Mavengere, Natasha R; Ellis, Allan G; Le Roux, Johannes J

    2014-06-01

    During a study to investigate the diversity of rhizobia associated with native legumes in South Africa's Cape Floristic Region, a Gram-negative bacterium designated VG1C(T) was isolated from the root nodules of Aspalathus abietina Thunb. Based on phylogenetic analyses of the 16S rRNA and recA genes, VG1C(T) belongs to the genus Burkholderia, with the highest degree of sequence similarity to the type strain of Burkholderia sediminicola (98.5% and 98%, respectively). The DNA G+C content of strain VG1C(T) was 60.1 mol%, and DNA-DNA relatedness values to the type strain of closely related species were found to be substantially lower than 70%. As evidenced by results of genotypic, phenotypic and chemotaxonomic tests provided here, we conclude that isolate VG1C(T) represents a novel rhizosphere-associated species in the genus Burkholderia, for which the name Burkholderia aspalathi sp. nov. is proposed, with the type strain VG1C(T) (?=?DSM 27239(T)?=?LMG 27731(T)). PMID:24599894

  8. The relationship of biofilm production to biocontrol activity of Burkholderia pyrrocinia FP62

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar biocontrol agent (BCA) efficacy is often inconsistent due to poor colonization and survival on plant surfaces. Burkholderia pyrrocinia FP62, a superior leaf colonist and BCA of Botrytis cinerea, forms unsaturated biofilms on plant surfaces. To determine the relationship between biocontrol act...

  9. CHARACTERIZATION OF THE BIOFILM PHENOTYPE OF BURKHOLDERIA SP., FP62 AND ITS ROLE IN BIOCONTROL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilm formation of Burkholderia sp. (FP62) on plant leaves and its role in the biocontrol of Botrytis cinerea(Bc) was examined on geranium. A library of mini-Tn5 lacZ1 transposon mutants was screened for biofilm formation in a polystyrene microtiter plate assay. Mutants deficient in biofilm form...

  10. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium.

    PubMed

    Ho, Ying-Ning; Huang, Chieh-Chen

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  11. NOVEL ORGANIZATION OF THE GENES FOR PHTHALATE DEGRADATION FROM BURKHOLDERIA CEPACIA DBO1

    EPA Science Inventory

    Burkholderia cepacia DBO1 is able to utilize phthalate as the sole source of carbon and energy for growth. Two overlapping cosmid clones containing the genes for phthalate degradation were isolated from this strain. Subcloning and activity analysis localized the genes for phthala...

  12. Antimicrobial Properties of an Oxidizer Produced by Burkholderia cenocepacia P525

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A compound with both oxidizing properties and antibiotic properties was extracted and purified from broth cultures of Burkholderia cenocepacia strain P525. A four step purification procedure was used to increase its specific activity ~ 400 fold and to yield a HPLC- UV chromatogram containing a sing...

  13. Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp.

    PubMed

    Sheu, Shih-Yi; Chou, Jui-Hsing; Bontemps, Cyril; Elliott, Geoffrey N; Gross, Eduardo; dos Reis Junior, Fabio Bueno; Melkonian, Rémy; Moulin, Lionel; James, Euan K; Sprent, Janet I; Young, J Peter W; Chen, Wen-Ming

    2013-02-01

    Five strains, JPY461(T), JPY359, JPY389, DPU-3 and STM4206 were isolated from nitrogen-fixing nodules on the roots of Mimosa spp. and their taxonomic positions were investigated using a polyphasic approach. All five strains grew at 15-40 °C (optimum, 30-37 °C), at pH 4.0-8.0 (optimum, pH 6.0-7.0) and with 0-1?% (w/v) NaCl [optimum, 0?% (w/v)]. On the basis of 16S rRNA gene sequence analysis, a representative strain (JPY461(T)) showed 97.2?% sequence similarity to the closest related species Burkholderia acidipaludis SA33(T), a similarity of 97.2?% to Burkholderia terrae KMY02(T), 97.1?% to Burkholderia phymatum STM815(T) and 97.1?% to Burkholderia hospita LMG 20598(T). The predominant fatty acids of the five novel strains were summed feature 2 (comprising C(16?:?1) iso I and/or C(14?:?0) 3-OH), summed feature 3 (comprising C(16?:?1)?7c and/or C(16?:?1)?6c), C(16?:?0) , C(16?:?0) 3-OH, C(17?:?0) cyclo, C(18?:?1)?7c and C(19?:?0) cyclo ?8c. The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 63.0-65.0 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid, an unidentified aminolipid and several unidentified phospholipids. The DNA-DNA relatedness of the novel strain with respect to recognized species of the genus Burkholderia was less than 54?%. On the basis of 16S rRNA and recA gene sequence similarities, chemotaxonomic and phenotypic data, the five strains represent a novel species in the genus Burkholderia, for which the name Burkholderia diazotrophica sp. nov. is proposed with the type strain, JPY461(T) (?=?LMG 26031(T)?=?BCRC 80259(T)?=?KCTC 23308(T)). PMID:22467155

  14. dx/dt = ax bvx (equation 1) dy/dt = bvx by (equation 2)

    E-print Network

    , Golden CO 80401, 2Colorado State University, Department of Microbiology, Immunology and Pathology, Fort on human health is B. pseudomallei's intrinsic resistance to many widely used antibiotics including of ceftazidime failure during treatment of melioidosis. · Current methods for diagnostic B. pseudomallei

  15. Evidence of Environmental and Vertical Transmission of Burkholderia Symbionts in the Oriental Chinch Bug, Cavelerius saccharivorus (Heteroptera: Blissidae)

    PubMed Central

    Itoh, Hideomi; Aita, Manabu; Nagayama, Atsushi; Meng, Xian-Ying; Kamagata, Yoichi; Navarro, Ronald; Hori, Tomoyuki; Ohgiya, Satoru

    2014-01-01

    The vertical transmission of symbiotic microorganisms is omnipresent in insects, while the evolutionary process remains totally unclear. The oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae), is a serious sugarcane pest, in which symbiotic bacteria densely populate the lumen of the numerous tubule-like midgut crypts that the chinch bug develops. Cloning and sequence analyses of the 16S rRNA genes revealed that the crypts were dominated by a specific group of bacteria belonging to the genus Burkholderia of the Betaproteobacteria. The Burkholderia sequences were distributed into three distinct clades: the Burkholderia cepacia complex (BCC), the plant-associated beneficial and environmental (PBE) group, and the stinkbug-associated beneficial and environmental group (SBE). Diagnostic PCR revealed that only one of the three groups of Burkholderia was present in ?89% of the chinch bug field populations tested, while infections with multiple Burkholderia groups within one insect were observed in only ?10%. Deep sequencing of the 16S rRNA gene confirmed that the Burkholderia bacteria specifically colonized the crypts and were dominated by one of three Burkholderia groups. The lack of phylogenetic congruence between the symbiont and the host population strongly suggested host-symbiont promiscuity, which is probably caused by environmental acquisition of the symbionts by some hosts. Meanwhile, inspections of eggs and hatchlings by diagnostic PCR and egg surface sterilization demonstrated that almost 30% of the hatchlings vertically acquire symbiotic Burkholderia via symbiont-contaminated egg surfaces. The mixed strategy of symbiont transmission found in the oriental chinch bug might be an intermediate stage in evolution from environmental acquisition to strict vertical transmission in insects. PMID:25038101

  16. Total Protein Extraction and 2-D Gel Electrophoresis Methods for Burkholderia Species

    PubMed Central

    Velapatiño, Billie; Zlosnik, James E. A.; Hird, Trevor J.; Speert, David P.

    2013-01-01

    The investigation of the intracellular protein levels of bacterial species is of importance to understanding the pathogenic mechanisms of diseases caused by these organisms. Here we describe a procedure for protein extraction from Burkholderia species based on mechanical lysis using glass beads in the presence of ethylenediamine tetraacetic acid and phenylmethylsulfonyl fluoride in phosphate buffered saline. This method can be used for different Burkholderia species, for different growth conditions, and it is likely suitable for the use in proteomic studies of other bacteria. Following protein extraction, a two-dimensional (2-D) gel electrophoresis proteomic technique is described to study global changes in the proteomes of these organisms. This method consists of the separation of proteins according to their isoelectric point by isoelectric focusing in the first dimension, followed by separation on the basis of molecular weight by acrylamide gel electrophoresis in the second dimension. Visualization of separated proteins is carried out by silver staining. PMID:24192802

  17. Genome sequence of the Lebeckia ambigua-nodulating “Burkholderia sprentiae” strain WSM5005T

    PubMed Central

    Reeve, Wayne; De Meyer, Sofie; Terpolilli, Jason; Melino, Vanessa; Ardley, Julie; Rui, Tian; Tiwari, Ravi; Howieson, John; Yates, Ron; O’Hara, Graham; Lu, Megan; Bruce, David; Detter, Chris; Tapia, Roxanne; Han, Cliff; Wei, Chia-Lin; Huntemann, Marcel; Han, James; Chen, I-Min; Mavromatis, Konstantinos; Markowitz, Victor; Szeto, Ernest; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Goodwin, Lynne; Peters, Lin; Pitluck, Sam; Woyke, Tanja; Kyrpides, Nikos

    2013-01-01

    Burkholderia sprentiae” strain WSM5005T is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated in Australia from an effective N2-fixing root nodule of Lebeckia ambigua collected in Klawer, Western Cape of South Africa, in October 2007. Here we describe the features of “Burkholderia sprentiae” strain WSM5005T, together with the genome sequence and its annotation. The 7,761,063 bp high-quality-draft genome is arranged in 8 scaffolds of 236 contigs, contains 7,147 protein-coding genes and 76 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program. PMID:24976894

  18. ?54-Dependent Response to Nitrogen Limitation and Virulence in Burkholderia cenocepacia Strain H111

    PubMed Central

    Lardi, Martina; Aguilar, Claudio; Pedrioli, Alessandro; Omasits, Ulrich; Suppiger, Angela; Cárcamo-Oyarce, Gerardo; Schmid, Nadine; Ahrens, Christian H.

    2015-01-01

    Members of the genus Burkholderia are versatile bacteria capable of colonizing highly diverse environmental niches. In this study, we investigated the global response of the opportunistic pathogen Burkholderia cenocepacia H111 to nitrogen limitation at the transcript and protein expression levels. In addition to a classical response to nitrogen starvation, including the activation of glutamine synthetase, PII proteins, and the two-component regulatory system NtrBC, B. cenocepacia H111 also upregulated polyhydroxybutyrate (PHB) accumulation and exopolysaccharide (EPS) production in response to nitrogen shortage. A search for consensus sequences in promoter regions of nitrogen-responsive genes identified a ?54 consensus sequence. The mapping of the ?54 regulon as well as the characterization of a ?54 mutant suggests an important role of ?54 not only in control of nitrogen metabolism but also in the virulence of this organism. PMID:25841012

  19. Quorum Sensing Controls Swarming Motility of Burkholderia glumae through Regulation of Rhamnolipids

    PubMed Central

    Nickzad, Arvin; Lépine, François; Déziel, Eric

    2015-01-01

    Burkholderia glumae is a plant pathogenic bacterium that uses an acyl-homoserine lactone-mediated quorum sensing system to regulate protein secretion, oxalate production and major virulence determinants such as toxoflavin and flagella. B. glumae also releases surface-active rhamnolipids. In Pseudomonas aeruginosa and Burkholderia thailandensis, rhamnolipids, along with flagella, are required for the social behavior called swarming motility. In the present study, we demonstrate that quorum sensing positively regulates the production of rhamnolipids in B. glumae and that rhamnolipids are necessary for swarming motility also in this species. We show that a rhlA- mutant, which is unable to produce rhamnolipids, loses its ability to swarm, and that this can be complemented by providing exogenous rhamnolipids. Impaired rhamnolipid production in a quorum sensing-deficient B. glumae mutant is the main factor responsible for its defective swarming motility behaviour. PMID:26047513

  20. Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms

    PubMed Central

    Memiševi?, Vesna; Zavaljevski, Nela; Rajagopala, Seesandra V.; Kwon, Keehwan; Pieper, Rembert; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2015-01-01

    Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections and intracellular spread. PMID:25738731

  1. Novel degradation pathway of 4-chloro-2-aminophenol via 4-chlorocatechol in Burkholderia sp. RKJ 800.

    PubMed

    Arora, Pankaj Kumar; Srivastava, Alok; Singh, Vijay Pal

    2014-02-01

    Burkholderia sp. RKJ 800 utilized 4-chloro-2-aminophenol (4C2AP) as the sole carbon and energy source and degraded it with release of chloride and ammonium ions. The metabolic pathway of degradation of 4C2AP was studied and a novel intermediate, 4-chlorocatechol was identified as a major degradation product of 4C2AP using high-performance liquid chromatography and gas chromatography-mass spectrometry. Enzyme activities for 4C2AP-deaminase and 4-chlorocatechol-1,2-dioxygenase were detected in the crude extracts of the 4C2AP-induced cells of strain RKJ 800. The activity of the 4C2AP-deaminase confirmed the formation of 4-chlorocatechol from 4C2AP and the 4-chlorocatechol-1,2-dioxygenase activity suggested the cleavage of 4-chlorocatechol into 3-chloro-cis,cis-muconate. On the basis of the identified metabolites, we have proposed a novel degradation pathway of 4C2AP for Burkholderia sp. RKJ 800. Furthermore, the potential of Burkholderia sp. RKJ 800 to degrade 4C2AP in soil was also investigated using microcosm studies under laboratory conditions. The results of microcosm studies conclude that Burkholderia sp. RKJ 800 was able to degrade 4C2AP in soil and may be used to remediate 4C2AP-contaminated site. This is the first report of (1) the formation of 4-chlorocatechol and 3-chloro-cis,cis-muconate in the degradation pathway of 4C2AP and (2) bioremediation of 4C2AP by any bacterium. PMID:24057966

  2. Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system.

    PubMed

    Rusch, Antje; Islam, Shaer; Savalia, Pratixa; Amend, Jan P

    2015-01-01

    Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-April(T). Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-April(T) grew at temperatures between 4 °C and 40 °C (optimum 30-37 °C), at pH 3.5 to 8.3 (optimum pH 5-6) and in the presence of up to 2.7% NaCl (optimum 0-1.0%). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-April(T) was strictly respiratory. Heterotrophic growth occurred with O2 or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N2-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-April(T) belongs to the genus Burkholderia and shares the highest 16S rRNA gene sequence similarity with the type strains of Burkholderia fungorum (99.8%), Burkholderia phytofirmans (98.8%), Burkholderia caledonica (98.4%) and Burkholderia sediminicola (98.4%). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA-DNA hybridization suggested the isolate represents a novel species of the genus Burkholderia, for which we propose the name Burkholderia insulsa sp. nov. The type strain is PNG-April(T) (?=?DSM 28142(T)?=?LMG 28183(T)). PMID:25323596

  3. Phenotypic Methods for Determining Genomovar Status of the Burkholderia cepacia Complex

    PubMed Central

    Henry, Deborah A.; Mahenthiralingam, Eshwar; Vandamme, Peter; Coenye, Tom; Speert, David P.

    2001-01-01

    Recent taxonomic advances have demonstrated that Burkholderia cepacia is a cluster of at least seven closely related genomic species (or genomovars) collectively referred to as the B. cepacia complex, all of which may cause infections among cystic fibrosis patients and other vulnerable individuals. Thus, it is important for clinical microbiologists to be able to differentiate genomovars. Prior to this study, 361 B. cepacia complex isolates and 51 isolates easily confused with B. cepacia complex previously had been identified using a polyphasic approach, and in this study, a comparison of phenotypic and biochemical tests was carried out. It was determined that Burkholderia multivorans and Burkholderia stabilis could reliably be separated from other members of the B. cepacia complex by phenotypic methods. A combination of phenotypic and molecular tests such as recA PCR and 16S rRNA RFLP are recommended for differentiation among the genomovars of the B. cepacia complex. A biochemical reaction scheme for the identification of B. gladioli, Pandoraea species, and Ralstonia pickettii and the differentiation of these species from the B. cepacia complex is also presented. PMID:11230429

  4. Identification of synergists that potentiate the action of polymyxin B against Burkholderia cenocepacia.

    PubMed

    Loutet, Slade A; El-Halfawy, Omar M; Jassem, Agatha N; López, José María Sánchez; Medarde, Antonio Fernández; Speert, David P; Davies, Julian E; Valvano, Miguel A

    2015-10-01

    Burkholderia cenocepacia and other members of the Burkholderia cepacia complex (BCC) are highly multidrug-resistant bacteria that cause severe pulmonary infections in patients with cystic fibrosis. A screen of 2686 compounds derived from marine organisms identified molecules that could synergise with polymyxin B (PMB) to inhibit the growth of B. cenocepacia. At 1?g/mL, five compounds synergised with PMB and inhibited the growth of B. cenocepacia by ?70% compared with growth in PMB alone. Follow-up testing revealed that one compound from the screen, the aminocoumarin antibiotic novobiocin, synergised with PMB and colistin against tobramycin-resistant clinical isolates of B. cenocepacia and Burkholderia multivorans. In parallel, we show that novobiocin sensitivity is common among BCC species and that these bacteria are even more susceptible to an alternative aminocoumarin, clorobiocin, which also had an additive effect with PMB against B. cenocepacia. These studies support using aminocoumarin antibiotics to treat BCC infections and show that synergisers can be found to increase the efficacy of antimicrobial peptides and polymyxins against BCC bacteria. PMID:26187366

  5. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments

    PubMed Central

    Revathy, T.; Jayasri, M. A.; Suthindhiran, K.

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ?2–5??m in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%). However, naphthalene and aniline were degraded only at lower concentration (0.1%) and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs. PMID:26605106

  6. 40 CFR 180.1325 - Heat-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... A396 cells and spent fermentation media exemption from the requirement of a tolerance. 180.1325 Section...-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the requirement of...-killed Burkholderia spp. strain A396 cells and spent fermentation media in or on all food...

  7. Nitrous oxide emission potentials of Burkholderia species isolated from the leaves of a boreal peat moss Sphagnum fuscum.

    PubMed

    Nie, Yanxia; Li, Li; Wang, Mengcen; Tahvanainen, Teemu; Hashidoko, Yasuyuki

    2015-12-01

    Using a culture-based nitrous oxide (N2O) emission assay, three active N2O emitters were isolated from Sphagnum fuscum leaves and all identified as members of Burkholderia. These isolates showed N2O emission in the medium supplemented with [Formula: see text] but not with [Formula: see text], and Burkholderia sp. SF-E2 showed the most efficient N2O emission (0.20 ?g·vial(-1)·day(-1)) at 1.0 mM KNO3. In Burkholderia sp. SF-E2, the optimum pH for N2O production was 5.0, close to that of the phyllosphere of Sphagnum mosses, while the optimum temperature was uniquely over 30 °C. The stimulating effect of additional 1.5 mM sucrose on N2O emission was ignorable, but Burkholderia sp. SF-E2 upon exposure to 100 mg·L(-1) E-caffeic acid showed uniquely 67-fold higher N2O emission. All of the three N2O emitters were negative in both acetylene inhibition assay and PCR assay for nosZ-detection, suggesting that N2O reductase or the gene itself is missing in the N2O-emitting Burkholderia. PMID:26167675

  8. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Burkholderia sp. strain UYPR1.413

    PubMed Central

    2015-01-01

    Burkholderia sp. strain UYPR1.413 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida collected at the Angico plantation, Mandiyu, Uruguay, in December 2006. A survey of symbionts of P. rigida in Uruguay demonstrated that this species is nodulated predominantly by Burkholderia microsymbionts. Moreover, Burkholderia sp. strain UYPR1.413 is a highly efficient nitrogen fixing symbiont with this host. Currently, the only other sequenced isolate to fix with this host is Cupriavidus sp. UYPR2.512. Therefore, Burkholderia sp. strain UYPR1.413 was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the GEBA-RNB project. Here we describe the features of Burkholderia sp. strain UYPR1.413, together with sequence and annotation. The 10,373,764 bp high-quality permanent draft genome is arranged in 336 scaffolds of 342 contigs, contains 9759 protein-coding genes and 77 RNA-only encoding genes. PMID:26203342

  9. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection

    PubMed Central

    Chiang, Chih-Yuan; Uzoma, Ijeoma; Lane, Douglas J.; Memiševi?, Vesna; Alem, Farhang; Yao, Kuan; Kota, Krishna P.; Bavari, Sina; Wallqvist, Anders; Hakami, Ramin M.; Panchal, Rekha G.

    2015-01-01

    Burkholderia is a diverse genus of gram-negative bacteria that causes high mortality rate in humans, equines and cattle. The lack of effective therapeutic treatments poses serious public health threats. Developing insights toward host-Burkholderia spp. interaction is critical for understanding the pathogenesis of infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray technology was previously proven to identify and characterize novel biomarkers and molecular signatures associated with infectious disease and cancer. In the present study, this technology was utilized to interrogate changes in host protein expression and phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections of which eight proteins were selected for further characterization by immunoblotting. Increased phosphorylation of AMPK-?1, Src, and GSK3? suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune response. Modulating the inflammatory response by perturbing their activities may provide therapeutic routes for future treatments. PMID:26284031

  10. Direct detection of the plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae in infected rice seedlings using matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kajiwara, Hideyuki

    2016-01-01

    The plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae were directly detected in extracts from infected rice seedlings by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method did not require culturing of the pathogens on artificial medium. In the MALDI-TOF MS analysis, peaks originating from bacteria were found in extracts from infected rice seedlings. The spectral peaks showed significantly high scores, in spite of minor differences in spectra. The spectral peaks originating from host plant tissues did not affect this direct MALDI-TOF MS analysis for the rapid identification of plant pathogens. PMID:26319185

  11. Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil.

    PubMed

    Sheu, Shih-Yi; Chou, Jui-Hsing; Bontemps, Cyril; Elliott, Geoffrey N; Gross, Eduardo; James, Euan K; Sprent, Janet I; Young, J Peter W; Chen, Wen-Ming

    2012-09-01

    Four strains, designated JPY-345(T), JPY-347, JPY-366 and JPY-581, were isolated from nitrogen-fixing nodules on the roots of two species of Mimosa, Mimosa cordistipula and Mimosa misera, that are native to North East Brazil, and their taxonomic positions were investigated by using a polyphasic approach. All four strains grew at 15-43 °C (optimum 35 °C), at pH 4-7 (optimum pH 5) and with 0-2 % (w/v) NaCl (optimum 0 % NaCl). On the basis of 16S rRNA gene sequence analysis, strain JPY-345(T) showed 97.3 % sequence similarity to the closest related species Burkholderia soli GP25-8(T), 97.3 % sequence similarity to Burkholderia caryophylli ATCC25418(T) and 97.1 % sequence similarity to Burkholderia kururiensis KP23(T). The predominant fatty acids of the strains were C(18 : 1)?7c (36.1 %), C(16 : 0) (19.8 %) and summed feature 3, comprising C(16 : 1)?7c and/or C(16 : 1)?6c (11.5 %). The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 64.2-65.7 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. DNA-DNA hybridizations between the novel strain and recognized species of the genus Burkholderia yielded relatedness values of <51.8 %. On the basis of 16S rRNA and recA gene sequence similarities and chemotaxonomic and phenotypic data, the four strains represent a novel species in the genus Burkholderia, for which the name Burkholderia symbiotica sp. nov. is proposed. The type strain is JPY-345(T) (= LMG 26032(T) = BCRC 80258(T) = KCTC 23309(T)). PMID:22081715

  12. Isolation and Characterization of Burkholderia rinojensis sp. nov., a Non-Burkholderia cepacia Complex Soil Bacterium with Insecticidal and Miticidal Activities

    PubMed Central

    Fernandez, Lorena E.; Koivunen, Marja; Yang, April; Flor-Weiler, Lina; Marrone, Pamela G.

    2013-01-01

    Isolate A396, a bacterium isolated from a Japanese soil sample demonstrated strong insecticidal and miticidal activities in laboratory bioassays. The isolate was characterized through biochemical methods, fatty acid methyl ester (FAME) analysis, sequencing of 16S rRNA, multilocus sequence typing and analysis, and DNA-DNA hybridization. FAME analysis matched A396 to Burkholderia cenocepacia, but this result was not confirmed by 16S rRNA or DNA-DNA hybridization. 16S rRNA sequencing indicated closest matches with B. glumae and B. plantarii. DNA-DNA hybridization experiments with B. plantarii, B. glumae, B. multivorans, and B. cenocepacia confirmed the low genetic similarity (11.5 to 37.4%) with known members of the genus. PCR-based screening showed that A396 lacks markers associated with members of the B. cepacia complex. Bioassay results indicated two mechanisms of action: through ingestion and contact. The isolate effectively controlled beet armyworms (Spodoptera exigua; BAW) and two-spotted spider mites (Tetranychus urticae; TSSM). In diet overlay bioassays with BAW, 1% to 4% (vol/vol) dilution of the whole-cell broth caused 97% to 100% mortality 4 days postexposure, and leaf disc treatment bioassays attained 75% ± 22% mortality 3 days postexposure. Contact bioassays led to 50% larval mortality, as well as discoloration, stunting, and failure to molt. TSSM mortality reached 93% in treated leaf discs. Activity was maintained in cell-free supernatants and after heat treatment (60°C for 2 h), indicating that a secondary metabolite or excreted thermostable enzyme might be responsible for the activity. Based on these results, we describe the novel species Burkholderia rinojensis, a good candidate for the development of a biocontrol product against insect and mite pests. PMID:24096416

  13. Evolution of an endofungal Lifestyle: Deductions from the Burkholderia rhizoxinica Genome

    PubMed Central

    2011-01-01

    Background Burkholderia rhizoxinica is an intracellular symbiont of the phytopathogenic zygomycete Rhizopus microsporus, the causative agent of rice seedling blight. The endosymbiont produces the antimitotic macrolide rhizoxin for its host. It is vertically transmitted within vegetative spores and is essential for spore formation of the fungus. To shed light on the evolution and genetic potential of this model organism, we analysed the whole genome of B. rhizoxinica HKI 0454 - a type strain of endofungal Burkholderia species. Results The genome consists of a structurally conserved chromosome and two plasmids. Compared to free-living Burkholderia species, the genome is smaller in size and harbors less transcriptional regulator genes. Instead, we observed accumulation of transposons over the genome. Prediction of primary metabolic pathways and transporters suggests that endosymbionts consume host metabolites like citrate, but might deliver some amino acids and cofactors to the host. The rhizoxin biosynthesis gene cluster shows evolutionary traces of horizontal gene transfer. Furthermore, we analysed gene clusters coding for nonribosomal peptide synthetases (NRPS). Notably, B. rhizoxinica lacks common genes which are dedicated to quorum sensing systems, but is equipped with a large number of virulence-related factors and putative type III effectors. Conclusions B. rhizoxinica is the first endofungal bacterium, whose genome has been sequenced. Here, we present models of evolution, metabolism and tools for host-symbiont interaction of the endofungal bacterium deduced from whole genome analyses. Genome size and structure suggest that B. rhizoxinica is in an early phase of adaptation to the intracellular lifestyle (genome in transition). By analysis of tranporters and metabolic pathways we predict how metabolites might be exchanged between the symbiont and its host. Gene clusters for biosynthesis of secondary metabolites represent novel targets for genomic mining of cryptic natural products. In silico analyses of virulence-associated genes, secreted proteins and effectors might inspire future studies on molecular mechanisms underlying bacterial-fungal interaction. PMID:21539752

  14. Comparative analysis of two phenotypically-similar but genomically-distinct Burkholderia cenocepacia-specific bacteriophages

    PubMed Central

    2012-01-01

    Background Genomic analysis of bacteriophages infecting the Burkholderia cepacia complex (BCC) is an important preliminary step in the development of a phage therapy protocol for these opportunistic pathogens. The objective of this study was to characterize KL1 (vB_BceS_KL1) and AH2 (vB_BceS_AH2), two novel Burkholderia cenocepacia-specific siphoviruses isolated from environmental samples. Results KL1 and AH2 exhibit several unique phenotypic similarities: they infect the same B. cenocepacia strains, they require prolonged incubation at 30°C for the formation of plaques at low titres, and they do not form plaques at similar titres following incubation at 37°C. However, despite these similarities, we have determined using whole-genome pyrosequencing that these phages show minimal relatedness to one another. The KL1 genome is 42,832 base pairs (bp) in length and is most closely related to Pseudomonas phage 73 (PA73). In contrast, the AH2 genome is 58,065 bp in length and is most closely related to Burkholderia phage BcepNazgul. Using both BLASTP and HHpred analysis, we have identified and analyzed the putative virion morphogenesis, lysis, DNA binding, and MazG proteins of these two phages. Notably, MazG homologs identified in cyanophages have been predicted to facilitate infection of stationary phase cells and may contribute to the unique plaque phenotype of KL1 and AH2. Conclusions The nearly indistinguishable phenotypes but distinct genomes of KL1 and AH2 provide further evidence of both vast diversity and convergent evolution in the BCC-specific phage population. PMID:22676492

  15. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species.

    PubMed

    Caballero-Mellado, Jesús; Martínez-Aguilar, Lourdes; Paredes-Valdez, Guadalupe; Santos, Paulina Estrada-De los

    2004-07-01

    It was shown recently that the genus Burkholderia is rich in N2-fixing bacteria that are associated with plants. A group of these diazotrophic isolates with identical or very similar 16S rDNA restriction patterns [designated amplified rDNA restriction analysis (ARDRA) genotypes 13, 14 and 15] was selected and a polyphasic taxonomic study was performed, which included new isolates that were recovered from rhizospheres, rhizoplanes or internal tissues of maize, sugarcane and coffee plants. Morphological, physiological and biochemical features, as well as multi-locus enzyme electrophoresis profiles and whole-cell protein patterns, of 20 strains were analysed. In addition, analysis of cellular fatty acid profiles, 16S rDNA sequence analysis and DNA-DNA reassociation experiments were performed with representative strains. The taxonomic data indicated that the strains analysed belong to a novel diazotrophic Burkholderia species, for which the name Burkholderia unamae sp. nov. is proposed. Strain MTl-641T (=ATCC BAA-744T=CIP 107921T), isolated from the rhizosphere of maize, was designated as the type strain. B. unamae was found as an endophyte of plants grown in regions with climates ranging from semi-hot subhumid to hot humid, but not from plants grown in regions with semi-hot or hot dry climates. Moreover, B. unamae was isolated from rhizospheres and plants growing in soils with pH values in the range 4.5-7.1, but not from soils with pH values higher than 7.5. PMID:15280286

  16. Eradication of Burkholderia cepacia Using Inhaled Aztreonam Lysine in Two Patients with Bronchiectasis

    PubMed Central

    Iglesias, A.; Artiles, I.; Cabanillas, J. J.; Álvarez-Sala, R.; Prados, C.

    2014-01-01

    There are not many articles about the chronic bronchial infection/colonization in patients with underlying lung disease other than cystic fibrosis (CF), especially with non-CF bronchiectasis (NCFBQ). The prevalence of B. cepacia complex is not well known in NCFBQ. The vast majority of published clinical data on Burkholderia infection in individuals with CF is comprised of uncontrolled, anecdotal, and/or single center experiences, and no consensus has emerged regarding treatment. We present two cases diagnosed with bronchiectasis (BQ) of different etiology, with early pulmonary infection by B. cepacia complex, which was eradicated with inhaled aztreonam lysine. PMID:25295210

  17. Distribution of Quorum-Sensing Genes in the Burkholderia cepacia Complex

    PubMed Central

    Lutter, E.; Lewenza, S.; Dennis, J. J.; Visser, M. B.; Sokol, P. A.

    2001-01-01

    The distribution of quorum-sensing genes among strains from seven genomovars of the Burkholderia cepacia complex was examined by PCR. cepR and cepI were amplified from B. cepacia genomovars I and III, B. stabilis, and B. vietnamiensis. cepR was also amplified from B. multivorans and B. cepacia genomovar VI. bviIR were amplified from B. vietnamiensis. All genomovars produced N-octanoyl-l-homoserine lactone and N-hexanoyl-l-homoserine lactone. B. vietnamiensis and B. cepacia genomovar VII produced additional N-acyl-l-homoserine lactones. PMID:11402012

  18. Molecular Comparison of Isolates of Burkholderia multivorans from Patients with Cystic Fibrosis in the United Kingdom

    PubMed Central

    Turton, Jane F.; Kaufmann, Mary E.; Mustafa, Nazim; Kawa, Sonia; Clode, Fiona E.; Pitt, Tyrone L.

    2003-01-01

    Burkholderia multivorans strains from 47 cystic fibrosis (CF) patients in 28 hospitals were compared by pulsed-field gel electrophoresis (PFGE) and flagellin (fliC) PCR-restriction fragment length polymorphism (PCR-RFLP) analysis. A considerable degree of genetic variation was evident, with each patient harboring a strain with a unique PFGE profile. Four sizes of fliC amplicons were produced, and these amplicons gave 13 RFLP types with restriction enzyme MspI. B. multivorans did not appear to spread between patients, suggesting that most CF patients acquire the organism from the natural environment. PMID:14662975

  19. Complete Genome Sequence of a Phenanthrene Degrader, Burkholderia sp. HB-1 (NBRC 110738)

    PubMed Central

    Moriya, Azusa; Kato, Hiromi; Ogawa, Natsumi; Nagata, Yuji; Tsuda, Masataka

    2015-01-01

    The phenanthrene-degrading Burkholderia sp. HB-1 was isolated from a phenanthrene-enrichment culture seeded with a pristine farm soil sample. We report the complete genome sequence of HB-1, which has been deposited to the stock culture (NBRC 110738) at Biological Resource Center, National Institute of Technology and Evaluation (NITE), Tokyo, Japan. The genome of strain HB-1 comprises two circular chromosomes of 4.1 Mb and 3.1 Mb. The finishing was facilitated by the computational tools GenoFinisher, AceFileViewer, and ShortReadManager. PMID:26543118

  20. Draft Genome Sequence of the Polyhydroxyalkanoate-Producing Bacterium Burkholderia sacchari LMG 19450 Isolated from Brazilian Sugarcane Plantation Soil

    PubMed Central

    Alexandrino, Paulo Moises Raduan; Mendonça, Thatiane Teixeira; Guamán Bautista, Linda Priscila; Cherix, Juliano; Lozano-Sakalauskas, Gabriela Cazonato; Fujita, André; Ramos Filho, Edmar; Long, Paul; Padilla, Gabriel; Taciro, Marilda Keico; Gomez, José Gregório Cabrera

    2015-01-01

    Burkholderia sacchari LMG 19450, isolated from the soil of a sugarcane plantation in Brazil, accumulates large amounts of polyhydroxyalkanoates from sucrose, xylose, other carbohydrates, and organic acids. We present the draft genome sequence of this industrially relevant bacterium, which is 7.2 Mb in size and has a G+C content of 64%. PMID:25953171

  1. South African Papilionoid Legumes Are Nodulated by Diverse Burkholderia with Unique Nodulation and Nitrogen-Fixation Loci

    PubMed Central

    Beukes, Chrizelle W.; Venter, Stephanus N.; Law, Ian J.; Phalane, Francina L.; Steenkamp, Emma T.

    2013-01-01

    The root-nodule bacteria of legumes endemic to the Cape Floristic Region are largely understudied, even though recent reports suggest the occurrence of nodulating Burkholderia species unique to the region. In this study, we considered the diversity and evolution of nodulating Burkholderia associated with the endemic papilionoid tribes Hypocalypteae and Podalyrieae. We identified distinct groups from verified rhizobial isolates by phylogenetic analyses of the 16S rRNA and recA housekeeping gene regions. In order to gain insight into the evolution of the nodulation and diazotrophy of these rhizobia we analysed the genes encoding NifH and NodA. The majority of these 69 isolates appeared to be unique, potentially representing novel species. Evidence of horizontal gene transfer determining the symbiotic ability of these Cape Floristic Region isolates indicate evolutionary origins distinct from those of nodulating Burkholderia from elsewhere in the world. Overall, our findings suggest that Burkholderia species associated with fynbos legumes are highly diverse and their symbiotic abilities have unique ancestries. It is therefore possible that the evolution of these bacteria is closely linked to the diversification and establishment of legumes characteristic of the Cape Floristic Region. PMID:23874611

  2. Burkholderia cenocepacia Strain CEIB S5-1, a Rhizosphere-Inhabiting Bacterium with Potential in Bioremediation

    PubMed Central

    Martínez-Ocampo, Fernando; Lozano-Aguirre Beltrán, Luis Fernando; Hernández-Mendoza, Armando; Rojas-Espinoza, Luis Enrique; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, María Laura; Sánchez-Salinas, Enrique; Ramos Quintana, Fernando

    2015-01-01

    Burkholderia cenocepacia is considered an opportunistic pathogen from humans and may cause disease in plants. A bioprospection from a plaguicide-contaminated agricultural field in Mexico identified several methyl parathion-degrading bacteria. Here, we report the draft genome sequence of B. cenocepacia strain CEIB S5-1, which gave us clues into ecological biodiversity. PMID:25744996

  3. Draft Genome Sequence of Broad-Spectrum Antifungal Bacterium Burkholderia gladioli Strain NGJ1, Isolated from Healthy Rice Seeds

    PubMed Central

    Tyagi, Isha; Kumar, Rajeev; Ghosh, Srayan

    2015-01-01

    We report here the draft genome sequence of Burkholderia gladioli strain NGJ1. The strain was isolated from healthy rice seeds and exhibits broad-spectrum antifungal activity against several agriculturally important pathogens, including Rhizoctonia solani, Magnaporthe oryzae, Venturia inaequalis, and Fusarium oxysporum. PMID:26205861

  4. Burkholderia cepacia infection of the prostate caused by inoculation of contaminated ultrasound gel during transrectal biopsy of the prostate.

    PubMed

    Organ, Michael; Grantmyre, John; Hutchinson, Jim

    2010-06-01

    Burkholderia cepacia infection of the prostate is very rare. We report 6 cases of prostatic infection secondary to inoculation of contaminated ultrasound gel during transrectal biopsy of the prostate. All of these patients required hospitalization and were treated with intravenous antibiotics. One of these cases is the first description of chronic prostatitis with B. cepacia. PMID:23293687

  5. Identification of Essential Operons with a Rhamnose-Inducible Promoter in Burkholderia cenocepacia†

    PubMed Central

    Cardona, Silvia T.; Mueller, Carmen L.; Valvano, Miguel A.

    2006-01-01

    Scanning of bacterial genomes to identify essential genes is of biological interest, for understanding the basic functions required for life, and of practical interest, for the identification of novel targets for new antimicrobial therapies. In particular, the lack of efficacious antimicrobial treatments for infections caused by the Burkholderia cepacia complex is causing high morbidity and mortality of cystic fibrosis patients and of patients with nosocomial infections. Here, we present a method based on delivery of the tightly regulated rhamnose-inducible promoter PrhaB for identifying essential genes and operons in Burkholderia cenocepacia. We demonstrate that different levels of gene expression can be achieved by using two vectors that deliver PrhaB at two different distances from the site of insertion. One of these vectors places PrhaB at the site of transposon insertion, while the other incorporates the enhanced green fluorescent protein gene (e-gfp) downstream from PrhaB. This system allows us to identify essential genes and operons in B. cenocepacia and provides a new tool for systematically identifying and functionally characterizing essential genes at the genomic level. PMID:16597956

  6. Application of lipase from Burkholderia cepacia in the degradation of agro-industrial effluent.

    PubMed

    Mello Bueno, Pabline Rafaella; de Oliveira, Tatianne Ferreira; Castiglioni, Gabriel Luis; Soares Júnior, Manoel Soares; Ulhoa, Cirano Jose

    2015-01-01

    This study aimed to analyze the physical and chemical characteristics of Amano PS commercial lipase - Burkholderia cepacia and lipase produced by Burkholderia cepacia strain ATCC 25416, in addition to studying the hydrolysis of agro-industrial effluent collected in a fried potato industry. The optimum temperature for increasing lipase activity was 37 °C. The temperature increase caused a decrease in thermostability of lipase, and the commercial lipase was less stable, with values of 10.5, 4.6 and 4.9%, respectively, lower than those obtained by lipase from strain ATCC 25416, at temperatures of 40, 50 and 60 °C. The enzymatic activity was higher in alkaline conditions, achieving better results at pH 8.0. The pH was the variable that most influenced the hydrolysis of triacylglycerides of the agro-industrial effluent, followed by enzyme concentration, and volume of gum arabic used in the reaction medium. Thus, it can be observed that the enzymatic hydrolytic process of the studied effluent presents a premising contribution to reduction of environmental impacts of potato chip processing industries. PMID:25860696

  7. PCR-Based Detection and Identification of Burkholderia cepacia Complex Pathogens in Sputum from Cystic Fibrosis Patients

    PubMed Central

    McDowell, Andrew; Mahenthiralingam, Eshwar; Moore, John E.; Dunbar, Kerstin E. A.; Webb, A. Kevin; Dodd, Mary E.; Martin, S. Lorraine; Millar, B. Cherie; Scott, Christopher J.; Crowe, Mary; Elborn, J. Stuart

    2001-01-01

    PCR amplification of the recA gene followed by restriction fragment length polymorphism (RFLP) analysis was investigated for the rapid detection and identification of Burkholderia cepacia complex genomovars directly from sputum. Successful amplification of the B. cepacia complex recA gene from cystic fibrosis (CF) patient sputum samples containing B. cepacia genomovar I, Burkholderia multivorans, B. cepacia genomovar III, Burkholderia stabilis, and Burkholderia vietnamiensis was demonstrated. In addition, the genomovar identifications determined directly from sputum were the same as those obtained after selective culturing. Sensitivity experiments revealed that recA-based PCR could reliably detect B. cepacia complex organisms to concentrations of 106 CFU g of sputum?1. To fully assess the diagnostic value of the method, sputum samples from 100 CF patients were screened for B. cepacia complex infection by selective culturing and recA-based PCR. Selective culturing identified 19 samples with presumptive B. cepacia complex infection, which was corroborated by phenotypic analyses. Of the culture-positive sputum samples, 17 were also detected directly by recA-based PCR, while 2 samples were negative. The isolates cultured from both recA-negative sputum samples were subsequently identified as Burkholderia gladioli. RFLP analysis of the recA amplicons revealed 2 patients (12%) infected with B. multivorans, 11 patients (65%) infected with B. cepacia genomovar III-A, and 4 patients (23%) infected with B. cepacia genomovar III-B. These results demonstrate the potential of recA-based PCR-RFLP analysis for the rapid detection and identification of B. cepacia complex genomovars directly from sputum. Where the sensitivity of the assay proves a limitation, sputum samples can be analyzed by selective culturing followed by recA-based analysis of the isolate. PMID:11724828

  8. Proof that Burkholderia Strains Form Effective Symbioses with Legumes: a Study of Novel Mimosa-Nodulating Strains from South America

    PubMed Central

    Chen, Wen-Ming; de Faria, Sergio M.; Straliotto, Rosângela; Pitard, Rosa M.; Simões-Araùjo, Jean L.; Chou, Jui-Hsing; Chou, Yi-Ju; Barrios, Edmundo; Prescott, Alan R.; Elliott, Geoffrey N.; Sprent, Janet I.; Young, J. Peter W.; James, Euan K.

