Science.gov

Sample records for burning low-sulfur coal

  1. Abundance and modes of occurrence of mercury in some low-sulfur coals from China

    USGS Publications Warehouse

    Zheng, Lingyun; Liu, Gaisheng; Chou, C.-L.

    2008-01-01

    Mercury (Hg) is one of the hazardous trace elements in coal. Mercury in coal is almost totally emitted into the atmosphere during coal combustion. Especially for utilities burning low-sulfur coals that do not require scrubbers, Hg reduction will be neglected. Hg abundances of 52 low-sulfur coal samples from different coalfields in six provinces of China were determined by a flow injection mercury system (FIMS). The results show that Hg abundances in selected low-sulfur coals range from 0.03??ppm to 0.79??ppm, with an arithmetic mean of 0.24??ppm, which is higher than that of average Chinese coals (0.19??ppm). Correlation analysis and sequential extraction procedures are performed to study possible modes of occurrence of Hg in low-sulfur coals. Modes of occurrence of Hg are variable in low-sulfur coals, and the sulfide-bound and organic-bound Hg may be the dominant forms. In addition, the silicate-bound Hg may be the main form in some of these coals because of magmatic intrusion. ?? 2007 Elsevier B.V. All rights reserved.

  2. Low-sulfur coal usage alters transportation strategies

    SciTech Connect

    Stein, H.

    1995-07-01

    As electricity production has grown, so has the amount of coal burned by US utilities. In order to comply with the 1990 Clean Air Act Amendments (CAAA), many utilities have changed from high-sulfur coal to lower-sulfur coal to reduce sulfur dioxide emissions. The primary mode of transporting coal to utilities remains the railroad, and coal represents the largest freight tonnage shipped - two out of every five tons. Since coal is so important to the railroads, it is logical that as utilities have changed their coal-buying strategies, the railroads` strategies have also changed. The increased demand for Western coal has caused rail lines some capacity problems which they are attempting to meet head-on by buying new railcars and locomotives and expanding track capacities. The new railcars typically have aluminum bodies to reduce empty weight, enabling them to carry larger loads of coal. Train locomotives are also undergoing upgrade changes. Most new locomotives have as motors to drive the wheels which deliver more motive power (traction) to the wheel trucks. In fact the motors are up to 30% more efficient at getting the traction to the trucks. Trackage is also being expanded to alleviate serious congestion on the tracks when moving Western coal.

  3. A novel coal feeder for production of low sulfur fuel

    SciTech Connect

    Khang, S.J.; Lin, L.; Keener, T.C.; Yeh, P.

    1991-01-01

    A dual-screw feeder was designed for desulfurization of coal. This reactor contains two screw tubes, the inner tube acting as a coal pyrolizer and the outer tube acting as a desulfurizer with hot calcined lime pellets or other renewable sorbent pellets. The objectives of this project is to study the feasibility of an advanced concept of desulfurization and possibly some denitrification in this coal feeder. In this year, two basic studies have been performed: (1) the desulfurization and (2) the denitrification due to mild pyrolysis. Specifically, the following tasks have been performed: (1) Setting up the Dual-Screw reactor, (2) Determination of the pyrolysis product and the sulfur distribution in char, tar and gas based on experimental data, (3) Study of the devolatilization, the desulfurization kinetics and the denitrification kinetics and obtaining the basic kinetic parameters, (4) Study of the sulfur removal efficiency of lime pellets fed into the outer tube of the dual-feeder reactor, (5) Study of the effect of the coal particle size on pyrolysis and desulfurization, (6) Study of the coal pyrolysis and desulfurization using a TGA(Thermal Gravimetric Analyzer).

  4. Catalytic hydrosolvation process converts coal to low-sulfur liquid fuel

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1978-01-01

    Development of the catalytic hydrosolvation process for converting coal to low-sulfur fuel oil is described in this paper. Coal impregnated with catalyst was slurried with oil, and the mixture was hydrogenated at a temperature of 475 C, and 30 min residence time under 3600 psi pressure. A ton of coal yielded 3.5 bbl of fuel oil containing 0.2% sulfur, with naphtha and C1-C4 hydrocarbon gases as byproducts. A preliminary economic evaluation of the process indicated potential for further development.

  5. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    SciTech Connect

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate the performance of low-cost activated carbon sorbents for removing mercury. In addition, the effects of the dual flue gas conditioning system on mercury removal performance were evaluated as part of short-term parametric tests on Unit 2. Based on the parametric test results, a single sorbent (e.g., RWE Super HOK) was selected for a 30-day continuous injection test on Unit 1 to observe long-term performance of the sorbent as well as its effects on ESP and FGD system operations as well as combustion byproduct properties. A series of parametric tests were also performed on Shawville Unit 3 over a three-week period in which several activated carbon sorbents were injected into the flue gas duct just upstream of either of the two Unit 3 ESP units. Three different sorbents were evaluated in the parametric test program for the combined ESP 1/ESP 2 system in which sorbents were injected upstream of ESP 1: RWE Super HOK, Norit's DARCO Hg, and a 62:38 wt% hydrated lime/DARCO Hg premixed reagent. Five different sorbents were evaluated for the ESP 2 system in which activated carbons were injected upstream of ESP 2: RWE Super HOK and coarse-ground HOK, Norit's DARCO Hg and DARCO Hg-LH, and DARCO Hg with lime injection upstream of ESP 1. The hydrated lime tests were conducted to reduce SO3 levels in an attempt to enhance the mercury removal performance of the activated carbon sorbents. The Plant Yates and Shawville studies provided data required for assessing carbon performance and long-term operational impacts for flue gas mercury control across small-sized ESPs, as well as for estimating the costs of full-scale sorbent injection processes.

  6. Coal burning arrangement

    SciTech Connect

    Wormser, A.F.

    1981-03-03

    Pyrolyzing pulverized coal to form char and volatiles, separating the char from the volatiles, burning the char in heattransfer relationship with a stoichiometric excess of air, forming thereby ash and a mixture of gases, the excess of air being chosen to produce in the ash a temperature below the fusion temperature thereof, separating the mixture of gases from the ash , and thereafter burning the volatiles in the mixture of gases. Also, coal burning apparatus which comprises, in combination a spouted bed pyrolyzer, a fluidized bed combustor, a first cyclone , a second cyclone, and an afterburner, the pyrolyzer being connected to accept pulverized coal and to discharge char to the combustor and gaseous materials with entrained particulate material to the first cyclone, the first cyclone being connected to deliver gases to the afterburner, the combustor being connected to accept also a combustion supporting gas and to deliver to the second cyclone gaseous materials with entrained particulate material, and the second cyclone being connected to deliver gaseous material to the afterburner.

  7. Burning coal's waste

    SciTech Connect

    Daly, J.M.; Duffy, T.J.

    1988-07-01

    In an old Pennsylvania coal valley, growing fresh produce and eliminating ancient waste piles both depend on a fluidized bed boiler cogeneration plant. The builders of a complex now nearing completion at Archbald, however, will soon begin to turn two of the waste piles, called culm banks, into economic assets. Culm will burn although it has a low, variable heat content. The project combines several recently developed technologies to use culm as fuel for a fluidized bed boiler cogeneration plant that will heat a hydroponic greenhouse. What makes the venture economically viable are the products that will be sold: 23 mw of electricity to the local utility and fresh produce to meet burgeoning demands in East Coast supermarkets. For instance, if the ''salad plant'' were completely devoted to growing lettuce, 3 million heads could be harvested in 11 hydroponic seasons a year. The owners, Archbald Power Corp., chose a 271 acre stie that had been mined for anthracite by both open pit and deep shaft methods.

  8. Characterization of the chemical variation of feed coal and coal combustion products from a power plant utilizing low sulfur Powder River Basin coal

    SciTech Connect

    Affolter, R.H.; Brownfield, M.E.; Cathcart, J.D.; Brownfield, I.K.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research, in collaboration with an Indiana utility, are studying a coal-fired power plant burning Powder River Basin coal. This investigation involves a systematic study of the chemical and mineralogical characteristics of feed coal and coal combustion products (CCPs) from a 1,300-megawatt (MW) power unit. The main goal of this study is to characterize the temporal chemical variability of the feed coal, fly ash, and bottom ash by looking at the major-, minor-, and trace-element compositions and their associations with the feed coal mineralogy. Emphasis is also placed on the abundance and modes of occurrence of elements of potential environmental concern that may affect the utilization of these CCPs and coals.

  9. LOW-SULFUR WESTERN COAL USE IN EXISTING SMALL AND INTERMEDIATE SIZE BOILERS

    EPA Science Inventory

    The report gives results of testing of 10 representative coal-fired boilers in the Upper-Midwest, including an assessment of SOx, NOx, CO, unburned HC, and particulate emissions from these units, as well as an assessment of the operational impact of coal switching. The study show...

  10. PILOT PLANT STUDY OF CONVERSION OF COAL TO LOW SULFUR FUEL

    EPA Science Inventory

    The report gives results of a program to develop, on bench and pilot scales, operating conditions for the key step in the IGT process to desulfurize coal by thermal and chemical treatment. This process, to date, uses the 'sulfur-getter' concept. (A sulfur-getter is a material tha...

  11. A novel dual-screw coal feeder for production of low sulfur fuel

    SciTech Connect

    Lin, L.; Khang, S.J.; Keener, T.C.

    1993-06-15

    In this project, the following tasks have been performed: (1) Setting up the Dual-Screw feeder reactor. (2) Determination of the pyrolysis product and the sulfur distribution in char, tar and gas based on experimental data. (3) Study of the devolatilization and the desulfurization kinetics and obtaining the basic kinetic parameters. (4) Study of the sulfur removal efficiency of lime pellets fed into the outer tube of the dual-screw feeder reactor. (5) Study of the effect of the coal particle size on pyrolysis and desulfurization. (6) Study of the coal pyrolysis using a TGA (Thermal Gravimetric Analyzer). (7) Study of the coal desulfurization using a tube oven. (8) Setting up a combustor. (9) Study of the combustion characteristics of the pyrolysis products from the dual-screw feeder reactor. (10) Process simulation of the dual-screw feeder reactor. The experimental results of devolatilization and desulfurization of an Ohio {number_sign}8 coal demonstrate that an increasing the temperature in mild coal pyrolysis leads to the increase of both the devolatilization yield and the desulfurization yield. Under the experimental conditions, mainly the organic sulfur releases in the form of H{sub 2}S. Both the devolatilization and the desulfurization processes can be described by using the first-order-reaction model which gives the activation energy values for pyrolysis and desulfurization of 170,021 kJ/mol and 78,783 kJ/mol, indicating the sulfur is easier to release than volatiles. The outer screw region of CaO pellets also demonstrated almost a complete removal of hydrogen sulfide from volatiles. At a temperature of 475{degree}C and a residence time of 6 minutes, 73.1% of the organic sulfur was removed in the screw feeder reactor. The investigation of the combustion characteristics of the pyrolysis products showed a negligible reduction of the total heating value of the char and volatile products.

  12. Electrostatic precipitator electrode upgrade for low sulfur western coal at the OPPD Nebraska City station

    SciTech Connect

    Drdla, E. )

    1992-01-01

    The Omaha Public Power District (OPPD) Nebraska City Unit 1 coal fired boiler (585 MW) began operation in 1980. It was quickly recognized that the electrostatic precipitator would be a major detriment to the unit's availability. After nine years of boiler availability averaging approximately 70% due to electrostatic precipitator forced outages, a major upgrade was undertaken in 1989. The air preheater was relocated and the electrostatic precipitator ductwork was modified for cold side operation. Major component replacement and modifications were performed on the electrostatic precipitator internals during 4 months of the 6 months outage period. The insight to his dramatic upgrade success (boiler availability increased from 70% to 99.8%) is highlighted. It provides support to operating companies that are required to change coals (due to acid rain legislation) or have electrostatic precipitators that cannot meet current emissions standards.

  13. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    SciTech Connect

    Monica Zanfir; Rahul Solunke; Minish Shah

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon’s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

  14. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted...

  15. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted...

  16. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted...

  17. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  18. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  19. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  20. Controls on boron and germanium distribution in the low-sulfur Amos coal bed, Western Kentucky coalfield, USA

    USGS Publications Warehouse

    Hower, J.C.; Ruppert, L.F.; Williams, D.A.

    2002-01-01

    The Duckmantian-aged Amos coal bed is a thin (<51 cm) coal bed that occurs in lobate southwest-trending pods separated by thin sandstones in the Western Kentucky coalfield. The coal bed, which is comprised of up to two benches and a rider coal, is low in ash yield (<6%) and sulfur content (<1%). The coal tends to be thin (<40 cm), but it was heavily mined in the 1980s because it could be combusted as mined. Geochemical analysis of the Amos coal bed shows higher concentrations of B and Ge than other Western Kentucky coal beds. High total B concentrations as well as high B/Be, both considered to be indicators of marine environments, increase toward the top of the coal bed. Most of the B values for the Amos samples range from 66 to 103 ppm (whole coal basis) indicating deposition in a brackish environment. High Ge concentrations in coals have been considered to be a function of seam thickness and proximity to the top and bottom of the coal bed. Thin coals, such as the Amos, are dominated by the coal bed margins and, therefore, have a tendency to have relatively high Ge concentrations. In the case of the Amos coal bed, the lower bench has a higher Ge content, suggesting that the substrate was a more important source of Ge than the roof rock. ?? 2002 Elsevier Science B.V. All rights reserved.

  1. The characterization of brown coals of Kansk-Achinsk Basin for improved utilization in the coal-burning power stations

    SciTech Connect

    Solntsev, S.I.; Shorokhov, V.P.

    1998-12-31

    Kansk-Achinsk Brown Coal Basin in Siberia is the largest one of Russia. There are several large deposits in the Basin. Two main open cuts currently annually supply 35 million tonnes of brown coal for the pulverized fired boilers operated by number of Power Stations in Central Siberia. The main part of Kansk-Achinsk brown coals are characterized by low sulfur, nitrogen and heavy metal content. However, they differ in the ash content (within the range of 4--12%) and in the ash composition (in Ca, Al, Fe, Na, in particular). This has a major influence on the boiler fouling and slagging tendency. The paper describes the work in defining the geological, chemical and utilization characteristics of the coals from the different cuts and places of Kansk-Achinsk Basin. The emphasis on the ash fouling and slagging on burning brown coals from different places was made. The methods of coal preparation were developed to improve the utilization characteristics and to comply with the emission regulations. The preparation and burning of blended coals and coal-water slurry is the focus of the discussion. The technology of briquetted brown coal both with oil-derived binder and with no binder is described.

  2. FEASIBILITY OF BURNING COAL IN CATALYTIC COMBUSTORS

    EPA Science Inventory

    The report gives results of a study, showing that pulverized coal can be burned in a catalytic combustor. Pulverized coal combustion in catalytic beds is markedly different from gaseous fuel combustion. Gas combustion gives uniform bed temperatures and reaction rates over the ent...

  3. Characterization of fly ash from low-sulfur and high-sulfur coal sources: Partitioning of carbon and trace elements with particle size

    USGS Publications Warehouse

    Hower, J.C.; Trimble, A.S.; Eble, C.F.; Palmer, C.A.; Kolker, A.

    1999-01-01

    Fly ash samples were collected in November and December of 1994, from generating units at a Kentucky power station using high- and low-sulfur feed coals. The samples are part of a two-year study of the coal and coal combustion byproducts from the power station. The ashes were wet screened at 100, 200, 325, and 500 mesh (150, 75, 42, and 25 ??m, respectively). The size fractions were then dried, weighed, split for petrographic and chemical analysis, and analyzed for ash yield and carbon content. The low-sulfur "heavy side" and "light side" ashes each have a similar size distribution in the November samples. In contrast, the December fly ashes showed the trend observed in later months, the light-side ash being finer (over 20 % more ash in the -500 mesh [-25 ??m] fraction) than the heavy-side ash. Carbon tended to be concentrated in the coarse fractions in the December samples. The dominance of the -325 mesh (-42 ??m) fractions in the overall size analysis implies, though, that carbon in the fine sizes may be an important consideration in the utilization of the fly ash. Element partitioning follows several patterns. Volatile elements, such as Zn and As, are enriched in the finer sizes, particularly in fly ashes collected at cooler, light-side electrostatic precipitator (ESP) temperatures. The latter trend is a function of precipitation at the cooler-ESP temperatures and of increasing concentration with the increased surface area of the finest fraction. Mercury concentrations are higher in high-carbon fly ashes, suggesting Hg adsorption on the fly ash carbon. Ni and Cr are associated, in part, with the spinel minerals in the fly ash. Copyright ?? 1999 Taylor & Francis.

  4. Burning coal refuse in fluid beds

    SciTech Connect

    Kleinau, J.H.; Sneyd, R.J.; Lombardi, C.E.

    1985-01-01

    This paper deals with the application of fluid bed combustion technology to the burning of coal-mining waste. The designs of two stage fluid bed combustors/dryers are demonstrated as useful in the drying of coal, slag and coke, using coal and coal refuse (gob) as fuel. Anthracite mining refuse (culm) is more than abundant in Northeastern Pennsylvania. After demonstration at Shamokin, Pennsylvania, a full commercial-sized fluid bed boiler using culm is used for district heating in Wilkes-Barre, Pennsylvania. Limited research work has shown the utility of using fine coal as filter aid in sludge incineration. With the rising avenues of the suitability of coal as auxiliary fuel in fluid bed sludge incineration, an expansion of these concepts combines the use of coal or coal refuse as filter aid and auxiliary fuel. Limestone addition controls SO/sub 2/ emission.

  5. Okefenokee Swamp: a low-sulfur end-member of a shoreline-related depositional model for coastal plain coals

    SciTech Connect

    Cohen, A.D.

    1982-01-01

    The Okefenokee Swamp is proposed as one end-member of a shoreline-related model for coal deposition. Its peat would produce a coal seam that is relatively thick and continuous, with gaps occurring only where shoreline features are high. The seam would also tend to thicken along troughs roughly parallel to the orientation of the remnant shoreline features. The ash and sulfur contents of this coal would be low and inorganic splits in the seam would be rare. Thicker portions of the coal seam would tend to be massive (non-banded); whereas, thinner portions of the seam would consist of alternating bright and dull bands with greater amounts of fusinite, selerotinite, and corpocollinite. The other types of barrier-shoreline coal seams (the Snuggedy Swamp type and the salt marsh type) would be expected to display certain geometric and compositional similarities to the Okefenokee seam but would also display certain predictable differences in composition from it.

  6. A novel coal feeder for production of low sulfur fuel. Annual technical progress report, October 1, 1990--October 1, 1991

    SciTech Connect

    Khang, S.J.; Lin, L.; Keener, T.C.; Yeh, P.

    1991-12-31

    A dual-screw feeder was designed for desulfurization of coal. This reactor contains two screw tubes, the inner tube acting as a coal pyrolizer and the outer tube acting as a desulfurizer with hot calcined lime pellets or other renewable sorbent pellets. The objectives of this project is to study the feasibility of an advanced concept of desulfurization and possibly some denitrification in this coal feeder. In this year, two basic studies have been performed: (1) the desulfurization and (2) the denitrification due to mild pyrolysis. Specifically, the following tasks have been performed: (1) Setting up the Dual-Screw reactor, (2) Determination of the pyrolysis product and the sulfur distribution in char, tar and gas based on experimental data, (3) Study of the devolatilization, the desulfurization kinetics and the denitrification kinetics and obtaining the basic kinetic parameters, (4) Study of the sulfur removal efficiency of lime pellets fed into the outer tube of the dual-feeder reactor, (5) Study of the effect of the coal particle size on pyrolysis and desulfurization, (6) Study of the coal pyrolysis and desulfurization using a TGA(Thermal Gravimetric Analyzer).

  7. Production of low-sulfur binder pitch from high-sulfur Illinois coals. Technical report, September 1--November 30, 1994

    SciTech Connect

    Knight, R.A.

    1994-12-31

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. In this project, two approaches to sulfur reduction are being explored in conjunction with thermocracking: (1) the use of conventionally cleaned coal with low ({approximately}1%) sulfur as a mild gasification feedstock, and (2) direct biodesulfurization of the liquids prior to thermocracking. In Case 1, the crude pitch is being produced by mild gasification of IBC-109 coal in an existing IGT bench-scale reactor, followed by distillation of the scrubbing solvent and light-to-middle oils to isolate the crude pitch. In Case 2, the crude pitch for biodesulfurization is the same material previously studied, which was obtained from Illinois No. 6 coal tests conducted in the IGT mild gasification PRU in 1990. Biodesulfurization is to be performed by contacting the pitch with Rhodococcus Rhodochrous either as live cultures or in the form of concentrated biocatalyst. Following preparation of the crude pitches, pitch upgrading experiments are to be conducted in a continuous flash thermocracker (FTC) constructed in previous ICCI-sponsored studies. The finished pitch is then characterized for physical and chemical properties (density, softening point, QI, TI, coking value, and elemental composition), and compared to typical specifications for binder pitches. This quarter, 45 kg of IBC-109 coal was obtained and sized to 40 x 80 mesh for mild gasification. Laboratory experiments were conducted to identify means of dispersing or emulsifying pitch in water to render is accessible to biocatalysts, and exploratory desulfurization tests on one-gram pitch samples were begun.

  8. On burning a lump of coal

    NASA Astrophysics Data System (ADS)

    Alonso-Serrano, Ana; Visser, Matt

    2016-06-01

    Burning something, (e.g. the proverbial lump of coal, or an encyclopaedia for that matter), in a blackbody furnace leads to an approximately Planck emission spectrum with an average entropy/information transfer of approximately 3.9 ± 2.5 bits per emitted photon. This quantitative and qualitative result depends only on the underlying unitarity of the quantum physics of burning, combined with the statistical mechanics of blackbody radiation. The fact that the utterly standard and unitarity preserving process of burning something (in fact, burning anything) nevertheless has an associated entropy/information budget, and the quantitative size of that entropy/information budget, is a severely under-appreciated feature of standard quantum statistical physics.

  9. Characterization and modes of occurrence of elements in feed coal and coal combustion products from a power plant utilizing low-sulfur coal from the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Brownfield, Michael E.; Cathcart, James D.; Affolter, Ronald H.; Brownfield, Isabelle K.; Rice, Cynthia A.; O'Connor, Joseph T.; Zielinski, Robert A.; Bullock, John H., Jr.; Hower, James C.; Meeker, Gregory P.

    2005-01-01

    The U.S. Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana utility company to determine the physical and chemical properties of feed coal and coal combustion products from a coal-fired power plant. The Indiana power plant utilizes a low-sulfur (0.23 to 0.47 weight percent S) and lowash (4.9 to 6.3 weight percent ash) subbituminous coal from the Wyodak-Anderson coal zone in the Tongue River Member of the Paleocene Fort Union Formation, Powder River Basin, Wyoming. Based on scanning electron microscope and X-ray diffraction analyses of feed coal samples, two mineral suites were identified: (1) a primary or detrital suite consisting of quartz (including beta-form grains), biotite, feldspar, and minor zircon; and (2) a secondary authigenic mineral suite containing alumino-phosphates (crandallite and gorceixite), kaolinite, carbonates (calcite and dolomite), quartz, anatase, barite, and pyrite. The primary mineral suite is interpreted, in part, to be of volcanic origin, whereas the authigenic mineral suite is interpreted, in part, to be the result of the alteration of the volcanic minerals. The mineral suites have contributed to the higher amounts of barium, calcium, magnesium, phosphorus, sodium, strontium, and titanium in the Powder River Basin feed coals in comparison to eastern coals. X-ray diffraction analysis indicates that (1) fly ash is mostly aluminate glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals; and (2) bottom ash is predominantly quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite, and spinel group minerals. Microprobe and scanning electron microscope analyses of fly ash samples revealed quartz, zircon, and monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, wollastonite, and periclase. The abundant calcium and magnesium mineral phases in the fly ash are attributed to the presence of carbonate, clay, and phosphate minerals in the feed coal and their alteration to new phases during combustion. The amorphous diffraction-scattering maxima or glass 'hump' appears to reflect differences in chemical composition of fly ash and bottom ash glasses. In Wyodak-Anderson fly and bottom ashes, the center point of scattering maxima is due to calcium and magnesium content, whereas the glass 'hump' of eastern fly ash reflects variation in aluminum content. The calcium- and magnesium-rich and alumino-phosphate mineral phases in the coal combustion products can be attributed to volcanic minerals deposited in peat-forming mires. Dissolution and alteration of these detrital volcanic minerals occurred either in the peat-forming stage or during coalification and diagenesis, resulting in the authigenic mineral suite. The presence of free lime (CaO) in fly ash produced from Wyodak-Anderson coal acts as a self-contained 'scrubber' for SO3, where CaO + SO3 form anhydrite either during combustion or in the upper parts of the boiler. Considering the high lime content in the fly ash and the resulting hydration reactions after its contact with water, there is little evidence that major amounts of leachable metals are mobilized in the disposal or utilization of this fly ash.

  10. Speciation of Chromium in Feed Coals and Ash Byproducts from Canadian Power Plants Burning Subbituminous and Bituminous Coals

    SciTech Connect

    Goodarzi,F.; Huggins, F.

    2005-01-01

    The chromium species in the feed coals and ash byproducts from seven Canadian coal-fired power plants that were burning local subbituminous or bituminous coals with sulfur contents in the range of 0.30-3.5 wt % have been examined using Cr X-ray absorption near-edge spectroscopy (XANES). Chromium in the Canadian feed coals is always found as Cr{sup 3+} but generally has a dual occurrence, as Cr{sup 3+} is distributed to varying degrees between the clay mineral illite (Cr3+/illite) and a poorly crystallized chromium oxyhydroxide (CrOOH) phase associated with the organic fraction. In two subbituminous feed coals from Alberta, chromium is present largely as Cr{sup 3+}/illite, whereas in two other such coals, it is present predominantly as CrOOH. Chromium in a low-sulfur (0.50 wt %) bituminous feed coal from Alberta is found mostly as Cr{sup 3+}/illite, whereas for feed coals from Nova Scotia with high sulfur contents (2.60-3.56 wt %), chromium is distributed between both Cr{sup 3+}/illite and CrOOH. Very little chromium was found in the limestone used in a fluidized-bed combustor. The chromium species in most bottom ash samples from all seven combustion units is predominantly, if not entirely (>95%), Cr{sup 3+} associated with aluminosilicate phases. Chromium speciation for subbituminous electrostatic precipitator (ESP) fly ash is mostly Cr{sup 3+} (>95%), but in some cases, it is slightly less (>80%) and varies by sampling location at the plant. Chromium in fly ash from the combustion of bituminous feed coals is predominantly (>95%) Cr3+. A unique species of chromium found in one feed coal and an unrelated fly ash is metallic chromium (Cr0), similar to that in stainless steel. The occurrence of this form of chromium in these materials indicates contamination from machinery, such as the coal milling machine or possibly wearing down of stainless steel parts by the coal or ash. The observation of this unexpected contamination demonstrates the power and usefulness of X-ray absorption fine-structure (XAFS) spectroscopy for speciation determination.

  11. Role of coal in the world and Asia

    SciTech Connect

    Johnson, C.J.; Li, B.

    1994-10-01

    This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning.

  12. Production of low sulfur binder pitich from high-sulfur Illinois coals. Quarterly report, 1 March 1995--31 May 1995

    SciTech Connect

    Knight, R.A.

    1995-12-31

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. Previously, flash thermocracking (FTC) was used to successfully upgrade the properties of mild gasification pitch, yielding a suitable blending stock for use as a binder in the production of carbon electrodes for the aluminum industry. However, in pitches from high-sulfur (4%) Illinois coal, the pitch sulfur content (2%) was still higher than preferred. In this project two approaches to sulfur reduction are being explored in conjunction with FTC: (1) the use of a moderate-sulfur (1.2%) Illinois coal as mild gasification feedstock, and (2) direct biodesulfurization of the liquids from high-sulfur coal prior to FTC. In Case 1, the liquids are being produced by mild gasification of IBC-109 coal in a bench-scale fluidized-bed reactor, followed by distillation to isolate the crude pitch. In Case 2, biodesulfurization with Rhodococcus Rhodochrous IGTS8 biocatalyst is being performed on crude pitch obtained from Illinois No. 6 coal tests conducted in the IGT MILDGAS PRU in 1990. Following preparation of the crude pitches, pitch upgrading experiments are being conducted in a continuous FTC reactor constructed in previous ICCI-sponsored studies. This quarter, mild gasification of IBC-109 coal was completed, producing 450 g of coal liquids, which were then distilled to recover 329 g of Case 1 crude pitch. Next month, the pitch will be subjected to FTC treatment and evaluated. Biodesulfurization experiments were performed on Case 2 pitch dispersed in l-undecanol, resulting in sulfur reductions of 15.1 to 21.4%. This was marginally lower than the 24.8% desulfurization obtained in l-dodecanol, but separation of pitch from the dispersant was facilitated by the greater volatility of l-undecanol.

  13. Liquidus (Ca+Mg)-rich exsolution phases in low-sulfur fly ash

    SciTech Connect

    O'Connor, J.T.; Meeker, G.M.

    1999-07-01

    Ca- and Mg-rich fly ash samples from an electric power plant burning low-sulfur Powder River Coal were analyzed using optical petrographic microscope (OPM), scanning electron microscope (SEM), electron microprobe analyzer (EMPA), and Gandolfi and bulk-powder X-ray diffraction (XRD) techniques. Abundant Ca and Mg in the fly ash, probably originating from dispersed authigenic and residual minerals in the coal feed stock, flux the molten fly ash, effectively allowing many crystalline phases to achieve ordering, to separate from each other, and to grow to appreciable size (>10{micro}m) in the brief time (<20 sec) they spend at high temperature. Phases identified from the (Ca+Mg)-rich fly ash are listed in a table and shown in figures.

  14. Economic assessment of coal burning diesel locomotives: Topical report

    SciTech Connect

    Hapeman, M.J.; Savkar, S.D.

    1985-10-01

    The coal burning steam locomotive was displaced many years ago by the diesel electric locomotive due to its several well-known advantages. However, the recent escalation of diesel fuel oil prices and the relatively inexpensive and plentiful coal supply provides an incentive to relook at a coal burning diesel electric locomotive. The success of the diesel-electric locomotive is really the result of two major technological changes: (1) the diesel engine, and (2) the electric drive transmission. The smooth, controlled application of power to the rails via electric motors, reduced the locomotive tractive weight by nearly 30%, and also reduced track maintenance by eliminating reciprocating vertical forces. More horsepower is also applied at low speeds to improve train acceleration. The diesel engine has been developed to produce nearly as much horsepower as the largest steam locomotives but with much less maintenance, higher reliability and more availability. The current cost of diesel fuel is now high enough to encourage a return to less-expensive, domestically-available coal fuel. However, it would be a step backward to lose the advantages of the diesel-electric locomotive. General Electric embarked upon a study to determine the best way to design and manufacture a coal-fired locomotive considering various prime movers, but all with electric drive. For a coal-fired diesel locomotive (CFDL) to be commercially viable, it must pass all three of the following criteria: be technically feasible; meet railroads' financial expectations; and offer an attractive return to the Locomotive manufacturer. These three criteria are reviewed based on results to date of General Electric's CFDL studies. The analysis assumes constant 1985 dollars and no significant changes in relative costs of diesel fuel and coal. 23 figs., 16 tabs.

  15. Radiative heat transfer in PC (pulverized coal) furnaces burning deeply cleaned coals

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1990-05-01

    A three-dimensional spectral radiation transport model has been developed for assessing the impact of burning deeply cleaned coals on heat absorption patterns in pulverized coal (PC) furnaces. Spectroscopic data are used for calculating the absorption coefficients of participating gases. Mie theory is invoked for determining the extinction and scattering efficiencies of combustion particulates. The optical constants of char, ash and soot are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. 8 refs., 2 figs., 3 tabs.

  16. Plant burns wide range of coals but uses oil when typhoons rage. [Hong Kong

    SciTech Connect

    Jesson, J.E.; Brooks, R.W.

    1983-01-01

    The Castle Peak power plant, Hong Kong, was designed to accommodate a variety of overseas coals. In the case of typhoons, however, shipping and handling of coal becomes treacherous, so oil is burned. Gas recirculation is provided to equalize performance.

  17. Speciation of chromium in feed coals and ash byproducts from Canadian power plants burning subbituminous and bituminous coals

    SciTech Connect

    Fariborz Goodarzi; Frank E. Huggins

    2005-12-01

    The chromium species in the feed coals and ash byproducts from seven Canadian coal-fired power plants were examined using Cr X-ray absorption near-edge spectroscopy. Chromium in the Canadian feed coals is always found as Cr{sup 3+} but generally has a dual occurrence, as Cr{sup 3+} is distributed to varying degrees between the clay mineral illite and a poorly crystallized chromium oxyhydroxide phase associated with the organic fraction. In two subbituminous feed coals from Alberta, chromium is present largely as Cr{sup 3+}/illite, whereas in two other such coals, it is present predominantly as CrOOH. Chromium in a low-sulfur bituminous feed coal from Alberta is found mostly as Cr{sup 3+}/illite, whereas for feed coals from Nova Scotia with high sulfur contents, chromium is distributed between both Cr{sup 3+}/illite and CrOOH. Very little chromium was found in the limestone used in a fluidized-bed combustor. The chromium species in most bottom ash samples from all seven combustion units is predominantly, if not entirely, Cr{sup 3+} associated with aluminosilicate phases. Chromium speciation for subbituminous electrostatic precipitator fly ash is mostly Cr{sup 3+}, but in some cases, it is slightly lessand varies by sampling location at the plant. Chromium in fly ash from the combustion of bituminous feed coals is predominantlyCr{sup 3+}. A unique species of chromium found in one feed coal and an unrelated fly ash is metallic chromium, similar to that in stainless steel. The occurrence of this form of chromium in these materials indicates contamination from machinery, such as the coal milling machine or possibly wearing down of stainless steel parts by the coal or ash. The observation of this unexpected contamination demonstrates the power and usefulness of X-ray absorption fine-structure spectroscopy for speciation determination. 35 refs., 6 figs., 4 tabs.

  18. Leachability of trace elements in coal and coal combustion wastes

    SciTech Connect

    Rice, C.A.; Breit, G.N.; Fishman, N.S.; Bullock, J.H. Jr.

    1999-07-01

    Leaching of trace elements from coal and coal combustion waste (CCW) products from a coal-fired power plant, burning coal from the Appalachian and Illinois basins, was studied using deionized (DI) water as a lixiviant to resemble natural conditions in waste disposal sites exposed to dilute meteoric water infiltration. Samples of bottom ash, fly ash, and feed coal were collected from two combustion units at monthly intervals, along with a bulk sample of wastes deposited in an on-site disposal pond. The units burn different coals, one a high-sulfur coal (2.65 to 3.5 weight percent S) and the other, a low-sulfur coal (0.6--0.9 eight percent S). Short-term batch leaches with DI water were performed for times varying from a few minutes to 18 hours. Select fly ash samples were also placed in long-term (> 1 year) flow-through columns.

  19. Coal burning leaves toxic heavy metal legacy in the Arctic.

    PubMed

    McConnell, Joseph R; Edwards, Ross

    2008-08-26

    Toxic heavy metals emitted by industrial activities in the midlatitudes are transported through the atmosphere and deposited in the polar regions; bioconcentration and biomagnification in the food chain mean that even low levels of atmospheric deposition may threaten human health and Arctic ecosystems. Little is known about sources and long-term trends of most heavy metals before approximately 1980, when modern measurements began, although heavy-metal pollution in the Arctic was widespread during recent decades. Lacking detailed, long-term measurements until now, ecologists, health researchers, and policy makers generally have assumed that contamination was highest during the 1960s and 1970s peak of industrial activity in North America and Europe. We present continuous 1772-2003 monthly and annually averaged deposition records for highly toxic thallium, cadmium, and lead from a Greenland ice core showing that atmospheric deposition was much higher than expected in the early 20th century, with tenfold increases from preindustrial levels by the early 1900s that were two to five times higher than during recent decades. Tracer measurements indicate that coal burning in North America and Europe was the likely source of these metals in the Arctic after 1860. Although these results show that heavy-metal pollution in the North Atlantic sector of the Arctic is substantially lower today than a century ago, contamination of other sectors may be increasing because of the rapid coal-driven growth of Asian economies. PMID:18711138

  20. Coal burning leaves toxic heavy metal legacy in the Arctic

    PubMed Central

    McConnell, Joseph R.; Edwards, Ross

    2008-01-01

    Toxic heavy metals emitted by industrial activities in the midlatitudes are transported through the atmosphere and deposited in the polar regions; bioconcentration and biomagnification in the food chain mean that even low levels of atmospheric deposition may threaten human health and Arctic ecosystems. Little is known about sources and long-term trends of most heavy metals before ≈1980, when modern measurements began, although heavy-metal pollution in the Arctic was widespread during recent decades. Lacking detailed, long-term measurements until now, ecologists, health researchers, and policy makers generally have assumed that contamination was highest during the 1960s and 1970s peak of industrial activity in North America and Europe. We present continuous 1772–2003 monthly and annually averaged deposition records for highly toxic thallium, cadmium, and lead from a Greenland ice core showing that atmospheric deposition was much higher than expected in the early 20th century, with tenfold increases from preindustrial levels by the early 1900s that were two to five times higher than during recent decades. Tracer measurements indicate that coal burning in North America and Europe was the likely source of these metals in the Arctic after 1860. Although these results show that heavy-metal pollution in the North Atlantic sector of the Arctic is substantially lower today than a century ago, contamination of other sectors may be increasing because of the rapid coal-driven growth of Asian economies. PMID:18711138

  1. Coal burning leaves toxic heavy metal legacy in the Arctic

    SciTech Connect

    McConnell, J.R.; Edwards, R.

    2008-08-26

    Toxic heavy metals emitted by industrial activities in the midlatitudes are transported through the atmosphere and deposited in the polar regions; bioconcentration and biomagnification in the food chain mean that even low levels of atmospheric deposition may threaten human health and Arctic ecosystems. Little is known about sources and long-term trends of most heavy metals before approximate to 1980, when modern measurements began, although heavy-metal pollution in the Arctic was widespread during recent decades. Lacking detailed, long-term measurements until now, ecologists, health researchers, and policy makers generally have assumed that contamination was highest during the 1960s and 1970s peak of industrial activity in North America and Europe. We present continuous 1772-2003 monthly and annually averaged deposition records for highly toxic thallium, cadmium, and lead from a Greenland ice core showing that atmospheric deposition was much higher than expected in the early 20th century, with tenfold increases from preindustrial levels by the early 1900s that were two to five times higher than during recent decades. Tracer measurements indicate that coal burning in North America and Europe was the likely source of these metals in the Arctic after 1860. Although these results show that heavy-metal pollution in the North Atlantic sector of the Arctic is substantially lower today than a century ago, contamination of other sectors may be increasing because of the rapid coal-driven growth of Asian economies.

  2. Encoal mild coal gasification project: Final design modifications report

    SciTech Connect

    1997-07-01

    The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

  3. The mining and burning of coal: effects on health and the environment.

    PubMed

    Castleden, William M; Shearman, David; Crisp, George; Finch, Philip

    2011-09-19

    Australia's coal conundrum is that all political parties say they are concerned about climate change while sanctioning an unprecedented expansion of coalmining and coal seam gas extraction in Australia. Australia's coal contributes to climate change and its global health impacts. Each phase of coal's lifecycle (mining, disposal of contaminated water and tailings, transportation, washing, combustion, and disposing of postcombustion wastes) produces pollutants that affect human health. Communities in which coalmining or burning occurs have been shown to suffer significant health impacts. The health and climate costs of coal are unseen, and when costs to health systems are included, coal is an expensive fuel. PMID:21929497

  4. Carbon dioxide from coal combustion: Variation with rank of US coal

    USGS Publications Warehouse

    Quick, J.C.; Glick, D.C.

    2000-01-01

    Carbon dioxide from combustion of US coal systematically varies with ASTM rank indices, allowing the amount of CO2 produced per net unit of energy to be predicted for individual coals. No single predictive equation is applicable to all coals. Accordingly, we provide one equation for coals above high volatile bituminous rank and another for lower rank coals. When applied to public data for commercial coals from western US mines these equations show a 15% variation of kg CO2 (net GJ)-1. This range of variation suggests reduction of US CO2 emissions is possible by prudent selection of coal for combustion. Maceral and mineral content are shown to slightly affect CO2 emissions from US coal. We also suggest that CO2 emissions increased between 6 and 8% in instances where Midwestern US power plants stopped burning local, high-sulfur bituminous coal and started burning low-sulfur, subbituminous C rank coal from the western US.

  5. One-dimensional model of the physico-chemical processes occurring inside a burning coal surface

    SciTech Connect

    Massaquoi, J.G.; Riggs, J.B.

    1983-11-01

    A one-dimensional model has been developed to account for the physico-chemical processes occurring inside a burning wet coal surface. The model and associated assumptions have been verified with experimental data from the combustion and drying of coal. The results also show that the model prediction of the heat transferred from the coal surface into the coal is much higher than that calculated by the simple heat conduction equation. The fraction of the water in the coal that reacts with char is shown as a function of the linear burn velocity and the surface temperature. In addition, the effect of variations in coal moisture and the thermal conductivity on the thickness of the dry zone are also shown. This work is related to the understanding of the processes involved in underground coal gasification.

  6. Process for clean-burning fuel from low-rank coal

    DOEpatents

    Merriam, Norman W.; Sethi, Vijay; Brecher, Lee E.

    1994-01-01

    A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

  7. Coal-fired power plant and its emission reduction in Indonesia

    SciTech Connect

    Kuntjoro, D.

    1994-12-31

    Power generation availability is one important key to the rapid growth of Indonesia`s industrial sector. To secure future national energy needs, coal-fired power generation has been set up as a primary energy source. There are environmental concerns related to the emission of gases, particulates, and ash resulting from coal combustion. This paper discusses emission controls from burning high calorie, low sulfur coal and the national strategy to reduce emissions.

  8. The health effects of coal-burning power plants in minnesota

    SciTech Connect

    Ross, D.

    1981-01-01

    The carcinogenic properties of coal combustion products are described and documented with emphasis on beryllium, mercury, and other particulates. Increased coal use in Minnesota and implications of such increases for 1976-1995 are discussed. Details of how a coal-fired power plant works and how pollutants are formed are described. Efforts to minimize health impacts of sulfur oxides and particulates are detailed. An analysis is provided of how health impacts are measured, showing how a lack of precision and data makes it difficult for policymakers to decide which pollutants need regulation and how much regulation is required. It was found that the greatest problem resulting from coal burning in Minnesota is fine particulate pollution. Fine particulates have been implicated in the exacerbation of emphysema, bronchitis, and lung cancer. Increased regulation and limitations on the construction of coal burning electricity generators are supported.

  9. One-dimensional model of the physico-chemical processes occurring inside a burning coal surface

    SciTech Connect

    Massaquoi, J.G.M.; Riggs, J.B.

    1983-11-01

    A one-dimensional model has been developed to account for the physicochemical processes occurring inside a burning wet coal surface. The model considers the vaporization of coal moisture and the existence of a moving evaporation front, pyrolysis and char/gas reactions in the hot zone, molecular diffusion and Darcy flow through the dry porous coal, transpiration cooling effect of the water vapor and pyrolysis gases, temperature-dependent reaction kinetics and coal thermal conductivity, and variable porosity of the coal due to pyrolysis and char/gas reactions. The model and associated assumptions have been verified with experimental data from the combustion and drying of coal. The results also show that the model prediction of the heat transferred from the coal surface into the coal is much higher than that calculated by the simple heat conduction equation. The fraction of the water in the coal that reacts with char is shown as a function of the linear burn velocity and the surface temperature. In addition, the effect of variations in coal moisture and the thermal conductivity on the thickness of the dry zone are also shown.

  10. Economic assessment of coal-burning locomotives: Topical report

    SciTech Connect

    Not Available

    1986-02-01

    The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurry as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.

  11. Linear VGA nozzle - a versatile tool for coal utilization

    SciTech Connect

    Walsh, W.A. Jr.; Ellison, W.; Serinken, S.

    1998-04-01

    The increasing worldwide recognition of the need to control emissions of the harmful flue gas constituents from the combustion of coal and other fossil fuels is resulting in a considerable demand for lower cost air pollution control equipment. The need is felt not only in the United States, with its large existing capacity of older power plants equipped to burn high-sulfur coal, and in Europe, but in third world countries where new lower-capital-cost power plants are needed to meet the growth in energy consumption. In the United States, as we approach the nominal, Year 2000, Phase II deadlines of the 1990 CAAA, decisions must be made as to the future status of the large number of older, smaller sized, high-sulfur burning plants. The options include switching to low sulfur coal, shutting down, or finding an economical alternative to selection of wet scrubbing. A continuation of the shift to the use of low sulfur coal that was undertaken during Phase I to meet the 2.5 lbs/mmBtu SO{sub 2} limit is not the answer. Lower sulfur coal will not meet the 1.2 lbs/mmBtu limit of Phase II in lieu of post combustion desulfurization. In addition, the increase in the cost of low sulfur coal that will result from continued coal switching will tip the balance in favor of seeking a low cost means of utilizing high sulfur coal.

  12. Method of burning lightly loaded coal-water slurries

    DOEpatents

    Krishna, C.R.

    1984-07-27

    In a preferred arrangement of the method of the invention, a lightly loaded coal-water slurry, containing in the range of approximately 40% to 52% + 2% by weight coal, is atomized to strip water from coal particles in the mixture. Primary combustor air is forced around the atomized spray in a combustion chamber of a combustor to swirl the air in a helical path through the combustion chamber. A flame is established within the combustion chamber to ignite the stripped coal particles, and flame temperature regulating means are provided for maintaining the flame temperature within a desired predetermined range of temperatures that is effective to produce dry, essentially slag-free ash from the combustion process.

  13. Method and composition for modifying burning of sulfur in coals and hydrocarbon fuels

    SciTech Connect

    Jordan, F.L.

    1981-06-23

    Efficiency of internal combustion engine performance, I.E. Improved mileage per gallon, and improved performance, E.G. Lower exhaust temperature, is increased by the addition of carotenoids, beta-carotene in particular, to diesel fuel before use, and the combustion of coal is improved, I.E. higher btu/lb results, sulfur in emission from such coal combustion is reduced, and sulfur in ash is increased, by the addition of squalene, squalane , carotenoids, beta-carotene in particular, hemoglobin and chlorophyll to the coal before burning.

  14. Process for clean-burning fuel from low-rank coal

    DOEpatents

    Merriam, N.W.; Sethi, V.; Brecher, L.E.

    1994-06-21

    A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

  15. OVERFIRE AIR TECHNOLOGY FOR TANGENTIALLY FIRED UTILITY BOILERS BURNING WESTERN U.S. COAL

    EPA Science Inventory

    The report gives results of an investigation and evaluation of the effectiveness of overfire air in reducing NOx emissions from tangentially fired boilers burning Western U.S. coal. Results are compared with those obtained during phase II, 'Program for Reduction of NOx from Tange...

  16. METEOROLOGICAL MEASUREMENTS IN THE VICINITY OF A COAL BURNING POWER PLANT

    EPA Science Inventory

    High concentrations of sulfur dioxide (SO2) are commonly observed uring the cool season in the vicinity of a 2.5 GW coal burning power plant located in the Mae Moh Valley of northern Thailand. The power plant is the source for nearly all of the observed So, since there are no oth...

  17. Thermodynamic investigation of the behavior of ash-forming components in burning coal

    SciTech Connect

    G.Ya. Gerasimov

    2003-01-15

    A thermodynamic approach to description of the behavior of the fuel-oxidizer system in burning coal is employed to reveal the basic regularities of the process of redistribution of the chemical elements of its mineral part among the ash forming components. It is shown that the composition of the mineral part is of prime importance in this process.

  18. Coal and cremation at the Tschudi burn, Chan Chan, Northern Peru

    USGS Publications Warehouse

    Brooks, W.E.; Galvez, Mora C.; Jackson, J.C.; McGeehin, J.P.; Hood, D.G.

