Sample records for burning low-sulfur coal

  1. Paleoenvironments and Distribution of Low-Sulfur Coal in Illinois

    Microsoft Academic Search

    Colin G. Treworgy; Russell J. Jacobson

    1986-01-01

    Previous studies have shown that coal over- lain by a thick sequence of nonmarine strata is generally lower in sulfur content than adjacent areas of the same seam overlain by marine strata. These nonmarine sedi- ments are interpreted to be of fluvial origin and consist primarily of crevasse-splay deposits. Two patterns of occurrence of crevasse-splay deposits associated with low- sulfur

  2. Historical price premiums for low-sulfur coal in the east: Final report

    SciTech Connect

    Price, J.P.; Bissell, P.E.

    1987-05-01

    Between 1973 and 1984, utility consumption of low-sulfur coal east of the Mississippi River nearly tripled, from 48 to 125 million tons. This increase was driven largely by environmental regulation of both new and existing generating units. Rapid increases in demand created premiums for low-sulfur coal. Historical patterns of these price premiums in the eastern United States are described and implications for the future are drawn. Seven distinct eastern markets for low-sulfur coal have emerged. Prices and premiums differ among these markets. Within each market, however, consumers options are generally similar and the same factors affect premiums. Important distinctions are drawn between structural and temporal premiums. Structural premiums are permanent and are caused by cost differences within the coal industry. Temporal premiums, in contrast, are caused by unplanned-for events and last until competition among producers forces them down.

  3. Measuring the Multilateral Allocation of Rents: Wyoming Low-Sulfur Coal

    Microsoft Academic Search

    Scott E. Atkinson; Joe Kerkvliet

    1986-01-01

    This article develops a general econometric procedure for determining the amount of rent captured by buyers and sellers of goods produced under any market structure. We use this technique to measure the rents earned by firms involved in the extraction, transportation, and consumption of low-sulfur Wyoming coal. Statistical results indicate that railroads and coal producers each capture about 23% of

  4. Microbially Mediated Leaching of Low-Sulfur Coal in Experimental Coal Columns †

    PubMed Central

    Radway, JoAnn C.; Tuttle, Jon H.; Fendinger, Nicholas J.; Means, Jay C.

    1987-01-01

    The leaching of a low-sulfur bituminous coal was investigated with experimental coal columns subjected to simulated rainfall events. Leachates from the columns became dominated by iron-oxidizing bacteria as evidenced by specific enrichment cultures and measurements of CO2 assimilation. Heterotrophic microorganisms were also present in the coal leachates, but their numbers and activity decreased with decreasing pH. This pattern could be reversed by increasing the pH of the coal with lime. Organosulfur-utilizing bacteria made up a substantial portion of the heterotrophic community. Measurements of microbial activity in coal cores indicated that although much of the microbial community remained associated with coal particles, the relative abundance of heterotrophs and autotrophs in leachate seemed to reflect that in coal cores. When bacterial growth was delayed by autoclaving coal samples, acid production and leaching of iron and sulfur were also delayed. Rapid leaching of materials from coal thus appears to be strongly dependent on the presence of the natural bacterial microflora. PMID:16347336

  5. A novel coal feeder for production of low sulfur fuel

    SciTech Connect

    Khang, S.J.; Lin, L.; Keener, T.C.; Yeh, P.

    1991-01-01

    A dual-screw feeder was designed for desulfurization of coal. This reactor contains two screw tubes, the inner tube acting as a coal pyrolizer and the outer tube acting as a desulfurizer with hot calcined lime pellets or other renewable sorbent pellets. The objectives of this project is to study the feasibility of an advanced concept of desulfurization and possibly some denitrification in this coal feeder. In this year, two basic studies have been performed: (1) the desulfurization and (2) the denitrification due to mild pyrolysis. Specifically, the following tasks have been performed: (1) Setting up the Dual-Screw reactor, (2) Determination of the pyrolysis product and the sulfur distribution in char, tar and gas based on experimental data, (3) Study of the devolatilization, the desulfurization kinetics and the denitrification kinetics and obtaining the basic kinetic parameters, (4) Study of the sulfur removal efficiency of lime pellets fed into the outer tube of the dual-feeder reactor, (5) Study of the effect of the coal particle size on pyrolysis and desulfurization, (6) Study of the coal pyrolysis and desulfurization using a TGA(Thermal Gravimetric Analyzer).