    2005-01-01

    Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other ?-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known ?-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes. PMID:16269788

  9. IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE USING BURKHOLDERIA CEPACIA G4 PR1: ANALYSIS OF MICROBIAL ECOLOGY PARAMETERS FOR RISK ASSESSMENT (RESEARCH BRIEF)

    EPA Science Inventory

    The introduction of bacteria into aquifers for bioremediation purposes requires monitoring of the persistence and activity of microbial populations for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR1 constitutively expresses a toluene ortho-monooxygenase (tom) ...

  10. Draft Genome Sequence of Burkholderia sp. Strain PML1(12), an Ectomycorrhizosphere-Inhabiting Bacterium with Effective Mineral-Weathering Ability.

    PubMed

    Uroz, Stéphane; Oger, Phil

    2015-01-01

    We report the draft genome sequence of Burkholderia sp. PML1(12), a soil bacterium isolated from the Oak-Scleroderma citrinum ectomycorrhizosphere in the experimental forest site of Breuil-Chenue (France). PMID:26205858

  11. Draft Genome Sequence of Burkholderia sp. Strain PML1(12), an Ectomycorrhizosphere-Inhabiting Bacterium with Effective Mineral-Weathering Ability

    PubMed Central

    Oger, Phil

    2015-01-01

    We report the draft genome sequence of Burkholderia sp. PML1(12), a soil bacterium isolated from the Oak-Scleroderma citrinum ectomycorrhizosphere in the experimental forest site of Breuil-Chenue (France). PMID:26205858

  12. Genome sequence of Burkholderia mimosarum strain LMG 23256T, a Mimosa pigra microsymbiont from Anso, Taiwan

    PubMed Central

    Willems, Anne; Tian, Rui; Bräu, Lambert; Goodwin, Lynne; Han, James; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavrommatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2013-01-01

    Burkholderia mimosarum strain LMG 23256T is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Mimosa pigra (giant sensitive plant). LMG 23256T was isolated from a nodule recovered from the roots of the M. pigra growing in Anso, Taiwan. LMG 23256T is highly effective at fixing nitrogen with M. pigra. Here we describe the features of B. mimosarum strain LMG 23256T, together with genome sequence information and its annotation. The 8,410,967 bp high-quality-draft genome is arranged into 268 scaffolds of 270 contigs containing 7,800 protein-coding genes and 85 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. PMID:25197434

  13. Potential of metabolomics to reveal Burkholderia cepacia complex pathogenesis and antibiotic resistance

    PubMed Central

    Shommu, Nusrat S.; Vogel, Hans J.; Storey, Douglas G.

    2015-01-01

    The Burkholderia cepacia complex (Bcc) is a collection of closely related, genetically distinct, ecologically diverse species known to cause life-threatening infections in cystic fibrosis (CF) patients. By virtue of a flexible genomic structure and diverse metabolic activity, Bcc bacteria employ a wide array of virulence factors for pathogenesis in CF patients and have developed resistance to most of the commonly used antibiotics. However, the mechanism of pathogenesis and antibiotic resistance is still not fully understood. This mini review discusses the established and potential virulence determinants of Bcc and some of the contemporary strategies including transcriptomics and proteomics used to identify these traits. We also propose the application of metabolic profiling, a cost-effective modern-day approach to achieve new insights. PMID:26217312

  14. Burkholderia gut symbionts enhance the innate immunity of host Riptortus pedestris.

    PubMed

    Kim, Jiyeun Kate; Lee, Jun Beom; Huh, Ye Rang; Jang, Ho Am; Kim, Chan-Hee; Yoo, Jin Wook; Lee, Bok Luel

    2015-11-01

    The relation between gut symbiosis and immunity has been reported in various animal model studies. Here, we corroborate the effect of gut symbiont to host immunity using the bean bug model. The bean bug, Riptortus pedestris, is a useful gut symbiosis model due to the monospecific gut symbiont, genus Burkholderia. To examine the effect of gut symbiosis to host immunity, we generated the gut symbiont-harboring (symbiotic) insect line and the gut symbiont-lacking (aposymbiotic) insect line. Upon bacterial challenges, the symbiotic Riptortus exhibited better survival than aposymbiotic Riptortus. When cellular immunity was inhibited, the symbiotic Riptortus still survived better than aposymbioic Riptortus, suggesting stronger humoral immunity. The molecular basis of the strong humoral immunity was further confirmed by the increase of hemolymph antimicrobial activity and antimicrobial peptide expression in the symbiotic insects. Taken together, our data clearly demonstrate that Burkhoderia gut symbiont positively affect the Riptortus systemic immunity. PMID:26164198

  15. Understanding pathogenic Burkholderia glumae metabolic and signaling pathways within rice tissues through in vivo transcriptome analyses.

    PubMed

    Kim, Sunyoung; Park, Jungwook; Lee, Jongyun; Shin, Dongjin; Park, Dong-Soo; Lim, Jong-Sung; Choi, Ik-Young; Seo, Young-Su

    2014-08-15

    Burkholderia glumae is a causal agent of rice grain and sheath rot. Similar to other phytopathogens, B. glumae adapts well to the host environment and controls its biology to induce diseases in the host plant; however, its molecular mechanisms are not yet fully understood. To gain a better understating of the actual physiological changes that occur in B. glumae during infection, we analyzed B. glumae transcriptome from infected rice tissues using an RNA-seq technique. To accomplish this, we analyzed differentially expressed genes (DEGs) and identified 2653 transcripts that were significantly altered. We then performed KEGG pathway and module enrichment of the DEGs. Interestingly, most genes involved bacterial chemotaxis-mediated motility, ascorbate and trehalose metabolisms, and sugar transporters including l-arabinose and d-xylose were found to be highly enriched. The in vivo transcriptional profiling of pathogenic B. glumae will facilitate elucidation of unknown plant-pathogenic bacteria interactions, as well as the overall infection processes. PMID:24949534

  16. Use of the gyrB gene to discriminate among species of the Burkholderia cepacia complex.

    PubMed

    Tabacchioni, Silvia; Ferri, Lorenzo; Manno, Graziana; Mentasti, Massimo; Cocchi, Priscilla; Campana, Silvia; Ravenni, Novella; Taccetti, Giovanni; Dalmastri, Claudia; Chiarini, Luigi; Bevivino, Annamaria; Fani, Renato

    2008-04-01

    Bacteria of the Burkholderia cepacia complex (Bcc) are opportunistic pathogens that can cause serious infections in lungs of cystic fibrosis patients. The Bcc comprises at least nine species that have been discriminated by a polyphasic taxonomic approach. In this study, we focused on the gyrB gene, universally distributed among bacteria, as a new target gene to discriminate among the Bcc species. New PCR primers were designed to amplify a gyrB DNA fragment of about 1900 bp from 76 strains representative of all Bcc species. Nucleotide sequences of PCR products were determined and showed more than 400 polymorphic sites with high sequence similarity values from most isolates of the same species. Phylogenetic tree analysis revealed that most of the 76 gyrB sequences grouped, forming clusters, each corresponding to a given Bcc species. PMID:18312571

  17. The dsbB gene product is required for protease production by Burkholderia cepacia.

    PubMed Central

    Abe, M; Nakazawa, T

    1996-01-01

    Burkholderia cepacia KF1, isolated from a pneumonia patient, produces a 37-kDa extracellular metalloprotease. A protease-deficient and lipase-proficient mutant, KFT1007, was complemented by a clone having an open reading frame coding for a 170-amino-acid polypeptide which showed significant homology to Escherichia coli DsbB. KFT1007, a presumed dsbB mutant, also failed to show motility, and both protease secretion and motility were restored by the introduction of the cloned dsbB gene of B. cepacia. The mutant KFT1007 excreted a 43-kDa polypeptide that is immunologically related to the 37-kDa mature protease. These results suggested that the dsbB mutant secretes a premature and catalytically inactive form of protease and that disulfide formation is required for the production of extracellular protease by B. cepacia. PMID:8926116

  18. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia.

    PubMed Central

    Govan, J R; Deretic, V

    1996-01-01

    Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity. PMID:8840786

  19. Biodiesel production from Jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite.

    PubMed

    You, Qinghong; Yin, Xiulian; Zhao, Yuping; Zhang, Yan

    2013-11-01

    Lipase from Burkholderia cepacia was immobilized on modified attapulgite by cross-linking reaction for biodiesel production with jatropha oil as feedstock. Effects of various factors on biodiesel production were studied by single-factor experiment. Results indicated that the best conditions for biodiesel preparation were: 10 g jatropha oil, 2.4 g methanol (molar ratio of oil to methanol is 1:6.6) being added at 3h intervals, 7 wt% water, 10 wt% immobilized lipase, temperature 35°C, and time 24h. Under these conditions, the maximum biodiesel yield reached 94%. The immobilized lipase retained 95% of its relative activity during the ten repeated batch reactions. The half-life time of the immobilized lipase is 731 h. Kinetics was studied and the Vmax of the immobilized lipases were 6.823 mmol L(-1). This immobilized lipase catalyzed process has potential industrial use for biodiesel production to replace chemical-catalyzed method. PMID:24055964

  20. Chemotaxis of Burkholderia sp. Strain SJ98 towards chloronitroaromatic compounds that it can metabolise

    PubMed Central

    2012-01-01

    Background Burkholderia sp. strain SJ98 is known for its chemotaxis towards nitroaromatic compounds (NACs) that are either utilized as sole sources of carbon and energy or co-metabolized in the presence of alternative carbon sources. Here we test for the chemotaxis of this strain towards six chloro-nitroaromatic compounds (CNACs), namely 2-chloro-4-nitrophenol (2C4NP), 2-chloro-3-nitrophenol (2C3NP), 4-chloro-2-nitrophenol (4C2NP), 2-chloro-4-nitrobenzoate (2C4NB), 4-chloro-2-nitrobenzoate (4C2NB) and 5-chloro-2-nitrobenzoate (5C2NB), and examine its relationship to the degradation of such compounds. Results Strain SJ98 could mineralize 2C4NP, 4C2NB and 5C2NB, and co-metabolically transform 2C3NP and 2C4NB in the presence of an alternative carbon source, but was unable to transform 4C2NP under these conditions. Positive chemotaxis was only observed towards the five metabolically transformed CNACs. Moreover, the chemotaxis was induced by growth in the presence of the metabolisable CNAC. It was also competitively inhibited by the presence of nitroaromatic compounds (NACs) that it could metabolise but not by succinate or aspartate. Conclusions Burkholderia sp. strain SJ98 exhibits metabolic transformation of, and inducible chemotaxis towards CNACs. Its chemotactic responses towards these compounds are related to its previously demonstrated chemotaxis towards NACs that it can metabolise, but it is independently inducible from its chemotaxis towards succinate or aspartate. PMID:22292983

  1. Genomic sequence and activity of KS10, a transposable phage of the Burkholderia cepacia complex

    PubMed Central

    Goudie, Amanda D; Lynch, Karlene H; Seed, Kimberley D; Stothard, Paul; Shrivastava, Savita; Wishart, David S; Dennis, Jonathan J

    2008-01-01

    Background The Burkholderia cepacia complex (BCC) is a versatile group of Gram negative organisms that can be found throughout the environment in sources such as soil, water, and plants. While BCC bacteria can be involved in beneficial interactions with plants, they are also considered opportunistic pathogens, specifically in patients with cystic fibrosis and chronic granulomatous disease. These organisms also exhibit resistance to many antibiotics, making conventional treatment often unsuccessful. KS10 was isolated as a prophage of B. cenocepacia K56-2, a clinically relevant strain of the BCC. Our objective was to sequence the genome of this phage and also determine if this prophage encoded any virulence determinants. Results KS10 is a 37,635 base pairs (bp) transposable phage of the opportunistic pathogen Burkholderia cenocepacia. Genome sequence analysis and annotation of this phage reveals that KS10 shows the closest sequence homology to Mu and BcepMu. KS10 was found to be a prophage in three different strains of B. cenocepacia, including strains K56-2, J2315, and C5424, and seven tested clinical isolates of B. cenocepacia, but no other BCC species. A survey of 23 strains and 20 clinical isolates of the BCC revealed that KS10 is able to form plaques on lawns of B. ambifaria LMG 19467, B. cenocepacia PC184, and B. stabilis LMG 18870. Conclusion KS10 is a novel phage with a genomic organization that differs from most phages in that its capsid genes are not aligned into one module but rather separated by approximately 11 kb, giving evidence of one or more prior genetic rearrangements. There were no potential virulence factors identified in KS10, though many hypothetical proteins were identified with no known function. PMID:19094239

  2. Construction of a large-scale Burkholderia cenocepacia J2315 transposon mutant library

    NASA Astrophysics Data System (ADS)

    Wong, Yee-Chin; Pain, Arnab; Nathan, Sheila

    2014-09-01

    Burkholderia cenocepacia, a pathogenic member of the Burkholderia cepacia complex (Bcc), has emerged as a significant threat towards cystic fibrosis patients, where infection often leads to the fatal clinical manifestation known as cepacia syndrome. Many studies have investigated the pathogenicity of B. cenocepacia as well as its ability to become highly resistant towards many of the antibiotics currently in use. In addition, studies have also been undertaken to understand the pathogen's capacity to adapt and survive in a broad range of environments. Transposon based mutagenesis has been widely used in creating insertional knock-out mutants and coupled with recent advances in sequencing technology, robust tools to study gene function in a genome-wide manner have been developed based on the assembly of saturated transposon mutant libraries. In this study, we describe the construction of a large-scale library of B. cenocepacia transposon mutants. To create transposon mutants of B. cenocepacia strain J2315, electrocompetent bacteria were electrotransformed with the EZ-Tn5 transposome. Tetracyline resistant colonies were harvested off selective agar and pooled. Mutants were generated in multiple batches with each batch consisting of ˜20,000 to 40,000 mutants. Transposon insertion was validated by PCR amplification of the transposon region. In conclusion, a saturated B. cenocepacia J2315 transposon mutant library with an estimated total number of 500,000 mutants was successfully constructed. This mutant library can now be further exploited as a genetic tool to assess the function of every gene in the genome, facilitating the discovery of genes important for bacterial survival and adaptation, as well as virulence.

  3. 42 CFR 73.9 - Responsible Official.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...select agent or toxin contained in a specimen presented for diagnosis or verification. (1) The identification of any of the...Burkholderia pseudomallei Francisella tularensis, Ebola viruses, , Marburg virus, Variola major virus...

  4. 42 CFR 73.9 - Responsible Official.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...select agent or toxin contained in a specimen presented for diagnosis or verification. (1) The identification of any of the...Burkholderia pseudomallei, Francisella tularensis, Ebola viruses, Marburg virus, Variola major virus (Smallpox...

  5. Unusual Multiple Production of N-Acylhomoserine Lactones a by Burkholderia sp. Strain C10B Isolated from Dentine Caries

    PubMed Central

    Goh, Share Yuan; Tan, Wen-Si; Khan, Saad Ahmed; Chew, Hooi Pin; Kasim, Noor Hayaty Abu; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Bacteria realize the ability to communicate by production of quorum sensing (QS) molecules called autoinducers, which regulate the physiological activities in their ecological niches. The oral cavity could be a potential area for the presence of QS bacteria. In this study, we report the isolation of a QS bacterial isolate C10B from dentine caries. Preliminary screening using Chromobacterium violaceum CV026 biosensor showed that isolate C10B was able to produce N-acylhomoserine lactones (AHLs). This bacterium was further identified as a member of Burkholderia, an opportunistic pathogen. The isolated Burkholderia sp. was confirmed to produce N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL), N-decanoyl-L-homoserine lactone (C10-HSL) and N-dodecanoyl-L-homoserine lactone (C12-HSL). PMID:24854358

  6. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility

    PubMed Central

    Chain, Patrick S. G.; Denef, Vincent J.; Konstantinidis, Konstantinos T.; Vergez, Lisa M.; Agulló, Loreine; Reyes, Valeria Latorre; Hauser, Loren; Córdova, Macarena; Gómez, Luis; González, Myriam; Land, Miriam; Lao, Victoria; Larimer, Frank; LiPuma, John J.; Mahenthiralingam, Eshwar; Malfatti, Stephanie A.; Marx, Christopher J.; Parnell, J. Jacob; Ramette, Alban; Richardson, Paul; Seeger, Michael; Smith, Daryl; Spilker, Theodore; Sul, Woo Jun; Tsoi, Tamara V.; Ulrich, Luke E.; Zhulin, Igor B.; Tiedje, James M.

    2006-01-01

    Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven “central aromatic” and twenty “peripheral aromatic” pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes. PMID:17030797

  7. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens.

    PubMed

    Tenorio-Salgado, Silvia; Tinoco, Raunel; Vazquez-Duhalt, Rafael; Caballero-Mellado, Jesus; Perez-Rueda, Ernesto

    2013-01-01

    It has been documented that bacteria from the Burkholderia genera produce different kinds of compounds that inhibit plant pathogens, however in Burkholderia tropica, an endophytic diazotrophic and phosphate-solubilizing bacterium isolated from a wide diversity of plants, the capacity to produce antifungal compounds has not been evaluated. In order to expand our knowledge about Burkholderia tropica as a potential biological control agent, we analyzed 15 different strains of this bacterium to evaluate their capacities to inhibit the growth of four phytopathogenic fungi, Colletotrichum gloeosporioides, Fusarium culmorum, Fusarium oxysporum and Sclerotium rolffsi. Diverse analytical techniques, including plant root protection and dish plate growth assays and gas chromatography-mass spectroscopy showed that the fungal growth inhibition was intimately associated with the volatile compounds produced by B. tropica and, in particular, two bacterial strains (MTo293 and TTe203) exhibited the highest radial mycelial growth inhibition. Morphological changes associated with these compounds, such as disruption of fungal hyphae, were identified by using photomicrographic analysis. By using gas chromatography-mass spectroscopy technique, 18 volatile compounds involved in the growth inhibition mechanism were identified, including ?-pinene and limonene. In addition, we found a high proportion of bacterial strains that produced siderophores during growth with different carbon sources, such as alanine and glutamic acid; however, their roles in the antagonism mechanism remain unclear. PMID:23680857

  8. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens

    PubMed Central

    Tenorio-Salgado, Silvia; Tinoco, Raunel; Vazquez-Duhalt, Rafael; Caballero-Mellado, Jesus; Perez-Rueda, Ernesto

    2013-01-01

    It has been documented that bacteria from the Burkholderia genera produce different kinds of compounds that inhibit plant pathogens, however in Burkholderia tropica, an endophytic diazotrophic and phosphate-solubilizing bacterium isolated from a wide diversity of plants, the capacity to produce antifungal compounds has not been evaluated. In order to expand our knowledge about Burkholderia tropica as a potential biological control agent, we analyzed 15 different strains of this bacterium to evaluate their capacities to inhibit the growth of four phytopathogenic fungi, Colletotrichum gloeosporioides, Fusarium culmorum, Fusarium oxysporum and Sclerotium rolffsi. Diverse analytical techniques, including plant root protection and dish plate growth assays and gas chromatography-mass spectroscopy showed that the fungal growth inhibition was intimately associated with the volatile compounds produced by B. tropica and, in particular, two bacterial strains (MTo293 and TTe203) exhibited the highest radial mycelial growth inhibition. Morphological changes associated with these compounds, such as disruption of fungal hyphae, were identified by using photomicrographic analysis. By using gas chromatography-mass spectroscopy technique, 18 volatile compounds involved in the growth inhibition mechanism were identified, including ?-pinene and limonene. In addition, we found a high proportion of bacterial strains that produced siderophores during growth with different carbon sources, such as alanine and glutamic acid; however, their roles in the antagonism mechanism remain unclear. PMID:23680857

  9. Changes in the repertoire of natural antibodies caused by immunization with bacterial antigens.

    PubMed

    Shilova, N V; Navakouski, M J; Huflejt, M; Kuehn, A; Grunow, R; Blixt, O; Bovin, N V

    2011-07-01

    The repertoire of natural anti-glycan antibodies in naïve chickens and in chickens immunized with bacteria Burkholderia mallei, Burkholderia pseudomallei, and Francisella tularensis as well as with peptides from an outer membrane protein of B. pseudomallei was studied. A relatively restricted pattern of natural antibodies (first of all IgY against bacterial cell wall peptidoglycan fragments, L-Rha, and core N-acetyllactosamine) shrank and, moreover, the level of detectable antibodies decreased as a result of immunization. PMID:21999548

  10. Antioxidant enzymes activities of Burkholderia spp. strains-oxidative responses to Ni toxicity.

    PubMed

    Dourado, M N; Franco, M R; Peters, L P; Martins, P F; Souza, L A; Piotto, F A; Azevedo, R A

    2015-12-01

    Increased agriculture production associated with intense application of herbicides, pesticides, and fungicides leads to soil contamination worldwide. Nickel (Ni), due to its high mobility in soils and groundwater, constitutes one of the greatest problems in terms of environmental pollution. Metals, including Ni, in high concentrations are toxic to cells by imposing a condition of oxidative stress due to the induction of reactive oxygen species (ROS), which damage lipids, proteins, and DNA. This study aimed to characterize the Ni antioxidant response of two tolerant Burkholderia strains (one isolated from noncontaminated soil, SNMS32, and the other from contaminated soil, SCMS54), by measuring superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Ni accumulation and bacterial growth in the presence of the metal were also analyzed. The results showed that both strains exhibited different trends of Ni accumulation and distinct antioxidant enzymes responses. The strain from contaminated soil (SCMS54) exhibited a higher Ni biosorption and exhibited an increase in SOD and GST activities after 5 and 12 h of Ni exposure. The analysis of SOD, CAT, and GR by nondenaturing PAGE revealed the appearance of an extra isoenzyme in strain SCMS54 for each enzyme. The results suggest that the strain SCMS54 isolated from contaminated soil present more plasticity with potential to be used in soil and water bioremediation. PMID:26289332

  11. Importance of topology for glycocluster binding to Pseudomonas aeruginosa and Burkholderia ambifaria bacterial lectins.

    PubMed

    Ligeour, Caroline; Dupin, Lucie; Angeli, Anthony; Vergoten, Gérard; Vidal, Sébastien; Meyer, Albert; Souteyrand, Eliane; Vasseur, Jean-Jacques; Chevolot, Yann; Morvan, François

    2015-12-14

    Pseudomonas aeruginosa (PA) and Burkholderia ambifaria (BA) are two opportunistic Gram negative bacteria and major infectious agents involved in lung infection of cystic fibrosis patients. Both bacteria can develop resistance to conventional antibiotherapies. An alternative strategy consists of targeting virulence factors in particular lectins with high affinity ligands such as multivalent glycoclusters. LecA (PA-IL) and LecB (PA-IIL) are two tetravalent lectins from PA that recognise galactose and fucose respectively. BambL lectin from BA is trimeric with 2 binding sites per monomer and is also specific for fucose. These three lectins are potential therapeutic targets in an anti-adhesive anti-bacterial approach. Herein, we report the synthesis of 18 oligonucleotide pentofuranose-centered or mannitol-centered glycoclusters leading to tri-, penta- or decavalent clusters with different topologies. The linker arm length between the core and the carbohydrate epitope was also varied leading to 9 galactoclusters targeting LecA and 9 fucoclusters targeting both LecB and BambL. Their dissociation constants (Kd) were determined using a DNA-based carbohydrate microarray technology. The trivalent xylo-centered galactocluster and the ribo-centered fucocluster exhibited the best affinity for LecA and LecB respectively while the mannitol-centered decafucocluster displayed the best affinity to BambL. These data demonstrated that the topology and nature of linkers were the predominant factors for achieving high affinity rather than valency. PMID:26412676

  12. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90.

    PubMed

    Yang, Zhihui; Zhang, Zhi; Chai, Liyuan; Wang, Yong; Liu, Yi; Xiao, Ruiyang

    2016-01-15

    Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant. PMID:26348147

  13. Production of (R)-3-hydroxybutyric acid by Burkholderia cepacia from wood extract hydrolysates

    PubMed Central

    2014-01-01

    (R)-hydroxyalkanoic acids (R-HAs) are valuable building blocks for the synthesis of fine chemicals and biopolymers because of the chiral center and the two active functional groups. Hydroxyalkanoic acids fermentation can revolutionize the polyhydroxyalkanoic acids (PHA) production by increasing efficiency and enhancing product utility. Modifying the fermentation conditions that promotes the in vivo depolymerization and secretion to fermentation broth in wild type bacteria is a novel and promising approach to produce R-HAs. Wood extract hydrolysate (WEH) was found to be a suitable substrate for R-3-hydroxybutyric acid (R-3-HB) production by Burkholderia cepacia. Using Paulownia elongate WEH as a feedstock, the R-3-HB concentration in fermentation broth reached as high as 14.2 g/L after 3 days of batch fermentation and the highest concentration of 16.8 g/L was obtained at day 9. Further investigation indicated that the composition of culture medium contributed to the enhanced R-3-HB production. PMID:24949263

  14. Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing

    PubMed Central

    Yoder-Himes, D. R.; Chain, P. S. G.; Zhu, Y.; Wurtzel, O.; Rubin, E. M.; Tiedje, James M.; Sorek, R.

    2009-01-01

    Determining how an organism responds to its environment by altering gene expression is key to understanding its ecology. Here, we used RNA-seq to comprehensively and quantitatively assess the transcriptional response of the bacterial opportunistic cystic fibrosis (CF) pathogen and endemic soil dweller, Burkholderia cenocepacia, in conditions mimicking these 2 environments. By sequencing 762 million bases of cDNA from 2 closely related B. cenocepacia strains (one isolated from a CF patient and one from soil), we identified a number of potential virulence factors expressed under CF-like conditions, whereas genes whose protein products are involved in nitrogen scavenging and 2-component sensing were among those induced under soil-like conditions. Interestingly, 13 new putative noncoding RNAs were discovered using this technique, 12 of which are preferentially induced in the soil environment, suggesting that ncRNAs play an important role in survival in the soil. In addition, we detected a surprisingly large number of regulatory differences between the 2 strains, which may represent specific adaptations to the niches from which each strain was isolated, despite their high degree of DNA sequence similarity. Compared with the CF strain, the soil strain shows a stronger global gene expression response to its environment, which is consistent with the need for a more dynamic reaction to the heterogeneous conditions of soil. PMID:19234113

  15. A minor catalase/peroxidase from Burkholderia cenocepacia is required for normal aconitase activity.

    PubMed

    Lefebre, Mathew D; Flannagan, Ronald S; Valvano, Miguel A

    2005-06-01

    The opportunistic bacterium Burkholderia cenocepacia C5424 contains two catalase/peroxidase genes, katA and katB. To investigate the functions of these genes, katA and katB mutants were generated by targeted integration of suicide plasmids into the katA and katB genes. The catalase/peroxidase activity of the katA mutant was not affected as compared with that of the parental strain, while no catalase/peroxidase activity was detected in the katB mutant. However, the katA mutant displayed reduced resistance to hydrogen peroxide under iron limitation, while the katB mutant showed hypersensitivity to hydrogen peroxide, and reduced growth under all conditions tested. The katA mutant displayed reduced growth only in the presence of carbon sources that are metabolized through the tricarboxylic acid (TCA) cycle, as the growth defect was abrogated in cultures supplemented with glucose or glycerol. This phenotype was also correlated with a marked reduction in aconitase activity. In contrast, aconitase activity was not reduced in the katB mutant and parental strains. The authors conclude that the KatA protein is a specialized catalase/peroxidase that has a novel function by contributing to maintain the normal activity of the TCA cycle, while KatB is a classical catalase/peroxidase that plays a global role in cellular protection against oxidative stress. PMID:15942004

  16. Burkholderia cepacia Complex Infection in Italian Patients with Cystic Fibrosis: Prevalence, Epidemiology, and Genomovar Status

    PubMed Central

    Agodi, Antonella; Mahenthiralingam, Eshwar; Barchitta, Martina; Gianninò, Viviana; Sciacca, Agata; Stefani, Stefania

    2001-01-01

    The prevalence, epidemiology, and genomovar status of Burkholderia cepacia complex strains recovered from Italian cystic fibrosis (CF) patients were investigated using genetic typing and species identification methods. Four CF treatment centers were examined: two in Sicily, one in central Italy, and one in northern Italy. B. cepacia complex bacteria were isolated from 59 out of 683 CF patients attending these centers (8.6%). For the two geographically related treatment centers in Sicily, there was a high incidence of infection caused by a single epidemic clone possessing the cblA gene and belonging to B. cepacia genomovar III, recA group III-A, closely related to the major North America-United Kingdom clone, ET12; instability of the cblA sequence was also demonstrated for clonal isolates. In summary, of all the strains of B. cepacia encountered in the Italian CF population, the genomovar III, recA group III-A strains were the most prevalent and transmissible. However, patient-to-patient spread was also observed with several other genomovars, including strains of novel taxonomic status within the B. cepacia complex. A combination of genetic identification and molecular typing analysis is recommended to fully define specific risks posed by the genomovar status of strains within the B. cepacia complex. PMID:11474009

  17. A new species of Burkholderia isolated from sugarcane roots promotes plant growth

    PubMed Central

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G A; Yeoh, Yun Kit; Webb, Richard I; Lakshmanan, Prakash; Chan, Cheong Xin; Lim, Phaik-Eem; Ragan, Mark A; Schmidt, Susanne; Hugenholtz, Philip

    2014-01-01

    Sugarcane is a globally important food, biofuel and biomaterials crop. High nitrogen (N) fertilizer rates aimed at increasing yield often result in environmental damage because of excess and inefficient application. Inoculation with diazotrophic bacteria is an attractive option for reducing N fertilizer needs. However, the efficacy of bacterial inoculants is variable, and their effective formulation remains a knowledge frontier. Here, we take a new approach to investigating diazotrophic bacteria associated with roots using culture-independent microbial community profiling of a commercial sugarcane variety (Q208A) in a field setting. We first identified bacteria that were markedly enriched in the rhizosphere to guide isolation and then tested putative diazotrophs for the ability to colonize axenic sugarcane plantlets (Q208A) and promote growth in suboptimal N supply. One isolate readily colonized roots, fixed N2 and stimulated growth of plantlets, and was classified as a new species, Burkholderia australis sp. nov. Draft genome sequencing of the isolate confirmed the presence of nitrogen fixation. We propose that culture-independent identification and isolation of bacteria that are enriched in rhizosphere and roots, followed by systematic testing and confirming their growth-promoting capacity, is a necessary step towards designing effective microbial inoculants. PMID:24350979

  18. Burkholderia cenocepacia Lipopolysaccharide Modification and Flagellin Glycosylation Affect Virulence but Not Innate Immune Recognition in Plants

    PubMed Central

    Khodai-Kalaki, Maryam; Andrade, Angel; Fathy Mohamed, Yasmine

    2015-01-01

    ABSTRACT Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that “virulence” depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipopolysaccharide (LPS) with 4-amino-4-deoxy-l-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabidopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection. PMID:26045541

  19. E?ux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia.

    PubMed

    Scoffone, Viola C; Ryabova, Olga; Makarov, Vadim; Iadarola, Paolo; Fumagalli, Marco; Fondi, Marco; Fani, Renato; De Rossi, Edda; Riccardi, Giovanna; Buroni, Silvia

    2015-01-01

    Burkholderia cenocepacia is a major concern for people suffering from cystic fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of these infections particularly difficult. Here a new compound, belonging to the 2,1,3-benzothiadiazol-5-yl family (10126109), with a bactericidal effect and a minimal inhibitory concentration (MIC) of 8 ?g/ml against B. cenocepacia, is described. The compound is not cytotoxic and effective against B. cenocepacia clinical isolates and members of all the known B. cepacia complex species. Spontaneous mutants resistant to 10126109 were isolated and mutations in the MerR transcriptional regulator BCAM1948 were identified. In this way, a mechanism of resistance to this new molecule was described, which relies on the overexpression of the RND-9 e?ux pump. Indeed, rnd-9 overexpression was confirmed by quantitative reverse transcription PCR, and RND-9 was identified in the membrane fractions of the mutant strains. Moreover, the increase in the MIC values of different drugs in the mutant strains, together with complementation experiments, suggested the involvement of RND-9 in the e?ux of 10126109, thus indicating again the central role of e?ux transporters in B. cenocepacia drug resistance. PMID:26300878

  20. E?ux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia

    PubMed Central

    Scoffone, Viola C.; Ryabova, Olga; Makarov, Vadim; Iadarola, Paolo; Fumagalli, Marco; Fondi, Marco; Fani, Renato; De Rossi, Edda; Riccardi, Giovanna; Buroni, Silvia

    2015-01-01

    Burkholderia cenocepacia is a major concern for people suffering from cystic fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of these infections particularly difficult. Here a new compound, belonging to the 2,1,3-benzothiadiazol-5-yl family (10126109), with a bactericidal effect and a minimal inhibitory concentration (MIC) of 8 ?g/ml against B. cenocepacia, is described. The compound is not cytotoxic and effective against B. cenocepacia clinical isolates and members of all the known B. cepacia complex species. Spontaneous mutants resistant to 10126109 were isolated and mutations in the MerR transcriptional regulator BCAM1948 were identified. In this way, a mechanism of resistance to this new molecule was described, which relies on the overexpression of the RND-9 e?ux pump. Indeed, rnd-9 overexpression was confirmed by quantitative reverse transcription PCR, and RND-9 was identified in the membrane fractions of the mutant strains. Moreover, the increase in the MIC values of different drugs in the mutant strains, together with complementation experiments, suggested the involvement of RND-9 in the e?ux of 10126109, thus indicating again the central role of e?ux transporters in B. cenocepacia drug resistance. PMID:26300878

  1. In Vitro Antifungal Activity of Burkholderia gladioli pv. agaricicola against Some Phytopathogenic Fungi

    PubMed Central

    Elshafie, Hazem S.; Camele, Ippolito; Racioppi, Rocco; Scrano, Laura; Iacobellis, Nicola S.; Bufo, Sabino A.

    2012-01-01

    The trend to search novel microbial natural biocides has recently been increasing in order to avoid the environmental pollution from use of synthetic pesticides. Among these novel natural biocides are the bioactive secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga). The aim of this study is to determine antifungal activity of Bga strains against some phytopathogenic fungi. The fungicidal tests were carried out using cultures and cell-free culture filtrates against Botrytis cinerea, Aspergillus flavus, Aspergillus niger, Penicillium digitatum, Penicillium expansum, Sclerotinia sclerotiorum and Phytophthora cactorum. Results demonstrated that all tested strains exert antifungal activity against all studied fungi by producing diffusible metabolites which are correlated with their ability to produce extracellular hydrolytic enzymes. All strains significantly reduced the growth of studied fungi and the bacterial cells were more bioactive than bacterial filtrates. All tested Bulkholderia strains produced volatile organic compounds (VOCs), which inhibited the fungal growth and reduced the growth rate of Fusarium oxysporum and Rhizoctonia solani. GC/MS analysis of VOCs emitted by strain Bga 11096 indicated the presence of a compound that was identified as 1-methyl-4-(1-methylethenyl)-cyclohexene, a liquid hydrocarbon classified as cyclic terpene. This compound could be responsible for the antifungal activity, which is also in agreement with the work of other authors. PMID:23208371

  2. Screening of Burkholderia sp. WGB31 producing anisic acid from anethole and optimization of fermentation conditions.

    PubMed

    Shen, Peihong; Song, Zhangyang; Zhang, Zhenyong; Zeng, Huahe; Tang, Xianlai; Jiang, Chengjian; Li, Junfang; Wu, Bo

    2014-11-01

    Anisic acid, the precursor of a variety of food flavors and industrial raw materials, can be bioconversed from anethole which extracted from star anise fruits. WGB31 strain with anisic acid molar production rate of 10.25% was isolated and identified as Burkholderia sp. Three significant influential factors, namely, glucose concentration, initial pH value, and medium volume were selected and their effects were evaluated by Box-Behnken Design (BBD). Regression analysis was performed to determine response surface methodology and the significance was tested to obtain the process model of optimal conditions for producing anisic acid. The fermentation conditions at the stable point of the model were obtained: glucose 6?g?L(-1) , pH 6.2, culture medium volume 61?mL in a triangular flask with 250?ml volume. Verification test indicated that the production rate of anisic acid was 30.7%, which was three times of that before optimizing. The results provide a basis and reference for producing anisic acid by microbial transformation. PMID:25100156

  3. Sorption versus Biomineralization of Pb(II) within Burkholderia cepacia Biofilms

    SciTech Connect

    Templeton, Alexis S.; Trainor, T. P.; Spormann, Alfred M.; Newville, Mathew; Sutton , Steven R.; Dohnalkova, Alice; Gorby, Yuri A.; Brown, Gordon E.

    2003-01-15

    X-ray spectroscopy measurements have been combined with macroscopic uptake data and transmission electron microscopy (TEM) results to show that Pb(II) uptake by Burkholderia cepacia is due to simultaneous sorption and biomineralization processes. X-ray microprobe mapping of B. cepacia biofilms formed on -Al2O3 surfaces shows that Pb(II) is distributed heterogeneously throughout the biofilms because of the formation of Pb "hot spots". EXAFS data and TEM observations show that the enhanced Pb accumulation is due to the formation of nanoscale crystals of pyromorphite (Pb5(PO4)3(OH)) adjacent to the outer-membrane of a fraction of the total population of B. cepacia cells. In contrast, B. cepacia cell suspensions or biofilms that were heat-killed or pretreated with X-rays do not form pyromorphite, which suggests that metabolic activity is required. Precipitation of pyromorphite occurs over several orders of magnitude in [H+] and [Pb] and accounts for approximately 90% of the total Pb uptake below pH 4.5 but only 45-60% at near-neutral pH because of the formation of additional Pb(II) adsorption complexes. Structural fits of Pb LIII EXAFS data collected for heat-treated cells at near-neutral pH suggest that Pb(II) forms inner-sphere adsorption complexes with carboxyl functional groups in the biofilms.

  4. Exploring the Anti-Burkholderia cepacia Complex Activity of Essential Oils: A Preliminary Analysis

    PubMed Central

    Lo Nostro, Antonella; Calonico, Carmela; Perrin, Elena; Chiellini, Carolina; Fondi, Marco; Mengoni, Alessio; Vannacci, Alfredo; Bilia, Anna Rita; Gori, Luigi

    2014-01-01

    In this work we have checked the ability of the essential oils extracted from six different medicinal plants (Eugenia caryophyllata, Origanum vulgare, Rosmarinus officinalis, Lavandula officinalis, Melaleuca alternifolia, and Thymus vulgaris) to inhibit the growth of 18 bacterial type strains belonging to the 18 known species of the Burkholderia cepacia complex (Bcc). These bacteria are opportunistic human pathogens that can cause severe infection in immunocompromised patients, especially those affected by cystic fibrosis (CF), and are often resistant to multiple antibiotics. The analysis of the aromatograms produced by the six oils revealed that, in spite of their different chemical composition, all of them were able to contrast the growth of Bcc members. However, three of them (i.e., Eugenia caryophyllata, Origanum vulgare, and Thymus vulgaris) were particularly active versus the Bcc strains, including those exhibiting a high degree or resistance to ciprofloxacin, one of the most used antibiotics to treat Bcc infections. These three oils are also active toward both environmental and clinical strains (isolated from CF patients), suggesting that they might be used in the future to fight B. cepacia complex infections. PMID:24701243

  5. Bacterial-Feeding Nematode Growth and Preference for Biocontrol Isolates of the Bacterium Burkholderia cepacia

    PubMed Central

    Carta, Lynn K.