    2008-01-01

    Analyses of a 20-30 cm thick, completely combusted ash at the 25 ?? 70 m Tschudi burn at Chan Chan, northern Peru??, contain 52-55 wt% SiO2, 180-210 ppm zirconium and are consistent with coal ash. Soil geochemistry across the burn showed elevated calcium and phosphorus content, possible evidence for reported human cremation. A calcined, 5 g, 4.5 cm skull fragment recovered from the burn was confirmed as human by protein radioimmunoassay (pRIA). X-ray diffraction showed that the bone had been heated to 520??C. The burn took place c. ad 1312-1438 based on interpretation of a 14C date on carbonized plant tinder. ?? 2008 University of Oxford.

  19. Baked shale and slag formed by the burning of coal beds

    USGS Publications Warehouse

    Rogers, G. Sherburne

    1918-01-01

    The baking and reddening of large masses of strata caused by the burning of coal beds is a striking feature of the landscape in most of the great western coal-bearing areas. The general character and broader effects of the burning have been described by many writers, but the fact that in places enough heat is generated to fuse and thoroughly recrystallize the overlying shale and sandstone has received less attention. Some of the natural slags thus formed simulate somewhat abnormal igneous rocks, but others consist largely of rare and little known minerals. A wide range in the mineral composition of such slags is to be expected, depending on the composition of the original sediment and the conditions of fusion and cooling. These products of purely thermal metamorphism offer a fertile field for petrologic investigation. The writer has observed the effects produced by the burning of coal beds in several localities in Montana, particularly along upper Tongue River in the southern part of the State, in the district lying southeast of the mouth of Bighorn River, and in the Little Sheep Mountain coal field north of Miles City. A number of specimens of the rock formed have been examined under the microscope, though time has not been available for a systematic examination. The writer is greatly indebted to Mr. E. S. Larsen for assistance in the study of some of the minerals.

  20. Particle and gas emissions from a simulated coal-burning household fire pit

    SciTech Connect

    Linwei Tian; Donald Lucas; Susan L. Fischer; S. C. Lee; S. Katharine Hammond; Catherine P. Koshland

    2008-04-01

    An open fire was assembled with firebricks to simulate the household fire pit used in rural China, and 15 different coals from this area were burned to measure the gaseous and particulate emissions. Particle size distribution was studied with a microorifice uniform-deposit impactor (MOUDI). Over 90% of the particulate mass was attributed to sub-micrometer particles. The carbon balance method was used to calculate the emission factors. Emission factors for four pollutants (particulate matter, CO{sub 2}, total hydrocarbons, and NOx) were 2-4 times higher for bituminous coals than for anthracites. In past inventories of carbonaceous emissions used for climate modeling, these two types of coal were not treated separately. The dramatic emission factor difference between the two types of coal warrants attention in the future development of emission inventories. 25 refs., 8 figs., 1 tab.

  1. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    USGS Publications Warehouse

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  2. Air extraction in gas turbines burning coal-derived gas

    SciTech Connect

    Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

    1993-11-01

    In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

  3. Burns.

    PubMed

    Ellison, Deborah L

    2013-06-01

    Burns are a leading cause of accidental injury and death. The American Burn Association statistics from 2001 to 2010 show that 68% of burns happen at home, 44% are from fires/flames, and 60% to 70% happen to white men. Smoke inhalation is the leading cause of adult death caused by fires. A patient with a 78% total body surface area burn has a 50% chance of survival. Burn injuries are described in terms of causative agents, depth, and severity. Crucial treatments for people with burns include assessment, stabilization, transfer to a burn unit, and fluid resuscitation. PMID:23692944

  4. The potential role of lung microbiota in lung cancer attributed to household coal burning exposures.

    PubMed

    Hosgood, H Dean; Sapkota, Amy R; Rothman, Nathaniel; Rohan, Thomas; Hu, Wei; Xu, Jun; Vermeulen, Roel; He, Xingzhou; White, James Robert; Wu, Guoping; Wei, Fusheng; Mongodin, Emmanuel F; Lan, Qing

    2014-10-01

    Bacteria influence site-specific disease etiology and the host's ability to metabolize xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs). Lung cancer in Xuanwei, China has been attributed to PAH-rich household air pollution from burning coal. This study seeks to explore the role of lung microbiota in lung cancer among never smoking Xuanwei women and how coal burning may influence these associations. DNA from sputum and buccal samples of never smoking lung cancer cases (n = 8, in duplicate) and controls (n = 8, in duplicate) in two Xuanwei villages was extracted using a multi-step enzymatic and physical lysis, followed by a standardized clean-up. V1-V2 regions of 16S rRNA genes were PCR-amplified. Purified amplicons were sequenced by 454 FLX Titanium pyrosequencing and high-quality sequences were evaluated for diversity and taxonomic membership. Bacterial diversity among cases and controls was similar in buccal samples (P = 0.46), but significantly different in sputum samples (P = 0.038). In sputum, Granulicatella (6.1 vs. 2.0%; P = 0.0016), Abiotrophia (1.5 vs. 0.085%; P = 0.0036), and Streptococcus (40.1 vs. 19.8%; P = 0.0142) were enriched in cases compared with controls. Sputum samples had on average 488.25 species-level OTUs in the flora of cases who used smoky coal (PAH-rich) compared with 352.5 OTUs among cases who used smokeless coal (PAH-poor; P = 0.047). These differences were explained by the Bacilli species (Streptococcus infantis and Streptococcus anginosus). Our small study suggests that never smoking lung cancer cases have differing sputum microbiota than controls. Further, bacteria found in sputum may be influenced by environmental exposures associated with the type of coal burned in the home. PMID:24895247

  5. [An investigation of fluoride pollution caused by burning coal containing fluoride in Xiushan and Baojing].

    PubMed

    Yan, L

    1991-04-01

    This paper reports an investigation of contents of soluble fluoride in the environment and foods in Xiushan and Baojing. On the basis of measuring concentrations of soluble fluoride in drinking water, soil, coal, air, fly ash, maize, chilli, and other kinds of vegetables, it is first to expand the pathway of fluoride migrating from coal into human body is through pollution of air by fluoride contained in fly ash on burning of coal, and then via consumption of polluted maize by air. The significant correlation between both the concentrations of fluoride in maize and in fly ash is proved. It is suggested to select the concentration of fluoride in fly ash or in air as the quality index of indoor air and the control target to prevent fluorosis. PMID:2065338

  6. Development of Energy Efficient Technologies for Burning Coal in Modern Thermal Power Plants and Efficiency Assessment Tools

    NASA Astrophysics Data System (ADS)

    Dubrovskiy, Vitali; Zubova, Marina; Sedelnikov, Nikolai; Dihnova, Anna

    2016-02-01

    Universal ecological energy-efficient burner was described. The burner allows to burn different types of coal and lignite without the use of fuel oil for kindling the boiler. Efficiency assessment tools of the introduction of the burner for combustion of coal in modern thermal power plants were given.

  7. Use of foaming mud cement to terminate underground coal fires and to control subsidence of burn cavities. Final report

    SciTech Connect

    Lucero, R.F.

    1988-09-29

    Foaming Mud Cement (FMC) is a class of materials related to cellular cement studied and developed for the purpose of addressing Abandoned Mine Land problems. During the 2-year program, significant advances were made using a specific methodology that properly employed will enable the successful termination of many surface and underground coal mine fires. Fundamental but key developments attained were: the ability to effectively isolate burning coal from the available air by effectively penetrating burning coal rubble with heat-resistive FMC and encapsulating and isolation of a wide range of coal particle sizes, resulting in permanent coal-fire termination by air exclusion. The materials developed were specifically designed to terminate underground coal fires and preventing further subsidence.

  8. Burns

    MedlinePlus

    A burn is damage to your body's tissues caused by heat, chemicals, electricity, sunlight or radiation. Scalds from hot ... and gases are the most common causes of burns. Another kind is an inhalation injury, caused by ...

  9. Burns

    MedlinePlus

    ... sure the person is up to date on tetanus immunization. MAJOR BURNS If someone is on fire, ... Ointments or creams applied to the burned areas Tetanus immunization, if not up to date The outcome ...

  10. Burns

    MedlinePlus

    ... support. What is on the horizon for burn research? Improving methods for wound healing and tissue repair offer tremendous opportunities to enhance the quality of life for burn patients and may also help ... of burn research does the National Institute of General Medical Sciences ( ...

  11. Chemical and toxicological effects of medicinal Baccharis trimera extract from coal burning area.

    PubMed

    Menezes, Ana Paula S; da Silva, Juliana; Fisher, Camila; da Silva, Fernanda R; Reyes, Juliana M; Picada, Jaqueline N; Ferraz, Alice G; Corrêa, Dione S; Premoli, Suziane M; Dias, Johnny F; de Souza, Claudia T; Ferraz, Alexandre de B F

    2016-03-01

    The entire process of power generation, extraction, processing and use of coal strongly impact water resources, soil, air quality and biota leads to changes in the fauna and flora. Pollutants generated by coal burning have been contaminating plants that grow in area impacted by airborne pollution with high metal contents. Baccharis trimera is popularly consumed as tea, and is widely developed in Candiota (Brazil), one of the most important coal burning regions of the Brazil. This study aims to investigate the phytochemical profile, in vivo genotoxic and mutagenic potential of extracts of B. trimera collected from an exposed region to pollutants generated by coal burning (Candiota City) and other unexposed region (Bagé City), using the Comet assay and micronucleus test in mice and the Salmonella/microsome short-term assay. The HPLC analyses indicated higher levels of flavonoids and phenolic acids for B. trimera aqueous extract from Bagé and absence of polycyclic aromatic hydrocarbons for both extracts. The presence of toxic elements such as cobalt, nickel and manganese was statistically superior in the extract from Candiota. For the Comet assay and micronucleus test, the mice were treated with Candiota and Bagé B. trimera aqueous extracts (500-2000 mg/kg). Significant genotoxicity was observed at higher doses treated with B. trimera aqueous extract from Candiota in liver and peripheral blood cells. Micronuclei were not observed but the results of the Salmonella/microsome short-term assay showed a significant increase in TA98 revertants for B. trimera aqueous extract from Candiota. The extract of B. trimera from Candiota bioacumulated higher levels of trace elements which were associated with the genotoxic effects detected in liver and peripheral blood cells. PMID:26741544

  12. From in-situ coal to fly ash: A study of coal mines and power plants from Indiana

    USGS Publications Warehouse

    Mastalerz, Maria; Hower, J.C.; Drobniak, A.; Mardon, S.M.; Lis, G.

    2004-01-01

    This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (???11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal. ?? 2004 Elsevier B.V. All rights reserved.

  13. Wintertime organic aerosols in Christchurch and Auckland, New Zealand: contributions of residential wood and coal burning and petroleum utilization

    SciTech Connect

    Haobo Wang; Kimitaka Kawamura; David Shooter

    2006-09-01

    Wintertime PM10 samples from two New Zealand cities (Christchurch and Auckland) have been characterized using gas chromatography - mass spectrometry for biomass burning tracers, hopanes, n-alkanes, fatty acids, n-alkanols and sugars. The aerosol samples of Christchurch, which were heavily influenced by residential wood and coal burning, showed substantially higher ambient concentrations for most of the organic compounds than those of Auckland, where major sources of aerosols were vehicular emissions and sea-salt. Mass ratios between the biomass burning tracers studied were found to be significantly different (e.g., {beta}-sitosterol to nssK{sup +} ratios were more than three times higher in Christchurch than in Auckland), although levoglucosan to nssK{sup +} ratios were similar at the both sites. We also estimated, for the first time using stereochemical configurations of hopanes, that 60% of fossil fuel emissions came from petroleum utilization with the remaining 40% being from coal burning in Christchurch. In contrast, contribution of coal burning was negligible in Auckland. Moreover, contributions of most biomass burning tracers to organic carbon (OC) were significantly higher in Christchurch than in Auckland. On the other hand, saccharides (excluding levoglucosan) and hopanes accounted for larger fractions of OC in Auckland. This study demonstrates that intensive wood and coal burning can significantly affect organic aerosol composition in an urban environment. 46 refs., 4 figs., 1 tab.

  14. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals.

    PubMed

    Goodarzi, F

    2004-10-01

    This report summarizes the results of a study carried out on six pulverized coal-fired power plants in western Canada burning subbituminous coal for the mass-balance and speciation of mercury. The main objectives of this study were to: determine the total gaseous mercury (TGM) emitted from stacks of power plants using the Ontario Hydro method; identify the speciation of emitted mercury such as metallic (Hg(0)) and gaseous elemental (GEM) mercury; and perform mass-balance calculations of mercury for milled-coal, bottom ash, electrostatic precipitators (ESP) fly ash and stack-emitted mercury based on three tests. Sampling of mercury was carried out using the Ontario Hydro method and mercury was determined using the USEPA method 7473 by cold vapor atomic absorption (CVAAS). The sample collection efficiencies confirmed that both oxidized and the elemental mercury had been successfully sampled at all power plants. The total gaseous mercury emitted (TGM) is 6.95-15.66 g h(-1) and is mostly in gaseous elemental mercury (GEM, Hg(0)) form. The gaseous elemental mercury is emitted at a rate of 6.59-12.62 g h(-1). Reactive gaseous mercury (RGM, Hg(2+)) is emitted at a rate of 0.34-3.68 g h(-1). The rate of emission of particulate mercury (Hg(p)) is low and is in the range 0.005-0.076 g h(-1). The range of mass-balances for each power plant is more similar to the variability in measured mercury emissions, than to the coal and ash analyses or process data. The mass-balance calculations for the six power plants, performed on results of the three tests at each power plant, are between 86% and 123%, which is acceptable and within the range 70-130%. The variation in mass-balance of mercury for the six power plants is mostly related to the variability of coal feed rate. PMID:15480492

  15. Burn coal cleanly in a fluidized bed - The key is in the controls

    NASA Technical Reports Server (NTRS)

    Kobak, J. A.

    1979-01-01

    The fluidized-bed combustion (FBC) process produces few sulfur emissions, and can burn wood, municipal solid waste as well as every kind of coal available in the U.S. The presurized, coal-burning fluidized-bed reactor at NASA's Lewis Research Center is described, together with a discussion of the operating results. The FBC system at Lewis, having a completely instrumented reactor, is used to test turbine blade alloys for future power plant applications. With the same type of coal and limestone used in the first testing phase covering 136 hours, it was found that all NOx values were below the EPA standard of 0.7 lb/MBtu, whereas the maximum observed level of SO2 was above the EPA standard of 1.3 lb/MBtu, but with the average SO2 level, however, only 0.63 lb/MBtu. Unburned hydrocarbon and CO levels were very low, indicating combustion efficiencies of close to 99% in almost all tests. Testing is now underway using high temperature cyclones and gas turbine to eliminate erosion and corrosion effects which were observed after the initial tests on the turbine and blades.

  16. Formation and use of coal combustion residues from three types of power plants burning Illinois coals

    USGS Publications Warehouse

    Demir, I.; Hughes, R.E.; DeMaris, P.J.

    2001-01-01

    Coal, ash, and limestone samples from a fluidized bed combustion (FBC) plant, a pulverized coal combustion (PC) plant, and a cyclone (CYC) plant in Illinois were analyzed to determine the combustion behavior of mineral matter, and to propose beneficial uses for the power plant ashes. Pyrite and marcasite in coal were converted during combustion to glass, hematite and magnetite. Calcite was converted to lime and anhydrite. The clay minerals were altered to mullite and glass. Quartz was partially altered to glass. Trace elements in coal were partially mobilized during combustion and, as a result, emitted into the atmosphere or adsorbed on fly ash or on hardware on the cool side of the power plants. Overall, the mobilities of 15 trace elements investigated were lower at the FBC plant than at the other plants. Only F and Mn at the FBC plant, F, Hg, and Se at the PC plant and Be, F, Hg, and Se at the CYC plant had over 50% of their concentrations mobilized. Se and Ge could be commercially recovered from some of the combustion ashes. The FBC ashes could be used as acid neutralizing agents in agriculture and waste treatment, and to produce sulfate fertilizers, gypsum wall boards, concrete, and cement. The PC and CYC fly ashes can potentially be used in the production of cement, concrete, ceramics, and zeolites. The PC and CYC bottom ashes could be used in stabilized road bases, as frits in roof shingles, and perhaps in manufacturing amber glass. ?? 2001 Elsevier Science Ltd. All rights reserved.

  17. Technical challenges in the design and operation of a circulating fluidized bed combustor burning waste coal

    SciTech Connect

    Reed, M.R.; Dicker, J.M.; Gagliardi, C.R.; Sommerhalter, K.L.; Tsao, T.R.; Wang, S.I. )

    1992-01-01

    The Air Products Cambria Cogeneration facility, located in Cambria County, Pennsylvania, was designed to burn 90 ton/hr bituminous coal refuse (gob) - a waste by-product from a coal preparation plant, in two circulating fluidized bed (CFB) combustors, producing a net power output of 85 MW to Pennsylvania Electric Company and u to 15,000 lb/hr of low pressure extraction steam to a nearby nursing home for building heating and laundry service. The facility was successfully started up in March 1991 and has consistently achieved high plant availability since April 1991. This paper will discuss a number of technical challenges which we have overcome in the Cambria Cogen facility as well as some notable accomplishments that have been achieved at the facility.

  18. Reduction of NO sub x and SO sub 2 emissions from coal burning pulse combustors

    SciTech Connect

    Powell, E.A.; Zinn, B.T.

    1990-08-01

    The following report summarizes work done under DOE Grant No. FG-88PC88918 during the period April 1, 1990 through June 30, 1990. This project is concerned with the reduction of sulfur dioxide and nitrogen oxides emissions from Rijke type coal burning pulse combustors by sorbent addition and combustion staging. The following work will be described in this report: (1) a second series of air staging tests to determine the effectiveness of substoichiometric primary coal combustion followed by secondary air injection above the bed in reducing the NO{sub x} emissions, (2) continued development of the sorbent feed system, and (3) preliminary tests with limestone addition for reducing SO{sub 2} emissions. The report will conclude with projected work to be accomplished during the remaining two months of the project. 1 ref., 7 figs.

  19. Urinary arsenic speciation and its correlation with 8-OHdG in Chinese residents exposed to arsenic through coal burning

    SciTech Connect

    Li, X.; Pi, J.B.; Li, B.; Xu, Y.Y.; Jin, Y.P.; Sun, G.F.

    2008-10-15

    In contrast to arsenicosis caused by consumption of water contaminated by naturally occurring inorganic arsenic, human exposure to this metalloid through coal burning has been rarely reported. In this study, arsenic speciation and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in urine were determined in the Chinese residents exposed to arsenic through coal burning in Guizhou, China, an epidemic area of chronic arsenic poisoning caused by coal burning. The urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and total arsenic (tAs) of high-arsenic exposed subjects were significantly higher than those of low-arsenic exposed residents. A biomarker of oxidative DNA damage, urinary 8-OHdG level was significantly higher in high-arsenic exposed subjects than that of low exposed. Significant positive correlations were found between 8-OHdG levels and concentrations of iAs, MMA, DMA and tAs, respectively. In addition, a significant negative correlation was observed between 8-OHdG levels and the secondary methylation ratio (DMA/(MMA + DMA)). The results suggest that chronic arsenic exposure through burning coal rich in arsenic is associated with oxidative DNA damages, and that secondary methylation capacity is potentially related to the susceptibility of individuals to oxidative DNA damage induced by arsenic exposure through coal burning in domestic living.

  20. Benefits of reducing prenatal exposure to coal-burning pollutants to children's neurodevelopment in China

    SciTech Connect

    Perera, F.; Li, T.Y.; Zhou, Z.J.; Yuan, T.; Chen, Y.H.; Qu, L.R.; Rauh, V.A.; Zhang, Y.G.; Tang, D.L.

    2008-10-15

    Coal burning provides 70% of the energy for China's industry and power, but releases large quantities of polycyclic aromatic hydrocarbons (PAHs) and other pollutants. PAHs are reproductive and developmental toxicants, mutagens, and carcinogens. We evaluated the benefit to neurobehavioral development from the closure of a coal-fired power plant that was the major local source of ambient PAHs. The research was conducted in Tongliang, Chongqing, China, where a coal-fired power plant operated seasonally before it was shut down in May 2004. Two identical prospective cohort studies enrolled nonsmoking women and their newborns in 2002 (before shutdown) and 2005 (after shutdown). Prenatal PAH exposure was measured by PAH-DNA adducts (benzo(a)pyrene-DNA) in umbilical cord blood. Child development was assessed by the Gesell Developmental Schedules at 2 years of age. Prenatal exposure to other neurotoxicants and potential confounders (including lead, mercury, and environmental tobacco smoke) was measured. We compared the cohorts regarding the association between PAH-DNA adduct levels and neurodevelopmental outcomes. Significant associations previously seen in 2002 between elevated adducts and decreased motor area developmental quotient (DQ) (p = 0.043) and average DQ (p = 0.047) were not observed in the 2005 cohort (p = 0.546 and p = 0.146). However, the direction of the relationship did not change. The findings indicate that neurobehavioral development in Tongliang children benefitedby elimination of PAH exposure from the coal-burning plant, consistent with the significant reduction in PAH-DNA adducts in cord blood of children in the 2005 cohort. The results have implications for children's environmental health in China and elsewhere.

  1. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  2. Molecular and neurodevelopmental benefits to children of closure of a coal burning power plant in China.

    PubMed

    Tang, Deliang; Lee, Joan; Muirhead, Loren; Li, Ting Yu; Qu, Lirong; Yu, Jie; Perera, Frederica

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAH) are major toxic air pollutants released during incomplete combustion of coal. PAH emissions are especially problematic in China because of their reliance on coal-powered energy. The prenatal period is a window of susceptibility to neurotoxicants. To determine the health benefits of reducing air pollution related to coal-burning, we compared molecular biomarkers of exposure and preclinical effects in umbilical cord blood to neurodevelopmental outcomes from two successive birth cohorts enrolled before and after a highly polluting, coal-fired power plant in Tongliang County, China had ceased operation. Women and their newborns in the two successive cohorts were enrolled at the time of delivery. We measured PAH-DNA adducts, a biomarker of PAH-exposure and DNA damage, and brain-derived neurotrophic factor (BDNF), a protein involved in neuronal growth, in umbilical cord blood. At age two, children were tested using the Gesell Developmental Schedules (GDS). The two cohorts were compared with respect to levels of both biomarkers in cord blood as well as developmental quotient (DQ) scores across 5 domains. Lower levels of PAH-DNA adducts, higher concentrations of the mature BDNF protein (mBDNF) and higher DQ scores were seen in the 2005 cohort enrolled after closure of the power plant. In the two cohorts combined, PAH-DNA adducts were inversely associated with mBDNF as well as scores for motor (p = 0.05), adaptive (p = 0.022), and average (p = 0.014) DQ. BDNF levels were positively associated with motor (p = 0.018), social (p = 0.001), and average (p = 0.017) DQ scores. The findings indicate that the closure of a coal-burning plant resulted in the reduction of PAH-DNA adducts in newborns and increased mBDNF levels that in turn, were positively associated with neurocognitive development. They provide further evidence of the direct benefits to children's health as a result of the coal plant shut down, supporting clean energy and environmental policies in China and elsewhere. PMID:24647528

  3. Molecular and Neurodevelopmental Benefits to Children of Closure of a Coal Burning Power Plant in China

    PubMed Central

    Tang, Deliang; Lee, Joan; Muirhead, Loren; Li, Ting Yu; Qu, Lirong; Yu, Jie; Perera, Frederica

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAH) are major toxic air pollutants released during incomplete combustion of coal. PAH emissions are especially problematic in China because of their reliance on coal-powered energy. The prenatal period is a window of susceptibility to neurotoxicants. To determine the health benefits of reducing air pollution related to coal-burning, we compared molecular biomarkers of exposure and preclinical effects in umbilical cord blood to neurodevelopmental outcomes from two successive birth cohorts enrolled before and after a highly polluting, coal-fired power plant in Tongliang County, China had ceased operation. Women and their newborns in the two successive cohorts were enrolled at the time of delivery. We measured PAH-DNA adducts, a biomarker of PAH-exposure and DNA damage, and brain-derived neurotrophic factor (BDNF), a protein involved in neuronal growth, in umbilical cord blood. At age two, children were tested using the Gesell Developmental Schedules (GDS). The two cohorts were compared with respect to levels of both biomarkers in cord blood as well as developmental quotient (DQ) scores across 5 domains. Lower levels of PAH-DNA adducts, higher concentrations of the mature BDNF protein (mBDNF) and higher DQ scores were seen in the 2005 cohort enrolled after closure of the power plant. In the two cohorts combined, PAH-DNA adducts were inversely associated with mBDNF as well as scores for motor (p = 0.05), adaptive (p = 0.022), and average (p = 0.014) DQ. BDNF levels were positively associated with motor (p = 0.018), social (p = 0.001), and average (p = 0.017) DQ scores. The findings indicate that the closure of a coal-burning plant resulted in the reduction of PAH-DNA adducts in newborns and increased mBDNF levels that in turn, were positively associated with neurocognitive development. They provide further evidence of the direct benefits to children's health as a result of the coal plant shut down, supporting clean energy and environmental policies in China and elsewhere. PMID:24647528

  4. [Burns].

    PubMed

    Arai, Takao

    2016-02-01

    Burns extending deep into the skin and those affecting a wide surface area trigger various responses in the body and pose a serious threat to life. Therefore, the degree of severity needs to be determined accurately, and appropriate transfusion and local management should be provided accordingly. Systematic and meticulous management that considers not just the risk of death but also functional prognosis is essential from the early stage of burn injuries. Such management requires comprehensive care by a medical team concerning infections, nutrition and rehabilitation. This article outlines the current status of intensive care for severe burns. PMID:26915244

  5. Epoxy-borax-coal tar composition for a radiation protective, burn resistant drum liner and centrifugal casting method

    SciTech Connect

    Taylor, Robert S.; Boyer, Norman W.

    1980-01-01

    A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of Borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% Borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  6. Epoxy-borax-coal tar composition for a radiation protective, burn resistant drum liner and centrifugal casting method

    SciTech Connect

    Boyer, N.W.; Taylor, R.S.

    1980-10-28

    A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  7. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995.

    PubMed

    Watson, J G; Chow, J C; Houck, J E

    2001-06-01

    PM2.5 (particles with aerodynamic diameters less than 2.5 microm) chemical source profiles applicable to speciated emissions inventories and receptor model source apportionment are reported for geological material, motor vehicle exhaust, residential coal (RCC) and wood combustion (RWC), forest fires, geothermal hot springs; and coal-fired power generation units from northwestern Colorado during 1995. Fuels and combustion conditions are similar to those of other communities of the inland western US. Coal-fired power station profiles differed substantially between different units using similar coals, with the major difference being lack of selenium in emissions from the only unit that was equipped with a dry limestone sulfur dioxide (SO2) scrubber. SO2 abundances relative to fine particle mass emissions in power plant emissions were seven to nine times higher than hydrogen sulfide (H2S) abundances from geothermal springs, and one to two orders of magnitude higher than SO2 abundances in RCC emissions, implying that the SO2 abundance is an important marker for primary particle contributions of non-aged coal-fired power station contributions. The sum of organic and elemental carbon ranged from 1% to 10% of fine particle mass in coal-fired power plant emissions, from 5% to 10% in geological material, >50% in forest fire emissions, >60% in RWC emissions, and >95% in RCC and vehicle exhaust emissions. Water-soluble potassium (K+) was most abundant in vegetative burning profiles. K+/K ratios ranged from 0.1 in geological material profiles to 0.9 in vegetative burning emissions, confirming previous observations that soluble potassium is a good marker for vegetative burning. PMID:11368231

  8. Upgrading low rank coal using the Koppelman Series C process

    SciTech Connect

    Merriam, N.W., Western Research Institute

    1998-01-01

    Development of the K-Fuel technology began after the energy shortage of the early 1970s in the United States led energy producers to develop the huge deposits of low-sulfur coal in the Powder River Basin (PRB) of Wyoming. PRB coal is a subbituminous C coal containing about 30 wt % moisture and having heating values of about 18.6 megajoules/kg (8150 Btu/lb). PRB coal contains from 0.3 to 0.5 wt % sulfur, which is nearly all combined with the organic matrix in the coal. It is in much demand for boiler fuel because of the low-sulfur content and the low price. However, the low-heating value limits the markets for PRB coal to boilers specially designed for the high- moisture coal. Thus, the advantages of the low-sulfur content are not available to many potential customers having boilers that were designed for bituminous coal. This year about 250 million tons of coal is shipped from the Powder River Basin of Wyoming. The high- moisture content and, consequently, the low-heating value of this coal causes the transportation and combustion of the coal to be inefficient. When the moisture is removed and the heating value increased the same bundle of energy can be shipped using one- third less train loads. Also, the dried product can be burned much more efficiently in boiler systems. This increase in efficiency reduces the carbon dioxide emissions caused by use of the low-heating value coal. Also, the processing used to remove water and restructure the coal removes sulfur, nitrogen, mercury, and chlorides from the coal. This precombustion cleaning is much less costly than stack scrubbing. PRB coal, and other low-rank coals, tend to be highly reactive when freshly mined. These reactive coals must be mixed regularly (every week or two) when fresh, but become somewhat more stable after they have aged for several weeks. PRB coal is relatively dusty and subject to self-ignition compared to bituminous coals. When dried using conventional technology, PRB coal is even more dusty and more susceptible to spontaneous combustion than the raw coal. Also, PRB coal, if dried at low temperature, typically readsorbs about two- thirds of the moisture removed by drying. This readsorption of moisture releases the heat of adsorption of the water which is a major cause of self- heating of low-rank coals at low temperature.

  9. Pyrometric temperature and size measurements of burning coal particles in a fluidized bed combustion reactor

    SciTech Connect

    Joutsenoja, T.; Heino, P.; Hernberg, R.; Bonn, B.

    1999-09-01

    The article reports on the application of fiber-optic two-color optical pyrometry to the measurement of temperature and size of combusting coal particles in an atmospheric fluidized bed combustion reactor. The utility of the measuring technique is that it makes possible nonintrusive in situ measurement of the dependence between the temperature and size of combusting fuel particles. The method allows the temperatures of the fluidized bed and individual fuel particles to be determined wherever these deviate from the bed temperature. Besides giving these temperatures, this method also allows for the statistical determination of the particle size distribution within the population of observed particles. The effects of bed temperature (1,130--1,200 K) and oxygen concentration (5--8 vol%) on the temperature of combusting Westerholt high volatile bituminous coal particles were studied in a laboratory-scale bubbling fluidized bed combustor. The average particle temperature exceeded the bed temperature by about 100--200 K, while the maximum particle temperatures were nearly 600 K above the bed temperature. The interrelation between the size (< 1.2 mm) and temperature of burning coal particles is presented.

  10. Atmospheric iron deposition in the northwestern Pacific Ocean and its adjacent marginal seas: The importance of coal burning

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chiu; Chen, Jen-Ping; Ho, Tung-Yuan; Tsai, I.-Chun

    2015-02-01

    This study applied a regional air quality model, incorporated with an emission module, to quantitatively differentiate the atmospheric iron sources originating from lithogenic dusts or coal-burning fly ashes deposited in the Northwestern Pacific Ocean and its marginal seas. Particular attention was paid to the high iron content of fly ashes emitted from steel and iron plants burning coals. Using the year 2007 as an example, the modeling results exhibit large seasonal variations in iron deposition, with highest deposition fluxes occurred during spring and autumn, which are comparable to the seasonal fluctuation of chlorophyll a concentrations estimated by satellite images in the oceanic regions. Fly ash from coal burning accounted for 7.2% of the total iron deposited over the northwestern Pacific Ocean and 15% of that over the northern South China Sea. After considering the difference of iron solubility in the aerosols, anthropogenic aerosol associated with coal burning would be the major bioavailable iron source in the surface water of the oceanic regions.

  11. Burns

    MedlinePlus

    ... Do not use butter, ointments or any other home remedy. Do not break the blisters or remove burned ... spread the fire. READ IN EMERGENCIES A-Z Stroke Head Injury Heart Attack Resources Home Safety Checklist ACEP Coloring Book Download the Coloring ...

  12. Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass

    SciTech Connect

    Anuar, S.H.; Keener, H.M.

    1995-12-31

    The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

  13. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect

    Constance Senior

    2004-04-30

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the available data from laboratory, pilot and full-scale SCR units was reviewed, leading to hypotheses about the mechanism for mercury oxidation by SCR catalysts.

  14. Instrumental sensing of stationary source emissions. [sulphur dioxide remote sensing for coal-burning power plants

    NASA Technical Reports Server (NTRS)

    Herget, W. F.; Conner, W. D.

    1977-01-01

    A variety of programs have been conducted within EPA to evaluate the capability of various ground-based remote-sensing techniques for measuring the SO2 concentration, velocity, and opacity of effluents from coal-burning power plants. The results of the remote measurements were compared with the results of instack measurements made using EPA reference methods. Attention is given to infrared gas-filter correlation radiometry for SO2 concentration, Fourier-transform infrared spectroscopy for SO2 concentration, ultraviolet matched-filter correlation spectroscopy for SO2 concentration, infrared and ultraviolet television for velocity and SO2 concentration, infrared laser-Doppler velocimetry for plume velocity, and visible laser radar for plume opacity.

  15. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect

    Constance Senior

    2004-10-29

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  16. PROCEEDINGS ON SYNCHROTRON RADIATION: Transfer characterization of sulfur from coal-burning emission to plant leaves by PIXE and XANES

    NASA Astrophysics Data System (ADS)

    Bao, Liang-Man; Zhang, Gui-Lin; Zhang, Yuan-Xim; Li, Yan; Lin, Jun; Liu, Wei; Cao, Qing-Chen; Zhao, Yi-Dong; Ma, Chen-Yan; Han, Yong

    2009-11-01

    The impact of coal-burning emission on sulfur in camphor leaves was investigated using Proton Induced X-ray Emission (PIXE) and synchrotron radiation technique X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The PIXE results show that the sulfur concentrations in the leaves collected at the polluted site are significantly higher than those in controls. The Sulfur XANES spectra show the presence of organic (disulfides, thiols, thioethers, sulfonates and sulfoxides) and inorganic sulfur (sulfates) in the leaves. The inorganic sulfur in the leaves of camphor tree polluted by coal combustion is 15% more than that of the control site. The results suggest that the long-term coal-burning pollution resulted in an enhanced content of the total sulfur and sulfate in the leaves, and the uptake of sulfur by leaves had exceeded the metabolic requirement of plants and the excess of sulfur was stored as SO2-4. It can monitor the sulfur pollution in atmosphere.

  17. Radiation impact from lignite burning due to 226Ra in Greek coal-fired power plants.

    PubMed

    Papastefanou, C

    1996-02-01

    Lignite contains naturally occurring radionuclides arising from the uranium and thorium series as well as from 40K. Lignite burning is, therefore, one of the sources of technologically enhanced exposure to humans from natural radionuclides. Emissions from thermal power stations in gaseous and particulate form contain radioisotopes, such as 226Ra, that are discharged into the environment causing radiation exposures to the population. About 11,672 MBq y-1 of 226Ra are discharged into the environment from four coal-fired power plants totalling 3.62 GW electrical energy in the Ptolemais Valley, Northern Greece, in which the combustion of 1.1 x 10(10) kg of lignite is required to produce an electrical energy of 1 GW y. The collective committed equivalent dose to lung tissue per unit power generated resulting from atmospheric releases of 226Ra was estimated to be 1.1 x 10(-2) person Sv (GW y)-1; i.e. more than 15 times higher than the average value for a modern type coal-fired power plant according to the UNSCEAR 1988 data. PMID:8567285

  18. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect

    Constance Senior; Temi Linjewile

    2003-07-25

    This is the first Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Ceramics GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, analysis of the coal, ash and mercury speciation data from the first test series was completed. Good agreement was shown between different methods of measuring mercury in the flue gas: Ontario Hydro, semi-continuous emission monitor (SCEM) and coal composition. There was a loss of total mercury across the commercial catalysts, but not across the blank monolith. The blank monolith showed no oxidation. The data from the first test series show the same trend in mercury oxidation as a function of space velocity that has been seen elsewhere. At space velocities in the range of 6,000-7,000 hr{sup -1} the blank monolith did not show any mercury oxidation, with or without ammonia present. Two of the commercial catalysts clearly showed an effect of ammonia. Two other commercial catalysts showed an effect of ammonia, although the error bars for the no-ammonia case are large. A test plan was written for the second test series and is being reviewed.

  19. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect

    Constance Senior

    2004-12-31

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  20. A simultaneous SO{sub x} and NO{sub x} removal system for burning all grades of coal

    SciTech Connect

    Frank, N.W.; Maezawa, A.

    1995-12-31

    Burning coal for cooking, heating, industrial uses and for electricity generation is nothing new and has been around for centuries. With the recent advent of global environmental awareness the method of burning and cleaning up the gases from boilers has come under scrutiny by regulatory agencies and even the general public. Throughout history basically premium coals were used for combustion, but as regulations got more strict, the work premium has constantly changed. There was a time when soot was the most common complaint about coal combustion, but as devices such as cyclones, electrostatic precipitators and baghouses appeared, that problem was solved. However, the unseen elements in gases were being studied and identified and regulations began to appear for SO{sub 2}, NO{sub X} and other air toxins. Unfortunately mother nature did not give us only one grade of coal which is perfect, so mankind had to look for ways to improve the burning and cleanup so that the earths most economical and abundant fuel supply could be used with efficiency and cleanliness.

  1. Coal-Fired Power Plant (Western Coal): Environmental characterization information report

    NASA Astrophysics Data System (ADS)

    1981-01-01

    The latest available environmental and technical information on coal-fired power plants was collected from a number of sources. The typical plant chosen for characterization was a 500/MWe pulverized-coal plant burning western low-sulfur coal. The plant uses an electrostatic precipitator, a lime/limestone scrubber, and a wet, mechanical draft cooling tower. The plant fuel is supplied from offsite mines by unit-train deliveries with surface mined, thick seam coal, which undergoes minimum preparation prior to pulverization. The process, plant operating parameters, resources needed, and environmental residuals and products associated with the power plant are presented. Annual resource usage and pollutant discharges are given, assuming an annual plant capacity factor of 80 percent. Quantities are given in terms of ten to the twelth power Btu's of electric energy produced. Several plants are discussed individually. Environmental regulations are discussed. The overall physical requirements of the plant for land and water are discussed.

  2. Can you make low-sulfur fuel and remain competitive?

    SciTech Connect

    Gonzalez, R.G.

    1996-11-01

    The auto industry wants sulfur in gasoline reduced down to levels that will not deactivate catalyst-based engine exhaust emission control systems. However, there is substantial concern that ambitious emissions reduction goals may not be taking into account the questionable cost effectiveness of requirements for new vehicle emission-control technologies. Meeting future low-sulfur mandates could make a tough business even tougher. Some strategies are presented that might give one an edge.

  3. Cool Water Coal Gasification Program: an update

    SciTech Connect

    Clark, E.

    1988-09-01

    Cool Water, cofunded by EPRI et al., is a nominal 120-MW integrated coal gasification and combined-cycle (IGCC) power plant that uses the Texaco coal gasification process. Construction of the IGCC facility at Daggett, California, was completed and operation began in mid 1984. The plant continues to operate successfully on its usual feedstock, a low-sulfur Utah coal, and on several test coals. During high-sulfur coal testing, 32,600 tons of Illinois No. 6 coal and 21,300 tons of Pittsburgh No. 8 coal were burned. In the most recent alternative coal test, 23,000 tons of an Australian coal with a high-ash fusion temperature were gasified. Efforts continue to improve the operability and performance of Cool Water, the nation's first IGCC power plant. Plant capacity and on-stream factors for the last six months of 1987 were 85.3% and 87.6%, respectively. For all of 1987 the factors were 70.5% and 79.3%, compared with 56.7% and 65.9% in 1986 and 49.9% and 61.5% in 1985. 1 table.

  4. Catalytic reduction of SO[sub x]-NO[sub x] in coal flue gas

    SciTech Connect

    Not Available

    1991-11-01

    Almost half of the coal purchased by the utilities that year was not Ohio coal. The 20-plus million tons/year of non-Ohio coal consumed by Ohio generators is an indication of the order of magnitude of the potential market incentive for Ohio to supply its power plants from its indigenous coal mine. The major reason for the drop in Ohio coal production rate is that the average content of Ohio coal is 3.5 weight percent, with a range of one to six percent. Use of high-sulfur coal introduces environmental problems due to the high SO[sub 2] emission rate in the boiler flue gas. Potential solutions include use of alternative low-sulfur non-Ohio coal and addition of SO[sub 2] (and NO[sub x]) removal facilities. The substitution of non-Ohio low-sulfur coal for Ohio coal is a strong negative for the state and its coal mining industry; it means further shrinkage of the state's coal industry accompanied by loss of Ohio jobs. The Parsons FGC process is a candidate for the alternative solution, i.e., to provide high efficiency post-combustion removal of SO[sub 2] (and NO[sub x]). The Phase 2 pilot plant test results have demonstrated that the Parsons FGC process is capable to remove 99-plus percent of SO[sub 2] and 95-plus percent of NO[sub x] from coal-fired boiler flue gas. The Parsons FGC process will permit Ohio coal fired power plants to burn high-sulfur Ohio coal and achieve conformance with provisions of the Clean Air Act Amendments of 1990. Because SO[sub 2] reduction using the Parsons FGC process will be greater than the amendment requirement, its use will provide the affected Ohio power plant with marketable net allowances having a definite economic value.

  5. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect

    Constance Senior; Temi Linjewile

    2003-10-31

    This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the second set of mercury measurements was made after the catalysts had been exposed to flue gas for about 2,000 hours. There was good agreement between the Ontario Hydro measurements and the SCEM measurements. Carbon trap measurements of total mercury agreed fairly well with the SCEM. There did appear to be some loss of mercury in the sampling system toward the end of the sampling campaign. NO{sub x} reductions across the catalysts ranged from 60% to 88%. Loss of total mercury across the commercial catalysts was not observed, as it had been in the March/April test series. It is not clear whether this was due to aging of the catalyst or to changes in the sampling system made between March/April and August. In the presence of ammonia, the blank monolith showed no oxidation. Two of the commercial catalysts showed mercury oxidation that was comparable to that in the March/April series. The other three commercial catalysts showed a decrease in mercury oxidation relative to the March/April series. Oxidation of mercury increased without ammonia present. Transient experiments showed that when ammonia was turned on, mercury appeared to desorb from the catalyst, suggesting displacement of adsorbed mercury by the ammonia.

  6. PROCEEDINGS ON SYNCHROTRON RADIATION: Investigation of sulfur speciation in particles from small coal-burning boiler by XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Bao, Liang-Man; Lin, Jun; Liu, Wei; Lu, Wen-Zhong; Zhang, Gui-Lin; Li, Yan; Ma, Chen-Yan; Zhao, Yi-Dong; He, Wei; Hu, Tian-Dou

    2009-11-01

    Sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy was employed to study the speciation of sulfur in raw coal, ash by-product and fine particulate matter from a small coal-burning boiler. By means of least square analysis of the XANES spectra, the major organic and inorganic sulfur forms were quantitatively determined. The results show that about 70% of the sulfur in raw coal is present as organic and a minor fraction of the sulfur occurs as other forms: 17% of pyrite and 13% of sulfate. While in bottom ash, fly ash, and PM2.5, the dominant form of sulfur is sulfate, with the percentage of 80,79 and 94, respectively. Moreover, a number of other reduced sulfur including thiophenic sulfur, element sulfur and pyrrhotite are also present. During coal combustion, most of organic sulfur and pyrite were oxidized and released into the atmosphere as SO2 gas, part of them was converted to sulfate existing in coal combustion by-products, and a small part of pyrite was probably reduced to elemental sulfur and pyrrhotite. The results may provide information for assessing the pollution caused by small boiler and developing new methods for the control of SO2 pollution.

  7. Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC

    DOEpatents

    Roberts, George W.; Tao, John C.

    1985-01-01

    In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.

  8. Geothermal, Geochemical and Geomagnetic Mapping Of the Burning Coal Seam in Fire- Zone 18 of the Coal Mining Area Wuda, Inner Mongolia, PR China.

    NASA Astrophysics Data System (ADS)

    Kessels, W.; Han, J.; Halisch, M.; Lindner, H.; Rueter, H.; Wuttke, M. W.

    2008-12-01

    Spontaneous combustion of coal has become a world wide problem caused by and affecting technical operations in coal mining areas. The localization of the burning centre is a prerequisite for any planning of fire fighting operations. In the German - Chinese coal fire project sponsored by the German Ministry of Science and Technologies (Grant No. 0330490K) the so called fire zone 18 of the coal mining area of Wuda (InnerMongolia, PR China) serves as a test area for geophysical measurements. For the geothermal and geochemical mapping 25 up to 1m deep boreholes with a diameter of approx. 30 mm are distributed over the particular fire-zone with an extension of 320 × 180 m2. To avoid the highly dynamic gas flow processes in fire induced fractures caused by weather conditions, all boreholes were situated in the undisturbed rock compartments. In these boreholes, plastic tubes of 12 mm diameter provide access to the borehole ground filled with highly permeable gravel. The boreholes are otherwise sealed to the atmosphere by clay. The geothermal observations consist of measurements of temperature profiles in the boreholes and thermal conductivity measurement on rock samples in the lab. For depths greater then 0.2 m diurnal variations in the temperature gradient were neglected. The derived heat flow with maximum values of 80 W/m2 is more then three orders of magnitude higher than the natural undisturbed heat flow. The high heat flow suggests that the dominant heat transport is gas convection through the system of porous rock and fractures. Any temperature anomaly caused by the burning coal in a depth of more than 18 m would need years to reach the surface by a heat transport restricted to conduction. The geochemical soil gas probing is performed by gas extraction from the boreholes. Measured are the concentrations of O2, CO, CO2, H2S and CH4. The O2 deficit in the soil air and the concentrations of the other combustion products compared to the concentrations in the free atmosphere are related to the combustion area. The magnetic mapping with point distances of 2 m and profile-distances of 3 to 4 m covered an area of 350 × 300m with 7913 points. The detected anomalies lie in a range between -130 and 176 nT. The maxima are most likely caused by heating of the top sandstones by burning coal, the origin for the high magnetization being the conversion of pyrite and markasit into maghemite, hematite and magnetite. Susceptibility measurements of clinkers in firezone 18 demonstrate this effect. Therefore the identified patches with high magnetic anomalies should have a direct connection to ranges with burning coal within firezone 18. Al the discussed geophysical measurements together allow an integrated interpretation. Each result can be related to the combustion process with a particular likelihood for the vertical projection to the combustion centre. Probability calculations with chosen weight factors for each observation method are discussed. References: Kessels, W., Wuttke, M. W., Wessling, S., and Li, X. Coalfires between self ignition and fire fighting: Numerical modeling and basic geophysical measurements. In ERSEC Ecological Book Series - 4 on Coal Fire Research (2007).

  9. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review.