  6. Technology assessment report for industrial boiler applications: coal cleaning and low sulfur coal. Final report, Sep 78Jul 79

    Microsoft Academic Search

    J. Buroff; B. Hylton; S. Keith; J. Strauss; L. McCandless

    1979-01-01

    The report assesses the use of three pollution control technologies--low sulfur coals, physical coal cleaning (PCC), and chemical coal cleaning (CCC)--to comply with SO2 emission regulations. It is one of a series to be used in determining the technological basis for a new source performance standard for industrial boilers. Candidate systems were selected after consideration of 7 naturally occurring low

  7. Catalytic hydrosolvation process converts coal to low-sulfur liquid fuel

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1978-01-01

    Development of the catalytic hydrosolvation process for converting coal to low-sulfur fuel oil is described in this paper. Coal impregnated with catalyst was slurried with oil, and the mixture was hydrogenated at a temperature of 475 C, and 30 min residence time under 3600 psi pressure. A ton of coal yielded 3.5 bbl of fuel oil containing 0.2% sulfur, with naphtha and C1-C4 hydrocarbon gases as byproducts. A preliminary economic evaluation of the process indicated potential for further development.

  8. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    SciTech Connect

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate the performance of low-cost activated carbon sorbents for removing mercury. In addition, the effects of the dual flue gas conditioning system on mercury removal performance were evaluated as part of short-term parametric tests on Unit 2. Based on the parametric test results, a single sorbent (e.g., RWE Super HOK) was selected for a 30-day continuous injection test on Unit 1 to observe long-term performance of the sorbent as well as its effects on ESP and FGD system operations as well as combustion byproduct properties. A series of parametric tests were also performed on Shawville Unit 3 over a three-week period in which several activated carbon sorbents were injected into the flue gas duct just upstream of either of the two Unit 3 ESP units. Three different sorbents were evaluated in the parametric test program for the combined ESP 1/ESP 2 system in which sorbents were injected upstream of ESP 1: RWE Super HOK, Norit's DARCO Hg, and a 62:38 wt% hydrated lime/DARCO Hg premixed reagent. Five different sorbents were evaluated for the ESP 2 system in which activated carbons were injected upstream of ESP 2: RWE Super HOK and coarse-ground HOK, Norit's DARCO Hg and DARCO Hg-LH, and DARCO Hg with lime injection upstream of ESP 1. The hydrated lime tests were conducted to reduce SO3 levels in an attempt to enhance the mercury removal performance of the activated carbon sorbents. The Plant Yates and Shawville studies provided data required for assessing carbon performance and long-term operational impacts for flue gas mercury control across small-sized ESPs, as well as for estimating the costs of full-scale sorbent injection processes.

  9. Arapahoe low-sulfur-coal Fabric Filter Pilot Plant: Volume 4, Shake-deflate cleaning tests, May 1984--July 1986: Final report

    SciTech Connect

    Cushing, K.M.; Bustard, C.J.; Smith, W.B.

    1989-06-01

    This report describes operations at EPRI's low-sulfur coal Fabric Filter Pilot Plant during a twenty-seven month evaluation of shake-deflate cleaning. The primary objective was to collect sufficient data to optimize shake-deflate parameters and to allow prediction of baghouses operation with this cleaning method at utility power plants burning low-sulfur coal. The tests evaluated baghouse performance (pressure drop at various filtering air-to-cloth ratios, dustcake weight, and emissions) as a function of bag-cap acceleration, shake frequency, shake duration, and deflation volume. The findings indicate that shake-deflate cleaning can reduce cake weight and tube-sheet pressure drops by greater than 50% over conventional reverse-gas cleaned units. No bag life problems were observed over 11,000 h of testing, and emissions were very low (0.006 lb/10/sup 6/ Btu). Minimum filter pressure drop was attained at a bag-cap acceleration of 1.4 g (amplitude 2 in. and frequency 3 Hz). Low frequency high-amplitude shaking was more effective than high-frequency low-amplitude shaking. Shake durations around 20 s (at 3 Hz) preceded by deflation flows equivalent to about one-sixth total bag volume (1 ft/min deflation flow for 3 s) gave optimal performance. 9 refs., 12 figs., 5 tabs.