    2000-01-01

    The potential of different bacterial-feeding Rhabditida to consume isolates of Burkholderia cepacia with known agricultural biocontrol ability was examined. Caenorhabditis elegans, Diploscapter sp., Oscheius myriophila, Pelodera strongyloides, Pristionchus pacificus, Zeldia punctata, Panagrellus redivivus, and Distolabrellus veechi were tested for growth on and preference for Escherichia coli OP50 or B. cepacia maize soil isolates J82, BcF, M36, Bc2, and PHQM100. Considerable growth and preference variations occurred between nematode taxa on individual bacterial isolates, and between different bacterial isolates on a given nematode. Populations of Diploscapter sp. and P. redivivus were most strongly suppressed. Only Z. punctata and P. pacificus grew well on all isolates, though Z. punctata preferentially accumulated on all isolates and P. pacificus had no preference. Oscheius myriophila preferentially accumulated on growth-supportive Bc2 and M36, and avoided less supportive J82 and PHQM100. Isolates with plant-parasitic nematicidal properties and poor fungicidal properties supported the best growth of three members of the Rhabditidae, C. elegans, O. myriophila, and P. strongyloides. Distolabrellus veechi avoided commercial nematicide M36 more strongly than fungicide J82. PMID:19270990

  6. Comparison of different PCR approaches for characterization of Burkholderia (Pseudomonas) cepacia isolates.

    PubMed Central

    Liu, P Y; Shi, Z Y; Lau, Y J; Hu, B S; Shyr, J M; Tsai, W S; Lin, Y H; Tseng, C Y

    1995-01-01

    In this study, we evaluated three PCR methods for epidemiological typing of Burkholderia (Pseudomonas) cepacia--PCR-ribotyping, arbitrarily primed PCR (AP-PCR) and enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR)--and compared them with pulsed-field gel electrophoresis. The analysis was performed with 31 isolates of B. cepacia, comprising 23 epidemiologically unrelated isolates and 8 isolates collected from the same patient during two episodes of bacteremia. Pulsed-field gel electrophoresis, ERIC-PCR, and AP-PCR identified 23 distinct types among the 23 unrelated isolates, while PCR-ribotyping only identified 12 strain types, even after AluI digestion of the amplification products. Among the eight isolates collected from the same patient, all typing techniques revealed two clones of strains. The day-to-day reproducibilities of PCR-ribotyping and ERIC-PCR were good, while greater day-to-day variations were noted in the fingerprints obtained by AP-PCR. We conclude that all three PCR techniques are useful for rapid epidemiological typing of B. cepacia, but ERIC-PCR seems to be more reproducible and discriminative. PMID:8586722

  7. Experimental Adaptation of Burkholderia cenocepacia to Onion Medium Reduces Host Range ? † ‡

    PubMed Central

    Ellis, Crystal N.; Cooper, Vaughn S.

    2010-01-01

    It is unclear whether adaptation to a new host typically broadens or compromises host range, yet the answer bears on the fate of emergent pathogens and symbionts. We investigated this dynamic using a soil isolate of Burkholderia cenocepacia, a species that normally inhabits the rhizosphere, is related to the onion pathogen B. cepacia, and can infect the lungs of cystic fibrosis patients. We hypothesized that adaptation of B. cenocepacia to a novel host would compromise fitness and virulence in alternative hosts. We modeled adaptation to a specific host by experimentally evolving 12 populations of B. cenocepacia in liquid medium composed of macerated onion tissue for 1,000 generations. The mean fitness of all populations increased by 78% relative to the ancestor, but significant variation among lines was observed. Populations also varied in several phenotypes related to host association, including motility, biofilm formation, and quorum-sensing function. Together, these results suggest that each population adapted by fixing different sets of adaptive mutations. However, this adaptation was consistently accompanied by a loss of pathogenicity to the nematode Caenorhabditis elegans; by 500 generations most populations became unable to kill nematodes. In conclusion, we observed a narrowing of host range as a consequence of prolonged adaptation to an environment simulating a specific host, and we suggest that emergent pathogens may face similar consequences if they become host-restricted. PMID:20154121

  8. Degradation of toluene by ortho cleavage enzymes in Burkholderia fungorum FLU100

    PubMed Central

    Dobslaw, Daniel; Engesser, Karl-Heinrich

    2015-01-01

    Burkholderia fungorum?FLU100 simultaneously oxidized any mixture of toluene, benzene and mono-halogen benzenes to (3-substituted) catechols with a selectivity of nearly 100%. Further metabolism occurred via enzymes of ortho cleavage pathways with complete mineralization. During the transformation of 3-methylcatechol, 4-carboxymethyl-2-methylbut-2-en-4-olide (2-methyl-2-enelactone, 2-ML) accumulated transiently, being further mineralized only after a lag phase of 2?h in case of cells pre-grown on benzene or mono-halogen benzenes. No lag phase, however, occurred after growth on toluene. Cultures inhibited by chloramphenicol after growth on benzene or mono-halogen benzenes were unable to metabolize 2-ML supplied externally, even after prolonged incubation. A control culture grown with toluene did not show any lag phase and used 2-ML as a substrate. This means that 2-ML is an intermediate of toluene degradation and converted by specific enzymes. The conversion of 4-methylcatechol as a very minor by-product of toluene degradation in strain FLU100 resulted in the accumulation of 4-carboxymethyl-4-methylbut-2-en-4-olide (4-methyl-2-enelactone, 4-ML) as a dead-end product, excluding its nature as a possible intermediate. Thus, 3-methylcyclohexa-3,5-diene-1,2-diol, 3-methylcatechol, 2-methyl muconate and 2-ML were identified as central intermediates of productive ortho cleavage pathways for toluene metabolism in B.?fungorum?FLU100. PMID:25130674

  9. Mesaconase Activity of Class I Fumarase Contributes to Mesaconate Utilization by Burkholderia xenovorans.

    PubMed

    Kronen, Miriam; Sasikaran, Jahminy; Berg, Ivan A

    2015-08-15

    Pseudomonas aeruginosa, Yersinia pestis, and many other bacteria are able to utilize the C5-dicarboxylic acid itaconate (methylenesuccinate). Itaconate degradation starts with its activation to itaconyl coenzyme A (itaconyl-CoA), which is further hydrated to (S)-citramalyl-CoA, and citramalyl-CoA is finally cleaved into acetyl-CoA and pyruvate. The xenobiotic-degrading betaproteobacterium Burkholderia xenovorans possesses a P. aeruginosa-like itaconate degradation gene cluster and is able to grow on itaconate and its isomer mesaconate (methylfumarate). Although itaconate degradation proceeds in B. xenovorans in the same way as in P. aeruginosa, the pathway of mesaconate utilization is not known. Here, we show that mesaconate is metabolized through its hydration to (S)-citramalate. The latter compound is then metabolized to acetyl-CoA and pyruvate with the participation of two enzymes of the itaconate degradation pathway, a promiscuous itaconate-CoA transferase able to activate (S)-citramalate in addition to itaconate and (S)-citramalyl-CoA lyase. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by a class I fumarase. As this enzyme (Bxe_A3136) has similar efficiencies (kcat/Km) for both fumarate and mesaconate hydration, we conclude that B. xenovorans class I fumarase is in fact a promiscuous fumarase/mesaconase. This promiscuity is physiologically relevant, as it allows the growth of this bacterium on mesaconate as a sole carbon and energy source. PMID:26070669

  10. Exploring the Anti-Burkholderia cepacia Complex Activity of Essential Oils: A Preliminary Analysis.

    PubMed

    Maida, Isabel; Lo Nostro, Antonella; Pesavento, Giovanna; Barnabei, Martina; Calonico, Carmela; Perrin, Elena; Chiellini, Carolina; Fondi, Marco; Mengoni, Alessio; Maggini, Valentina; Vannacci, Alfredo; Gallo, Eugenia; Bilia, Anna Rita; Flamini, Guido; Gori, Luigi; Firenzuoli, Fabio; Fani, Renato

    2014-01-01

    In this work we have checked the ability of the essential oils extracted from six different medicinal plants (Eugenia caryophyllata, Origanum vulgare, Rosmarinus officinalis, Lavandula officinalis, Melaleuca alternifolia, and Thymus vulgaris) to inhibit the growth of 18 bacterial type strains belonging to the 18 known species of the Burkholderia cepacia complex (Bcc). These bacteria are opportunistic human pathogens that can cause severe infection in immunocompromised patients, especially those affected by cystic fibrosis (CF), and are often resistant to multiple antibiotics. The analysis of the aromatograms produced by the six oils revealed that, in spite of their different chemical composition, all of them were able to contrast the growth of Bcc members. However, three of them (i.e., Eugenia caryophyllata, Origanum vulgare, and Thymus vulgaris) were particularly active versus the Bcc strains, including those exhibiting a high degree or resistance to ciprofloxacin, one of the most used antibiotics to treat Bcc infections. These three oils are also active toward both environmental and clinical strains (isolated from CF patients), suggesting that they might be used in the future to fight B. cepacia complex infections. PMID:24701243

  11. Production of (R)-3-hydroxybutyric acid by Burkholderia cepacia from wood extract hydrolysates.

    PubMed

    Wang, Yuanzhen; Liu, Shijie

    2014-01-01

    (R)-hydroxyalkanoic acids (R-HAs) are valuable building blocks for the synthesis of fine chemicals and biopolymers because of the chiral center and the two active functional groups. Hydroxyalkanoic acids fermentation can revolutionize the polyhydroxyalkanoic acids (PHA) production by increasing efficiency and enhancing product utility. Modifying the fermentation conditions that promotes the in vivo depolymerization and secretion to fermentation broth in wild type bacteria is a novel and promising approach to produce R-HAs. Wood extract hydrolysate (WEH) was found to be a suitable substrate for R-3-hydroxybutyric acid (R-3-HB) production by Burkholderia cepacia. Using Paulownia elongate WEH as a feedstock, the R-3-HB concentration in fermentation broth reached as high as 14.2 g/L after 3 days of batch fermentation and the highest concentration of 16.8 g/L was obtained at day 9. Further investigation indicated that the composition of culture medium contributed to the enhanced R-3-HB production. PMID:24949263

  12. Investigation into the susceptibility of Burkholderia cepacia complex isolates to photodynamic antimicrobial chemotherapy (PACT)

    NASA Astrophysics Data System (ADS)

    Cassidy, C. M.; Watters, A. L.; Donnelly, R. F.; Tunney, M. M.

    2009-06-01

    The main cause of morbidity and mortality in cystic fibrosis (CF) sufferers is progressive pulmonary damage caused by recurrent and often unremitting respiratory tract infection. Causative organisms include Pseudomonas aeruginosa and Haemophilus influenzae, but in recent years the Burkholderia cepacia complex has come to the fore. This group of highly drug-resistant Gram-negative bacteria are associated with a rapid decline in lung function and the often fatal cepacia syndrome, with treatment limited to patient segregation and marginally effective antibacterial regimens. Thus, development of an effective treatment is of the upmost importance. PACT, a non-target specific therapy, has proven successful in killing both Gram-positive and Gram-negative bacteria. In this study, planktonic cultures of six strains of the B. cepacia complex were irradiated (635 nm, 200 J cm-2,10 minutes irradiation) following 30 seconds incubation with methylene blue (MB) or meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP). Rates of kill of > 99 % were achieved with MB- and TMP-PACT. A MB concentration of 50 ?g ml-1 and TMP concentration of 500 ?g ml-1 were associated with highest percentage kills for each photosensitizer. PACT is an attractive option for treatment of B.cepacia complex infection. Further study, involving biofilm culture susceptibility, delivery of light to the target and in vivo testing will be necessary before it PACT becomes a viable treatment option for CF patients who are colonised or infected with B. cepacia complex.

  13. Bioactive and Structural Metabolites of Pseudomonas and Burkholderia Species Causal Agents of Cultivated Mushrooms Diseases1

    PubMed Central

    Andolfi, Anna; Cimmino, Alessio; Cantore, Pietro Lo; Iacobellis, Nicola Sante; Evidente, Antonio

    2008-01-01

    Pseudomonas tolaasii, P. reactans and Burkholderia gladioli pv. agaricicola, are responsible of diseases on some species of cultivated mushrooms. The main bioactive metabolites produced by both Pseudomonas strains are the lipodepsipeptides (LDPs) tolaasin I and II and the so called White Line Inducing Principle (WLIP), respectively, LDPs which have been extensively studied for their role in the disease process and for their biological properties. In particular, their antimicrobial activity and the alteration of biological and model membranes (red blood cell and liposomes) was established. In the case of tolaasin I interaction with membranes was also related to the tridimensional structure in solution as determined by NMR combined with molecular dynamic calculation techniques. Recently, five news minor tolaasins, tolaasins A–E, were isolated from the culture filtrates of P. tolaasii and their chemical structure was determined by extensive use of NMR and MS spectroscopy. Furthermore, their antimicrobial activity was evaluated on target micro-organisms (fungi—including the cultivated mushrooms Agaricus bisporus, Lentinus edodes, and Pleurotus spp.—chromista, yeast and bacteria). The Gram positive bacteria resulted the most sensible and a significant structure-activity relationships was apparent. The isolation and structure determination of bioactive metabolites produced by B. gladioli pv. agaricicola are still in progress but preliminary results indicate their peptide nature. Furthermore, the exopolysaccharide (EPS) from the culture filtrates of B. gladioli pv. agaricicola, as well as the O-chain and lipid A, from the lipopolysaccharide (LPS) of the three bacteria, were isolated and the structures determined. PMID:19787100

  14. Enhanced Polychlorinated Biphenyl Removal in a Switchgrass Rhizosphere by Bioaugmentation with Burkholderia xenovorans LB400

    PubMed Central

    Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L.; Mattes, Timothy E.

    2014-01-01

    Phytoremediation makes use of plants and associated microorganisms to clean up soils and sediments contaminated with inorganic and organic pollutants. In this study, switchgrass (Panicum virgatum) was used to test for its efficiency in improving the removal of three specific polychlorinated biphenyl (PCB) congeners (PCB 52, 77 and 153) in soil microcosms. The congeners were chosen for their ubiquity, toxicity, and recalcitrance. After 24 weeks of incubation, loss of 39.9 ± 0.41% of total PCB molar mass was observed in switchgrass treated soil, significantly higher than in unplanted soil (29.5 ± 3.4%) (p<0.05). The improved PCB removal in switchgrass treated soils could be explained by phytoextraction processes and enhanced microbial activity in the rhizosphere. Bioaugmentation with Burkholderia xenovorans LB400 was performed to further enhance aerobic PCB degradation. The presence of LB400 was associated with improved degradation of PCB 52, but not PCB 77 or PCB 153. Increased abundances of bphA (a functional gene that codes for a subunit of PCB-degrading biphenyl dioxygenase in bacteria) and its transcript were observed after bioaugmentation. The highest total PCB removal was observed in switchgrass treated soil with LB400 bioaugmentation (47.3 ± 1.22 %), and the presence of switchgrass facilitated LB400 survival in the soil. Overall, our results suggest the combined use of phytoremediation and bioaugmentation could be an efficient and sustainable strategy to eliminate recalcitrant PCB congeners and remediate PCB-contaminated soil. PMID:25246731

  15. A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia

    PubMed Central

    Selin, Carrie; Stietz, Maria S.; Blanchard, Jan E.; Hall, Dennis G.; Brown, Eric D.; Cardona, Silvia T.

    2015-01-01

    Infections with the bacteria Burkholderia cepacia complex (Bcc) are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery. PMID:26053039

  16. Localization of Burkholderia cepacia Complex Bacteria in Cystic Fibrosis Lungs and Interactions with Pseudomonas aeruginosa in Hypoxic Mucus

    PubMed Central

    Abdullah, Lubna H.; Perlmutt, Olivia S.; Albert, Daniel; Davis, C. William; Arnold, Roland R.; Yankaskas, James R.; Gilligan, Peter; Neubauer, Heiner; Randell, Scott H.; Boucher, Richard C.

    2014-01-01

    The localization of Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) lungs, alone or during coinfection with Pseudomonas aeruginosa, is poorly understood. We performed immunohistochemistry for Bcc and P. aeruginosa bacteria on 21 coinfected or singly infected CF lungs obtained at transplantation or autopsy. Parallel in vitro experiments examined the growth of two Bcc species, Burkholderia cenocepacia and Burkholderia multivorans, in environments similar to those occupied by P. aeruginosa in the CF lung. Bcc bacteria were predominantly identified in the CF lung as single cells or small clusters within phagocytes and mucus but not as “biofilm-like structures.” In contrast, P. aeruginosa was identified in biofilm-like masses, but densities appeared to be reduced during coinfection with Bcc bacteria. Based on chemical analyses of CF and non-CF respiratory secretions, a test medium was defined to study Bcc growth and interactions with P. aeruginosa in an environment mimicking the CF lung. When test medium was supplemented with alternative electron acceptors under anaerobic conditions, B. cenocepacia and B. multivorans used fermentation rather than anaerobic respiration to gain energy, consistent with the identification of fermentation products by high-performance liquid chromatography (HPLC). Both Bcc species also expressed mucinases that produced carbon sources from mucins for growth. In the presence of P. aeruginosa in vitro, both Bcc species grew anaerobically but not aerobically. We propose that Bcc bacteria (i) invade a P. aeruginosa-infected CF lung when the airway lumen is anaerobic, (ii) inhibit P. aeruginosa biofilm-like growth, and (iii) expand the host bacterial niche from mucus to also include macrophages. PMID:25156735

  17. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana

    PubMed Central

    Su, Fan; Jacquard, Cédric; Villaume, Sandra; Michel, Jean; Rabenoelina, Fanja; Clément, Christophe; Barka, Essaid A.; Dhondt-Cordelier, Sandrine; Vaillant-Gaveau, Nathalie

    2015-01-01

    Several plant growth-promoting rhizobacteria (PGPR) are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN), on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers. Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyll. Impact of inoculation modes (either on seeds or by soil irrigation) and their effects overnight at 0, -1, or -3°C, were investigated by following photosystem II (PSII) activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A. thaliana responses but prevented the plasmalemma disruption under freezing stress. PMID:26483823

  18. RsaM - a Transcriptional Regulator of Burkholderia spp. with Novel Fold

    PubMed Central

    Michalska, Karolina; Chhor, Gekleng; Clancy, Shonda; Jedrzejczak, Robert; Babnigg, Gyorgy; Winans, Stephen C.; Joachimiak, Andrzej

    2014-01-01

    Burkholderia cepacia complex (Bcc) is a set of closely related bacterial species that are notorious pathogens of cystic fibrosis patients, responsible for life-threatening lung infections. Expression of several virulence factors of Bcc is controlled by a mechanism known as quorum sensing (QS). QS is a means of bacterial communication used to coordinate gene expression in a cell-density–dependent manner. The system involves the production of diffusible signaling molecules (N-acyl-L-homoserine lactones, AHLs), that bind to cognate transcriptional regulators and influence their ability to regulate gene expression. One such system that is highly conserved in Bcc consists of CepI and CepR. CepI is AHL synthase, while CepR is an AHL-dependent transcription factor. In most members of the Bcc group, the cepI and cepR genes are divergently transcribed and separated by additional genes. One of them, bcam1869, encodes the BcRsaM protein, which was recently postulated to modulate the abundance or activity of CepI or CepR. Here we show the crystal structure of BcRsaM from B. cenocepacia J2315. It is a single-domain protein with unique topology and presents a novel fold. The protein is a dimer in the crystal and in solution. This regulator has no known DNA binding motifs and direct binding of BcRsaM to the cepI promoter could not be detected in in vitro assays. Therefore, we propose that the modulatory action of RsaM might result from interactions with other components of the QS machinery rather than from direct association with the DNA promoter. PMID:24916958

  19. Phosphonium alkyl PEG sulfate ionic liquids as coating materials for activation of Burkholderia cepacia lipase.

    PubMed

    Matsubara, Yui; Kadotani, Shiho; Nishihara, Takashi; Hikino, Yoshichika; Fukaya, Yukinobu; Nokami, Toshiki; Itoh, Toshiyuki

    2015-12-01

    Lipases are among the most widely used enzymes applicable for various substrates; however, the slow reactions or poor enantioselective reactions are sometimes obtained. To develop ionic liquid type activating agents for lipase, four types of phosphonium cetyl(PEG)10 sulfate ionic liquids have been synthesized and used as coating materials of Burkholderia cepacia lipase (Lipase PS) through the lyophilization process. Tributyl ([2-methoxy]ethoxymethyl)phosphonium cetyl(PEG)10 sulfate ([P444MEM ][C16 (PEG)10 SO4 ]) (PL1) worked best among them, and PL1-coated lipase PS displayed high reactivity in transesterification of broad types of secondary alcohols using vinyl acetate as an acylating reagent with perfect enantioselectivity (E > 200). The substrate preference of PL1-PS differs from that of commercial lipase PS or [bdmim] [C16 (PEG)10 SO4 ]-coated lipase (IL1-PS); PL1-PS displayed excellent enantioselectivity in the reaction of 2-chloro-1-phenylethanol with E > 200, though insufficient E values were recorded for lipase PS (E = 12) and IL1-PS (E = 123) for this alcohol. PL1-PS also showed perfect enantioselectivity (E > 200) for the reaction of 1-(pyridin-2-yl)ethanol, while IL1-PS showed E = 130 for this compound. We further succeeded in demonstrating the recyclable use of PL1-PS five times in tributyl(3-methoxypropyl)phosphonium bis(trifluoromethylsulfonyl)amide ([P444PM ][Tf2 N]) as a solvent. Since PL1-PS is easily applicable to 10-20 gram-scaled reactions, it is expected that the IL-coated enzyme might be useful for practical preparation of a wide variety of chiral secondary alcohols. PMID:26494565

  20. Spliceostatin hemiketal biosynthesis in Burkholderia spp. is catalyzed by an iron/?-ketoglutarate–dependent dioxygenase

    PubMed Central

    Eustáquio, Alessandra S.; Janso, Jeffrey E.; Ratnayake, Anokha S.; O’Donnell, Christopher J.; Koehn, Frank E.

    2014-01-01

    Spliceostatins are potent spliceosome inhibitors biosynthesized by a hybrid nonribosomal peptide synthetase?polyketide synthase (NRPS?PKS) system of the trans-acyl transferase (AT) type. Burkholderia sp. FERM BP-3421 produces hemiketal spliceostatins, such as FR901464, as well as analogs containing a terminal carboxylic acid. We provide genetic and biochemical evidence for hemiketal biosynthesis by oxidative decarboxylation rather than the previously hypothesized Baeyer–Villiger oxidative release postulated to be catalyzed by a flavin-dependent monooxygenase (FMO) activity internal to the last module of the PKS. Inactivation of Fe(II)/?-ketoglutarate–dependent dioxygenase gene fr9P led to loss of hemiketal congeners, whereas the mutant was still able to produce all major carboxylic acid-type compounds. FMO mutants, on the other hand, produced both hemiketal and carboxylic acid analogs containing an exocyclic methylene instead of an epoxide, indicating that the FMO is involved in epoxidation rather than Baeyer–Villiger oxidation. Moreover, recombinant Fr9P enzyme was shown to catalyze hydroxylation to form ?-hydroxy acids, which upon decarboxylation led to hemiketal FR901464. Finally, a third oxygenase activity encoded in the biosynthetic gene cluster, the cytochrome P450 monooxygenase Fr9R, was assigned as a 4-hydroxylase based on gene inactivation results. Identification and deletion of the gene involved in hemiketal formation allowed us to generate a strain—the dioxygenase fr9P? mutant—that accumulates only the carboxylic acid-type spliceostatins, which are as potent as the hemiketal analogs, when derivatized to increase cell permeability, but are chemically more stable. PMID:25097259

  1. Family Shuffling of Soil DNA To Change the Regiospecificity of Burkholderia xenovorans LB400 Biphenyl Dioxygenase?

    PubMed Central

    Vézina, Julie; Barriault, Diane; Sylvestre, Michel

    2007-01-01

    Previous work has shown that the C-terminal portion of BphA, especially two amino acid segments designated region III and region IV, influence the regiospecificity of the biphenyl dioxygenase (BPDO) toward 2,2?-dichlorobiphenyl (2,2?-CB). In this work, we evolved BPDO by shuffling bphA genes amplified from polychlorinated biphenyl-contaminated soil DNA. Sets of approximately 1-kb DNA fragments were amplified with degenerate primers designed to amplify the C-terminal portion of bphA. These fragments were shuffled, and the resulting library was used to replace the corresponding fragment of Burkholderia xenovorans LB400 bphA. Variants were screened for their ability to oxygenate 2,2?-CB onto carbons 5 and 6, which are positions that LB400 BPDO is unable to attack. Variants S100, S149, and S151 were obtained and exhibited this feature. Variant S100 BPDO produced exclusively cis-5,6-dihydro-5,6-dihydroxy-2,2?-dichlorobiphenyl from 2,2?-CB. Moreover, unlike LB400 BPDO, S100 BphA catalyzed the oxygenation of 2,2?,3,3?-tetrachlorobiphenyl onto carbons 5 and 6 exclusively and it was unable to oxygenate 2,2?,5,5?-tetrachlorobiphenyl. Based on oxygen consumption measurements, variant S100 oxygenated 2,2?-CB at a rate of 16 ± 1 nmol min?1 per nmol enzyme, which was similar to the value observed for LB400 BPDO. cis-5,6-Dihydro-5,6-dihydroxy-2,2?-dichlorobiphenyl was further oxidized by 2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) and 2,3-dihydroxybiphenyl dioxygenase (BphC). Variant S100 was, in addition, able to oxygenate benzene, toluene, and ethyl benzene. Sequence analysis identified amino acid residues M237S238 and S283 outside regions III and IV that influence the activity toward doubly ortho-substituted chlorobiphenyls. PMID:17142386

  2. Probing the size limit for nanomedicine penetration into Burkholderia multivorans and Pseudomonas aeruginosa biofilms.

    PubMed

    Forier, Katrien; Messiaen, Anne-Sophie; Raemdonck, Koen; Nelis, Hans; De Smedt, Stefaan; Demeester, Jo; Coenye, Tom; Braeckmans, Kevin

    2014-12-10

    Encapsulation of antibiotics into nanoparticles is a potential strategy to eradicate biofilms. To allow further optimization of nanomedicines for biofilm eradication, the influence of the nanoparticle size on the penetration into dense biofilm clusters needs to be investigated. In the present study, the penetration of nanoparticles with diameters ranging from 40 to 550 nm into two biofilms, Burkholderia multivorans LMG 18825 and Pseudomonas aeruginosa LMG 27622, was evaluated using confocal microscopy. Through image analysis, the percentage of particles able to penetrate into dense biofilm clusters was calculated. The size cut off for optimal penetration into biofilm clusters was located around 100-130 nm for both biofilms. The mesh size of the biofilm matrix and the size of the channels in between the bacteria of the clusters are two factors which likely play a role in the exclusion of the larger particles. For B. multivorans, a sharp drop in the penetration into the clusters is seen for particles larger than 130 nm while for P. aeruginosa, a more gradual decrease in penetration could be observed. The overall penetration of the nanoparticles was slightly lower for P. aeruginosa than for B. multivorans. Based on these results, it could be concluded that nanocarriers of about 100 nm and smaller are good candidates to improve the treatment of chronic pulmonary biofilms in CF patients. Furthermore, the confocal microscopy method demonstrated here is a useful tool to assess the penetration of nanomedicines in biofilm clusters. Such information is important to optimize nanomedicine formulations for the treatment of biofilm infections. PMID:25125326

  3. Genetic diversity and multihost pathogenicity of clinical and environmental strains of Burkholderia cenocepacia.

    PubMed

    Springman, A Cody; Jacobs, Janette L; Somvanshi, Vishal S; Sundin, George W; Mulks, Martha H; Whittam, Thomas S; Viswanathan, Poorna; Gray, R Lucas; Lipuma, John J; Ciche, Todd A

    2009-08-01

    A collection of 54 clinical and agricultural isolates of Burkholderia cenocepacia was analyzed for genetic relatedness by using multilocus sequence typing (MLST), pathogenicity by using onion and nematode infection models, antifungal activity, and the distribution of three marker genes associated with virulence. The majority of clinical isolates were obtained from cystic fibrosis (CF) patients in Michigan, and the agricultural isolates were predominantly from Michigan onion fields. MLST analysis resolved 23 distinct sequence types (STs), 11 of which were novel. Twenty-six of 27 clinical isolates from Michigan were genotyped as ST-40, previously identified as the Midwest B. cenocepacia lineage. In contrast, the 12 agricultural isolates represented eight STs, including ST-122, that were identical to clinical isolates of the PHDC lineage. In general, pathogenicity to onions and the presence of the pehA endopolygalacturonase gene were detected only in one cluster of related strains consisting of agricultural isolates and the PHDC lineage. Surprisingly, these strains were highly pathogenic in the nematode Caenorhabditis elegans infection model, killing nematodes faster than the CF pathogen Pseudomonas aeruginosa PA14 on slow-kill medium. The other strains displayed a wide range of pathogenicity to C. elegans, notably the Midwest clonal lineage which displayed high, moderate, and low virulence. Most strains displayed moderate antifungal activity, although strains with high and low activities were also detected. We conclude that pathogenicity to multiple hosts may be a key factor contributing to the potential of B. cenocepacia to opportunistically infect humans both by increasing the prevalence of the organism in the environment, thereby increasing exposure to vulnerable hosts, and by the selection of virulence factors that function in multiple hosts. PMID:19542323

  4. Key Role for Efflux in the Preservative Susceptibility and Adaptive Resistance of Burkholderia cepacia Complex Bacteria

    PubMed Central

    Rushton, Laura; Sass, Andrea; Baldwin, Adam; Dowson, Christopher G.; Donoghue, Denise

    2013-01-01

    Bacteria from the Burkholderia cepacia complex (Bcc) are encountered as industrial contaminants, and little is known about the species involved or their mechanisms of preservative resistance. Multilocus sequence typing (MLST) revealed that multiple Bcc species may cause contamination, with B. lata (n = 17) and B. cenocepacia (n = 11) dominant within the collection examined. At the strain level, 11 of the 31 industrial sequence types identified had also been recovered from either natural environments or clinical infections. Minimal inhibitory (MIC) and minimum bactericidal (MBC) preservative concentrations varied across 83 selected Bcc strains, with industrial strains demonstrating increased tolerance for dimethylol dimethyl hydantoin (DMDMH). Benzisothiazolinone (BIT), DMDMH, methylisothiazolinone (MIT), a blend of 3:1 methylisothiazolinone-chloromethylisothiazolinone (M-CMIT), methyl paraben (MP), and phenoxyethanol (PH), were all effective anti-Bcc preservatives; benzethonium chloride (BC) and sodium benzoate (SB) were least effective. Since B. lata was the dominant industrial Bcc species, the type strain, 383T (LMG 22485T), was used to study preservative tolerance. Strain 383 developed stable preservative tolerance for M-CMIT, MIT, BIT, and BC, which resulted in preservative cross-resistance and altered antibiotic susceptibility, motility, and biofilm formation. Transcriptomic analysis of the B. lata 383 M-CMIT-adapted strain demonstrated that efflux played a key role in its M-CMIT tolerance and elevated fluoroquinolone resistance. The role of efflux was corroborated using the inhibitor l-Phe-Arg-?-napthylamide, which reduced the MICs of M-CMIT and ciprofloxacin. In summary, intrinsic preservative tolerance and stable adaptive changes, such as enhanced efflux, play a role in the ability of Bcc bacteria to cause industrial contamination. PMID:23587949

  5. Pathway and evolutionary implications of diphenylamine biodegradation by Burkholderia sp. strain JS667.

    PubMed

    Shin, Kwanghee A; Spain, Jim C

    2009-05-01

    Diphenylamine (DPA) is a common contaminant at munitions-contaminated sites as well as at aniline manufacturing sites. Little is known about the biodegradation of the compound, and bacteria able to use DPA as the growth substrate have not been reported. Burkholderia sp. strain JS667 and Ralstonia sp. strain JS668 were isolated by selective enrichment from DPA-contaminated sediment. The isolates grew aerobically with DPA as the sole carbon, nitrogen, and energy source. During induction of DPA degradation, stoichiometric amounts of aniline accumulated and then disappeared, which suggested that aniline is on the DPA degradation pathway. Genes encoding the enzymes that catalyze the initial steps in DPA degradation were cloned from the genomic DNA of strain JS667. The Escherichia coli clone catalyzed stoichiometric transformation of DPA to aniline and catechol. Transposon mutagenesis, the sequence similarity of putative open reading frames to those of well-characterized dioxygenases, and (18)O(2) experiments support the conclusion that the initial reaction in DPA degradation is catalyzed by a multicomponent ring-hydroxylating dioxygenase. DPA is converted to aniline and catechol via dioxygenation at the 1,2 position of the aromatic ring and spontaneous rearomatization. Aniline and catechol are further biodegraded by the well-established aniline degradation pathway. Genes that encode the complete aniline degradation pathway were found 12 kb downstream of the genes that encode the initial dioxygenase. Expression of the relevant dioxygenases was confirmed by reverse transcription-PCR analysis. Both the sequence similarity and the gene organization suggest that the DPA degradation pathway evolved recently by the recruitment of two gene clusters that encode the DPA dioxygenase and aniline degradation pathway. PMID:19251893

  6. Tom, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4

    SciTech Connect

    Shields, M.S.; Reagin, J.J.; Campbell, R.

    1995-04-01

    Burkholderia (Pseudomonas) cepacia PR1{sub 23} has been shown to constitutively express a toluene catabolic pathway distinguished by a unique toluene ortho-monooxygenase (Tom). This strain has also been shown to contain two extrachromosomal elements of <70 and> 100 kb. A derivative strain cured of the largest plasmid, PR1{sub 23} Cure, was unable to grow on phenol or toluene as the sole source of carbon and energy, which requires expression of the Tom pathway. Transfer of the larger plasmid from strain G4 J(the parent strain inducible for Tom) enabled PR1{sub 23} Cure to grow on toluene or phenol via inducible Tom pathway expression. Conjugal transfer of TOM{sub 23c} from PR1{sub 23} to an antibiotic-resistant derivative of PR1{sub 23} Cure enabled the transconjugant to grow with either phenol or toluene as the sole source of carbon and energy through constitutive expression of the Tom pathway. A cloned 11.2-kb EcoRI restriction fragment of Tom{sub 23c} resulted in the expression of both Tom and catechol 2,3-dioxygenase in Escherichia coli, as evidenced by its ability to oxidize trichloroethylene, toluene, m-cresol, o-cresol, phenol, and catechol. The largest resident plasmid of PR1 was identified as the source of these genes by DNA hybridization. These results indicate that the genes which encode Tom and catechol 2,3-dioxygenase are located on TOM, an approximately 108-kb degradative plasmid of B. cepacia G4. 35 refs., 3 figs., 3 tabs.

  7. Survival and susceptibility of Burkholderia cepacia complex in chlorhexidine gluconate and benzalkonium chloride.

    PubMed

    Kim, Jeong Myeong; Ahn, Youngbeom; LiPuma, John J; Hussong, David; Cerniglia, Carl E

    2015-06-01

    The Burkholderia cepacia complex (BCC) includes opportunistic pathogenic bacteria that have occasionally been recovered from various pharmaceutical products, including antiseptics and disinfectants. Plausible reasons for the contamination include intrinsic sources, such as inadequate process controls, especially for water or equipment used during product manufacture, or extrinsic sources, such as improper handling and dilution or distribution in contaminated containers. Because the survival of BCC in antiseptics is a concern to the public health and pharmaceutical industry, we determined minimum inhibitory concentrations (MICs) of 36 BCC strains against the antiseptics, following exposure to chlorhexidine gluconate (CHX) and benzalkonium chloride (BZK) solutions (1-500 µg/ml for each chemical). Susceptibility to CHX and BZK varied across the BCC strains and was recorded as mean 90.3 and 111.1 µg/ml, respectively, at initial inoculation, which was significantly higher than the 46.4 and 61.1 µg/ml levels measured for BCC incubated in water for 40 days. After determining antiseptic MICs of individual BCC strains, BCC recovery was measured on Tryptic Soy Agar (TSA), Reasoner's Second Agar (R2A) and diluted preparations of these media under their sub-MICs. The survival of BCC was monitored for 14 days (336 h) in sub-MICs diluted to less than their antiseptic susceptible concentration value. Diluted TSA and R2A media exhibited greater efficiency of recovery for most BCC strains from the CHX and BZK solutions than full strength TSA or R2A. For BCC survival in antiseptic solutions, the cell number of BCC decreased rapidly within the first 20 min in both antiseptics, but after this, recovery remained constant in CHX and increased in BZK over the 14 day incubation period. The results indicate that BCC in water can remain viable with low susceptibility to antiseptics for 14 days, which suggests the necessity for improved detection methods and control measures to monitor BCC contamination in pharmaceutical products. PMID:25794566

  8. Fosmidomycin Decreases Membrane Hopanoids and Potentiates the Effects of Colistin on Burkholderia multivorans Clinical Isolates

    PubMed Central

    Malott, Rebecca J.; Wu, Chia-Hung; Lee, Tracy D.; Hird, Trevor J.; Dalleska, Nathan F.; Zlosnik, James E. A.; Newman, Dianne K.

    2014-01-01

    Burkholderia cepacia complex (Bcc) pulmonary infections in people living with cystic fibrosis (CF) are difficult to treat because of the extreme intrinsic resistance of most isolates to a broad range of antimicrobials. Fosmidomycin is an antibacterial and antiparasitic agent that disrupts the isoprenoid biosynthesis pathway, a precursor to hopanoid biosynthesis. Hopanoids are involved in membrane stability and contribute to polymyxin resistance in Bcc bacteria. Checkerboard MIC assays determined that although isolates of the Bcc species B. multivorans were highly resistant to treatment with fosmidomycin or colistin (polymyxin E), antimicrobial synergy was observed in certain isolates when the antimicrobials were used in combination. Treatment with fosmidomycin decreased the MIC of colistin for isolates as much as 64-fold to as low as 8 ?g/ml, a concentration achievable with colistin inhalation therapy. A liquid chromatography-tandem mass spectrometry technique was developed for the accurate quantitative determination of underivatized hopanoids in total lipid extracts, and bacteriohopanetetrol cyclitol ether (BHT-CE) was found to be the dominant hopanoid made by B. multivorans. The amount of BHT-CE made was significantly reduced upon fosmidomycin treatment of the bacteria. Uptake assays with 1-N-phenylnaphthylamine were used to determine that dual treatment with fosmidomycin and colistin increases membrane permeability, while binding assays with boron-dipyrromethene-conjugated polymyxin B illustrated that the addition of fosmidomycin had no impact on polymyxin binding. This work indicates that pharmacological suppression of membrane hopanoids with fosmidomycin treatment can increase the susceptibility of certain clinical B. multivorans isolates to colistin, an agent currently in use to treat pulmonary infections in CF patients. PMID:24957830

  9. Tracking the Response of Burkholderia cepacia G4 5223-PR1 in Aquifer Microcosms

    PubMed Central

    Winkler, J.; Timmis, K. N.; Snyder, R. A.

    1995-01-01

    The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of microbial population dynamics to define persistence and activity from both efficacy and risk assessment perspectives. Burkholderia cepacia G4 5223-PR1 is a Tn5 insertion mutant which constitutively expresses a toluene ortho-monooxygenase that degrades trichloroethylene (TCE). This ability of G4 5223-PR1 to degrade TCE without aromatic induction may be useful for bioremediation of TCE-containing aquifers and groundwater. Thus, a simulated aquifer sediment system and groundwater microcosms were used to monitor the survival of G4 5223-PR1. The fate of G4 5223-PR1 in sediment was monitored by indirect immunofluorescence microscopy, a colony blot assay, and growth on selective medium. G4 5223-PR1 was detected immunologically by using a highly specific monoclonal antibody which reacted against the O-specific polysaccharide chain of the lipopolysaccharides of this organism. G4 5223-PR1 survived well in sterilized groundwater, although in nonsterile groundwater microcosms rapid decreases in the G4 5223-PR1 cell population were observed. Ten days after inoculation no G4 5223-PR1 cells could be detected by selective plating or immunofluorescence. G4 5223-PR1 survival was greater in a nonsterile aquifer sediment microcosm, although after 22 days of elution the number of G4 5223-PR1 cells was low. Our results demonstrate the utility of monoclonal antibody tracking methods and the importance of biotic interactions in determining the persistence of introduced microorganisms. PMID:16534928

  10. Garlic Revisited: Antimicrobial Activity of Allicin-Containing Garlic Extracts against Burkholderia cepacia Complex

    PubMed Central

    Doherty, Lynsey; Clarke, David J.; Place, Marc; Govan, John R. W.; Campopiano, Dominic J.