    PubMed

    Papastefanou, Constantin

    2010-03-01

    Coal, like most materials found in nature, contains trace quantities of the naturally occurring primordial radionuclides, i.e. of (40)K and of (238)U, (232)Th and their decay products. Therefore, the combustion of coal results in the released into the environment of some natural radioactivity (1.48 TBq y(-1)), the major part of which (99%) escapes as very fine particles, while the rest in fly ash. The activity concentrations of natural radionuclides measured in coals originated from coal mines in Greece varied from 117 to 435 Bq kg(-1) for (238)U, from 44 to 255 Bq kg(-1) for (226)Ra, from 59 to 205 Bq kg(-1) for (210)Pb, from 9 to 41 Bq kg(-1) for (228)Ra ((232)Th) and from 59 to 227 Bq kg(-1) for (40)K. Fly ash escapes from the stacks of coal-fired power plants in a percentage of 3-1% of the total fly ash, in the better case. The natural radionuclide concentrations measured in fly ash produced and retained or escaped from coal-fired power plants in Greece varied from 263 to 950 Bq kg(-1) for (238)U, from 142 to 605 Bq kg(-1) for (226)Ra, from 133 to 428 Bq kg(-1) for (210)Pb, from 27 to 68 Bq kg(-1) for (228)Ra ((232)Th) and from 204 to 382 Bq kg(-1) for (40)K. About 5% of the total ash produced in the coal-fired power plants is used as substitute of cement in concrete for the construction of dwellings, and may affect indoor radiation doses from external irradiation and the inhalation of radon decay products (internal irradiation) is the most significant. The resulting normalized collective effective doses were 6 and 0.5man-Sv(GWa)(-1) for typical old and modern coal-fired power plants, respectively. PMID:20005612

  10. The Clean Air Act impacts on rail coal

    SciTech Connect

    Sharp, R.G. )

    1991-03-01

    These factors are examined in this article. In November 1990, President Bush signed the Clean Air Act amendments of 1990 into law. Title IV, concerning acid rain control, calls for a two-phase reduction in power plant sulfur-dioxide emissions, culminating in a nationwide cap after the year 2000. A large part of this reduction will be obtained through substituting low-sulfur coals for the higher-sulfur fuels now used. Most commentators have characterized this legislation as a boon for low-sulfur coal producers and the railroads serving them. If, as projected, up to one-eighth of existing coal-burning plants shift to more distant suppliers, a surge in rail traffic would ensue. Whether this traffic originates at eastern or western mines, rail carriers would obtain longer hauls and greater coal volumes. We have examined the rail transport implications of the amendments and found that the potential rail benefits may be exaggerated. Although traffic volume will grow, margins on some new traffic are likely to be eroded by continued rate competition and reduced productivity. To satisfy coal transport needs in the 1990s, factors that challenge rail productivity must be recognized and resolved.

  11. Coal and tire burning mixtures containing ultrafine and nanoparticulate materials induce oxidative stress and inflammatory activation in macrophages.

    PubMed

    Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P

    2013-10-01

    Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. PMID:23856402

  12. Ultra Low Sulfur Home Heating Oil Demonstration Project

    SciTech Connect

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  13. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is almost the same as predicted by past laboratory studies. Fouling deposition rates are reduced by a factor of two to three by using lower sulfur oil. This translates to a potential for substantial service cost savings by extending the interval between labor-intensive cleanings of the internal surfaces of the heating systems in these homes. In addition, the time required for annual service calls can be lowered, reducing service costs and customer inconvenience. The analyses conducted as part of this field demonstration project indicates that service costs can be reduced by up to $200 million a year nationwide by using lower sulfur oil and extending vacuum cleaning intervals depending on the labor costs and existing cleaning intervals. The ratio of cost savings to added fuel costs is economically attractive based on past fuel price differentials for the lower sulfur product. The ratio of cost savings to added costs vary widely as a function of hourly service rates and the additional cost for lower sulfur oil. For typical values, the expected benefit is a factor of two to four higher than the added fuel cost. This means that for every dollar spent on higher fuel cost, two to four dollars can be saved by lowered vacuum cleaning costs when the cleaning intervals are extended. Information contained in this report can be used by individual oil marketers to estimate the benefit to cost ratio for their specific applications. Sulfur oxide and nitrogen oxide air emissions are reduced substantially by using lower sulfur fuel oil in homes. Sulfur oxides emissions are lowered by 75 percent by switching from fuel 0.20 percent to 0.05 percent sulfur oil. This is a reduction of 63,000 tons a year nationwide. In New York State, sulfur oxide emissions are reduced by 13,000 tons a year. This translates to a total value of $12 million a year in Sulfur Oxide Emission Reduction Credits for an emission credit cost of $195 a ton. While this ''environmental cost'' dollar savings is smaller than the potential service costs reduction, it is very significant. It represents an important reduction in air pollutants that contribute directly to acid rain and other adverse impacts in the United States. When all air emissions are included, low sulfur content home heating oil and utility gas are virtually equal in their environmental impacts.

  14. Assessment of potential debris-flow peak discharges from basins burned by the 2002 Coal Seam fire, Colorado

    USGS Publications Warehouse

    Cannon, Susan H.; Michael, John A.; Gartner, Joseph E.

    2003-01-01

    These maps present the results of assessments of peak discharges that can potentially be generated by debris flows issuing from the basins burned by the Coal Seam fire of June and July 2002, near Glenwood Springs, Colorado. The maps are based on a regression model for debris-flow peak discharge normalized by average storm intensity as a function of basin gradient and burned extent, and limited field checking. A range of potential peak discharges that could potentially be produced from each of the burned basins between 1 ft3/s (0.03 m3/s) and greater than 5,000 ft3/s (>141 m3/s) is calculated for the 5-year, 1-hour storm of 0.80 inches (20 mm). The 25-year, 1-hour storm of 1.3 inches (33 mm). The 100- year, 1-hour storm of 1.8 inches (46 mm) produced peak discharges between 1 and greater than 8,000 ft3/s (>227 m3/s). These maps are intended for use by emergency personnel to aid in the preliminary design of mitigation measures, and the planning of evacuation timing and routes.

  15. Development of the technology of scandium extraction from the ash-slag waste of Kansk-Achinsk brown coal burning

    SciTech Connect

    Pashkov, G.L.; Mikhnev, A.D.; Kontzevoi, A.A.

    1996-12-31

    Kansk-Achinsk Brown Coal Basin is one of the largest of the world. The coals of separate fields of this Basin consists of an enhanced amount of rare-earth metals, scandium in particular. The results of the developments of efficient technologies for the extraction of this metal from the ash-slag waste of Kansk-Achinsk brown coal burning were discussed in the paper. A variety of the procedures was tested such as the sintering with the alkali followed by the treatment with water, the sintering with the sodium carbonate followed by the treatment with the HCl water solution, the extraction with HCl or sulphuric acids, etc. The extraction of other than scandium metals, such as Y, La, Nd, Yb, Gd, etc., were monitored as well. The scandium extraction with HCl solution was found to be the most appropriate procedure for the ash-slag studied. The kinetic parameters of the extraction with HCl were measured and the mechanism of the extraction process is discussed.

  16. Uncovering and evaluation of a twenty-five-year-old underground-coal-gasification burn at a site in Gorgas, Alabama

    SciTech Connect

    Capp, J.P.

    1981-04-01

    During the late forties and into the fifties, the US Bureau of Mines (USBM) and the Alabama Power Company conducted a series of underground coal gasification burns in the Pratt and America coal beds at Gorgas, Alabama. Following the first burn, by the so called stream method, it was feasible to enter the burned out areas by deep mining and assess what had taken place during the operation of the test site. In the latter tests, however, it was not economically feasible to explore the burned out areas except by means of core drilling. Now, in early 1981, surface mining is being done in the vicinity of the first hydraulic fracture area. I had been there during the active operation of the burns and agreed to go to Gorgas, evaluate the exposed area, collect samples, take photographs, and provide this written report. I spent several days taking photographs and making observations at the exposed burn site, taking samples, and discussing the best ways to coordinate future exposures with the coal mining process. The uncovered burn area at the site of the first hydraulic fracture can be described as a flat, roughly circular shaped area, varying in thickness from about 1 foot to 2 feet high and covered with a mixture of the various materials removed in the mining operation, i.e., broken bits of coal, rock, clay, etc. However it rained the night before the observation and during the entire evaluation period making it extremely difficult to determine whether fine gray colored materials were clay or residual ash.

  17. Performance of a burner with coal and coal:manure blends

    SciTech Connect

    Annamalai, K.; Frazzitta, S.; Sweeten, J.M.

    1996-10-01

    The fuel cost of power generation could be reduced by supplementing coal fuels with alternatives such as the byproducts of industries located in the near vicinity of the power plants. The supplemental fuel for utilities located near feedlots in Northwest Texas happens to be feedlot manure. In order to test the viability of co-firing a coal:manure blend, a small-scale boiler burner facility has been constructed to simulate a utility class boiler. Experiments were conducted with coal only and then for coal:manure blends. Three types of feedlot manure are examined for blending; raw feedlot manure (RM), partially composted feedlot manure (PC), and finished composted feedlot manure (FC). Performance characteristics and emission data were taken for each case. A summary of the results is as follows: (1) Low sulfur Wyoming coal was fired and a gasification efficiency was measured. (2) Emission measurements were recorded and it was seen that emissions of NO{sub x} and SO{sub 2} increased as the burned fraction of input fuel blend increased. However, all emissions were within NSPS guidelines. (3) The successful firing of coal and feedlot manure was achieved; the gasification efficiency with the coal:manure blend was found to be higher than when firing coal alone under identical conditions. (4) When the fuel blend was fully burned, the NO{sub x} emissions with the blend firing was lower than the value found when firing coal alone. (5) The most surprising finding is that the SO{sub x} emission is lower for blended fuel than for pure coal firing, probably due to capture by alkaline ash of the feedlot manure.

  18. Health effects of arsenic, fluorine, and selenium from indoor burning of Chinese coal

    SciTech Connect

    Guijian, L.; Liugen, Z.; DuzgorenAydin, N.S.; Lianfen, G.; Junhua, L.; Zicheng, P.

    2007-07-01

    China's economy has developed rapidly in the last two decades, leading to an increase in energy consumption and consequently emissions from energy generation. Coal is a primary energy source in China because of its abundance and will continue to be used in the future. The dominance of coal in energy production is expected to result in increasing levels of exposure to environmental pollution in China. Toxic trace elements emitted during coal combustion are the main sources of indoor air pollution. They are released into the atmosphere mainly in the forms of fine ash and vapors and have the potential to adversely affect human health. Those trace elements, which volatilize during combustion, are hazardous air pollutants (HAPs) and are particularly rich in Chinese coals. Among the HAPs, arsenic (As), fluorine (F), and selenium (Se) have already been identified as pollutants that can induce severe health problems. In this review, the geochemical characteristics of As, F, and Se, including their concentration, distribution, and mode of occurrences in Chinese coal, are documented and discussed. Our investigations have confirmed the current As- and F-induced epidemics in Guizhou (Southwest China) and Se epidemic in Hubei (Northeast China). In this study, diagnostic symptoms of arseniasis, fluorosis, and selenosis are also illustrated.

  19. Optimization of regimes for the feed of highly concentrated culm-anthracite coal dust for burning in a TPP-210A boiler

    SciTech Connect

    L.V. Golyshev; G.A. Dovgoteles

    2007-05-15

    Results are presented for regime adjustment of feed systems for a TPP-210A boiler for the burning of highly concentrated culm-anthracite coal dust. As compared with nonoptimal regimes, optimal regimes of high-concentration-feed systems improve the economy of the boiler by 1.7% on average.

  20. Coal Car

    Coal was essential to the operation of the larger steam engines. Coal burns at extremely hot temperatures and burns for a long time, making it an ideal fuel for converting water into steam. The coal mined in the Scranton area, where Steamtown National Historic Site is located, is known as anthracite...

  1. Coal desulfurization by aqueous chlorination

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K. (Inventor)

    1982-01-01

    A method of desulfurizing coal is described in which chlorine gas is bubbled through an aqueous slurry of coal at low temperature below 130 degrees C., and at ambient pressure. Chlorinolysis converts both inorganic and organic sulfur components of coal into water soluble compounds which enter the aqueous suspending media. The media is separated after chlorinolysis and the coal dechlorinated at a temperature of from 300 C to 500 C to form a non-caking, low-sulfur coal product.

  2. Fluoride and sulfur dioxide indoor pollution situation and control in coal-burning endemic area in Zhaotong, Yunnan, China

    NASA Astrophysics Data System (ADS)

    Liu, Yonglin; Luo, Kunli; Li, Ling; Shahid, Muhammad Zeeshaan

    2013-10-01

    The presented study aims to investigate the gaseous fluoride and sulfur dioxide (SO2) pollution level in the kitchen, traditional flue-curing barn and outdoor environment and to find economically feasible method to reduce fluorine and sulfur release. The gaseous fluoride and SO2 concentrations in air of outdoor environment, kitchen and traditional flue-curing barn were determined in 56 households in coal-burning endemic fluorosis areas of Zhaotong. Among these, 21 households in Yujiawan Village, Zhenxiong County, Zhaotong City were chosen for this experiment to reduce gaseous fluoride and SO2 concentration in traditional flue-curing barn air by using calcined dolomitic siliceous limestone (CDSL) instead of clay mixed with coal. The result showed that: (1) gaseous fluoride and SO2 concentration in the outdoor air in Mangbu Township area was 0.51 μg dm-2ṡday and <0.05 mg m-3, respectively and in Xiaolongdong Township was 2.7 μg dm-2 day and <0.05 mg m-3, respectively while in Zhaotong City these concentration were lower than the ambient air standard (3 μg dm-2ṡday and 0.5 mg m-3, respectively). (2) The indoor gaseous fluoride concentration (3.7 μg m-3) in air of kitchen with the improved coal stove was within the reference value (10 μg m-3); SO2 concentration (0.94 mg m-3) in kitchen air had decline, but its concentration was still higher than indoor air quality standard (0.5 mg m-3). (3) Average concentration of gaseous fluoride and SO2 in air of traditional flue-curing barn of Xiaolongdong Township was 7.2 μg m-3 and 6.8 mg m-3 respectively, and in Yujiawan village were 10.1 μg m-3 and 14.4 mg m-3, respectively. (4) After using the calcined dolomitic siliceous limestone instead of clay mixed with coal, gaseous fluoride and SO2 concentration in the traditional flue-curing barn air decreased of 45% and 91%, respectively. The gaseous fluoride and SO2 pollution in the traditional flue-curing barn is very serious. The corn and chili baked by open stoves in traditional flue-curing barn (baking room) was also seriously polluted by fluoride and sulfur. After using the calcined dolomitic siliceous limestone instead of clay mixed with coal, gaseous fluoride and SO2 concentration in the traditional flue-curing barn air have declined markedly. The way of adding calcined dolomitic siliceous limestone instead of clay as a binder for briquette-making is an economically feasible way to control the indoor pollution of fluorine and sulfur in coal-burning endemic in Zhaotong, Yunnan.

  3. Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Karanasiou, A.; Amato, F.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.; Coz, E.; Artíñano, B.; Lumbreras, J.; Borge, R.; Boldo, E.; Linares, C.; Alastuey, A.; Querol, X.; Gibbons, W.

    2013-04-01

    A multi-analytical approach to chemical analysis of inhalable urban atmospheric particulate matter (PM), integrating particle induced X-ray emission, inductively coupled plasma mass spectrometry/atomic emission spectroscopy, chromatography and thermal-optical transmission methods, allows comparison between hourly (Streaker) and 24-h (High volume sampler) data and consequently improved PM chemical characterization and source identification. In a traffic hot spot monitoring site in Madrid (Spain) the hourly data reveal metallic emissions (Zn, Cu, Cr, Fe) and resuspended mineral dust (Ca, Al, Si) to be closely associated with traffic flow. These pollutants build up during the day, emphasizing evening rush hour peaks, but decrease (especially their coarser fraction PM2.5-10) after nocturnal road washing. Positive matrix factorization (PMF) analysis of a large Streaker database additionally reveals two other mineral dust components (siliceous and sodic), marine aerosol, and minor, transient events which we attribute to biomass burning (K-rich) and industrial (incinerator?) Zn, Pb plumes. Chemical data on 24-h filters allows the measurement of secondary inorganic compounds and carbon concentrations and offers PMF analysis based on a limited number of samples but using fuller range of trace elements which, in the case of Madrid, identifies the continuing minor presence of a coal combustion source traced by As, Se, Ge and Organic Carbon. This coal component is more evident in the city air after the change to the winter heating season in November. Trace element data also allow use of discrimination diagrams such as V/Rb vs. La/Ce and ternary plots to illustrate variations in atmospheric chemistry (such as the effect of Ce-emissions from catalytic converters), with Madrid being an example of a city with little industrial pollution, recently reduced coal emissions, but serious atmospheric contamination by traffic emissions.

  4. Cost effective clean power generation burning high ash and/or high sulfur coals

    SciTech Connect

    Ashworth, R.A.; Sanyal, A.

    1998-07-01

    In the future, new air pollution control technologies will be required by coal-fired electric utilities and industrial boiler owners to meet more stringent environmental constraints. The CAIRE{trademark} (acronym for Controlled Air Emissions) combustor technology offers the benefit of reducing SO{sub 2} by some 70 to 90% and lowering NO{sub x} emission levels to 0.30 lb/10{sup 6} Btu or less, better than the best conventional low NO{sub x} burners on the market today. It also incorporates the advantage of a cyclone-fired unit by reducing particulate carryover into the boiler and downstream equipment by some 75 to 80%. This means that low cost, high sulfur and/or high ash coals may be fired in this combustor without the penalty of increased SO{sub 2} emissions, ash fouling and higher particulate stack emissions. The CAIRE{trademark} combustor may be retrofitted to electric utility boilers at a cost per ton of SO{sub 2} removed that is less than the price of SO{sub 2} allowance credits and less than the cost of switching from Eastern to Western US coal.

  5. Selenium And Arsenic Speciation in Fly Ash From Full-Scale Coal-Burning Utility Plants

    SciTech Connect

    Huggins, F.E.; Senior, C.L.; Chu, P.; Ladwig, K.; Huffman, G.P.; /Kentucky U. /Reaction Engin. Int. /Elect. Power Res. Inst., Palo Alto

    2007-07-09

    X-ray absorption fine structure spectroscopy has been used to determine directly the oxidation states and speciation of selenium and arsenic in 10 fly ash samples collected from full-scale utility plants. Such information is needed to assess the health risk posed by these elements in fly ash and to understand their behavior during combustion and in fly ash disposal options, such as sequestration in tailings ponds. Selenium is found predominantly as Se(IV) in selenite (SeO{sub 3}{sup 2-}) species, whereas arsenic is found predominantly as As(V) in arsenate (AsO{sub 4}{sup 3-}) species. Two distinct types of selenite and arsenate spectra were observed depending upon whether the fly ash was derived from eastern U.S. bituminous (Fe-rich) coals or from western subbituminous or lignite (Ca-rich) coals. Similar spectral details were observed for both arsenic and selenium in the two different types of fly ash, suggesting that the post-combustion behavior and capture of both of these elements are likely controlled by the same dominant element or phase in each type of fly ash.

  6. Assessment of in-furnace dry sorbent injection experimental results burning low sulphur content coals

    SciTech Connect

    Collado, F.J.

    1995-12-31

    In an effort to adjust the SO{sub 2} emissions of coal power stations to the current air pollutant standards, established by the EC, flue gas desulfurization tests with in-furnace dry sorbent injection technology in the Spanish coal power station ``Litoral`` (tangentially-fired) were performed. The measured retentions were lower than predicted through a one-dimensional model. Then, it was thought that a CFD 3D simulation of the injection would help to understand the complex relationships of the process. The simulation was divided in two stages: in the first one, the turbulent velocity and the temperature field were solved. In the second one, representative sorbent particles were injected in the turbulent field previously solved, the focus of this work being the global sulphur capture modeling and its validation through the experimental measurements obtained. After a revision of the models proposed in the specialized literature, a global sulfation model is chosen, being compared with the experimental data obtained in the power station. Because of the main results of this work, the authors can highlight the testing of the laboratory-scale correlations against full-scale results, and can mitigate the difficulty of estimating the actual temperature profile by experimenting with the particle and its residence time without the aid of a CFD code.

  7. Large Cellular Inclusions Accumulate in Arabidopsis Roots Exposed to Low-Sulfur Conditions1[OPEN

    PubMed Central

    Jackson, Terry L.; Baker, Ginger W.; Wilks, Floyd R.; Popov, Vladimir A.; Mathur, Jaideep; Benfey, Philip N.

    2015-01-01

    Sulfur is vital for primary and secondary metabolism in plant roots. To understand the molecular and morphogenetic changes associated with loss of this key macronutrient, we grew Arabidopsis (Arabidopsis thaliana) seedlings in low-sulfur conditions. These conditions induced a cascade of cellular events that converged to produce a profound intracellular phenotype defined by large cytoplasmic inclusions. The inclusions, termed low-sulfur Pox, show cell type- and developmental zone-specific localization. Transcriptome analysis suggested that low sulfur causes dysfunction of the glutathione/ascorbate cycle, which reduces flavonoids. Genetic and biochemical evidence indicated that low-sulfur Pox are the result of peroxidase-catalyzed oxidation of quercetin in roots grown under sulfur-depleted conditions. PMID:26099270

  8. Overlapping of the devolatilization and char combustion stages in the burning of coal particles

    SciTech Connect

    Veras, C.A.G.; Saastamoinen, J.; Aho, M.; Carvalho, J.A. Jr.

    1999-03-01

    The oxygen content at the surface of a fuel particle can significantly exceed zero during the devolatilization stage of combustion, despite the flux of volatiles from the surface and also gas phase reactions. This implies that char oxidation can take place simultaneously. This overlapping of the devolatilization and char combustion stages is studied by modeling. The rates of gas phase reactions around the particle influence the availability of oxygen at the surface of a burning particle and they are accounted for by using a two-step global model for combustion of volatiles. The effects of particle size, ambient temperature, and oxygen concentration on the degree of overlap are studied. The study provides theoretical and experimental evidence that the combustion time of a particle does not always increase with its size at constant ambient conditions, but there can be a specific particle size giving a maximum combustion rate.

  9. Options and costs for CO{sub 2} reductions at coal-burning utilities

    SciTech Connect

    Hawk, E.W. Jr.

    1999-07-01

    The power generation industry may be required to reduce CO{sub 2} emissions if regulations related to global climate change are enacted. Coal-fired generation, which emits 88% of the power sector CO{sub 2}, would be a likely target for CO{sub 2} reduction. Compliance with the Kyoto protocol will require a 33% reduction from the projected year 2012 emission level even with moderate load growth. This paper describes an analysis of power industry CO{sub 2} reduction options and their costs to assess how a generator would make compliance decisions under a mandatory CO{sub 2} emissions reduction program. Carbon sequestration, fuel switching and new plant construction are considered.

  10. Effects of prenatal exposure to coal-burning pollutants on children's development in China

    SciTech Connect

    Tang, D.L.; Li, T.Y.; Liu, J.J.; Zhou, Z.J.; Yuan, T.; Chen, Y.H.; Rauh, V.A.; Xie, J.; Perera, F.

    2008-05-15

    Environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs), lead, and mercury are released by combustion of coal and other fossil fuels. In the present study we evaluated the association between prenatal exposure to these pollutants and child development measured by the Gesell Developmental Schedules at 2 years of age. The study was conducted in Tongliang, Chongqing, China, where a seasonally operated coal-fired power plant was the major source of ambient PAHs and also contributed lead and mercury to the air. In a cohort of nonsmoking women and their newborns enrolled between March 2002 and June 2002, we measured levels of PAH-DNA adducts, lead, and mercury in umbilical cord blood. PAH-DNA adducts (specifically benzo(a)pyrene adducts) provided a biologically relevant measure of PAH exposure. We also obtained developmental quotients (DQs) in motor, adaptive, language, and social areas. Decrements in one or more DQs were significantly associated with cord blood levels of PAH-DNA adducts and lead, but not mercury. Increased adduct levels were associated with decreased motor area DQ (p = 0.043), language area DQ (p = 0.059), and average DQ (p = 0.047) after adjusting for cord lead level, environmental tobacco smoke, sex, gestational age, and maternal education. In the same model, high cord blood lead level was significantly associated with decreased social area DQ (p = 0.009) and average DQ (p = 0.038). The findings indicate that exposure to pollutants from the power plant adversely affected the development of children living in Tongliang.

  11. Effects of Prenatal Exposure to Coal-Burning Pollutants on Children’s Development in China

    PubMed Central

    Tang, Deliang; Li, Tin-yu; Liu, Jason J.; Zhou, Zhi-jun; Yuan, Tao; Chen, Yu-hui; Rauh, Virginia A.; Xie, Jiang; Perera, Frederica

    2008-01-01

    Background Environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs), lead, and mercury are released by combustion of coal and other fossil fuels. Objectives In the present study we evaluated the association between prenatal exposure to these pollutants and child development measured by the Gesell Developmental Schedules at 2 years of age. Methods The study was conducted in Tongliang, Chongqing, China, where a seasonally operated coal-fired power plant was the major source of ambient PAHs and also contributed lead and mercury to the air. In a cohort of nonsmoking women and their newborns enrolled between March 2002 and June 2002, we measured levels of PAH–DNA adducts, lead, and mercury in umbilical cord blood. PAH–DNA adducts (specifically benzo[a]pyrene adducts) provided a biologically relevant measure of PAH exposure. We also obtained developmental quotients (DQs) in motor, adaptive, language, and social areas. Results Decrements in one or more DQs were significantly associated with cord blood levels of PAH–DNA adducts and lead, but not mercury. Increased adduct levels were associated with decreased motor area DQ (p = 0.043), language area DQ (p = 0.059), and average DQ (p = 0.047) after adjusting for cord lead level, environmental tobacco smoke, sex, gestational age, and maternal education. In the same model, high cord blood lead level was significantly associated with decreased social area DQ (p = 0.009) and average DQ (p = 0.038). Conclusion The findings indicate that exposure to pollutants from the power plant adversely affected the development of children living in Tongliang; these findings have implications for environmental health policy. PMID:18470301

  12. Emissions from burning tire-derived fuel (TDF): Comparison of batch combustion of tire chips and continuous combustion of tire crumb mixed with coal

    SciTech Connect

    Levendis, Y.A.; Atal, A.; Carlson, J.B.

    1998-04-01

    This laboratory study investigated the emissions of waste automobile tire-derived fuel (TDF). This fuel was burned in two different modes, either segmented in small pieces (tire chunks) or in pulverized form (tire crumb). Tire chunks were burned in fixed beds in batch mode in a horizontal furnace. Tire crumb was burned in a continous flow mode, dispersed in air, either alone or mixed with pulverized coal, in a verical furnace. The gas flow was laminar, the gas temperature was 1000{degrees}C in all cases, and the residence times of the combustion products in the furnaces were similar. Chunks of waste tires had dimensions in the range of 3-9 {mu}m, tire crumb was size-classified to be 180-212 {mu}m and the high volatile bituminous coal, used herein, was 63-75. The fuel mass loading in the furnaces was varied. The following emissions were monitored at the exit of the furnaces: CO, CO{sub 2}, NO{sub x} polynuclear aromatic hydrocarbon (PAH) and particulates. Results showed that combustion of TDF in fixed beds resulted in large yields (emissions per mass of fuel burned) of CO, soot and PAHs. Such yields increased with the size of the bed. CO, soot and PAHs yields from batch combustion of fixed beds of coal were lower by more than an order of magnitude than those from fixed beds of TDF. Continuous pulverized fuel combustion of TDF (tire crumb) resulted in dramatically lower yields of CO, soot and PAHs than those from batch combustion, especially when TDF was mixed with pulverized coal. To the contrary, switching the mode of combustion of coal (from fixed beds to pulverized fuel) did not result in large differences in the aforementioned emissions. CO{sub 2}, and, especially, NO{sub x} yields from batch combustion of TDF were lower than those from coal. Emissions of NO{sub x} were somewhat lower from batch combustion than from pulverized fuel combustion of TDF and coal.

  13. Emissions from burning tire-derived fuel (TDF): Comparison of batch combustion of tire chips and continuous combustion of tire crumb mixed with coal

    SciTech Connect

    Levendis, Y.A.; Atal, A.; Carlson, J.B.

    1998-07-01

    This laboratory study investigated the emissions of waste automobile tire-derived fuel (TDF). This fuel was burned in two different modes, either segmented in small pieces (tire chunks) or in pulverized form (tire crumb). Tire chunks were burned in fixed beds in batch mode in a horizontal furnace. Tire crumb was burned in a continuous flow mode, dispersed in air, either alone or mixed with pulverized coal, in a vertical furnace. The gas flow was laminar, the gas temperature was 1,000 C in all cases, and the residence times of the combustion products in the furnaces were similar. Chunks of waste tires had dimensions in the range of 3--9 mm, tire crumb was size-classified to be 180--212 {micro}m and the high volatile bituminous coal, used herein, was 63--75{micro}m. The fuel mass loading in the furnaces was varied. The following emissions were monitored at the exit of the furnaces: CO, CO{sub 2}, NO{sub x}, polynuclear aromatic hydrocarbon (PAH) and particulates. Results showed that combustion of TDF in fixed beds resulted in large yields (emissions per mass of fuel burned) of CO, soot and PAHs. Such yields increased with the size of the bed. CO, soot and PAHs yields from batch combustion of fixed beds of coal were lower by more than an order of magnitude than those from fixed beds of TDF. Continuous pulverized fuel combustion of TDF (tire crumb) resulted in dramatically lower yields of CO, soot and PAHs than those from batch combustion, especially when TDF was mixed with pulverized coal. To the contrary, switching the mode of combustion of coal (from fixed beds to pulverized fuel) did not result in large differences in the aforementioned emissions. CO{sub 2}, and especially, NO{sub x} yields from batch combustion of TDF were lower than those from coal. Emissions of NO{sub x} were somewhat lower from batch combustion than from pulverized fuel combustion of TDF and coal.

  14. Overburden characterization and post-burn study at the Hanna, Wyoming underground coal gasification site: stratigraphy, depositional environments and mineralogy, Hanna Formation

    SciTech Connect

    Craig, G.N. II; Burns, L.K.; Ethridge, F.G.; Laughter, T.; Youngberg, A.D.

    1982-03-01

    Several underground coal gasification (UCG) experiments have been conducted in the Hanna No. 1 coal seam. During the fall of 1980 the Laramie Energy Technology Center performed a post-burn field study of the Hanna II, Phases 2 and 3 experiment at the Hanna UCG site. The field work consisted of high resolution seismic, drilling, coring, and geophysical logging. The Department of Earth Resources, Colorado State University, contributed to the post-burn study by doing laboratory work on the cores and geophysical logs. The purpose of the laboratory work was to provide an estimate of the temperatures and chemical conditions reached during the conversion experiment by studying the mineralogical and textural characteristics of thermally altered and ulaltered overburden. In the vicinity of the burn cavity, overburden rocks have been subjected to high temperature pyrometamorphism during the Hanna II Phases 2 and 3 UCG experiments. Paralava rocks, buchites and paralava breccias containing glass and various high temperature minerals such as oligoclase, clinopyroxene, ferrocordierite, mullite, cristobalite, magnetite, and tridymite formed. Textures of some of these minerals suggest crystallization directly from a melt. Mineralogy and melting relations of the paralavas, ash fusion temperatures, and thermocouple measurements made during the experiment suggest that tempratures in excess of 1200/sup 0/C were attained. Rock color and the presence of reduced iron bearing minerals and blebs of native iron indicate that the experimental burn and the product gases in the area of paralava formation were reducing.

  15. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations.

    PubMed

    Brown, Patrick; Jones, Tim; BéruBé, Kelly

    2011-12-01

    Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 μm. Respirable particles (<10 μm) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA. PMID:21907473

  16. Coal resources, production, and quality in the Eastern kentucky coal field: Perspectives on the future of steam coal production

    USGS Publications Warehouse

    Hower, J.C.; Hiett, J.K.; Wild, G.D.; Eble, C.F.

    1994-01-01

    The Eastern Kentucky coal field, along with adjacent portions of Virginia and southern West Virginia, is part of the greatest production concentration of high-heating-value, low-sulfur coal in the United States, accounting for over 27% of the 1993 U.S. production of coal of all ranks. Eastern Kentucky's production is spread among many coal beds but is particularly concentrated in a limited number of highquality coals, notably the Pond Creek coal bed and its correlatives, and the Fire Clay coal bed and its correlatives. Both coals are relatively low ash and low sulfur through the areas of the heaviest concentration of mining activity. We discuss production trends, resources, and the quality of in-place and clean coal for those and other major coals in the region. ?? 1994 Oxford University Press.

  17. Estimation of capability of changing the boilers TP-14A at Kumertau Termal Power Station to burning B3 grade coal from Verkhne-Sokursky deposit

    NASA Astrophysics Data System (ADS)

    Supranov, V. M.; Shtegman, A. V.; Fomenko, E. A.

    2016-04-01

    Currently, TP-14A boilers should be changed into burning off-design fuel: grade B3 coal of Verkhne-Sokursky deposit. Its share (by heat) in the fuel balance should be not less than 80%. A test burning of Verkhne-Sokursky coal was carried out, which showed that, in its present form, the boilers and dust-systems are not suitable to operate with this fuel, because their characteristics significantly differs from the project one. It is impossible to maintain the overheating temperature at the required level during operation on only coal; it is difficult to maintain the temperature behind the mills at the level of 200°C. The joint burning the coal with natural gas allows to solve these problems at operation of one or two mills. However, substantial fuel underburning, essential thermal maldistributions on the steam flows, and emissions of NO x above permissible values is observed. Based on the results of test burning and joint calculations of furnace, boiler, and dust-systems, ways to solve these problems were developed. For modeling the furnace process, the Fluent and Sigma Flame software were used. Adapted mathematical models of the boiler and dust-preparing systems were created using the Boiler Designer and Stoker software. It is necessary to reconstruct the boiler plants, which can perform in two stages. In the first stage, the existing burners are replaced by the burners with turning nozzles and two-stage burning is arranged, and the inertial separators and recirculation of the drying agent are installed on the mills. In the second stage, the change to concentric burning is carried out, the heating surface of radiation part of the steam superheater increases, and the preset included hammer part is installed at the mill. It is shown that a positive effect should be obtained already after the first stage of reconstruction. The second stage of reconstruction will require additional expenses, but its implementation will allow to a greater extent to eliminate the disadvantageous in the operation of the equipment.

  18. Coal-oil slurry preparation

    DOEpatents

    Tao, John C.

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  19. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal

    SciTech Connect

    Yan Cao; Zhengyang Gao; Jiashun Zhu; Quanhai Wang; Yaji Huang; Chengchung Chiu; Bruce Parker; Paul Chu; Wei-ping Pan

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0) concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH{sub 3} addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH{sub 3} reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation. 30 refs., 4 figs.

  20. Characterization of feed coal and coal combustion products from power plants in Indiana and Kentucky

    SciTech Connect

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; O'Connor, J.T.; Brownfield, I.K.

    1999-07-01

    The US Geological Survey, Kentucky Geological Survey, and the University of Kentucky Center for Applied Energy Research are collaborating with Indiana and Kentucky utilities to determine the physical and chemical properties of feed coal and coal combustion products (CCP) from three coal-fired power plants. These three plants are designated as Units K1, K2, and I1 and burn high-, moderate-, and low-sulfur coals, respectively. Over 200 samples of feed coal and CCP were analyzed by various chemical and mineralogical methods to determine mode of occurrence and distribution of trace elements in the CCP. Generally, feed coals from all 3 Units contain mostly well-crystallized kaolinite and quartz. Comparatively, Unit K1 feed coals have higher amounts of carbonates, pyrite and sphalerite. Unit K2 feed coals contain higher kaolinite and illite/muscovite when compared to Unit K1 coals. Unit I1 feed coals contain beta-form quartz and alumino-phosphates with minor amounts of calcite, micas, anatase, and zircon when compared to K1 and K2 feed coals. Mineralogy of feed coals indicate that the coal sources for Units K1 and K2 are highly variable, with Unit K1 displaying the greatest mineralogic variability; Unit I1 feed coal however, displayed little mineralogic variation supporting a single source. Similarly, element contents of Units K1 and K2 feed coals show more variability than those of Unit I1. Fly ash samples from Units K1 and K2 consist mostly of glass, mullite, quartz, and spines group minerals. Minor amounts of illite/muscovite, sulfates, hematite, and corundum are also present. Spinel group minerals identified include magnetite, franklinite, magnesioferrite, trevorite, jacobisite, and zincochromite. Scanning Electron Microscope analysis reveals that most of the spinel minerals are dendritic intergrowths within aluminum silicate glass. Unit I1 fly ash samples contain glass, quartz, perovskite, lime, gehlenite, and apatite with minor amounts of periclase, anhydrite, carbonates, pyroxenes, and spinels. The abundant Ca mineral phases in the Unit I1 fly ashes are attributed to the presence of carbonate, clay and phosphate minerals in the coal.

  1. Coal.

    ERIC Educational Resources Information Center

    Brant, Russell A.; Glass, Gary B.

    1983-01-01

    Principle work of 23 state geological surveys is summarized. Work includes mapping/estimating coal resources, centralizing data in National Coal Resources Data System through cooperative programs, exploration drilling, and others. Comments on U.S. Geological Survey activities, coal-related conferences/meetings, and industry research activities are…

  2. Energy Policy Act transportation rate study: Interim report on coal transportation

    SciTech Connect

    1995-10-01

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  3. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    SciTech Connect

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  4. Sodium and potassium released from burning particles of brown coal and pine wood in a laminar premixed methane flame using quantitative laser-induced breakdown spectroscopy.

    PubMed

    Hsu, Li-Jen; Alwahabi, Zeyad T; Nathan, Graham J; Li, Yu; Li, Z S; Aldén, Marcus

    2011-06-01

    A quantitative point measurement of total sodium ([Na](total)) and potassium ([K](total)) in the plume of a burning particle of Australian Loy Yang brown coal (23 ± 3 mg) and of pine wood pellets (63 ± 3 mg) was performed using laser-induced breakdown spectroscopy (LIBS) in a laminar premixed methane flame at equivalence ratios ( U ) of 1.149 and 1.336. Calibration was performed using atomic sodium or potassium generated by evaporation of droplets of sodium sulfite (Na(2)SO(3)) or potassium sulfate (K(2)SO(4)) solutions seeded into the flame. The calibration compensated for the absorption by atomic alkalis in the seeded flame, which is significant at high concentrations of solution. This allowed quantitative measurements of sodium (Na) and potassium (K) released into the flame during the three phases of combustion, namely devolatilization, char, and ash cooking. The [Na](total) in the plume released from the combustion of pine wood pellets during the devolatilization was found to reach up to 13 ppm. The maximum concentration of total sodium ([Na](max)M(total)) and potassium ([K](max)(total)) released during the char phase of burning coal particles for φ = 1.149 was found to be 9.27 and 5.90 ppm, respectively. The [Na](max)(total) and [K](max)(total) released during the char phase of burning wood particles for φ = 1.149 was found to be 15.1 and 45.3 ppm, respectively. For the case of φ = 1.336, the [Na](max)(total) and [K](max)(total) were found to be 13.9 and 6.67 ppm during the char phase from burning coal particles, respectively, and 21.1 and 39.7 ppm, respectively, from burning wood particles. The concentration of alkali species was higher during the ash phase. The limit of detection (LOD) of sodium and potassium with LIBS in the present arrangement was estimated to be 29 and 72 ppb, respectively. PMID:21639991

  5. 40 CFR 80.255 - Compliance plans and demonstration of commitment to produce low sulfur gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... commitment to produce low sulfur gasoline. 80.255 Section 80.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Hardship Provisions § 80.255 Compliance plans and demonstration of commitment to produce low...

  6. Tribological behavior of near-frictionless carbon coatings in high- and low-sulfur diesel fuels.

    SciTech Connect

    Alzoubi, M. F.; Ajayi, O. O.; Eryilmaz, O. L.; Ozturk, O.; Erdemir, A.; Fenske, G.

    2000-01-19

    The sulfur content in diesel fuel has a significant effect on diesel engine emissions, which are currently subject to environmental regulations. It has been observed that engine particulate and gaseous emissions are directly proportional to fuel sulfur content. With the introduction of low-sulfur fuels, significant reductions in emissions are expected. The process of sulfur reduction in petroleum-based diesel fuels also reduces the lubricity of the fuel, resulting in premature failure of fuel injectors. Thus, another means of preventing injector failures is needed for engines operating with low-sulfur diesel fuels. In this study, the authors evaluated a near-frictionless carbon (NFC) coating (developed at Argonne National Laboratory) as a possible solution to the problems associated with fuel injector failures in low-lubricity fuels. Tribological tests were conducted with NFC-coated and uncoated H13 and 52100 steels lubricated with high- and low- sulfur diesel fuels in a high-frequency reciprocating test machine. The test results showed that the NFC coatings reduced wear rates by a factor of 10 over those of uncoated steel surfaces. In low-sulfur diesel fuel, the reduction in wear rate was even greater (i.e., by a factor of 12 compared to that of uncoated test pairs), indicating that the NFC coating holds promise as a potential solution to wear problems associated with the use of low-lubricity diesel fuels.

  7. Specific gravity and API gravity of biodiesel and ultra-low sulfur diesel (ULSD) blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative fuel made from vegetable oils and animal fats. In 2006, the U. S. Environmental Protection Agency mandated a maximum sulfur content of 15 ppm in on-road diesel fuels. Processing to produce the new ultra-low sulfur petrodiesel (ULSD) alters specific gravity (SG) and othe...

  8. ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL

    SciTech Connect

    Sharon Sjostrom

    2002-02-22

    This is a Technical Report under a program funded by the Department of Energy's National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. During this reporting period, several sorbent samples have been tested by URS in their laboratory fixed-bed system. The sorbents were evaluated under conditions simulating flue gas from power plants burning Powder River Basin (PRB) and low sulfur eastern bituminous coals. The equilibrium adsorption capacities of the sorbents for both elemental and oxidized mercury are presented. A team meeting discussing the overall program and meetings with Midwest Generation and Wisconsin Electric Power Company (WEPCO) concerning field testing occurred during this reporting period.

  9. Assessment of Coal Geology, Resources, and Reserves in the Gillette Coalfield, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.

    2008-01-01

    The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Gillette coalfield is10.1 billion short tons of coal (6 percent of the original resource total) for the 6 coal beds evaluated.

  10. PHYSICAL COAL CLEANING FOR UTILITY BOILER SO2 EMISSION CONTROL

    EPA Science Inventory

    The report examines physical coal cleaning as a control technique for sulfur oxides emissions. It includes an analysis of the availability of low-sulfur coal and of coal cleanable to compliance levels for alternate New Source Performance Standards (NSPS). Various alternatives to ...

  11. Process for converting coal into liquid fuel and metallurgical coke

    DOEpatents

    Wolfe, Richard A.; Im, Chang J.; Wright, Robert E.

    1994-01-01

    A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

  12. ALGAL BIOASSAYS WITH LEACHATES AND DISTILLATES FROM WESTERN COAL

    EPA Science Inventory

    The objective of this research was to assess the effects on freshwater algae of materials derived from coal storage piles. Coal leachates and distillates were prepared in the laboratory from low-sulfur Montana coal. Three types of algal bioassays were conducted: (1) A laboratory ...

  13. Investigation on the impacts of low-sulfur fuel used in residential heating and oil-fired power plants on PM2.5-concentrations and its composition in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Leelasakultum, Ketsiri

    The effects of using low-sulfur fuel for oil-heating and oil-burning facilities on the PM2.5-concentrations at breathing level in an Alaska city surrounded by vast forested areas were examined with the Weather Research and Forecasting model coupled with chemistry packages that were modified for the subarctic. Simulations were performed in forecast mode for a cold season using the National Emission Inventory 2008 and alternatively emissions that represent the use of low-sulfur fuel for oil-heating and oil-burning facilities while keeping the emissions of other sources the same as in the reference simulation. The simulations suggest that introducing low-sulfur fuel would decrease the monthly mean 24h-averaged PM2.5-concentrations over the city's PM2.5-nonattainment area by 4%, 9%, 8%, 6%, 5% and 7% in October, November, December, January, February and March, respectively. The quarterly mean relative response factors for PM2.5-concentrations of 0.96 indicate that with a design value of 44.7microg/m3. introducing low-sulfur fuel would lead to a new design value of 42.9microg/m 3 that still exceeds the US National Ambient Air Quality Standard of 35microg/m3. The magnitude of the relation between the relative response of sulfate and nitrate changes differs with temperature. The simulations suggest that in the city, PM2.5-concentrations would decrease more on days with low atmospheric boundary layer heights, low hydrometeor mixing ratio, low downward shortwave radiation and low temperatures. Furthermore, a literature review of other emission control measure studies is given, and recommendations for future studies are made based on the findings.

  14. Haze particles over a coal-burning region in the China Loess Plateau in winter: Three flight missions in December 2010

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Shi, Zongbo; Zhang, Daizhou; Zhang, Xiaoye; Li, Peiren; Feng, Qiujuan; Yuan, Qi; Wang, Wenxing

    2012-06-01

    Heavy haze frequently occurs in winter over a coal-burning region, the Taiyuan Basin, in the eastern China Loess Plateau, which is the upstream area of the North China Plain. We participated in three research flights to collect aerosol particles and to monitor SO2concentration in hazes from the ground (780 m asl) up to ˜4000 m during 17-18 December, 2010. Meteorological records reveal that the whole haze column (ground to 4000 m) was stable and could be further divided into three sub-layers depending on the sampling altitude, which are characterized by two shifts of the lapse rate of virtual potential temperature and water vapor mixing ratio: Layer-1, surface to 1500 m; Layer-2, 1500 ˜ 3000 m on 17 December, and 1500 ˜ 2500 m on 18 December; Layer-3, above 3000 m on 17 December and above 2500 m on 18 December. SO2concentration was 16-116 ppb with an average of 58 ppb in the Layer-1, 2-45 ppb with an average of 10 ppb in the Layer-2, and 1-10 ppb with an average of 4 ppb in the Layer-3. The accumulation of SO2in the Layer-1 was due to the stable meteorological conditions and the strong anthropogenic emissions in addition to the possible valley topography. Analyses of the collected particles using a transmission electron microscope revealed the dominance of organic particles and fly ash in the Layer-1 and Layer-2 and sulfate particles in the Layer-3. The organic aerosols frequently contained certain amounts of Si and Cl. Fly ash particles consisted of O and Si with minor Fe, Mn, Zn, Ti, Pb, As, Co, and Cr. These two types of aerosol particles are typically emitted from coal burning. These results indicate that the haze particles were characterized in principle by aerosols from primary emissions of coal burning, which are different from those over the North China Plain where secondary sulfate particles are the dominant component.

  15. The daily fluorine and arsenic intake for residents with different dietaries and fluorosis risk in coal-burning fluorosis area, Yunnan, Southwest China.

    PubMed

    Li, Ling; Luo, Kun-Li; Tang, Yue-Gang; Liu, Yong-Lin

    2015-02-01

    The daily fluorine (F)/arsenic (As) intake (DFI/DAsI) for residents at different ages with different dietaries and dietary changes was investigated to analyze the fluorosis risk in coal-burning fluorosis area in Yunnan, Southwest China. The DFI for residents with a dietary of roasted corn and roasted chili was 5.06, 9.60, and 14.38 mg for age groups 3-7, 8-15, and over 15 years, respectively. Over 90 % of DFI was from roasted foodstuffs. The DFI for residents of the same age group living on rice and roasted chili was 1.94, 3.50, and 4.95 mg, respectively, which were less than that for the former dietary type, and 65 % of DFI was from roasted chili. The main sources for their DFI are roasted foodstuffs. Both were higher than the dietaries with non-roasted foodstuffs and the recommended daily allowances (RDAs) for USA and China at different levels. The DAsI for all residents ranged from 25 to 135 μg, and at this level of DAsI, it would not influence human health. However, As pollution of roasted foodstuffs might have an important influence for the fluorosis. Residents are changing their staple food from roasted corn to rice, and especially, younger people are more focused on quality life. However, even if residents change their staple food, the habit of eating chili will not change, which also may cause them getting fluorosis. Developing economy, changing dietary types, and changing the habit of drying and keeping chili will help to reduce the fluorosis risk in coal-burning fluorosis area of Southwest China. PMID:25167821

  16. Coal-burning roasted corn and chili as the cause of dental fluorosis for children in southwestern China.

    PubMed

    Luo, Kun-li; Li, Ling; Zhang, Shi-xi

    2011-01-30

    To find the pathologic cause of the children's dental fluorosis in southwestern China, diet structure before the age of 6 and prevalence rate of dental fluorosis (DF) of 405 children were investigated, and the fluorine and arsenic content of several materials were determined. The prevalence rate of DF of children living on roasted corn before the age of 6 is 100% with nearly 95% having the mild to severe DF; while that of children living on non-roasted corn or rice is less than 5% with all having very mild DF. The average fluorine and arsenic concentration are 20.26 mg/kg and 0.249 mg/kg in roasted corn, which are about 16 times and 35 times more than in non-roasted corn, respectively. The average fluorine concentration is 78 mg/kg in coal, 1116 mg/kg in binder clay and 313 mg/kg in briquette (coal mixed with clay). The average arsenic concentration of coal is 5.83 mg/kg, the binder clay is 20.94 mg/kg, with 8.52 mg/kg in the briquette. Living on roasted corn and chili is the main pathologic cause of endemic fluorosis in southwestern China. The main source of fluorine and arsenic pollution of roasted corn and chill is the briquette of coal and binder clay. PMID:21074315

  17. Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China

    PubMed Central

    Shen, Guofeng; Yang, Yifeng; Wang, Wei; Tao, Shu; Zhu, Chen; Min, Yujia; Xue, Miao; Ding, Junnan; Wang, Bin; Wang, Rong; Shen, Huizhong; Li, Wei; Wang, Xilong; Russell, Armistead G.