  10. Burning coal's waste

    SciTech Connect

    Daly, J.M.; Duffy, T.J.

    1988-07-01

    In an old Pennsylvania coal valley, growing fresh produce and eliminating ancient waste piles both depend on a fluidized bed boiler cogeneration plant. The builders of a complex now nearing completion at Archbald, however, will soon begin to turn two of the waste piles, called culm banks, into economic assets. Culm will burn although it has a low, variable heat content. The project combines several recently developed technologies to use culm as fuel for a fluidized bed boiler cogeneration plant that will heat a hydroponic greenhouse. What makes the venture economically viable are the products that will be sold: 23 mw of electricity to the local utility and fresh produce to meet burgeoning demands in East Coast supermarkets. For instance, if the ''salad plant'' were completely devoted to growing lettuce, 3 million heads could be harvested in 11 hydroponic seasons a year. The owners, Archbald Power Corp., chose a 271 acre stie that had been mined for anthracite by both open pit and deep shaft methods.

  11. PILOT PLANT STUDY OF CONVERSION OF COAL TO LOW SULFUR FUEL

    EPA Science Inventory

    The report gives results of a program to develop, on bench and pilot scales, operating conditions for the key step in the IGT process to desulfurize coal by thermal and chemical treatment. This process, to date, uses the 'sulfur-getter' concept. (A sulfur-getter is a material tha...

  12. A novel dual-screw coal feeder for production of low sulfur fuel

    SciTech Connect

    Lin, L.; Khang, S.J.; Keener, T.C.

    1993-06-15

    In this project, the following tasks have been performed: (1) Setting up the Dual-Screw feeder reactor. (2) Determination of the pyrolysis product and the sulfur distribution in char, tar and gas based on experimental data. (3) Study of the devolatilization and the desulfurization kinetics and obtaining the basic kinetic parameters. (4) Study of the sulfur removal efficiency of lime pellets fed into the outer tube of the dual-screw feeder reactor. (5) Study of the effect of the coal particle size on pyrolysis and desulfurization. (6) Study of the coal pyrolysis using a TGA (Thermal Gravimetric Analyzer). (7) Study of the coal desulfurization using a tube oven. (8) Setting up a combustor. (9) Study of the combustion characteristics of the pyrolysis products from the dual-screw feeder reactor. (10) Process simulation of the dual-screw feeder reactor. The experimental results of devolatilization and desulfurization of an Ohio {number_sign}8 coal demonstrate that an increasing the temperature in mild coal pyrolysis leads to the increase of both the devolatilization yield and the desulfurization yield. Under the experimental conditions, mainly the organic sulfur releases in the form of H{sub 2}S. Both the devolatilization and the desulfurization processes can be described by using the first-order-reaction model which gives the activation energy values for pyrolysis and desulfurization of 170,021 kJ/mol and 78,783 kJ/mol, indicating the sulfur is easier to release than volatiles. The outer screw region of CaO pellets also demonstrated almost a complete removal of hydrogen sulfide from volatiles. At a temperature of 475{degree}C and a residence time of 6 minutes, 73.1% of the organic sulfur was removed in the screw feeder reactor. The investigation of the combustion characteristics of the pyrolysis products showed a negligible reduction of the total heating value of the char and volatile products.

  13. The characterization of brown coals of Kansk-Achinsk Basin for improved utilization in the coal-burning power stations

    SciTech Connect

    Solntsev, S.I.; Shorokhov, V.P. [Krasnoyarsk Coal Joint Stock Co. Ministry of Fuel and Energetics of Russia, Krasnoyarsk (Russian Federation)

    1998-12-31

    Kansk-Achinsk Brown Coal Basin in Siberia is the largest one of Russia. There are several large deposits in the Basin. Two main open cuts currently annually supply 35 million tonnes of brown coal for the pulverized fired boilers operated by number of Power Stations in Central Siberia. The main part of Kansk-Achinsk brown coals are characterized by low sulfur, nitrogen and heavy metal content. However, they differ in the ash content (within the range of 4--12%) and in the ash composition (in Ca, Al, Fe, Na, in particular). This has a major influence on the boiler fouling and slagging tendency. The paper describes the work in defining the geological, chemical and utilization characteristics of the coals from the different cuts and places of Kansk-Achinsk Basin. The emphasis on the ash fouling and slagging on burning brown coals from different places was made. The methods of coal preparation were developed to improve the utilization characteristics and to comply with the emission regulations. The preparation and burning of blended coals and coal-water slurry is the focus of the discussion. The technology of briquetted brown coal both with oil-derived binder and with no binder is described.