    2014-01-01

    The antimicrobial activities of garlic and other plant alliums are primarily based on allicin, a thiosulphinate present in crushed garlic bulbs. We set out to determine if pure allicin and aqueous garlic extracts (AGE) exhibit antimicrobial properties against the Burkholderia cepacia complex (Bcc), the major bacterial phytopathogen for alliums and an intrinsically multiresistant and life-threatening human pathogen. We prepared an AGE from commercial garlic bulbs and used HPLC to quantify the amount of allicin therein using an aqueous allicin standard (AAS). Initially we determined the minimum inhibitory concentrations (MICs) of the AGE against 38 Bcc isolates; these MICs ranged from 0.5 to 3% (v/v). The antimicrobial activity of pure allicin (AAS) was confirmed by MIC and minimum bactericidal concentration (MBC) assays against a smaller panel of five Bcc isolates; these included three representative strains of the most clinically important species, B. cenocepacia. Time kill assays, in the presence of ten times MIC, showed that the bactericidal activity of AGE and AAS against B. cenocepacia C6433 correlated with the concentration of allicin. We also used protein mass spectrometry analysis to begin to investigate the possible molecular mechanisms of allicin with a recombinant form of a thiol-dependent peroxiredoxin (BCP, Prx) from B. cenocepacia. This revealed that AAS and AGE modifies an essential BCP catalytic cysteine residue and suggests a role for allicin as a general electrophilic reagent that targets protein thiols. To our knowledge, we report the first evidence that allicin and allicin-containing garlic extracts possess inhibitory and bactericidal activities against the Bcc. Present therapeutic options against these life-threatening pathogens are limited; thus, allicin-containing compounds merit investigation as adjuncts to existing antibiotics. PMID:25438250

  11. Garlic revisited: antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex.

    PubMed

    Wallock-Richards, Daynea; Doherty, Catherine J; Doherty, Lynsey; Clarke, David J; Place, Marc; Govan, John R W; Campopiano, Dominic J

    2014-01-01

    The antimicrobial activities of garlic and other plant alliums are primarily based on allicin, a thiosulphinate present in crushed garlic bulbs. We set out to determine if pure allicin and aqueous garlic extracts (AGE) exhibit antimicrobial properties against the Burkholderia cepacia complex (Bcc), the major bacterial phytopathogen for alliums and an intrinsically multiresistant and life-threatening human pathogen. We prepared an AGE from commercial garlic bulbs and used HPLC to quantify the amount of allicin therein using an aqueous allicin standard (AAS). Initially we determined the minimum inhibitory concentrations (MICs) of the AGE against 38 Bcc isolates; these MICs ranged from 0.5 to 3% (v/v). The antimicrobial activity of pure allicin (AAS) was confirmed by MIC and minimum bactericidal concentration (MBC) assays against a smaller panel of five Bcc isolates; these included three representative strains of the most clinically important species, B. cenocepacia. Time kill assays, in the presence of ten times MIC, showed that the bactericidal activity of AGE and AAS against B. cenocepacia C6433 correlated with the concentration of allicin. We also used protein mass spectrometry analysis to begin to investigate the possible molecular mechanisms of allicin with a recombinant form of a thiol-dependent peroxiredoxin (BCP, Prx) from B. cenocepacia. This revealed that AAS and AGE modifies an essential BCP catalytic cysteine residue and suggests a role for allicin as a general electrophilic reagent that targets protein thiols. To our knowledge, we report the first evidence that allicin and allicin-containing garlic extracts possess inhibitory and bactericidal activities against the Bcc. Present therapeutic options against these life-threatening pathogens are limited; thus, allicin-containing compounds merit investigation as adjuncts to existing antibiotics. PMID:25438250

  12. Genotyping of Burkholderia mallei from an Outbreak of Glanders in Bahrain Suggests Multiple Introduction Events

    PubMed Central

    Hornstra, Heidie; Projahn, Michaela; Terzioglu, Rahime; Wernery, Renate; Georgi, Enrico; Riehm, Julia M.; Wagner, David M.; Keim, Paul S.; Joseph, Marina; Johnson, Bobby; Kinne, Joerg; Jose, Shanti; Hepp, Crystal M.; Witte, Angela; Wernery, Ulrich

    2014-01-01

    Background Glanders, caused by the gram-negative bacterium Burkholderia mallei, is a highly infectious zoonotic disease of solipeds causing severe disease in animals and men. Although eradicated from many Western countries, it recently emerged in Asia, the Middle-East, Africa, and South America. Due to its rareness, little is known about outbreak dynamics of the disease and its epidemiology. Methodology/Principal Findings We investigated a recent outbreak of glanders in Bahrain by applying high resolution genotyping (multiple locus variable number of tandem repeats, MLVA) and comparative whole genome sequencing to B. mallei isolated from infected horses and a camel. These results were compared to samples obtained from an outbreak in the United Arab Emirates in 2004, and further placed into a broader phylogeographic context based on previously published B. mallei data. The samples from the outbreak in Bahrain separated into two distinct clusters, suggesting a complex epidemiological background and evidence for the involvement of multiple B. mallei strains. Additionally, the samples from Bahrain were more closely related to B. mallei isolated from horses in the United Arab Emirates in 2004 than other B. mallei which is suggestive of repeated importation to the region from similar geographic sources. Conclusion/Significance High-resolution genotyping and comparative whole genome analysis revealed the same phylogenetic patterns among our samples. The close relationship of the Dubai/UAE B. mallei populations to each other may be indicative of a similar geographic origin that has yet to be identified for the infecting strains. The recent emergence of glanders in combination with worldwide horse trading might pose a new risk for human infections. PMID:25255232

  13. Regulation of Universal Stress Protein Genes by Quorum Sensing and RpoS in Burkholderia glumae

    PubMed Central

    Kim, Hongsup; Goo, Eunhye; Kang, Yongsung; Kim, Jinwoo

    2012-01-01

    Burkholderia glumae possesses a quorum-sensing (QS) system mediated by N-octanoyl-homoserine lactone (C8-HSL) and its cognate receptor TofR. TofR/C8-HSL regulates the expression of a transcriptional regulator, qsmR. We identified one of the universal stress proteins (Usps), Usp2, from a genome-wide analysis of QS-dependent proteomes of B. glumae. In the whole genome of B. glumae BGR1, 11 usp genes (usp1 to usp11) were identified. Among the stress conditions tested, usp1 and usp2 mutants died 1 h after heat shock stress, whereas the other usp mutants and the wild-type strain survived for more than 3 h at 45°C. The expressions of all usp genes were positively regulated by QS, directly by QsmR. In addition, the expressions of usp1 and usp2 were dependent on RpoS in the stationary phase, as confirmed by the direct binding of RpoS-RNA holoenzyme to the promoter regions of the usp1 and usp2 genes. The expression of usp1 was upregulated upon a temperature shift from 37°C to either 28°C or 45°C, whereas the expression of usp2 was independent of temperature stress. This indicates that the regulation of usp1 and usp2 expression is different from what is known about Escherichia coli. Compared to the diverse roles of Usps in E. coli, Usps in B. glumae are dedicated to heat shock stress. PMID:22178971

  14. Survey of Bartonella spp. in U.S. Bed Bugs Detects Burkholderia multivorans but Not Bartonella

    PubMed Central

    Saenz, Virna L.; Maggi, Ricardo G.; Breitschwerdt, Edward B.; Kim, Jung; Vargo, Edward L.; Schal, Coby

    2013-01-01

    Bed bugs (Cimex lectularius L.) have resurged in the United States and globally. Bed bugs are hematophagous ectoparasites of humans and other animals, including domestic pets, chickens, and bats, and their blood feeding habits contribute to their potential as disease vectors. Several species of Bartonella are re-emergent bacterial pathogens that also affect humans, domestic pets, bats and a number of other wildlife species. Because reports of both bed bugs and Bartonella have been increasing in the U.S., and because their host ranges can overlap, we investigated whether the resurgences of these medically important pathogens and their potential vector might be linked, by screening for Bartonella spp. in bed bugs collected from geographic areas where these pathogens are prevalent and from bed bugs that have been in culture in the laboratory for several years. We screened a total of 331 bed bugs: 316 bed bugs from 36 unique collections in 29 geographic locations in 13 states, 10 bed bugs from two colonies maintained in the laboratory for 3 yr, and 5 bed bugs from a colony that has been in culture since before the recent resurgence of bed bugs. Bartonella spp. DNA was screened using a polymerase chain reaction assay targeting the 16S–23S rRNA intergenic transcribed spacer region. Bartonella DNA was not amplified from any bed bug, but five bed bugs from four different apartments of an elderly housing building in North Carolina contained DNA sequences that corresponded to Burkholderia multivorans, an important pathogen in nosocomial infections that was not previously linked to an arthropod vector. PMID:24040015

  15. Chemical synthesis of Burkholderia Lipid?A modified with glycosyl phosphodiester-linked 4-amino-4-deoxy-?-L-arabinose and its immunomodulatory potential.

    PubMed

    Hollaus, Ralph; Ittig, Simon; Hofinger, Andreas; Haegman, Mira; Beyaert, Rudi; Kosma, Paul; Zamyatina, Alla

    2015-03-01

    Modification of the Lipid?A phosphates by positively charged appendages is a part of the survival strategy of numerous opportunistic Gram-negative bacteria. The phosphate groups of the cystic fibrosis adapted Burkholderia Lipid?A are abundantly esterified by 4-amino-4-deoxy-?-L-arabinose (?-L-Ara4N), which imposes resistance to antibiotic treatment and contributes to bacterial virulence. To establish structural features accounting for the unique pro-inflammatory activity of Burkholderia LPS we have synthesised Lipid?A substituted by ?-L-Ara4N at the anomeric phosphate and its Ara4N-free counterpart. The double glycosyl phosphodiester was assembled by triazolyl-tris-(pyrrolidinyl)phosphonium-assisted coupling of the ?-L-Ara4N H-phosphonate to ?-lactol of ?(1?6) diglucosamine, pentaacylated with (R)-(3)-acyloxyacyl- and Alloc-protected (R)-(3)-hydroxyacyl residues. The intermediate 1,1'-glycosyl-H-phosphonate diester was oxidised in anhydrous conditions to provide, after total deprotection, ?-L-Ara4N-substituted Burkholderia Lipid?A. The ?-L-Ara4N modification significantly enhanced the pro-inflammatory innate immune signaling of otherwise non-endotoxic Burkholderia Lipid?A. PMID:25630448

  16. A Burkholderia thailandensis Acyl-Homoserine Lactone-Independent Orphan LuxR Homolog That Activates Production of the Cytotoxin Malleilactone

    E-print Network

    Truong, Thao T.; Seyedsayamdost, Mohammad; Greenberg, E. Peter; Chandler, Josephine R.

    2015-11-01

    Burkholderia thailandensis has three acyl-homoserine lactone (AHL) LuxR-LuxI quorum-sensing circuits and two orphan LuxR homologs. Orphans are LuxR-type transcription factors that do not have cognate LuxI-type AHL synthases. ...

  17. Saturation mutagenesis of a CepR binding site as a means to identify new quorum-regulated promoters in Burkholderia cenocepacia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Burkholderia cenocepacia, an opportunistic pathogen of humans, encodes the CepI and CepR proteins, which resemble the LuxI and LuxR quorum sensing proteins of Vibrio fischeri. CepI directs the synthesis of octanoylhomoserine lactone (OHL), while CepR is an OHL dependent transcription factor. In pr...

  18. Chemical Synthesis of Burkholderia Lipid A Modified with Glycosyl Phosphodiester-Linked 4-Amino-4-deoxy-?-l-arabinose and Its Immunomodulatory Potential

    PubMed Central

    Hollaus, Ralph; Ittig, Simon; Hofinger, Andreas; Haegman, Mira; Beyaert, Rudi; Kosma, Paul; Zamyatina, Alla

    2015-01-01

    Modification of the Lipid A phosphates by positively charged appendages is a part of the survival strategy of numerous opportunistic Gram-negative bacteria. The phosphate groups of the cystic fibrosis adapted Burkholderia Lipid A are abundantly esterified by 4-amino-4-deoxy-?-l-arabinose (?-l-Ara4N), which imposes resistance to antibiotic treatment and contributes to bacterial virulence. To establish structural features accounting for the unique pro-inflammatory activity of Burkholderia LPS we have synthesised Lipid A substituted by ?-l-Ara4N at the anomeric phosphate and its Ara4N-free counterpart. The double glycosyl phosphodiester was assembled by triazolyl-tris-(pyrrolidinyl)phosphonium-assisted coupling of the ?-l-Ara4N H-phosphonate to ?-lactol of ?(1?6) diglucosamine, pentaacylated with (R)-(3)-acyloxyacyl- and Alloc-protected (R)-(3)-hydroxyacyl residues. The intermediate 1,1?-glycosyl-H-phosphonate diester was oxidised in anhydrous conditions to provide, after total deprotection, ?-l-Ara4N-substituted Burkholderia Lipid A. The ?-l-Ara4N modification significantly enhanced the pro-inflammatory innate immune signaling of otherwise non-endotoxic Burkholderia Lipid A. PMID:25630448

  19. Genome sequence of the acid-tolerant Burkholderia sp. strain WSM2232 from Karijini National Park, Australia

    PubMed Central

    Walker, Robert; Watkin, Elizabeth; Tian, Rui; Bräu, Lambert; O’Hara, Graham; Goodwin, Lynne; Han, James; Reddy, Tatiparthi; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2013-01-01

    Burkholderia sp. strain WSM2232 is an aerobic, motile, Gram-negative, non-spore-forming acid-tolerant rod that was trapped in 2001 from acidic soil collected from Karijini National Park (Australia) using Gastrolobium capitatum as a host. WSM2232 was effective in nitrogen fixation with G. capitatum but subsequently lost symbiotic competence during long-term storage. Here we describe the features of Burkholderia sp. strain WSM2232, together with genome sequence information and its annotation. The 7,208,311 bp standard-draft genome is arranged into 72 scaffolds of 72 contigs containing 6,322 protein-coding genes and 61 RNA-only encoding genes. The loss of symbiotic capability can now be attributed to the loss of nodulation and nitrogen fixation genes from the genome. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. PMID:25197442

  20. Genome sequence of the acid-tolerant Burkholderia sp. strain WSM2230 from Karijini National Park, Australia

    PubMed Central

    Walker, Robert; Watkin, Elizabeth; Tian, Rui; Bräu, Lambert; O’Hara, Graham; Goodwin, Lynne; Han, James; Lobos, Elizabeth; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2013-01-01

    Burkholderia sp. strain WSM2230 is an aerobic, motile, Gram-negative, non-spore-forming acid-tolerant rod isolated from acidic soil collected in 2001 from Karijini National Park, Western Australia, using Kennedia coccinea (Coral Vine) as a host. WSM2230 was initially effective in nitrogen-fixation with K. coccinea, but subsequently lost symbiotic competence. Here we describe the features of Burkholderia sp. strain WSM2230, together with genome sequence information and its annotation. The 6,309,801 bp high-quality-draft genome is arranged into 33 scaffolds of 33 contigs containing 5,590 protein-coding genes and 63 RNA-only encoding genes. The genome sequence of WSM2230 failed to identify nodulation genes and provides an explanation for the observed failure of the laboratory grown strain to nodulate. The genome of this strain is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. PMID:25197440

  1. Burkholderia metalliresistens sp. nov., a multiple metal-resistant and phosphate-solubilising species isolated from heavy metal-polluted soil in Southeast China.

    PubMed

    Guo, Jun Kang; Ding, Yong Zhen; Feng, Ren Wei; Wang, Rui Gang; Xu, Ying Ming; Chen, Chun; Wei, Xiu Li; Chen, Wei Min

    2015-06-01

    A metal-resistant and phosphate-solubilising bacterium, designated as strain D414(T), was isolated from heavy metal (Pb, Cd, Cu and Zn)-polluted paddy soils at the surrounding area of Dabao Mountain Mine in Southeast China. The minimum inhibitory concentrations of heavy metals for strain D414(T) were 2000 mg L(-1) (Cd), 800 mg L(-1) (Pb), 150 mg L(-1) (Cu) and 2500 mg L(-1) (Zn). The strain possessed plant growth-promoting properties, such as 1-aminocyclopropane-1-carboxylate assimilation, indole production and phosphate solubilisation. Analysis of 16S rRNA gene sequence indicated that the isolate is a member of the genus Burkholderia where strain D414(T) formed a distinct phyletic line with validly described Burkholderia species. Strain D414(T) is closely related to Burkholderia tropica DSM 15359(T), B. bannensis NBRC E25(T) and B. unamae DSM 17197(T), with 98.5, 98.3 and 98.3 % sequence similarities, respectively. Furthermore, less than 34 % DNA-DNA relatedness was detected between strain D414(T) and the type strains of the phylogenetically closest species of Burkholderia. The dominant fatty acids of strain D414(T) were C14:0, C16:0, C17:0 cyclo and C18:1 ?7c. The DNA G+C content was 62.3 ± 0.5 mol%. On the basis of genotypic, phenotypic and phylogenetic data, strain D414(T) represents a novel species, for which the name Burkholderia metalliresistens sp. nov. is proposed, with D414(T) (=CICC 10561(T) = DSM 26823(T)) as the type strain. PMID:25896306

  2. Speciation of Pb(II) Sorbed by Burkholderia Cepacia/Goethite Composites

    SciTech Connect

    Templeton, Alexis S.; Spormann, Alfred M.; Brown, Gordon E.

    2003-04-08

    Bacterial-mineral composites are important in the retention of heavy metals such as Pb due to their large sorption capacity under a wide range of environmental conditions. However, the partitioning of heavy metals between components in such composites is not probed directly. Using Burkholderia cepaciabiofilms coated with goethite (RFeOOH) particles, the partitioning of Pb(II) between the biological and iron-(oxyhydr)oxide surfaces has been measured using an X-ray spectroscopic approach. EXAFS spectra were fit to quantitatively determine the fraction of Pb(II) associated with each component as a function of pH and [Pb]. At pH <5.5, at least 50% of the total sorbed Pb(II) is associated with the biofilm component, whereas the total uptake within the composite is dominated by goethite (>70% Pb/goethite) above pH 6. Direct comparison can be made between the amount of Pb(II) bound to each component in the composite vs separate binary systems (i.e., Pb/biofilm or Pb/goethite). At high pH, Pb(II) uptake on the biofilm is dramatically decreased due to competition with the goethite surface. In contrast, Pb uptake on goethite is significantly enhanced at low pH (2-fold increase at pH 5) compared to systems with no complexing ligands. The mode of Pb(II)-binding to the goethite component changes from low to high [Pb]. Structural fitting of the EXAFS spectra collected from 10-5.6 to 10-3.6 M [Pb]eq at pH 6 shows that the Pb-goethite surface complexes at low [Pb] are dominated by inner-sphere bidentate, binuclear complexes bridging two adjacent singly coordinated surface oxygens, giving rise to Pb-Fe distances of 3.9 ? At high [Pb], the dominant Pb(II) inner-sphere complexes on the goethite surface shift to bidentate edge-sharing complexes with Pb-Fe distances of 3.3 ?

  3. [Enhanced aerobic degradation of low chlorinated biphenyls by constructing surfactants Burkholderia xenovorans LB400 based system].

    PubMed

    Chen, Shao-Yi; Zhang, Jing; Wang, Han; Ren, Yuan

    2014-10-01

    It has been proposed that the increasing of water solubility of PCBs can enhance the biodegradation efficiency. The biodegradation system of PCBs by Burkholderia xenovorans LB400 in the presence of different surfactants, namely TX-100, Tween 80, RL crude and HPCD were established to investigate the effect of surfactants on the biodegradation of hydrophobic organic compounds. The results indicated that the water solubility ratios of PCB5 and PCB31 were 54.7%-100%, 59.8%-100%; 10.5%-40.8%, 6.8%-31.6%; 10.3%-19.9%, 3.3%-11.6% and 19.5%-34.2%, 4.2%-10.7%, which were accordingly enhanced by TX-100 (CMC = 194 mg · L(-1)), Tween 80 (CMC =13.1 mg · L(-1)), and RL crude (CMC = 50 mg · L(-1)) with concentrations of 1-7 CMC, respectively and HPCD with concentrations of 500-1,500 mg · L(-1). Moreover, the growth inhibition ratio of B. xenovorans LB400 was 30.3%-45.8% with TX-100 concentration of 1-7 CMC, while it was 10.0%-15.4% for Tween 80 with concentration of 0.1-1 CMC; RL crude could boost the growth of strain LB400 as substrate while HPCD exerted no impact on it. The addition of surfactants can improve the biodegradation ratios of PCB31 (5 mg · L(-1)) by 23.7%-65.5% for TX-100, 14.6%-44.3% for Tween 80, 9.6%- 27.2% for RL crude and 15.3%-20.7% for HPCD depending on the surfactant concentrations, while it had minor effects on the biodegradation ratios of PCB5 (10 mg · L(-1)). It is concluded that the promoting effects of surfactant on PCBs biodegradation are mainly due to the increased concentrations of PCBs-surfactant micelles in aqueous solution and when TX-100 and Tween 80 concentrations are set as 1 and 7 CMC, the biodegradation ratios of PCB31 can achieve 100% and 81.7% , while the growth inhibition ratios of B. xenovorans LB400 are 30.3% and 5.4%, respectively. PMID:25693402

  4. Identification of Members of the Burkholderia cepacia Complex by Species-Specific PCR

    PubMed Central

    Whitby, Paul W.; Carter, Karen B.; Hatter, Kenneth L.; LiPuma, John J.; Stull, Terrence L.

    2000-01-01

    Definitive identification of the species in the Burkholderia cepacia complex by routine clinical microbiology methods is difficult. Phenotypic tests to identify B. multivorans and B. vietnamiensis have been established; more recent work indicates B. stabilis may also be identified by growth characteristics and biochemical tests. However, attempts to identify genomovars I and III have, thus far, proved unsuccessful. Previously, we demonstrated the utility of two primer pairs, directed to the rRNA operon, to specifically identify the B. cepacia complex in a PCR. One of these primer pairs, G1-G2, only amplified a DNA fragment from genomovars I and III and B. stabilis in a PCR with genomic DNA isolated from prototypical strains representing the five genomovars. Sequence analysis of the rRNA operon for all the genomovars indicated that this primer pair targeted a region shared by these isolates. Further analysis revealed a region of heterogeneity between genomovar III and B. stabilis internal to the amplified product of G1-G2. Primers designed to target this region were tested with prototypical strains following an initial amplification with the G1-G2 primer pair. New primers specific for the prototypical genomovar III and B. stabilis were designated SPR3 and SPR4, respectively. Analysis of 93 isolates representing 18 genomovar I, 13 B. multivorans, 36 genomovar III, 11 B. stabilis, and 15 B. vietnamiensis isolates was performed. DNA from all isolates of genomovars I and III and B. stabilis was amplified by G1-G2. Genomovar III isolates yielded a product with SPR3/G1 while B. stabilis amplified with SPR4-G1. Genomovar I isolates were amplified by either SPR3-G1 or SPR4-G1, but not both. B. multivorans yielded a product with SPR3-G1 but not G1-G2, and B. vietnamiensis isolates were negative in all PCRs. Thus using an algorithm with G1-G2, SPR3-G1, and SPR4-G1 primers in a PCR analysis, genomovar III isolates can be separated from B. stabilis and the identity of B. multivorans and B. vietnamiensis can be confirmed. PMID:10921959

  5. Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents

    PubMed Central

    Nazir, Rashid; Tazetdinova, Diana I.; van Elsas, Jan Dirk

    2014-01-01

    Soil bacteria can benefit from co-occurring soil fungi in respect of the acquisition of carbonaceous nutrients released by fungal hyphae and the access to novel territories in soil. Here, we investigated the capacity of the mycosphere-isolated bacterium Burkholderia terrae BS001 to comigrate through soil along with hyphae of the soil fungi Trichoderma asperellum, Rhizoctonia solani, Fusarium oxysporum, F. oxysporum pv lini, Coniochaeta ligniaria, Phanerochaete velutina, and Phallus impudicus. We used Lyophyllum sp. strain Karsten as the reference migration-inciting fungus. Bacterial migration through presterilized soil on the extending fungal hyphae was detected with six of the seven test fungi, with only Phallus impudicus not showing any bacterial transport. Much like with Lyophyllum sp. strain Karsten, intermediate (106–108 CFU g-1 dry soil) to high (>108 CFU g-1 dry soil) strain BS001 cell population sizes were found at the hyphal migration fronts of four fungi, i.e., T. asperellum, Rhizoctonia solani, F. oxysporum and F. oxysporum pv lini, whereas for two fungi, Coniochaeta ligniaria and Phanerochaete velutina, the migration responses were retarded and population sizes were lower (103–106 CFU g-1 dry soil). Consistent with previous data obtained with the reference fungus, migration with the migration-inciting fungi occurred only in the direction of the hyphal growth front. Remarkably, Burkholderia terrae BS001 provided protection from several antifungal agents to the canonical host Lyophyllum sp. strain Karsten. Specifically, this host was protected from Pseudomonas fluorescens strain CHA0 metabolites, as well as from the anti-fungal agent cycloheximide. Similar protection by strain BS001was observed for T. asperellum, and, to a lower extent, F. oxysporum and Rhizoctonia solani. The protective effect may be related to the consistent occurrence of biofilm-like cell layers or agglomerates at the surfaces of the protected fungi. The current study represents the first report of protection of soil fungi against antagonistic agents present in the soil provided by fungal-associated Burkholderia terrae cells. PMID:25426111

  6. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN.

    PubMed

    Compant, Stéphane; Reiter, Birgit; Sessitsch, Angela; Nowak, Jerzy; Clément, Christophe; Ait Barka, Essaïd

    2005-04-01

    Patterns of colonization of Vitis vinifera L. cv. Chardonnay plantlets by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN, were studied under gnotobiotic conditions. Wild-type strain PsJN and genetically engineered derivatives of this strain tagged with gfp (PsJN::gfp2x) or gusA (PsJN::gusA11) genes were used to enumerate and visualize tissue colonization. The rhizospheres of 4- to 5-week-old plantlets with five developed leaves were inoculated with bacterial suspensions. Epiphytic and endophytic colonization patterns were then monitored by dilution plating assays and microscopic observation of organ sections. Bacteria were chronologically detected first on root surfaces, then in root internal tissues, and finally in the fifth internode and the tissues of the fifth leaf. Analysis of the PsJN colonization patterns showed that this strain colonizes grapevine root surfaces, as well as cell walls and the whole surface of some rhizodermal cells. Cells were also abundant at lateral root emergence sites and root tips. Furthermore, cell wall-degrading endoglucanase and endopolygalacturonase secreted by PsJN explained how the bacterium gains entry into root internal tissues. Host defense reactions were observed in the exodermis and in several cortical cell layers. Bacteria were not observed on stem and leaf surfaces but were found in xylem vessels of the fifth internode and the fifth leaf of plantlets. Moreover, bacteria were more abundant in the fifth leaf than in the fifth internode and were found in substomatal chambers. Thus, it seems that Burkholderia sp. strain PsJN induces a local host defense reaction and systemically spreads to aerial parts through the transpiration stream. PMID:15811990

  7. The unexpected discovery of a novel low-oxygen-activated locus for the anoxic persistence of Burkholderia cenocepacia

    PubMed Central

    Sass, Andrea M; Schmerk, Crystal; Agnoli, Kirsty; Norville, Phillip J; Eberl, Leo; Valvano, Miguel A; Mahenthiralingam, Eshwar

    2013-01-01

    Burkholderia cenocepacia is a Gram-negative aerobic bacterium that belongs to a group of opportunistic pathogens displaying diverse environmental and pathogenic lifestyles. B. cenocepacia is known for its ability to cause lung infections in people with cystic fibrosis and it possesses a large 8?Mb multireplicon genome encoding a wide array of pathogenicity and fitness genes. Transcriptomic profiling across nine growth conditions was performed to identify the global gene expression changes made when B. cenocepacia changes niches from an environmental lifestyle to infection. In comparison to exponential growth, the results demonstrated that B. cenocepacia changes expression of over one-quarter of its genome during conditions of growth arrest, stationary phase and surprisingly, under reduced oxygen concentrations (6% instead of 20.9% normal atmospheric conditions). Multiple virulence factors are upregulated during these growth arrest conditions. A unique discovery from the comparative expression analysis was the identification of a distinct, co-regulated 50-gene cluster that was significantly upregulated during growth under low oxygen conditions. This gene cluster was designated the low-oxygen-activated (lxa) locus and encodes six universal stress proteins and proteins predicted to be involved in metabolism, transport, electron transfer and regulation. Deletion of the lxa locus resulted in B. cenocepacia mutants with aerobic growth deficiencies in minimal medium and compromised viability after prolonged incubation in the absence of oxygen. In summary, transcriptomic profiling of B. cenocepacia revealed an unexpected ability of aerobic Burkholderia to persist in the absence of oxygen and identified the novel lxa locus as key determinant of this important ecophysiological trait. PMID:23486248

  8. Regulation of Hfq mRNA and Protein Levels in Escherichia coli and Pseudomonas aeruginosa by the Burkholderia cenocepacia MtvR sRNA

    PubMed Central

    Ramos, Christian G.; Grilo, André M.; Sousa, Sílvia A.; Feliciano, Joana R.; da Costa, Paulo J. P.; Leitão, Jorge H.

    2014-01-01

    Small non-coding RNAs (sRNAs) are important players of gene expression regulation in bacterial pathogens. MtvR is a 136-nucleotide long sRNA previously identified in the human pathogen Burkholderia cenocepacia J2315 and with homologues restricted to bacteria of the Burkholderia cepacia complex. In this work we have investigated the effects of expressing MtvR in Escherichia coli and Pseudomonas aeruginosa. Results are presented showing that MtvR negatively regulates the hfq mRNA levels in both bacterial species. In the case of E. coli, this negative regulation is shown to involve binding of MtvR to the 5?-UTR region of the hfqEc mRNA. Results presented also show that expression of MtvR in E. coli and P. aeruginosa originates multiple phenotypes, including reduced resistance to selected stresses, biofilm formation ability, and increased susceptibility to various antibiotics. PMID:24901988

  9. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Technical Report

    SciTech Connect

    Fischer, N. O.

    2015-01-13

    The goal of this proposal is to demonstrate that colocalization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. In the third quarter of the third year, F344 rats vaccinated with adjuvanted NLP formulations were challenged with F. tularensis SCHU S4 at Battelle. Preliminary data indicate that up to 65% of females vaccinated intranasally with an NLP-based formulation survived this challenge, compared to only 20% survival of naïve animals. In addition, NLPs were successfully formulated with Burkholderia protein antigens. IACUC approval for immunological assessments in BALB/c mice was received and we anticipate that these assessments will begin by March 2015, pending ACURO approval.

  10. Insecticide-Degrading Burkholderia Symbionts of the Stinkbug Naturally Occupy Various Environments of Sugarcane Fields in a Southeast Island of Japan

    PubMed Central

    Tago, Kanako; Okubo, Takashi; Itoh, Hideomi; Kikuchi, Yoshitomo; Hori, Tomoyuki; Sato, Yuya; Nagayama, Atsushi; Hayashi, Kentaro; Ikeda, Seishi; Hayatsu, Masahito

    2015-01-01

    The stinkbug Cavelerius saccharivorus, which harbors Burkholderia species capable of degrading the organophosphorus insecticide, fenitrothion, has been identified on a Japanese island in farmers’ sugarcane fields that have been exposed to fenitrothion. A clearer understanding of the ecology of the symbiotic fenitrothion degraders of Burkholderia species in a free-living environment is vital for advancing our knowledge on the establishment of degrader-stinkbug symbiosis. In the present study, we analyzed the composition and abundance of degraders in sugarcane fields on the island. Degraders were recovered from field samples without an enrichment culture procedure. Degrader densities in the furrow soil in fields varied due to differences in insecticide treatment histories. Over 99% of the 659 isolated degraders belonged to the genus Burkholderia. The strains related to the stinkbug symbiotic group predominated among the degraders, indicating a selection for this group in response to fenitrothion. Degraders were also isolated from sugarcane stems, leaves, and rhizosphere in fields that were continuously exposed to fenitrothion. Their density was lower in the plant sections than in the rhizosphere. A phylogenetic analysis of 16S rRNA gene sequences demonstrated that most of the degraders from the plants and rhizosphere clustered with the stinkbug symbiotic group, and some were identical to the midgut symbionts of C. saccharivorus collected from the same field. Our results confirmed that plants and the rhizosphere constituted environmental reservoirs for stinkbug symbiotic degraders. To the best of our knowledge, this is the first study to investigate the composition and abundance of the symbiotic fenitrothion degraders of Burkholderia species in farmers’ fields. PMID:25736865

  11. Revised Approach for Identification of Isolates within the Burkholderia cepacia Complex and Description of Clinical Isolates Not Assigned to Any of the Known Genomovars?

    PubMed Central

    Turton, Jane F.; Arif, Nazia; Hennessy, Daneeta; Kaufmann, Mary E.; Pitt, Tyrone L.

    2007-01-01

    One hundred thirty-eight clinical isolates of the Burkholderia cepacia complex (Bcc) were identified using a modified strategy that involved PCR detection of the cblA gene for the ET12 lineage simultaneously with detection of the Bcc recA PCR product; recA sequence cluster analysis also was part of the strategy. Four strains could not be assigned to any of the known genomovars. PMID:17626169

  12. Insecticide-degrading Burkholderia symbionts of the stinkbug naturally occupy various environments of sugarcane fields in a Southeast island of Japan.

    PubMed

    Tago, Kanako; Okubo, Takashi; Itoh, Hideomi; Kikuchi, Yoshitomo; Hori, Tomoyuki; Sato, Yuya; Nagayama, Atsushi; Hayashi, Kentaro; Ikeda, Seishi; Hayatsu, Masahito

    2015-01-01

    The stinkbug Cavelerius saccharivorus, which harbors Burkholderia species capable of degrading the organophosphorus insecticide, fenitrothion, has been identified on a Japanese island in farmers' sugarcane fields that have been exposed to fenitrothion. A clearer understanding of the ecology of the symbiotic fenitrothion degraders of Burkholderia species in a free-living environment is vital for advancing our knowledge on the establishment of degrader-stinkbug symbiosis. In the present study, we analyzed the composition and abundance of degraders in sugarcane fields on the island. Degraders were recovered from field samples without an enrichment culture procedure. Degrader densities in the furrow soil in fields varied due to differences in insecticide treatment histories. Over 99% of the 659 isolated degraders belonged to the genus Burkholderia. The strains related to the stinkbug symbiotic group predominated among the degraders, indicating a selection for this group in response to fenitrothion. Degraders were also isolated from sugarcane stems, leaves, and rhizosphere in fields that were continuously exposed to fenitrothion. Their density was lower in the plant sections than in the rhizosphere. A phylogenetic analysis of 16S rRNA gene sequences demonstrated that most of the degraders from the plants and rhizosphere clustered with the stinkbug symbiotic group, and some were identical to the midgut symbionts of C. saccharivorus collected from the same field. Our results confirmed that plants and the rhizosphere constituted environmental reservoirs for stinkbug symbiotic degraders. To the best of our knowledge, this is the first study to investigate the composition and abundance of the symbiotic fenitrothion degraders of Burkholderia species in farmers' fields. PMID:25736865

  13. Stress Conditions Triggering Mucoid Morphotype Variation in Burkholderia Species and Effect on Virulence in Galleria mellonella and Biofilm Formation In Vitro

    PubMed Central

    Silva, Inês N.; Tavares, Andreia C.; Ferreira, Ana S.; Moreira, Leonilde M.

    2013-01-01

    Burkholderia cepacia complex (Bcc) bacteria are opportunistic pathogens causing chronic respiratory infections particularly among cystic fibrosis patients. During these chronic infections, mucoid-to-nonmucoid morphotype variation occurs, with the two morphotypes exhibiting different phenotypic properties. Here we show that in vitro, the mucoid clinical isolate Burkholderia multivorans D2095 gives rise to stable nonmucoid variants in response to prolonged stationary phase, presence of antibiotics, and osmotic and oxidative stresses. Furthermore, in vitro colony morphotype variation within other members of the Burkholderia genus occurred in Bcc and non-Bcc strains, irrespectively of their clinical or environmental origin. Survival to starvation and iron limitation was comparable for the mucoid parental isolate and the respective nonmucoid variant, while susceptibility to antibiotics and to oxidative stress was increased in the nonmucoid variants. Acute infection of Galleria mellonella larvae showed that, in general, the nonmucoid variants were less virulent than the respective parental mucoid isolate, suggesting a role for the exopolysaccharide in virulence. In addition, most of the tested nonmucoid variants produced more biofilm biomass than their respective mucoid parental isolate. As biofilms are often associated with increased persistence of pathogens in the CF lungs and are an indicative of different cell-to-cell interactions, it is possible that the nonmucoid variants are better adapted to persist in this host environment. PMID:24358195

  14. Reducing virulence of the human pathogen Burkholderia by altering the substrate specificity of the quorum-quenching acylase PvdQ

    PubMed Central

    Koch, Gudrun; Nadal-Jimenez, Pol; Reis, Carlos R.; Muntendam, Remco; Bokhove, Marcel; Melillo, Elena; Dijkstra, Bauke W.; Cool, Robbert H.; Quax, Wim J.

    2014-01-01

    The use of enzymes to interfere with quorum sensing represents an attractive strategy to fight bacterial infections. We used PvdQ, an effective quorum-quenching enzyme from Pseudomonas aeruginosa, as a template to generate an acylase able to effectively hydrolyze C8-HSL, the major communication molecule produced by the Burkholderia species. We discovered that the combination of two single mutations leading to variant PvdQL?146W,F?24Y conferred high activity toward C8-HSL. Exogenous addition of PvdQL?146W,F?24Y dramatically decreased the amount of C8-HSL present in Burkholderia cenocepacia cultures and inhibited a quorum sensing-associated phenotype. The efficacy of this PvdQ variant to combat infections in vivo was further confirmed by its ability to rescue Galleria mellonella larvae upon infection, demonstrating its potential as an effective agent toward Burkholderia infections. Kinetic analysis of the enzymatic activities toward 3-oxo-C12-L-HSL and C8-L-HSL corroborated a substrate switch. This work demonstrates the effectiveness of quorum-quenching acylases as potential novel antimicrobial drugs. In addition, we demonstrate that their substrate range can be easily switched, thereby paving the way to selectively target only specific bacterial species inside a complex microbial community. PMID:24474783

  15. Burkholderia acidipaludis sp. nov., aluminum-tolerant bacteria isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps in South-East Asia.

    PubMed

    Aizawa, Tomoko; Bao Ve, Nguyen; Vijarnsorn, Pisoot; Nakajima, Mutsuyasu; Sunairi, Michio

    2010-09-01

    Two strains of aluminium-tolerant bacteria, SA33(T) and 7A078, were isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps (pH 2-4) in actual acid sulfate soil areas of Vietnam (SA33(T)) and Thailand (7A078). The strains were Gram-negative, aerobic, non-spore-forming rods, 0.6-0.7 mum wide and 1.3-1.7 mum long. These strains showed good growth at pH 3.0-8.0 and 17-37 degrees C. The organisms contained ubiquinone Q-8 as the predominant isoprenoid quinone and C(16 : 0), C(18 : 1) ? 7c and C(17 : 0) cyclo as the major fatty acids. Their fatty acid profiles were similar to those reported for other Burkholderia species. The DNA G+C content of these strains was 64 mol%. On the basis of 16S rRNA gene sequence similarity, the strains were shown to belong to the genus Burkholderia. Although the 16S rRNA gene sequence similarity values calculated for strain SA33(T) to 7A078 and the type strains of Burkholderia kururiensis, B. sacchari and B. tuberum were 100, 97.3, 97.1 and 97.0 %, respectively, strains SA33(T) and 7A078 formed a group that was distinct in the phylogenetic trees; the DNA-DNA relatedness of strain SA33(T) to 7A078 and these three type strains were respectively 90, 47, 46 and 45 %. The results of physiological and biochemical tests, including whole-cell protein pattern analysis, allowed phenotypic differentiation of these strains from described Burkholderia species. Therefore, strains SA33(T) and 7A078 represent a novel species, for which the name Burkholderia acidipaludis sp. nov. is proposed. The type strain is SA33(T) (=NBRC 101816(T) =VTCC-D6-6(T)). Strain 7A078 (=NBRC 103872 =BCC 36999) is a reference strain. PMID:19819996

  16. Identification and In-vivo Characterization of a Novel OhrR Transcriptional Regulator in Burkholderia xenovorans LB400

    DOE PAGESBeta

    Nguyen, Tinh T.; Martí-Arbona, Ricardo; Hall, Richard S.; Maity, Tuhin; Valdez, Yolanda E.; Dunbar, John M.; Unkefer, Clifford J.; Unkefer, Pat J.

    2013-05-21

    Transcriptional regulators (TRs) are an important and versatile group of proteins, yet very little progress has been achieved towards the discovery and annotation of their biological functions. We have characterized a previously unknown organic hydroperoxide resistance regulator from Burkholderia xenovoransLB400, Bxe_B2842, which is homologous to E. coli’s OhrR. Bxe_B2842 regulates the expression of an organic hydroperoxide resistance protein (OsmC). We utilized frontal affinity chromatography coupled with mass spectrometry (FAC-MS) and electrophoretic mobility gel shift assays (EMSA) to identify and characterize the possible effectors of the regulation by Bxe_B2842. Without an effector, Bxe_B2842 binds a DNA operator sequence (DOS) upstream ofmore »osmC. FAC-MS results suggest that 2-aminophenol binds to the protein and is potentially an effector molecule. EMSA analysis shows that 2-aminophenol also attenuates the Bxe_B2842’s affinity for its DOS. EMSA analysis also shows that organic peroxides attenuate Bxe_B2842/DOS affinity, suggesting that binding of the TR to its DOS is regulated by the two-cysteine mechanism, common to TRs in this family. Bxe_B2842 is the first OhrR TR to have both oxidative and effector-binding mechanisms of regulation. Our paper reveals further mechanistic diversity TR mediated gene regulation and provides insights into methods for function discovery of TRs.« less

  17. Identification and In-vivo Characterization of a Novel OhrR Transcriptional Regulator in Burkholderia xenovorans LB400

    SciTech Connect

    Nguyen, Tinh T.; Martí-Arbona, Ricardo; Hall, Richard S.; Maity, Tuhin; Valdez, Yolanda E.; Dunbar, John M.; Unkefer, Clifford J.; Unkefer, Pat J.