    2013-01-01

    Both particulate matter (PM) and black carbon (BC) impact climate change and human health. Uncertainties in emission inventories of PM and BC are partially due to large variation of measured emission factors (EFs) and lack of EFs from developing countries. Although there is a debate whether thermal-optically measured elemental carbon (EC) may be referred to as BC, EC are often treated as the same mass of BC. In this study, EFs of PM (EFPM) and EC (EFEC) for 9 crop residues and 5 coals were measured in actual rural cooking and coal stoves using the carbon mass balance method. The dependence of the EFs on fuel properties and combustion conditions were investigated. It was found that the mean EFPM were 8.19 ± 4.27 and 3.17 ± 4.67 g/kg and the mean EFEC were 1.38 ± 0.70 and 0.23 ± 0.36 g/kg for crop residues and coals, respectively. PM with size less than 10 μm (PM10) from crop residues were dominated by particles of aerodynamic size ranging from 0.7 to 2.1 μm, while the most abundant size ranges of PM10 from coals were either from 0.7 to 2.1 μm or less than 0.7 μm. Of various fuel properties and combustion conditions tested, fuel moisture and modified combustion efficiency (MCE) were the most critical factors affecting EFPM and EFEC for crop residues. For coal combustion, EFPM were primarily affected by MCE and volatile matter, while EFEC were significantly influenced by ash content, volatile matter, heat value, and MCE. It was also found that EC emissions were significantly correlated with emissions of PM with size less than 0.4 μm. PMID:20735038

  18. Overburden characterization and post-burn study of the Hanna IV, underground coal gasification site, Wyoming, and comparison to other Wyoming UCG sites

    SciTech Connect

    Marcouiller, B.A.; Burns, L.K.; Ethridge, F.G.

    1984-11-01

    Analysis of 21 post-burn cores taken from the Hanna IV UCG site allows 96 m (315 ft) of overburden to be subdivided into four local stratigraphic units. The 7.6 m (25 ft) thick Hanna No. 1 coal seam is overlain by a laterally discontinuous, 3.3 m (11 ft) thick shaley mudstone (Unit A') in part of the Hanna IV site. A more widespread, 30 m (90 ft) thick well-indurated sandstone (Unit A) overlies the A' unit. Unit A is the roof rock for both of the Hanna IV cavities. Overlying Unit A is a 33 m (108 ft) thick sequence of mudstone and claystone (Unit B), and the uppermost unit at the Hanna IV site (Unit C) is a coarse-grained sandstone that ranges in thickness from 40 to 67 m (131 to 220 ft). Two elliptical cavities were formed during the two phases of the Hanna IV experiment. The larger cavity, Hanna IVa, is 45 x 15 m in plan and has a maximum height of 18 m (59 ft) from the base of the coal seam to the top of the cavity; the Hanna IVb cavity is 40 x 15 m in plan and has a maximum height of 11 m (36 ft) from the base of the coal seam to the top of the cavity. Geotechnical tests indicated that the Hanna IV overburden rocks were moderately strong to strong, based on the empirical classification of Broch and Franklin (1972), and a positive, linear correlation exists between rock strength and volume percent calcite cement. There is an inverse linear correlation between rock strength and porosity for the Hanna IV overburden rocks. 28 refs., 34 figs., 13 tabs..

  19. ENCOAL Mild Coal Gasification Project

    SciTech Connect

    Not Available

    1992-02-01

    ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

  20. The ENCOAL Mild Coal Gasification Project, A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2002-03-15

    This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall objective, the following goals were established for the ENCOAL{reg_sign} Project: Provide sufficient quantity of products for full-scale test burns; Develop data for the design of future commercial plants; Demonstrate plant and process performance; Provide capital and O&M cost data; and Support future LFC{trademark} technology licensing efforts. Each of these goals has been met and exceeded. The plant has been in operation for nearly 5 years, during which the LFC{trademark} process has been demonstrated and refined. Fuels were made, successfully burned, and a commercial-scale plant is now under contract for design and construction.

  1. Method of extracting coal from a coal refuse pile

    DOEpatents

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  2. ENCOAL mild coal gasification project public design and construction report

    SciTech Connect

    1994-12-01

    This Public Design Report describes the 1000 ton per day ENCOAL mild coal gasification demonstration plant now in operation at the Buckskin Mine near Gillette, Wyoming. The objective of the project is to demonstrate that the proprietary Liquids From Coal (LFC) technology can reliably and economically convert low Btu PRB coal into a superior, high-Btu solid fuel (PDF), and an environmentally attractive low-sulfur liquid fuel (CDL). The Project`s plans also call for the production of sufficient quantities of PDF and CDL to permit utility companies to carry out full scale burn tests. While some process as well as mechanical design was done in 1988, the continuous design effort was started in July 1990. Civil construction was started in October 1990; mechanical erection began in May 1991. Virtually all of the planned design work was completed by July 1991. Most major construction was complete by April 1992 followed by plant testing and commissioning. Plant operation began in late May 1992. This report covers both the detailed design and initial construction aspects of the Project.

  3. Solids precipitation and polymerization of asphaltenes in coal-derived liquids

    DOEpatents

    Kydd, Paul H.

    1984-01-01

    The precipitation and removal of particulate solids from coal-derived liquids by adding a process-derived anti-solvent liquid fraction and continuing the precipitation process at a temperature above the melting point of the mixed liquids for sufficient time to allow the asphaltenes to polymerize and solids to settle at atmospheric pressure conditions. The resulting clarified light hydrocarbon overflow liquid contains less than about 0.02 W % ash and is suitable as turbine fuel or as boiler fuel for burning without particulate emission control equipment. An underflow liquid fraction containing less than about 0.1 W % solids along with low sulfur and nitrogen concentrations is suitable as a boiler fuel with emission control equipment.

  4. Primary measures of NO{sub x} level reduction during a burning process of subbituminous coal in Czech Republic

    SciTech Connect

    Skala, Z.; Ochrana, L.

    1994-12-31

    The control of nitrogen oxides (NO{sub x}) emissions from coal fired boilers is an important environmental consideration to the electric utility industry. Concerns over ozone, forest damage and the acidification of the lakes and rivers due to acid rain, have increased pressure to reduce NO{sub x} emissions from power plants. Strict legislation has been introduced limiting the emissions of NO{sub x} from thermal power station. The three common methods of reducing NO{sub x} are: combustion modification; selective non-catalytic reduction (urea injection); and selective catalytic reduction. The majority of efforts have focused on control technologies for existing plants that are based on modifications to the combustion process. In any event it is by far the most reliable, repeatable and cost effective method of limiting emissions.

  5. SRC burn test in 700-hp oil-designed boiler. Volume 2. Engineering evaluation report. Final technical report. [Oil-fired boiler to solvent-refined coal

    SciTech Connect

    Not Available

    1983-12-01

    Volume 2 of this report gives the results of an engineering evaluation study and economic analysis of converting an existing 560-MW residual (No. 6) oil-fired unit to burn solvent refined coal (SRC) fuel forms. Volume 1 represents an integrated overview of the test program conducted at the Pittsburgh Energy Technology Center. Three SRC forms (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) were examined. The scope of modifications necessary to convert the unit to each of the three SRC fuel forms was identified and a capital cost of the necessary modifications estimated. A fuel conversion feasibility study of the boiler was performed wherein boiler modifications and performance effects of each fuel on the boiler were identified. An economic analysis of the capital and operating fuel expenses of conversion of the unit was performed. It was determined that conversion of the unit to any one of the three SRC fuel forms was feasible where appropriate modifications were made. It also was determined that the conversion of the unit can be economically attractive if SRC fuel forms can be manufactured and sold at prices discounted somewhat from the price of No. 16 Fuel Oil. As expected, greater discounts are required for the pulverized SRC and the slurry than for the solution of SRC dissolved in process-derived distillates.

  6. ENCOAL mild coal gasification demonstration project. Annual report, October 1994--September 1995

    SciTech Connect

    1996-01-01

    This document is the combination of the fourth quarter report (July - September 1995) and the 1995 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, a wholly-owned subsidiary of SMC Mining Company (formerly Shell Mining company, now owned by Zeigler Coal Holding Company), has completed the construction and start-up of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basis coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly lower current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain. In the LFC technology, coal is first deeply dried to remove water physically. The temperature is further raised in a second stage which results in decomposition reactions that form the new products. This chemical decomposition (mild gasification) creates gases by cracking reactions from the feed coal. The chemically altered solids are cooled and further processed to make PDF. The gases are cooled, condensing liquids as CDL, and the residual gases are burned in the process for heat. The process release for the ENCOAL plant predicted that one ton of feed coal would yield roughly {1/2} ton of PDF and {1/2} barrel of CDL. By varying plant running conditions, however, it has since been learned that the actual CDL recovery rate may be as much as 15% to 20% above the projections.

  7. Trace elements in atmospheric particulate matter over a coal burning power production area of western Macedonia, Greece.

    PubMed

    Petaloti, Christina; Triantafyllou, Athanasios; Kouimtzis, Themistoklis; Samara, Constantini

    2006-12-01

    Total suspended particle (TSP) concentrations were determined in the Eordea basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a one-year period (November 2000-November 2001) at 10 sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Annual means of TSP concentrations ranged between 47+/-33 microg m(-3) and 110+/-50 microg m(-3) at 9 out of the 10 sites. Only the site closest to the power stations and the lignite conveyor belts exhibited annual TSP levels (210+/-97 microg m(-3)) exceeding the European standard (150 microg m(-3), 80/779/EEC). Concentrations of TSP and almost all elemental components exhibited significant spatial variations; however, the elemental profiles of TSP were quite similar among all sites suggesting that they are affected by similar source types. At all sites, statistical analysis indicated insignificant (P<0.05) seasonal variation for TSP concentrations. Some elements (Cl, As, Pb, Br, Se, S, Cd) exhibited significantly higher concentrations at certain sites during the cold period suggesting more intense emissions from traffic, domestic heating and other combustion sources. On the contrary, concentrations significantly higher in the warm period were found at other sites mainly for crustal elements (Ti, Mn, K, P, Cr, etc.) suggesting stronger influence from soil resuspension and/or fly ash in the warm months. The most enriched elements against local soil or road dust were S, Cl, Cu, As, Se, Br, Cd and Pb, whereas negligible enrichment was found for Ti, Mn, Mg, Al, Si, P, Cr. At most sites, highest concentrations of TSP and elemental components were associated with low- to moderate-speed winds favoring accumulation of emissions from local sources. Influences from the power generation were likely at those sites located closest to the power plants and mining activities. PMID:16824578

  8. Coal combustion products

    USGS Publications Warehouse

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  9. Exhaust Emissions and Fuel Properties of Partially Hydrogenated Soybean Oil Methyl Esters Blended with Ultra Low Sulfur Diesel Fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Important fuel properties and emissions characteristics of blends (20 vol%) of soybean oil methyl esters (SME) and partially hydrogenated SME (PHSME) in ultra low sulfur diesel fuel (ULSD) were determined and compared with neat ULSD. The following changes in physical properties were noticed for B20...

  10. High-sulfur coals in the eastern Kentucky coal field

    SciTech Connect

    Hower, J.C.; Graham, U.M. ); Eble, C.F. )

    1993-08-01

    The Eastern Kentucky coal field is notable for relatively low-sulfur, [open quotes]compliance[close quotes] coals. Virtually all of the major coals in this area do have regions in which higher sulfur lithotypes are common, if not dominant, within the lithologic profile. Three Middle Pennsylvanian coals, each representing a major resource, exemplify this. The Clintwood coal bed is the stratigraphically lowest coal bed mined throughout the coal field. In Whitley County, the sulfur content increase from 0.6% at the base to nearly 12% in the top lithotype. Pyrite in the high-sulfur lithotype is a complex mixture of sub- to few-micron syngenetic forms and massive epigenetic growths. The stratigraphically higher Pond Creek coal bed is extensively mined in portions of the coal field. Although generally low in sulfur, in northern Pike and southern Martin counties the top one-third can have up to 6% sulfur. Uniformly low-sulfur profiles can occur within a few hundred meters of high-sulfur coal. Pyrite occurs as 10-50 [mu]m euhedra and coarser massive forms. In this case, sulfur distribution may have been controlled by sandstone channels in the overlying sediments. High-sulfur zones in the lower bench of the Fire Clay coal bed, the stratigraphically highest coal bed considered here, are more problematical. The lower bench, which is of highly variable thickness and quality, generally is overlain by a kaolinitic flint clay, the consequence of a volcanic ash fall into the peat swamp. In southern Perry and Letcher counties, a black, illite-chlorite clay directly overlies the lower bench. General lack of lateral continuity of lithotypes in the lower bench suggests that the precursor swamp consisted of discontinuous peat-forming environments that were spatially variable and regularly inundated by sediments. Some of the peat-forming areas may have been marshlike in character.

  11. Kinetic Study and Mathematical Model of Hemimorphite Dissolution in Low Sulfuric Acid Solution at High Temperature

    NASA Astrophysics Data System (ADS)

    Xu, Hongsheng; Wei, Chang; Li, Cunxiong; Deng, Zhigan; Li, Minting; Li, Xingbin

    2014-10-01

    The dissolution kinetics of hemimorphite with low sulfuric acid solution was investigated at high temperature. The dissolution rate of zinc was obtained as a function of dissolution time under the experimental conditions where the effects of sulfuric acid concentration, temperature, and particle size were studied. The results showed that zinc extraction increased with an increase in temperature and sulfuric acid concentration and with a decrease in particle size. A mathematical model able to describe the process kinetics was developed from the shrinking core model, considering the change of the sulfuric acid concentration during dissolution. It was found that the dissolution process followed a shrinking core model with "ash" layer diffusion as the main rate-controlling step. This finding was supported with a linear relationship between the apparent rate constant and the reciprocal of squared particle radius. The reaction order with respect to sulfuric acid concentration was determined to be 0.7993. The apparent activation energy for the dissolution process was determined to be 44.9 kJ/mol in the temperature range of 373 K to 413 K (100 °C to 140 °C). Based on the shrinking core model, the following equation was established:

  12. Biomass Burning

    Atmospheric Science Data Center

    2015-07-27

    Projects:  Biomass Burning Definition/Description:  Biomass Burning: This data set represents the geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ...

  13. The role of combustion diagnostics in coal quality impact and NO{sub x} emissions field test programs

    SciTech Connect

    Thompson, R.E.; Dyas, B.

    1995-03-01

    Many utilities are examining low sulfur coal or coal blending options to comply with the Clean Air Act Amendment SO{sub 2} emission limits. Test burns have been conducted with the more promising candidate coals to characterize the potential impact of a change in coal quality on boiler operation and performance. Utilities are also under considerable pressure to evaluate NO{sub x} control options and develop a compliance plan to meet strict NO{sub x} regulations, particularly in high population density metropolitan areas on the Eastern seaboard. Field test programs have been conducted to characterize baseline NO{sub x} emissions, evaluate the NO{sub x} reduction potential of combustion modifications, and assess the potential of combustion tuning as an alternative to burner replacement. Coal quality impacts (slagging, fouling, heat absorption, ash removal) and NO{sub x} emissions are both strongly dependent upon the coal combustion process and site-specific boiler firing practices. Non-uniform combustion in the burner region can result in adverse ash deposition characteristics, carbon carryover problems, high furnace exit gas temperatures, and NO{sub x}emission characteristics that are not representative of the coal or the combustion equipment. Advanced combustion diagnostic test procedures have been developed to evaluate and improve burner zone combustion uniformity, even in cases where the coal flow to the individual burners may be non-uniform. The paper outlines a very practical solving approach to identifying combustion related problems that affect ash deposition and NO{sub x} emissions. The benefits of using advanced diagnostic instrumentation to identify problems and tune combustion conditions is illustrated using test data from recent quality field test programs.

  14. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    SciTech Connect

    Larry G. Felix; P. Vann Bush

    2002-10-26

    This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. The final biomass co-firing test burn was conducted during this quarter. In this test (Test 14), up to 20% by weight dry switchgrass was comilled with Jim Walters No.7 mine coal and injected through the single-register burner. Jim Walters No.7 coal is a low-volatility, low-sulfur ({approx}0.7% S) Eastern bituminous coal. The results of this test are presented in this quarterly report. Progress has continued to be made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. The REI Configurable Fireside Simulator (CFS) is now in regular use. Presently, the CFS is being used to generate CFD calculations for completed tests with Powder River Basin coal and low-volatility (Jim Walters No.7 Mine) coal. Niksa Energy Associates will use the results of these CFD simulations to complete their validation of the NOx/LOI predictive model. Work has started on the project final report.

  15. Assessment of coal geology, resources, and reserves in the Montana Powder River Basin

    USGS Publications Warehouse

    Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Gunderson, Jay A.

    2013-01-01

    The purpose of this report is to summarize geology, coal resources, and coal reserves in the Montana Powder River Basin assessment area in southeastern Montana. This report represents the fourth assessment area within the Powder River Basin to be evaluated in the continuing U.S. Geological Survey regional coal assessment program. There are four active coal mines in the Montana Powder River Basin assessment area: the Spring Creek and Decker Mines, both near Decker; the Rosebud Mine, near Colstrip; and the Absaloka Mine, west of Colstrip. During 2011, coal production from these four mines totaled approximately 36 million short tons. A fifth mine, the Big Sky, had significant production from 1969-2003; however, it is no longer in production and has since been reclaimed. Total coal production from all five mines in the Montana Powder River Basin assessment area from 1968 to 2011 was approximately 1.4 billion short tons. The Rosebud/Knobloch coal bed near Colstrip and the Anderson, Dietz 2, and Dietz 3 coal beds near Decker contain the largest deposits of surface minable, low-sulfur, subbituminous coal currently being mined in the assessment area. A total of 26 coal beds were identified during this assessment, 18 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Montana Powder River Basin assessment area for the 18 coal beds assessed was calculated to be 215 billion short tons. Available coal resources, which are part of the original coal resource remaining after subtracting restrictions and areas of burned coal, are about 162 billion short tons. Restrictions included railroads, Federal interstate highways, urban areas, alluvial valley floors, state parks, national forests, and mined-out areas. It was determined that 10 of the 18 coal beds had sufficient areal extent and thickness to be evaluated for recoverable surface resources ([Roland (Baker), Smith, Anderson, Dietz 2, Dietz 3, Canyon, Werner/Cook, Pawnee, Rosebud/Knobloch, and Flowers-Goodale]). These 10 coal beds total about 151 billion short tons of the 162 billion short tons of available resource; however, after applying a strip ratio of 10:1 or less, only 39 billion short tons remains of the 151 billion short tons. After mining and processing losses are subtracted from the 39 billion short tons, 35 billion short tons of coal were considered as a recoverable resource. Coal reserves (economically recoverable coal) are the portion of the recoverable coal resource that can be mined, processed, and marketed at a profit at the time of the economic evaluation. The surface coal reserve estimate for the 10 coal beds evaluated for the Montana Powder River assessment area is 13 billion short tons. It was also determined that about 42 billion short tons of underground coal resource exists in the Montana Powder River Basin assessment area; about 34 billion short tons (80 percent) are within 500-1,000 feet of the land surface and another 8 billion short tons are 1,000-2,000 feet beneath the land surface.

  16. Market effects of environmental regulation: coal, railroads, and the 1990 Clean Air Act

    SciTech Connect

    Busse, M.R.; Keohane, N.O.

    2007-01-01

    Many environmental regulations encourage the use of 'clean' inputs. When the suppliers of such an input have market power, environmental regulation will affect not only the quantity of the input used but also its price. We investigate the effect of the Title IV emissions trading program for sulfur dioxide on the market for low-sulfur coal. We find that the two railroads transporting coal were able to price discriminate on the basis of environmental regulation and geographic location. Delivered prices rose for plants in the trading program relative to other plants, and by more at plants near a low-sulfur coal source.

  17. JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING

    SciTech Connect

    John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

    2003-10-01

    The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite-based activated (800 C, 1472 F) carbons required a shorter (15-minute) conditioning period in the simulated lignite flue gas and captured gaseous mercury more effectively than those activated at 750 C (1382 F). Subsequent tests with higher acid gas concentrations including 50 ppm HCl showed no early mercury breakthrough for either the activated (750 C, 1382 F) Bienfait carbon or the DARCO FGD. Although these high acid gas tests yielded better mercury capture initially, significant breakthrough of mercury ultimately occurred sooner than during the simulated lignite flue gas tests. The steam-activated char, provided by Luscar Ltd., and DARCO FGD, provided by NORIT Americas, were evaluated for mercury removal potential in a 580 MJ/hr (550,000-Btu/hr) pilot-scale coal combustion system equipped with four particulate control devices: (1) an electrostatic precipitator (ESP), (2) a fabric filter (FF), (3) the Advanced Hybrid{trademark} filter, and (4) an ESP and FF in series, an EPRI-patented TOXECON{trademark} technology. The Ontario Hydro method and continuous mercury monitors were used to measure mercury species concentrations at the inlet and outlet of the control technology devices with and without sorbent injection. Primarily Hg{sup o} was measured when lignite coals from the Poplar River Plant and Freedom Mine were combusted. The effects of activated Luscar char, DARCO FGD, injection rates, particle size, and gas temperature on mercury removal were evaluated for each of the four particulate control device options. Increasing injection rates and decreasing gas temperatures generally promoted mercury capture in all four control devices. Relative to data reported for bituminous and subbituminous coal combustion flue gases, higher sorbent injection rates were generally required for the lignite coal to effectively remove mercury. Documented results in this report provide the impacts of these and other parameters and provide the inputs needed to direct Phase II of the project.

  18. Coal marketability: Effects of deregulation and regulation

    SciTech Connect

    Attanasi, E.

    2000-07-01

    Electrical utility deregulation will force power plants to compete for sales because they will not longer have captive markets. Market uncertainty and uncertainty about future environmental regulations have encouraged power plants to shift to low sulfur coal and/or to use emissions allowances to comply with Phase 2 of the 1990 Clean Air Act Amendments. Mines in Northern and Central Appalachia and the Illinois Basin shipped 240 million tons of non-compliance coal to power plants without scrubbers in 1997. Under Phase 2, this coal will be replaced by low sulfur coal and/or be used with emission permits. It is possible that Powder River Basin coal production will have to increase by over 200 million tons/year to meet new demand. The prices of emissions permits will impose penalties on non-compliance coal that will probably drive out marginal coal producers. For example, if the cost of an emission permit is $200, coal from the Pittsburgh bed could bear a sulfur penalty of $6.55 per ton and similarly, coal from the Herrinbed could bear a penalty of $8.64 per ton.

  19. Upgrading low-rank coals by TEK-KOL`s Liquids From Coal technology

    SciTech Connect

    Wang, M.; Gibbens, R.J.; Weber, K.L.; Knotternerus, B.A.

    1997-12-31

    TEK-KOL is a partnership between SGI International of La Jolla, California, and a unit of Zeigler Coal Holding Company, Fairview Heights, Illinois. TEK-KOL`s Liquids From Coal (LFC) Process uses a mild gasification process to convert low-rank coals into value added products. Two primary products are generated as a result of LFC processing: (1) Process-Derived Fuel (PDF), a high heating value, clean burning solid fuel and carbon source for a variety of utility and industrial applications, and (2) Coal-Derived Liquid (CDL), a low sulfur hydrocarbon liquid suitable for fuel oil and chemical feedstock uses. Both PDF and CDL have been successfully utilized on a commercial scale. The LFC Process has been thoroughly demonstrated at the ENCOAL LFC Demonstration Plant at the Buckskin Mine in the Powder River Basin, Wyoming. The 1,000 short ton per day plant, constructed and operated at a cost of US $90 million, was designed and built to commercial standards. Construction and initial operating costs were partially funded by the US Department of Energy (DOE) under Round Three of the Clean Coal Technology Program. The plant employs commercially available equipment and state of the art control system, and best available control technologies insure compliance with strict environmental standards. It became operational in June 1992. In the last five years, the plant and its supporting facilities have operated in an integrated mode for more than 14,500 hours. The major pieces of equipment, including the large blowers, combustors, dryer, pyrolyzer, and cooler have operated far more hours overall considering hot standby and ramping operations. The equipment has been demonstrated to operate reliably. The plant has processed 246,900 short tons of raw coal and produced 114,900 short tons of PDF and 116,100 barrels of CDL. A multi-phase process to identify and develop technically and financially viable LFC projects has been developed by TEK-KOL. Commercialization of the LFC technology is progressing worldwide. Permit work for a large scale commercial plant in Wyoming is now underway, and international commercialization activities are in progress. Worldwide opportunities for the application of the LFC Technology are addressed in this paper.

  20. Progression in sulfur isotopic compositions from coal to fly ash: Examples from single-source combustion in Indiana

    USGS Publications Warehouse

    Yaofa, Jiang; Elswick, E.R.; Mastalerz, Maria

    2008-01-01

    Sulfur occurs in multiple mineral forms in coals, and its fate in coal combustion is still not well understood. The sulfur isotopic composition of coal from two coal mines in Indiana and fly ash from two power plants that use these coals were studied using geological and geochemical methods. The two coal beds are Middle Pennsylvanian in age; one seam is the low-sulfur ( 5%) Springfield Coal Member of the Petersburg Formation. Both seams have ash contents of approximately 11%. Fly-ash samples were collected at various points in the ash-collection system in the two plants. The results show notable difference in ??34S for sulfur species within and between the low-sulfur and high-sulfur coal. The ??34S values for all sulfur species are exclusively positive in the low-sulfur Danville coal, whereas the ??34S values for sulfate, pyritic, and organic sulfur are both positive and negative in the high-sulfur Springfield coal. Each coal exhibits a distinct pattern of stratigraphic variation in sulfur isotopic composition. Overall, the ??34S for sulfur species values increase up the section in the low-sulfur Danville coal, whereas they show a decrease up the vertical section in the high-sulfur Springfield coal. Based on the evolution of ??34S for sulfur species, it is suggested that there was influence of seawater on peat swamp, with two marine incursions occurring during peat accumulation of the high-sulfur Springfield coal. Therefore, bacterial sulfate reduction played a key role in converting sulfate into hydrogen sulfide, sulfide minerals, and elemental sulfur. The differences in ??34S between sulfate sulfur and pyritic sulfur is very small between individual benches of both coals, implying that some oxidation occurred during deposition or postdeposition. The ??34S values for fly ash from the high-sulfur Springfield coal (averaging 9.7???) are greatly enriched in 34S relative to those in the parent coal (averaging 2.2???). This indicates a fractionation of sulfur isotopes during high-sulfur coal combustion. By contrast, the ??34S values for fly-ash samples from the low-sulfur Danville coal average 10.2???, only slightly enriched in 34S relative to those from the parent coal (average 7.5???). The ??34S values for bulk S determined directly from the fly-ash samples show close correspondence with the ??34S values for SO4- 2 leached from the fly ash in the low-sulfur coal, suggesting that the transition from pyrite to sulfate occurred via high-temperature oxidation during coal combustion. ?? 2007 Elsevier B.V. All rights reserved.

  1. Near-frictionless carbon coatings for use in fuel injectors and pump systems operating with low-sulfur diesel fuels

    SciTech Connect

    Erdemir, A.; Ozturk, O.; Alzoubi, M.; Woodford, J.; Ajayi, L.; Fenske, G.

    2000-01-19

    While sulfur in diesel fuels helps reduce friction and prevents wear and galling in fuel pump and injector systems, it also creates environmental pollution in the form of hazardous particulates and SO{sub 2} emissions. The environmental concern is the driving force behind industry's efforts to come up with new alternative approaches to this problem. One such approach is to replace sulfur in diesel fuels with other chemicals that would maintain the antifriction and antiwear properties provided by sulfur in diesel fuels while at the same time reducing particulate emissions. A second alternative might be to surface-treat fuel injection parts (i.e., nitriding, carburizing, or coating the surfaces) to reduce or eliminate failures associated with the use of low-sulfur diesel fuels. This research explores the potential usefulness of a near-frictionless carbon (NFC) film developed at Argonne National Laboratory in alleviating the aforementioned problems. The lubricity of various diesel fuels (i.e., high-sulfur, 500 ppm; low sulfur, 140 ppm; ultra-clean, 3 ppm; and synthetic diesel or Fischer-Tropsch, zero sulfur) were tested by using both uncoated and NFC-coated 52100 steel specimens in a ball-on-three-disks and a high-frequency reciprocating wear-test rig. The test program was expanded to include some gasoline fuels as well (i.e., regular gasoline and indolene) to further substantiate the usefulness of the NFC coatings in low-sulfur gasoline environments. The results showed that the NFC coating was extremely effective in reducing wear and providing lubricity in low-sulfur or sulfur-free diesel and gasoline fuels. Specifically, depending on the wear test rig, test pair, and test media, the NFC films were able to reduce wear rates of balls and flats by factors of 8 to 83. These remarkable reductions in wear rates raise the prospect for using the ultra slick carbon coatings to alleviate problems that will be caused by the use of low sulfur diesel and gasoline fuels. Surfaces of the wear scars and tracks were characterized by optical and scanning electron microscopy, and by Raman spectroscopy.

  2. Wilsonville Advanced Coal-Liquefaction Research and Development Facility, Wilsonville, Alabama. Topical report No. 5. 6000 TPD SRC-I demonstration plant support

    SciTech Connect

    Not Available

    1983-08-01

    Initially, the Wilsonville facility consisted of a single stage (thermal) process, also known as the SRC-I process. The original plant has been expanded to become an advanced two-stage coal liquefaction facility. A Critical Solvent Deashing (CDS) unit was installed in 1978 and a second stage catalytic hydrogenation (HTR) unit was installed in 1981. The principal product of the first stage is a low sulfur solid fuel. The reaction product is deashed by the CSD unit using a proprietary process developed by the Kerr-McGee Corporation. The hydrotreater, or the second stage, was installed primarily for further enhancement of product properties, process flexibility, and overall hydrogen utilization efficiency. In the decoupled mode of operation, the HTR unit has no direct effect on the SRC unit. This operating mode is called the non-integrated two-stage liquefaction (NTSL) process. From 17 October 1981 to 14 October 1982, the Advanced Coal Liquefaction R and D Facility at Wilsonville, Alabama, was operated partly in support of the 6000 TPD-I demonstration plant design effort undertaken by ICRC. The ICRC support tests and operations performed were: Run 235 with Kentucky 9 (Fies) coal; Run 240 with Illinois 6 (Burning Star) coal; CSD unit second stage variability study; CSD unit continuous ash removal system study; SRC solidification test; wastewater sampling operation; and residual fuel oil blending operation.

  3. [Emission of polycyclic aromatic hydrocarbons, benzene and other pollutants during the burning of anthracite nut and brown coal briquettes in a room heater].

    PubMed

    Herlan, A; Mayer, J

    1983-06-01

    After the measurements of emissions from an oil oven and a gas oven (2) the investigation on room heaters was continued with a coal oven. This oven had a nominal power of 7 kW. The following pollutants were measured: polycyclic aromatics, benzene, the total gaseous hydrocarbons, soot/fly ash and NOx. Studies were made with anthrazit-nut brown-coal briquettes. Investigations and results are described in a research report (3). This paper presents a summary of the research report. The emissions of almost all measured pollutants were essential larger at the coal oven than those from the oil and the gas oven. PMID:6670405

  4. Controlled Burn

    GULF OF MEXICO — Dark clouds of smoke and fire emerge as oil burns during a controlled burn in the Gulf of Mexico. The U.S. Coast Guard working in partnership with BP PLC, local residents, and other Federal agencies conducted the controlled burn to aid in preventing the spread of oil following...

  5. Method to improve lubricity of low-sulfur diesel and gasoline fuels

    DOEpatents

    Erdemir, Ali

    2004-08-31

    A method for providing lubricity in fuels and lubricants includes adding a boron compound to a fuel or lubricant to provide a boron-containing fuel or lubricant. The fuel or lubricant may contain a boron compound at a concentration between about 30 ppm and about 3,000 ppm and a sulfur concentration of less than about 500 ppm. A method of powering an engine to minimize wear, by burning a fuel containing boron compounds. The boron compounds include compound that provide boric acid and/or BO.sub.3 ions or monomers to the fuel or lubricant.

  6. Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station

    SciTech Connect

    Not Available

    1982-03-01

    A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

  7. Mitigating the health impacts of pollution from oceangoing shipping: an assessment of low-sulfur fuel mandates.

    PubMed

    Winebrake, J J; Corbett, J J; Green, E H; Lauer, A; Eyring, V

    2009-07-01

    Concerns about health effects due to emissions from ships have magnified international policy debate regarding low-sulfur fuel mandates for marine fuel. Policy discussions center on setting sulfur content levels and the geographic specification of low-sulfur fuel use. We quantify changes in premature mortality due to emissions from ships under several sulfur emissions control scenarios. We compare a 2012 No Control scenario (assuming 2.7% or 27 000 ppm S) with three emissions control scenarios. Two control scenarios represent cases where marine fuel is limited to 0.5% S (5000 ppm) and 0.1% S (1000 ppm) content, respectively, within 200 nautical miles of coastal areas. The third control scenario represents a global limit of 0.5% S. We apply the global climate model ECHAMSSy-MESSy1-MADE to geospatial emissions inventories to determine worldwide concentrations of particular matter (PM2.5) from ocean going vessels. Using those PM2.5 concentrations in cardiopulmonary and lung cancer concentration-risk functions and population models, we estimate annual premature mortality. Without control, our central estimate is approximately 87 000 premature deaths annually in 2012. Coastal area control scenarios reduce premature deaths by approximately 33 500 for the 0.5% case and approximately 43 500 for the 0.1% case. Where fuel sulfur content is reduced globally to 0.5% S, premature deaths are reduced by approximately 41 200. These results provide important support that global health benefits are associated with low-sulfur marine fuels, and allow for relative comparison of the benefits of alternative control strategies. PMID:19673264

  8. Coal quality controls of the Danville coal in Indiana (Illinois Basin, Central USA)

    USGS Publications Warehouse

    Mastalerz, Maria; Padgett, P.L.

    2002-01-01

    The Danville Coal Member (Dugger Formation, upper Desmoinesian, Pennsylvanian) is a significant economic coal resource in the Illinois Basin, central USA. Deposition of the Danville Coal (peat) was in coastal environments, varying distances from the coastline and, in turn, variable influences from saline waters. The purpose of this study is to examine the coal quality and petrography of the Danville Coal; and to discuss their relationship with depositional environment as it relates to the final coal product. A medium sulfur (1.0-1.5 wt.%) Danville Coal reserve area (northern Indiana coalfield) was compared to a low sulfur (3 m) of finer-grained clastic sediments atop the Danville, the sulfur and trace elements contents are significantly lower. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. Fire-hazard control during coal handling

    SciTech Connect

    McGraw, M.G.

    1984-03-01

    The potential for serious power plant fires and explosions is growing along with the increased use of volatile, low-sulfur coal use and environmental regulations requiring closed conveyor systems for handling coal. The volume of coal handled and the range of physical characteristics in different coals intensifies the problem. Western coal produces more dust because it is more friable than eastern coal and is more prone to sponaneous combustion. Closed storage and handling systems increase the hazards of methane and carbon monoxide. The article described prevention, detection, and firefighting techniques, and notes that a variety of systems is needed to cover all the hazards. Human behavior and coordination are also essential ingredients. ll figures.

  10. Advanced Coal Conversion Process Demonstration Project

    SciTech Connect

    Not Available

    1992-02-01

    This project will demonstrate an advanced thermal coal drying process coupled with physical cleaning techniques to upgrade high-moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal will be processed through two vibrating fluidized bed reactors that will remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal will be put through a deep-bed stratifier cleaning process to effect separation of the pyrite rich ash. The process will enhance low-rank western coals, usually with a moisture content of 25--55%, sulfur content of 0.5--1.5%, and heating value of 5,500--9,000 Btu/lb by producing a stable, upgraded coal product with a moisture content as low as 1%, sulfur content as low as 0.3%, and heating value up to 12,000 Btu/lb.

  11. Tests to produce and recover carbon dioxide by burning coal in oxygen and recycled flue gas: Black Hills Power and Light Company Customer Service Center Boiler No. 2, Rapid City, South Dakota

    SciTech Connect

    Kumar, R.; Fuller, T.; Kocourek, R.; Teats, G.; Young, J.; Myles, K.; Wolsky, A.

    1987-12-01

    Experiments were conducted using a modified stoker-fired boiler (2.2 x 10/sup 6/ Btu/h) instrumented to examine the feasibility of producing and recovering carbon dioxide by burning coal in oxygen and recycled flue gas in a utility environment. The tests demonstrated that the boiler can be operated in the oxygen-blown/flue-gas-recirculation mode without any noticeable effects on coal combustion, heat delivery to the water, or the coal-feed or ash-handling systems. Pretest calculations showed that a feasible set of operating parameters for a carbon-dioxide-producing combustor system tightly sealed against air infiltration and containing no more than about 5% O/sub 2/ (dry basis) at the furnace exit would be a flue-gas recycling ratio between 0.6 and 0.7 and an oxygen feed rate of 1.17 g-moles per g-atom of carbon, yielding an exhaust gas composition (wet basis) of approximately 46.9% CO/sub 2/, 50.6% H/sub 2/O, and 2.5% O/sub 2/. This composition corresponds to a product gas containing 95% CO/sub 2/ and 5% O/sub 2/ (dry basis). However, because air leaked into the test combustor and the flue-gas handling system, the highest carbon dioxide concentration achieved in the exhaust gas was 48.5% (dry basis). Major sources of inleakage were the furnace brickwork, the gas-handling system, and the coal-feed and ash-extraction systems. 40 figs.

  12. New Coal Standards.

    ERIC Educational Resources Information Center

    Heritage, John

    1979-01-01

    Tighter federal air pollution control standards for new coal-burning electric power plants have been issued. Through use of air pollution control devices all types of coal will be useable under the new standards. Even stricter standards may be imposed where visibility may be affected in areas now enjoying very clean air. (RE)

  13. Sulfur diagenesis in everglades peat and origin of pyrite in coal

    USGS Publications Warehouse

    Altschuler, Z.S.; Schnepfe, M.M.; Silber, C.C.; Simon, F.O.

    1983-01-01

    The pattern of sulfur transformation in peat across the Everglades basin indicates that pyrite formation in organic-rich swamps depends on the use of organic oxysulfur compounds in dissimilatory respiration by sulfur-reducing bacteria. This paragenesis explains the primary distribution of sulfur compounds in low-sulfur coals and possibly in most coals and many organic-rich soils and sediments. It also accounts for the occurrence of framboidal pyrite bound in fossil tissue in coal and sediments.

  14. Pulverized coal fuel injector

    DOEpatents

    Rini, Michael J.; Towle, David P.

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  15. Microwave technologies in coal power engineering

    NASA Astrophysics Data System (ADS)

    Salomatov, V. V.; Sladkov, S. O.; Pashchenko, S. É.

    2012-05-01

    An analysis of the modern state and prospects of using microwave radiation in the processes of drying, dispersion, burning, and fine processing of low-rank coals for the purpose of increasing the energy efficiency of coal technologies and decreasing harmful emissions from them has been carried out. It is shown that the use of microwave-radiation energy in coal power engineering is a promising method of complex action on coal in the process of its preparation and burning.

  16. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    SciTech Connect

    Larry G. Felix; P. Vann Bush

    2002-01-31

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. One additional biomass co-firing test burn was conducted during this quarter. In this test (Test 9), up to 20% by weight dry hardwood sawdust and switchgrass was injected through the center of the single-register burner with Jacobs Ranch coal. Jacobs Ranch coal is a low-sulfur Powder River Basin coal ({approx} 0.5% S). The results from Test 9 as well as for Test 8 (conducted late last quarter) are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. Additional results of CFD modeling efforts have been received and preparations are under way for continued pilot-scale combustion experiments with the dual-register burner. Finally, a project review was held at NETL in Pittsburgh, on November 13, 2001.

  17. Lightning burns.

    PubMed

    Russell, Katie W; Cochran, Amalia L; Mehta, Sagar T; Morris, Stephen E; McDevitt, Marion C

    2014-01-01

    We present the case of a lightning-strike victim. This case illustrates the importance of in-field care, appropriate referral to a burn center, and the tendency of lightning burns to progress to full-thickness injury. PMID:23799482

  18. Does carbon monoxide burn inside a fluidized bed; A new model for the combustion of coal char particles in fluidized beds

    SciTech Connect

    Hayhurst, A.N. )

    1991-05-01

    Beds of silica sand were fluidized by mixtures of C{sub 3}H{sub 8}, CH{sub 4}, or CO with air. Staring from cold the way such a bed behaved before it reached a steady state was observed visually. In addition, high-speed cine films were taken, as well as measurements of the loudness of the noise emitted. These beds behave in a way indicating that such hot gas mixtures at up to 1000{degrees}C do not burn in the interstices between the sand particles. Instead, combustion occurs either above the bed or in the ascending bubbles. Measurements of the diameter (d{sub ig}) of a bubble made immediately prior to ignition confirmed that the ignition temperature (T{sub ig}) of the bubble varies with d{sub ig} {proportional to} exp (E{sub ig}/RT{sub ig}), so that larger bubbles ignite at lower temperatures. It proved possible to generate combustion of these gas mixtures in the particulate phase by adding Pt-coated catalyst pellets. This leads to a new model for the burning of char particles in a fluidized bed. In the model, char is first oxidized to CO with the reaction C{sub s} + 1/20{sup b} {yields} CO occurring mainly inside the pores of each particle. The resulting CO burns either above the bed or in bubbles rising up the bed, but not in the particulate phase. Considerable uncertainties exist as to the correct values of Nusselt and Sherwood numbers, as well as of, e.g., the intrinsic rate constant for the initial production of CO. However, the model is capable of predicting the temperatures observed for char particles burning in fluidized beds. This paper addresses some of the problems of O{sub 2} diffusing inside the pores of a char particle and then reacting to give CO.

  19. Mössbauer study of the inorganic sulfur removal from coals

    NASA Astrophysics Data System (ADS)

    Reyes Caballero, F.; Martínez Ovalle, S. A.

    2014-01-01

    Mössbauer Spectroscopy (MS) was applied to study the occurrence and behavior of the iron-sulfur-containing minerals in coal and coal fractions obtained by different separation methods: hydrocyclonic, flotation and chemical removal process. Samples of one high sulfur coal from Guachinte mine (Valle, Colombia) and three low sulfur coals from the El Salitre zone (Paipa-Boyacá, Colombia) were analyzed. MS evidenced only the presence of pyrite in Esmeralda and Las Casitas coals, while it identified pyrite and siderite on Cerezo coal. MS and SEM- EDX confirm the inorganic sulfur removal on Guachinte coal submitted to hydrocyclonic removal process. MS of the precipitated coal fraction from Las Casitas mine obtained by flotation in water showed the presence of ferrous sulfate because of coal-weathering process. Treatment with hot diluted HNO3 equal to 27 acid on raw coal sample from Las Casitas mine showed that almost all of the pyrite in raw coal was removed.

  20. Pelletization of fine coals. Final report

    SciTech Connect

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  1. PILOT-SCALE STUDY OF THE EFFECT OF SELECTIVE CATALYTIC REDUCTION CATALYST ON MERCURY SPECIATION IN ILLINOIS AND POWDER RIVER BASIN COAL COMBUSTION FLUE GASES

    EPA Science Inventory

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...

  2. Incidence and impact of axial malformations in larval bullfrogs (Rana catesbeiana) developing in sites polluted by a coal-burning power plant

    SciTech Connect

    Hopkins, W.A.; Congdon, J.; Ray, J.K.

    2000-04-01

    Amphibian malformations have recently received much attention from the scientific community, but few studies have provided evidence linking environmental pollution to larval amphibian malformations in the field. The authors document an increased incidence of axial malformations in bullfrog larvae (Rana catesbeiana) inhabiting two sites contaminated with coal combustion wastes. In the polluted sites, 18 and 37% of larvae exhibited lateral curvatures of the spine, whereas zero and 4% of larvae from two reference sites had similar malformations. Larvae from the most heavily polluted site had significantly higher tissue concentrations of potentially toxic trace elements, including As, Cd, Se, Cu, Cr, and V, compared with conspecifics from the reference sites. In addition, malformed larvae from the cost contaminated site had decreased swimming speeds compared with those of normal larvae from the same site. The authors hypothesize that the complex mixture of contaminants produced by coal combustion is responsible for the high incidence of malformations and associated effects on swimming performance.

  3. Burning Issue: Handling Household Burns

    MedlinePlus

    ... Burns For minor burns: Immerse in fresh, cool water, or apply cool compresses for 10-15 minutes. Dry the area with a clean cloth. Cover with sterile gauze or a non-adhesive bandage. Don’t apply ointments or butter; these ...

  4. Physics-Related Problems of Coal-Fired Power Plant Pollution.

    ERIC Educational Resources Information Center

    Devaney, Joseph J.

    1978-01-01

    Provides facts which dispel widely held fallacies about the consequences of coal-burning, most of which are physics-related. Concentrates on air pollution as the major contributor to the public hazard from coal-burning. (GA)

  5. Characterization and supply of coal based fuels

    SciTech Connect

    Not Available

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  6. Burn Institute

    MedlinePlus

    ... Since... Read More Survivors Archive Our Partners Senior Smoke Alarm Program If you are 62 or older and ... you are qualified for the Burn Institute’s FREE smoke alarms for seniors program. Take the Online Challenge The ...

  7. Scald Burns

    MedlinePlus

    ... the stove. • Avoid wearing loose clothing around open flames and roll up your sleeves. • Never leave cooking ... first, second and third degree burns depending on temperature and length of exposure. • At 155 degrees, a ...

  8. Biomass Burning

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Pinto, Joseph P.

    1993-01-01

    Biomass burning may be the overwhelming regional or continental-scale source of methane (CH4) as in tropical Africa and a significant global source of CH4. Our best estimate of present methane emissions from biomass burning is about 51.9 Tg/yr, or 10% of the annual methane emissions to the atmosphere. Increased frequency of fires that may result as the Earth warms up may result in increases in this source of atmospheric methane.

  9. Coals and coal-bearing rocks of the Hanna Coal Field, Wyoming

    SciTech Connect

    Glass, G.B.; Roberts, J.T.

    1980-01-01

    Renewed interest in Wyoming's vast coal deposits began in the late 1960's as power plant demands for inexpensive, low sulfur coals increased. Because of this demand, Wyoming's coal companies have set new production records every year since 1972. Table 1 summarizes annual production for the last 19 years on a county basis. Wyoming's 1978 tonnage set yet another record at 58.2 million tons. With this tonnage, Wyoming remains the largest coal-producing state in the Rocky Mountains and the fourth largest in the nation. Coal production in Wyoming was dominated by underground mining until 1954. In that year, strip mining tonnage barely exceeded that of the underground mines. Since then, however, strip mining has become the dominant mining method and now accounts for about 99 percent of Wyoming's annual production. Conversely, underground mining has slipped to approximately one percent of the annual tonnage mined. In 1978, twenty-one coal mining companies produced 58.2 million tons of coal. These companies operated 22 strip mines and 3 underground mines.