    2013-05-21

    Transcriptional regulators (TRs) are an important and versatile group of proteins, yet very little progress has been achieved towards the discovery and annotation of their biological functions. We have characterized a previously unknown organic hydroperoxide resistance regulator from Burkholderia xenovoransLB400, Bxe_B2842, which is homologous to E. coli’s OhrR. Bxe_B2842 regulates the expression of an organic hydroperoxide resistance protein (OsmC). We utilized frontal affinity chromatography coupled with mass spectrometry (FAC-MS) and electrophoretic mobility gel shift assays (EMSA) to identify and characterize the possible effectors of the regulation by Bxe_B2842. Without an effector, Bxe_B2842 binds a DNA operator sequence (DOS) upstream of osmC. FAC-MS results suggest that 2-aminophenol binds to the protein and is potentially an effector molecule. EMSA analysis shows that 2-aminophenol also attenuates the Bxe_B2842’s affinity for its DOS. EMSA analysis also shows that organic peroxides attenuate Bxe_B2842/DOS affinity, suggesting that binding of the TR to its DOS is regulated by the two-cysteine mechanism, common to TRs in this family. Bxe_B2842 is the first OhrR TR to have both oxidative and effector-binding mechanisms of regulation. Our paper reveals further mechanistic diversity TR mediated gene regulation and provides insights into methods for function discovery of TRs.

  18. Cloning and expression of Vitreoscilla hemoglobin gene in Burkholderia sp. strain DNT for enhancement of 2,4-dinitrotoluene degradation

    SciTech Connect

    Patel, S.M.; Stark, B.C.; Hwang, K.W.; Dikshit, K.L.; Webster, D.A.

    2000-02-01

    The gene (vgb) encoding the hemoglobin (VHb) of Vitreoscilla sp. was cloned into a broad host range vector and stably transformed into Burkholderia (formerly Pseudomonas) sp. strain DNT, which is able to degrade and metabolize 1,4-dinitrotoluene (DNT). Vgb was stably maintained and expressed in functional form in this recombinant strain (YV1). When growth of YV1, in both tryptic soy broth and minimal salts broth containing DNT and yeast extract, was compared with that of the untransformed strain, YV1 grew significantly better on a cell mass basis (A{sub 600}) and reached slightly higher maximum viable cell numbers. YV1 also had roughly twice the respiration as strain DNT on a cell mass basis, and in DNT-containing medium, YV1 degraded DNT faster than the untransformed strain. YV1 cells pregrown in medium containing DNT plus succinate showed the fastest degradation: 100% of the initial 200 ppm DNT was removed from the medium within 3 days.

  19. Additives enhancing the catalytic properties of lipase from Burkholderia cepacia immobilized on mixed-function-grafted mesoporous silica gel.

    PubMed

    Abaházi, Emese; Boros, Zoltán; Poppe, László

    2014-01-01

    Effects of various additives on the lipase from Burkholderia cepacia (BcL) immobilized on mixed-function-grafted mesoporous silica gel support by hydrophobic adsorption and covalent attachment were investigated. Catalytic properties of the immobilized biocatalysts were characterized in kinetic resolution of racemic 1-phenylethanol (rac-1a) and 1-(thiophen-2-yl)ethan-1-ol (rac-1b). Screening of more than 40 additives showed significantly enhanced productivity of immobilized BcL with several additives such as PEGs, oleic acid and polyvinyl alcohol. Effects of substrate concentration and temperature between 0-100 °C on kinetic resolution of rac-1a were studied with the best adsorbed BcLs containing PEG 20 k or PVA 18-88 additives in continuous-flow packed-bed reactor. The optimum temperature of lipase activity for BcL co-immobilized with PEG 20k found at around 30 °C determined in the continuous-flow system increased remarkably to around 80 °C for BcL co-immobilized with PVA 18-88. PMID:25006788

  20. Formaldehyde Fixation Contributes to Detoxification for Growth of a Nonmethylotroph, Burkholderia cepacia TM1, on Vanillic Acid

    PubMed Central

    Mitsui, Ryoji; Kusano, Yoko; Yurimoto, Hiroya; Sakai, Yasuyoshi; Kato, Nobuo; Tanaka, Mitsuo

    2003-01-01

    During bacterial degradation of methoxylated lignin monomers, such as vanillin and vanillic acid, formaldehyde is released through the reaction catalyzed by vanillic acid demethylase. When Burkholderia cepacia TM1 was grown on vanillin or vanillic acid as the sole carbon source, the enzymes 3-hexulose-6-phosphate synthase (HPS) and 6-phospho-3-hexuloisomerase (PHI) were induced. These enzymes were also expressed during growth on Luria-Bertani medium containing formaldehyde. To understand the roles of these enzymes, the hps and phi genes from a methylotrophic bacterium, Methylomonas aminofaciens 77a, were introduced into B. cepacia TM1. The transformant strain constitutively expressed the genes for HPS and PHI, and these activities were two- or threefold higher than the activities in the wild strain. Incorporation of [14C]formaldehyde into the cell constituents was increased by overexpression of the genes. Furthermore, the degradation of vanillic acid and the growth yield were significantly improved at a high concentration of vanillic acid (60 mM) in the transformant strain. These results suggest that HPS and PHI play significant roles in the detoxification and assimilation of formaldehyde. This is the first report that enhancement of the HPS/PHI pathway could improve the degradation of vanillic acid in nonmethylotrophic bacteria. PMID:14532071

  1. Molecular epidemiology of Pseudomonas aeruginosa, Burkholderia cepacia complex and methicillin-resistant Staphylococcus aureus in a cystic fibrosis center.

    PubMed

    Campana, Silvia; Taccetti, Giovanni; Ravenni, Novella; Masi, Isabella; Audino, Sandra; Sisi, Barbara; Repetto, Teresa; Döring, Gerd; de Martino, Maurizio

    2004-08-01

    Chronic pulmonary infections caused by Pseudomonas aeruginosa, Burkholderia cepacia complex and Staphylococcus aureus are responsible for most of the morbidity and mortality of patients with cystic fibrosis (CF). Little is known about the routes of transmission of these pathogens from environmental or hospital sources to the patients. We hypothesised that strains of P. aeruginosa, B. cepacia complex and methicillin-resistant S. aureus (MRSA) are nosocomially acquired by CF patients. Bacterial isolates were obtained from 164 patients attending the CF Centre of Florence and from the hospital environment and the strains typed using restriction enzymes and pulsed-field gel electrophoresis (PFGE). Seventy (43%) of patients were colonised by P. aeruginosa, 6 (3.6%) by B. cepacia complex, and 11 (7%) by MRSA. Three P. aeruginosa strains were isolated from the sinks of the ward. All the MRSA isolates differed from each other. The analysis of 83 P. aeruginosa strains showed identical genotypes in five pairs of patients, whereas from the six patients infected with B. cepacia complex strains, two patients harboured identical genotypes. These pairs of patients had no contact with each other outside the CF centre and P. aeruginosa genotypes from the hospital environment differed from these clinical isolates, suggesting a possible common source of infection within or outside the centre. The study showed that, despite isolation precautions, a minimal risk of cross-infection still existed in the CF centre and that hygienic standards should be increased to further reduce this risk. PMID:15463902

  2. Metabolomic and Proteomic Insights into Carbaryl Catabolism by Burkholderia sp. C3 and Degradation of Ten N-Methylcarbamates

    PubMed Central

    Seo, Jong-Su; Keum, Young-Soo; Li, Qing X.

    2013-01-01

    Burkholderia sp. C3, an efficient polycyclic aromatic hydrocarbon (PAH) degrader, can utilize 9 of the 10 N-methylcarbamate insecticides including carbaryl as a sole source of carbon. Rapid hydrolysis of carbaryl in C3 is followed by slow catabolism of the resulting 1-naphthol. This study focused on metabolomes and proteomes in C3 cells utilizing carbaryl in comparison to those using glucose or nutrient broth. Sixty of the 867 detected proteins were involved in primary metabolism, adaptive sensing and regulation, transport, stress response, and detoxification. Among the 41 proteins expressed in response to carbaryl were formate dehydrogenase, aldehyde-alcohol dehydrogenase and ethanolamine utilization protein involved in one carbon metabolism. Acetate kinase and phasin were 2 of the 19 proteins that were not detected in carbaryl-supported C3 cells, but detected in glucose-supported C3 cells. Down-production of phasin and polyhydroxyalkanoates in carbaryl-supported C3 cells suggests insufficient carbon sources and lower levels of primary metabolites to maintain an ordinary level of metabolism. Differential metabolomes (approximately 196 identified polar metabolites) showed up-production of metabolites in pentose phosphate pathways and metabolisms of cysteine, cystine and some other amino acids, disaccharides and nicotinate, in contract to down-production of most of the other amino acids and hexoses. The proteomic and metabolomic analyses showed that carbaryl-supported C3 cells experienced strong toxic effects, oxidative stresses, DNA/RNA damages and carbon nutrient deficiency. PMID:23463356

  3. In-Frame and Unmarked Gene Deletions in Burkholderia cenocepacia via an Allelic Exchange System Compatible with Gateway Technology.

    PubMed

    Fazli, Mustafa; Harrison, Joe J; Gambino, Michela; Givskov, Michael; Tolker-Nielsen, Tim

    2015-06-01

    Burkholderia cenocepacia is an emerging opportunistic pathogen causing life-threatening infections in immunocompromised individuals and in patients with cystic fibrosis, which are often difficult, if not impossible, to treat. Understanding the genetic basis of virulence in this emerging pathogen is important for the development of novel treatment regimes. Generation of deletion mutations in genes predicted to encode virulence determinants is fundamental to investigating the mechanisms of pathogenesis. However, there is a lack of appropriate selectable and counterselectable markers for use in B. cenocepacia, making its genetic manipulation problematic. Here we describe a Gateway-compatible allelic exchange system based on the counterselectable pheS gene and the I-SceI homing endonuclease. This system provides efficiency in cloning homology regions of target genes and allows the generation of precise and unmarked gene deletions in B. cenocepacia. As a proof of concept, we demonstrate its utility by deleting the Bcam1349 gene, encoding a cyclic di-GMP (c-di-GMP)-responsive regulator protein important for biofilm formation. PMID:25795676

  4. Burkholderia cenocepacia strains isolated from cystic fibrosis patients are apparently more invasive and more virulent than rhizosphere strains.

    PubMed

    Pirone, Luisa; Bragonzi, Alessandra; Farcomeni, Alessio; Paroni, Moira; Auriche, Cristina; Conese, Massimo; Chiarini, Luigi; Dalmastri, Claudia; Bevivino, Annamaria; Ascenzioni, Fiorentina

    2008-10-01

    Given the widespread presence of Burkholderia cenocepacia in the rhizosphere it is important to determine whether rhizosphere strains are pathogenic for cystic fibrosis patients or not. Eighteen B. cenocepacia strains of rhizosphere and clinical origin were typed by multi-locus sequence typing (MLST) analysis and compared for their ability to invade pulmonary epithelial cells and their virulence in a mouse model of airway infection. Although there was great variability, clinical strains were the most invasive in vitro. Almost all the rhizosphere and two clinical strains were defined as non-invasive, six clinical strains as invasive, and two strains of both clinical and environmental origin as indeterminate. Exposure of murine airways to clinical strains caused higher acute mortality than that seen after challenge with rhizosphere strains. Furthermore, both clinical and environmental strains were able to persist in the lungs of infected mice, with no significant differences in bacterial loads and localization 14 days after challenge. DNA dot blot analyses of AHL synthase, porin and amidase genes, which play a role in B. cenocepacia virulence, showed that they were present in B. cenocepacia strains irrespective of their origin. Overall, our results suggest that rhizosphere strains do not differ from clinical strains in some pathogenic traits. PMID:18643926

  5. Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues.

    PubMed

    Compant, Stéphane; Kaplan, Hervé; Sessitsch, Angela; Nowak, Jerzy; Ait Barka, Essaïd; Clément, Christophe

    2008-01-01

    The colonization pattern of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN was determined using grapevine fruiting cuttings with emphasis on putative inflorescence colonization under nonsterile conditions. Two-week-old rooted plants harbouring flower bud initials, grown in nonsterile soil, were inoculated with PsJN:gfp2x. Plant colonization was subsequently monitored at various times after inoculation with plate counts and epifluorescence and/or confocal microscopy. Strain PsJN was chronologically detected on the root surfaces, in the endorhiza, inside grape inflorescence stalks, not inside preflower buds and flowers but rather as an endophyte inside young berries. Data demonstrated low endophytic populations of strain PsJN in inflorescence organs, i.e. grape stalks and immature berries with inconsistency among plants for bacterial colonization of inflorescences. Nevertheless, endophytic colonization of inflorescences by strain PsJN was substantial for some plants. Microscopic analysis revealed PsJN as a thriving endophyte in inflorescence organs after the colonization process. Strain PsJN was visualized colonizing the root surface, entering the endorhiza and spreading to grape inflorescence stalks, pedicels and then to immature berries through xylem vessels. In parallel to these observations, a natural microbial communities was also detected on and inside plants, demonstrating the colonization of grapevine by strain PsJN in the presence of other microorganisms. PMID:18081592

  6. Deployment of the Burkholderia glumae type III secretion system as an efficient tool for translocating pathogen effectors to monocot cells.

    PubMed

    Sharma, Shailendra; Sharma, Shiveta; Hirabuchi, Akiko; Yoshida, Kentaro; Fujisaki, Koki; Ito, Akiko; Uemura, Aiko; Terauchi, Ryohei; Kamoun, Sophien; Sohn, Kee Hoon; Jones, Jonathan D G; Saitoh, Hiromasa

    2013-05-01

    Genome sequences of plant fungal pathogens have enabled the identification of effectors that cooperatively modulate the cellular environment for successful fungal growth and suppress host defense. Identification and characterization of novel effector proteins are crucial for understanding pathogen virulence and host-plant defense mechanisms. Previous reports indicate that the Pseudomonas syringae pv. tomato DC3000 type III secretion system (T3SS) can be used to study how non-bacterial effectors manipulate dicot plant cell function using the effector detector vector (pEDV) system. Here we report a pEDV-based effector delivery system in which the T3SS of Burkholderia glumae, an emerging rice pathogen, is used to translocate the AVR-Pik and AVR-Pii effectors of the fungal pathogen Magnaporthe oryzae to rice cytoplasm. The translocated AVR-Pik and AVR-Pii showed avirulence activity when tested in rice cultivars containing the cognate R genes. AVR-Pik reduced and delayed the hypersensitive response triggered by B. glumae in the non-host plant Nicotiana benthamiana, indicative of an immunosuppressive virulence activity. AVR proteins fused with fluorescent protein and nuclear localization signal were delivered by B. glumae T3SS and observed in the nuclei of infected cells in rice, wheat, barley and N. benthamiana. Our bacterial T3SS-enabled eukaryotic effector delivery and subcellular localization assays provide a useful method for identifying and studying effector functions in monocot plants. PMID:23451734

  7. Cable pili and the 22-kilodalton adhesin are required for Burkholderia cenocepacia binding to and transmigration across the squamous epithelium.

    PubMed

    Urban, Teresa A; Goldberg, Joanna B; Forstner, Janet F; Sajjan, Umadevi S

    2005-09-01

    Burkholderia cenocepacia strains expressing both cable (Cbl) pili and the 22-kDa adhesin bind to cytokeratin 13 (CK13) strongly and invade squamous epithelium efficiently. It has not been established, however, whether the gene encoding the adhesin is located in the cbl operon or what specific contribution the adhesin and Cbl pili lend to binding and transmigration or invasion capacity of B. cenocepacia. By immunoscreening an expression library of B. cenocepacia isolate BC7, we identified a large gene (adhA) that encodes the 22-kDa adhesin. Isogenic mutants lacking expression of either Cbl pili (cblA or cblS mutants) or the adhesin (adhA mutant) were constructed to assess the individual role of Cbl pili and the adhesin in mediating B. cenocepacia binding to and transmigration across squamous epithelium. Relative to the parent strain, mutants of Cbl pili showed reduced binding (50%) to isolated CK13, while the adhesin mutant showed almost no binding (0 to 8%). Mutants lacking either cable pili or the adhesin were compromised in their ability to bind to and transmigrate across the squamous epithelium compared to the wild-type strain, although this deficiency was most pronounced in the adhA mutant. These results indicate that both Cbl pili and the 22-kDa adhesin are necessary for the optimal binding to CK13 and transmigration properties of B. cenocepacia. PMID:16113259

  8. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Technical Report

    SciTech Connect

    Fischer, N. O.

    2015-01-06

    The goal of this proposal is to demonstrate that colocalization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. In the second quarter of the third year, LLNL finalized all immunological assessments of NLP vaccine formulations in the F344 model. Battelle has immunized rats with three unique NLP formulations by either intramuscular or intranasal administration. All inoculations have been completed, and protective efficacy against an aerosolized challenge will begin at the end of October, 2014.

  9. A Novel Sensor Kinase-Response Regulator Hybrid Controls Biofilm Formation and Type VI Secretion System Activity in Burkholderia cenocepacia?

    PubMed Central

    Aubert, Daniel F.; Flannagan, Ronald S.; Valvano, Miguel A.

    2008-01-01

    Burkholderia cenocepacia is an important opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis (CF). Adaptation of B. cenocepacia to the CF airways may play an important role in the persistence of the infection. We have identified a sensor kinase-response regulator (BCAM0379) named AtsR in B. cenocepacia K56-2 that shares 19% amino acid identity with RetS from Pseudomonas aeruginosa. atsR inactivation led to increased biofilm production and a hyperadherent phenotype in both abiotic surfaces and lung epithelial cells. Also, the atsR mutant overexpressed and hypersecreted an Hcp-like protein known to be specifically secreted by the type VI secretion system (T6SS) in other gram-negative bacteria. Amoeba plaque assays demonstrated that the atsR mutant was more resistant to Dictyostelium predation than the wild-type strain and that this phenomenon was T6SS dependent. Macrophage infection assays also demonstrated that the atsR mutant induces the formation of actin-mediated protrusions from macrophages that require a functional Hcp-like protein, suggesting that the T6SS is involved in actin rearrangements. Three B. cenocepacia transposon mutants that were found in a previous study to be impaired for survival in chronic lung infection model were mapped to the T6SS gene cluster, indicating that the T6SS is required for infection in vivo. Together, our data show that AtsR is involved in the regulation of genes required for virulence in B. cenocepacia K56-2, including genes encoding a T6SS. PMID:18316384

  10. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB-REDO strategies

    SciTech Connect

    Rimsa, Vadim; Eadsforth, Thomas C.; Joosten, Robbie P.; Hunter, William N.

    2014-02-01

    The structure of a bacterial M14-family carboxypeptidase determined exploiting microfocus synchrotron radiation and highly automated refinement protocols reveals its potential to act as a polyglutamylase. A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB-REDO were coupled with model–map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn{sup 2+}-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn{sup 2+}, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1? recognition subsite that suggests specificity towards an acidic substrate.

  11. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB_REDO strategies

    PubMed Central

    Rimsa, Vadim; Eadsforth, Thomas C.; Joosten, Robbie P.; Hunter, William N.

    2014-01-01

    A potential cytosolic metallocarboxypeptidase from Burk­holderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9?Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB_REDO were coupled with model–map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn2+-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn2+, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1? recognition subsite that suggests specificity towards an acidic substrate. PMID:24531462

  12. The Autotransporter BpaB Contributes to the Virulence of Burkholderia mallei in an Aerosol Model of Infection

    PubMed Central

    Zimmerman, Shawn M.; Michel, Frank

    2015-01-01

    Burkholderia mallei is a highly pathogenic bacterium that causes the zoonosis glanders. Previous studies indicated that the genome of the organism contains eight genes specifying autotransporter proteins, which are important virulence factors of Gram-negative bacteria. In the present study, we report the characterization of one of these autotransporters, BpaB. Database searches identified the bpaB gene in ten B. mallei isolates and the predicted proteins were 99-100% identical. Comparative sequence analyses indicate that the gene product is a trimeric autotransporter of 1,090 amino acids with a predicted molecular weight of 105-kDa. Consistent with this finding, we discovered that recombinant bacteria expressing bpaB produce a protein of ?300-kDa on their surface that is reactive with a BpaB-specific monoclonal antibody. Analysis of sera from mice infected with B. mallei indicated that animals produce antibodies against BpaB during the course of disease, thus establishing production of the autotransporter in vivo. To gain insight on its role in virulence, we inactivated the bpaB gene of B. mallei strain ATCC 23344 and determined the median lethal dose of the mutant in a mouse model of aerosol infection. These experiments revealed that the bpaB mutation attenuates virulence 8-14 fold. Using a crystal violet-based assay, we also discovered that constitutive production of BpaB on the surface of B. mallei promotes biofilm formation. To our knowledge, this is the first report of a biofilm factor for this organism. PMID:25993100

  13. Identification and Onion Pathogenicity of Burkholderia cepacia Complex Isolates from the Onion Rhizosphere and Onion Field Soil?

    PubMed Central

    Jacobs, Janette L.; Fasi, Anthony C.; Ramette, Alban; Smith, James J.; Hammerschmidt, Raymond; Sundin, George W.

    2008-01-01

    Burkholderia cepacia complex strains are genetically related but phenotypically diverse organisms that are important opportunistic pathogens in patients with cystic fibrosis (CF,) as well as pathogens of onion and banana, colonizers of the rhizospheres of many plant species, and common inhabitants of bulk soil. Genotypic identification and pathogenicity characterization were performed on B. cepacia complex isolates from the rhizosphere of onion and organic soils in Michigan. A total of 3,798 putative B. cepacia complex isolates were recovered on Pseudomonas cepacia azelaic acid tryptamine and trypan blue tetracycline semiselective media during the 2004 growing season from six commercial onion fields located in two counties in Michigan. Putative B. cepacia complex isolates were identified by hybridization to a 16S rRNA gene probe, followed by duplex PCR using primers targeted to the 16S rRNA gene and recA sequences and restriction fragment length polymorphism analysis of the recA sequence. A total of 1,290 isolates, 980 rhizosphere and 310 soil isolates, were assigned to the species B. cepacia (160), B. cenocepacia (480), B. ambifaria (623), and B. pyrrocinia (27). The majority of isolates identified as B. cepacia (85%), B. cenocepacia (90%), and B. ambifaria (76%) were pathogenic in a detached onion bulb scale assay and caused symptoms of water soaking, maceration, and/or necrosis. A phylogenetic analysis of recA sequences from representative B. cepacia complex type and panel strains, along with isolates collected in this study, revealed that the B. cenocepacia isolates associated with onion grouped within the III-B lineage and that some strains were closely related to strain AU1054, which was isolated from a CF patient. This study revealed that multiple B. cepacia complex species colonize the onion rhizosphere and have the potential to cause sour skin rot disease of onion. In addition, the onion rhizosphere is a natural habitat and a potential environmental source of B. cenocepacia. PMID:18344334

  14. Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction

    PubMed Central

    2011-01-01

    Background Burkholderia cenocepacia is a threatening nosocomial epidemic pathogen in patients with cystic fibrosis (CF) or a compromised immune system. Its high level of antibiotic resistance is an increasing concern in treatments against its infection. Strain B. cenocepacia J2315 is the most infectious isolate from CF patients. There is a strong demand to reconstruct a genome-scale metabolic network of B. cenocepacia J2315 to systematically analyze its metabolic capabilities and its virulence traits, and to search for potential clinical therapy targets. Results We reconstructed the genome-scale metabolic network of B. cenocepacia J2315. An iterative reconstruction process led to the establishment of a robust model, iKF1028, which accounts for 1,028 genes, 859 internal reactions, and 834 metabolites. The model iKF1028 captures important metabolic capabilities of B. cenocepacia J2315 with a particular focus on the biosyntheses of key metabolic virulence factors to assist in understanding the mechanism of disease infection and identifying potential drug targets. The model was tested through BIOLOG assays. Based on the model, the genome annotation of B. cenocepacia J2315 was refined and 24 genes were properly re-annotated. Gene and enzyme essentiality were analyzed to provide further insights into the genome function and architecture. A total of 45 essential enzymes were identified as potential therapeutic targets. Conclusions As the first genome-scale metabolic network of B. cenocepacia J2315, iKF1028 allows a systematic study of the metabolic properties of B. cenocepacia and its key metabolic virulence factors affecting the CF community. The model can be used as a discovery tool to design novel drugs against diseases caused by this notorious pathogen. PMID:21609491

  15. Burkholderia gladioli – a predictor of poor outcome in cystic fibrosis patients who receive lung transplants? A case of locally invasive rhinosinusitis and persistent bacteremia in a 36-year-old lung transplant recipient with cystic fibrosis

    PubMed Central

    Quon, Bradley S; Reid, James D; Wong, Patrick; Wilcox, Pearce G; Javer, Amin; Wilson, Jennifer M; Levy, Robert D

    2011-01-01

    There have been very few reports describing postlung transplant outcomes in patients’ infected/colonized with Burkholderia gladioli pretransplant. A case involving a lung transplant recipient with cystic fibrosis who ultimately died as a result of severe rhinosinusitis due to B gladioli infection in the context of postlung transplant immunosuppression is reported. PMID:22059186

  16. Burkholderia gladioli - a predictor of poor outcome in cystic fibrosis patients who receive lung transplants? A case of locally invasive rhinosinusitis and persistent bacteremia in a 36-year-old lung transplant recipient with cystic fibrosis.

    PubMed

    Quon, Bradley S; Reid, James D; Wong, Patrick; Wilcox, Pearce G; Javer, Amin; Wilson, Jennifer M; Levy, Robert D

    2011-01-01

    There have been very few reports describing postlung transplant outcomes in patients' infected?colonized with Burkholderia gladioli pretransplant. A case involving a lung transplant recipient with cystic fibrosis who ultimately died as a result of severe rhinosinusitis due to B gladioli infection in the context of postlung transplant immunosuppression is reported. PMID:22059186

  17. Accuracy of four commercial systems for identification of Burkholderia cepacia and other gram-negative nonfermenting bacilli recovered from patients with cystic fibrosis.

    PubMed Central

    Kiska, D L; Kerr, A; Jones, M C; Caracciolo, J A; Eskridge, B; Jordan, M; Miller, S; Hughes, D; King, N; Gilligan, P H

    1996-01-01

    Burkholderia cepacia has recently been recognized as an important pathogen in chronic lung disease in patients with cystic fibrosis (CF). Because of the social, psychological, and medical implications of the isolation of B. cepacia from CF patients, accurate identification of this organism is essential. We compared the accuracies of four commercial systems developed for the identification of nonfermenting, gram-negative bacilli with that of conventional biochemical testing for 150 nonfermenters including 58 isolates of B. cepacia recovered from respiratory secretions from CF patients. The accuracies of the four systems for identifying all nonfermenters ranged from 57 to 80%, with the RapID NF Plus system being most accurate. The accuracies of these systems for identifying B. cepacia ranged from 43 to 86%, with the Remel system being most accurate. Depending on the commercial system, from two to seven isolates were misidentified as B. cepacia. The relatively poor performance of the commercial systems requires that identification of certain nonfermenters be confirmed by conventional biochemical testing. These organisms include B. cepacia, Burkholderia sp. other than B. cepacia, and infrequently encountered environmental species (Pseudomonas and Flavobacterium species). In addition, conventional biochemical testing should be done if a commercial system fails to assign an identification to an organism. Confirmatory testing should preferably be performed by a reference laboratory with experience in working organisms isolated from CF patients. PMID:8815102

  18. Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN

    PubMed Central

    2012-01-01

    Background Switchgrass is one of the most promising bioenergy crop candidates for the US. It gives relatively high biomass yield and can grow on marginal lands. However, its yields vary from year to year and from location to location. Thus it is imperative to develop a low input and sustainable switchgrass feedstock production system. One of the most feasible ways to increase biomass yields is to harness benefits of microbial endophytes. Results We demonstrate that one of the most studied plant growth promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, and greenhouse conditions. In several in vitro experiments, the average fresh weight of PsJN-inoculated plants was approximately 50% higher than non-inoculated plants. When one-month-old seedlings were grown in a growth chamber for 30 days, the PsJN-inoculated Alamo plants had significantly higher shoot and root biomass compared to controls. Biomass yield (dry weight) averaged from five experiments was 54.1% higher in the inoculated treatment compared to non-inoculated control. Similar results were obtained in greenhouse experiments with transplants grown in 4-gallon pots for two months. The inoculated plants exhibited more early tillers and persistent growth vigor with 48.6% higher biomass than controls. We also found that PsJN could significantly promote growth of switchgrass cv. Alamo under sub-optimal conditions. However, PsJN-mediated growth promotion in switchgrass is genotype specific. Conclusions Our results show B. phytofirmans strain PsJN significantly promotes growth of switchgrass cv. Alamo under different conditions, especially in the early growth stages leading to enhanced production of tillers. This phenomenon may benefit switchgrass establishment in the first year. Moreover, PsJN significantly stimulated growth of switchgrass cv. Alamo under sub-optimal conditions, indicating that the use of the beneficial bacterial endophytes may boost switchgrass growth on marginal lands and significantly contribute to the development of a low input and sustainable feedstock production system. PMID:22647367

  19. Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance

    PubMed Central

    Pinedo, Ignacio; Ledger, Thomas; Greve, Macarena; Poupin, María J.

    2015-01-01

    Salinity is one of the major limitations for food production worldwide. Improvement of plant salt-stress tolerance using plant-growth promoting rhizobacteria (PGPR) has arisen as a promising strategy to help overcome this limitation. However, the molecular and biochemical mechanisms controlling PGPR/plant interactions under salt-stress remain unclear. The main objective of this study was to obtain new insights into the mechanisms underlying salt-stress tolerance enhancement in the salt-sensitive Arabidopsis thaliana Col-0 plants, when inoculated with the well-known PGPR strain Burkholderia phytofirmans PsJN. To tackle this, different life history traits, together with the spatiotemporal accumulation patterns for key metabolites and salt-stress related transcripts, were analyzed in inoculated plants under short and long-term salt-stress. Inoculated plants displayed faster recovery and increased tolerance after sustained salt-stress. PsJN treatment accelerated the accumulation of proline and transcription of genes related to abscisic acid signaling (Relative to Dessication, RD29A and RD29B), ROS scavenging (Ascorbate Peroxidase 2), and detoxification (Glyoxalase I 7), and down-regulated the expression of Lipoxygenase 2 (related to jasmonic acid biosynthesis). Among the general transcriptional effects of this bacterium, the expression pattern of important ion-homeostasis related genes was altered after short and long-term stress (Arabidopsis K+ Transporter 1, High-Affinity K+ Transporter 1, Sodium Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 1). In all, the faster and stronger molecular changes induced by the inoculation suggest a PsJN-priming effect, which may explain the observed tolerance after short-term and sustained salt-stress in plants. This study provides novel information about possible mechanisms involved in salt-stress tolerance induced by PGPR in plants, showing that certain changes are maintained over time. This opens up new venues to study these relevant biological associations, as well as new approaches to a better understanding of the spatiotemporal mechanisms involved in stress tolerance in plants. PMID:26157451

  20. Complete Genome sequence of Burkholderia phymatum STM815, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species

    SciTech Connect

    Moulin, Lionel; Klonowska, Agnieszka; Caroline, Bournaud; Booth, Kristina; Vriezen, Jan A.C.; Melkonian, Remy; James, Euan; Young, Peter W.; Bena, Gilles; Hauser, Loren John; Land, Miriam L; Kyrpides, Nikos C; Bruce, David; Chain, Patrick S. G.; Copeland, A; Pitluck, Sam; Woyke, Tanja; Lizotte-Waniewski, Michelle; Bristow, James; Riley, Monica

    2014-01-01

    Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815T, was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp) and a plasmid hosting the symbiotic functions (595,108 bp).

  1. Burkholderia ambifaria and B. caribensis Promote Growth and Increase Yield in Grain Amaranth (Amaranthus cruentus and A. hypochondriacus) by Improving Plant Nitrogen Uptake

    PubMed Central

    Parra-Cota, Fannie I.; Peña-Cabriales, Juan J.; de los Santos-Villalobos, Sergio; Martínez-Gallardo, Norma A.; Délano-Frier, John P.

    2014-01-01

    Grain amaranth is an emerging crop that produces seeds having high quality protein with balanced amino-acid content. However, production is restricted by agronomic limitations that result in yields that are lower than those normally produced by cereals. In this work, the use of five different rhizobacteria were explored as a strategy to promote growth and yields in Amaranthus hypochondriacus cv. Nutrisol and A. cruentus cv. Candil, two commercially important grain amaranth cultivars. The plants were grown in a rich substrate, high in organic matter, nitrogen (N), and phosphorus (P) and under greenhouse conditions. Burkholderia ambifaria Mex-5 and B. caribensis XV proved to be the most efficient strains and significantly promoted growth in both grain amaranth species tested. Increased grain yield and harvest index occurred in combination with chemical fertilization when tested in A. cruentus. Growth-promotion and improved yields correlated with increased N content in all tissues examined. Positive effects on growth also occurred in A. cruentus plants grown in a poor soil, even after N and P fertilization. No correlation between non-structural carbohydrate levels in roots of inoculated plants and growth promotion was observed. Conversely, gene expression assays performed at 3-, 5- and 7-weeks after seed inoculation in plants inoculated with B. caribensis XV identified a tissue-specific induction of several genes involved in photosynthesis, sugar- and N- metabolism and transport. It is concluded that strains of Burkholderia effectively promote growth and increase seed yields in grain amaranth. Growth promotion was particularly noticeable in plants grown in an infertile soil but also occurred in a well fertilized rich substrate. The positive effects observed may be attributed to a bio-fertilization effect that led to increased N levels in roots and shoots. The latter effect correlated with the differential induction of several genes involved in carbon and N metabolism and transport. PMID:24533068

  2. Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepacia grows in cystic fibrosis sputum

    PubMed Central

    Drevinek, Pavel; Holden, Matthew TG; Ge, Zhaoping; Jones, Andrew M; Ketchell, Ian; Gill, Ryan T; Mahenthiralingam, Eshwar

    2008-01-01

    Background Bacteria from the Burkholderia cepacia complex (Bcc) are the only group of cystic fibrosis (CF) respiratory pathogens that may cause death by an invasive infection known as cepacia syndrome. Their large genome (> 7000 genes) and multiple pathways encoding the same putative functions make virulence factor identification difficult in these bacteria. Methods A novel microarray was designed to the genome of Burkholderia cenocepacia J2315 and transcriptomics used to identify genes that were differentially regulated when the pathogen was grown in a CF sputum-based infection model. Sputum samples from CF individuals infected with the same B. cenocepacia strain as genome isolate were used, hence, other than a dilution into a minimal growth medium (used as the control condition), no further treatment of the sputum was carried out. Results A total of 723 coding sequences were significantly altered, with 287 upregulated and 436 downregulated; the microarray-observed expression was validated by quantitative PCR on five selected genes. B. cenocepacia genes with putative functions in antimicrobial resistance, iron uptake, protection against reactive oxygen and nitrogen species, secretion and motility were among the most altered in sputum. Novel upregulated genes included: a transmembrane ferric reductase (BCAL0270) implicated in iron metabolism, a novel protease (BCAL0849) that may play a role in host tissue destruction, an organic hydroperoxide resistance gene (BCAM2753), an oxidoreductase (BCAL1107) and a nitrite/sulfite reductase (BCAM1676) that may play roles in resistance to the host defenses. The assumptions of growth under iron-depletion and oxidative stress formulated from the microarray data were tested and confirmed by independent growth of B. cenocepacia under each respective environmental condition. Conclusion Overall, our first full transcriptomic analysis of B. cenocepacia demonstrated the pathogen alters expression of over 10% of the 7176 genes within its genome when it grows in CF sputum. Novel genetic pathways involved in responses to antimicrobial resistance, oxidative stress, and iron metabolism were revealed by the microarray analysis. Virulence factors such as the cable pilus and Cenocepacia Pathogenicity Island were unaltered in expression. However, B. cenocepacia sustained or increased expression of motility-associated genes in sputum, maintaining a potentially invasive phenotype associated with cepacia syndrome. PMID:18801206

  3. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN.

    PubMed

    Ait Barka, Essaid; Nowak, Jerzy; Clément, Christophe

    2006-11-01

    In vitro inoculation of Vitis vinifera L. cv. Chardonnay explants with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN, increased grapevine growth and physiological activity at a low temperature. There was a relationship between endophytic bacterial colonization of the grapevine plantlets and their growth at both ambient (26 degrees C) and low (4 degrees C) temperatures and their sensitivities to chilling. The major benefits of bacterization were observed on root growth (11.8- and 10.7-fold increases at 26 degrees C and 4 degrees C, respectively) and plantlet biomass (6- and 2.2-fold increases at 26 degrees C and 4 degrees C, respectively). The inoculation with PsJN also significantly improved plantlet cold tolerance compared to that of the nonbacterized control. In nonchilled plantlets, bacterization enhanced CO(2) fixation and O(2) evolution 1.3 and 2.2 times, respectively. The nonbacterized controls were more sensitive to exposure to low temperatures than were the bacterized plantlets, as indicated by several measured parameters. Moreover, relative to the noninoculated controls, bacterized plantlets had significantly increased levels of starch, proline, and phenolics. These increases correlated with the enhancement of cold tolerance of the grapevine plantlets. In summary, B. phytofirmans strain PsJN inoculation stimulates grapevine growth and improves its ability to withstand cold stress. PMID:16980419

  4. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants

    PubMed Central

    Mitter, Birgit; Petric, Alexandra; Shin, Maria W.; Chain, Patrick S. G.; Hauberg-Lotte, Lena; Reinhold-Hurek, Barbara; Nowak, Jerzy; Sessitsch, Angela

    2013-01-01

    Burkholderia phytofirmans PsJN is a naturally occurring plant-associated bacterial endophyte that effectively colonizes a wide range of plants and stimulates their growth and vitality. Here we analyze whole genomes, of PsJN and of eight other endophytic bacteria. This study illustrates that a wide spectrum of endophytic life styles exists. Although we postulate the existence of typical endophytic traits, no unique gene cluster could be exclusively linked to the endophytic lifestyle. Furthermore, our study revealed a high genetic diversity among bacterial endophytes as reflected in their genotypic and phenotypic features. B. phytofirmans PsJN is in many aspects outstanding among the selected endophytes. It has the biggest genome consisting of two chromosomes and one plasmid, well-equipped with genes for the degradation of complex organic compounds and detoxification, e.g., 24 glutathione-S-transferase (GST) genes. Furthermore, strain PsJN has a high number of cell surface signaling and secretion systems and harbors the 3-OH-PAME quorum-sensing system that coordinates the switch of free-living to the symbiotic lifestyle in the plant-pathogen R. solanacearum. The ability of B. phytofirmans PsJN to successfully colonize such a wide variety of plant species might be based on its large genome harboring a broad range of physiological functions. PMID:23641251

  5. A rapid and efficient method for directed screening of lipase-producing Burkholderia cepacia complex strains with organic solvent tolerance from rhizosphere.

    PubMed

    Shu, Zhengyu; Lin, Ruifeng; Jiang, Huan; Zhang, Yanfeng; Wang, Mingzi; Huang, Jianzhong

    2009-06-01

    Lipase from Burkholderia cepacia strain is one of the most versatile biocatalysts and is used widely in many biotechnological application fields including detergent additives, the resolution of racemic compounds, etc. Based on the known whole genomic information of B. cepacia strain, both ampicillin and kanamycin were added to the TB-T medium to screen B. cepacia complex stains from rhizosphere soil samples. The selected colonies from the modified TB-T medium were then qualitatively determined the ability to produce extracellular lipase on the rhodamine B-olive oil agar plates. A total of 35 lipolytic pseudo-B. cepacia complex strains were isolated and the positive rate of lipolytic bacteria was 65%. Among them, 15 pseudo-B. cepacia complex strains showed tolerance to benzene, n-hexane and n-heptane at concentration of 10% (V/V) and were identified by the recA gene sequence. All of the 14 lipolytic bacteria were identified as B. cepacia complex strains except that the recA gene sequence of one lipolytic bacterium, strain ZMB009, was not obtained. PMID:19447345

  6. The Burkholderia cenocepacia BDSF quorum sensing fatty acid is synthesized by a bifunctional crotonase homologue having both dehydratase and thioesterase activities.

    PubMed

    Bi, Hongkai; Christensen, Quin H; Feng, Youjun; Wang, Haihong; Cronan, John E

    2012-02-01

    Signal molecules of the diffusible signal factor (DSF) family have been shown recently to be involved in regulation of pathogenesis and biofilm formation in diverse Gram-negative bacteria. DSF signals are reported to be active not only on their cognate bacteria, but also on unrelated bacteria and the pathogenic yeast, Candida albicans. DSFs are monounsaturated fatty acids of medium chain length containing an unusual cis-2 double bond. Although genetic analyses had identified genes involved in DSF synthesis, the pathway of DSF synthesis was unknown. The DSF of the important human pathogen Burkholderia cenocepacia (called BDSF) is cis-2-dodecenoic acid. We report that BDSF is synthesized from a fatty acid synthetic intermediate, the acyl carrier protein (ACP) thioester of 3-hydroxydodecanoic acid. This intermediate is intercepted by protein Bcam0581 and converted to cis-2-dodecenoyl-ACP. Bcam0581 is annotated as a homologue of crotonase, the first enzyme of the fatty acid degradation pathway. We demonstrated Bcam0581to be a bifunctional protein that not only catalysed dehydration of 3-hydroxydodecanoyl-ACP to cis-2-dodecenoyl-ACP, but also cleaved the thioester bond to give the free acid. Both activities required the same set of active-site residues. Although dehydratase and thioesterase activities are known activities of the crotonase superfamily, Bcam0581 is the first protein shown to have both activities. PMID:22221091

  7. The Burkholderia cenocepacia BDSF Quorum Sensing Fatty Acid is Synthesized by a Bifunctional Crotonase Homologue Having Both Dehydratase and Thioesterase Activities

    PubMed Central

    Bi, Hongkai; Christensen, Quin H.; Feng, Youjun; Wang, Haihong; Cronan, John E.

    2012-01-01

    Summary Signal molecules of the Diffusible Signal Factor (DSF) family have been shown recently to be involved in regulation of pathogenesis and biofilm formation in diverse Gram-negative bacteria. DSF signals are reported to be active not only on their cognate bacteria, but also on unrelated bacteria and the pathogenic yeast, Candida albicans. DSFs are monounsaturated fatty acids of medium chain length containing an unusual cis-2 double bond. Although genetic analyses had identified genes involved in DSF synthesis, the pathway of DSF synthesis was unknown. The DSF of the important human pathogen Burkholderia cenocepacia (called BDSF) is cis-2-dodecenoic acid. We report that BDSF is synthesized from a fatty acid synthetic intermediate, the acyl carrier protein (ACP) thioester of 3-hydroxydodecanoic acid. This intermediate is intercepted by protein Bcam0581 and converted to cis-2-dodecenoyl-ACP. Bcam0581 is annotated as a homologue of crotonase, the first enzyme of the fatty acid degradation pathway. We demonstrated Bcam0581to be a bifunctional protein that not only catalyzed dehydration of 3-hydroxydodecanoyl-ACP to cis-2-dodecenoyl-ACP, but also cleaved the thioester bond to give the free acid. Both activities required the same set of active site residues. Although dehydratase and thioesterase activities are known activities of the crotonase superfamily, Bcam0581 is the first protein shown to have both activities. PMID:22221091

  8. [The Effect of Introduction of the Heterologous Gene Encoding the N-acyl-homoserine Lactonase (aiiA) on the Properties of Burkholderia cenocepacia 370].

    PubMed

    Plyuta, V A; Lipasova, V A; Koksharova, O A; Veselova, M A; Kuznetsov, A E; Khmel, I A

    2015-08-01

    To study the role of Quorum Sensing (QS) regulation in the control of the cellular processes of Burkholderia cenocepacia 370, plasmid pME6863 was transferred into its cells. The plasmid contains a heterologous gene encoding for AiiA N-acyl-homoserine lactonase, which degrades the signaling molecules of the QS system of N-acyl-homoserine lactones (AHL). An absence or reduction of AHL in the culture was revealed with the biosensors Chromobacterium violaceum CV026 and Agrobacterium tumifaciens NT1/pZLR4, respectively. The presence of the aiiA gene, which was cloned from Bacillus sp. A24 in the cells of B. cenocepacia 370, resulted in a lack of hemolytic activity, which reduced the extracellular proteolytic activity and decreased the cells' ability to migration in swarms on the surface of the agar medium. The introduction of the aiiA gene did not affect lipase activity, fatty acids synthesis, HCN synthesis, or biofilm formation. Hydrogen peroxide was shown to stimulate biofilm formation by B. cenocepacia 370 in concentrations that inhibited or weakly suppressed bacterial growth. The introduction of the aiiA gene into the cells did not eliminate this effect but it did reduce it. PMID:26601485

  9. The members of M20D peptidase subfamily from Burkholderia cepacia, Deinococcus radiodurans and Staphylococcus aureus (HmrA) are carboxydipeptidases, primarily specific for Met-X dipeptides.

    PubMed

    Jamdar, Sahayog N; Are, Venkata N; Navamani, Mallikarjunan; Kumar, Saurabh; Nagar, Vandan; Makde, Ravindra D

    2015-12-01

    Three members of peptidase family M20D from Burkholderia cepacia (BcepM20D; Uniprot accession no. A0A0F7GQ23), Deinococcus radiodurans R1 (DradM20D; Uniprot accession no. Q9RTP6) and Staphylococcus aureus (HmrA; Uniprot accession no. Q99Q45) were characterized in terms of their preference for various substrates. The results thus reveal that all the enzymes including HmrA lack endopeptidase as well as aminopeptidase activities and possess strong carboxypeptidase activity. Further, the amidohydrolase activity exerted on other substrates like N-Acetyl-Amino acids, N-Carbobenzoxyl-Amino acids and Indole acetic acid (IAA)-Amino acids is due to the ability of these enzymes to accommodate different types of chemical groups other than the amino acid at the S1 pocket. Further, data on peptide hydrolysis strongly suggests that all the three enzymes are primarily carboxydipeptidases exhibiting highest catalytic efficiency (kcat/Km 5-36 × 10(5) M(-1) s(-1)) for Met-X substrates, where -X could be Ala/Gly/Ser/Tyr/Phe/Leu depending on the source organism. The supportive evidence for the substrate specificities was also provided with the molecular docking studies carried out using structure of SACOL0085 and homology modelled structure of BcepM20D. The preference for different substrates, their binding at active site of the enzyme and possible role of these enzymes in recycling of methionine are discussed in this study. PMID:26456402

  10. Whole genome sequencing enables the characterization of BurI, a LuxI homologue of Burkholderia cepacia strain GG4

    PubMed Central

    Hong, Kar Wai; Chan, Kok-Gan

    2015-01-01

    Quorum sensing is a mechanism for regulating proteobacterial gene expression in response to changes in cell population. In proteobacteria, N-acyl homoserine lactone (AHL) appears to be the most widely used signalling molecules in mediating, among others, the production of extracellular virulence factors for survival. In this work, the genome of B. cepacia strain GG4, a plasmid-free strain capable of AHL synthesis was explored. In silico analysis of the 6.6 Mb complete genome revealed the presence of a LuxI homologue which correspond to Type I quorum sensing. Here, we report the molecular cloning and characterization of this LuxI homologue, designated as BurI. This 609 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was approximately 25 kDa and is highly similar to several autoinducer proteins of the LuxI family among Burkholderia species. To verify the AHL synthesis activity of this protein, high resolution liquid chromatography-mass spectrometry analysis revealed the production of 3-oxo-hexanoylhomoserine lactone, N-octanoylhomoserine lactone and 3-hydroxy-octanoylhomoserine lactone from induced E. coli BL21 harboring the recombinant BurI. Our data show, for the first time, the cloning and characterization of the LuxI homologue from B. cepacia strain GG4 and confirmation of its AHL synthesis activity. PMID:26290785

  11. Cell Wall Recycling-Linked Coregulation of AmpC and PenB ?-Lactamases through ampD Mutations in Burkholderia cenocepacia.

    PubMed

    Hwang, Junghyun; Kim, Heenam Stanley

    2015-12-01

    In many Gram-negative pathogens, mutations in the key cell wall-recycling enzyme AmpD (N-acetyl-anhydromuramyl-l-alanine amidase) affect the activity of the regulator AmpR, which leads to the expression of AmpC ?-lactamase, conferring resistance to expanded-spectrum cephalosporin antibiotics. Burkholderia cepacia complex (Bcc) species also have these Amp homologs; however, the regulatory circuitry and the nature of causal ampD mutations remain to be explored. A total of 92 ampD mutants were obtained, representing four types of mutations: single nucleotide substitution (causing an amino acid substitution or antitermination of the enzyme), duplication, deletion, and IS element insertion. Duplication, which can go through reversion, was the most frequent type. Intriguingly, mutations in ampD led to the induction of two ?-lactamases, AmpC and PenB. Coregulation of AmpC and PenB in B. cenocepacia, and likely also in many Bcc species with the same gene organization, poses a serious threat to human health. This resistance mechanism is of evolutionary optimization in that ampD is highly prone to mutations allowing rapid response to antibiotic challenge, and many of the mutations are reversible in order to resume cell wall recycling when the antibiotic challenge is relieved. PMID:26416862

  12. Analysis of changes in congener selectivity during PCB degradation by Burkholderia sp. strain TSN101 with increasing concentrations of PCB and characterization of the bphBCD genes and gene products.

    PubMed

    Mukerjee-Dhar, G; Hatta, T; Shimura, M; Kimbara, K

    1998-01-01

    We isolated and characterized a gram-negative bacterium, Burkholderia sp. strain TSN101, that can degrade polychlorinated biphenyls (PCBs) at concentrations as high as 150 microg Kaneclor 300/ml, a PCB mixture equivalent to Aroclor 1242. Growing cells of strain TSN101 degraded most of the tri- and tetrachlorobiphenyls in medium containing 25 microg Kaneclor 300/ml. Using PCB concentrations of 50-150 microg of Kaneclor 300/ml, the congener selectivity pattern was different and the pattern of chlorine substitution strongly affected degradation of some congeners. At 25 microg Kaneclor 300/ml, strain TSN101 degraded di- and trichlorinated congeners with chlorine substitutions at both the ortho and the para positions. At higher concentrations of Kaneclor 300, di- and trichlorobiphenyls with ortho substituents in both phenyl rings were not degraded well. Trichlorobiphenyls with para and meta substitutents were degraded equally well at all concentrations studied. The ability of strain TSN101 to degrade ortho and para-substituted congeners was confirmed using a defined PCB mixture with chlorine substituents at 2'- and 4'-positions. A 5-kb DNA fragment containing the bphBCD genes was cloned and sequenced. Comparison of the deduced amino acid sequences of these genes with related proteins indicated 99 and 98% sequence similarity to the BphB and BphD of Comamonas testosteroni strain B-356, respectively. The bphC gene product showed 74% sequence similarity to the BphC of Burkholderia cepacia strain LB400 and exhibited a narrow substrate specificity with strong affinity for 2, 3-dihydroxybiphenyl. A bphC-disrupted mutant of Burkholderia sp. strain TSN101, constructed by gene replacement, lost the ability to utilize biphenyl, thus supporting the role of the cloned bph gene in biphenyl metabolism. PMID:9396836

  13. 7-O-Malonyl Macrolactin A, a New Macrolactin Antibiotic from Bacillus subtilis Active against Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococci, and a Small-Colony Variant of Burkholderia cepacia

    PubMed Central

    Romero-Tabarez, Magally; Jansen, Rolf; Sylla, Marita; Lünsdorf, Heinrich; Häußler, Susanne; Santosa, Dwi A.; Timmis, Kenneth N.; Molinari, Gabriella

    2006-01-01

    We report here the discovery, isolation, and chemical and preliminary biological characterization of a new antibiotic compound, 7-O-malonyl macrolactin A (MMA), produced by a Bacillus subtilis soil isolate. MMA is a bacteriostatic antibiotic that inhibits a number of multidrug-resistant gram-positive bacterial pathogens, including methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia. MMA-treated staphylococci and enterococci were pseudomulticellular and exhibited multiple asymmetric initiation points of septum formation, indicating that MMA may inhibit a cell division function. PMID:16641438

  14. Investigating the Role of the Host Multidrug Resistance Associated Protein Transporter Family in Burkholderia cepacia Complex Pathogenicity Using a Caenorhabditis elegans Infection Model

    PubMed Central

    Tedesco, Pietro; Visone, Marco; Parrilli, Ermenegilda; Tutino, Maria Luisa; Perrin, Elena; Maida, Isabel; Fani, Renato; Ballestriero, Francesco; Santos, Radleigh; Pinilla, Clemencia; Di Schiavi, Elia; Tegos, George; de Pascale, Donatella

    2015-01-01

    This study investigated the relationship between host efflux system of the non-vertebrate nematode Caenorhabditis elegans and Burkholderia cepacia complex (Bcc) strain virulence. This is the first comprehensive effort to profile host-transporters within the context of Bcc infection. With this aim, two different toxicity tests were performed: a slow killing assay that monitors mortality of the host by intestinal colonization and a fast killing assay that assesses production of toxins. A Virulence Ranking scheme was defined, that expressed the toxicity of the Bcc panel members, based on the percentage of surviving worms. According to this ranking the 18 Bcc strains were divided in 4 distinct groups. Only the Cystic Fibrosis isolated strains possessed profound nematode killing ability to accumulate in worms’ intestines. For the transporter analysis a complete set of isogenic nematode single Multidrug Resistance associated Protein (MRP) efflux mutants and a number of efflux inhibitors were interrogated in the host toxicity assays. The Bcc pathogenicity profile of the 7 isogenic C. elegans MRP knock-out strains functionality was classified in two distinct groups. Disabling host transporters enhanced nematode mortality more than 50% in 5 out of 7 mutants when compared to wild type. In particular mrp-2 was the most susceptible phenotype with increased mortality for 13 out 18 Bcc strains, whereas mrp-3 and mrp-4 knock-outs had lower mortality rates, suggesting a different role in toxin-substrate recognition. The use of MRP efflux inhibitors in the assays resulted in substantially increased (>40% on average) mortality of wild-type worms. PMID:26587842

  15. The exopolysaccharide gene cluster Bcam1330–Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349

    PubMed Central

    Fazli, Mustafa; McCarthy, Yvonne; Givskov, Michael; Ryan, Robert P; Tolker-Nielsen, Tim

    2013-01-01

    In Burkholderia cenocepacia, the second messenger cyclic diguanosine monophosphate (c-di-GMP) has previously been shown to positively regulate biofilm formation and the expression of cellulose and type-I fimbriae genes through binding to the transcriptional regulator Bcam1349. Here, we provide evidence that cellulose and type-I fimbriae are not involved in B. cenocepacia biofilm formation in flow chambers, and we identify a novel Bcam1349/c-di-GMP-regulated exopolysaccharide gene cluster which is essential for B. cenocepacia biofilm formation. Overproduction of Bcam1349 in trans promotes wrinkly colony morphology, pellicle, and biofilm formation in B. cenocepacia. A screen for transposon mutants unable to respond to the overproduction of Bcam1349 led to the identification of a 12-gene cluster, Bcam1330–Bcam1341, the products of which appear to be involved in the production of a putative biofilm matrix exopolysaccharide and to be essential for flow-chamber biofilm formation. We demonstrate that Bcam1349 binds to the promoter region of genes in the Bcam1330–Bcam1341 cluster and that this binding is enhanced by the presence of c-di-GMP. Furthermore, we demonstrate that overproduction of both c-di-GMP and Bcam1349 leads to increased transcription of these genes, indicating that c-di-GMP and Bcam1349 functions together in regulating exopolysaccharide production from the Bcam1330–Bcam1341 gene cluster. Our results suggest that the product encoded by the Bcam1330–Bcam1341 gene cluster is a major exopolysaccharide that provides structural stability to the biofilms formed by B. cenocepacia, and that its production is regulated by c-di-GMP through binding to and promotion of the activity of the transcriptional regulator Bcam1349. PMID:23281338

  16. Protein Engineering of a Nitrilase from Burkholderia cenocepacia J2315 for Efficient and Enantioselective Production of (R)-o-Chloromandelic Acid.

    PubMed

    Wang, Hualei; Gao, Wenyuan; Sun, Huihui; Chen, Lifeng; Zhang, Lujia; Wang, Xuedong; Wei, Dongzhi

    2015-12-15

    The nitrilase-mediated pathway has significant advantages in the production of optically pure aromatic ?-hydroxy carboxylic acids. However, low enantioselectivity and activity are observed on hydrolyzing o-chloromandelonitrile to produce optically pure (R)-o-chloromandelic acid. In the present study, a protein engineering approach was successfully used to enhance the performance of nitrilase obtained from Burkholderia cenocepacia strain J2315 (BCJ2315) in hydrolyzing o-chloromandelonitrile. Four hot spots (T49, I113, Y199, and T310) responsible for the enantioselectivity and activity of BCJ2315 were identified by random mutagenesis. An effective double mutant (I113M/Y199G [encoding the replacement of I with M at position 113 and Y with G at position 199]), which demonstrated remarkably enhanced enantioselectivity (99.1% enantiomeric excess [ee] compared to 89.2% ee for the wild type) and relative activity (360% of the wild type), was created by two rounds of site saturation mutagenesis, first at each of the four hot spots and subsequently at position 199 for combination with the selected beneficial mutation I113M. Notably, this mutant also demonstrated dramatically enhanced enantioselectivity and activity toward other mandelonitrile derivatives and, thus, broadened the substrate scope of this nitrilase. Using an ethyl acetate-water (1:9) biphasic system, o-chloromandelonitrile (500 mM) was completely hydrolyzed in 3 h by this mutant with a small amount of biocatalyst (10 g/liter wet cells), resulting in a high concentration of (R)-o-chloromandelic acid with 98.7% ee, to our knowledge the highest ever reported. This result highlights a promising method for industrial production of optically pure (R)-o-chloromandelic acid. Insight into the source of enantioselectivity and activity was gained by homology modeling and molecular docking experiments. PMID:26431972

  17. Genome-Wide RNA Sequencing Analysis of Quorum Sensing-Controlled Regulons in the Plant-Associated Burkholderia glumae PG1 Strain.

    PubMed

    Gao, Rong; Krysciak, Dagmar; Petersen, Katrin; Utpatel, Christian; Knapp, Andreas; Schmeisser, Christel; Daniel, Rolf; Voget, Sonja; Jaeger, Karl-Erich; Streit, Wolfgang R

    2015-12-01

    Burkholderia glumae PG1 is a soil-associated motile plant-pathogenic bacterium possessing a cell density-dependent regulation system called quorum sensing (QS). Its genome contains three genes, here designated bgaI1 to bgaI3, encoding distinct autoinducer-1 (AI-1) synthases, which are capable of synthesizing QS signaling molecules. Here, we report on the construction of B. glumae PG1 ?bgaI1, ?bgaI2, and ?bgaI3 mutants, their phenotypic characterization, and genome-wide transcriptome analysis using RNA sequencing (RNA-seq) technology. Knockout of each of these bgaI genes resulted in strongly decreased motility, reduced extracellular lipase activity, a reduced ability to cause plant tissue maceration, and decreased pathogenicity. RNA-seq analysis of all three B. glumae PG1 AI-1 synthase mutants performed in the transition from exponential to stationary growth phase revealed differential expression of a significant number of predicted genes. In comparison with the levels of gene expression by wild-type strain B. glumae PG1, 481 genes were differentially expressed in the ?bgaI1 mutant, 213 were differentially expressed in the ?bgaI2 mutant, and 367 were differentially expressed in the ?bgaI3 mutant. Interestingly, only a minor set of 78 genes was coregulated in all three mutants. The majority of the QS-regulated genes were linked to metabolic activities, and the most pronounced regulation was observed for genes involved in rhamnolipid and Flp pilus biosynthesis and the type VI secretion system and genes linked to a clustered regularly interspaced short palindromic repeat (CRISPR)-cas gene cluster. PMID:26362987

  18. Burkholderia cepacia Complex Bacteria from Clinical and Environmental Sources in Italy: Genomovar Status and Distribution of Traits Related to Virulence and Transmissibility

    PubMed Central

    Bevivino, Annamaria; Dalmastri, Claudia; Tabacchioni, Silvia; Chiarini, Luigi; Belli, Maria L.; Piana, Sandra; Materazzo, Alberto; Vandamme, Peter; Manno, Graziana

    2002-01-01

    Sixty-eight Burkholderia cepacia complex isolates recovered from the sputum of 53 cystic fibrosis patients and 75 isolates collected from the maize rhizosphere were compared to each other to assess their genomovar status as well as some traits related to virulence such as antibiotic susceptibility, proteolytic and hemolytic activities, and transmissibility, in which transmissibility is determined by detection of the esmR and cblA genes. Among the clinical isolates, B. cepacia genomovar III comprised the majority of isolates examined and only a very few isolates were assigned to B. cepacia genomovar I, B. stabilis, and B. pyrrocinia; among the environmental isolates a prevalence of B. cepacia genomovar III and B. ambifaria was observed, whereas few environmental isolates belonging to B. cepacia genomovar I and B. pyrrocinia were found. Antibiotic resistance analysis revealed a certain degree of differentiation between clinical and environmental isolates. Proteolytic activity and onion tissue maceration ability were found to be spread equally among both clinical and environmental isolates, whereas larger percentages of environmental isolates than clinical isolates had hemolytic activity. The esmR gene was found exclusively among isolates belonging to B. cepacia genomovar III, with a marked prevalence in clinical isolates, whereas only one clinical isolate belonging to B. cepacia genomovar III was found to bear the cblA gene. In conclusion, the results of the present study show that the species compositions of the clinical and environmental B. cepacia complex populations examined are quite different and that some of the candidate determinants related to virulence and transmissibility are not confined solely to clinical isolates but are also spread among environmental isolates belonging to different species of the B. cepacia complex. PMID:11880403

  19. Defining a Structural and Kinetic Rationale for Paralogous Copies of Phenylacetate-CoA Ligases from the Cystic Fibrosis Pathogen Burkholderia cenocepacia J2315*

    PubMed Central

    Law, Adrienne; Boulanger, Martin J.

    2011-01-01

    The phenylacetic acid (PAA) degradation pathway is the sole aerobic route for phenylacetic acid metabolism in bacteria and facilitates degradation of environmental pollutants such as styrene and ethylbenzene. The PAA pathway also is implicated in promoting Burkholderia cenocepacia infections in cystic fibrosis patients. Intriguingly, the first enzyme in the PAA pathway is present in two copies (paaK1 and paaK2), yet each subsequent enzyme is present in only a single copy. Furthermore, sequence divergence indicates that PaaK1 and PaaK2 form a unique subgroup within the adenylate-forming enzyme (AFE) superfamily. To establish a biochemical rationale for the existence of the PaaK paralogs in B. cenocepacia, we present high resolution x-ray crystal structures of a selenomethionine derivative of PaaK1 in complex with ATP and adenylated phenylacetate intermediate complexes of PaaK1 and PaaK2 in distinct conformations. Structural analysis reveals a novel N-terminal microdomain that may serve to recruit subsequent PAA enzymes, whereas a bifunctional role is proposed for the P-loop in stabilizing the C-terminal domain in conformation 2. The potential for different kinetic profiles was suggested by a structurally divergent extension of the aryl substrate pocket in PaaK1 relative to PaaK2. Functional characterization confirmed this prediction, with PaaK1 possessing a lower Km for phenylacetic acid and better able to accommodate 3? and 4? substitutions on the phenyl ring. Collectively, these results offer detailed insight into the reaction mechanism of a novel subgroup of the AFE superfamily and provide a clear biochemical rationale for the presence of paralogous copies of PaaK of B. cenocepacia. PMID:21388965

  20. Genomes and Characterization of Phages Bcep22 and BcepIL02, Founders of a Novel Phage Type in Burkholderia cenocepacia?†

    PubMed Central

    Gill, Jason J.; Summer, Elizabeth J.; Russell, William K.; Cologna, Stephanie M.; Carlile, Thomas M.; Fuller, Alicia C.; Kitsopoulos, Kate; Mebane, Leslie M.; Parkinson, Brandi N.; Sullivan, David; Carmody, Lisa A.; Gonzalez, Carlos F.; LiPuma, John J.; Young, Ry

    2011-01-01

    Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections. Here we describe the genome of the previously described therapeutic B. cenocepacia podophage BcepIL02 and its close relative, Bcep22. Phage Bcep22 was found to contain a circularly permuted genome of 63,882 bp containing 77 genes; BcepIL02 was found to be 62,714 bp and contains 76 predicted genes. Major virion-associated proteins were identified by proteomic analysis. We propose that these phages comprise the founding members of a novel podophage lineage, the Bcep22-like phages. Among the interesting features of these phages are a series of tandemly repeated putative tail fiber genes that are similar to each other and also to one or more such genes in the other phages. Both phages also contain an extremely large (ca. 4,600-amino-acid), virion-associated, multidomain protein that accounts for over 20% of the phages' coding capacity, is widely distributed among other bacterial and phage genomes, and may be involved in facilitating DNA entry in both phage and other mobile DNA elements. The phages, which were previously presumed to be virulent, show evidence of a temperate lifestyle but are apparently unable to form stable lysogens in their hosts. This ambiguity complicates determination of a phage lifestyle, a key consideration in the selection of therapeutic phages. PMID:21804006

  1. Complete characterisation of Tn5530 from Burkholderia cepacia strain 2a (pIJB1) and studies of 2,4-dichlorophenoxyacetate uptake by the organism.

    PubMed

    Poh, R P-C; Smith, A R W; Bruce, I J

    2002-07-01

    The complete genetic characterisation of Tn5530 in Burkholderia cepacia strain 2a (pIJB1) has been accomplished, indicating that it is a Tn3-like transposon with a complex structure bearing operons for the catabolism of 2,4-dichlorophenoxyacetate (2,4-D) and malonate. Tn5530 is terminated at both ends by the IS1071::IS1471 element and the 2,4-D- and malonate-dissimilatory operons are separated by a region encoding a putA and lrp gene and a gene encoding a chloride channel protein. The chloride channel protein may have a role in the expulsion of chloride ions liberated by the dissimilation of 2,4-D. In addition, a putative transposase with a high level of sequence similarity to those of plasmid pGH1 from Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. glycinea, and a transcription factor similar to those of the TetR family with low but significant levels of sequence similarity to those identified in a number of other organisms was observed. The entire Tn5530 sequence length, including the IS1071::IS1471 elements, was found to be 40,956bp, and pIJB1 was replicon-typed and otherwise characterised as being of the IncP-1beta subgroup, bearing merA and merD genes conferring resistance to mercuric chloride. The rate of uptake of 2,4-D by B. cepacia strain 2a was observed to proceed more readily at acid pH, suggesting involvement of the undissociated form of the compound. Uptake did not show saturation kinetics, was concentration-dependent, and appeared to occur in two stages; an initial accumulation followed by a linear second phase. Uptake could be inhibited by sodium azide but not by arsenate, N,N(')-dicyclohexylcarbodi-imide (DCCD) or carbonylcyanide m-chlorophenyl-hydrazone (CCCP) suggesting that it is not energy-dependent. PMID:12206751

  2. Genomes and characterization of phages Bcep22 and BcepIL02, founders of a novel phage type in Burkholderia cenocepacia.

    PubMed

    Gill, Jason J; Summer, Elizabeth J; Russell, William K; Cologna, Stephanie M; Carlile, Thomas M; Fuller, Alicia C; Kitsopoulos, Kate; Mebane, Leslie M; Parkinson, Brandi N; Sullivan, David; Carmody, Lisa A; Gonzalez, Carlos F; LiPuma, John J; Young, Ry

    2011-10-01

    Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections. Here we describe the genome of the previously described therapeutic B. cenocepacia podophage BcepIL02 and its close relative, Bcep22. Phage Bcep22 was found to contain a circularly permuted genome of 63,882 bp containing 77 genes; BcepIL02 was found to be 62,714 bp and contains 76 predicted genes. Major virion-associated proteins were identified by proteomic analysis. We propose that these phages comprise the founding members of a novel podophage lineage, the Bcep22-like phages. Among the interesting features of these phages are a series of tandemly repeated putative tail fiber genes that are similar to each other and also to one or more such genes in the other phages. Both phages also contain an extremely large (ca. 4,600-amino-acid), virion-associated, multidomain protein that accounts for over 20% of the phages' coding capacity, is widely distributed among other bacterial and phage genomes, and may be involved in facilitating DNA entry in both phage and other mobile DNA elements. The phages, which were previously presumed to be virulent, show evidence of a temperate lifestyle but are apparently unable to form stable lysogens in their hosts. This ambiguity complicates determination of a phage lifestyle, a key consideration in the selection of therapeutic phages. PMID:21804006

  3. The Tyrosine Kinase BceF and the Phosphotyrosine Phosphatase BceD of Burkholderia contaminans Are Required for Efficient Invasion and Epithelial Disruption of a Cystic Fibrosis Lung Epithelial Cell Line

    PubMed Central

    Ferreira, Ana S.; Silva, Inês N.; Fernandes, Fábio; Pilkington, Ruth; Callaghan, Máire; McClean, Siobhán

    2014-01-01

    Bacterial tyrosine kinases and their cognate protein tyrosine phosphatases are best known for regulating the biosynthesis of polysaccharides. Moreover, their roles in the stress response, DNA metabolism, cell division, and virulence have also been documented. The aim of this study was to investigate the pathogenicity and potential mechanisms of virulence dependent on the tyrosine kinase BceF and phosphotyrosine phosphatase BceD of the cystic fibrosis opportunistic pathogen Burkholderia contaminans IST408. The insertion mutants bceD::Tp and bceF::Tp showed similar attenuation of adhesion and invasion of the cystic fibrosis lung epithelial cell line CFBE41o- compared to the parental strain B. contaminans IST408. In the absence of bceD or bceF genes, B. contaminans also showed a reduction in the ability to translocate across polarized epithelial cell monolayers, demonstrated by a higher transepithelial electrical resistance, reduced flux of fluorescein isothiocyanate-labeled bovine serum albumin, and higher levels of tight junction proteins ZO-1, occludin, and claudin-1 present in monolayers exposed to these bacterial mutants. Furthermore, bceD::Tp and bceF::Tp mutants induced lower levels of interleukin-6 (IL-6) and IL-8 release than the parental strain. In conclusion, although the mechanisms of pathogenicity dependent on BceD and BceF are not understood, these proteins contribute to the virulence of Burkholderia by enhancement of cell attachment and invasion, disruption of epithelial integrity, and modulation of the proinflammatory response. PMID:25486990

  4. Distribution of Genes Encoding Putative Transmissibility Factors among Epidemic and Nonepidemic Strains of Burkholderia cepacia from Cystic Fibrosis Patients in the United Kingdom

    PubMed Central

    Clode, Fiona E.; Kaufmann, Mary E.; Malnick, Henry; Pitt, Tyrone L.

    2000-01-01

    In the last 15 years, Burkholderia cepacia has emerged as a significant pathogen in cystic fibrosis (CF) patients, mainly due to the severity of infection observed in a subset of patients and the fear of transmission of the organism to noncolonized patients. Although patients who deteriorate rapidly cannot be predicted by microbiological characteristics, three genetic markers have been described for strains that spread between patients. These are the cblA gene, encoding giant cable pili; a hybrid of two insertion sequences, IS1356 and IS402; and a 1.4-kb open reading frame known as the B. cepacia epidemic strain marker (BCESM). The latter two are of unknown function. An epidemic strain lineage was previously identified among CF patients in the United Kingdom that apparently had spread from North America and that was characterized by a specific random amplified polymorphic DNA (RAPD) pattern. We searched for the described genetic markers using specific PCR assays with 117 patient isolates of B. cepacia from 40 United Kingdom hospitals. Isolates were grouped according to genomovar and epidemic strain lineage RAPD pattern with a 10-base primer, P272. A total of 41 isolates from patients in 12 hospitals were classified as the epidemic strain, and 40 of these were distributed in genomovars IIIa (11 isolates), IIIb (1 isolate), and IIIc (28 isolates). All isolates of the epidemic strain were positive for the cblA gene and BCESM, but two lacked the insertion sequence hybrid. None of the 76 sporadic isolates contained cblA or the insertion sequence hybrid, but 11 of them were positive for BCESM. Nonepidemic isolates were distributed among genomovars I or IV (9), II (49), IIIa (11), IIIb (3), and IIIc (4). There were three clusters of cross-infection (one involving two patients and two involving three patients) with isolates of genomovar II. We conclude that in the United Kingdom, a single clonal lineage has spread between and within some hospitals providing care for CF patients. The presence of the cblA gene is the most specific marker for the epidemic strain. We recommend that all isolates of B. cepacia from CF patients should be screened by PCR to influence segregation and infection control strategies. PMID:10790095

  5. Genomic and Functional Analyses of the 2-Aminophenol Catabolic Pathway and Partial Conversion of Its Substrate into Picolinic Acid in Burkholderia xenovorans LB400

    PubMed Central

    Agulló, Loreine; González, Myriam; Seeger, Michael

    2013-01-01

    2-aminophenol (2-AP) is a toxic nitrogen-containing aromatic pollutant. Burkholderia xenovorans LB400 possess an amn gene cluster that encodes the 2-AP catabolic pathway. In this report, the functionality of the 2-aminophenol pathway of B. xenovorans strain LB400 was analyzed. The amnRJBACDFEHG cluster located at chromosome 1 encodes the enzymes for the degradation of 2-aminophenol. The absence of habA and habB genes in LB400 genome correlates with its no growth on nitrobenzene. RT-PCR analyses in strain LB400 showed the co-expression of amnJB, amnBAC, amnACD, amnDFE and amnEHG genes, suggesting that the amn cluster is an operon. RT-qPCR showed that the amnB gene expression was highly induced by 2-AP, whereas a basal constitutive expression was observed in glucose, indicating that these amn genes are regulated. We propose that the predicted MarR-type transcriptional regulator encoded by the amnR gene acts as repressor of the amn gene cluster using a MarR-type regulatory binding sequence. This report showed that LB400 resting cells degrade completely 2-AP. The amn gene cluster from strain LB400 is highly identical to the amn gene cluster from P. knackmussi strain B13, which could not grow on 2-AP. However, we demonstrate that B. xenovorans LB400 is able to grow using 2-AP as sole nitrogen source and glucose as sole carbon source. An amnBA? mutant of strain LB400 was unable to grow with 2-AP as nitrogen source and glucose as carbon source and to degrade 2-AP. This study showed that during LB400 growth on 2-AP this substrate was partially converted into picolinic acid (PA), a well-known antibiotic. The addition of PA at lag or mid-exponential phase inhibited LB400 growth. The MIC of PA for strain LB400 is 2 mM. Overall, these results demonstrate that B. xenovorans strain LB400 posses a functional 2-AP catabolic central pathway, which could lead to the production of picolinic acid. PMID:24124510

  6. Genes Involved in Degradation of para-Nitrophenol Are Differentially Arranged in Form of Non-Contiguous Gene Clusters in Burkholderia sp. strain SJ98

    PubMed Central

    Vikram, Surendra; Pandey, Janmejay; Kumar, Shailesh; Raghava, Gajendra Pal Singh

    2013-01-01

    Biodegradation of para-Nitrophenol (PNP) proceeds via two distinct pathways, having 1,2,3-benzenetriol (BT) and hydroquinone (HQ) as their respective terminal aromatic intermediates. Genes involved in these pathways have already been studied in different PNP degrading bacteria. Burkholderia sp. strain SJ98 degrades PNP via both the pathways. Earlier, we have sequenced and analyzed a ~41 kb fragment from the genomic library of strain SJ98. This DNA fragment was found to harbor all the lower pathway genes; however, genes responsible for the initial transformation of PNP could not be identified within this fragment. Now, we have sequenced and annotated the whole genome of strain SJ98 and found two ORFs (viz., pnpA and pnpB) showing maximum identity at amino acid level with p-nitrophenol 4-monooxygenase (PnpM) and p-benzoquinone reductase (BqR). Unlike the other PNP gene clusters reported earlier in different bacteria, these two ORFs in SJ98 genome are physically separated from the other genes of PNP degradation pathway. In order to ascertain the identity of ORFs pnpA and pnpB, we have performed in-vitro assays using recombinant proteins heterologously expressed and purified to homogeneity. Purified PnpA was found to be a functional PnpM and transformed PNP into benzoquinone (BQ), while PnpB was found to be a functional BqR which catalyzed the transformation of BQ into hydroquinone (HQ). Noticeably, PnpM from strain SJ98 could also transform a number of PNP analogues. Based on the above observations, we propose that the genes for PNP degradation in strain SJ98 are arranged differentially in form of non-contiguous gene clusters. This is the first report for such arrangement for gene clusters involved in PNP degradation. Therefore, we propose that PNP degradation in strain SJ98 could be an important model system for further studies on differential evolution of PNP degradation functions. PMID:24376843

  7. Identification of IS1356, a new insertion sequence, and its association with IS402 in epidemic strains of Burkholderia cepacia infecting cystic fibrosis patients.

    PubMed Central

    Tyler, S D; Rozee, K R; Johnson, W M

    1996-01-01

    Burkholderia cepacia is now recognized as an important opportunistic pathogen in cystic fibrosis (CF) and other compromised patients. Epidemicity among CF patients has been attributed to at least one particularly infectious strain (strain ET12), and both genetic evidence and anecdotal evidence suggest that this strain, currently endemic in Ontario, and those causing an epidemic in the United Kingdom, are indeed the same. Our study was conducted to determine whether there was any association between the presence of various insertion sequence (IS) elements, the cable pilin subunit gene (cblA), electrophoretic type (ET), and ribotype (RT) in a collection of 97 clinical and 2 environmental isolates of B. cepacia. No apparent linkage was found for IS elements IS401, IS402, IS406, IS407, and IS408 with ET or RT. The cblA target, said to be a marker for high infectivity, was detected in 100% (38 of 38) of strains of B. cepacia ET12 and in a single strain of ET13 that differed in a single enzyme allele. A new IS, IS1356, identified during the investigation, was present in 71.7% of all isolates, and 50.7% of these isolates harbored IS1356 as a hybrid IS element inserted into IS402. IS1356 is 1,353 bp in length, and when it is inserted into IS402 it results in a 10-bp duplication at the site of insertion. IS1356 contains one major open reading frame of 1,260 bp coding for a putative transposase which has significant homology to ISRm3 in Rhizobium meliloti (59%) and to an undesignated IS element in Corynebacterium diphtheriae (49%). The IS402-IS1356 element was found exclusively in the epidemic strains from Ontario and the United Kingdom, being detected in 94.7% (36 of 38 isolates) of B. cepacia ET12 isolates. Of the two ET12 isolates found to be devoid of the IS402-IS1356 element, both contained IS1356 unassociated with IS402, one was temporally unrelated to the epidemic, and the other was from a CF patient in a geographic area remote from Ontario and the United Kingdom. It is evident that the IS402-IS1356 hybrid element, the cblA pilin subunit gene, and the allelic suite represented by multilocus enzyme electrophoretic type ET12 may provide useful markers for the epidemic, highly transmissible transatlantic strain isolated in Ontario and the United Kingdom. PMID:8784555

  8. A Prospective Study of the Causes of Febrile Illness Requiring Hospitalization in Children in Cambodia

    PubMed Central

    Chheng, Kheng; Carter, Michael J.; Emary, Kate; Chanpheaktra, Ngoun; Moore, Catrin E.; Stoesser, Nicole; Putchhat, Hor; Sona, Soeng; Reaksmey, Sin; Kitsutani, Paul; Sar, Borann; van Doorn, H. Rogier; Uyen, Nguyen Hanh; Van Tan, Le; Paris, Daniel; Blacksell, Stuart D.; Amornchai, Premjit; Wuthiekanun, Vanaporn; Parry, Christopher M.; Day, Nicholas P. J.; Kumar, Varun

    2013-01-01

    Background Febrile illnesses are pre-eminent contributors to morbidity and mortality among children in South-East Asia but the causes are poorly understood. We determined the causes of fever in children hospitalised in Siem Reap province, Cambodia. Methods and Findings A one-year prospective study of febrile children admitted to Angkor Hospital for Children, Siem Reap. Demographic, clinical, laboratory and outcome data were comprehensively analysed. Between October 12th 2009 and October 12th 2010 there were 1225 episodes of febrile illness in 1180 children. Median (IQR) age was 2.0 (0.8–6.4) years, with 850 (69%) episodes in children <5 years. Common microbiological diagnoses were dengue virus (16.2%), scrub typhus (7.8%), and Japanese encephalitis virus (5.8%). 76 (6.3%) episodes had culture-proven bloodstream infection, including Salmonella enterica serovar Typhi (22 isolates, 1.8%), Streptococcus pneumoniae (13, 1.1%), Escherichia coli (8, 0.7%), Haemophilus influenzae (7, 0.6%), Staphylococcus aureus (6, 0.5%) and Burkholderia pseudomallei (6, 0.5%). There were 69 deaths (5.6%), including those due to clinically diagnosed pneumonia (19), dengue virus (5), and melioidosis (4). 10 of 69 (14.5%) deaths were associated with culture-proven bloodstream infection in logistic regression analyses (odds ratio for mortality 3.4, 95% CI 1.6–6.9). Antimicrobial resistance was prevalent, particularly in S. enterica Typhi, (where 90% of isolates were resistant to ciprofloxacin, and 86% were multi-drug resistant). Comorbid undernutrition was present in 44% of episodes and a major risk factor for acute mortality (OR 2.1, 95% CI 1.1–4.2), as were HIV infection and cardiac disease. Conclusion We identified a microbiological cause of fever in almost 50% of episodes in this large study of community-acquired febrile illness in hospitalized children in Cambodia. The range of pathogens, antimicrobial susceptibility, and co-morbidities associated with mortality described will be of use in the development of rational guidelines for infectious disease treatment and control in Cambodia and South-East Asia. PMID:23593267

  9. The effect of glibenclamide on the pathogenesis of melioidosis

    E-print Network

    Koh, Gavin Christian Kia Wee

    2012-03-06

    that should be reported for all published microarray experiments. MIC, minimum inhibitory concentration; the minimum concentration of antibiotic required to inhibit bacterial growth. MIP-2, macrophage inflammatory protein 2. Now known to consist of two... product that may be detected spectrophotometrically. TNF, tumour necrosis factor. Usually refers to TNF?, but may refer also to the TNF family of cytokines. TNF?, tumour necrosis factor, alpha; a pro-inflammatory cytokine. TSA, trypticase soy agar. TTS...