  10. Coal-fired power generaion, new air quality regulations, and future U.S. coal production

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1999-01-01

    Tighter new regulation of stack gas emissions and competition in power generation are driving electrical utilities to demand cleaner, lower sulfur coal. Historical data on sulfur content of produced coals shows little variability in coal quality for individual mines and individual coal-producing counties over relatively long periods of time. If coal-using power generators follow the compliance patterns established in Phase I of the 1990 Clean Air Act Amendments, then the industry's response to the tighter Phase II emissions standards will result in large amounts of coal production shifting from higher sulfur areas to areas with lower cost low sulfur coal. One reason this shift will likely occur is that currently only 30% of U.S. coal-fired electrical generating capacity is equipped with flue-gas scrubbers. In 1995, coal mines in the higher sulfur areas of the Illinois Basin and Northern and Central Appalachia employed 78% of all coal miners (>70,000 miners). A substantial geographical redistribution of the nation's coal supplies will likely lead to economic dislocations that will reach beyond local coal-producing areas.

  11. Trace elements in coal. Environmental and health significance

    USGS Publications Warehouse

    Finkelman, R.B.

    1999-01-01

    Trace elements can have profound adverse effects on the health of people burning coal in homes or living near coal deposits, coal mines, and coal- burning power plants. Trace elements such as arsenic emitted from coal- burning power plants in Europe and Asia have been shown to cause severe health problems. Perhaps the most widespread health problems are caused by domestic coal combustion in developing countries where millions of people suffer from fluorosis and thousands from arsenism. Better knowledge of coal quality characteristics may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals in coal may help to predict the behavior of the potentially toxic trace metals during coal cleaning, combustion, weathering, and leaching.

  12. Coal desulfurization by chlorinolysis production and combustion test evaluation of product coals

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Daly, D.

    1982-01-01

    Laboratory-scale screening tests were carried out on coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals and one subbituminous coal were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29-69%, reductions in voltatiles and hydrogen. Hydrodesulfurization provided a much greater desulfurization (56-86%), reductions in volatiles and hydrogen. The three coals were combustion tested in the Penn State ""plane flame furnace'' to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals, and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning.

  13. Evaluation of clean coal technologies with coals of India

    SciTech Connect

    Koyi, R.; Sohony, R.A.; Verma, S.K.; Narasimhan, K.S.

    1998-04-01

    World over concerted efforts are being made to develop technologies for the generation of power from coals that are sustainable from the point of regulations likely to come up with regard to environmental protection. The key issue concerns the reduction of specific emissions of oxides of particularly carbon, besides that of sulfur and nitrogen. Technologies aiming at the reduction of specific emissions of carbon dioxide intend to overcome the barrier of Carnot cycle efficiency of conversion of thermal energy to electrical power. All these technologies employ dual cycle of a gas turbine at a high pressure and a steam cycle at relatively a low pressure. They however fall into two main classes involving either a gasification route or totally on combustion under pressure. At present there are several such technologies being pursued for large scale demonstration with the involvement of the Department of Energy and the industries in USA. However, these technologies are developed to use low ash high sulfur coals of west compared to high ash low sulfur coals of Gondwna origin found in India and south Africa. In this paper the adaptability and the relative merits of these technologies for such high ash coals are addressed. From the studies carried out using Aspen simulator, it is seen that the technologies involving combustion alone is less sensitive to variation in coal quality, while inherent quality of coal controls the conversion efficiency more than the dilution effect of ash. Pressurised fluid bed combustion among other technologies deserve to be pursued.

  14. Evaluation of clean coal technologies with coals of India

    SciTech Connect

    Koyi, R.; Sohony, R.A.; Verma, S.K.; Narasimhan, K.S.

    1998-07-01

    World over concerted efforts are being made to develop technologies for the generation of power from coals that are sustainable from the point of regulations likely to come up with regard to environmental protection. The key issues concerns the reduction of specific emissions of oxides of particularly carbon, besides that of sulfur and nitrogen. Technologies aiming at the reduction of specific emissions of carbon dioxide intend to overcome the barrier of Carnot cycle efficiency of conversion of thermal energy to electrical power. All these technologies employ dual cycle of a gas turbine at a high pressure and a steam cycle at relatively a low pressure. They however fall into two main classes involving either a gasification route or totally on combustion under pressure. At present there are several such technologies being pursued for large scale demonstration with the involvement of the Department of Energy and the industries in US. However, these technologies are developed to use low ash high sulfur coals of the west compared to high ash low sulfur coals of Gondwna origin found in India and South Africa. In this paper the adaptability and the relative merits of these technologies for such high ash coals are addressed. From the studies carried out using Aspen simulator, it is seen that the technologies involving combustion alone is less sensitive to variation in coal quality, while inherent quality of coal controls the conversion efficiency more than the dilution effect of ash. Pressurized fluid bed combustion among other technologies deserve to be pursued.

  15. Coal desulfurization by low-temperature chlorinolysis

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Kalvinskas, J. J.; Ganguli, P. S.; Gavalas, G. R.

    1977-01-01

    Among the three principal methods for precombustion desulfurization of coal, which include physical depyriting, chemical desulfurization, and coal conversion to low-sulfur liquid and gaseous fuels, the potential of chemical methods looks promising in terms of both total sulfur removal and processing cost. The principal chemical methods for coal desulfurization involve treatment with either oxidizing agents or basic media at elevated temperature and pressure. A description is given of some recent experimental results which show the feasibility of removing sulfur, particularly organic sulfur, from high-sulfur coals by a simple method of low-temperature chlorinolysis followed by hydrolysis and dechlorination. The chemical feasibility of sulfur removal by chlorinolysis rather than the detailed engineering process is emphasized.

  16. Decadal emission estimates of carbon dioxide, sulfur dioxide, and nitric oxide emissions from coal burning in electric power generation plants in India.

    PubMed

    Mittal, Moti L; Sharma, Chhemendra; Singh, Richa

    2014-10-01

    This study aims to estimate the emissions of carbon dioxide (CO₂), sulfur dioxide (SO₂), and nitric oxide (NO) for coal combustion in thermal power plants in India using plant-specific emission factors during the period of 2001/02 to 2009/10. The mass emission factors have been theoretically calculated using the basic principles of combustion under representative prevailing operating conditions in the plants and fuel composition. The results show that from 2001/02 to 2009/10 period, total CO₂ emissions have increased from 324 to 499 Mt/year; SO₂ emissions have increased from 2,519 to 3,840 kt/year; and NO emissions have increased from 948 to 1,539 kt/year from the Indian coal-fired power plants. National average emissions per unit of electricity from the power plants do not show a noticeable improvement during this period. Emission efficiencies for new plants that use improved technology are found to be better than those of old plants. As per these estimates, the national average of CO₂ emissions per unit of electricity varies between 0.91 and 0.95 kg/kWh while SO₂ and NO emissions vary in the range of 6.9 to 7.3 and 2.8 to 2.9 g/kWh, respectively. Yamunagar plant in Haryana state showed the highest emission efficiencies with CO₂ emissions as 0.58 kg/kWh, SO₂ emissions as 3.87 g/kWh, and NO emissions as 1.78 g/kWh, while the Faridabad plant has the lowest emission efficiencies with CO₂ emissions as 1.5 kg/kWh, SO₂ emissions as 10.56 g/kWh, and NO emissions as 4.85 g/kWh. Emission values at other plants vary between the values of these two plants. PMID:25004854

  17. Particulate emissions from a stationary engine fueled with ultra-low-sulfur diesel and waste-cooking-oil-derived biodiesel.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture. PMID:22070039

  18. Emissions of particulate-bound elements from biodiesel and ultra low sulfur diesel: size distribution and risk assessment.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2013-01-01

    Use of waste cooking oil derived biodiesel (WCOB) as an alternative fuel in diesel engines has increased significantly in recent years. The impact of WCOB on particulate emissions from diesel engines needs to be investigated thoroughly. This study was conducted to make a comparative evaluation and size-differentiated speciation of the particulate bound elements from ultra low sulfur diesel (ULSD) and WCOB and a blend of both of the fuels (B50). Particle mass and their elemental size distributions ranging from 0.01-5.6 μm were measured. It was observed that more ultrafine particles (UFPs, <100 nm) were emitted when the engine was fueled with WCOB. Fifteen particulate-bound elements such as K, Al, Mg, Co, Cr, Cu, Fe, Mn, Cd, Ni, As, Ba, Pb, Zn and Sr were investigated and reported in this study. Potential health risk associated with these particulate bound elements upon inhalation was also evaluated based on dose-response assessments for both adults and children. The findings indicate that the exposure to PM of the B100 exhaust is relatively more hazardous and may pose adverse health effects compared to that of ULSD. Also, investigations on human health risk due to exposure to UFPs indicate that UFPs contribute a major fraction (>70%) of the total estimated health risk. PMID:22925425

  19. Clean coal technology

    SciTech Connect

    Not Available

    1991-01-01

    The term clean coal technology'' entered the energy vocabulary in the 1980s. It describes a new generation of advanced coal technology, environmentally cleaner and in many cases more efficient and less costly than conventional coal-burning processes. These new power generating and pollution control concepts are the products of years of research and development in hundreds of government and private laboratories throughout the world. Their emergence in the 1980s is bringing about a new coal age -- one that not only responds to past problems with some of the most sophisticated technology available in the world today but offers a bright future for coal as well. Coal is the nation's most plentiful fossil fuel. One quarter of all the world's known coal lies within US borders. Coal also is an energy bargain. Even with the sharp decline in world oil and gas prices in the mid-1980s, coal has remained the least expensive fossil fuel in the US. In the future, coal can do more to help this country and our trading partners grow economically while enhancing national energy security -- if it can be used in greater amounts without endangering the Earth's fragile ecology. The new suite of advanced, clean coal technologies will help achieve that objective. They will ensure that the US can continue using its most abundant energy resource while maintaining a commitment to a clean, healthy environment.

  20. Burning rubber

    SciTech Connect

    Not Available

    1987-09-01

    Mario Andretti, look out You are about to be surpassed in the burning rubber category by a joint venture between Oxford Energy Company and General Electric. The two companies are building the first whole tire-to-energy facility in the US in Modesto, California. This $41 million facility does not require tires to be shredded prior to incineration; it has the capacity to burn 700 tires per minute. The electricity generated will be provided to a utility company. Oxford says there are two billion waste tires on the ground and this number is increasing by 220 million a year. Of that amount, only 18 million a year are recycled.

  1. Coal-Fired Rocket Engine

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Brief report describes concept for coal-burning hybrid rocket engine. Proposed engine carries larger payload, burns more cleanly, and safer to manufacture and handle than conventional solid-propellant rockets. Thrust changeable in flight, and stops and starts on demand.

  2. Coal combustion ash haulback

    SciTech Connect

    Gray, R.E.; Gray, T.A.

    1998-12-31

    Coal mining disturbs large tracts of land which must be reclaimed. Unfortunately, iron sulfides which are common in most coals and the adjacent strata weather, forming acid mine drainage (AMD) which degrades surface and ground water. Burning of coal produces combustion by products, most of which are placed in ponds or landfills. Suitable disposal areas are difficult to find and permit, especially in urban areas. This has led to ash haulback--where the waste generated during coal burning is hauled back to a mine for disposal. The potential advantages of coal combustion ash haulback are: Disposal occurs in a disturbed area (mine) rather than disturb additional land near the power plant; The same vehicles used to haul coal from the mine can be used to return the ash to the mine; Ash, if alkaline, may provide neutralization of acidic water or mine overburden commonly found at coal mines; and Low permeability ash could reduce ground water flow through the mine backfill, thus reducing leaching of acid forming constituents or metals. Placement of ash in surface mines provides an efficient, cost-effective method of disposal while at the same time contributing to reclamation of the mine. Wise natural resource management suggests a reasonable approach to disposal of coal ash is to return it to its original location--the mine.

  3. IDENTIFICATION AND EMISSION RATES OF MOLECULAR TRACERS IN COAL SMOKE PARTICULATE MATTER. (R823990)

    EPA Science Inventory

    The abundances and distributions of organic constituents in coal smoke particulate matter are dependent on thermal combustion temperature, ventilation, burn time, and coal rank (geologic maturity). Important coal rank indicators from smoke include (1) the decreases in CPIs of ...

  4. Prescribed Burn

    Iowa State Grad students Devan McGranahan and Torre Hovick, along with DNR private land specialist Josh Rusk and ISU Research Technician Shannon Rusk ignite a prescribed fire on a patch-burn grazing research pasture in southern Iowa. The goals of the prescribed fire include reducing invasive eastern...

  5. Burning Man

    ERIC Educational Resources Information Center

    Cech, Scott J.

    2006-01-01

    Former Baltimore cop and teacher Ed Burns isn't a masochist. The writer-producer for "The Wire," a critically applauded HBO series about life and death on the streets of Baltimore, is just feverishly trying to save public schools. He thinks American education is hopelessly screwed up, but that it's also the country's only hope. So it makes sense…

  6. ENCOAL Mild Coal Gasification Project. Annual report, October 1990--September 1991

    SciTech Connect

    Not Available

    1992-02-01

    ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

  7. MERCURY OXIDATION PROMOTED BY A SELECTIVE CATALYTIC REDUCTION CATALYST UNDER SIMULATED POWDER RIVER BASIN COAL COMBUSTION CONDITIONS

    EPA Science Inventory

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...

  8. CHARACTERIZATION OF ASH FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The report summarizes existing data on the chemical and physical characteristics of ashes produced by the burning of coal in steam-electric generating plants. It summarizes several recent coal or ash characterization studies, emphasizing the elemental chemical composition, partic...

  9. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  10. Burning vasculitis.

    PubMed

    Chadha, Priyanka; Hobday, Dorian; Fitzgerald O'Connor, Edmund; D'Cruz, David

    2016-01-01

    We present the case of a 69-year-old man who was found collapsed close to a heat source and admitted to hospital for severe sepsis. He was also found to have widespread blistering and ulceration of his right leg; however, a history was unobtainable due to reduced consciousness levels. The leg lesions had the initial appearance of mixed depth burns and a management plan was made to transfer the patient to a burns unit for debridement. It was subsequently noted that the patient had a previous diagnosis of seropositive erosive rheumatoid arthritis. A biopsy of the leg lesion was performed and a diagnosis of rheumatoid vasculitis confirmed. Treatment with systemic steroids, intravenous antibiotics and intravenous immunoglobulin therapy for severe hypogammaglobulinaemia was started, and the patient was not transferred for surgical debridement. Rheumatoid vasculitis is a rare and extremely serious complication of rheumatoid arthritis that can manifest in a number of ways, occasionally mimicking other conditions. This case is essential to raise awareness of rare, severe rheumatoid vasculitis and of the potential for its misdiagnosis as a mixed depth burn. PMID:27118745

  11. Characteristics of single particle coal combustion

    SciTech Connect

    Timothy, L.D.; Sarofim, A.F.; Beer, J.M.

    1982-01-01

    A two-color optical pyrometer has been developed to measure the burning history of single coal particles. From the intensity traces at two wavelengths information on burning times, burning temperatures, the duration of a volatile flame, and projected areas were obtained for two lignite and three bituminous coals. The coals were pulverized, classified in 38 to 45 and 90 to 105 micron size ranges, and burned at furnace temperatures of 1250 and 1700 K in atmospheres containing from 15% to 100% oxygen. The intensity traces at short times showed the influence of either attenuation by volatiles or, in some cases, an intense peak attributed to luminous radiation by soot. A model was developed to simulate the combustion of a coal particle. Model predictions of the duration of volatile flames were in agreement with the values inferred from the intensity traces. Burning times predicted by the model were in partial agreement with measured values. At 1700 K the bituminous coal burned close to the predicted diffusion-limited times while the lgnite coal took longer. At 1250 K the experimental burn-out times for all coals were longer than predicted. Possible reasons for the low predictions may be differences in volatile yields and retardation of the reaction by finely distributed ash particles.

  12. PRB Coal Users' Group grapples with supply chain challenges

    SciTech Connect

    Pettier, R.

    2007-06-15

    An account is given of issues addressed at the Powder River Basin Coal Users' Group annual meeting, held in conjunction with the Electric Power 2007 conference. Transportation, buying equipment for switching plants burn PRB coal, finding and fighting fires in a coal silo, and coal handling were amongst the topics discussed. 1 fig., 4 photos.

  13. Ash characterization in laboratory-scale oxy-coal combustor

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing technology. During oxy-coal combustion, combustion air is separated and the coal is burned in a mixture of oxygen and recycled flue gas. The resulting effluent must be further processed before the C02 can be compressed, t...

  14. Advanced Coal Conversion Process Demonstration. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through May 31, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  15. Advanced Coal Conversion Process Demonstration. Technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from April 1, 1993, through June 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  16. Advanced Coal Conversion Process Demonstration. Technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1993, through September 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  17. Preparation for upgrading western subbituminous coal

    SciTech Connect

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  18. Process for coal liquefaction in staged dissolvers

    DOEpatents

    Roberts, George W.; Givens, Edwin N.; Skinner, Ronald W.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

  19. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1992-09-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  20. America's role in the world coal-export market. Part 2. Pacific Rim outlook. Hearing before the Subcommittee on Energy and Mineral Resources of the Committee on Energy and Natural Resources, United States Senate, Ninety-Seventh Congress, First Session, December 1, 1981

    SciTech Connect

    Not Available

    1983-01-01

    Part 2 of the hearing record covers the statements of witnesses from the Western Governors' Policy Office, Pacific Rim manufacturers and utilities, and others interest in low-sulfur coal from Alaska. Inherent in the coal trade are long-standing mutual defense treaties with Taiwan, Japan, and others. Of special concern is the loss of US coal exports to Australia and Canada and the need for better policies to deal with the growing international demand for steam coal. (DCK)

  1. Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles.

    PubMed

    Kado, Norman Y; Okamoto, Robert A; Kuzmicky, Paul A; Kobayashi, Reiko; Ayala, Alberto; Gebel, Michael E; Rieger, Paul L; Maddox, Christine; Zafonte, Leo

    2005-10-01

    The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition. The CNG bus had no after-treatment, and the diesel bus was tested first equipped with an oxidation catalyst (OC) and then with a catalyzed diesel particulate filter (DPF). Emissions were analyzed for PM, volatile organic compounds (VOCs; determined on-site), polycyclic aromatic hydrocarbons (PAHs), and mutagenic activity. The 2000 model year CNG-fueled vehicle had the highest emissions of 1,3-butadiene, benzene, and carbonyls (e.g., formaldehyde) of the three vehicle configurations tested in this study. The 1998 model year diesel bus equipped with an OC and fueled with low-sulfur diesel had the highest emission rates of PM and PAHs. The highest specific mutagenic activities (revertants/microg PM, or potency) and the highest mutagen emission rates (revertants/mi) were from the CNG bus in strain TA98 tested over the New York Bus (NYB) driving cycle. The 1998 model year diesel bus with DPF had the lowest VOCs, PAH, and mutagenic activity emission. In general, the NYB driving cycle had the highest emission rates (g/mi), and the Urban Dynamometer Driving Schedule (UDDS) had the lowest emission rates for all toxics tested over the three transient test cycles investigated. Also, transient emissions were, in general, higher than steady-state emissions. The emissions of toxic compounds from an in-use CNG transit bus (without an oxidation catalyst) and from a vehicle fueled with low-sulfur diesel fuel (equipped with DPF) were lower than from the low-sulfur diesel fueled vehicle equipped with OC. All vehicle configurations had generally lower emissions of toxics than an uncontrolled diesel engine. Tunnel backgrounds (measurements without the vehicle running) were measured throughout this study and were helpful in determining the incremental increase in pollutant emissions. Also, the on-site determination of VOCs, especially 1,3-butadiene, helped minimize measurement losses due to sample degradation after collection. PMID:16245838

  2. Ultra-low Sulfur Reduction Emission Control Device/Development of an On-board Fuel Sulfur Trap

    SciTech Connect

    Rohrbach, Ron; Barron, Ann

    2008-07-31

    Honeywell has completed working on a multiyear program to develop and demonstrate proof-of-concept for an 'on-vehicle' desulfurization fuel filter for both light duty and heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NOx adsorbers. The NOx adsorber may be required to meet the proposed new EPA Tier II and '2007-Rule' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters was also examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. In the second phase of the program a light duty diesel engine test was also demonstrated. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consisted of four phases. Phase I focused on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II concentrated on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III studied life cycle and regeneration options for the spent filter. Phase IV focused on efficacy and benefits in the desulfation steps of a NOx adsorber on both a heavy and light duty engine. The project team included a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Navistar Inc. (formerly International Truck & Engine Corporation) and Mack Trucks Inc.), and filter recycler (American Wastes Industries).

  3. Northeast coal utilization program: Phase 2. Final report. [Evaluation of coal liquids as fuels in northeast USA

    SciTech Connect

    Not Available

    1981-01-01

    This report documents the activities of a group of utilities drawn from the northeastern United States. It relates to the introduction of coal liquefaction as a source of the liquid fuel needed for power generation in the region. Coal liquefaction by hydrogenation using the H-Coal, Exxon Donor Solvent, and SRC-II processes is the focus of general studies related to technology and economics, to commercial project development, and to plant siting. Achievement of significant coal liquefaction capacity in place is recognized to be hindered by technical risk and lack of economic incentive as the nation adjusts to the use of heavy, high sulfur crude oils. Against this background, the concept is developed of a convertible plant capable of functioning in both coal liquefaction and in heavy oil upgrading. Construction of a single train coal liquefaction facility based on purchasing hydrogen and other services from an adjacent oil refinery is also considered as a method of introducing first generation coal liquefaction plants at minimum risk. Studies of process configuration show that least cost coal liquids are produced based on hydrogen production by gasification of process residues; purchase of plant power and sale of product gas can improve the economics of coal liquefaction; potential exists for integration of direct (e.g., H-Coal) and indirect (e.g., methanol) methods of coal liquefaction; and coal liquefaction in which distillable, low sulfur liquid products are made appears to be the most economical approach, though scope exists for continued evaluation in this area.

  4. Abundances of polycyclic aromatic hydrocarbons (PAHs) in 14 chinese and american coals and their relation to coal rank and weathering

    USGS Publications Warehouse

    Wang, R.; Liu, Gaisheng; Zhang, Jiahua; Chou, C.-L.; Liu, J.

    2010-01-01

    The abundances of 16 polycyclic aromatic hydrocarbons (PAHs) on the priority list of the United States Environmental Protection Agency (U.S. EPA) have been determined in 14 Chinese and American coals. The ranks of the samples range from lignite, bituminous coal, anthracite, to natural coke. Soxhlet extraction was conducted on each coal for 48 h. The extract was analyzed on a gas chromatograph-mass spectrometer (GC-MS). The results show that the total PAH content ranged from 0.31 to 57.6 ??g/g of coal (on a dry basis). It varied with coal rank and is highest in the maturity range of bituminous coal rank. High-molecular-weight (HMW) PAHs are predominant in low-rank coals, but low-molecular-weight (LMW) PAHs are predominant in high-rank coals. The low-sulfur coals have a higher PAH content than high-sulfur coals. It may be explained by an increasing connection between disulfide bonds and PAHs in high-sulfur coal. In addition, it leads us to conclude that the PAH content of coals may be related to the depositional environment. ?? 2010 American Chemical Society.

  5. Toxic emissions from coal combustion

    SciTech Connect

    Senior, C.L.; Bool, L.E. III; Morency, J.R.

    1998-12-31

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Of the 189 substances identified as HAPs by Title III of the 1990 Clean Air Act Amendments (CAAA), 37 species, including 11 metals, have been detected by the Electric Power Research Institute (EPRI) in the flue gases of pulverized coal-fired utility boilers. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. Over the past decade, a large database identifying the partitioning and emitted concentrations of several of these species has been developed. Laboratory data have also been generated to help define the general behavior of several elements in combustion systems. These data have been used to develop empirical and probabilistic models to predict species emissions. While useful for providing average emissions of toxic species, these empirically based models fail when extrapolated beyond their supporting database. To ensure that coal-fired power generation proceeds in an environmentally benign fashion, methods for the prediction and control of toxic species in a broad range of coal fired systems must be developed. A team of researchers are conducting a detailed research program with three major objectives: (1) to elucidate the important mechanisms of toxics formation and partitioning; (2) to develop submodels for the appropriate trace toxic species transformations; and (3) to incorporate these mechanisms into an Engineering Model to predict trace toxic formation, partitioning, and fate based upon coal and combustion parameters. In the two-year Phase 1 program described here, preliminary experiments were performed to decide upon the relevant mechanisms for trace element transformations. The three-year Phase 2 program which has recently begun will contain more detailed experiments and model development activities. The authors chose four coals for detailed study in Phase 1. Variation in source and coal mineralogy were criteria for selection, as well as economic importance. The four coals are as follows: Pittsburgh Seam: Northern Appalachian bituminous coal; Elkhorn and Hazard Seams: Eastern Kentucky, low sulfur, compliance coal; Illinois 6 Seam: Illinois basin bituminous coal; Wyodak Seam: Powder River Basin sub-bituminous coal.

  6. Comparison of the Eastern and Western Kentucky coal fields (Pennsylvanian), USA-why are coal distribution patterns and sulfur contents so different in these coal fields?

    USGS Publications Warehouse

    Greb, S.F.; Eble, C.F.; Chesnut, D.R., Jr.

    2002-01-01

    More than 130 Mt of Pennsylvanian coal is produced annually from two coal fields in Kentucky. The Western Kentucky Coal Field occurs in part of the Illinois Basin, an intercratonic basin, and the Eastern Kentucky Coal Field occurs in the Central Appalachian Basin, a foreland basin. The basins are only separated by 140 km, but mined western Kentucky coal beds exhibit significantly higher sulfur values than eastern Kentucky coals. Higher-sulfur coal beds in western Kentucky have generally been inferred to be caused by more marine influences than for eastern Kentucky coals. Comparison of strata in the two coal fields shows that more strata and more coal beds accumulated in the Eastern than Western Kentucky Coal Field in the Early and Middle Pennsylvanian, inferred to represent greater generation of tectonic accommodation in the foreland basin. Eastern Kentucky coal beds exhibit a greater tendency toward splitting and occurring in zones than time-equivalent western Kentucky coal beds, which is also inferred to represent foreland accommodation influences, overprinted by autogenic sedimentation effects. Western Kentucky coal beds exhibit higher sulfur values than their eastern counterparts, but western Kentucky coals occurring in Langsettian through Bolsovian strata can be low in sulfur content. Eastern Kentucky coal beds may increase in sulfur content beneath marine zones, but generally are still lower in sulfur than mined Western Kentucky coal beds, indicating that controls other than purely marine influences must have influenced coal quality. The bulk of production in the Eastern Kentucky Coal Field is from Duckmantian and Bolsovian coal beds, whereas production in the Western Kentucky Coal Field is from Westphalian D coals. Langsettian through Bolsovian paleoclimates in eastern Kentucky were favorable for peat doming, so numerous low-sulfur coals accumulated. These coals tend to occur in zones and are prone to lateral splitting because of foreland tectonic and sedimentation influences. In contrast, Westphalian D coal beds of western Kentucky accumulated during low differential tectonic accommodation, and therefore tend to be widespread and uniform in characteristics, but exhibit higher sulfur values because they accumulated in seasonally drier paleoclimates that were unfavorable for peat doming. Hence, basin analyses indicate that many differences between the mined coals of Kentucky's two coal fields are related to temporal changes in paleoclimate and tectonic accommodation, rather than solely being a function of marine influences. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Method of desulphurization of coal

    SciTech Connect

    Soundararajan, R.

    1984-12-18

    A method of removing sulphur from coal prior to burning of the coal is the subject of the present invention. The coal is first comminuted to a size of no more than one inch and preferably one-half inch in diameter. The coal particles are placed in a reaction chamber in an aqueous suspension to which is added an inorganic base capable of reacting with hydrogen sulphide in order to neutralize the latter, such base preferably being calcium hydroxide. A catalyst, characterized by structural imperfections to provide active sites for supporting a free radical reaction, is also introduced into the reaction chamber. The coal is then subjected to electromagnetic irradiation of a specific energy level in order to create a free radical reaction which results in removal of the sulphur from the coal. The coal is then cleaned and separated from the aqueous media, and the inorganic base and elemental sulphur are removed from the aqueous media.

  8. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    SciTech Connect

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  9. (Advanced Coal Conversion Process Demonstration Project)

    SciTech Connect

    Not Available

    1991-08-01

    This project will demonstrate an advanced thermal coal drying process coupled with physical cleaning techniques to upgrade high-moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal will be processed through two vibrating fluidized bed reactors that will remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal will be put through a deep-bed stratifier cleaning process to effect separation of the pyrite rich ash. The process will enhance low-rank western coals, usually with a moisture content of 25--55%, sulfur content of 0.5--1.5%, and heating value of 5500--9000 Btu/lb by producing a stable, upgraded coal product with a moisture content as low as 1%, sulfur content as low as 0.3%, and heating value up to 12,000 Btu/lb. The 45 ton/hr unit will be located adjacent to a unit train loadout facility at Western Energy Company's Rosebud coal mine near the town of Colstrip in southeastern Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. The demonstration drying and cooling equipment is currently commercial size.

  10. Burn surgery.

    PubMed

    Tenenhaus, Mayer; Rennekampff, Hans Oliver

    2007-10-01

    The challenges posed by thermal injury often are daunting emotionally and physically for the survivor, family, and staff. Morbidity and mortality have improved with advances in emergent and multidisciplinary care; the establishment of dedicated burn centers; and increased education, prevention, and experience. The role of surgery in the treatment of these complex injury patterns continues to evolve, incorporating refined concepts of tissue preservation, wound bed preparation, and early attention to functional and esthetic parameters. Societal reintegration, psychosocial support, and new pain control strategies have dramatically improved the quality of life for our patients during and after the acute course of care. With improved survivability and a changing demographic, fundamental reconstructive surgical principles have found increased applicability and are instituted at the time of admission whenever possible. PMID:17967624

  11. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    B.K. PAREKH; D. TAO; J.G. GROPPO

    1998-02-03

    The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean-coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high-sulfur and low-sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals.

  12. Health impacts of domestic coal combustion

    SciTech Connect

    Finkelman, R.B.

    1999-07-01

    The US Environmental Protection Agency (EPA) has concluded that, with the possible exception of mercury, there is no compelling evidence to indicate that emissions from coal-burning electric utility generators cause human health problems. The absence of detectable health problems is in part due to the fact that the coals burned in the US generally contain low to modest concentrations of potentially toxic trace elements and that many coal-burning utilities employ sophisticated pollution control systems that efficiently reduce the emissions of hazardous elements. This is not so in many developing countries, especially in homes where coal is used for heating and cooking. Domestic use of coal can present serious human health problems because the coals are generally mined locally with little regard to their composition and the coals are commonly burned in poorly vented or unvented stoves directly exposing residents to the emissions. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal's in the region contain up to 35,000 ppm arsenic. Chili peppers dried over these high-arsenic coal fires absorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is due to eating corn dried over burning briquettes made from high-fluorine coals and high-fluoring clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion has also caused selenium poisoning and possibly mercury poisoning. Better knowledge of coal quality parameters may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals and macerals in coal may help predict the behavior of the potentially toxic components during coal combustion.

  13. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  14. Secondary economic impact of acid deposition control legislation in six coal producing states: Final report

    SciTech Connect

    Scott, M.J.; Guthrie, S.J.

    1988-12-01

    Among the difficult policy questions on the US environmental agenda is what to do about emissions to the earth's atmosphere of pollutants that may result in ''acid rain''. The Congress has considered several pieces of legislation spelling out potential approaches to the problem and setting goals for emission reduction, mostly emphasizing the control of oxides of sulfur and nitrogen. Significant policy concern is the dollar costs to the nation's economy of achieving the intended effects of the legislation and the potential impacts on economic activity---in particular, losses of both coal mining and secondary service sector employment in states and regions dependent on the mining of high sulfur coal. There are several direct economic effects of regulations such as the acid rain control legislation. One of the more obvious effects was the switching from high sulfur coal to low sulfur coal. This would result in increases in employment and coal business procurements in low sulfur coal mining regions, but also would result in lower employment and lower coal business procurements in high sulfur coal mining areas. The potential negative effects are the immediate policy concern and are the focus of this report. 15 refs., 1 fig., 17 tabs.

  15. Role of RIS/APC for manufacturing RFG/LSD. [Refinery Information Systems/Advanced Process Control, ReFormulated Gasoline/Low Sulfur Diesels

    SciTech Connect

    Latour, P.R. )

    1994-01-01

    Revolutionary changes in quality specifications (number, complexity, uncertainty, economic sensitivity) for reformulated gasolines (RFG) and low-sulfur diesels (LSD) are being addressed by powerful, new, computer-integrated manufacturing technology for Refinery Information Systems and Advanced Process Control (RIS/APC). This paper shows how the five active RIS/APC functions: performance measurement, optimization, scheduling, control and integration are used to manufacture new, clean fuels competitively. With current industry spending for this field averaging 2 to 3 cents/bbl crude, many refineries can capture 50 to 100 cents/bbl if the technology is properly employed and sustained throughout refining operations, organizations, and businesses.

  16. AIR QUALITY IMPACTS USING SRC VERSUS CONVENTIONAL COAL IN POWER PLANTS

    EPA Science Inventory

    The report gives results of air quality modeling to assess the impact of burning solvent-refined coal (SRC) instead of conventional coal in three power plants which exceeded National Ambient Air Quality Standards when burning conventional coal. The EPA CRSTER Gaussian plume model...

  17. Reactivity of Colombian coals toward combustion

    SciTech Connect

    Rincon, J.M.; Escallon, M.; Baquero, M.C.

    1996-12-31

    With the new world wide environment regulations, special attention is given to combustion efficiency in the electric utilities. Colombian coals are of cretaceous origen and the behavior towards combustion is different to the European and North American coals. The increase of international coal market has also created new power station operational problems in the areas of ignition, ash properties and residual carbon in ash so the characterization of coal toward combustion behavior is increasingly important. The study of pulverized coal char reactivity has been done by Drop tube reactor and Wire mesh tests. However these equipments are not common in most laboratories and easier methods must been suitable. Cumming has done burning profile test to assessing the coal reactivity by DTG output from thermobalance system. This combustion profile test has been subsequently used by different authors as a method for characterization of coal burning properties. Pisupati has found a good correlation between the Drop tube reactor test and the ignition temperature. Zhan has also found that the reactivity estimated from the burn out measurement on stainless steel plate at 800{degrees}C and DTG technique in the higher temperature range match quite well. The Martin del Corral Power Station localized near to Bogoti, is burning medium to low volatile coal and the fly ash carbon content is surprisingly high between 18-30%. The objective of the present work is to evaluated the reactivity profile of the coals used in the utility and to compare with the industrial test done in a boiler.

  18. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    SciTech Connect

    Larry G. Felix; P. Vann Bush

    2002-07-01

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 12), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Galatia coal and injected through the single-register burner. Liquid ammonia was intermittently added to the primary air stream to increase fuel-bound nitrogen and simulate cofiring with chicken litter. Galatia coal is a medium-sulfur ({approx} 1.2% S), high chlorine ({approx}0.5%) Illinois Basin coal. In the second test (Test 13), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Jim Walters No.7 mine coal and injected through the single-register burner. Jim Walters No.7 coal is a low-volatility, low-sulfur ({approx} 0.7% S) Eastern bituminous coal. The results of these tests are presented in this quarterly report. Progress has continued to be made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. The Configurable Fireside Simulator has been delivered from REI, Inc. and is being tested with exiting CFD solutions. Preparations are under way for a final pilot-scale combustion experiment using the single-register burner fired with comilled mixtures of Jim Walters No.7 low-volatility bituminous coal and switchgrass. Because of the delayed delivery of the Configurable Fireside Simulator, it is planned to ask for a no-cost time extension for the project until the end of this calendar year. Finally, a paper describing this project that included preliminary results from the first four cofiring tests was presented at the 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection in Amsterdam, The Netherlands, in June, 2002.

  19. Coal combustion system

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.; Tramm, Peter C.

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  20. ENCOAL mild coal gasification project. Annual report

    SciTech Connect

    Not Available

    1993-10-01

    This document is the combination of the fourth quarter report (July--September 1993) and the 1993 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, has completed the construction of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). ENCOAL submitted an application to the US Department of Energy (DOE) in August 1989, soliciting joint funding of the project in the third round of the Clean Coal Technology Program. The project was selected by DOE in December, 1989 and the Cooperative Agreement approved in September, 1990. Construction, commissioning, and start-up of the ENCOAL mild coal gasification facility was completed in June of 1992, and the project is currently in the operations phase. Some plant modifications have been required and are discussed in this report.

  1. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil.

    PubMed

    Di, Yage; Cheung, C S; Huang, Zuohua

    2009-01-01

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultra-low sulfur diesel, bi oesel and their blends, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev/min. Blended fuels containing 19.6%, 39.4%, 59.4% and 79.6% by volume of biodiesel, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. Biodiesel used in this study was converted from waste cooking oil. The following results are obtained with an increase of biodiesel in the fuel. The brake specific fuel consumption and the brake thermal efficiency increase. The HC and CO emissions decrease while NO(x) and NO(2) emissions increase. The smoke opacity and particulate mass concentrations reduce significantly at high engine load. In addition, for submicron particles, the geometry mean diameter of the particles becomes smaller while the total number concentration increases. For the unregulated gaseous emissions, generally, the emissions of formaldehyde, 1,3-butadiene, toluene, xylene decrease, however, acetaldehyde and benzene emissions increase. The results indicate that the combination of ultra-low sulfur diesel and biodiesel from waste cooking oil gives similar results to those in the literature using higher sulfur diesel fuels and biodiesel from other sources. PMID:18947856

  2. Micronized coal burner facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W. (Inventor)

    1984-01-01

    A combustor or burner system in which the ash resulting from burning a coal in oil mixture is of submicron particle size is described. The burner system comprises a burner section, a flame exit nozzle, a fuel nozzle section, and an air tube by which preheated air is directed into the burner section. Regulated air pressure is delivered to a fuel nozzle. Means are provided for directing a mixture of coal particles and oil from a drum to a nozzle at a desired rate and pressure while means returns excess fuel to the fuel drum. Means provide for stable fuel pressure supply from the fuel pump to the fuel nozzle.

  3. National Coal Quality Inventory (NACQI)

    SciTech Connect

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  4. Environmentally conscious coal combustion

    SciTech Connect

    Hickmott, D.D.; Brown, L.F.; Currier, R.P.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  5. Characteristics of single-particle coal combustion

    SciTech Connect

    Timothy, L.D.; Sarofim, A.F.; Beer, J.M.

    1982-01-01

    The paper discusses the measurement of the burning history of single coal particles, using a two-color optical pyrometer. From intensity traces at two wave-lengths, information on burning times and temperatures, the duration of a volatile flame, and projected areas was obtained for two lignite and three bituminous coals. The coals were pulverized, classified in 38-45 and 90-105 micrometer size ranges, and burned at furnace temperatures of 1250 and 1700 K in atmospheres containing from 15 to 100% oxygen. The intensity traces at short times showed the influence of either attenuation by volatiles or, in some cases, an intense peak attributed to luminous radiation by soot. A model was developed to simulate the combustion of a coal particle. Model predictions of the duration of volatile flames agreed with the values inferred from the intensity traces. Burning times predicted by the model agreed partially with measured values. At 1700 K, the bituminous coal burned close to the predicted diffusion-limited times, while the lignite coal took longer. At 1250 K, the experimental burnout times for all coals were longer than predicted. Possible reasons for the low predictions may be differences in volatile yields and retardation of the reaction by finely distributed ash particles.

  6. CHARACTERISTICS OF SINGLE PARTICLE COAL COMBUSTION

    EPA Science Inventory

    The paper discusses the measurement of the burning history of single coal particles, using a two-color optical pyrometer. rom intensity traces at two wavelengths, information on burning times and temperatures, the duration of a volatile flame, and projected areas was obtained for...

  7. Power from coal and biomass via CFB

    SciTech Connect

    Giglio, R.; Wehrenberg, J.

    2009-04-15

    Circulating fluidized bed technology enables burning coal and biomass to generate power while reducing emissions at the same time. Flexi-Burn CFB is being developed. It produces a CO{sub 2} rich flue gas, form which CO{sub 2} can be captured.

  8. Micronized-Coal Burner Facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W.

    1986-01-01

    Micronized-coal (coal-in-oil mix) burner facility developed to fulfill need to generate erosion/corrosion data on series of superalloy specimens. In order to successfully operate gas turbine using COM, two primary conditions must be met. First, there must be adequate atomization of COM and second, minimization of coking of burner. Meeting these conditions will be achieved only by clean burning and flame stability.

  9. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1991--December 31, 1991

    SciTech Connect

    Not Available

    1992-02-01

    This project will demonstrate an advanced thermal coal drying process coupled with physical cleaning techniques to upgrade high-moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal will be processed through two vibrating fluidized bed reactors that will remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal will be put through a deep-bed stratifier cleaning process to effect separation of the pyrite rich ash. The process will enhance low-rank western coals, usually with a moisture content of 25--55%, sulfur content of 0.5--1.5%, and heating value of 5,500--9,000 Btu/lb by producing a stable, upgraded coal product with a moisture content as low as 1%, sulfur content as low as 0.3%, and heating value up to 12,000 Btu/lb.

  10. Coin and currency burn.

    PubMed

    Bhatti, Asif Zubair; Chapman, William Thomas; Naveed, Masroor; McDiarmid, James R

    2006-01-01

    We describe a case of burns purposefully sustained in a patient performing a bizarre pub game while under the influence of alcohol. Full-thickness burns were sustained through contact with a 50-p UK currency coin essentially heated with burning paper. We discuss the nature and ease by which such burns can be sustained in the community and the increasing awareness of alcohol abuse as a factor in a significant proportion of such self-inflicted burns. PMID:16566547

  11. Fuel handling considerations when switching to PRB coal

    SciTech Connect

    Purutyan, H.; Schimmelpfenning, M.

    1998-07-01

    Many power producers have been switching fuels to Powder River Basin coal due its low sulfur content, large supply and low cost. A major consideration when switching to PRB coal is the design of the fuel handling system. Since PRB coal is more prone to spontaneous combustion in silos, bunkers and other areas where it may remain stagnant for extended periods, design of the handling system for reliable, non-stagnant flow is essential. In addition, reduced BTU content and the dusty nature of these coals may require certain upgrades to existing handling systems. This paper describes a systematic approach to reviewing and, as necessary, modifying handling system designs to avoid problems. Potential trouble areas such as coal receiving hoppers, reclaim hoppers, silos, bunkers, and transfer chutes are discussed. Mass flow and funnel flow patterns that develop in silos and bunkers are presented. Funnel flow results in large stagnant regions, which is a major problem for coals that combust easily. Mass flow patterns, which eliminate the stagnant coal regions, are also explained. Coal properties and bunker designs that result in mass flow and funnel flow are described. Transfer chute design techniques to avoid pluggages, reduce dusting, and minimize chute wear are discussed. Union Electric's Rush Island Plant is used as an example where this approach was used to prevent handling problems. Specific example of modifications required for reliable, stagnation free coal flow, which minimizes dusting and considers hopper and chute material wear are described. The cost analysis associated with these modifications is briefly discussed.

  12. A New Use for High-Sulfur Coal

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; England, C.

    1982-01-01

    New process recovers some of economic value of high-sulfur coal. Although high-sulfur content is undesirable in most coal-utilization schemes (such as simple burning), proposed process prefers high-sulfur coal to produce electrical power or hydrogen. Potential exists for widespread application in energy industry.

  13. Coal gasification power generation, and product market study. Topical report, March 1, 1995--March 31, 1996

    SciTech Connect

    Sheesley, D.; King, S.B.

    1998-12-31

    This Western Research Institute (WRI) project was part of a WRI Energy Resource Utilization Program to stimulate pilot-scale improved technologies projects to add value to coal resources in the Rocky Mountain region. The intent of this program is to assess the application potential of emerging technologies to western resources. The focus of this project is on a coal resource near the Wyoming/Colorado border, in Colorado. Energy Fuels Corporation/Kerr Coal Company operates a coal mine in Jackson County, Colorado. The coal produces 10,500 Btu/lb and has very low sulfur and ash contents. Kerr Coal Company is seeking advanced technology for alternate uses for this coal. This project was to have included a significant cost-share from the Kerr Coal Company ownership for a market survey of potential products and technical alternatives to be studied in the Rocky Mountain Region. The Energy Fuels Corporation/Kerr Coal Company and WRI originally proposed this work on a cost reimbursable basis. The total cost of the project was priced at $117,035. The Kerr Coal Company had scheduled at least $60,000.00 to be spent on market research for the project that never developed because of product market changes for the company. WRI and Kerr explored potential markets and new technologies for this resource. The first phase of this project as a preliminary study had studied fuel and nonfuel technical alternatives. Through related projects conducted at WRI, resource utilization was studied to find high-value materials that can be targeted for fuel and nonfuel use and eventually include other low-sulfur coals in the Rocky Mountain region. The six-month project work was spread over about a three-year period to observe, measure, and confirm over time-any trends in technology development that would lead to economic benefits in northern Colorado and southern Wyoming from coal gasification and power generation.

  14. The physical and chemical characteristics of pulverized coal combustion ashes

    SciTech Connect

    Ozasa, Kazuo; Kamijo, Tsunao; Owada, Tetsuo; Hosoda, Nobumichi

    1999-07-01

    Japan is the world's largest consumer of coal. Most of it is imported from various countries around the world. While coal generates more CO{sub 2}, which contributes to the greenhouse effect more than other types of fuel, plans are being drawn up to depend more on coal energy in order to maintain diversity in energy sources. Production of coal ash will increase as a result. In Japan, therefore, the public and private sectors are active in both developing and implementing clean, efficient and effective coal utilization technologies. More than 100 types of coal are being burned in Japan at present. For example, a power generating plant burns 20 to 40 different types of coal annually. Since a single type or coal blended with several different types are burned in Japan, the properties of coal ash differ by consuming plant and season. Therefore, understanding coal ash characteristics based on various properties is essential to the effective utilization of coal. The center of Coal Utilization, Japan has researched and developed effective utilization of coal ash as a supplementary project of the Ministry of International Trade and Industry. Chemical, physical, soil, and leaching characteristics, which are fundamental to using pulverized coal ash as a civil engineering material in large quantities, were selected and are described in this report.

  15. Characterization and evaluation of washability of Alaskan coals. Final technical report for Phase II, July 1, 1977-February 29, 1979

    SciTech Connect

    Rao, P. D.; Wolff, E. N.

    1980-10-01

    This report is a result of the second part of a continuing study to obtain washability data for Alaskan coals to supplement the efforts of the US Department of Energy in their ongoing studies on washability of US coals. Alaska, with its large coal resources, could supply the nation with environmentally acceptable low-ash, low-sulfur coals. Washability characteristics were determined for eleven coal samples, from the Northern Alaska, Broad Pass, Little Tonzona, Tramway Bar, Beluga, Yentna, Kenai and Nenana coal fields. The raw coals were crushed to 1-1/2 inches, 3/8 inch and 14 mesh top sizes and float-sink separations were made at 1.30, 1.40, and 1.60 specific gravities. Detailed results of the testing are given.

  16. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    SciTech Connect

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  17. EFFECTS OF CHANGING COALS ON THE EMISSIONS OF METAL HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF PULVERIZED COAL

    EPA Science Inventory

    The report discusses tests conducted at EPA's Air Pollution Prevention and Control Division to evaluate the effects of changing coals on emissions of metal hazardous air pollutants from coal-fired boilers. Six coals were burned in a 29 kW (100,000 Btu/hr) down-fired combustor und...

  18. Coal cleaning program for Kazakstan

    SciTech Connect

    Popovic, N.; Daley, D.P.; Jacobsen, P.S.

    1996-12-31

    In 1992 the United States Agency for International Development (USAID) started sponsoring general projects in the Energy and Environmental Sector to improve health and well-being, to improve the efficiency of the existing fuel and energy base, and to assist in the establishment of a strong private sector. Coal Cleaning Program, covered in this report, is one of the recently completed projects by Burns and Roe, which is a prime USAID contractor in the field of energy and environment for the NIS. The basis for coal cleaning program is that large coal resources exist in northeast Kazakstan and coal represents the major fuel for heat and electricity generation at present and in the foreseeable future. The coal mined at Karaganda and Ekibastuz, the two main coal mining areas of Kazakstan, currently contains up to 55% ash, whereas most boilers in Kazakstan are designed to fire a coal with an ash content no greater than 36%. The objective of the task was to determine optimum, state-of-the-art coal cleaning and mining processes which are applicable to coals in Kazakstan considering ultimate coal quality of 36% ash, environmental quality, safety and favorable economics.