  10. Anaerobic crystallization and initial X-ray diffraction data of biphenyl 2,3-dioxygenase from Burkholderia xenovorans LB400: addition of agarose improved the quality of the crystals

    PubMed Central

    Kumar, Pravindra; Gómez-Gil, Leticia; Mohammadi, Mahmood; Sylvestre, Michel; Eltis, Lindsay D.; Bolin, Jeffrey T.

    2011-01-01

    Biphenyl 2,3-dioxygenase (BPDO; EC 1.14.12.18) catalyzes the initial step in the degradation of biphenyl and some polychlorinated biphenyls (PCBs). BPDOLB400, the terminal dioxygenase component from Burkholderia xenovorans LB400, a proteobacterial species that degrades a broad range of PCBs, has been crystallized under anaerobic conditions by sitting-drop vapour diffusion. Initial crystals obtained using various polyethylene glycols as precipitating agents diffracted to very low resolution (?8?Å) and the recorded reflections were diffuse and poorly shaped. The quality of the crystals was significantly improved by the addition of 0.2% agarose to the crystallization cocktail. In the presence of agarose, wild-type BPDOLB400 crystals that diffracted to 2.4?Å resolution grew in space group P1. Crystals of the BPDOP4 and BPDORR41 variants of BPDOLB400 grew in space group P21. PMID:21206025

  11. Increase of apatite dissolution rate by Scots pine roots associated or not with Burkholderia glathei PML1(12)Rp in open-system flow microcosms

    NASA Astrophysics Data System (ADS)

    Calvaruso, Christophe; Turpault, Marie-Pierre; Frey-Klett, Pascale; Uroz, Stéphane; Pierret, Marie-Claire; Tosheva, Zornitza; Kies, Antoine

    2013-04-01

    The release of nutritive elements through apatite dissolution represents the main source of phosphorus, calcium, and several micronutrients (e.g., Zn, Cu) for organisms in non-fertilized forest ecosystems. The aim of this study was to quantify, for the first time, the dissolution rate of apatite grains by tree roots that were or were not associated with a mineral weathering bacterial strain, and by various acids known to be produced by tree roots and soil bacterial strains in open-system flow microcosms. In addition, we explored whether the mobilization of trace elements (including rare earth elements) upon apatite dissolution was affected by the presence of trees and associated microorganisms. The dissolution rate of apatite by Scots pine plants that were or were not inoculated with the strain Burkholderia glathei PML1(12)Rp, and by inorganic (nitric) and organic (citric, oxalic and gluconic) acids at pH 5.5, 4.8, 3.8, 3.5, 3.0, and 2.0 was monitored in two controlled experiments: "plant-bacteria interaction" and "inorganic and organic acids". Analyses of the outlet solutions in the "plant-bacteria interaction" experiment showed that Scots pine roots and B. glathei PML1(12)Rp produced protons and organic acids such as gluconate, oxalate, acetate, and lactate. The weathering budget calculation revealed that Scots pines (with or without PML1(12)Rp) significantly increased (factor > 10) the release of Ca, P, As, Sr, Zn, U, Y, and rare earth elements such as Ce, La, Nd from apatite, compared to control abiotic treatment. Scanning electron microscopy observation confirmed traces of apatite dissolution in contact of roots. Most dissolved elements were taken up by Scots pine roots, i.e., approximately 50% of Ca, 70% of P, 30% of As, 70% of Sr, 90% of Zn, and 100% of U, Y, and rare earth elements. Interestingly, no significant additional effect due to the bacterial strain PML1(12)Rp on apatite dissolution and Scots pine nutrition and growth was observed. The "inorganic and organic acids" experiment demonstrated that the apatite dissolution efficacy of organic acids was higher than for the inorganic acid and varied in function of the acids: oxalic acid > citric acid > gluconic acid > nitric acid for pH ?3.5. In addition, apatite dissolution increased with increasing acidity for each acid. Only oxalic acid generated non-stoichiometric release of calcium and phosphorus from apatite in the solution at pH ?3.5, due to the precipitation of Ca-oxalate crystals at apatite surfaces. Comparison of the experiments revealed that the apatite dissolution rate by Scots pines supplied with nutritive solution at pH 5.5 reached 2.0 × 10-13 mol cm-2 s-1 and was equivalent to rates with nitric acid at pH 3.2, gluconic acid at pH 3.5, citric acid at pH 3.7, and oxalic acid at pH 3.8. Altogether our results highlight that, through the production of weathering agents, notably protons and organic acids, tree roots and root-associated microorganisms are able to significantly increase the release of macro- and micro-nutrients from apatite, thus maintaining high-nutrient conditions to support their growth.

  12. Growth Inhibition of Pathogenic Bacteria by Sulfonylurea Herbicides

    PubMed Central

    Kreisberg, Jason F.; Ong, Nicholas T.; Krishna, Aishwarya; Joseph, Thomas L.; Wang, Jing; Ong, Catherine; Ooi, Hui Ann; Sung, Julie C.; Siew, Chern Chiang; Chang, Grace C.; Biot, Fabrice; Cuccui, Jon; Wren, Brendan W.; Chan, Joey; Sivalingam, Suppiah P.; Zhang, Lian-Hui; Verma, Chandra

    2013-01-01

    Emerging resistance to current antibiotics raises the need for new microbial drug targets. We show that targeting branched-chain amino acid (BCAA) biosynthesis using sulfonylurea herbicides, which inhibit the BCAA biosynthetic enzyme acetohydroxyacid synthase (AHAS), can exert bacteriostatic effects on several pathogenic bacteria, including Burkholderia pseudomallei, Pseudomonas aeruginosa, and Acinetobacter baumannii. Our results suggest that targeting biosynthetic enzymes like AHAS, which are lacking in humans, could represent a promising antimicrobial drug strategy. PMID:23263008

  13. Orientationally-selected two-dimensional ESEEM spectroscopy of the Rieske-type iron-sulfur cluster in 2,4,5-trichlorophenoxyacetate monooxygenase from Burkholderia cepacis AC1100

    SciTech Connect

    Dikanov, S.A.; Xun, L.; Karpiel, A.B.; Bowman, M.K.; Tyryshkin, A.M.

    1996-09-04

    Burkholderia cepacia AC1100 is able to use the chlorinated compound 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as the sole source of carbon and energy. This paper describes the application of two-dimensional ESEEM (called HYSCORE) spectroscopy for further characterization of the nitrogens surrounding the reduced Rieske-type cluster. The HYSCORE spectra measured at field positions in the neighborhood of the principal directions of the g tensor contain major contributions from cross-peaks correlating the two double-quantum transitions from each histidine nitrogen. These allow the estimation of the diagonal components of the hyperfine tensors along the principal axes of the g tensor: 4.05, 3.88, and 4.01 MHz (N1) and 4.71, 5.07, and 5.02 MHz (N2). HYSCORE measurements have been also performed with the reduced [2Fe-2S] plant ferredoxin-type cluster with four cysteine ligands in a ferredoxin from Porphira umbilicalis, and spectral features produced by the peptide nitrogen are observed. Similar features also appear in the HYSCORE spectra of the Rieske cluster. Systematic differences are observed between 2,4,5-T monooxygenase and published results from related benzene and phthalate dioxygenases that may reflect structural and functional differences in histidine ligation and the nitrogens of nearby amino acids in Rieske-type [2Fe-2S] clusters. 27 refs., 8 figs., 1 tab.

  14. Structural Relationship of the Lipid A Acyl Groups to Activation of Murine Toll-Like Receptor 4 by Lipopolysaccharides from Pathogenic Strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa

    PubMed Central

    Korneev, Kirill V.; Arbatsky, Nikolay P.; Molinaro, Antonio; Palmigiano, Angelo; Shaikhutdinova, Rima Z.; Shneider, Mikhail M.; Pier, Gerald B.; Kondakova, Anna N.; Sviriaeva, Ekaterina N.; Sturiale, Luisa; Garozzo, Domenico; Kruglov, Andrey A.; Nedospasov, Sergei A.; Drutskaya, Marina S.; Knirel, Yuriy A.; Kuprash, Dmitry V.

    2015-01-01

    Toll-like receptor 4 (TLR4) is required for activation of innate immunity upon recognition of lipopolysaccharide (LPS) of Gram-negative bacteria. The ability of TLR4 to respond to a particular LPS species is important since insufficient activation may not prevent bacterial growth while excessive immune reaction may lead to immunopathology associated with sepsis. Here, we investigated the biological activity of LPS from Burkholderia mallei that causes glanders, and from the two well-known opportunistic pathogens Acinetobacter baumannii and Pseudomonas aeruginosa (causative agents of nosocomial infections). For each bacterial strain, R-form LPS preparations were purified by hydrophobic chromatography and the chemical structure of lipid A, an LPS structural component, was elucidated by HR-MALDI-TOF mass spectrometry. The biological activity of LPS samples was evaluated by their ability to induce production of proinflammatory cytokines, such as IL-6 and TNF, by bone marrow-derived macrophages. Our results demonstrate direct correlation between the biological activity of LPS from these pathogenic bacteria and the extent of their lipid A acylation. PMID:26635809

  15. Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: Co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia

    PubMed Central

    2011-01-01

    Background Cell-to-cell communication (quorum sensing (QS)) co-ordinates bacterial behaviour at a population level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-existing QS and quorum quenching (QQ) activities. Here we sought to discover novel N-acylhomoserine lactone (AHL)-dependent QS and QQ strains by investigating a bacterial community associated with the rhizosphere of ginger (Zingiber officinale) growing in the Malaysian rainforest. Results By using a basal growth medium containing N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) as the sole source of carbon and nitrogen, the ginger rhizosphere associated bacteria were enriched for strains with AHL-degrading capabilities. Three isolates belonging to the genera Acinetobacter (GG2), Burkholderia (GG4) and Klebsiella (Se14) were identified and selected for further study. Strains GG2 and Se14 exhibited the broadest spectrum of AHL-degrading activities via lactonolysis while GG4 reduced 3-oxo-AHLs to the corresponding 3-hydroxy compounds. In GG2 and GG4, QQ was found to co-exist with AHL-dependent QS and GG2 was shown to inactivate both self-generated and exogenously supplied AHLs. GG2, GG4 and Se14 were each able to attenuate virulence factor production in both human and plant pathogens. Conclusions Collectively our data show that ginger rhizosphere bacteria which make and degrade a wide range of AHLs are likely to play a collective role in determining the QS-dependent phenotype of a polymicrobial community. PMID:21385437

  16. Repression of Tropolone Production and Induction of a Burkholderia plantarii Pseudo-Biofilm by Carot-4-en-9,10-diol, a Cell-to-Cell Signaling Disrupter Produced by Trichoderma virens

    PubMed Central

    Wang, Mengcen; Hashimoto, Makoto; Hashidoko, Yasuyuki

    2013-01-01

    Background The tropolone-tolerant Trichoderma virens PS1-7 is a biocontrol agent against Burkholderia plantarii, causative of rice seedling blight. When exposed to catechol, this fungus dose-dependently produced carot-4-en-9,10-diol, a sesquiterpene-type autoregulatory signal molecule that promotes self-conidiation of T. virens PS1-7 mycelia. It was, however, uncertain why T. virens PS1-7 attenuates the symptom development of the rice seedlings infested with B. plantarii. Methodology/Principal Findings To reveal the antagonism by T. virens PS1-7 against B. plantarii leading to repression of tropolone production in a coculture system, bioassay-guided screening for active compounds from a 3-d culture of T. virens PS1-7 was conducted. As a result, carot-4-en-9,10-diol was identified and found to repress tropolone production of B. plantarii from 10 to 200 µM in a dose-dependent manner as well as attenuate virulence of B. plantarii on rice seedlings. Quantitative RT-PCR analysis revealed that transcriptional suppression of N-acyl-L-homoserine lactone synthase plaI in B. plantarii was the main mode of action by which carot-4-en-9,10-diol mediated the quorum quenching responsible for repression of tropolone production. In addition, the unique response of B. plantarii to carot-4-en-9,10-diol in the biofilm formed in the static culture system was also found. Although the initial stage of B. plantarii biofilm formation was induced by both tropolone and carot-4-en-9,10-diol, it was induced in different states. Moreover, the B. plantarii biofilm that was induced by carot-4-en-9,10-diol at the late stage showed defects not only in matrix structure but also cell viability. Conclusions/Significance Our findings demonstrate that carot-4-en-9,10-diol released by T. virens PS1-7 acts as an interkingdom cell-to-cell signaling molecule against B. plantarii to repress tropolone production and induces pseudo-biofilm to the cells. This observation also led to another discovery that tropolone is an autoregulatory cell-to-cell signaling molecule of B. plantarii that induces a functional biofilm other than a simple B. plantarii virulence factor. PMID:24223754

  17. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    USGS Publications Warehouse

    Pearson, T.; Giffard, P.; Beckstrom-Sternberg, S.; Auerbach, R.; Hornstra, H.; Tuanyok, A.; Price, E.P.; Glass, M.B.; Leadem, B.; Beckstrom-Sternberg, J. S.; Allan, G.J.; Foster, J.T.; Wagner, D.M.; Okinaka, R.T.; Sim, S.H.; Pearson, O.; Wu, Z.; Chang, J.; Kaul, R.; Hoffmaster, A.R.; Brettin, T.S.; Robison, R.A.; Mayo, M.; Gee, J.E.; Tan, P.; Currie, B.J.; Keim, P.

    2009-01-01

    Background: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results: Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion: We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer. ?? 2009 Pearson et al; licensee BioMed Central Ltd.

  18. The Use of Nanoscale Visible Light-Responsive Photocatalyst TiO2-Pt for the Elimination of Soil-Borne Pathogens

    PubMed Central

    Chen, Ya-Lei; Chen, Yao-Shen; Chan, Hao; Tseng, Yao-Hsuan; Yang, Shu-Ru; Tsai, Hsin-Ying; Liu, Hong-Yi; Sun, Der-Shan; Chang, Hsin-Hou

    2012-01-01

    Exposure to the soil-borne pathogens Burkholderia pseudomallei and Burkholderia cenocepacia can lead to severe infections and even mortality. These pathogens exhibit a high resistance to antibiotic treatments. In addition, no licensed vaccine is currently available. A nanoscale platinum-containing titania photocatalyst (TiO2-Pt) has been shown to have a superior visible light-responsive photocatalytic ability to degrade chemical contaminants like nitrogen oxides. The antibacterial activity of the catalyst and its potential use in soil pathogen control were evaluated. Using the plating method, we found that TiO2-Pt exerts superior antibacterial performance against Escherichia coli compared to other commercially available and laboratory prepared ultraviolet/visible light-responsive titania photocatalysts. TiO2-Pt-mediated photocatalysis also affectively eliminates the soil-borne bacteria B. pseudomallei and B. cenocepacia. An air pouch infection mouse model further revealed that TiO2-Pt-mediated photocatalysis could reduce the pathogenicity of both strains of bacteria. Unexpectedly, water containing up to 10% w/v dissolved soil particles did not reduce the antibacterial potency of TiO2-Pt, suggesting that the TiO2-Pt photocatalyst is suitable for use in soil-contaminated environments. The TiO2-Pt photocatalyst exerted superior antibacterial activity against a broad spectrum of human pathogens, including B. pseudomallei and B. cenocepacia. Soil particles (<10% w/v) did not significantly reduce the antibacterial activity of TiO2-Pt in water. These findings suggest that the TiO2-Pt photocatalyst may have potential applications in the development of bactericides for soil-borne pathogens. PMID:22384003

  19. Kdo hydroxylase is an inner core assembly enzyme in the Ko-containing lipopolysaccharide biosynthesis

    PubMed Central

    Chung, Hak Suk; Yang, Eun Gyeong; Hwang, Dohyeon; Lee, Ji Eun; Guan, Ziqiang; Raetz, Christian R.H.

    2014-01-01

    The lipopolysaccharide (LPS) isolated from certain important Gram-negative pathogens including a human pathogen Yersinia pestis and opportunistic pathogens Burkholderia mallei and Burkholderia pseudomallei contains D-glycero-D-talo-oct-2-ulosonic acid (Ko), an isosteric analog of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo). Kdo 3-hydroxylase (KdoO), a Fe2+/?-KG/O2 dependent dioxygenase from Burkholderia ambifaria and Yersinia pestis is responsible for Ko formation with Kdo2-lipid A as a substrate, but in which stage KdoO functions during the LPS biosynthesis has not been established. Here we purify KdoO from B. ambifaria (BaKdoO) to homogeneity for the first time and characterize its substrates. BaKdoO utilizes Kdo2-lipid IVA or Kdo2-lipid A as a substrate, but not Kdo-lipid IVA in vivo as well as in vitro and Kdo-(Hep)kdo-lipid A in vitro. These data suggest that KdoO is an inner core assembly enzyme that functions after the Kdo-transferase KdtA but before the heptosyl-transferase WaaC enzyme during the Ko-containing LPS biosynthesis. PMID:25204504

  20. Central and peripheral nervous system involvement in neuromelioidosis.

    PubMed

    Arif, Muhammad A; Abid, Muhammad H; Renganathan, Radhakrishnan; Siddiqui, Khurram A

    2015-01-01

    We report a case of a 33-year-old Sri Lankan man who presented with flaccid quadriparesis with brainstem signs and acute motor axonal polyneuropathy. MRI of the brain showed multiple abscesses with ring enhancement seen predominantly in the brainstem and upper cervical cord. The patient was initially treated with intravenous immunoglobulin, considering this to be a form of Guillain-Barré syndrome. Cerebrospinal fluid, however, showed lymphocytic pleocytosis with raised protein. Tests for Brucella, tuberculosis, toxoplasmosis, syphilis and HIV were negative. Chest X-ray revealed a cavity in the left lung, which, on bronchoscopy, showed a collection of purulent secretions. Culture of these secretions grew Burkholderia pseudomallei. The patient was treated with two courses of intravenous antibiotics, with resultant radiological improvement; however, with significant morbidity. PMID:26494715

  1. Characterization of a Broad Host Range Tailocin from Burkholderia 

    E-print Network

    Duarte, Iris

    2012-10-19

    is an alternative currently being investigated in our laboratory. Bacteriocins are bacterial products with specific bactericidal activity, generally towards species closely related to the producer strain (27). The first bacteriocin was described... to targeted bacterial surface molecules and insert a core or needle that dissipates the bacterial membrane potential (108). This bactericidal event can result from the binding of a single pyocin particle. Their mechanism of action, high 4 bactericidal...

  2. Foliar biofilms of Burkholderia pyrrocinia FP62 on geraniums

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilm formation on foliar surfaces is commonly associated with plants in water-saturated environments (e.g. tropics or modified environments). On most leaf surfaces bacteria are thought to reside in aggregates with limited production of an exopolysaccharide (EPS) matrix. However, the biocontrol ag...

  3. Genomic Analysis of Burkholderia And Rhodococcus equi Bacteriophages 

    E-print Network

    Orchard II, Robert C.

    2011-08-04

    Bcep781 phages, we can conclude that BcepNY3 is part of the Bcep781 family. 27 TABLE 8. Coding regions of BcepNY3 Gene F/R Function Homology Amino Acid BcepNY3 gp01 R Hyp. conserved Similar to Bcep1 gp2... MPLIEGKSDKSRSENIRTEVEAGKSPKQAEAI GYAVQRRAQHGADFARDCDMNLRHVMDV AKDYKR BcepNY3 gp02 R Hyp. conserved Similar to Bcep1 gp3 MAGTLTTANSTMYCTTEALFPTAQRIQGYA ADDAFDPDAVENGEYSMGIDGTLSAGFVFN EVPLTITLQADSPSLAQFEQIWMYEFQNRTKL QQDLTITNPAVGKRYEYKRGFMRSFKAAAG KKILQPAVIVFVFNQLQFTPIA...

  4. Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening

    SciTech Connect

    Begley, Darren W.; Davies, Douglas R.; Hartley, Robert C.; Hewitt, Stephen N.; Rychel, Amanda L.; Myler, Peter J.; Van Voorhis, Wesley C.; Staker, Bart L.; Stewart, Lance J.

    2014-10-02

    Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl-CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD-binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment-based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side-chain perturbations to key active-site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small-molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.

  5. Structural insights into WcbI, a novel polysaccharide-biosynthesis enzyme

    PubMed Central

    Vivoli, Mirella; Ayres, Emily; Beaumont, Edward; Isupov, Michail N.; Harmer, Nicholas J.

    2014-01-01

    Capsular polysaccharides (CPSs) are protective structures on the surfaces of many Gram-negative bacteria. The principal CPS of the human pathogen and Tier 1 select agent Burkholderia pseudomallei consists of a linear repeat of –­3)-­2-O-acetyl-6-deoxy-?-d-manno-heptopyranose-(1–. This CPS is critical to the virulence of this emerging pathogen and represents a key target for the development of novel therapeutics. wcbI is one of several genes in the CPS biosynthetic cluster whose deletion leads to significant attenuation of the pathogen; unlike most others, it has no homologues of known function and no detectable sequence similarity to any protein with an extant structure. Here, the crystal structure of WcbI bound to its proposed product, coenzyme A, is reported at 1.38?Å resolution, solved using the halide-soak method with multiple anomalous dispersion. This structure reveals that WcbI incorporates a previously described 100-amino-acid subdomain into a novel, principally helical fold (310 amino acids). This fold adopts a cradle-like structure, with a deep binding pocket for CoA in the loop-rich cradle. Structural analysis and biophysical assays suggest that WcbI functions as an acetyltransferase enzyme, whilst biochemical tests suggest that another functional module might be required to assist its activity in forming the mature B. pseudomallei capsule. PMID:25075317

  6. Concordance and discordance of sequence survey methods for molecular epidemiology

    PubMed Central

    Hasan, Nur A.; Cebula, Thomas A.; Colwell, Rita R.; Robison, Richard A.; Johnson, W. Evan; Crandall, Keith A.

    2015-01-01

    The post-genomic era is characterized by the direct acquisition and analysis of genomic data with many applications, including the enhancement of the understanding of microbial epidemiology and pathology. However, there are a number of molecular approaches to survey pathogen diversity, and the impact of these different approaches on parameter estimation and inference are not entirely clear. We sequenced whole genomes of bacterial pathogens, Burkholderia pseudomallei, Yersinia pestis, and Brucella spp. (60 new genomes), and combined them with 55 genomes from GenBank to address how different molecular survey approaches (whole genomes, SNPs, and MLST) impact downstream inferences on molecular evolutionary parameters, evolutionary relationships, and trait character associations. We selected isolates for sequencing to represent temporal, geographic origin, and host range variability. We found that substitution rate estimates vary widely among approaches, and that SNP and genomic datasets yielded different but strongly supported phylogenies. MLST yielded poorly supported phylogenies, especially in our low diversity dataset, i.e., Y. pestis. Trait associations showed that B. pseudomallei and Y. pestis phylogenies are significantly associated with geography, irrespective of the molecular survey approach used, while Brucella spp. phylogeny appears to be strongly associated with geography and host origin. We contrast inferences made among monomorphic (clonal) and non-monomorphic bacteria, and between intra- and inter-specific datasets. We also discuss our results in light of underlying assumptions of different approaches. PMID:25737810

  7. [Mission oriented diagnostic real-time PCR].

    PubMed

    Tomaso, Herbert; Scholz, Holger C; Al Dahouk, Sascha; Splettstoesser, Wolf D; Neubauer, Heinrich; Pfeffer, Martin; Straube, Eberhard

    2007-01-01

    In out of area military missions soldiers are potentially exposed to bacteria that are endemic in tropical areas and can be used as biological agents. It can be difficult to culture these bacteria due to sample contamination, low number of bacteria or pretreatment with antibiotics. Commercial biochemical identification systems are not optimized for these agents which can result in misidentification. Immunological assays are often not commercially available or not specific. Real-time PCR assays are very specific and sensitive and can shorten the time required to establish a diagnosis markedly. Therefore, real-time PCRs for the identification of Bacillus anthracis, Brucella spp., Burkholderia mallei und Burkholderia pseudomallei, Francisella tularensis und Yersinia pestis have been developed. PCR results can be false negative due to inadequate clinical samples, low number of bacteria in samples, DNA degradation, inhibitory substances and inappropriate DNA preparation. Hence, it is crucial to cultivate the organisms as a prerequisite for adequate antibiotic therapy and typing of the agent. In a bioterrorist scenario samples have to be treated according to rules applied in forensic medicine and documentation has to be flawless. PMID:17987355

  8. The microfluidic bioagent autonomous networked detector (M-BAND): an update. Fully integrated, automated, and networked field identification of airborne pathogens

    NASA Astrophysics Data System (ADS)

    Sanchez, M.; Probst, L.; Blazevic, E.; Nakao, B.; Northrup, M. A.

    2011-11-01

    We describe a fully automated and autonomous air-borne biothreat detection system for biosurveillance applications. The system, including the nucleic-acid-based detection assay, was designed, built and shipped by Microfluidic Systems Inc (MFSI), a new subsidiary of PositiveID Corporation (PSID). Our findings demonstrate that the system and assay unequivocally identify pathogenic strains of Bacillus anthracis, Yersinia pestis, Francisella tularensis, Burkholderia mallei, and Burkholderia pseudomallei. In order to assess the assay's ability to detect unknown samples, our team also challenged it against a series of blind samples provided by the Department of Homeland Security (DHS). These samples included natural occurring isolated strains, near-neighbor isolates, and environmental samples. Our results indicate that the multiplex assay was specific and produced no false positives when challenged with in house gDNA collections and DHS provided panels. Here we present another analytical tool for the rapid identification of nine Centers for Disease Control and Prevention category A and B biothreat organisms.

  9. Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial.

    PubMed

    Lasch, Peter; Wahab, Tara; Weil, Sandra; Pályi, Bernadett; Tomaso, Herbert; Zange, Sabine; Kiland Granerud, Beathe; Drevinek, Michal; Kokotovic, Branko; Wittwer, Matthias; Pflüger, Valentin; Di Caro, Antonino; Stämmler, Maren; Grunow, Roland; Jacob, Daniela

    2015-08-01

    In the case of a release of highly pathogenic bacteria (HPB), there is an urgent need for rapid, accurate, and reliable diagnostics. MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive technique that is becoming increasingly important in microbiological diagnostics to complement classical microbiology, PCR, and genotyping of HPB. In the present study, the results of a joint exercise with 11 partner institutions from nine European countries are presented. In this exercise, 10 distinct microbial samples, among them five HPB, Bacillus anthracis, Brucella canis, Burkholderia mallei, Burkholderia pseudomallei, and Yersinia pestis, were characterized under blinded conditions. Microbial strains were inactivated by high-dose gamma irradiation before shipment. Preparatory investigations ensured that this type of inactivation induced only subtle spectral changes with negligible influence on the quality of the diagnosis. Furthermore, pilot tests on nonpathogenic strains were systematically conducted to ensure the suitability of sample preparation and to optimize and standardize the workflow for microbial identification. The analysis of the microbial mass spectra was carried out by the individual laboratories on the basis of spectral libraries available on site. All mass spectra were also tested against an in-house HPB library at the Robert Koch Institute (RKI). The averaged identification accuracy was 77% in the first case and improved to >93% when the spectral diagnoses were obtained on the basis of the RKI library. The compilation of complete and comprehensive databases with spectra from a broad strain collection is therefore considered of paramount importance for accurate microbial identification. PMID:26063856

  10. Mining locus tags in PubMed Central to improve microbial gene annotation

    PubMed Central

    2014-01-01

    Background The scientific literature contains millions of microbial gene identifiers within the full text and tables, but these annotations rarely get incorporated into public sequence databases. We propose to utilize the Open Access (OA) subset of PubMed Central (PMC) as a gene annotation database and have developed an R package called pmcXML to automatically mine and extract locus tags from full text, tables and supplements. Results We mined locus tags from 1835 OA publications in ten microbial genomes and extracted tags mentioned in 30,891 sentences in main text and 20,489 rows in tables. We identified locus tag pairs marking the start and end of a region such as an operon or genomic island and expanded these ranges to add another 13,043 tags. We also searched for locus tags in supplementary tables and publications outside the OA subset in Burkholderia pseudomallei K96243 for comparison. There were 168 publications containing 48,470 locus tags and 83% of mentions were from supplementary materials and 9% from publications outside the OA subset. Conclusions B. pseudomallei locus tags within the full text and tables of OA publications represent only a small fraction of the total mentions in the literature. For microbial genomes with very few functionally characterized proteins, the locus tags mentioned in supplementary tables and within ranges like genomic islands contain the majority of locus tags. Significantly, the functions in the R package provide access to additional resources in the OA subset that are not currently indexed or returned by searching PMC. PMID:24499370

  11. Novel phospholipase A2 inhibitors from python serum are potent peptide antibiotics.

    PubMed

    Samy, Ramar Perumal; Thwin, Maung Maung; Stiles, Brad G; Satyanarayana-Jois, Seetharama; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman Ali; Siveen, Kodappully Sivaraman; Sikka, Sakshi; Kumar, Alan Prem; Sethi, Gautam; Lim, Lina Hsiu Kim

    2015-04-01

    Antimicrobial peptides (AMPs) play a vital role in defense against resistant bacteria. In this study, eight different AMPs synthesized from Python reticulatus serum protein were tested for bactericidal activity against various Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Burkholderia pseudomallei (KHW and TES strains), and Proteus vulgaris) using a disc-diffusion method (20 ?g/disc). Among the tested peptides, phospholipase A2 inhibitory peptide (PIP)-18[59-76], ?-Asp65-PIP[59-67], D-Ala66-PNT.II, and D60,65E-PIP[59-67] displayed the most potent bactericidal activity against all tested pathogens in a dose-dependent manner (100-6.8 ?g/ml), with a remarkable activity noted against S. aureus at 6.8 ?g/ml dose within 6 h of incubation. Determination of minimum inhibitory concentrations (MICs) by a micro-broth dilution method at 100-3.125 ?g/ml revealed that PIP-18[59-76], ?-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides exerted a potent inhibitory effect against S. aureus and B. pseudomallei (KHW) (MICs 3.125 ?g/ml), while a much less inhibitory potency (MICs 12.5 ?g/ml) was noted for ?-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides against B. pseudomallei (TES). Higher doses of peptides had no effect on the other two strains (i.e., Klebsiella pneumoniae and Streptococcus pneumoniae). Overall, PIP-18[59-76] possessed higher antimicrobial activity than that of chloramphenicol (CHL), ceftazidime (CF) and streptomycin (ST) (30 ?g/disc). When the two most active peptides, PIP-18[59-76] and ?-Asp65-PIP[59-67], were applied topically at a 150 mg/kg dose for testing wound healing activity in a mouse model of S. aureus infection, the former accelerates faster wound healing than the latter peptide at 14 days post-treatment. The western blot data suggest that the topical application of peptides (PIP-18[59-67] and ?-Asp65-PIP[59-67]) modulates NF-kB mediated wound repair in mice with relatively little haemolytic (100-1.56 ?g/ml) and cytotoxic (1000-3.125 ?g/ml) effects evident on human cells in vitro. PMID:25583073

  12. Bacterial Population Genetics in a Forensic Context

    SciTech Connect

    Velsko, S P

    2009-11-02

    This report addresses the recent Department of Homeland Security (DHS) call for a Phase I study to (1) assess gaps in the forensically relevant knowledge about the population genetics of eight bacterial agents of concern, (2) formulate a technical roadmap to address those gaps, and (3) identify new bioinformatics tools that would be necessary to analyze and interpret population genetic data in a forensic context. The eight organisms that were studied are B. anthracis, Y. pestis, F. tularensis, Brucella spp., E. coli O157/H7, Burkholderia mallei, Burkholderia pseudomallei, and C. botulinum. Our study focused on the use of bacterial population genetics by forensic investigators to test hypotheses about the possible provenance of an agent that was used in a crime or act of terrorism. Just as human population genetics underpins the calculations of match probabilities for human DNA evidence, bacterial population genetics determines the level of support that microbial DNA evidence provides for or against certain well-defined hypotheses about the origins of an infecting strain. Our key findings are: (1) Bacterial population genetics is critical for answering certain types of questions in a probabilistic manner, akin (but not identical) to 'match probabilities' in DNA forensics. (2) A basic theoretical framework for calculating likelihood ratios or posterior probabilities for forensic hypotheses based on microbial genetic comparisons has been formulated. This 'inference-on-networks' framework has deep but simple connections to the population genetics of mtDNA and Y-STRs in human DNA forensics. (3) The 'phylogeographic' approach to identifying microbial sources is not an adequate basis for understanding bacterial population genetics in a forensic context, and has limited utility, even for generating 'leads' with respect to strain origin. (4) A collection of genotyped isolates obtained opportunistically from international locations augmented by phylogenetic representations of relatedness will not and enzootic outbreaks noted through international outbreak surveillance systems, and 'representative' genetic sequences from each outbreak. (5) Interpretation of genetic comparisons between an attack strain and reference strains requires a model for the network structure of maintenance foci, enzootic outbreaks, and human outbreaks of that disease, coupled with estimates of mutational rate constants. Validation of the model requires a set of sequences from exemplary outbreaks and laboratory data on mutation rates during animal passage. The necessary number of isolates in each validation set is determined by disease transmission network theory, and is based on the 'network diameter' of the outbreak. (6) The 8 bacteria in this study can be classified into 4 categories based on the complexity of the transmission network structure of their natural maintenance foci and their outbreaks, both enzootic and zoonotic. (7) For B. anthracis, Y. pestis, E. coli O157, and Brucella melitensis, and their primary natural animal hosts, most of the fundamental parameters needed for modeling genetic change within natural host or human transmission networks have been determined or can be estimated from existing field and laboratory studies. (8) For Burkholderia mallei, plausible approaches to transmission network models exist, but much of the fundamental parameterization does not. In addition, a validated high-resolution typing system for characterizing genetic change within outbreaks or foci has not yet been demonstrated, although a candidate system exists. (9) For Francisella tularensis, the increased complexity of the transmission network and unresolved questions about maintenance and transmission suggest that it will be more complex and difficult to develop useful models based on currently available data. (10) For Burkholderia pseudomallei and Clostridium botulinum, the transmission and maintenance networks involve complex soil communities and metapopulations about which very little is known. It is not clear that these pathogens can be brought into the in

  13. Cycle Inhibiting Factors (CIFs) Are a Growing Family of Functional Cyclomodulins Present in Invertebrate and Mammal Bacterial Pathogens

    PubMed Central

    Jubelin, Grégory; Chavez, Carolina Varela; Taieb, Frédéric; Banfield, Mark J.; Samba-Louaka, Ascel; Nobe, Rika; Nougayrède, Jean-Philippe; Zumbihl, Robert; Givaudan, Alain; Escoubas, Jean-Michel; Oswald, Eric

    2009-01-01

    The cycle inhibiting factor (Cif) produced by enteropathogenic and enterohemorrhagic Escherichia coli was the first cyclomodulin to be identified that is injected into host cells via the type III secretion machinery. Cif provokes cytopathic effects characterized by G1 and G2 cell cycle arrests, accumulation of the cyclin-dependent kinase inhibitors (CKIs) p21waf1/cip1 and p27kip1 and formation of actin stress fibres. The X-ray crystal structure of Cif revealed it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases that share a conserved catalytic triad. Here we report the discovery and characterization of four Cif homologs encoded by different pathogenic or symbiotic bacteria isolated from vertebrates or invertebrates. Cif homologs from the enterobacteria Yersinia pseudotuberculosis, Photorhabdus luminescens, Photorhabdus asymbiotica and the ?-proteobacterium Burkholderia pseudomallei all induce cytopathic effects identical to those observed with Cif from pathogenic E. coli. Although these Cif homologs are remarkably divergent in primary sequence, the catalytic triad is strictly conserved and was shown to be crucial for cell cycle arrest, cytoskeleton reorganization and CKIs accumulation. These results reveal that Cif proteins form a growing family of cyclomodulins in bacteria that interact with very distinct hosts including insects, nematodes and humans. PMID:19308257

  14. UGT-29 protein expression and localization during bacterial infection in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Wong, Rui-Rui; Lee, Song-Hua; Nathan, Sheila

    2014-09-01

    The nematode Caenorhabditis elegans is routinely used as an animal model to delineate complex molecular mechanisms involved in the host response to pathogen infection. Following up on an earlier study on host-pathogen interaction, we constructed a ugt-29::GFP transcriptional fusion transgenic worm strain to examine UGT-29 protein expression and localization upon bacterial infection. UGT-29 orthologs can be found in higher organisms including humans and is proposed as a member of the UDP-Glucoronosyl Transferase family of proteins which are involved in phase II detoxification of compounds detrimental to the host organism. Under uninfected conditions, UGT-29::GFP fusion protein was highly expressed in the C. elegans anterior pharynx and intestine, two major organs involved in detoxification. We further evaluated the localization of the enzyme in worms infected with the bacterial pathogen, Burkholderia pseudomallei. The infected ugt-29::GFP transgenic strain exhibited increased fluorescence in the pharynx and intestine with pronounced fluorescence also extending to body wall muscle. This transcriptional fusion GFP transgenic worm is a convenient and direct tool to provide information on UGT detoxification enzyme gene expression and could be a useful tool for a number of diverse applications.