  19. Alaska coal geology, resources, and coalbed methane potential

    USGS Publications Warehouse

    Flores, Romeo M.; Stricker, Gary D.; Kinney, Scott A.

    2004-01-01

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines in these two provinces. Alaskan coal resources have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. The identified resources are near existing and planned infrastructure to promote development, transportation, and marketing of this low-sulfur coal. The relatively short distances to countries in the west Pacific Rim make them more exportable to these countries than to the lower 48 States of the United States. Another untapped but potential resource of large magnitude is coalbed methane, which has been estimated to total 1,000 trillion cubic feet (28 trillion cubic meters) by T.N. Smith 1995, Coalbed methane potential for Alaska and drilling results for the upper Cook Inlet Basin: Intergas, May 15 - 19, 1995, Tuscaloosa, University of Alabama, p. 1 - 21.

  20. FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Tom Millar

    2003-07-30

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001 ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC baghouse. Activated carbon was injected between the ESP and COHPAC units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC unit. The test also showed that activated carbon was effective in removing both forms of mercury: elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON) approach.

  1. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Cindy Larson

    2006-01-27

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  2. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Cindy Larson

    2006-04-24

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  3. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac: Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2005-04-28

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  4. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Cindy Larson

    2005-07-14

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  5. FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2004-01-29

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  6. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Cindy Larson

    2005-10-24

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  7. FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2003-10-31

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC baghouse. Activated carbon was injected between the ESP and COHPAC units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  8. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2004-06-04

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  9. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2005-01-24

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  10. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2004-10-25

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  11. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2004-08-06

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  12. Coal-Quality Information - Key to the Efficient and Environmentally Sound Use of Coal

    USGS Publications Warehouse

    Finkleman, Robert B.

    1997-01-01

    The rock that we refer to as coal is derived principally from decomposed organic matter (plants) consisting primarily of the element carbon. When coal is burned, it produces energy in the form of heat, which is used to power machines such as steam engines or to drive turbines that produce electricity. Almost 60 percent of the electricity produced in the United States is derived from coal combustion. Coal is an extraordinarily complex material. In addition to organic matter, coal contains water (up to 40 or more percent by weight for some lignitic coals), oils, gases (such as methane), waxes (used to make shoe polish), and perhaps most importantly, inorganic matter (fig. 1). The inorganic matter--minerals and trace elements--cause many of the health, environmental, and technological problems attributed to coal use (fig. 2). 'Coal quality' is the term used to refer to the properties and characteristics of coal that influence its behavior and use. Among the coal-quality characteristics that will be important for future coal use are the concentrations, distribution, and forms of the many elements contained in the coal that we intend to burn. Knowledge of these quality characteristics in U.S. coal deposits may allow us to use this essential energy resource more efficiently and effectively and with less undesirable environmental impact.

  13. Clinical forensic evidence in burns: rescuer burns.

    PubMed

    Kumar, Pramod; Gopal, Kirun; Ramnani, Sunil

    2006-12-01

    In the literature no systematic study is available on rescuer burn for victims of burn injury. This is a retrospective study of nine patients (five admitted and four outpatients) were treated in this hospital as rescuer burns in 3.5 years. All nine patients were males. Average age of the patient treated on outpatient basis was 47 years (ranging between 44 and 52) and total burn area ranged for 1-4%. Average age of the five patients treated on inpatient basis was 32.6 years (ranging between 30 and 34). The total burn area ranged from 14.5 to 38%. During the period of study, in addition to nine rescuer burns, one patient sustained burn before the rescue attempt due to the victim hugging the rescuer. Based on the study of patterns of burn, these patients were found to have three grades of burn injury: Grade 1--upper extremity involvement only. (A) only one upper extremity involvement, (B) both upper extremities involvement, Grade 2--upper extremity/extremities and face involvement, Grade 3--upper extremity/extremities, face-neck, adjacent chest and lower extremity involvement. PMID:17011132

  14. Numerical investigation of pulverized coal aero mixture combustion at the presence of flow swirling

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. A.; Morozov, K. L.; Chernetskii, M. Yu.

    2015-01-01

    Numerical investigation results of burning pulverized coal aero mixture in the presence of swirl flow have been presented. The mathematical model has been chosen allowing describing correctly the pulverized coal combustion processes in the furnace with a swirl burner.

  15. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel.

    PubMed

    Moser, Bryan R; Vaughn, Steven F

    2010-01-01

    Methyl and ethyl esters were prepared from camelina [Camelina sativa (L.) Crantz] oil by homogenous base-catalyzed transesterification for evaluation as biodiesel fuels. Camelina oil contained high percentages of linolenic (32.6 wt.%), linoleic (19.6 wt.%), and oleic (18.6 wt.%) acids. Consequently, camelina oil methyl and ethyl esters (CSME and CSEE) exhibited poor oxidative stabilities and high iodine values versus methyl esters prepared from canola, palm, and soybean oils (CME, PME, and SME). Other fuel properties of CSME and CSEE were similar to CME, PME, and SME, such as low temperature operability, acid value, cetane number, kinematic viscosity, lubricity, sulfur and phosphorous contents, as well as surface tension. As blend components in ultra low-sulfur diesel fuel, CSME and CSEE were essentially indistinguishable from SME and soybean oil ethyl ester blends with regard to low temperature operability, kinematic viscosity, lubricity, and surface tension. PMID:19740653

  16. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    PubMed

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine. PMID:19913283

  17. Coal to methanol feasibility study: Beluga methanol project. Volume I. Technical. Final report

    SciTech Connect

    Not Available

    1981-09-01

    Cook Inlet Region, Inc. and Placer Amex Inc. propose to develop a commercial scale coal-to-methanol operation located close to coal deposits in Kenai Peninsula Borough, Alaska, on the west side of Cook Inlet. The plan of the sponsors provides for participation in the venture by additional equity partners and financial assistance from the US Synthetic Fuels Corporation. The overall concept envisions utilization of low sulfur, high volatile sub-bituminous coal from Alasks's Beluga coal field as feed for a process plant which will produce fuel grade methanol at the rate of 54,000 barrels per day, and distribution of the product to existing and potential markets on the US West Coast. The Beluga Area is estimated to contain over one billion tons of coal recoverable by surface mining methods. For the purposes of the feasibility study, two areas, containing approximately 500 million tons of recoverable, low-sulfur coal, have been planned for surface mining. An extremely low average sulfur content of less than 0.2% and a location adjacent to deep coastal waters make the Beluga Area unique among known world coal deposits. It is proposed to extract a total of 8.5 million tons of coal annually from the two mines. The process plant will be located on the west side of Cook Inlet at a point approximately 60 miles southwest of Anchorage and 25 miles southeast of the coal mines. The principal processes involved in the production of methanol from coal are coal gasification, syngas upgrading and methanol synthesis. It is intended to use only commercially proven technology and equipment with demonstrated potential for further improvement in efficiency.

  18. First Aid: Burns

    MedlinePlus

    ... You can get burned by heat, fire, radiation, sunlight, electricity, chemicals or hot or boiling water. There ... skin. The burned area will be sensitive to sunlight for up to one year, so you should ...

  19. Treating and Preventing Burns

    MedlinePlus

    ... Issues Listen Español Text Size Email Print Share Treating and Preventing Burns Page Content Article Body Burns ... home, out of children’s reach, and away from heat or ignition sources. Lower the temperature of your ...

  20. "Coal Poisons Everything It Touches." Teaching about Coal, Climate, and the Future of the Earth

    ERIC Educational Resources Information Center

    Bigelow, Bill

    2013-01-01

    This article describes an activity in which ninth graders explore a plan to strip-mine coal in Wyoming and Montana, send it by train to the Northwest, then ship it to Asia to be burned. Students' questions ranged from "Why are we mining for more coal if it's the biggest contributor to global warming" and "How can adults

  1. "Coal Poisons Everything It Touches." Teaching about Coal, Climate, and the Future of the Earth

    ERIC Educational Resources Information Center

    Bigelow, Bill

    2013-01-01

    This article describes an activity in which ninth graders explore a plan to strip-mine coal in Wyoming and Montana, send it by train to the Northwest, then ship it to Asia to be burned. Students' questions ranged from "Why are we mining for more coal if it's the biggest contributor to global warming" and "How can adults…

  2. Chemical analyses of coal, coal-associated rocks and coal combustion products collected for the National Coal Quality Inventory

    USGS Publications Warehouse

    Hatch, Joseph R.; Bullock, John H., Jr.; Finkelman, Robert B.

    2006-01-01

    In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).

  3. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    SciTech Connect

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  4. [Multiple trauma and burns].

    PubMed

    Carsin, H; Dutertre, G; Le Bever, H; Ainaud, P; Le Rveill, R; Rives, J M

    1995-01-01

    In peace time, burn injury combined with traumatic, chemical or radioactive casualties is rarely encountered and often unrecognized; during disasters, burn injury is unlikely the only trauma. The authors try to bring out the main pathophysiological, diagnostic and therapeutic characteristics of changes induced by combined lesions on burn injury and vice-versa. PMID:7671090

  5. Learn Not To Burn.

    ERIC Educational Resources Information Center

    English, Nancy; Hendricks, Charlotte M.

    1997-01-01

    Describes the "Learn Not to Burn Preschool Program," a low-cost fire safety awareness and burn prevention curriculum for young children. The program promotes eight burn prevention methods--including practicing an escape plan--using developmentally appropriate learning objectives to increase children's fire safety knowledge, skill, and…

  6. Materials exposure test in the heat recovery boiler of HYCOL coal gasification pilot plant

    SciTech Connect

    Morimoto, T.; Oenay, B.; Fukuda, Y.; Kida, E.; Nomura, K.

    1995-12-31

    Commercial alloys, some with aluminized or chromized coatings were tested in the heat recovery boiler of the HYCOL coal gasification pilot plant to assess their corrosion behavior. Specimens were exposed, at 400 to 700 C, to syngas generated by the gasification of low-sulfur, low-chlorine coals. Alloys with Cr contents greater than 12% performed the best in all the tests conducted. Corrosion losses of the specimens used in tests with frequent downtime were found to be lighter regardless of their Cr content. Corrosion products formed on those specimens were less protective. Aluminized or chromized low alloy steels were severely attacked by downtime corrosion processes such as pitting.

  7. Evaluating potential benefits of burning lower quality fuel oils using the oil burn optimization model

    SciTech Connect

    Babilonia, P.

    1995-09-01

    As a result of a 1987 New York State Public Service Commission Audit of Niagara Mohawk`s Fuel Supply operations, Niagara Mohawk (NMPC) became interested in analyzing the plant performance impacts of burning fuels of differing qualities at its various generating stations. Black & Veatch (B&V) had previously developed a computer model for EPRI that analyzed coal quality impacts (i.e., Coal Quality Impact Model). As a result of B&V`s work, NMPC contracted with B&V to first develop custom-designed software for its coal stations (Coal Burn Optimization Model (CBOM)). Subsequently, B&V was retained to develop a similar designed software for its oil stations, Oswego and Albany Steam Stations. The Oil Burn Optimization Model (OBOM) was, therefore, developed. OBOM was designed to be used to evaluate residual fuel oil supply options by predicting their fuel-related plant operating and maintenance costs. Fuel oil-related costs can also be compared to natural gas-related costs. Costs are estimated by predicting performance of various plant equipment. Predictions focus on combustion calculations, material flows, auxiliary power, boiler efficiency, precipitator and fan performance, fuel pumping and preheating requirements, and corrosion considerations. Total costs at the busbar attributed to fuel are calculated from these predictions. OBOM is a PC-based system operating under MS-DOS. The model produces hard copy results for quick comparison of fuels and their potential effects on plant operating and maintenance costs.

  8. To burn or not to burn

    SciTech Connect

    Busch, L.

    1993-01-01

    While taking a match to an oil slick may sound like the making of a chaotic inferno, emergency response specialists say burning may be the most efficient way to remove large oil spills from the ocean's surface. But tests of this technique are being resisted by environmentalists as well as the Environmental Protection Agency (EPA), which has final authority over the matter. The debate over test burning arose most recently in Alaska when a proposal to spill and then ignite 1,000 barrels of crude on the Arctic Ocean this past summer was rejected by the EPA. The EPA didn't object to the technique or to the notion of burning spilled oil. However, it contends that it's not necessary to spill thousands of gallons of oil to conduct tests, and unnecessarily pollute the environment, when plenty of oil is already available from accidental spills. Researchers disagree, claiming they won't be able to use the burning technique on an actual spill until it has been tested in a controlled experiment. Despite such concerns, the Canadian government is going ahead with a test burn off the coast of Newfoundland next year. Faced with a choice of test burning or the kind of shoreline contamination left in the wake of the Exxon Valdez disaster, Environment Canada opts for testing. Learning valuable lessons about rapid oil-spill cleanup is worth the relatively minor risks to the environment that test burning would pose.

  9. Use of coal cleaning for compliance with SO2 emission regulations. Final report June 1977-June 1981

    SciTech Connect

    Hall, E.H.; Lemmon, A.W. Jr.; Robinson, G.L.; Goodman, F.K.; McCreery, J.H.

    1981-09-01

    The report gives results of an evaluation of coal cleaning as a means of controlling SO2 emissions from coal-fired stationary sources. Coal cleaning was examined in the light of various existing and proposed SO2 emissions regulations to determine applications in which the technology would be most useful. Barriers were identified that prevent wider application of coal cleaning. Actions are described which should be taken to overcome these barriers. Much information about coal is compiled as resource data on the coal reserve base, present and projected coal production, coal cleanability, current and projected coal use by utilities and industry, size and age distribution of coal-fired facilities, and the nature of coal contracts. Environmental impacts of coal cleaning are compared with those of other sulfur removal strategies such as flue gas desulfurization and the use of low-sulfur coal. Similarly, costs of the various SO2 control alternatives are compared. Cost analyses show an economic superiority for physical coal cleaning generally, even if supplemental application of another method, FGD, must be used to achieve full compliance with NSPS or SIP emission limits.

  10. Performance of a small scale burner with the firing of coal:manure blends

    SciTech Connect

    Frazitta, S.; Annamalai, K.; Sweeten, J.

    1994-12-31

    Due to increasingly harsh environmental regulations, the demand for low sulfur (S) coal has dramatically increased. This increase in demand is expected to cause the price of coal to rise. Such a scenario has caused the utilities to explore the possibilities of supplementing coal with fuel alternatives such as the byproducts of process industries. The supplemental fuel for utilities located near feedlots (e.g. Northwest Texas) happens to be feedlot manure. Feedlot manure is attractive because it is nearly ten times cheaper than coal and is relatively inexpensive to transport. A small scale boiler burner facility has been constructed to simulate a utility class boiler. Experiments were conducted with coal only and then for coal/feedlot manure. Three types of feedlot manure are examined; raw feedlot manure, partially composted feedlot manure, and finished composted feedlot manure. Performance characteristics and emission data were taken for each case. A summary of the results is as follows: (1) Low sulfur Wyoming coal was fired and a gasification efficiency of 66 % was measured; (2) Emissions measurements were recorded and it was seen that emissions of NO{sub x} and SO{sub 2} increased as the burnt mass fraction increased. however, all emissions were within NSPS guidelines; (3) The successful firing of coal and feedlot manure was achieved, a gasification efficiency in the range of 86% was measured, which is higher than 66% obtained when firing coal along; (4) When the fuel blend is fully burnt, the NO{sub x} emissions with the blend firing was lower than the firing with coal alone.

  11. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  12. Geomorphology of coal seam fires

    NASA Astrophysics Data System (ADS)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires. Finally, coal fire geomorphology helps to explain landscape features whose occurrence would otherwise not be understood. Although coal fire-induced thermal anomalies and gas release are also indications of coal fire activity, as addressed by many investigators, no assessment is complete without sound geomorphologic mapping of the fire-induced geomorphologic features.

  13. Facial Burns - Our Experience

    PubMed Central

    Zatriqi, Violeta; Arifi, Hysni; Zatriqi, Skender; Duci, Shkelzen; Rrecaj, Sh.; Martinaj, M.

    2013-01-01

    Facial burns are generally considered severe. This is due to the possibility of respiratory complications. First responders check the nostrils for singed hairs. In severe cases there may be soot around the nose and mouth and coughing may produce phlegm that includes ash. Facial and inhalational burns compromise airways. They pose difficulties in pre-hospital resuscitation and are challenge to clinicians managing surviving burn victims in the intensive care setting. Management problems – resuscitation, airway maintenance and clinical treatment of facial injuries are compounded if the victim is child. Inhalational burns reduce survivability, certainly in adult victim. In our retrospective study we found that facial burns dominated in male gender, liquids and scalds are the most common causes of facial burns in children whereas the flame and electricity were the most common causes of facial burns in adults. We came to the conclusion in our study that surgical treatment minimizes complications and duration of recovery. PMID:23687458

  14. Mulled Coal: A beneficiated coal form for use as a fuel or fuel intermediate

    SciTech Connect

    Not Available

    1991-09-01

    During the past quarter Energy International has evaluated additional mull formulations with varying reagent additives, mixing times, and particle sizes. The Environmental Review was completed and conceptual designs developed for the Mull Preparation and CWF Conversion Systems. As these technical developments move toward commercial application, the needs for coordinated efforts and integrated requirements have become increasingly apparent. Systems are vitally needed to integrate energy delivery systems from the raw resource through processing to application and end use. Problems have been encountered in the preparation of conventional coal-water fuels that mutually satisfy the requirements for storage stability, handling, preparation, atomization, combustion, and economics. Experience has been slow in evolving generic technologies or products and coal-specific requirements and specifications continue to dominate the development. Thus, prospects for commercialization remain highly specific to the coal, the processor, and the end use. Developments in advanced beneficiation of coal to meet stringent requirements for low ash and low sulfur can be anticipated to further complicate the problem areas. This is attributable to the beneficiated coal being produced in very fine particles with a high surface area, modified surface characteristics, reduced particle size distribution range, and high inherent moisture.

  15. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    USGS Publications Warehouse

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  16. Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trail 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal

    SciTech Connect

    1997-11-01

    This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993, Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test on C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

  17. Clean coal project nears commercial operation

    SciTech Connect

    Baron, E.S. II

    1995-02-01

    A first for NYSEG and the US: a clean coal system that turns power plant waste into sales. This article describes a power plant on the eastern shore of Cayuga Lake in upstate New York, where New York State Electric and Gas Corp. (NYSEG) has finished building and is now operating an advanced clean coal system that represents a first for the US and a milestone for the nation's coal-burning utilities. The system's state-of-the-art technologies show how this country can use its vast coal reserves while reducing the fuel's impact on the environment.

  18. Laser ignition and combustion of pulverized coals

    SciTech Connect

    Chen, J.C.

    1995-12-31

    The authors have made direct observation of pulsed-laser ignition and combustion of pulverized coals with high-speed video. The ignition and combustion behaviors of amorphous carbon spheres and an anthracite were as expected for heterogeneous ignition and reaction. Surprisingly, the reaction of a high-volatile bituminous coal and a subbituminous coal was accompanied by two broad emissions of light, as detected with a photomultiplier tube. For these coals, high-speed videos revealed that two successive clouds of burning volatiles surrounded the particles, and each cloud was associated with one of the emissions. The authors present a possible explanation for this finding.

  19. Advanced Coal Conversion Process Demonstration Project. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    1996-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1994, through March 31, 1994. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  20. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1993--December 31, 1993

    SciTech Connect

    1995-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through December 31, 1993. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low- rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  1. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    SciTech Connect

    Not Available

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  2. Fossil fuel and biomass burning effect on climate - Heating or cooling?

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Fraser, Robert S.; Mahoney, Robert L.

    1991-01-01

    The basic theory of the effect of pollution on cloud microphysics and its global implications is applied to compare the relative effect of a small increase in the consumption rate of oil, coal, or biomass burning on cooling and heating of the atmosphere. The characteristics of and evidence for the SO2 induced cooling effect are reviewed. This perturbation analysis approach permits linearization, therefore simplifying the analysis and reducing the number of uncertain parameters. For biomass burning the analysis is restricted to burning associated with deforestation. Predictions of the effect of an increase in oil or coal burning show that within the present conditions the cooling effect from oil and coal burning may range from 0.4 to 8 times the heating effect.

  3. Emergent burn care.

    PubMed

    Harvey, J S; Watkins, G M; Sherman, R T

    1984-02-01

    The estimated 32,600,000 fires that occur annually in the United States produce over 300,000 injuries and 7,500 deaths. Ten percent of hospitalized burn victims die as a direct result of the burn. Initial evaluation and management of the burn patient are critical. The history should include the burn source, time of injury, burn environment, and combustible products. The burn size is best estimated by the Lund and Browder chart, and the burn depth is determined by clinical criteria. Pulmonary involvement and circumferential thoracic or extremity burns require detection and aggressive treatment to maintain organ viability. Hospitalization is usually necessary for adults with burns larger than 10% of the total body surface area (TBSA) or children with burns larger than 5% of TBSA. Major burns, those of 25% or more of TBSA or of 10% or more of full thickness, should be considered for treatment at a burn center, as well as children or elderly victims with burns of greater than 10% TBSA. Lactated Ringer's solution, infused at 4 ml/kg/% TBSA, is generally advocated for initial fluid restoration. After the acute phase (48 hours), replacement of evaporative and hypermetabolic fluid loss is necessary. These losses may constitute 3 to 5 liters per day for a 40% to 70% TBSA burn. Blood transfusion is often required because of persistent loss of red blood cells (8% per day for about ten days). Many electrolyte abnormalities may occur in the first two weeks. Pulmonary injury commonly is lethal. Circumoral burns, oropharyngeal burns, and carbonaceous sputum are indicative of inhalation injury, but arterial blood gas determinations, fiberoptic bronchoscopy, and xenon lung scans are useful for confirming the diagnosis. Humidified oxygen, intubation, positive-pressure ventilation, and pulmonary toilet are the mainstays of therapy for inhalation injury. Wound care is initially directed at preservation of vital function by escharotomy, if restrictive eschar impairs ventilatory or circulatory function. Antibacterial agents may be applied to the burn, but invasive sepsis, defined as greater than 10(5) organisms per gram of tissue with invasion of subjacent viable tissue, requires systemic antibiotic therapy. Wound debridement is done by daily hydrotherapy, tangential excision, chemicals, primary excision, and grafting, tailoring the technique to the individual burn.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:6367073

  4. Application of computer graphics to generate coal resources of the Cache coal bed, Recluse geologic model area, Campbell County, Wyoming

    USGS Publications Warehouse

    Schneider, G.B.; Crowley, S.S.; Carey, M.A.

    1982-01-01

    Low-sulfur subbituminous coal resources have been calculated, using both manual and computer methods, for the Cache coal bed in the Recluse Model Area, which covers the White Tail Butte, Pitch Draw, Recluse, and Homestead Draw SW 7 1/2 minute quadrangles, Campbell County, Wyoming. Approximately 275 coal thickness measurements obtained from drill hole data are evenly distributed throughout the area. The Cache coal and associated beds are in the Paleocene Tongue River Member of the Fort Union Formation. The depth from the surface to the Cache bed ranges from 269 to 1,257 feet. The thickness of the coal is as much as 31 feet, but in places the Cache coal bed is absent. Comparisons between hand-drawn and computer-generated isopach maps show minimal differences. Total coal resources calculated by computer show the bed to contain 2,316 million short tons or about 6.7 percent more than the hand-calculated figure of 2,160 million short tons.

  5. Rocky Mountain Tertiary coal-basin models and their applicability to some world basins

    USGS Publications Warehouse

    Flores, R.M.

    1989-01-01

    Tertiary intermontane basins in the Rocky Mountain region of the United States contain large amounts of coal resources. The first major type of Tertiary coal basin is closed and lake-dominated, either mud-rich (e.g., North Park Basin, Colorado) or mud plus carbonate (e.g., Medicine Lodge Basin, Montana), which are both infilled by deltas. The second major type of Tertiary coal basin is open and characterized by a preponderance of sediments that were deposited by flow-through fluvial systems (e.g., Raton Basin, Colorado and New Mexico, and Powder River Basin, Wyoming and Montana). The setting for the formation of these coals varies with the type of basin sedimentation, paleotectonism, and paleoclimate. The mud-rich lake-dominated closed basin (transpressional paleotectonism and warm, humid paleoclimate), where infilled by sandy "Gilbert-type" deltas, contains thick coals (low ash and low sulfur) formed in swamps of the prograding fluvial systems. The mud- and carbonate-rich lake-dominated closed basin is infilled by carbonate precipitates plus coarse-grained fan deltas and fine-grained deltas. Here, thin coals (high ash and high sulfur) formed in swamps of the fine-grained deltas. The coarse-clastic, open basins (compressional paleotectonism and warm, paratropical paleoclimate) associated with flow-through fluvial systems contain moderately to anomalously thick coals (high to low ash and low sulfur) formed in swamps developed in intermittently abandoned portions of the fluvial systems. These coal development patterns from the Tertiary Rocky Mountain basins, although occurring in completely different paleotectonic settings, are similar to that found in the Tertiary, Cretaceous, and Permian intermontane coal basins in China, New Zealand, and India. ?? 1989.

  6. Coal combustion product (CCP) production, use and variability

    SciTech Connect

    Stewart, B.R.

    1999-07-01

    The four types of CCPs produced by electric utility boilers are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) material. In 1997, 55% of electricity generated in the United States was produced by burning coal. Almost 90% of the coal used in the US is burned to generate electricity; during 1997, electric utilities burned 898.5 million metric tons of coal and generated more than 95 million tons of CCPs, a figure that promises to increase owing mostly to the anticipated rise in FGD material generation. The quantities and types of CCPs produced at a given electric utility plant depend, for example, on the type of coal burned, the type of boiler, and the type of emission controls installed. Different types of CCPs possess distinct chemical and physical properties, making each suitable for particular applications.

  7. Burns associated with fondues.

    PubMed Central

    Laliberté, D; Beaucage, C; Watts, N

    1992-01-01

    OBJECTIVE: To describe the causes of burns associated with fondues. DESIGN: Descriptive case series. PATIENTS: All 17 patients admitted to a burn centre between Apr. 1, 1985, and Mar. 31, 1990, whose burns were associated with fondue. Eleven agreed to complete a telephone interview. RESULTS: The age of the 17 patients varied from 2 to 56 (mean 27) years. Two causes were identified: spilling of the contents of the fondue pot and explosion of the fondue fuel when added to the burner during a meal. The telephone interview revealed that eight people other than the respondents were burned during the same accidents. CONCLUSION: Although we identified only badly burned patients the problem may be more extensive. The knowledge of specific causes of burns from handling fondue equipment indicates that preventive action should be undertaken. More epidemiologic information is needed to obtain a precise estimate of the magnitude of this public health problem. PMID:1393897

  8. Boiler efficiency calculation for multiple fuel burning boilers

    SciTech Connect

    Khodabakhsh, F.; Munukutla, S.; Clary, A.T.

    1996-12-31

    A rigorous method based on the output/loss approach is developed for calculating the coal flow rate for multiple fuel burning boilers. It is assumed that the ultimate analyses of all the fuels are known. In addition, it is assumed that the flow rates of all the fuels with the exception of coal are known. The calculations are performed iteratively, with the first iteration taking into consideration coal as the only fuel. The results converge to the correct answer after a few number of iterations, typically four or five.

  9. Outpatient burn management.

    PubMed

    Warner, Petra M; Coffee, Tammy L; Yowler, Charles J

    2014-08-01

    Most burn patients have injuries that may be treated on an outpatient basis. Newer silver-based dressings and improved medications for the treatment of pain and pruritus have led to further growth of outpatient care. The final barrier of distance from the burn center will decrease with the growth of telemedicine. It is incumbent for burn centers to develop outpatient guidelines to facilitate this growth of outpatient care. PMID:25085094

  10. Method for control of subsurface coal gasification

    DOEpatents

    Komar, Charles A.

    1976-12-14

    The burn front in an in situ underground coal gasification operation is controlled by utilizing at least two parallel groups of vertical bore holes disposed in the coalbed at spaced-apart locations in planes orthogonal to the plane of maximum permeability in the coalbed. The combustion of the coal is initiated in the coalbed adjacent to one group of the bore holes to establish a combustion zone extending across the group while the pressure of the combustion supporting gas mixture and/or the combustion products is regulated at each well head by valving to control the burn rate and maintain a uniform propagation of the burn front between the spaced-apart hole groups to gasify virtually all the coal lying therebetween.

  11. Burns and Diabetes

    PubMed Central

    Shalom, A.; Friedman, T.; Wong, L.

    2005-01-01

    Summary Diabetes is often considered a risk factor for poor wound healing and increased complication rates for plastic surgery procedures. Burn injury in diabetic patients may have implications for the length of stay and number of operations required. We therefore we examined the characteristics of diabetic patients admitted to our burn unit and the impact of their condition on their hospital course. Charts of all patients with diabetes admitted to the burn unit from 1995 to 2000 were reviewed (n = 73). Demographic data, percent body surface area burned, anatomical location of the burn, number of surgical procedures required, length and cost of stay, and outcome were noted. The control population included 150 consecutive patients without diabetes treated during the same period. Diabetic patients were older and underwent a higher number of surgical procedures, with increased length of stay and increased mortality, despite an equivalent body surface area burned. They had a higher incidence of scald burns in the lower extremities than the non-diabetic population. This work shows that diabetic patients constitute a unique group. They are significantly older, have an increased rate of surgical interventions, increased hospital stay, and significantly increased mortality compared to a control group with similar surface area burns. This group is also more likely to have scald burns in the lower extremities, mostly due to diabetic neuropathy. This work emphasizes the importance of education and prevention programmes directed towards this group of patients, in order to decrease morbidity, mortality, and hospital costs. PMID:21990975

  12. Burn Wound Infections

    PubMed Central

    Church, Deirdre; Elsayed, Sameer; Reid, Owen; Winston, Brent; Lindsay, Robert

    2006-01-01

    Burns are one of the most common and devastating forms of trauma. Patients with serious thermal injury require immediate specialized care in order to minimize morbidity and mortality. Significant thermal injuries induce a state of immunosuppression that predisposes burn patients to infectious complications. A current summary of the classifications of burn wound infections, including their diagnosis, treatment, and prevention, is given. Early excision of the eschar has substantially decreased the incidence of invasive burn wound infection and secondary sepsis, but most deaths in severely burn-injured patients are still due to burn wound sepsis or complications due to inhalation injury. Burn patients are also at risk for developing sepsis secondary to pneumonia, catheter-related infections, and suppurative thrombophlebitis. The introduction of silver-impregnated devices (e.g., central lines and Foley urinary catheters) may reduce the incidence of nosocomial infections due to prolonged placement of these devices. Improved outcomes for severely burned patients have been attributed to medical advances in fluid resuscitation, nutritional support, pulmonary and burn wound care, and infection control practices. PMID:16614255

  13. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  14. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  15. Cheap oil cools interest in coal-water fuel

    SciTech Connect

    Smock, R.

    1986-02-01

    Plummeting oil prices have put coal-water fuels on the utility industry's shelf. East coast utilities that have evaluated coal-water fuel (CWF) as a replacement for oil say it looks great on all counts except cost. SWF technology has been under development for the last decade as a method for switching to coal in older power plants unable to convert to direct coal burning because they have small boilers designed to burn oil. It finally appears to be ready for commercial application, but the market has lost interest. The few utilities still burning any appreciable amounts of oil see no economic incentive over the near term to incur the costs of switching to a coal-water mixture.

  16. Coal pump

    DOEpatents

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  17. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    1996-06-01

    This detailed report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project. This U.S. Department of Energy (DOE) Clean Coal Technology Project demonstrates an advanced thermal coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to high-quality, low-sulfur fuel. During this reporting period, the primary focus for the project was to expand market awareness and acceptability for the products and the technology. The use of covered hopper cars has been successful and marketing efforts have focused on this technique. Operational improvements are currently aimed at developing fines marketing systems, increasing throughput capacity, decreasing operation costs, and developing standardized continuous operator training. Testburns at industrial user sites were also conducted. A detailed process description; technical progress report including facility operations/plant production, facility testing, product testing, and testburn product; and process stability report are included. 3 figs., 8 tabs.

  18. Pond Creek coal seam in eastern Kentucky - new look at an old resource

    SciTech Connect

    Hower, J.C.; Pollock, J.D.; Klapheke, J.G.

    1986-05-01

    The Middle Pennsylvania/Westphalian B Pond Creek Coal is an important low-sulfur resource in Pike and Martin Counties, Kentucky. The Breathitt Formation seam, also known as the lower Elkhorn coal, accounted for nearly 40% of Pike County's 1983 production of 22 million tons. Although the coal is nearly mined out through central Pike County, substantial reserves still exist in the northern part of the county. Past studies of the seam by the US Bureau of Mines concentrated on the utility of the seam as a coking blend, with additional consideration of the megascopic and microscopic coal petrology. The authors research has focused on the regional variations in the Pond Creek seam, with emphasis on the petrographic variations.

  19. Agglomerate formation during coal combustion; A mechanistic model

    SciTech Connect

    Sarofim, A.F.; Beer, J.M.; Kang, S.W. )

    1991-08-01

    This paper reports that during the plastic stage of coal pyrolysis, there is competition between centrifugal force, which favors the breakup of coal agglomerates, and adhesive force between coal particles. A theoretical model of agglomeration was developed to investigate the adhesive force between contiguous coal particles in an agglomerate. The adhesive force in the process of agglomeration of coal particles was found to be proportional to the duration of plasticity of the particles. It was also found that rapid heating reduces the tendency of coal particles to form agglomerates during the plastic stage of coal pyrolysis. Therefore, whether particles burn individually or as agglomerates can be influenced by the temperature history of the coal or coal-water fuel (CWF) particles and hence by burner design.

  20. Burns and military clothing.

    PubMed

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under high heat loads in the laboratory, combat clothing can ignite, but there is little evidence that clothing ignition is a common occurrence in military burn casualties. Thermoplastic materials have many benefits in civil and military clothing. There is little objective evidence that they exacerbate burns, or complicate burn management. Their use in military clothing must be based on objective evidence, not hearsay. PMID:11307683

  1. Zinc burns: a rare burn injury.

    PubMed

    de Juan, A; Ramon, P; Santoyo, F; Alonso, S

    2000-08-01

    A patient was presented with significant burns resulting from a workplace accident in a zinc production unit. This occurred as a result of the spontaneous combustion of zinc bleed under high pressure. The patient sustained burns to the face, body, and hands and suffered significant injury to the left cornea. Computed imaging revealed solid particles in the ethmoid sinus and also in the right nasal fossa, dissecting the right lacrimal duct. Photographic documentation is presented. This injury was potentially preventable and resulted from poor observance of safety procedures. PMID:10812277

  2. Coal desulfurization

    NASA Technical Reports Server (NTRS)

    Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)

    1982-01-01

    A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.

  3. Laser diagnostics of mineral matter and combustion processes in coal

    SciTech Connect

    Venkateswarlu, P.; George, M.C.; Sekhar, P.C.; Subbarao, V.

    1989-01-01

    This is the third report on this project. During the period covered by the first two reports (October 1, 1987 through August 30, 1988) a sample of low sulfur powdered coal was heated under vacuum from 25 to 1000{degrees}C at a heating rate of 5{degrees}C per minute. The vapors generated were analyzed by a Balzer Quadrupole Mass Spectrometer model QMG 511. The analysis showed that the major constituents of the vapors are aliphatic hydrocarbons. A second set of experiments were carried out to determine the mineral constituents in ash obtained by heating coal in a porcelain crucible at 400--500{degrees}C in a muffle furnace until all the coal was oxidized. Model 3030 Perkin Elmer Atomic Absorption Spectrophotometer was used with appropriate hollow cathode lamps. A dozen elements were identified. Al, Na, K and Fe were the most prominent. During this period we have made an extensive series of measurements on laser induced combustion of coal pellets made from coal powder. C{sub 2}, CN, CO, Na and K were identified from the spectra. We have also fabricated a burner for the study of coal combustion using laser spectroscopic techniques. 1 ref., 4 figs.

  4. Tribological Properties Of Coal Slurries

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Schrubens, Dale L.

    1988-01-01

    Report describes study of tribological properties of coal/methanol slurries with pin-on-disk tribometer. Coefficients of friction, rates of wear of steel pin, and morphological studies of worn surfaces conducted on pins and disks of AISI 440C HT stainless steel and M-50 tool steel, both used as bearing steels. Coal slurries considered as replacement fuels in terrestrial oil-burning facilities and possible fuels for future aircraft turbine engines. Rates of wear of metallic components through which slurries flow limit such practical applications.

  5. Development and evaluation of highly-loaded coal slurries. [Coal-fuel oils, coal-fuel oils-water and coal-water

    SciTech Connect

    McHale, E.T.

    1980-05-01

    For the past two and one-half years Atlantic Research has been conducting a research program which involved development and combustion of slurries of coal in oil and in water. In Phase II good candidate slurries chosen from Phase I were burned in an experimental furnace and their combustion performance evaluated. Two slurry fuels were chosen for the combustion study. One consisted of a 50/40/10 (weight) coal/oil/water mixture, and the other was a 65/35 coal/water slurry stabilized with modified corn starch. The emphasis was placed on the coal/water slurry. Firings were conducted in a one MMBTUH experimental furnace constructed and instrumented for the purpose. A specially designed swirl burner/atomizer was developed for use with the coal/water slurry. Both slurries were burned successfully. Numerous firings were performed of up to one-half duration each. In the case of the coal/water slurry a small amount of gas assist was usually used, although this was eliminated in several shorter duration tests. Thermochemical calculations for coal/water slurries are presented. The presence of water in the slurry represents a relatively small energy penalty. A slurry made from a good coal will have a calorific value in the range of 10,000 Btu/lb. The heat required to vaporize the water of a 70/30 mixture is only about 300 Btu/lb slurry, or about 3 percent. Analysis of the results led to the conclusion that significant improvement in the burning maybe achievable, possibly to the point where combustion rates would be comparable to those of heavy oil. Because of the availability of coal, its cost advantage relative to oil, and especially because of the ease of handling of a liquid fuel, coal/water slurry appears to have considerable potential as a future fuel.

  6. American Burn Association

    MedlinePlus

    ... website MONTHLY HEADLINES from MSKTC (Model Systems Knowledge Translation Center) The American Burn Association Web site contains general information for burn care professionals. The ABA Web site is not intended to respond to requests for medical information, and the ABA is unable to respond ...

  7. Burns following petrol sniffing.

    PubMed

    Janezic, T F

    1997-02-01

    Two patients with burns following petrol sniffing are presented. They sustained an 8 per cent and a 70 per cent total body surface area burn. The majority of the burned areas of both patients were full thickness and were treated by early excision and autografting, and in one patient with cultured epidermal autografts also. Both patients came from disorganized families, had behavioural problems and poor school performance. Clothes soaked with petrol, altered mental state and cigarette smoking are major risk factors for thermal injury while inhaling petrol. In order to recognize acute and chronic intoxication, burns unit staff should be aware of the clinical signs related to inhalation of petrol, especially because some of the burned petrol sniffers might not admit to petrol abuse. The social worker and psychologist are very likely to be vital in the rehabilitation of such patients. PMID:9115618

  8. Burning Mouth Syndrome

    PubMed Central

    Kamala, KA; Sankethguddad, S; Sujith, SG; Tantradi, Praveena

    2016-01-01

    Burning mouth syndrome (BMS) is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS. PMID:26962284

  9. Hand chemical burns.

    PubMed

    Robinson, Elliot P; Chhabra, A Bobby

    2015-03-01

    There is a vast and ever-expanding variety of potentially harmful chemicals in the military, industrial, and domestic landscape. Chemical burns make up a small proportion of all skin burns, yet they can cause substantial morbidity and mortality. Additionally, the hand and upper extremity are the most frequently involved parts of the body in chemical burns, and therefore these injuries may lead to severe temporary or permanent loss of function. Despite this fact, discussion of the care of these injuries is sparse in the hand surgery literature. Although most chemical burns require only first response and wound care, some require the attention of a specialist for surgical debridement and, occasionally, skin coverage and reconstruction. Exposure to certain chemicals carries the risk of substantial systemic toxicity and even mortality. Understanding the difference between thermal and chemical burns, as well as special considerations for specific compounds, will improve patient treatment outcomes. PMID:25653184

  10. Advanced Coal Conversion Process Demonstration Project

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  11. Coal combustion aerothermochemistry research. Final report

    SciTech Connect

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  12. Serious occupational burn injuries treated at a regional burn center.

    PubMed

    Taylor, Allison J; McGwin, Gerald; Cross, James M; Smith, Donald R; Birmingham, Barbara R; Rue, Loring W

    2002-01-01

    This article will present the epidemiology of occupational burn injuries among patients admitted to a regional burn center. Patients admitted to University of Alabama at Birmingham University Hospital Burn Center between November 1994 and December 1999 for occupational burn injuries were studied. Descriptive statistics were generated for demographic, clinical, and outcome characteristics. Approximately one-quarter of all burn center admissions had sustained occupational burn injuries. The most common burns were flame, electrical, and scald burns. The most heavily represented occupations were "manufacturing" (19.1%), "electrician" (16.2%), and "laborer" (16.2%). Burn type varied with occupation. Over $16 million in hospital charges was accrued by patients sustaining occupational burn injuries. Understanding the epidemiology of serious burn injuries in the workplace is crucial to directing prevention efforts toward worker groups at highest risk. PMID:12142576

  13. Cell therapy of burns.

    PubMed

    Leclerc, T; Thepenier, C; Jault, P; Bey, E; Peltzer, J; Trouillas, M; Duhamel, P; Bargues, L; Prat, M; Bonderriter, M; Lataillade, J-J

    2011-04-01

    Severe burns remain a life-threatening local and general inflammatory condition often with serious sequelae, despite remarkable progress in their treatment over the past three decades. Cultured epidermal autografts, the first and still most up-to-date cell therapy for burns, plays a key role in that progress, but drawbacks to this need to be reduced by using cultured dermal-epidermal substitutes. This review focuses on what could be, in our view, the next major breakthrough in cell therapy of burns - use of mesenchymal stromal cells (MSCs). After summarizing current knowledge, including our own clinical experience with MSCs in the pioneering field of cell therapy of radiation-induced burns, we discuss the strong rationale supporting potential interest in MSCs in treatment of thermal burns, including limited but promising pre-clinical and clinical data in wound healing and acute inflammatory conditions other than burns. Practical options for future therapeutic applications of MSCs for burns treatment, are finally considered. PMID:21481044

  14. Mulled coal - a beneficiation coal form for use as a fuel or fuel intermediate. Technical progress report No. 9, April 1, 1992--June 30, 1992

    SciTech Connect

    Not Available

    1993-01-01

    Under the auspices of the DOE and private industry, considerable progress has been made in: preparation of coal-water fuels; combustion of low-ash coal-based fuel forms; processes to provide deeply-cleaned coal. Developments in advanced beneficiation of coal to meet stringent requirements for low ash and low sulfur can be anticipated to further complicate the problem areas associated with this product. This is attributable to the beneficiated coal being procured in very fine particles with high surface areas, modified surface characteristics, reduced particle size distribution range, and high inherent moisture. Experience in the storage, handling, and transport of highly beneficiated coal has been limited. This is understandable, as quantities of such product are only now becoming available in meaningful quantities. During this reporting period the authors have: developed a suite of empirical tests covering water retention, rewetting, mull stability, angle of repose, dusting, etc.; a standardized suite for testing handling properties has been developed; initiated screening studies of alternate mulling agent formulations; mulls from six different coals and coals cleaned at different levels are being prepared for evaluation.

  15. Comparative emissions from Pakistani coals and traditional coals

    SciTech Connect

    Gammage, R.B.; Wachter, E.A.; Wade, J.; Wilson, D.L.; Ahmad, N.; Sibtain, F.; Raza, M.Z.

    1993-05-01

    Airborne emissions from a traditional Paldstani cooking stove were measured and compared for fuels composed of raw and amended coal briquettes, wood, charcoal, and dung. Small charges of fuel, 200 g, were burned inside a 12 m{sup 3} shed with a forced rate of air exchange of 14 hr{sup {minus}1}. The amended coal contained slaked lime, clay catalyst and 1 % potassium nitrate oxidant. The lime proved effective in reducing the integrated S0{sub 2} emissions but not the early peak S0{sub 2} emissions while combustion was restricted to the skin of the briquettes. Volatile and semivolatile organic emissions and respirable suspended particulates (RSP) were considerably reduced in amended coal compared to raw coal briquettes. The measurements overall indicated that, with respect to CO, S0{sub 2}, N0{sub 2}, organics and RSP, substitution of amended coal briquettes for traditional fuels will not worsen indoor air quality during domestic cooking. Better utilization of Pakistani`s reserves of high-sulfur coal is an attractive energy option for both economic and environmental reasons.

  16. Comparative emissions from Pakistani coals and traditional coals

    SciTech Connect

    Gammage, R.B.; Wachter, E.A.; Wade, J.; Wilson, D.L. ); Ahmad, N.; Sibtain, F.; Raza, M.Z. . Fuel Research Center)

    1993-01-01

    Airborne emissions from a traditional Paldstani cooking stove were measured and compared for fuels composed of raw and amended coal briquettes, wood, charcoal, and dung. Small charges of fuel, 200 g, were burned inside a 12 m[sup 3] shed with a forced rate of air exchange of 14 hr[sup [minus]1]. The amended coal contained slaked lime, clay catalyst and 1 % potassium nitrate oxidant. The lime proved effective in reducing the integrated S0[sub 2] emissions but not the early peak S0[sub 2] emissions while combustion was restricted to the skin of the briquettes. Volatile and semivolatile organic emissions and respirable suspended particulates (RSP) were considerably reduced in amended coal compared to raw coal briquettes. The measurements overall indicated that, with respect to CO, S0[sub 2], N0[sub 2], organics and RSP, substitution of amended coal briquettes for traditional fuels will not worsen indoor air quality during domestic cooking. Better utilization of Pakistani's reserves of high-sulfur coal is an attractive energy option for both economic and environmental reasons.

  17. The distribution, occurrence and environmental effect of mercury in Chinese coals

    USGS Publications Warehouse

    Zheng, Lingyun; Liu, Gaisheng; Chou, C.-L.

    2007-01-01

    Mercury (Hg) is a toxic, persistent, and globally distributed pollutant due to its characteristic properties such as low melting and boiling points, conversion between chemical forms and participation in biological cycles. During combustion mercury in coal is almost totally emitted to the atmosphere. With a huge amount of coal consumed, coal combustion is one of the main anthropogenic sources of this element in the environment. In this study, Hg data of 1699 coal samples of China has been compiled, and the concentration, distribution, modes of occurrence, and the impact of Hg emissions on the environment are investigated. Most Chinese coals have Hg content in the range of 0.1 to 0.3??ppm, with an average of 0.19??ppm, which is slightly higher than the average Hg content of world coals and is close to that of the U.S. coals. The Hg content in coals varies in different coal basins, geological ages and coal ranks. The most likely mode of occurrences of Hg in high-sulfur and high Hg content coals is as solid solution in pyrite. But in low-sulfur coals, modes of occurrence of Hg are variable, and the organic-bound and sulfide-bound Hg may dominate. Silicate-bound Hg may be the main form in some coals because of magmatic intrusion. Mercury emissions during coal combustion have resulted in serious environmental contamination in China, particularly in the northeastern and southwestern China, where a high Hg content in the atmosphere occurs. ?? 2007 Elsevier B.V. All rights reserved.

  18. Designing and upgrading plants to blend coal

    SciTech Connect

    McCartney, R.H.

    2006-10-15

    Fuel flexibility isn't free. Whether you are equipping a new power plant to burn more than one type of coal or retrofitting an existing plant to handle coal blends, you will have to spend time and money to ensure that all three functions performed by its coal-handling system, unloading, stockout, and reclaim, are up to the task. The first half of this article lays out the available options for configuring each subsystem to support blending. The second half describes, in words and pictures, how 12 power plants in the USA, both new and old, address the issue. 9 figs., 1 tab.

  19. 'Burns Cliff' Beckons

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity highlights a feature called 'Burns Cliff' within the impact crater known as 'Endurance.' Scientists are eager to explore this layered ridge for clues to the red planet's past. The only problem is its location: Burns Cliff is a vertical drop, which poses an interesting challenge for rover planners. Burns Cliff was named after the late scientist Roger Burns, who was one of the first to correctly propose the importance of sulfate and jarosite to the study of Mars' geologic history.

    This image is a portion of a larger mosaic taken with the panoramic camera's 480-, 530- and 750-nanometer filters on sols 97 and 98.

  20. Burns (For Parents)

    MedlinePlus

    ... medical assistance. Do not use wet compresses or ice because they can cause the child's body temperature to drop. Instead, cover the area with a clean, soft cloth or towel. The burn comes from a ...

  1. Self-inflicted burns.

    PubMed

    Hammond, J S; Ward, C G; Pereira, E

    1988-01-01

    Suicide by self-inflicted burns is uncommon in Western cultures. The majority of patients who attempt suicide in this manner have preexisting psychiatric illness, including a history of prior suicide attempts. A history of previous self-inflicted burn is rare, however, as are further suicide attempts in survivors. In this series of 33 patients, a cultural trend can be identified, with an increased incidence among Latin women. PMID:3360822

  2. Burning Mouth Syndrome

    PubMed Central

    Mock, David; Chugh, Deepika

    2010-01-01

    Most clinicians dread seeing the patient presenting with a primary complaint of a burning pain on one or more oral mucosal surfaces. Unlike most other clinical conditions presenting in a dental office, burning mouth syndrome is poorly understood with few evidence based remedies. More recently, advances have been made towards clarifying the possible etiology of the disorder and testing the possible therapeutic modalities available. This article attempts to summarize the “state of the art” today. PMID:20690412

  3. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the company used technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications

  4. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the company used technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications.

  5. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the companyused technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications.

  6. Enhanced desulfurizing flotation of coal using sonoelectrochemical method.

    PubMed

    Zhang, Hong-Xi; Hou, Xiao-Yang; Xu, Shi-Xun; Li, Zhi-Long; Yu, Hai-Feng; Shen, Xue-Hua

    2013-09-01

    Enhanced desulfurizing flotation of low sulfur coal was investigated using sonoelectrochemical method. The supporting electrolyte used in this process was sodium chloride and the additive was anhydrous ethanol. The effects of treatment conditions on desulfurization were studied by a single-factor method. The conditions include anhydrous ethanol concentration, sodium chloride concentration, sonoelectrolytic voltage, sonoelectrolytic temperature, sonoelectrolytic time and coal sample granulometry. The optimal experimental conditions achieved for anhydrous ethanol concentration, sodium chloride concentration, sonoelectrolytic voltage, sonoelectrolytic temperature and sonoelectrolytic time are 1.7 mol L(-1), 5.1×10(-3) mol L(-1), 10 V, 70 °C, 50 min achieved for a -0.18 mm coal sample. Optimal conditions cause a sulfur reduction of up to 69.4%. The raw and treated coals were analyzed by infrared spectroscopy and a chemical method. Pyritic sulfur, organic sulfur, ash as well as moisture are partially removed. The combination of high sulfur reduction, high yield, as well as high ash reduction was obtained in the newly developed method of enhanced flotation by sonoelectrochemistry. Ultrasound irradiation promotes electron transfer efficiency and increases clean coal yield. PMID:23558374

  7. Ball lightning burn.

    PubMed

    Selvaggi, Gennaro; Monstrey, Stan; von Heimburg, Dennis; Hamdi, Mustapha; Van Landuyt, Koen; Blondeel, Phillip

    2003-05-01

    Ball lightning is a rare physical phenomenon, which is not yet completely explained. It is similar to lightning but with different, peculiar characteristics. It can be considered a mix of fire and electricity, concentrated in a fireball with a diameter of 20-cm that most commonly appears suddenly, even in indoor conditions, during a thunderstorm. It moves quickly for several meters, can change direction, and ultimately disappears. During a great storm, a 28-year-old man and his 5-year-old daughter sustained burn wounds after ball lightning came from the outdoors through a chimney. These two patients demonstrated signs of fire and electrical injuries. The father, who lost consciousness, sustained superficial second-degree burn wounds bilaterally on the zygomatic area and deep second-degree burn wounds on his right hand (total body surface area, 4%). His daughter demonstrated superficial second-degree burn wounds on the left part of the face and deep second-degree and third-degree burn wounds (total body surface area, 30%) on the left neck, both upper arms, and the back. In this article, the authors report the first two cases of burn injuries resulting from ball lightning contact indoors. The literature on this rare phenomenon is reviewed to elucidate the nature of ball lightning. Emphasis is placed on the nature of injuries after ball lightning contact, the therapy used, and the long-term complications. PMID:12792547

  8. PBXN-110 Burn Rate Estimate

    SciTech Connect

    Glascoe, E

    2008-08-11

    It is estimated that PBXN-110 will burn laminarly with a burn function of B = (0.6-1.3)*P{sup 1.0} (B is the burn rate in mm/s and P is pressure in MPa). This paper provides a brief discussion of how this burn behavior was estimated.

  9. Burns in Nigeria: a Review

    PubMed Central

    Oladele, A.O.; Olabanji, J.K.

    2010-01-01

    Summary Burn injuries continue to be a major source of mortality and morbidity in low- and middle-income countries of the world, of which Nigeria is a part. Overview data on burn care in Nigeria are sparse but the available literature on burns and burn care in Nigeria was retrieved through Internet-based search engines, collated, and reviewed. Peculiarities of epidemiology, types of burn, pattern of injuries, complications, and outcome of burn care were reviewed. There were no broad-based overview statistical data on burns in Nigeria in all the articles reviewed. There was no documentation on the regionalization of care and there were no national databases. All reports on epidemiology were hospital-based. Flame is emerging as the predominant cause of burns, and burn injury is occurring increasingly away from the domestic setting. The severity of the injuries is also increasing. Deliberate burn injury remains a practice and a wide range of complications occur as burns sequelae in Nigeria. Several challenges militate against optimal care for burn victims. Burn injuries continue to contribute significantly to the burden of disease in Nigeria. There is a need for broad-based data collection systems. Avoidable complications are common and mortality remains high. Pooling of resources by regionalization of care could increase focus on burn prevention and improve the care of burn victims. Nongovernmental and governmental support to reduce the burden of burns is advocated. PMID:21991210

  10. Do-it-yourself electric' coal trains

    SciTech Connect

    Avery, D.G. )

    1991-06-15

    This article examines a recent phenomenon where the coal-burning utilities are investing in their own railroads to gain more control over their fuel transportation costs. Topics discussed include deciding to build, who should own the line after construction, who should operate the line, examining the options and the advantages and disadvantages of each.

  11. The media glorifying burns: a hindrance to burn prevention.

    PubMed

    Greenhalgh, David G; Palmieri, Tina L

    2003-01-01

    The media have a profound influence on the actions of children and adults. Burns and burn prevention tend to be ignored or even mocked. The purpose of this presentation is to reveal the callousness of the media in its dealings with burns and burn prevention. Printed materials with a relationship to burns, risk of burning, or disrespect for the consequences of burns were collected. The materials were tabulated into four categories: comics, advertisements (ads), articles that made light of burns, and television shows that portrayed behavior that would risk burn injury. Most burn-related materials were found in comics or advertisements. Several comics made light of high-risk behavior with flames, scald injury, contact injury, or burns. In addition, several advertisements showed people on fire or actions that could easily lead to burns. Several articles and televisions shows portrayed high-risk behavior that, in some instances, led to copycat injuries. Flames are frequently used to sell items that target adolescent boys or young men. The high incidence injuries that frequent this population parallel the high-risk behaviors portrayed by the media. The media portrays flames and high-risk behavior for burn injury as being cool, funny, and without consequence. The use of flames on clothing and recreational equipment (skateboards, hot rods) particularly targets the high-risk adolescent male. The burn community should make the media aware of the harm it causes with its callous depiction and glorification of burns. PMID:12792237

  12. Advanced coal conversion process demonstration. Progress report, January 1, 1992--December 31, 1992

    SciTech Connect

    1993-12-01

    This report contains a description of the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1992, through December 31, 1992. This project demonstrates an advanced thermal coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal{reg_sign} process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,500 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. The 45-ton-per-hour unit is located adjacent to a unit train loadout facility at Western Energy Company`s Rosebud coal mine near Colstrip, Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. The demonstration drying and cooling equipment is currently near commercial size. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and has been operating in an extended startup mode since that time. As with any new developing technology, a number of unforeseen obstacles have been encountered; however, Rosebud SynCoal Partnership has instituted an aggressive program to overcome these obstacles.

  13. [Advanced Coal Conversion Process]. Technical progress report, July 1, 1992--September 30, 1992

    SciTech Connect

    Not Available

    1993-12-01

    This report contains a description of the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1992, through September 30, 1992. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. The Cooperative Agreement defining this project is between DOE and the Rosebud SynCoal Partnership. This project demonstrates an advanced, thermal, coal-drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal({reg_sign} process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,500 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. The 45-ton-per-hour unit is located adjacent to a unit train loadout facility at Western Energy Company`s Rosebud coal mine near Colstrip, Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. The demonstration drying and cooling equipment is currently near commercial size.

  14. Upgraded Coal Interest Group. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Weber, W.; Lebowitz, H.E.

    1995-08-01

    This report presents information from the coal interest group. Topics of discussion at the meeting included the current political views concerning the Department of Energy and programs contained therein. The group met on January 10 and 11, in Nashville, TN. The status of various coal upgrading technologies was also reviewed. Four new technology opportunities were given reviews, Coal/Waste pellets, Custom Coals advanced technology, CSRC sulfur removing bacteria and a Mag-Mill which is a magnetic separation done within the pulverizer. Coal Waste pellets is a technology for making pellets of coal and fiber waste from recycling plants. The incentives are low cost and low sulfur and nitrogen. Lebowitz made a field trip to the pilot unit in Canton Ohio. The Mag Mill takes advantage of the natural concentration of pyrite in the pulverizer recycle stream (due to its hardness). Special magnets are installed in the mill to remove pyrite from this stream. Custom Coals reported on an advanced two step process for removal of organic sulfur from coal. Consolidated Sulfur Reduction Co. reported on a two step microbial desulfurization process.

  15. Volcanic ash in feed coal and its influence on coal combustion products

    SciTech Connect

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O'Connor, J.T.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the peat-forming mire. Dissolution and alteration of these minerals occurred either in the peat-forming sate or during coalification/diagenesis contributing to the authigenic mineral suite. Additionally, detrital mineral input and epigenetic ground-water flow may have affected the geochemistry of the feed coal.

  16. Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers

    DOEpatents

    Givens, Edwin N.; Ying, David H. S.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

  17. Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992

    SciTech Connect

    Not Available

    1992-09-01

    Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  18. Coal liquefaction with coal tar solvent

    SciTech Connect

    Gir, S.; Rhodes, D.E.

    1986-12-16

    A method is described of liquefying coal, comprising: mixing solid coal with a process solvent comprising coal tar material which has been at least partially hydrogenated under conditions which selectively hydrogenate aromatic coal tar components to hydroaromatics and which preserve the integrity of organonitrogen coal tar components, to produce a coal-solvent slurry; treating the coal-solvent slurry under coal-liquefying conditions in a liquefaction zone to produce a solution containing coal liquefaction products; and recovering coal liquefaction products from the solution.

  19. Plane flame furnace combustion tests on JPL desulfurized coal

    NASA Technical Reports Server (NTRS)

    Reuther, J. J.; Kim, H. T.; Lima, J. G. H.

    1982-01-01

    The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels.

  20. Coal fired power plant with pollution control and useful byproducts

    SciTech Connect

    Marten, J.H.; Lloyd, G.M.

    1990-04-17

    This patent describes a coal fired power plant. It comprises: coal gasification means for heating coal in the presence of an oxidant-lean atmosphere under partial coal-gasifying conditions; means for separating sulfur-containing compounds from the crude gas stream; means for converting the sulfur compound containing stream into elemental sulfur; energy-conversion means for burning a portion of the combustible gas stream and a portion of the carbonaceous char; flue gas desulfurization means for contacting the SO{sub 2}-containing flue gas with lime and limestone; gypsum desulfurization means for heating the gypsum and the remaining portion of carbonaceous char under reducing conditions utilizing burning of the remaining portion of the combustible gas stream; means for recycling the SO{sub 2}-containing gas stream to the coal gasification means.

  1. Burning trees and bridges

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1990-01-01

    Most burning of biomass is the result of human activity, and on a global scale it is increasing. Tropospheric concentrations of CO2, CO, CH4, non-methane hydrocarbons, and ozone are all increasing with time; global biomass burning may make an important contribution to this increase and thus to potential global climate change. The nitrogen cycle also can have important climatic effects. Nitrous oxide put into the atmosphere by biomass burning is a greenhouse gas 250 times more powerful (molecule for molecule) than carbon dioxide. Nitric oxide, as well as being a photochemical precursor of ozone, a major pollutant in the troposphere, produces nitric acid, the fastest-growing component of acid rain. Hence, the new bridge in the nitrogen cycle is of more than mere technical interest.

  2. 'Special effects' burn injuries.

    PubMed

    Peters, W

    1991-02-01

    Three patients are presented with significant flame burns, resulting from accidents occurring during 'special effects' situations in the entertainment industry. These occurred as a result of the spontaneous combustion of various materials, during events in live theatre (gun powder), a television commercial (artificial 'rocket fuel'), and a video presentation (magnesium oxide). All three patients sustained flash burns to the face and hands. One patient sustained a significant bilateral corneal injury, a gamekeeper's thumb, and a permanent continuous right-sided high frequency tinnitus, in addition to his burn injury. Photographic documentation of all three patients is presented. The total loss of time from work for all patients was 6 months. All these injuries were potentially preventable. PMID:2031675

  3. Plasma-supported coal combustion in boiler furnace

    SciTech Connect

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B.

    2007-12-15

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  4. Fast burning propellants

    SciTech Connect

    Colgate, S.A.; Roos, G.E.

    1987-07-21

    A solid or semisolid propellant is described comprising grains of propellant or propellant components bonded together to create voids within the propellant volume. The grains are of near-uniform size and have less than about a 20% size variation between the largest and smallest grains, the voids comprising from about 10% to about 50% of the propellant volume. The grains are bonded together with sufficient strength to substantially delay the fluidization of the propellant by the onset of Taylor unstable burning. The propellant has a rapid burn rate of from about 10 cm sec/sup -1/ to about 10/sup 4/cm sec/sup -1/.

  5. Advanced Coal Conversion Process Demonstration Project. Final technical progress report, January 1, 1995--December 31, 1995

    SciTech Connect

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1995 through December 31, 1995. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal Process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal Process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,5000 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. During this reporting period, the primary focus for the ACCP Demonstration Project team was to expand SynCoal market awareness and acceptability for both the products and the technology. The ACCP Project team continued to focus on improving the operation, developing commercial markets, and improving the SynCoal products as well as the product`s acceptance.

  6. Emissions of fine particle fluoride from biomass burning.

    PubMed

    Jayarathne, Thilina; Stockwell, Chelsea E; Yokelson, Robert J; Nakao, Shunsuke; Stone, Elizabeth A

    2014-11-01

    The burning of biomasses releases fluorine to the atmosphere, representing a major and previously uncharacterized flux of this atmospheric pollutant. Emissions of fine particle (PM2.5) water-soluble fluoride (F-) from biomass burning were evaluated during the fourth Fire Laboratory at Missoula Experiment (FLAME-IV) using scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDX) and ion chromatography with conductivity detection. F- was detected in 100% of the PM2.5 emissions from conifers (n=11), 94% of emissions from agricultural residues (n=16), and 36% of the grasses and other perennial plants (n=14). When F- was quantified, it accounted for an average (±standard error) of 0.13±0.02% of PM2.5. F- was not detected in remaining samples (n=15) collected from peat burning, shredded tire combustion, and cook-stove emissions. Emission factors (EF) of F- emitted per kilogram of biomass burned correlated with emissions of PM2.5 and combustion efficiency, and also varied with the type of biomass burned and the geographic location where it was harvested. Based on recent evaluations of global biomass burning, we estimate that biomass burning releases 76 Gg F- yr(-1) to the atmosphere, with upper and lower bounds of 40-150 Gg F- yr(-1). The estimated F- flux from biomass burning is comparable to total fluorine emissions from coal combustion plus other anthropogenic sources. These data demonstrate that biomass burning represents a major source of fluorine to the atmosphere in the form of fine particles, which have potential to undergo long-range transport. PMID:25275955

  7. Burn Safety Awareness on Playgrounds: Thermal Burns from Playground Equipment

    MedlinePlus

    ... Safety Awareness on Playgrounds Thermal Burns from Playground Equipment The U.S. Consumer Product Safety Commission CPSC wants ... of the risk of thermal burns from playground equipment. You may remember the metal slides of your ...

  8. Fat burn X: burning more than fat.

    PubMed

    Hannabass, Kyle; Olsen, Kevin Robert

    2016-01-01

    A 50-year-old man presented with a 2-day history of bilateral lower extremity cramping and dark urine. The patient was found to have a creatine phosphokinase (CPK) elevated of up to 2306 U/L, a serum uric acid of 9.7 mg/dL and 101 red blood cell's per high-powered field on urinalysis. On questioning, the patient endorsed daily exercise with free weights. There were no changes in his regular exercise and medication regimen, no muscle trauma, no recent drug use and no illness. The patient did mention using a new fat burner known as 'Fat Burn X', which he had begun taking 2 days prior to the onset of his muscle cramps. The patient was given normal saline intravenous fluid resuscitation for 48 h with resultant normalisation of his CPK and creatinine, and was discharged with primary care follow-up. PMID:26811412

  9. Rheology of coal-water slurries prepared by the high-pressure roll mill grinding of coal. Final report

    SciTech Connect

    Fuerstenau, D.W.; De, A.

    1996-08-01

    The preparation of coal water slurries to replace fuel oil for direct combustion has become an important field in modem coal technology. The U.S. Department of Energy has planned or has underway several demonstration projects to burn coal-water slurries to replace fuel oil is attractive not only because there is an assured domestic supply of coal, but also on various technoeconomic grounds. Coal-water slurries combine the handling flexibility of fuel oil in power plants and various other industrial applications. This report discusses the rheology of coal-water slurries and the correlation to the coal preparation by grinding with a choke-fed high pressure roll mill. Performance of the roll mills and energy consumption are described.

  10. 26. Wood coal quencher, coal conveyor for powerhouse coal pulverizer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Wood coal quencher, coal conveyor for powerhouse coal pulverizer house, DX coke battery, stack, coke batteries to right. Looking east - Rouge Steel Company, 3001 Miller Road, Dearborn, Wayne County, MI

  11. Extraction, separation, and analysis of high sulfur coal

    SciTech Connect

    Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr.

    1992-05-31

    The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

  12. Extraction, separation, and analysis of high sulfur coal. Final report

    SciTech Connect

    Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr.

    1992-05-31

    The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

  13. ANALYSIS OF FLY ASH PRODUCED FROM COMBUSTION OF REFUSE-DERIVED FUEL AND COAL MIXTURES (JOURNAL VERSION)

    EPA Science Inventory

    Mixtures of coal and refuse-derived fuel (RDF) were burned and the fly ash was collected and analyzed for concentration trends with respect to RDF/coal ratio and particle size. RDF contributes more Cs, Mn, Sb, and Pb to the fly ash while coal contributes greater amounts of As, Br...

  14. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  15. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  16. TIRES, OPEN BURNING

    EPA Science Inventory

    The chapter describes available information on the health effects from open burning of rubber tires. It concentrates on the three known sources of detailed measurements: (1) a small-scale emissions characterization study performed by the U.S. EPA in a facility designed to simulat...

  17. Burn Scar Neoplasm

    PubMed Central

    Kadir, A.R.

    2007-01-01

    Summary Marjolin's ulcer is a rare and aggressive cutaneous malignancy that occurs in previously traumatized and chronically inflamed skin, especially after burns. The majority of burn scar carcinomas are seen after a lag period in burns that were not grafted following injury. Between 2000 and 2006, 48 patients with Marjolin's ulcer were treated in our centre (Sulaimani Teaching Hospital and Emergency Hospital). All the lesions were secondary to burns from various causes. The medical records of these 48 patients were reviewed prospectively. The mean age at tumour diagnosis was 40 yr and the ratio of male to female was 2:1 (67% males and 33% female). Upon histological examination, all the cases were diagnosed as well-differentiated squamous cell carcinoma. The scalp was most frequently affected (16 patients = 33.3%), followed by the lower limb (14 patients = 29.1%). Treatment of the neoplasm consisted of excision and grafting in 36 patients (75.0%), excision and reconstruction with flaps in eight patients (16.6%), and amputation in three patients (6.2%). A chemotherapy combination of the above treatments was used in two patients (4.1%). Local recurrence was noted in 16 patients (33.3%) out of the 48, and all died from these recurrences. PMID:21991095

  18. The Earth Could Burn.

    ERIC Educational Resources Information Center

    Yarrow, Ruth

    1982-01-01

    Environmental educators are worried about the ultimate ecological threat--nuclear war, which could burn thousands of square miles, sterilize the soil, destroy 70 percent of the ozone layer letting in lethal ultraviolet rays, and cause severe radiation sickness. Educators must inform themselves, teach others, contact government representatives, and

  19. Burning Your Own CDs.

    ERIC Educational Resources Information Center

    Ekhaml, Leticia

    2001-01-01

    Discusses the use of CDs (Compact Disks) for backing up data as an alternative to using floppy disks and explains how to burn, or record, a CD. Topics include differences between CD-R (CD-Recordable) and CD-RW (CD-Rewritable); advantages of CD-R and CD-RW; selecting a CD burner; technology trends; and care of CDs. (LRW)

  20. TRIAL BURNS: METHODS PERSPECTIVE

    EPA Science Inventory

    When conducting a trial burn, it is necessary to make a number of measurements in order to adequately define the performance of the incinerator. n addition to flue gas emissions for particulate matter, HCl, and selected organics, it is also necessary to measure selected organics ...

  1. [Burns with lighter gas].

    PubMed

    Davidsen, M T

    1993-06-28

    Attention is drawn to a particularly dangerous party activity. Balloons filled with lighter gas so as to float are used for party decorations. A case of hand burn caused by accidentally lighting such a balloon with a cigarette is reported. The method is strongly advised against, it is a much better idea to use helium for such purposes. PMID:7734004

  2. The Burn Wound Microenvironment

    PubMed Central

    Rose, Lloyd F.; Chan, Rodney K.

    2016-01-01

    Significance: While the survival rate of the severely burned patient has improved significantly, relatively little progress has been made in treatment or prevention of burn-induced long-term sequelae, such as contraction and fibrosis. Recent Advances: Our knowledge of the molecular pathways involved in burn wounds has increased dramatically, and technological advances now allow large-scale genomic studies, providing a global view of wound healing processes. Critical Issues: Translating findings from a large number of in vitro and preclinical animal studies into clinical practice represents a gap in our understanding, and the failures of a number of clinical trials suggest that targeting single pathways or cytokines may not be the best approach. Significant opportunities for improvement exist. Future Directions: Study of the underlying molecular influences of burn wound healing progression will undoubtedly continue as an active research focus. Increasing our knowledge of these processes will identify additional therapeutic targets, supporting informed clinical studies that translate into clinical relevance and practice. PMID:26989577

  3. Gas Hydrates Burning

    An image of gas hydrates burning. Gas hydrates are naturally-occurring ice-like combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the worlds oceans and polar regions....

  4. Gas Hydrates Burning

    An image of gas hydrates burning. Gas hydrates are naturally-occurring “ice-like” combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the world’s oceans and polar regions....

  5. The Earth Could Burn.

    ERIC Educational Resources Information Center

    Yarrow, Ruth

    1982-01-01

    Environmental educators are worried about the ultimate ecological threat--nuclear war, which could burn thousands of square miles, sterilize the soil, destroy 70 percent of the ozone layer letting in lethal ultraviolet rays, and cause severe radiation sickness. Educators must inform themselves, teach others, contact government representatives, and…

  6. [Advanced Coal Conversion Process Demonstration Project]. Technical progress report, April 1, 1991--June 30, 1991

    SciTech Connect

    Not Available

    1991-08-01

    This project will demonstrate an advanced thermal coal drying process coupled with physical cleaning techniques to upgrade high-moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal will be processed through two vibrating fluidized bed reactors that will remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal will be put through a deep-bed stratifier cleaning process to effect separation of the pyrite rich ash. The process will enhance low-rank western coals, usually with a moisture content of 25--55%, sulfur content of 0.5--1.5%, and heating value of 5500--9000 Btu/lb by producing a stable, upgraded coal product with a moisture content as low as 1%, sulfur content as low as 0.3%, and heating value up to 12,000 Btu/lb. The 45 ton/hr unit will be located adjacent to a unit train loadout facility at Western Energy Company`s Rosebud coal mine near the town of Colstrip in southeastern Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. The demonstration drying and cooling equipment is currently commercial size.

  7. Development of a burn prevention teaching tool for Amish children.

    PubMed

    Rieman, Mary T; Kagan, Richard J

    2012-01-01

    Although there are inherent risks for burn injury associated with the Amish lifestyle, burn prevention is not taught in Amish schools. The purpose of this study was to develop a burn prevention teaching tool for Amish children. An anonymous parental survey was designed to explore the content and acceptability of a teaching tool within an Old Order Amish community. After institutional review board approval, the Amish teacher distributed surveys to 16 families of the 30 children attending the one-room school. Fourteen (88%) of the families responded to identify these burn risks in and around their homes, barns, and shops: lighters, wood and coal stoves, kerosene heaters, gasoline-powered engines, and hot liquids used for canning, butchering, mopping, washing clothes, and making lye soap. All respondents were in favor of teaching familiar safety precautions, fire escape plans, burn first aid, and emergency care to the children. There was some minor objection to more modern devices such as bath tub thermometers (25%), fire extinguishers (19%), and smoke detectors (6%). The teacher was interested in a magnetic teaching board depicting Amish children and typical objects in their home environment. Movable pieces could afford the opportunity to identify hazards and to rearrange them for a safer situation. This survey served to introduce burn prevention to one Amish community and to develop an appropriate teaching tool for the school. It is anticipated that community participation would support its acceptance and eventual utilization within this tenaciously traditional culture. PMID:21983647

  8. Coal Field Fire Fighting - Practiced methods, strategies and tactics

    NASA Astrophysics Data System (ADS)

    Wündrich, T.; Korten, A. A.; Barth, U. H.

    2009-04-01

    Subsurface coal fires destroy millions of tons of coal each year, have an immense impact to the ecological surrounding and threaten further coal reservoirs. Due to enormous dimensions a coal seam fire can develop, high operational expenses are needed. As part of the Sino-German coal fire research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" the research team of University of Wuppertal (BUW) focuses on fire extinction strategies and tactics as well as aspects of environmental and health safety. Besides the choice and the correct application of different extinction techniques further factors are essential for the successful extinction. Appropriate tactics, well trained and protected personnel and the choice of the best fitting extinguishing agents are necessary for the successful extinction of a coal seam fire. The chosen strategy for an extinction campaign is generally determined by urgency and importance. It may depend on national objectives and concepts of coal conservation, on environmental protection (e.g. commitment to green house gases (GHG) reductions), national funding and resources for fire fighting (e.g. personnel, infrastructure, vehicles, water pipelines); and computer-aided models and simulations of coal fire development from self ignition to extinction. In order to devise an optimal fire fighting strategy, "aims of protection" have to be defined in a first step. These may be: - directly affected coal seams; - neighboring seams and coalfields; - GHG emissions into the atmosphere; - Returns on investments (costs of fire fighting compared to value of saved coal). In a further step, it is imperative to decide whether the budget shall define the results, or the results define the budget; i.e. whether there are fixed objectives for the mission that will dictate the overall budget, or whether the limited resources available shall set the scope within which the best possible results shall be achieved. For an effective and efficient fire fighting optimal tactics are requiered and can be divided into four fundamental tactics to control fire hazards: - Defense (digging away the coal, so that the coal can not begin to burn; or forming a barrier, so that the fire can not reach the not burning coal), - Rescue the coal (coal mining of a not burning seam), - Attack (active and direct cooling of burning seam), - Retreat (only monitoring till self-extinction of a burning seam). The last one is used when a fire exceeds the organizational and/or technical scope of a mission. In other words, "to control a coal fire" does not automatically and in all situations mean "to extinguish a coal fire". Best-practice tactics or a combination of them can be selected for control of a particular coal fire. For the extinguishing works different extinguishing agents are available. They can be applied by different application techniques and varying distinctive operating expenses. One application method may be the drilling of boreholes from the surface or covering the surface with low permeability soils. The mainly used extinction agents for coal field fire are as followed: Water (with or without additives), Slurry, Foaming mud/slurry, Inert gases, Dry chemicals and materials and Cryogenic agents. Because of its tremendous dimension and its complexity the worldwide challenge of coal fires is absolutely unique - it can only be solved with functional application methods, best fitting strategies and tactics, organisation and research as well as the dedication of the involved fire fighters, who work under extreme individual risks on the burning coal fields.

  9. [Treatment of hydrofluoric acid burns].

    PubMed

    Thiele, B; Winter, U J; Mahrle, G; Steigleder, G K

    1986-01-31

    A chemical-plant worker sustained hydrofluoric acid burns during cleaning procedures. Intra-arterial perfusion and intralesional injections of calcium gluconate solution prevented progression of the burns into deeper tissue layers. PMID:3943470

  10. Skin Burns (Beyond the Basics)

    MedlinePlus

    ... better describes which burns require surgical treatment. The classification of a burn can change over the first ... only by loading the software on a single computer (i.e., within a single CPU) at a ...

  11. [Burn injuries and mental health].

    PubMed

    Palmu, Raimo; Vuola, Jyrki

    2016-01-01

    Currently a large proportion of patients with severe burn injuries survive. This gives increasing challenges also for psychological recovery after the trauma. More than half of burn patients have mental disorders already before the burn injury but also patients who previously had no mental disorders may suffer from them. Some of the hospitalize burn patients have injuries due to suicidal attempts. Only a small proportion of burn patients receive appropriate psychiatric care although psychosocial interventions specifically planned for burn victims exist. More frequent screening of symtoms of mental disorders and psychiatric consultation, also after acute care in hospital, could lead to better management of post-burn psychiatric care as well as better management of the burn treatment and rehabilitation itself. PMID:27089616

  12. Petrographic characterization of Kentucky coals. Final report. Part IV. A petrographic and chemical model for the evolution of the Tradewater Formation coals in Western Kentucky

    SciTech Connect

    Graese, A.M.; Hower, J.C.; Ferm, J.C.

    1984-01-01

    A depositional model for the coals of the Tradewater Formation and associated rock units was constructed as a predictive device for the occurrence of economically important low sulfur coal. Twenty-one cores were examined and ninety-eight coal samples were analyzed for maceral, ash, and sulfur contents. These data were then analyzed to determine regional variation as well as vertical variation in single coal columns. Core data indicate that the majority of the Tradewater rocks consist of irregularly distributed, coarsening-upward, fine-grained detrital material which was deposited in shallow bodies of water. Minor fossiliferous shales and limestones suggest a marine influence. Less common coarse-grained, fining-upward sequences appear to be deposits of meandering channels. Like the detrital rocks, the coal seams are also irregularly distributed and exhibit variable petrographic and chemical properties reflecting changes in the Eh and pH of the coal swamp waters as well as detrital influx into the swamps. These swamps were relatively limited in extent and probably occupied the upper reaches of the tidal zone. The lack of significant stratigraphic and geographic trends in the regional data suggests that this mode of deposition was widespread and continued for a long period of time. 42 references, 19 figures, 9 tables.

  13. Thermal burns associated with the misuse of flammable liquids in stoves: a continuing problem.

    PubMed

    Kulahci, Yalcin; Sever, Celalettin; Zor, Fatih; Uygur, Fatih; Noyan, Nurettin; Evinc, Rahmi; Oksuz, Sinan; Sahin, Cihan; Duman, Haluk

    2011-01-01

    Coal stoves that are used for heating purposes are more popular in economically developing and undeveloped countries because of their lower operational costs. Unfortunately, they may cause serious burn injuries when flammable liquids are misused to kindle or to accelerate a fire within them. Every year, particularly in the winter, many citizens in Turkey have suffered burn injuries caused by this dangerous practice. During the period from January 1989 to January 2009, 82 patients sustained burn injuries as a consequence of coal stove fires and were admitted to burn units. Efforts to inform the public about the danger of using flammable liquids with these kinds of stoves are recommended to minimize the incidence, morbidity, mortality, and cost of this relatively common and preventable type of injury. PMID:21228712

  14. [Advanced Coal Conversion Process Demonstration Project]. Technical progress report: April 1, 1992--June 30, 1992

    SciTech Connect

    Not Available

    1993-10-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from April 1, 1992, through June 30, 1992. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques designed to upgrade high-moisture, low-rank coals into a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal{reg_sign} process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,500 to 9,000 British thermal units per pound (Btu/Ib), by producing a stable, upgraded coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. The 45-ton-per-hour unit is located adjacent to a unit train loadout facility at Western Energy Company`s Rosebud coal mine near Colstrip, Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. The demonstration drying and cooling equipment is currently near commercial size.

  15. Biomass Burning Data and Information

    Atmospheric Science Data Center

    2015-04-21

    Biomass Burning Data and Information This data set represents ... geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ... models of the atmosphere. Project Title:  Biomass Burning Discipline:  Tropospheric Chemistry ...

  16. PGN Prescribed Burn Research Summary

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 1997, we have been studying the effects of prescribed burns conducted during late winter on shortgrass steppe on the Pawnee National Grassland. During 1997 – 2002, we studied burns on the western (Crow Valley) portion of the Pawnee by comparing plant growth on burns conducted by the Forest Ser...

  17. BURN DATA COORDINATING CENTER (BDCC)

    EPA Science Inventory

    The Burn Data Coordinating Center (BDCC) began collecting data in 1994 and is currently the largest burn database in the country. Pediatric burn data was added in 1998. The BMS database contains over 2,800 cases supporting clinical research and research on outcomes including empl...

  18. New ESP additive controls particulates

    SciTech Connect

    Durham, M.D.; Baldrey, K.E.; Bustard, C.J.; Martin, C.E.; Dharmarajan, N.N.

    1997-06-01

    This article reports that a conditioning agent enhanced precipitator performance after plant switched to low-sulfur coal. Firing low-sulfur coal at a power plant designed for medium- or high-sulfur coal will impact the downstream particulate control device. Since the performance of an electro-static precipitator (ESP) is a strong function of the sulfur content in the coal, switching to a low-sulfur coal will severely impact collection efficiency. Particle resistivity is the dominant parameter affecting the performance of an ESP. When the resistivity is too high, the ESP must be increased in size by a factor of two to three, resulting in proportionally increased capital and operating costs. Fly ash from low-sulfur coal is known to have a typical resistivity one or two orders of magnitude above that for ideal collection efficiency in a well-designed ESP. Therefore, when a utility burning a medium- or high-sulfur coal switches to a low-sulfur coal, the increase in particle resistivity resulting from the reduced SO{sub 3} concentration will lead to severe problems in the ESP. There have been many instances where utilities have switched from a high- to a low-sulfur coal, and the problems caused by the increased resistivity have had such a devastating effect on the performance of the ESP that emissions have increased by a factor of 10.

  19. Ground-Water Quality in Unmined Areas and Near Reclaimed Surface Coal Mines in the Northern and Central Appalachian Coal Regions, Pennsylvania and West Virginia

    USGS Publications Warehouse

    McAuley, Steven D.; Kozar, Mark D.

    2006-01-01

    Findings are presented from investigations during 1996-1998 by the U.S. Geological Survey National Water-Quality Assessment Program. Ground-water quality in 58 wells downgradient of reclaimed surface coal mines is compared to ground-water quality from 25 wells in unmined areas (background concentrations) in the bituminous coal fields of the northern Appalachian coal region (high-sulfur coal region) in Pennsylvania, Maryland, and West Virginia and the central Appalachian coal region (low-sulfur coal region) in West Virginia. Ground water in the mined high-sulfur coal region has significantly greater median concentrations of sulfate, hardness, calcium, and specific conductance compared to the unmined high-sulfur coal region and to both mined and unmined areas in the low-sulfur coal region. Ground water in mined areas had median values of mine-drainage constituents (sulfate, iron, manganese, aluminum, hardness, calcium, magnesium, turbidity, and specific conductance) that were significantly greater than medians for wells in unmined areas. Mine-drainage constituents include cations such as calcium and magnesium that become elevated compared to levels in unmined areas because of exposure of acidic mine drainage to calcareous materials. The transport of pyrite-oxidation products from the mined site and subsequent neutralization reactions by calcareous materials at the mine site or along the flow path are likely processes that result in greater concentrations of mine-drainage constituents in mined areas compared to unmined areas. Mine-drainage constituents generally exceeded unmined-area background concentrations within about 500 feet of mined sites but were at or below background levels in wells more than 1,000 feet downgradient of mined sites. Concentrations of sulfate, hardness, and total dissolved solids were greatest at well depths of 50 to 150 feet but generally were less than background concentrations in wells deeper than 150 feet. Concentrations of iron, manganese, and aluminum exceeded background concentrations in many wells less than 150 feet deep. In mined areas, median ground-water ages are nearly as old in hill locations as in valley locations. Older ground-water age correlates with increased distance from mined areas. The lack of significant correlation among mine-drainage-constituent concentrations, ground-water age, distance from mined areas, and topographic locations may be the result of factors such as (1) mixing of ground-water ages in wells open to fractures with variable depths, lengths, and interconnections; (2) disturbance of rock from blasting; and (3) variations in slope and terrain relief in the study area.

  20. Chemical Debridement of Burns

    PubMed Central

    Levenson, Stanley M.; Kan, Dorinne; Gruber, Charles; Crowley, Leo V.; Lent, Richard; Watford, Alvin; Seifter, Eli

    1974-01-01

    The development of effective, non-toxic (local and systemic) methods for the rapid chemical (enzymatic and non-enzymatic) debridement of third degree burns would dramatically reduce the morbidity and mortality of severely burned patients. Sepsis is still the major cause of death of patients with extensive deep burns. The removal of the devitalized tissue, without damage to unburned skin or skin only partially injured by burning, and in ways which would permit immediate (or very prompt) skin grafting, would lessen substantially the problems of sepsis, speed convalescence and the return of these individuals to society as effective human beings, and would decrease deaths. The usefulness and limitations of surgical excision for patients with extensive third degree burns are discussed. Chemical debridement lends itself to complementary use with surgical excision and has the potential advantage over surgical excision in not requiring anesthesia or a formal surgical operation. The authors' work with the chemical debridement of burns, in particular the use of Bromelain, indicates that this approach will likely achieve clinical usefulness. The experimental studies indicate that rapid controlled debridement, with minimal local and systemic toxicity, is possible, and that effective chemotherapeutic agents may be combined with the Bromelain without either interfering with the actions of the other. The authors believe that rapid (hours) debridement accomplished by the combined use of chemical debriding and chemotherapeutic agents will obviate the possibility of any increase in infection, caused by the use of chemical agents for debridement, as reported for Paraenzyme21 and Travase.39,48 It is possible that the short term use of systemic antibiotics begun just before and continued during, and for a short time after, the rapid chemical debridement may prove useful for the prevention of infection, as appears to be the case for abdominal operations of the clean-contaminated and contaminated types. ImagesFigs. 1a-c.Fig. 1b.Fig. 1c.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6.Fig. 7.Fig. 8.Fig. 9a.Fig. 9B.Fig. 10.Fig. 11.Figs. 12a-c.Fig. 12b.Fig. 12c.Figs. 14a-c.Fig. 14b.Fig. 14c.Figs. 15a-c.Fig. 15b.Fig. 15c. PMID:4606330

  1. Clean Coal Draft for public comment

    NASA Astrophysics Data System (ADS)

    The Department of Energy is asking the public to comment on the draft environmental impact statement for 22 clean coal technologies, from precombustion cleaning techniques to coal gasification and fuel cell systems. Incentives to promote use of these new methods for burning coal are included in President George Bush's proposed revisions to the Clean Air Act.The draft is based on a computer model developed at Argonne National Laboratory, Illinois, and run at Oak Ridge National Laboratory, Tennessee. The model estimates the amounts of reduction by 2010 in national emissions of sulfur dioxide, nitrogen oxides and carbon dioxide that use of the new technologies could achieve. It also compares the amounts and kinds of solid waste produced by clean coal technologies to the solid waste of power-production technologies in use today.

  2. Is proportion burned severely related to daily area burned?

    NASA Astrophysics Data System (ADS)

    Birch, Donovan S.; Morgan, Penelope; Kolden, Crystal A.; Hudak, Andrew T.; Smith, Alistair M. S.

    2014-05-01

    The ecological effects of forest fires burning with high severity are long-lived and have the greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that wind-driven, large fire-growth days play a significant role, particularly on large fires in forested ecosystems. Here, we examined the relative proportion of classified burn severity for individual daily areas burned that occurred during 42 large forest fires in central Idaho and western Montana from 2005 to 2007 and 2011. Using infrared perimeter data for wildfires with five or more consecutive days of mapped perimeters, we delineated 2697 individual daily areas burned from which we calculated the proportions of each of three burn severity classes (high, moderate, and low) using the differenced normalized burn ratio as mapped for large fires by the Monitoring Trends in Burn Severity project. We found that the proportion of high burn severity was weakly correlated (Kendall τ = 0.299) with size of daily area burned (DAB). Burn severity was highly variable, even for the largest (95th percentile) in DAB, suggesting that other variables than fire extent influence the ecological effects of fires. We suggest that these results do not support the prioritization of large runs during fire rehabilitation efforts, since the underlying assumption in this prioritization is a positive relationship between severity and area burned in a day.

  3. Air-Freshener Burns: A New Paradigm in Burns Etiology?

    PubMed Central

    Sarwar, Umran; Nicolaou, M.; Khan, M. S.; Tiernan, E.

    2011-01-01

    Objectives: We report a rare case of burns following the use of automated air-fresheners. Methods: We present a case report with a brief overview of the literature relating to burns associated with air-fresheners. The mechanism and treatment of these types of injuries are also described. Results: A 44 year-old female was admitted under the care of the burns team following burns secondary to an exploding air-freshener canister. The patient sustained burns to the face, thorax and arms resulting in a seven-day hospital admission. The burns were treated conservatively. Conclusions: To our knowledge this is one of the few documented cases of burns as a result of air-fresheners. As they become more ubiquitous, we anticipate the incidence of such cases to increase. As such, they pose a potential public health concern on a massive scale. PMID:22174972

  4. The oxidative potential of PM10 from coal, briquettes and wood charcoal burnt in an experimental domestic stove

    NASA Astrophysics Data System (ADS)

    Shao, Longyi; Hou, Cong; Geng, Chunmei; Liu, Junxia; Hu, Ying; Wang, Jing; Jones, Tim; Zhao, Chengmei; BéruBé, Kelly

    2016-02-01

    Coal contains many potentially harmful trace elements. Coal combustion in unvented stoves, which is common in most parts of rural China, can release harmful emissions into the air that when inhaled cause health issues. However, few studies have dealt specifically with the toxicological mechanisms of the particulate matter (PM) released by coal and other solid fuel combustion. In this paper, PM10 particles that were generated during laboratory stove combustion of raw powdered coal, clay-mixed honeycomb briquettes, and wood charcoal were analysed for morphology, trace element compositions, and toxicity as represented by oxidative DNA damage. The analyses included Field Emission Scanning Electron Microscopy (FESEM), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Plasmid Scission Assay (PSA). Gravimetric analysis indicated that the equivalent mass concentration of PM10 emitted by burning raw powdered coal was higher than that derived by burning honeycomb briquette. FESEM observation revealed that the coal burning-derived PM10 particles were mainly soot aggregates. The PSA results showed that the PM10 emitted by burning honeycomb briquettes had a higher oxidative capacity than that from burning raw powdered coal and wood charcoal. It is also demonstrated that the oxidative capacity of the whole particle suspensions were similar to those of the water soluble fractions; indicating that the DNA damage induced by coal burning-derived PM10 were mainly a result of the water-soluble fraction. An ICP-MS analysis revealed that the amount of total analysed water-soluble elements in the PM10 emitted by burning honeycomb briquettes was higher than that in PM produced by burning raw powdered coal, and both were higher than PM from burning wood charcoal. The total analysed water-soluble elements in these coal burning-derived PM10 samples had a significantly positive correlation with the level of DNA damage; indicating that the oxidative capacity of the coal burning-derived PM10 was mainly sourced from the water soluble elements. The water-soluble As, Cd, Ge, Mn, Ni, Pb, Sb, Se, Tl, and Zn showed the highest correlation with the oxidative potential, implying that these elements in their water soluble states were the primary responsible factor for the plasmid DNA damage. The exposure risk was further assessed using the particle mass concentrations multiplied by the percent of DNA damage under the dose of 500 μg ml-1. The results revealed that the exposure risk of burning raw powdered coal was much higher than that of burning honeycomb briquette.

  5. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... for general open burning, agricultural burning, and forestry and silvicultural burning. (a) Beginning... obtain approval of a permit under § 49.134 Rule for forestry and silvicultural burning permits....

  6. Burns and beauty nails

    PubMed Central

    Bélanger, Richard E; Marcotte, Marie-Eve; Bégin, François

    2013-01-01

    A case involving a five-month-old girl brought to the emergency department with burns over her abdomen is described. The child was reported to have spilled two small bottles of beauty nail adhesive on her clothes while her mother was preparing dinner. After undressing the infant, the mother discovered several lesions on the child’s abdomen and quickly sought medical attention. Given the unusual circumstances of the presentation, the child was hospitalized for both treatment and supervision. The beauty nail adhesive contained cyanoacrylate. In addition to its well-appreciated adhesive capacity, cyanoacrylate, in the presence of cotton or other tissues, is known to produce an exothermic reaction that may cause burns. Cyanoacrylate-based products, due to their possible adverse effects, should be kept away from children as advised. Odd injuries should always raise concerns about the possibility of inflicted injury. PMID:24421671

  7. 'Burns Cliff' Color Panorama

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for 'Burns Cliff' Color Panorama (QTVR)

    NASA's Mars Exploration Rover Opportunity captured this view of 'Burns Cliff' after driving right to the base of this southeastern portion of the inner wall of 'Endurance Crater.' The view combines frames taken by Opportunity's panoramic camera between the rover's 287th and 294th martian days (Nov. 13 to 20, 2004).

    This is a composite of 46 different images, each acquired in seven different Pancam filters. It is an approximately true-color rendering generated from the panoramic camera's 750-nanometer, 530-nanometer and 430-nanometer filters. The mosaic spans more than 180 degrees side to side. Because of this wide-angle view, the cliff walls appear to bulge out toward the camera. In reality the walls form a gently curving, continuous surface.

  8. Wood burning stove

    SciTech Connect

    Allaire, R.A.; Vandewoestine, R.V.

    1982-08-24

    Disclosed herein is an improved wood burning stove employing a combustion chamber and a flue in communication therewith for removal of exhaust from the chamber with a catalytic converter means being movably mounted in the flue whereby the impedance presented to the exhaust by the converter may be selectively varied so as to minimize the impedance presented by the converter means when additional fuel is added to the stove.

  9. Bridging the experience gap: Burning tires in a utility boiler

    SciTech Connect

    Denhof, D.

    1993-03-01

    For many communities, a solution to waste tire management problems may be no farther than the nearest coal-fired utility or industrial boiler. Sending waste tires to be used as a fuel in existing boilers is one way communities can prevent tires from creating problems in landfills, or from growing into nuisances and potentially dangerous stockpiles while waiting for recycling markets to develop. For utilities, using tire-derived fuel can help control fuel costs and conserve coal. When the State of Wisconsin sought alternatives to disposing of waste tires in its landfills, Wisconsin Power & Light came forward to meet the challenge. Now, the electric utility is shredding and burning more than 1 million tires a year at its coal-fired generating station in southern Wisconsin.