  15. Receptor mimicry as novel therapeutic treatment for biothreat agents

    PubMed Central

    2010-01-01

    The specter of intentional release of pathogenic microbes and their toxins is a real threat. This article reviews the literature on adhesins of biothreat agents, their interactions with oligosaccharides and the potential for anti-adhesion compounds as an alternative to conventional therapeutics. The minimal binding structure of ricin has been well characterised and offers the best candidate for successful anti-adhesion therapy based on the Gal?1-4GlcNAc structure. The botulinum toxin serotypes A–F bind to a low number of gangliosides (GT1b, GQ1b, GD1a and GD1b) hence it should be possible to determine the minimal structure for binding. The minimal disaccharide sequence of GalNAc?1-4Gal found in the gangliosides asialo-GM1 and asialo-GM2 is required for adhesion for many respiratory pathogens. Although a number of adhesins have been identified in bacterial biothreat agents such as Yersinia pestis, Bacillus anthracis, Francisella tularensis, Brucella species and Burkholderia pseudomallei, specific information regarding their in vivo expression during pneumonic infection is lacking. Limited oligosaccharide inhibition studies indicate the potential of GalNAc?1-4Gal, GalNAc?-3Gal and the hydrophobic compound, para-nitrophenol as starting points for the rational design of generic anti-adhesion compounds. A cocktail of multivalent oligosaccharides based on the minimal binding structures of identified adhesins would offer the best candidates for anti-adhesion therapy. PMID:21327124

  16. Uncovering major genomic features of essential genes in Bacteria and a methanogenic Archaea.

    PubMed

    Grazziotin, Ana Laura; Vidal, Newton M; Venancio, Thiago M

    2015-09-01

    Identification of essential genes is critical to understanding the physiology of a species, proposing novel drug targets and uncovering minimal gene sets required for life. Although essential gene sets of several organisms have been determined using large-scale mutagenesis techniques, systematic studies addressing their conservation, genomic context and functions remain scant. Here we integrate 17 essential gene sets from genome-wide in vitro screenings and three gene collections required for growth in vivo, encompassing 15 Bacteria and one Archaea. We refine and generalize important theories proposed using Escherichia coli. Essential genes are typically monogenic and more conserved than nonessential genes. Genes required in vivo are less conserved than those essential in vitro, suggesting that more divergent strategies are deployed when the organism is stressed by the host immune system and unstable nutrient availability. We identified essential analogous pathways that would probably be missed by orthology-based essentiality prediction strategies. For example, Streptococcus sanguinis carries horizontally transferred isoprenoid biosynthesis genes that are widespread in Archaea. Genes specifically essential in Mycobacterium tuberculosis and Burkholderia pseudomallei are reported as potential drug targets. Moreover, essential genes are not only preferentially located in operons, but also occupy the first position therein, supporting the influence of their regulatory regions in driving transcription of whole operons. Finally, these important genomic features are shared between Bacteria and at least one Archaea, suggesting that high order properties of gene essentiality and genome architecture were probably present in the last universal common ancestor or evolved independently in the prokaryotic domains. PMID:26084810

  17. Evaluation of aromatic plants and compounds used to fight multidrug resistant infections.

    PubMed

    Perumal Samy, Ramar; Manikandan, Jayapal; Al Qahtani, Mohammed

    2013-01-01

    Traditional medicine plays a vital role for primary health care in India, where it is widely practiced to treat various ailments. Among those obtained from the healers, 78 medicinal plants were scientifically evaluated for antibacterial activity. Methanol extract of plants (100? ? g of residue) was tested against the multidrug resistant (MDR) Gram-negative and Gram-positive bacteria. Forty-seven plants showed strong activity against Burkholderia pseudomallei (strain TES and KHW) and Staphylococcus aureus, of which Tragia involucrata L., Citrus acida Roxb. Hook.f., and Aegle marmelos (L.) Correa ex Roxb. showed powerful inhibition of bacteria. Eighteen plants displayed only a moderate effect, while six plants failed to provide any evidence of inhibition against the tested bacteria. Purified compounds showed higher antimicrobial activity than crude extracts. The compounds showed less toxic effect to the human skin fibroblasts (HEPK) cells than their corresponding aromatic fractions. Phytochemical screening indicates that the presence of various secondary metabolites may be responsible for this activity. Most of the plant extracts contained high levels of phenolic or polyphenolic compounds and exhibited activity against MDR pathogens. In conclusion, plants are promising agents that deserve further exploration. Lead molecules available from such extracts may serve as potential antimicrobial agents for future drug development to combat diseases caused by the MDR bacterial strains as reported in this study. PMID:24223059

  18. The nematode Panagrellus redivivus is susceptible to killing by human pathogens at 37 degrees C.

    PubMed

    Laws, Thomas R; Smith, Simon A; Smith, Martin P; Harding, Sarah V; Atkins, Timothy P; Titball, Richard W

    2005-09-01

    Caenorhabditis elegans has been used as a host for the study of bacteria that cause disease in mammals. However, a significant limitation of the model is that C. elegans is not viable at 37 degrees C. We report that the gonochoristic nematode Panagrellus redivivus survives at 37 degrees C and maintains its life cycle at temperatures up to and including 31.5 degrees C. The C. elegans pathogens Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus, but not Yersinia pseudotuberculosis, reduced P. redivivus lifespan. Of four strains of Burkholderia multivorans tested, one reduced P. redivivus lifespan at both temperatures, one was avirulent at both temperatures and two strains reduced P. redivivus lifespan only at 37 degrees C. The mechanism by which one of these strains killed P. redivivus at 37 degrees C, but not at 25 degrees C, was investigated further. Killing required viable bacteria, did not involve bacterial invasion of tissues, is unlikely to be due to a diffusible, bacterial toxin and was not associated with increased numbers of live bacteria within the intestine of the worm. We believe B. multivorans may kill P. redivivus by a temperature-regulated mechanism similar to B. pseudomallei killing of C. elegans. PMID:16040202

  19. Draft genome sequence of Xanthomonas axonopodis pathovar vasculorum NCPPB 900.

    PubMed

    Harrison, James; Studholme, David J

    2014-11-01

    Xanthomonas axonopodis pathovar vasculorum strain NCPPB 900 was isolated from sugarcane on Reunion island in 1960. Consistent with its belonging to fatty-acid type D, multi-locus sequence analysis confirmed that NCPPB 900 falls within the species X. axonopodis. This genome harbours sequences similar to plasmids pXCV183 from X. campestris pv. vesicatoria 85-10 and pPHB194 from Burkholderia pseudomallei. Its repertoire of predicted effectors includes homologues of XopAA, XopAD, XopAE, XopB, XopD, XopV, XopZ, XopC and XopI and transcriptional activator-like effectors and it is predicted to encode a novel phosphonate natural product also encoded by the genome of the phylogenetically distant X. vasicola pv. vasculorum. Availability of this novel genome sequence may facilitate the study of interactions between xanthomonads and sugarcane, a host-pathogen system that appears to have evolved several times independently within the genus Xanthomonas and may also provide a source of target sequences for molecular detection and diagnostics PMID:25263632

  20. Evaluation of Aromatic Plants and Compounds Used to Fight Multidrug Resistant Infections

    PubMed Central

    Perumal Samy, Ramar; Manikandan, Jayapal; Al Qahtani, Mohammed

    2013-01-01

    Traditional medicine plays a vital role for primary health care in India, where it is widely practiced to treat various ailments. Among those obtained from the healers, 78 medicinal plants were scientifically evaluated for antibacterial activity. Methanol extract of plants (100??g of residue) was tested against the multidrug resistant (MDR) Gram-negative and Gram-positive bacteria. Forty-seven plants showed strong activity against Burkholderia pseudomallei (strain TES and KHW) and Staphylococcus aureus, of which Tragia involucrata L., Citrus acida Roxb. Hook.f., and Aegle marmelos (L.) Correa ex Roxb. showed powerful inhibition of bacteria. Eighteen plants displayed only a moderate effect, while six plants failed to provide any evidence of inhibition against the tested bacteria. Purified compounds showed higher antimicrobial activity than crude extracts. The compounds showed less toxic effect to the human skin fibroblasts (HEPK) cells than their corresponding aromatic fractions. Phytochemical screening indicates that the presence of various secondary metabolites may be responsible for this activity. Most of the plant extracts contained high levels of phenolic or polyphenolic compounds and exhibited activity against MDR pathogens. In conclusion, plants are promising agents that deserve further exploration. Lead molecules available from such extracts may serve as potential antimicrobial agents for future drug development to combat diseases caused by the MDR bacterial strains as reported in this study. PMID:24223059

  1. Enhancement of PCB Degradation by Burkholderia xenovorans LB400 in Biphasic

    E-print Network

    Daugulis, Andrew J.

    by Manipulating Culture Conditions Lars Rehmann, Andrew J. Daugulis Department of Chemical Engineering, Queen in North America under the trade name Aroclor1 and found industrial applications in hydraulic and heat are still in use and potential sources of future contamination (Cohen et al., 1993). PCBs were designed

  2. Use of a Burkholderia cenocepacia ABTS Oxidizer in a Microbial Fuel Cell

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial fuel cells (MFCs) often use biological processes to generate electrons from organic material contained in the anode chamber and abiotic processes employing atmospheric oxygen as the oxidant in the cathode chamber. This study investigated the accumulation of an oxidant in bacterial cultures...

  3. DNA binding site analysis of Burkholderia thailandensis response regulators Kristy L. Nowak-Lovato a

    E-print Network

    Bulyk, Martha L.

    , United States c Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, United States d Harvard-MIT Division of Health Sciences and Technology, Harvard Medical, a Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States b Division

  4. Oxidation of Aminonitrotoluenes by 2,4-DNT Dioxygenase of Burkholderia sp. strain DNT

    E-print Network

    Wood, Thomas K.

    form rapidly from the reduction of dinitrotoluenes (DNTs) which are priority pollutants and animal,4,6-trinitrotoluene (TNT)- contaminated soil and groundwater has been studied for decades (Hughes et al., 1999) since as priority pollutants by the U.S. Environmental Protection Agency (EPA) (Nishino et al., 1999). 2,4-DNT and 2

  5. 77 FR 66850 - Public Workshop on Burkholderia: Exploring Current Issues and Identifying Regulatory Science Gaps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ...Countermeasures Enterprise (PHEMCE) Strategy,'' (Washington, DC: U...Documents/2012-PHEMCE-Strategy.pdf, accessed October 16...Srinivasan A., ``Glanders in a Military Research Microbiologist...Glanders,'' in Textbook of Military Medicine: Medical...

  6. 77 FR 66850 - Public Workshop on Burkholderia: Exploring Current Issues and Identifying Regulatory Science Gaps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... Systems Joint Project Management Office; the U.S. Strategic Command Center for Combating Weapons of Mass... have been placed on display in the Division of Dockets Management (HFA-305), Food and...

  7. Protein secretion systems in Bordetella and Burkholderia species and their roles in virulence

    E-print Network

    French, Christopher Todd

    2012-01-01

    image of BteA 644 -HA stained with DAPI for bacteria (blue),bacteria adherent to HeLa cells. GM1 appears red, and overlap is yellow in the merged images.image examples (3C, lower). D. Occasional PfliE2-mcRFP expressing bacteria

  8. Saturation Mutagenesis of 2,4-DNT Dioxygenase of Burkholderia sp. Strain DNT

    E-print Network

    Wood, Thomas K.

    of the intermedi- ates with high performance liquid chromatography. The degradation of both 2,3-DNT and 2,5-DNT Dinitrotoluene Degradation Thammajun Leungsakul,1 Brendan G. Keenan,1 Hong Yin,2 Barth F. Smets,2 Thomas K. Wood1 formation. Rates of degradation were quantified both by the forma- tion of nitrite and by the formation

  9. Role of type IV secretion systems in trafficking of virulence determinants of Burkholderia cenocepacia 

    E-print Network

    Engledow, Amanda Suzanne

    2009-06-02

    Type IV secretion systems have been identified in several human pathogens including Bordetella pertussis, Helicobacter pylori, and Legionella pneumophila. These systems are responsible for the translocation of virulence proteins and/or DNA, thereby...

  10. Oxalic acid biosynthesis is encoded by an operon in Burkholderia glumae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the biosynthesis of oxalic acid is known to occur in a number of bacteria, the mechanism(s) regulating its production remains largely unknown. To date, there is no report on the identification of an oxalic acid biosynthetic pathway gene from bacteria. In an attempt to identify such a gene...

  11. [Burkholderia cepacia under different ecological conditions: the amount and variability of the bacterial population].

    PubMed

    Pushkareva, V I; Velichko, V V; Kaminskaia, A A; Alekseeva, N V; Litvin, V Iu

    2005-01-01

    In a series of prolonged experiments with the use of the bacteriological method and PCR analysis the amount and state of B. cepacia population, associated and not associated with infusoria Tetrahymena pyriformis, were dynamically evaluated under different conditions: in water, brain heart broth, soil extract and at different temperature (4 degrees C and 25 degrees C). In soil extract at 25 degrees C B. cepacia existed in the vegetative state for the period of up to 3 months, while at 4 degrees C, in the absence of protozoa, the transition of these microorganisms into the uncultivable forms occurred in 9 days, and they could be detected only with the use of PCR. Protozoa maintained the existence of the vegetative bacteria for as long as 2 months, and in 3-4 months uncultivable forms of B. cepacia cells were registered. In water at low temperature B. cepacia disappeared in 2 months, evidently, eaten up by infusoria. The population variability of B. cepacia under different conditions of their existence was established: S-R dissociation, a decrease in biochemical activity, growth deceleration. A high level of cytopathogenicity in B. cepacia pigment-forming clones was noted. In the process of transition into the uncultivable state pigment formation in B. cepacia population decreased up. The ecological plasticity and multi-pathogenicity of B. cepacia as phytopathogens and the causative agents of human diseases are discussed. PMID:16028511

  12. The oxalic acid biosynthetic activity of Burkholderia mallei is encoded by a single locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although it is known that oxalic acid provides a selective advantage to the secreting microbe, our understanding of how this acid is biosynthesized remains incomplete. This study reports the identification, cloning, and partial characterization of the oxalic acid biosynthetic enzyme from the animal ...

  13. Biphenyl degradation kinetics by Burkholderia xenovorans LB400 in two-phase partitioning bioreactors

    E-print Network

    Daugulis, Andrew J.

    in morphological and histopathological changes in the urinary system and it is considered to be a possible mutagen. xenovorans LB400. Two solvents selected for the TPPB system were octadecene and bis(2-ethylhexyl stable organic compounds (HSDB, 1991). Animal studies have indicated that biphenyl exposure results

  14. Nickel and cadmium ions inhibit quorum sensing and biofilm formation without affecting viability in Burkholderia multivorans

    E-print Network

    Alvarez, Pedro J.

    Nickel and cadmium ions inhibit quorum sensing and biofilm formation without affecting viability transcriptase polymerase chain reaction (q-PCR) assays, we show that sub-millimolar concentrations of nickel (Ni

  15. Prevalence and distribution of soil-borne zoonotic pathogens in Lahore district of Pakistan

    PubMed Central

    Shabbir, Muhammad Z.; Jamil, Tariq; Ali, Asad A.; Ahmad, Arfan; Naeem, Muhammad; Chaudhary, Muhammad H.; Bilal, Muhammad; Ali, Muhammad A.; Muhammad, Khushi; Yaqub, Tahir; Bano, Asghari; Mirza, Ali I.; Shabbir, Muhammad A. B.; McVey, Walter R.; Patel, Ketan; Francesconi, Stephen; Jayarao, Bhushan M.; Rabbani, Masood

    2015-01-01

    A multidisciplinary, collaborative project was conducted to determine the prevalence and distribution of soil-borne zoonotic pathogens in Lahore district of Pakistan and ascertain its Public Health Significance. Using a grid-based sampling strategy, soil samples (n = 145) were collected from villages (n = 29, 5 samples/village) and examined for Bacillus anthracis, Burkholderia mallei/pseudomallei, Coxiella burnetii, Francisella tularensis, and Yersinia pestis using real time PCR assays. Chemical analysis of soil samples was also performed on these samples. The relationship between soil composition and absence or presence of the pathogen, and seven risk factors was evaluated. DNA of B. anthracis (CapB), B. mallei/pseudomallei (chromosomal gene), C. burnetii (IS1111, transposase gene), and F. tularensis (lipoprotein/outer membrane protein) was detected in 9.6, 1.4, 4.8, and 13.1% of soil samples, respectively. None of the samples were positive for protective antigen plasmid (PA) of B. anthracis and Y. pestis (plasminogen activating factor, pPla gene). The prevalence of B. anthracis (CapB) was found to be associated with organic matter, magnesium (Mg), copper (Cu), chromium (Cr), manganese (Mn), cobalt (Co), cadmium (Cd), sodium (Na), ferrous (Fe), calcium (Ca), and potassium (K). Phosphorous (P) was found to be associated with prevalence of F. tularensis while it were Mg, Co, Na, Fe, Ca, and K for C. burnetii. The odds of detecting DNA of F. tularensis were 2.7, 4.1, and 2.7 higher when soil sample sites were >1 km from animal markets, >500 m from vehicular traffic roads and animal density of < 1000 animals, respectively. While the odds of detecting DNA of C. burnetii was 32, 11.8, and 5.9 higher when soil sample sites were >500 m from vehicular traffic roads, presence of ground cover and animal density of < 1000 animals, respectively. In conclusion, the distribution pattern of the soil-borne pathogens in and around the areas of Lahore district puts both human and animal populations at a high risk of exposure. Further studies are needed to explore the genetic nature and molecular diversity of prevailing pathogens together with their seroconversion in animals and humans. PMID:26441860

  16. User-loaded SlipChip for equipment-free multiplexed nanoliter-scale experiments

    PubMed Central

    Li, Liang; Du, Wenbin; Ismagilov, Rustem

    2009-01-01

    This paper describes a microfluidic approach to perform multiplexed nanoliter-scale experiments by combining a sample with multiple different reagents, each at multiple mixing ratios. This approach employs a user-loaded, equipment-free SlipChip. The mixing ratios, characterized by diluting a fluorescent dye, could be controlled by the volume of each of the combined wells. The SlipChip design was validated on ~12 nL scale by screening the conditions for crystallization of glutaryl-CoA dehydrogenase from Burkholderia pseudomallei against 48 different reagents; each reagent was tested at 11 different mixing ratios, for a total of 528 crystallization trials. The total consumption of the protein sample was ~ 10 ?L. Conditions for crystallization were successfully identified. The crystallization experiments were successfully scaled up in well plates using the conditions identified in the SlipChip. Crystals were characterized by X-ray diffraction and provided a protein structure in a different space group and at a higher resolution than the structure obtained by conventional methods. In this work, this user-loaded SlipChip has been shown to handle reliably fluids of diverse physicochemical properties, such as viscosities and surface tensions. Quantitative measurements of fluorescent intensities and high-resolution imaging were straighforward to perform in these glass SlipChips. Surface chemistry was controlled using fluorinated lubricating fluid, analogous to the fluorinated carrier fluid used in plug-based crystallization. Thus, we expect this approach to be valuable in a number of areas beyond protein crystallization, especially those areas where droplet-based microfluidic systems have demonstrated successes, including measurements of enzyme kinetics and blood coagulation, cell-based assays, and chemical reactions. PMID:20000708

  17. Identification of Circulating Bacterial Antigens by In Vivo Microbial Antigen Discovery

    PubMed Central

    Nuti, Dana E.; Crump, Reva B.; Dwi Handayani, Farida; Chantratita, Narisara; Peacock, Sharon J.; Bowen, Richard; Felgner, Philip L.; Davies, D. Huw; Wu, Terry; Lyons, C. Rick; Brett, Paul J.; Burtnick, Mary N.; Kozel, Thomas R.; AuCoin, David P.

    2011-01-01

    ABSTRACT Detection of microbial antigens in clinical samples can lead to rapid diagnosis of an infection and administration of appropriate therapeutics. A major barrier in diagnostics development is determining which of the potentially hundreds or thousands of antigens produced by a microbe are actually present in patient samples in detectable amounts against a background of innumerable host proteins. In this report, we describe a strategy, termed in vivo microbial antigen discovery (InMAD), that we used to identify circulating bacterial antigens. This technique starts with “InMAD serum,” which is filtered serum that has been harvested from BALB/c mice infected with a bacterial pathogen. The InMAD serum, which is free of whole bacterial cells, is used to immunize syngeneic BALB/c mice. The resulting “InMAD immune serum” contains antibodies specific for the soluble microbial antigens present in sera from the infected mice. The InMAD immune serum is then used to probe blots of bacterial lysates or bacterial proteome arrays. Bacterial antigens that are reactive with the InMAD immune serum are precisely the antigens to target in an antigen immunoassay. By employing InMAD, we identified multiple circulating antigens that are secreted or shed during infection using Burkholderia pseudomallei and Francisella tularensis as model organisms. Potential diagnostic targets identified by the InMAD approach included bacterial proteins, capsular polysaccharide, and lipopolysaccharide. The InMAD technique makes no assumptions other than immunogenicity and has the potential to be a broad discovery platform to identify diagnostic targets from microbial pathogens. PMID:21846829

  18. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome.

    PubMed

    Miao, Edward A; Mao, Dat P; Yudkovsky, Natalya; Bonneau, Richard; Lorang, Cynthia G; Warren, Sarah E; Leaf, Irina A; Aderem, Alan

    2010-02-16

    The mammalian innate immune system uses Toll-like receptors (TLRs) and Nod-LRRs (NLRs) to detect microbial components during infection. Often these molecules work in concert; for example, the TLRs can stimulate the production of the proforms of the cytokines IL-1beta and IL-18, whereas certain NLRs trigger their subsequent proteolytic processing via caspase 1. Gram-negative bacteria use type III secretion systems (T3SS) to deliver virulence factors to the cytosol of host cells, where they modulate cell physiology to favor the pathogen. We show here that NLRC4/Ipaf detects the basal body rod component of the T3SS apparatus (rod protein) from S. typhimurium (PrgJ), Burkholderia pseudomallei (BsaK), Escherichia coli (EprJ and EscI), Shigella flexneri (MxiI), and Pseudomonas aeruginosa (PscI). These rod proteins share a sequence motif that is essential for detection by NLRC4; a similar motif is found in flagellin that is also detected by NLRC4. S. typhimurium has two T3SS: Salmonella pathogenicity island-1 (SPI1), which encodes the rod protein PrgJ, and SPI2, which encodes the rod protein SsaI. Although PrgJ is detected by NLRC4, SsaI is not, and this evasion is required for virulence in mice. The detection of a conserved component of the T3SS apparatus enables innate immune responses to virulent bacteria through a single pathway, a strategy that is divergent from that used by plants in which multiple NB-LRR proteins are used to detect T3SS effectors or their effects on cells. Furthermore, the specific detection of the virulence machinery permits the discrimination between pathogenic and nonpathogenic bacteria. PMID:20133635

  19. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome

    PubMed Central

    Miao, Edward A.; Mao, Dat P.; Yudkovsky, Natalya; Bonneau, Richard; Lorang, Cynthia G.; Warren, Sarah E.; Leaf, Irina A.; Aderem, Alan

    2010-01-01

    The mammalian innate immune system uses Toll-like receptors (TLRs) and Nod-LRRs (NLRs) to detect microbial components during infection. Often these molecules work in concert; for example, the TLRs can stimulate the production of the proforms of the cytokines IL-1? and IL-18, whereas certain NLRs trigger their subsequent proteolytic processing via caspase 1. Gram-negative bacteria use type III secretion systems (T3SS) to deliver virulence factors to the cytosol of host cells, where they modulate cell physiology to favor the pathogen. We show here that NLRC4/Ipaf detects the basal body rod component of the T3SS apparatus (rod protein) from S. typhimurium (PrgJ), Burkholderia pseudomallei (BsaK), Escherichia coli (EprJ and EscI), Shigella flexneri (MxiI), and Pseudomonas aeruginosa (PscI). These rod proteins share a sequence motif that is essential for detection by NLRC4; a similar motif is found in flagellin that is also detected by NLRC4. S. typhimurium has two T3SS: Salmonella pathogenicity island-1 (SPI1), which encodes the rod protein PrgJ, and SPI2, which encodes the rod protein SsaI. Although PrgJ is detected by NLRC4, SsaI is not, and this evasion is required for virulence in mice. The detection of a conserved component of the T3SS apparatus enables innate immune responses to virulent bacteria through a single pathway, a strategy that is divergent from that used by plants in which multiple NB-LRR proteins are used to detect T3SS effectors or their effects on cells. Furthermore, the specific detection of the virulence machinery permits the discrimination between pathogenic and nonpathogenic bacteria. PMID:20133635

  20. Wound Healing Activity and Mechanisms of Action of an Antibacterial Protein from the Venom of the Eastern Diamondback Rattlesnake (Crotalus adamanteus)

    PubMed Central

    Samy, Ramar Perumal; Kandasamy, Matheswaran; Gopalakrishnakone, Ponnampalam; Stiles, Bradley G.; Rowan, Edward G.; Becker, David; Shanmugam, Muthu K.; Sethi, Gautam; Chow, Vincent T. K.

    2014-01-01

    Basic phospholipase A2 was identified from the venom of the eastern diamondback rattlesnake. The Crotalus adamanteus toxin-II (CaTx-II) induced bactericidal effects (7.8 µg/ml) on Staphylococcus aureus, while on Burkholderia pseudomallei (KHW), and Enterobacter aerogenes were killed at 15.6 µg/ml. CaTx-II caused pore formation and membrane damaging effects on the bacterial cell wall. CaTx-II was not cytotoxic on lung (MRC-5), skin fibroblast (HEPK) cells and in mice. CaTx-II-treated mice showed significant wound closure and complete healing by 16 days as compared to untreated controls (**P<0.01). Histological examination revealed enhanced collagen synthesis and neovascularization after treatment with CaTx-II versus 2% Fusidic Acid ointment (FAO) treated controls. Measurement of tissue cytokines revealed that interleukin-1 beta (IL-1?) expression in CaTx-II treated mice was significantly suppressed versus untreated controls. In contrast, cytokines involved in wound healing and cell migration i.e., monocyte chemotactic protein-1 (MCP-1), fibroblast growth factor-basic (FGF-b), chemokine (KC), granulocyte-macrophage colony-stimulating factor (GM-CSF) were significantly enhanced in CaTx-II treated mice, but not in the controls. CaTx-II also modulated nuclear factor-kappa B (NF-?B) activation during skin wound healing. The CaTx-II protein highlights distinct snake proteins as a potential source of novel antimicrobial agents with significant therapeutic application for bacterial skin infections. PMID:24551028

  1. Etiologies and Resistance Profiles of Bacterial Community-Acquired Pneumonia in Cambodian and Neighboring Countries’ Health Care Settings: A Systematic Review (1995 to 2012)

    PubMed Central

    Goyet, Sophie; Vlieghe, Erika; Kumar, Varun; Newell, Steven; Moore, Catrin E.; Bousfield, Rachel; Leang, Heng C.; Chuop, Sokheng; Thong, Phe; Rammaert, Blandine; Hem, Sopheak; van Griensven, Johan; Rachmat, Agus; Fassier, Thomas; Lim, Kruy; Tarantola, Arnaud

    2014-01-01

    Objectives Community-acquired pneumonia (CAP) is one of the most important causes of morbidity and mortality worldwide. Etiological data for Cambodia is scarce. We aimed to describe the main etiological agents causing CAP, and their resistance patterns in Cambodia and the greater Mekong region. Methods A review of bacterial etiologies of CAP and antimicrobial resistance in Cambodia and neighboring countries was conducted via: (1) a systematic review of published literature in all NCBI databases using Pubmed, Google scholar, EMBASE, the World Health Organization and the Cambodian Ministry of Health libraries; (2) a review of unpublished data from Cambodia provided by national and international stakeholders working at different tiers of the healthcare system. Results Twenty three articles and five data sources reported etiologies for 5919 CAP patients diagnosed between May 1995 and December 2012, including 1421 (24.0%), 3571 (60.3%) and 927 (15.7%) from Cambodia, Thailand and Vietnam, respectively. Streptococcus pneumoniae and Haemophilus influenzae were the most common pathogens ranking among the five most prevalent in 12 and 10 studies, respectively. Gram-negative bacteria such as Burkholderia pseudomallei and Klebsiella pneumoniae were also frequently diagnosed, particularly in bacteremic CAP in Thai adults and Cambodian children. In Thailand and Vietnam, Mycoplasma pneumoniae and Chlamydia pneumoniae were frequently identified in settings using indirect laboratory testing. Conclusions Based on this analysis, CAP data in Cambodia seems to present etiological and resistance profiles comparable to those of neighboring countries. Findings have been shared with the national authorities upon the revision of the national therapeutic guidelines and were disseminated using a specially created website. PMID:24626053

  2. User-Loaded SlipChip for Equipment-Free Multiplexed Nanoliter-Scale Experiments

    SciTech Connect

    Li, Liang; Du, Wenbin; Ismagilov, Rustem

    2010-08-04

    This paper describes a microfluidic approach to perform multiplexed nanoliter-scale experiments by combining a sample with multiple different reagents, each at multiple mixing ratios. This approach employs a user-loaded, equipment-free SlipChip. The mixing ratios, characterized by diluting a fluorescent dye, could be controlled by the volume of each of the combined wells. The SlipChip design was validated on an {approx}12 nL scale by screening the conditions for crystallization of glutaryl-CoA dehydrogenase from Burkholderia pseudomallei against 48 different reagents; each reagent was tested at 11 different mixing ratios, for a total of 528 crystallization trials. The total consumption of the protein sample was {approx}10 {micro}L. Conditions for crystallization were successfully identified. The crystallization experiments were successfully scaled up in well plates using the conditions identified in the SlipChip. Crystals were characterized by X-ray diffraction and provided a protein structure in a different space group and at a higher resolution than the structure obtained by conventional methods. In this work, this user-loaded SlipChip has been shown to reliably handle fluids of diverse physicochemical properties, such as viscosities and surface tensions. Quantitative measurements of fluorescent intensities and high-resolution imaging were straighforward to perform in these glass SlipChips. Surface chemistry was controlled using fluorinated lubricating fluid, analogous to the fluorinated carrier fluid used in plug-based crystallization. Thus, we expect this approach to be valuable in a number of areas beyond protein crystallization, especially those areas where droplet-based microfluidic systems have demonstrated successes, including measurements of enzyme kinetics and blood coagulation, cell-based assays, and chemical reactions.

  3. Effects of the Plant Growth-Promoting Bacterium Burkholderia phytofirmans PsJN throughout the Life Cycle of Arabidopsis thaliana

    PubMed Central

    Poupin, María Josefina; Timmermann, Tania; Vega, Andrea; Zuñiga, Ana; González, Bernardo

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short-term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Here, we studied the effects of the PGPR bacterial model Burkholderiaphytofirmans PsJN on the whole life cycle of Arabidopsis thaliana plants. We reported that at different plant developmental points, strain PsJN can be found in the rhizosphere and also colonizing their internal tissues. In early ontogeny, strain PsJN increased several growth parameters and accelerated growth rate of the plants. Also, an Arabidopsis transcriptome analysis revealed that 408 genes showed differential expression in PsJN-inoculated plants; some of these genes are involved in stress response and hormone pathways. Specifically, genes implicated in auxin and gibberellin pathways were induced. Quantitative transcriptional analyses of selected genes in different developmental stages revealed that the beginning of these changes could be evidenced early in development, especially among the down-regulated genes. The inoculation with heat-killed bacteria provoked a more severe transcriptional response in plants, but was not able to induce plant growth-promotion. Later in ontogeny, the growth rates of inoculated plants decreased with respect to the non-inoculated group and, interestingly, the inoculation accelerated the flowering time and the appearance of senescence signs in plants; these modifications correlate with the early up-regulation of flowering control genes. Then, we show that a single inoculation with a PGPR could affect the whole life cycle of a plant, accelerating its growth rate and shortening its vegetative period, both effects relevant for most crops. Thus, these findings provide novel and interesting aspects of these relevant biological interactions. PMID:23869243

  4. Transcriptome Profiling of the Endophyte Burkholderia phytofirmans PsJN Indicates Sensing of the Plant Environment and Drought Stress

    PubMed Central

    Sheibani-Tezerji, Raheleh; Rattei, Thomas; Sessitsch, Angela; Trognitz, Friederike

    2015-01-01

    ABSTRACT It is widely accepted that bacterial endophytes actively colonize plants, interact with their host, and frequently show beneficial effects on plant growth and health. However, the mechanisms of plant-endophyte communication and bacterial adaption to the plant environment are still poorly understood. Here, whole-transcriptome sequencing of B.?phytofirmans PsJN colonizing potato (Solanum tuberosum L.) plants was used to analyze in planta gene activity and the response of strain PsJN to plant stress. The transcriptome of PsJN colonizing in vitro potato plants showed a broad array of functionalities encoded in the genome of strain PsJN. Transcripts upregulated in response to plant drought stress were mainly involved in transcriptional regulation, cellular homeostasis, and the detoxification of reactive oxygen species, indicating an oxidative stress response in PsJN. Genes with modulated expression included genes for extracytoplasmatic function (ECF) group IV sigma factors. These cell surface signaling elements allow bacteria to sense changing environmental conditions and to adjust their metabolism accordingly. TaqMan quantitative PCR (TaqMan-qPCR) was performed to identify ECF sigma factors in PsJN that were activated in response to plant stress. Six ECF sigma factor genes were expressed in PsJN colonizing potato plants. The expression of one ECF sigma factor was upregulated whereas that of another one was downregulated in a plant genotype-specific manner when the plants were stressed. Collectively, our study results indicate that endophytic B.?phytofirmans PsJN cells are active inside plants. Moreover, the activity of strain PsJN is affected by plant drought stress; it senses plant stress signals and adjusts its gene expression accordingly. PMID:26350963

  5. Molecular detection of Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Burkholderia glumae in infected rice seeds and leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymerase chain reaction (PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR green real-time PCR were developed to facilitate simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Bur...

  6. Ultrastructural changes in some pathogenic bacteria after treatment with ethylendiamintetraacetic acid.

    PubMed

    Cherepova, N; Veljanov, D; Radoutcheva, T

    1990-01-01

    The ultrastructure of Pseudomonas pseudomallei, Pseudomonas aeruginosa. Yersinia pseudotuberculosis, Salmonella typhimurium, Listeria monocytogenes was studied after treatment with EDTA. The study established that the most sensitive species were: Pseudomonas pseudomallei and Pseudomonas aeruginosa. In the case of Listeria monocytogenes changes were not observed. Typical ultrastructural changes in the cell wall and the cytoplasmic membrane were established by means of ultrathin sections, as well as with scanning electron microscopy of Pseudomonas pseudomallei and Pseudomonas aeruginosa. PMID:2129076

  7. 9 CFR 121.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pseudomallei; Hendra virus; Nipah virus; Rift Valley fever virus; Venezuelan equine encephalitis virus. (c... part 122 of this subchapter. (3) Any subtypes of Venezuelan equine encephalitis virus except...

  8. 9 CFR 121.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pseudomallei; Hendra virus; Nipah virus; Rift Valley fever virus; Venezuelan equine encephalitis virus. (c... part 122 of this subchapter. (3) Any subtypes of Venezuelan equine encephalitis virus except...

  9. Successful Treatment of Chromobacterium violaceum Sepsis in a South Indian Adult.

    PubMed

    Madi, Deepak R; Vidyalakshmi, K; Ramapuram, John; Shetty, Avinash K

    2015-11-01

    Infection due to Chromobacterium violaceum is rare. Diagnosis may be delayed since Chromobacterium sepsis may mimic melioidosis, especially in melioidosis-endemic areas. Management of Chromobacterium infection is challenging given the propensity of this pathogen to cause visceral abscesses, drug resistance, and relapse. Mortality rates are high despite treatment. We report a case of C. violaceum septicemia in an immunocompetent adult from south India, who was successfully treated with combination antibiotic therapy. Physicians in tropical and subtropical regions must be aware of C. violaceum infection as it can mimic melioidosis. PMID:26304923

  10. First description of necrosis in leaves and pseudo-bulbs of Oncidium orchids caused by Burkholderia gladioli in São Paulo State, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A necrosis of orchid leaves and pseudobulbs was observed in a commercial orchid nursery in Mogi das Cruzes, Sao Paulo, Brazil. The symptoms were water-soaked, brown lesions that can develop into large areas of necrosis that extend throughout the entire plant, ultimately causing death. Bacteria were...

  11. ANALYSIS OF MUTANT DERIVATIVES OF BURKHOLDERIA AMBIFARIA AND B. MULTIMORANS ALTERED WITH RESPECT TO FORMATION OF N-ACYL HOMOSERINE LACTONES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    B. ambifaria BcF forms higher levels of AHL in vitro than most members of the B. cepacia complex, whereas B. multivorans forms essentially no AHLs, despite the fact that it possesses genes related to quorum sensing. We isolated mutant derivatives of B. multivorans, ATCC 17616 which produce high lev...

  12. IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE USING BURKHOLDERIA CEPACIA G4 PR1: ANALYSIS OF TRANSPORT PARAMETERS FOR RISK ASSESSMENT (RESEARCH BRIEF)

    EPA Science Inventory

    Transport of bacteria through geologic media may be viewed as being governed by sorption-desorption reactions. In this investigation, four facets of the process were examined: (I) the impact of sorption on bacterial transport under typical ground water flow velocities and a diffe...

  13. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...belonging to the genus Pseudomonas. Pseudomonas aeruginosa is a...hospital-acquired infections, and has been associated...infections, burn and wound infections, blood poisoning...brain membranes). Pseudomonas pseudomallei...

  14. Montana State University-Bozeman Dual Use of Research of Concern Policy

    E-print Network

    Maxwell, Bruce D.

    · Reconstructed 1918 influenza virus · Rinderpest virus · Toxin-producing strains of Clostridium botulinum · Avian influenza (highly pathogenic) · Bacillus anthracis · Botulinum neurotoxin · Burkholderia mallei

  15. Spatially-Correlated Mass Spectrometric Analysis of Microbe-Mineral Interactions

    SciTech Connect

    Jill R. Scott; Beizhan Yan; Daphne L. Stoner

    2006-11-01

    A new methodology for examining the interactions of microbes with heterogeneous minerals is presented. Imaging laser-desorption Fourier transform mass spectrometry was used to examine the colonization patterns of Burkholderia vietnamiensis (Burkholderia cepacia) G4 on a heterogeneous basalt sample. Depth-profile imaging found that the bacterium preferentially colonized the plagioclase mineral phases within the basalt.

  16. 16S Ribosomal DNA Characterization of Nitrogen-Fixing Bacteria Isolated from Banana (Musa spp.) and Pineapple (Ananas comosus (L.) Merril)

    PubMed Central

    Magalhães Cruz, Leonardo; Maltempi de Souza, Emanuel; Weber, Olmar Baler; Baldani, José Ivo; Döbereiner, Johanna; de Oliveira Pedrosa, Fábio

    2001-01-01

    Nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril) were characterized by amplified 16S ribosomal DNA restriction analysis and 16S rRNA sequence analysis. Herbaspirillum seropedicae, Herbaspirillum rubrisubalbicans, Burkholderia brasilensis, and Burkholderia tropicalis were identified. Eight other types were placed in close proximity to these genera and other alpha and beta Proteobacteria. PMID:11319127

  17. Development of practical diagnostic methods for monitoring rice bacterial panicle blight disease and evaluation of rice germplasm for resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was initiated to understand Burkholderia glumae, the major causal agent for bacterial panicle blight disease of rice; to develop practical diagnostic methods for monitoring the disease; and to evaluate rice germplasm for resistance. Burkholderia glumae was frequently isolated from infected p...

  18. A specific cathepsin-L-like protease purified from an insect midgut shows antibacterial activity against gut symbiotic bacteria.

    PubMed

    Byeon, Jin Hee; Seo, Eun Sil; Lee, Jun Beom; Lee, Min Ja; Kim, Jiyeun Kate; Yoo, Jin Wook; Jung, Yunjin; Lee, Bok Luel

    2015-11-01

    Because gut symbiotic bacteria affect host biology, host insects are expected to evolve some mechanisms for regulating symbiont population. The bean bug, Riptortus pedestris, harbors the Burkholderia genus as a gut symbiont in the midgut organ, designated as the M4 region. Recently, we demonstrated that the lysate of M4B, the region adjacent to M4, harbors potent antibacterial activity against symbiotic Burkholderia but not to cultured Burkholderia. However, the bona fide substance responsible for observed antibacterial activity was not identified in the previous study. Here, we report that cathepsin-L-like protease purified from the lysate of M4B showed strong antibacterial activity against symbiotic Burkholderia but not the cultured Burkholderia. To further confirm this activity, recombinant cathepsin-L-like protease expressed in Escherichia coli also showed antibacterial activity against symbiotic Burkholderia. These results suggest that cathepsin-L-like protease purified from the M4B region plays a critical role in controlling the population of the Burkholderia gut symbiont. PMID:26159404

  19. Commercial Fertilizers in 1922-23. 

    E-print Network

    Fraps, G. S. (George Stronach); Asbury, S. E. (Samuel E.)

    1923-01-01

    Members of the Burkholderia cepacia complex (Bcc) are plant and human opportunistic pathogens. Essentially all Bcc isolates demonstrate in vitro broad-spectrum antibiotic resistance. In fact, many clinical isolates are ...

  20. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 2002, p. 19191924 Vol. 68, No. 4 0099-2240/02/$04.00 0 DOI: 10.1128/AEM.68.4.19191924.2002

    E-print Network

    such as Escherichia coli K-12 or Azospirillum brasilense Sp7. Although no conditions under which the daughter spores to the genus Burkholderia were found to live endosymbiotically within spores of Gigaspora spp., where

  1. Chronic Granulomatous Disease (CGD)

    MedlinePLUS

    ... Area Chronic Granulomatous Disease (CGD) Phagocyte (purple) engulfing Staphylococcus aureus bacteria (yellow). Credit: NIAID CGD is a ... types of bacteria and fungi, including the following: Staphylococcus aureus Serratia marcescens Burkholderia cepacia Nocardia species Aspergillus ...

  2. Bacterial Endosymbiosis is Widely Present Among Zygomycetes but does not Contribute to the Pathogenesis of Mucormycosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental isolates of the fungus, Rhizopus, have been shown to harbor a bacterial endosymbiont (Burkholderia) that produces rhizoxin, a plant mycotoxin. We sought to define the role of endosymbiont rhizoxin production in the pathogenesis of mucormycosis. Endosymbiotic bacteria were identified ...

  3. CHARACTERIZATION OF THE STRUCTURE, FUNCTION, AND PROTEIN-PROTEIN INTERACTIONS INVOLVED IN THE ASSEMBLY OF THE TYPE III SECRETION SYSTEM TIP COMPLEX AND THE TRANSLOCON OF SALMONELLA AND SHIGELLA

    E-print Network

    Chatterjee, Srirupa

    2013-08-31

    such as cytoskeletal dynamics and cellular signaling in order to enable the pathogens to invade, survive, and multiply within the host environment. Gram-negative bacteria harboring the T3SS include Salmonella, Shigella, enteropathogenic E. coli, Yersinia, Burkholderia...

  4. Legume-nodulating betaproteobacteria: diversity, host range, and future prospects.

    PubMed

    Gyaneshwar, Prasad; Hirsch, Ann M; Moulin, Lionel; Chen, Wen-Ming; Elliott, Geoffrey N; Bontemps, Cyril; Estrada-de Los Santos, Paulina; Gross, Eduardo; Dos Reis, Fabio Bueno; Sprent, Janet I; Young, J Peter W; James, Euan K

    2011-11-01

    Rhizobia form specialized nodules on the roots of legumes (family Fabaceae) and fix nitrogen in exchange for carbon from the host plant. Although the majority of legumes form symbioses with members of genus Rhizobium and its relatives in class Alphaproteobacteria, some legumes, such as those in the large genus Mimosa, are nodulated predominantly by betaproteobacteria in the genera Burkholderia and Cupriavidus. The principal centers of diversity of these bacteria are in central Brazil and South Africa. Molecular phylogenetic studies have shown that betaproteobacteria have existed as legume symbionts for approximately 50 million years, and that, although they have a common origin, the symbiosis genes in both subclasses have evolved separately since then. Additionally, some species of genus Burkholderia, such as B. phymatum, are highly promiscuous, effectively nodulating several important legumes, including common bean (Phaseolus vulgaris). In contrast to genus Burkholderia, only one species of genus Cupriavidus (C. taiwanensis) has so far been shown to nodulate legumes. The recent availability of the genome sequences of C. taiwanensis, B. phymatum, and B. tuberum has paved the way for a more detailed analysis of the evolutionary and mechanistic differences between nodulating strains of alpha- and betaproteobacteria. Initial analyses of genome sequences have suggested that plant-associated Burkholderia spp. have lower G+C contents than