  10. Coal preparation

    SciTech Connect

    Not Available

    1991-05-01

    The acid rain control legislation has prompted the Department of Energy (DOE) to seek new technology using the Clean Coal Technology program solicitation. The main goal of the program is to reduce SO{sub 2} emissions below 9 Mt/a (10 million stpy) and NO{sub x} emission below 5.4 Mt/a (6 million stpy) by the year 2000. This would be accomplished by using precombustion, combustion, post combustion and conversion technology. Utilities are considering installing new scrubbers, switching fuel or possibly deep clean. However, the time required to implement the control technology is short. Due to the legislation, about 110 plants will have to adopt one of the approaches. This paper reports that in characterization of coal, Ames Laboratory used a scanning electron microscope- based, automated image analysis (SEM-AIA) technique to identify coal and mineral matter association. Various forms of organic sulfur were identified using peroxyacetic acid oxidation of coal. This was followed by subsequent microscopic, GC-MS, and HRMS analysis by Southern Illinois University. In ultrafine grinding of coal, it was reported by the Mining and Mineral Institute of Alabama that silica sand or flint shot used less energy compared to steel ball mills.

  11. Efficiency of coal use, electricity for EVs versus synfuels for ICEs

    NASA Astrophysics Data System (ADS)

    Mueller, H. G.; Wouk, V.

    1980-02-01

    Data are presented to show how electric vehicles will travel approximately twice as far per ton of coal burned to produce electricity for EV propulsion, than will an ICE vehicle burning the synfuel produced from an equal amount of coal. These figures are based on pessimistic calculations of the efficiencies of electricity generation, transmission, battery charging and EV drivetrains. The synfuel calculations are based on optimistic upper limits of coal conversion efficiency and ICE systems' efficiencies. EVs are less harmful to the environment than conventional vehicles. The emissions from coal-burning power plants are more readily controlled than the pollutants from refineries that convert coal to synfuel. The emissions from EVs are negligible, whereas those from ICEs still have not been reduced to the levels originally mandated for 1976. Synfuels should be reserved mainly for those applications for which electricity is impractical or impossible, such as planes, long-haul trucks and buses, and the petrochemical industry.

  12. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 3, April--June 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1995-08-05

    Economical dewatering of an ultra-fine clean coal product to a 20% or lower level moisture will be an important step in successful implementation of the advanced fine coal cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept (POC) scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals. During this quarter, addition of reagents such as ferric ions and a novel concept of in-situ polymerization (ISP) was studied in the laboratory. Using the ISP approach with vacuum filtration provided 25% moisture filter cake compared to 65.5% moisture obtained conventionally without using the ISP. A series of dewatering tests were conducted using the Andritz hyperbaric pilot filter unit with high sulfur clean coal slurry.

  13. Outpatient burns: prevention and care.

    PubMed

    Lloyd, Emillia C O; Rodgers, Blake C; Michener, Michael; Williams, Michael S

    2012-01-01

    Most burn injuries can be managed on an outpatient basis by primary care physicians. Prevention efforts can significantly lower the incidence of burns, especially in children. Burns should be managed in the same manner as any other trauma, including a primary and secondary survey. Superficial burns can be treated with topical application of lotions, honey, aloe vera, or antibiotic ointment. Partial-thickness burns should be treated with a topical antimicrobial agent or an absorptive occlusive dressing to help reduce pain, promote healing, and prevent wound desiccation. Topical silver sulfadiazine is the standard treatment; however, newer occlusive dressings can provide faster healing and are often more cost-effective. Physicians must reevaluate patients frequently after a burn injury and be aware of the indications for referral to a burn specialist. PMID:22230304

  14. Fuel-NOx release during coal blends combustion

    SciTech Connect

    Qiu, J.; Zhu, Q.; Li, F.; Liu, Y.; Zheng, C.; Zeng, H.

    1999-07-01

    The emission of nitrogen oxides from coal combustion has a major environmental impact. Recently, a number of power stations have been successively burning blended coals, while meeting NOx emission limits. In this paper, the emission of nitrogen and NOx release during blended pulverized coal combustion have been investigated in a horizontal' electric heating reactor and a drop-tube furnace. Formation and conversion of the intermediate N0containing species as HCN and NHI were also measured. The influence of components coal properties on NO and char-NO has been analyzed. The nitrogen evolution of blended coals has no obvious linear relation with blended ratios. Fuel-NOx release from blended coal combustion take a longer time than that form single one. At high temperature, the reaction of the conversion from Char-N to NOx is diffusion control reaction. At low temperature, the reaction is under chemical control reaction, which is similar with the conversion of volatile-N to NOx.

  15. Advanced coal conversion process demonstration. Technical progress report, April 1--June 30, 1996

    SciTech Connect

    1997-10-01

    This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high moisture, low rank coals to a high quality, low sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep bed stratifier cleaning process to separate the pyrite rich ash from the coal. The SynCoal process enhances low rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,500 to 9,000 Btu/lb, by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. The 45 ton per hour unit is located adjacent to a unit train load out facility at Western Energy Company`s Rosebud coal mine near Colstrip, Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. During this report period the primary focus has been to continue the operation of the demonstration facility. Production has been going to area power plants. Modifications and maintenance work was also performed this quarter.

  16. US coal industry: the economics of policy choice. [USA; 1946 to 1974; major uses

    SciTech Connect

    Zimmerman, M.B.

    1981-01-01

    The main supply and demand influences shaping the US coal industry can be viewed as in a tug-of-war. A set of forces is causing movement toward the west. These forces dominate the current scene. Pulling in that direction are sulfur regulations (excluding BACT), labor cost trends, and shifting demand centers. Sulfur regulations cause an expansion in low-sulfur western output. Rising labor costs cause a shift at the margin to strip mining. Depletion of strip reserves in the eastern United States means that the shift to strip mining is also a shift to western mining, where strip reserves are plentiful and relatively low in cost. Both these trends are reinforced by the emergence of the states west of the Mississippi River as coal demanders. This change in demand patterns provides a base level of demand for western coal that implies, even in the absence of other factors, a healthy growth rate for western coal production. These trends will occur even under extremely optimistic assumptions about nuclear power. The developments pulling eastward are policy related. Regulations mandating best available control technology (BACT) for sulfur removal cause the midwest to reduce its reliance on western coal. The attempt to capture rents through higher taxes and railroad rates also slows the expansion of western coal. This tug-of-war will determine how much western coal moves east. The results of our analyses indicate that coal will be used primarily by electric utilities. Industrial use of coal grows but still remains a relatively small fraction of total coal consumption.

  17. Fire in the hole - Paging in mines from Pennsylvania to China, coal fires threaten towns, poison air and water, and add to global warming

    SciTech Connect

    Krajick, K.

    2005-05-01

    China has the most coal fires, but India has the largest concentration of them. The effect of coal fires on the once thriving town of Centralia, Pennsylvania is described. There have been eight attempts to put the fire out using different methods (it has been burning for 43 years), but has now been left to burn. It could burn for another 205 years. The population of the town have mostly been relocated.

  18. Evaluation of pitches and cokes from solvent-extracted coal materials

    SciTech Connect

    McHenry, E.R.

    1996-12-01

    Three initial coal-extracted (C-E) samples were received from the West Virginia University (WVU) Chemical Engineering Department. Two samples had been hydrogenated to obtain pitches that satisfy Theological requirements. One of the hydrogenated (HC-E) samples had been extracted by toluene to remove ash and higher molecular weight aromatic compounds. We were unable to measure the softening point and viscosity of the non-hydro treated solid extract sample, Positive characteristics in the HC-E materials were softening points of 113-119{degrees}C, low sulfur and ash. The oxygen and nitrogen content of the HC-E samples may limit future usage in premium carbon and graphite products. Coking values were similar to petroleum pitches. Laboratory anode testing indicates that in combination with standard coal-tar pitch, the HC-E material can be used as a binder pitch.

  19. ENVIRONMENTAL ASSESSMENT OF A FIRETUBE BOILER FIRING COAL/OIL/WATER MIXTURES. VOLUME 2. DATA SUPPLEMENT

    EPA Science Inventory

    This volume is a compendium of detailed emission and test data from field tests of a firetube industrial boiler burning a coal/oil/water (COW) mixture. The boiler was tested while burning COW fuel, and COW with soda ash added (COW+SA) to serve as an SO2 sorbent. The test data inc...

  20. Current trends in coal combustion product (CCPs) production and use

    SciTech Connect

    Stewart, B.

    1998-12-31

    CCPs (Coal Combustion Products) are engineering materials that are similar in use to virgin, processed and manufactured materials. CCPs are produced when coal is burned in a boiler to generate electricity. The four types of CCPs produced by electric utility boilers are fly ash, bottom ash, boiler slag and FGD (Flue Gas Desulfurization) material. CCPs rank behind only sand and gravel, and crushed stone as a produced mineral commodity, and rank ahead of Portland cement and iron ore. In 1997, 55% of the electricity was produced by coal fired electric utilities. This number is projected to remain fairly constant to the year 2015. Almost 90% of the coal used in the United States, is burned to generate electricity. During 1997, 898.5 million metric tons (870 million short tons) of coal were burned by electric utilities to generate electricity. As a result, over 95 million tons (105 million short tons) of CCPs were generated by the electric utilities. This figure promises to increase in the future, owing mostly to the anticipated rise in FGD material generation. The American Coal Ash Association, Inc. (ACAA) is a trade association representing the CCP Industry. ACAA promotes the use in CCPs in numerous applications that are technically sound, commercially competitive and environmentally safe. The data presented in this paper has been taken from the Annual Survey of CCP production and use by ACAA. ACAA conducts an annual voluntary, confidential, survey of US coal fired electric utilities to gather data about the production and use of CCPs. In 1997, the survey data collected accounts for approximately 80% of the coal burned by electric utilities. Information from previous ACAA surveys or US Department of Energy (DOE) Energy Information Administration (EIA) data were used to estimate CCP production and use for utilities that did not respond to the survey. None of the data used was older than 1995.

  1. Impact of solid discharges from coal usage in the southwest

    PubMed Central

    Jones, D. G.; Straughan, I. R.

    1978-01-01

    The Southwestern region of the United States is extremely wealthy in low sulfur coal resources which must be eventually utilized in response to national energy balance priorities. Fly ash and scrubber sludge can be safely disposed of using properly managed techniques to ensure that any potential impact from elements such as boron, molybdenum, or selenium is rendered insignificant. Alternative methods of solids utilization are presently being developed. Fly ash is presently being marketed commercially as an additive for concrete manufacture. Successful experiments have been completed to demonstrate the manufacture of commercial-grade wallboard from scrubber sludge. Also, greenhouse studies and field experiments have been conducted to demonstrate increased yields of selected crops grown on typical soils amended with fly ash in amounts ranging from 2% to 8%, by weight. These studies also indicate that barium and strontium may be good monitoring indices for determining atmospheric deposition of fly ash, due to their concentration ratios in soil and vegetation samples. Further studies are being conducted to confirm encouraging irrigation and crop-yield data obtained with fly ash amended soils. Finally, the composition of many fly ashes and soils are similar in the Southwest, and there are no anticipated solid discharges from coal usage which cannot be rendered insignificant with proper management of existing and emerging methods of treatment. Compared with the water availability impact of coal usage in the Southwest, the impact of solid waste discharges are insignificant. PMID:738243

  2. Advanced Coal Conversion Process Demonstration Project. Environmental Monitoring Plan

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  3. Mulled Coal: A beneficiated coal form for use as a fuel or fuel intermediate. Technical progress report No. 4, January 1, 1991--March 31, 1991

    SciTech Connect

    Not Available

    1991-09-01

    During the past quarter Energy International has evaluated additional mull formulations with varying reagent additives, mixing times, and particle sizes. The Environmental Review was completed and conceptual designs developed for the Mull Preparation and CWF Conversion Systems. As these technical developments move toward commercial application, the needs for coordinated efforts and integrated requirements have become increasingly apparent. Systems are vitally needed to integrate energy delivery systems from the raw resource through processing to application and end use. Problems have been encountered in the preparation of conventional coal-water fuels that mutually satisfy the requirements for storage stability, handling, preparation, atomization, combustion, and economics. Experience has been slow in evolving generic technologies or products and coal-specific requirements and specifications continue to dominate the development. Thus, prospects for commercialization remain highly specific to the coal, the processor, and the end use. Developments in advanced beneficiation of coal to meet stringent requirements for low ash and low sulfur can be anticipated to further complicate the problem areas. This is attributable to the beneficiated coal being produced in very fine particles with a high surface area, modified surface characteristics, reduced particle size distribution range, and high inherent moisture.

  4. Assessment of burn depth and burn wound healing potential.

    PubMed

    Monstrey, Stan; Hoeksema, Henk; Verbelen, Jos; Pirayesh, Ali; Blondeel, Phillip

    2008-09-01

    The depth of a burn wound and/or its healing potential are the most important determinants of the therapeutic management and of the residual morbidity or scarring. Traditionally, burn surgeons divide burns into superficial which heal by rapid re-epithelialization with minimal scarring and deep burns requiring surgical therapy. Clinical assessment remains the most frequent technique to measure the depth of a burn wound although this has been shown to be accurate in only 60-75% of the cases, even when carried out by an experienced burn surgeon. In this article we review all current modalities useful to provide an objective assessment of the burn wound depth, from simple clinical evaluation to biopsy and histology and to various perfusion measurement techniques such as thermography, vital dyes, video angiography, video microscopy, and laser Doppler techniques. The different needs according to the different diagnostic situations are considered. It is concluded that for the initial emergency assessment, the use of telemetry and simple burn photographs are the best option, that for research purposes a wide range of different techniques can be used but that, most importantly, for the actual treatment decisions, laser Doppler imaging is the only technique that has been shown to accurately predict wound outcome with a large weight of evidence. Moreover this technique has been approved for burn depth assessment by regulatory bodies including the FDA. PMID:18511202

  5. Acoustic emission strand burning technique for motor burning rate prediction

    NASA Technical Reports Server (NTRS)

    Christensen, W. N.

    1978-01-01

    An acoustic emission (AE) method is being used to measure the burning rate of solid propellant strands. This method has a precision of 0.5% and excellent burning rate correlation with both subscale and large rocket motors. The AE procedure burns the sample under water and measures the burning rate from the acoustic output. The acoustic signal provides a continuous readout during testing, which allows complete data analysis rather than the start-stop clockwires used by the conventional method. The AE method helps eliminate such problems as inhibiting the sample, pressure increase and temperature rise, during testing.

  6. Results of the PDF{trademark} test burn at Clifty Creek Station

    SciTech Connect

    Johnson, S.A.; Knottnerus, B.

    1996-10-01

    Process Derived Fuel (PDF{sup TM}) from the ENCOAL process is different from other coals used to generate steam for the power industry. Although PDF{sup TM} is currently produced from Powder River Basin (PRB) subbituminous coal, the coal structure changes during processing. Compared to the parent coal, PDF{sup TM} contains much less moisture and slightly lower volatile matter resulting in a higher heating value and higher ash per million Btu. These coal properties can potentially benefit utility boiler performance. Combining the high combustion reactivity typical of PRB coals with significantly reduced moisture should produce higher flame zone temperatures and shorter flames. As a result, some boilers may experience increased steam production, better burnout, or lower excess air. The objective of the work contracted to Quinapoxet Engineering was to quantify the impacts of burning PDF{sup TM} on boiler performance at Clifty Creek Unit 3. A unique optical temperature monitor called SpectraTemp was used to measure changes in furnace exit gas temperature (FEGT) with time and boiler operating parameters for both PDF{sup TM} blends as well as a baseline coal blend consisting of 60% PRB coal, 20% Ohio coal, and 20% low-volatile eastern bituminous coal from Virginia. FEGT was then related to net plant heat rate, NO{sub x} emissions, and electrostatic precipitator performance.

  7. SystemBurn

    Energy Science and Technology Software Center (ESTSC)

    2012-08-30

    SystemBurn is a tool for creating a synthetic computational load for the purpose of measuring how much power a computer will draw under that type of load. The loads include fundamental library function calls like matrix multiply, memory copies, fourier transforms, bit manipulation, I/O, network packet transfers, and some code contrived to cause the processor to dray more or less power. The code produces some diagnostic and progress output, but the actual measurements would bemore » recorded from the power panels within the computer room.« less

  8. SystemBurn

    SciTech Connect

    2012-08-30

    SystemBurn is a tool for creating a synthetic computational load for the purpose of measuring how much power a computer will draw under that type of load. The loads include fundamental library function calls like matrix multiply, memory copies, fourier transforms, bit manipulation, I/O, network packet transfers, and some code contrived to cause the processor to dray more or less power. The code produces some diagnostic and progress output, but the actual measurements would be recorded from the power panels within the computer room.

  9. Marginally Stable Nuclear Burning

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Altamirano, D.

    2012-01-01

    Thermonuclear X-ray bursts result from unstable nuclear burning of the material accreted on neutron stars in some low mass X-ray binaries (LMXBs). Theory predicts that close to the boundary of stability oscillatory burning can occur. This marginally stable regime has so far been identified in only a small number of sources. We present Rossi X-ray Timing Explorer (RXTE) observations of the bursting, high- inclination LMXB 4U 1323-619 that reveal for the first time in this source the signature of marginally stable burning. The source was observed during two successive RXTE orbits for approximately 5 ksec beginning at 10:14:01 UTC on March 28, 2011. Significant mHz quasi- periodic oscillations (QPO) at a frequency of 8.1 mHz are detected for approximately 1600 s from the beginning of the observation until the occurrence of a thermonuclear X-ray burst at 10:42:22 UTC. The mHz oscillations are not detected following the X-ray burst. The average fractional rms amplitude of the mHz QPOs is 6.4% (3 - 20 keV), and the amplitude increases to about 8% below 10 keV.This phenomenology is strikingly similar to that seen in the LMXB 4U 1636-53. Indeed, the frequency of the mHz QPOs in 4U 1323-619 prior to the X-ray burst is very similar to the transition frequency between mHz QPO and bursts found in 4U 1636-53 by Altamirano et al. (2008). These results strongly suggest that the observed QPOs in 4U 1323-619 are, like those in 4U 1636-53, due to marginally stable nuclear burning. We also explore the dependence of the energy spectrum on the oscillation phase, and we place the present observations within the context of the spectral evolution of the accretion-powered flux from the source.

  10. Wood burning stove

    SciTech Connect

    Allaire, R.A.; Pardue, W.F.; Vandewoestine, R.V.

    1982-05-18

    Disclosed herein is an improved wood burning stove employing a combustion chamber and a flue for removing exhaust therefrom and also a catalytic converter means for oxidizing oxidizable species in the exhaust. A passageway is provided for bypassing the exhaust around the catalytic converter means, the passageway being controlled by a bypass damper for controlling access to the passageway for varying impedance otherwise presented to the exhaust by the converter, for example, during the addition of fuel to the stove. Such an arrangement minimizes back pressure caused by the converter means.

  11. Mobilizable RDF/d-RDF burning program

    SciTech Connect

    Niemann, K.; Campbell, J.

    1982-03-01

    The Mobilizable RDF/d-RDF Burning Program was conceived to promote the utilization of refuse-derived fuels (RDF) as a supplement to existing fossil fuel sources in industrial-sized boilers. The program explores the design, development, and eventual construction of densified-RDF (d-RDF) for use in boiler combustion testing as a supplement to stoker coal or wood wastes. The equipment would be mounted on trailers and assembled and operated at preselected sites throughout the country where approximately 750 tons of RDF would be produced and test burned in a local boiler. The equipment, to include a transportable RDF boiler metering and feed system, would then be moved and operated at two to three test sites annually. The program is intended to encourage the construction of permanent resource recovery facilities by involving local waste handling groups in operating the equipment and producing fuel, and potential local fuel users in testing the fuel in their boilers. The Mobilizable Program was developed from two separate tasks. The first task developed the concept behind the program and defined its operational and organizational structure. The second task, a follow-up to the first, was intended principally to finalize test locations, develop equipment designs and specifications, and formalize a management program. This report summarizes the principal findings of both tasks. It identifies the criteria used to identify test locations, outlines the program's management structure, presents design and performance specifications for both the fuel production equipment and boiler fuel feed systems, and provides a detailed evaluation of the parameters involved in burning RDF in industrial-sized boilers. Final conclusions and recommendations identify problem areas encountered in the program, and discuss possible future directions for such a program.

  12. Physical rehabilitation of pediatric burns

    PubMed Central

    Atiyeh, B.; Janom, H.H.

    2014-01-01

    Summary Significant improvements have been made in the acute treatment of pediatric burn injuries over the past 3 decades which have significantly decreased mortality. Each year, more burned children are necessitating serious medical attention during their convalescence. For children with serious consequences resulting from burns that can persist from childhood through adolescence into adulthood, the value of long-term rehabilitation cannot be over stated. Burn injury management should not focus only on the immediate treatment. Long-term functional outcome and the required rehabilitation that burn victims must go through should be given equal if not more attention. The present is a review of the available modalities utilized for the physical rehabilitation of convalescent pediatric burns in order to overcome the catabolic state, improve muscle power and fitness, reduce disfiguring scars and prevent contractures. PMID:25249846

  13. Clothing burns in Canadian children.

    PubMed

    Stanwick, R S

    1985-05-15

    A Canadian survey of 11 tertiary care pediatric centres with specialized burn facilities revealed that an estimated 37 children up to 9 years of age are admitted annually to such hospitals because of clothing burns. Sleepwear accounts for an estimated 21 such burns per year. Girls were found to suffer the most severe burns and represented eight of the nine children in the series who died. Loose and flowing garments dominated the girls' styles. The results of multiple-regression analysis confirmed that style of clothing (loose and flowing as opposed to snug) was the most significant predictor of burn severity, length of hospital stay, the need for skin grafting and survival. The ignition situation (avoidance of parental supervision at the time of injury) was the only other important predictor. The success of regulatory actions in other countries in reducing the incidence of severe clothing burns is reviewed, and preventive strategies for Canada are explored. PMID:3995433

  14. CAD tool for burn diagnosis.

    PubMed

    Acha, Begoña; Serrano, Carmen; Acha, José I; Roa, Laura M

    2003-07-01

    In this paper a new system for burn diagnosis is proposed. The aim of the system is to separate burn wounds from healthy skin, and the different types of burns (burn depths) from each other, identifying each one. The system is based on the colour and texture information, as these are the characteristics observed by physicians in order to give a diagnosis. We use a perceptually uniform colour space (L*u*v*), since Euclidean distances calculated in this space correspond to perceptually colour differences. After the burn is segmented, some colour and texture descriptors are calculated and they are the inputs to a Fuzzy-ARTMAP neural network. The neural network classifies them into three types of bums: superficial dermal, deep dermal and full thickness. Clinical effectiveness of the method was demonstrated on 62 clinical burn wound images obtained from digital colour photographs, yielding an average classification success rate of 82% compared to expert classified images. PMID:15344466

  15. Ethical considerations in burn management.

    PubMed

    Cole, Patrick; Stal, Drew; Hollier, Larry

    2008-07-01

    Catastrophic burn injuries often leave patients in shock or incommunicative, creating complex ethical situations. Patient autonomy and the ability to make competent decisions become key issues. Although patient surrogates may aid in decision making, few patient advocates possess appropriate perspective of burn injury, management options, and likely outcomes. An informed decision requires informed perspective. In addition, debates over futility of care evoke strong emotion. At what point does caring for the severely burned patient become futile, and who defines it as such? Whereas formulas and algorithms guide medical management, very few well-defined principles direct ethical decision making in severe burn management. The physician must rely on his or her understanding of medical ethics to marshal a complex team of burn personnel, maintain institutional protocol, and work closely with patients and patient advocates. Only thorough, thoughtful rational application of ethics can one provide maximal respect for patient autonomy while optimally managing the severe burn injury. PMID:18650707

  16. INFLUENCE OF COAL COMPOSITION ON THE FATE OF VOLATILE AND CHAR NITROGEN DURING COMBUSTION

    EPA Science Inventory

    The paper gives results of burning 50 coals from North America, Europe, Asia, South Africa, and Australia in a 21 kWt refactory-lined tunnel furnace to determine the influence of coal properties on the fate of volatile and char nitrogen. Excess-air fuel NO emissions (determined b...

  17. Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation

    SciTech Connect

    Lytle, J.M.; Marchant, D.D.

    1980-11-01

    The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

  18. Blast furnace granular coal injection project. Annual report, January--December 1993

    SciTech Connect

    Not Available

    1994-06-01

    This initial annual report describes the Blast Furnace Granular Coal Injection project being implemented at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. This installation will be the first in the United States to employ British Steel technology that uses granular coal to provide part of the fuel requirement of blast furnaces. The project will demonstrate/assess a broad range of technical/economic issues associated with the use of coal for this purpose. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. Preliminary Design (Phase 1) began in 1991 with detailed design commencing in 1993. Construction at Burns Harbor (Phase 2) began in August 1993. Construction is expected to complete in the first quarter of 1995 which will be followed by the demonstration test program (Phase 3). Progress is described.

  19. Burns: Treatment and Outcomes

    PubMed Central

    Burd, Andrew

    2010-01-01

    Burns can cause extensive and devastating injuries of the head and neck. Prevention of the initial injury must always be a priority, but once an injury has occurred, then prevention of progression of the damage together with survival of the patient must be the immediate goals. The acute care will have a major influence on the subsequent scarring, reconstructive need, and long-term outcome. In the majority of cases, the reconstruction will involve restoration of form and function to the soft tissues, and the methods used will depend very much on the extent of scarring locally and elsewhere in the body. In nearly all cases, a significant improvement in functional and aesthetic outcomes can be achieved, which, in conjunction with intensive psychosocial rehabilitation, can lead to high-quality patient outcomes. With the prospect of facial transplantation being a clinical reality, the reconstructive spectrum has opened up even further, and, with appropriate reconstruction and support, no patient should be left economically deprived or socially isolated after a burn injury. PMID:22550448

  20. Burning mouth syndrome

    PubMed Central

    Gurvits, Grigoriy E; Tan, Amy

    2013-01-01

    Burning mouth syndrome is a debilitating medical condition affecting nearly 1.3 million of Americans. Its common features include a burning painful sensation in the mouth, often associated with dysgeusia and xerostomia, despite normal salivation. Classically, symptoms are better in the morning, worsen during the day and typically subside at night. Its etiology is largely multifactorial, and associated medical conditions may include gastrointestinal, urogenital, psychiatric, neurologic and metabolic disorders, as well as drug reactions. BMS has clear predisposition to peri-/post menopausal females. Its pathophysiology has not been fully elucidated and involves peripheral and central neuropathic pathways. Clinical diagnosis relies on careful history taking, physical examination and laboratory analysis. Treatment is often tedious and is aimed at correction of underlying medical conditions, supportive therapy, and behavioral feedback. Drug therapy with alpha lipoic acid, clonazepam, capsaicin, and antidepressants may provide symptom relief. Psychotherapy may be helpful. Short term follow up data is promising, however, long term prognosis with treatment is lacking. BMS remains an important medical condition which often places a recognizable burden on the patient and health care system and requires appropriate recognition and treatment. PMID:23429751

  1. Combustion characterization of the blend of plant coal and recovered coal fines. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Singh, S.; Scaroni, A.; Miller, B.; Choudhry, V.

    1992-12-31

    The overall objective of this proposed research program was to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples were prepared as 100% plant coal, 90% plant coal/10% fines, 85% plant coal/15% fines, and 80% plant coal /20% fines with a particle size distribution of 70% passing through {minus}200 mesh size. The plant coal and recovered coal fines were obtained from the Randolph Preparation Plant of Peabody Coal Co., Marissa, IL. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace was used mainly to measure the emissions and ash deposition study, while the drop tube furnace was used to determine burning profile, combustion efficiency, etc. The burning profile of the plant coal and the three blends was determined in a thermogravimetric analyzer. Results indicated slower burning of the blends due to low volatile matter and oxidized coal particles. Combustion emissions of these samples were determined in the down-fired combustor, while relative ignition temperatures were determined in the drop tube furnace. Chemical composition of ashes were analyzed to establish a correlation with their respective ash fusion temperatures. Overall study of these samples suggested that the blended samples had combustion properties similar to the original plant coal. In other words, flames were stable under identical firing rates of approximately 200,000 Btu`s/hr and 25% excess air. CO, NO{sub x}, and SO{sub x}, were similar to each other and within the experimental error. Combustion efficiency of 99{sup +}% was achievable. Ash chemical analysis of each sample revealed that slagging and fouling should not be different from each other.

  2. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... burning, and forestry and silvicultural burning. (a) Beginning January 1, 2007, a person must apply for... under § 49.134 Rule for forestry and silvicultural burning permits....

  3. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... burning, and forestry and silvicultural burning. (a) Beginning January 1, 2007, a person must apply for... under § 49.134 Rule for forestry and silvicultural burning permits....

  4. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... burning, and forestry and silvicultural burning. (a) Beginning January 1, 2007, a person must apply for... under § 49.134 Rule for forestry and silvicultural burning permits....

  5. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... burning, and forestry and silvicultural burning. (a) Beginning January 1, 2007, a person must apply for... under § 49.134 Rule for forestry and silvicultural burning permits....

  6. Coal industry annual 1997

    SciTech Connect

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  7. Coal industry annual 1996

    SciTech Connect

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  8. Coal Industry Annual 1995

    SciTech Connect

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  9. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  10. Coal use and the environment in the Asia-Pacific region

    SciTech Connect

    Dixon, J.A.

    1982-01-01

    The environmental effects of the increased use of coal and the magnitude of these effects is discussed. The experience of Australia, Canada, China, India, Indonesia, Japan, Korea, New Zealand, Phillipines, and the United States are compared. A variety of policy tools have been used to lessen the negative effects of coal use. These policies range from choice of technology, type of coal burned, or plant siting to emission controls, tax or subsidy policies and the setting of pollution standards. (JMT)

  11. Microbial solubilization of coal

    DOEpatents

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  12. Coal and Energy.

    ERIC Educational Resources Information Center

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  13. Release of inorganic material during coal devolatilization. Milestone report

    SciTech Connect

    Baxter, L.L.

    1995-07-01

    Experimental results presented in this paper indicate that coal devolatilization products convectively remove a fraction of the nonvolatile components of inorganic material atomically dispersed in the coal matrix. Results from three facilities burning six different coals illustrate this mechanism of ash transformation and release from coal particles. Titanium is chosen to illustrate this type of mass release from coal particles on the basis of its low volatility and mode of occurrence in the coal. During moderate rates of devolatilization (10{sup 4} K/s heating rate), no significant loss of titanium is noted. At more rapid rates of heating/devolatilization (10{sup 5} K/s) a consistent but minor (3-4 %) loss of titanium is noted. During rapid devolatilization (5xl0{sup 5} K/s and higher), significant (10-20 %) amounts of titanium leave the coal. The loss of titanium monitored in coals ranging in rank from subbituminous to high-volatile bituminous coals and under conditions typical of pulverized-coal combustion. The amount of titanium lost during devolatilization exhibits a complex rank dependence. These results imply that other atomically dispersed material (alkali and alkaline earth elements) may undergo similar mechanisms of transformation and release.

  14. Global Burned Area and Biomass Burning Emissions from Small Fires

    NASA Technical Reports Server (NTRS)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity analyses of key model parameters caused estimates of global burned area increases from small fires to vary between 24% and 54%. Biomass burning carbon emissions increased by 35% at a global scale when small fires were included in GFED3, from 1.9 Pg C/yr to 2.5 Pg C/yr. The contribution of tropical forest fires to year-to-year variability in carbon fluxes increased because small fires amplified emissions from Central America, South America and Southeast Asia-regions where drought stress and burned area varied considerably from year to year in response to El Nino-Southern Oscillation and other climate modes.

  15. Global burned area and biomass burning emissions from small fires

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; van der Werf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-12-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity analyses of key model parameters caused estimates of global burned area increases from small fires to vary between 24% and 54%. Biomass burning carbon emissions increased by 35% at a global scale when small fires were included in GFED3, from 1.9 Pg C/yr to 2.5 Pg C/yr. The contribution of tropical forest fires to year-to-year variability in carbon fluxes increased because small fires amplified emissions from Central America, South America and Southeast Asia—regions where drought stress and burned area varied considerably from year to year in response to El Nino-Southern Oscillation and other climate modes.

  16. Burn Teams and Burn Centers: The Importance of a Comprehensive Team Approach to Burn Care

    PubMed Central

    Al-Mousawi, Ahmed M.; Mecott-Rivera, Gabriel A.; Jeschke, Marc G.; Herndon, David N.

    2009-01-01

    Synopsis Advances in burn care have been colossal, but while extra work is needed, it is clear that the organized effort of burn teams can continue making improvements in survival rates and quality of life possible for patients. Burn patients are unique, representing the most severe model of trauma,33 and hence this necessitates treatment in the best facilities available for that endeavor. Burn centers have developed to meet these intricate needs but can only function productively and most efficiently through well organized, multifaceted, patient-centered teams in areas of clinical care and research. PMID:19793550

  17. Oral Rehydration Therapy in Burn Patients

    ClinicalTrials.gov

    2014-04-24

    Burn Any Degree Involving 20-29 Percent of Body Surface; Burn Any Degree Involving 30-39 Percent of Body Surface; Burn Any Degree Involving 40-49 Percent of Body Surface; Burn Any Degree Involving 50-59 Percent of Body Surface; Burn Any Degree Involving 60-65 Percent of Body Surface

  18. Inland out: Midwestern river coal transloaders deal with increased pressures

    SciTech Connect

    Buchsbaum, L.

    2007-06-15

    As greater amounts of US western coal is burned by many eastern and south-eastern power plants located along the Ohio River and its tributaries, Midwestern coal transload facilities are playing an ever growing role in the nation's coal transportation system by moving traffic off clogged rail lines onto barges on inland rivers. The article describes operations by three mid-western ports - American Electric Power's (AEP) Cook Terminal in Metropolis, IL; Kinder-Morgan's Cora Terminal in Cora, IL; and Kinder-Morgan's Grand Rivers Terminal near Paducah, KY. Together these terminals transferred more than 30 m tons onto barges in 2006. 5 figs.

  19. Coal: the energy source of the past and future

    SciTech Connect

    Schobert, H.H.

    1987-01-01

    This book was written largely to tell the story of coal to the general public. Nonetheless, it includes an impressive amount of useful information, with an historical perspective not easily found elsewhere. The story begins with what coal is, how it was formed, where it is found, its chemistry and physics, and mining and transportation. There then follows an organized treatment of utilization of coal, from simple burning to manufacture of chemicals and synthetic fuels. It is easily readable, intelligently written, and well indexed. An appendix of annotated suggestions for further reading is included.

  20. Clean coal

    SciTech Connect

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  1. Mode of occurrence and distribution of sulfur in West Virginia coals and Devonian shales

    SciTech Connect

    King, H.M. II

    1982-01-01

    The sulfur content of West Virginia coals and Devonian shales was studied using chemical analyses and reflected light microscopy. Pyrite was the dominant sulfide mineral observed in the coals; however, marcasite was abundant in many samples. These minerals were present in a variety of morphologies, maceral associations, particle sizes and abundances. Most iron disulfide occurrences were thought to have formed before the coal was completely compacted; however, some formed after cleat development. Charts of sulfur percentiles were prepared for thirteen of the major minable seams using over 2000 analyses. They revealed that many seams have wide ranges of sulfur content while others are amazingly uniform. Computer-contoured sulfur maps were prepared to show the distribution of sulfur in six of the State's most important seams. Sulfur species histograms, Spearan rank correlations and x-y plots of sulfur abundances indicated that: most of the sulfur in low-sulfur coals is in the organic form; however, the contribution of pyritic sulfur becomes more important as total sulfur increases. Sulfur in the Devonian shales was studied using a cored well from Lincoln County, West Virginia. The total sulfur content generally ranged between 0.0 and 4.0% with some units having particularly high sulfur contents. The sulfide minerals observed were very similar in size and morphology to those observed in coals. Pyrite was the dominant sulfide but significant quantities of marcasite were present in many samples. Chalcopyrite and sphalerite were also observed.

  2. Supply curves for using powder river basin coal to reduce sulfur emissions.

    PubMed

    Malvadkar, Shreekant B; Smith, Dennis; McGurl, Gilbert V

    2004-06-01

    Supply curves were prepared for coal-fired power plants in the contiguous United States switching to Wyoming's Powder River Basin (PRB) low-sulfur coal. Up to 625 plants, representing approximately 44% of the nameplate capacity of all coal-fired plants, could switch. If all switched, more than dollars 8.8 billion additional capital would be required and the cost of electricity would increase by up to dollars 5.9 billion per year, depending on levels of plant derating. Coal switching would result in sulfur dioxide (SO2) emissions reduction of 4.5 million t/yr. Increase in cost of electricity would be in the range of 0.31-0.73 cents per kilowatt-hour. Average cost of S emissions reduction could be as high as dollars 1298 per t of SO2. Up to 367 plants, or 59% of selected plants with 32% of 44% nameplate capacity, could have marginal cost in excess of dollars 1000 per t of SO2. Up to 73 plants would appear to benefit from both a lowering of the annual cost and a lowering of SO2 emissions by switching to the PRB coal. PMID:15242153

  3. Low-pressure hydrocracking of coal-derived Fischer-Tropsch waxes to diesel

    SciTech Connect

    Dieter Leckel

    2007-06-15

    Coal-derived low-temperature Fischer-Tropsch (LTFT) wax was hydrocracked at pressures of 3.5-7.0 MPa using silica-alumina-supported sulfided NiW/NiMo and an unsulfided noble metal catalyst, modified with MoO{sub 3}. A low-pressure operation at 3.5 MPa produced a highly isomerized diesel, having low cloud points (from -12 to -28{sup o}C) combined with high cetane numbers (69-73). These properties together with the extremely low sulfur ({lt}5 ppm) and aromatic ({lt}0.5%) contents place coal/liquid (CTL) derived distillates as highly valuable blending components to achieve Eurograde diesel specifications. The upgrading of coal-based LTFT waxes through hydrocracking to high-quality diesel fuel blend components in combination with commercial-feasible coal-integrated gasification combined cycle (coal-IGCC) CO{sub 2} capture and storage schemes should make CTL technology more attractive. 28 refs., 7 figs., 8 tabs.

  4. Burning crude oil without pollution

    NASA Technical Reports Server (NTRS)

    Houseman, J.

    1979-01-01

    Crude oil can be burned at drilling sites by two-stage combustion process without producing pollution. Process allows easier conformance to strict federal or state clean air standards without installation of costly pollution removal equipment. Secondary oil recovery can be accomplished with injection of steam heating by burning oil.

  5. Burned Wetland Near Tebicuary River

    In the rangelands of southern Paraguay, wetlands are burned to encourage new growth for cattle grazing. The burned wetland grasses are in the Family Poaceae (Gramineae), and may be in one of these genera: Panicum, Paspalum, Pennisetum, Tripogon. The Ñeembucú Region is typified by exten...

  6. Burned Wetland Near Tebicuary River

    In the rangelands of southern Paraguay, wetlands are burned to encourage new growth for cattle grazing. The burned wetland grasses are in the Family Poaceae (Gramineae), and may be in one of these genera: Panicum, Paspalum, Pennisetum, Tripogon. The eembuc Region is typified by exten...

  7. Animal Models in Burn Research

    PubMed Central

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  8. Small boiler uses waste coal

    SciTech Connect

    Virr, M.J.

    2009-07-15

    Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

  9. Corrosivities in a pilot-scale combustor of a British and two Illinois coals with varying chlorine contents

    USGS Publications Warehouse

    Chou, I.-Ming; Lytle, J.M.; Kung, S.C.; Ho, K.K.

    2000-01-01

    Many US boiler manufacturers have recommended limits on the chlorine (Cl) content (< 0.25% or < 0.3%) of coals to be used in their boilers. These limits were based primarily on extrapolation of British coal data to predict the probable corrosion behavior of US coals. Even though Cl-related boiler corrosion has not been reported by US utilities burning high-Cl Illinois coals, the manufacturer's limits affect the marketability of high-Cl Illinois coals. This study measured the relative rates of corrosion caused by two high-Cl coals (British and Illinois) and one low-Cl Illinois baseline coal under identical pilot-scale combustion conditions for about 1000 h which gave reliable comparisons. Temperatures used reflected conditions in boiler superheaters. The corrosion probes were fabricated from commercial alloy 304SS frequently used at the hottest superheater section of utility boilers. The results showed no evidence of direct correlation between the coal chlorine content and rate of corrosion. A correlation between the rate of corrosion and the metal temperature was obvious. The results suggested that the different field histories of corrosivity from burning high-Cl Illinois coal and high-Cl British coal occurred because of different metal temperatures operated in US and UK utility boilers. The results of this study can be combined into a database, which could be used for lifting the limits on chlorine contents of coals burned in utility boilers in the US.

  10. Coal liquefaction and hydrogenation

    DOEpatents

    Schindler, Harvey D.; Chen, James M.

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  11. Coal industry annual 1993

    SciTech Connect

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  12. Smartphones and burn size estimation: "Rapid Burn Assessor".

    PubMed

    Kamolz, L P; Lumenta, D B; Parvizi, D; Dirnberger, J; Owen, R; Höller, J; Giretzlehner, M

    2014-06-30

    Estimation of the total body surface area burned (%TBSA) following a burn injury is used in determining whether to transfer the patient to a burn center and the required fluid resuscitation volumes. Unfortunately, the commonly applied methods of estimation have revealed inaccuracies, which are mostly related to human error. To calculate the %TBSA (quotient), it is necessary to divide the burned surface area (Burned BSA) (numerator in cm2) by the total body surface area (Total BSA) (denominator in cm2). By using everyday objects (eg. credit cards, smartphones) with well-defined surface areas as reference for estimations of Burned BSA on the one hand and established formulas for Total BSA calculation on the other (eg. Mosteller), we propose an approximation method to assess %TBSA more accurately than the established methods. To facilitate distribution, and respective user feedback, we have developed a smartphone app integrating all of the above parameters, available on popular mobile device platforms. This method represents a simple and ready-to-use clinical decision support system which addresses common errors associated with estimations of Burned BSA (=numerator). Following validation and respective user feedback, it could be deployed for testing in future clinical trials. This study has a level of evidence of IV and is a brief report based on clinical observation, which points to further study. PMID:26170784

  13. Coal combustion science

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  14. New coal technology to flourish at Kentucky plant

    SciTech Connect

    Blankinship, S.

    2007-08-15

    Within four years a 76 MW (net) advanced supercritical coal unit, TC2, will go into service at the Trimble County power plant on the Ohio River near Louiseville, KY, USA. The unit is designed to burn a blend of eastern bituminous and western sub-bituminous Powder River Basin coals. TC2 is one of four US power plants to receive a $125 m tax credit under the 2005 EPACT Qualifying Advanced Coal Program for high efficiency and low emission generating units. Trimble County is owned and operated by E.ON US subsidiaries Kentucky Utilities and Louiseville Gas & Electric. It was originally designed to accommodate four 500 MW coal-fired units fired by bituminous coal from the Illinois Basin. 1 photo.

  15. Full cost accounting for the life cycle of coal.

    PubMed

    Epstein, Paul R; Buonocore, Jonathan J; Eckerle, Kevin; Hendryx, Michael; Stout Iii, Benjamin M; Heinberg, Richard; Clapp, Richard W; May, Beverly; Reinhart, Nancy L; Ahern, Melissa M; Doshi, Samir K; Glustrom, Leslie

    2011-02-01

    Each stage in the life cycle of coal-extraction, transport, processing, and combustion-generates a waste stream and carries multiple hazards for health and the environment. These costs are external to the coal industry and are thus often considered "externalities." We estimate that the life cycle effects of coal and the waste stream generated are costing the U.S. public a third to over one-half of a trillion dollars annually. Many of these so-called externalities are, moreover, cumulative. Accounting for the damages conservatively doubles to triples the price of electricity from coal per kWh generated, making wind, solar, and other forms of nonfossil fuel power generation, along with investments in efficiency and electricity conservation methods, economically competitive. We focus on Appalachia, though coal is mined in other regions of the United States and is burned throughout the world. PMID:21332493

  16. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases

    SciTech Connect

    Lee, C.W.; Srivastava, R.K.; Ghorishi, S.B.; Karwowski, J.; Hastings, T.H.; Hirschi, J.C.

    2006-05-15

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur (S) and chlorine (Cl)) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NO{sub x}) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg{sup 0}), decreasing the percentage of Hg{sup 0} at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg{sup 0} by the SCR catalyst, with the percentage of Hg{sup 0} decreasing from {approximately} 96% at the inlet of the reactor to {approximately} 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation. 16 refs., 4 figs., 3 tabs.

  17. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases.

    PubMed

    Lee, Chun W; Srivastava, Ravi K; Ghorishi, S Behrooz; Karwowski, Jarek; Hastings, Thomas W; Hirschi, Joseph C

    2006-05-01

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from approximately 96% at the inlet of the reactor to approximately 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation. PMID:16739801

  18. The World Coal Quality Inventory: A status report

    USGS Publications Warehouse

    Tewalt, S.J.; Willett, J.C.; Finkelman, R.B.

    2005-01-01

    National and international policy makers and industry require accurate information on coal, including coal quality data, to make informed decisions regarding international import needs and export opportunities, foreign policy, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. Unfortunately, the information needed is generally proprietary and does not exist in the public domain. The U.S. Geological Survey (USGS), in conjunction with partners in about 60 countries, is developing a digital compilation of worldwide coal quality. The World Coal Quality Inventory (WoCQI) will contain coal quality information for samples obtained from major coal beds in countries having significant coal production, as well as from many countries producing smaller volumes of coal, with an emphasis on coals currently being burned. The information that will be incorporated includes, but is not limited to, proximate and ultimate analyses; sulfur-form data; major, minor, and trace element analysis; and semi-quantitative analyses of minerals, modes of occurrence, and petrography. The coal quality information will eventually be linked to a Geographic Information System (GIS) that shows the coal basins and sample locations along with geologic, land use, transportation, industrial, and cultural information. The WoCQI will be accessible on the USGS web page and new data added periodically. This multi-national collaboration is developing global coal quality data that contain a broad array of technologic, economic, and environmental parameters, which should help to ensure the efficient and environmentally compatible use of global coal resources in the 21st century.

  19. Advances in measurements and simulation of gas-particle flows and coal combustion in burners/combustors

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2009-02-01

    Innovative coal combustors were developed, and measurement and simulation of gas-particle flows and coal combustion in such combustors were done in the Department of Engineering Mechanics, Tsinghua University. LDV/PDPA measurements are made to understand the behavior of turbulent gas-particle flows in coal combustors. Coal combustion test was done for the non-slagging cyclone coal combustor. The full two-fluid model developed by the present author was used to simulate turbulent gas-particle flows, coal combustion and NOx formation. It is found by measurements and simulation that the optimum design can give large-size recirculation zones for improving the combustion performance for all the combustors. The combustion test shows that the nonslagging coal combustor can burn 3-5mm coal particles with good combustion efficiency and low NO emission. Simulation in comparison with experiments indicates that the swirl number can significantly affect the NO formation in the swirl coal combustor.

  20. Rehabilitation of the burn patient

    PubMed Central

    Procter, Fiona

    2010-01-01

    Rehabilitation is an essential and integral part of burn treatment. It is not something which takes place following healing of skin grafts or discharge from hospital; instead it is a process that starts from day one of admission and continues for months and sometimes years after the initial event. Burns rehabilitation is not something which is completed by one or two individuals but should be a team approach, incorporating the patient and when appropriate, their family. The term ‘Burns Rehabilitation’ incorporates the physical, psychological and social aspects of care and it is common for burn patients to experience difficulties in one or all of these areas following a burn injury. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. The aims of burn rehabilitation are to minimise the adverse effects caused by the injury in terms of maintaining range of movement, minimising contracture development and impact of scarring, maximising functional ability, maximising psychological wellbeing, maximising social integration PMID:21321643