  14. Controls on boron and germanium distribution in the low-sulfur Amos coal bed, Western Kentucky coalfield, USA

    Microsoft Academic Search

    James C Hower; Leslie F Ruppert; David A Williams

    2002-01-01

    The Duckmantian-aged Amos coal bed is a thin (Geochemical analysis of the Amos coal bed shows higher concentrations of B and Ge than other Western Kentucky coal beds. High total B concentrations as well as high B\\/Be, both considered to be indicators of marine environments, increase toward the top of the coal bed. Most of the B values for the

  15. FEASIBILITY OF BURNING COAL IN CATALYTIC COMBUSTORS

    EPA Science Inventory

    The report gives results of a study, showing that pulverized coal can be burned in a catalytic combustor. Pulverized coal combustion in catalytic beds is markedly different from gaseous fuel combustion. Gas combustion gives uniform bed temperatures and reaction rates over the ent...

  16. Production of low-sulfur binder pitch from high-sulfur Illinois coals. Technical report, September 1--November 30, 1994

    SciTech Connect

    Knight, R.A. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-12-31

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. In this project, two approaches to sulfur reduction are being explored in conjunction with thermocracking: (1) the use of conventionally cleaned coal with low ({approximately}1%) sulfur as a mild gasification feedstock, and (2) direct biodesulfurization of the liquids prior to thermocracking. In Case 1, the crude pitch is being produced by mild gasification of IBC-109 coal in an existing IGT bench-scale reactor, followed by distillation of the scrubbing solvent and light-to-middle oils to isolate the crude pitch. In Case 2, the crude pitch for biodesulfurization is the same material previously studied, which was obtained from Illinois No. 6 coal tests conducted in the IGT mild gasification PRU in 1990. Biodesulfurization is to be performed by contacting the pitch with Rhodococcus Rhodochrous either as live cultures or in the form of concentrated biocatalyst. Following preparation of the crude pitches, pitch upgrading experiments are to be conducted in a continuous flash thermocracker (FTC) constructed in previous ICCI-sponsored studies. The finished pitch is then characterized for physical and chemical properties (density, softening point, QI, TI, coking value, and elemental composition), and compared to typical specifications for binder pitches. This quarter, 45 kg of IBC-109 coal was obtained and sized to 40 x 80 mesh for mild gasification. Laboratory experiments were conducted to identify means of dispersing or emulsifying pitch in water to render is accessible to biocatalysts, and exploratory desulfurization tests on one-gram pitch samples were begun.

  17. From in-situ coal to fly ash: a study of coal mines and power plants from Indiana

    Microsoft Academic Search

    Maria Mastalerz; James C Hower; Agnieszka Drobniak; Sarah M Mardon; Grzegorz Lis

    2004-01-01

    This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (?11%). Coals sampled at the mines (both raw and washed

  18. Why do we keep burning coal? Richard L. Axelbaum

    E-print Network

    Subramanian, Venkat

    at WU (International Center for Advanced Renewable Energy and Sustainability) Created in 2007 power) #12;U.S. Coal Reserves #12;US Coal Reserves Coal: 94% U.S. Energy Reserves Source: EIA US hasWhy do we keep burning coal? Should we? Richard L. Axelbaum Director, CCCU Professor Energy

  19. Coal-burning ships return to the high seas

    SciTech Connect

    Not Available

    1983-09-01

    If economics prompts shippers to join utilities in the return to coal, the market for coal could have a major breakthrough. Only one coal-burning ship has been launched, with two conversions and none under construction, but a widening price gap between coal and oil is encouraging oil companies with large coal reserves to look seriously at the coal-fired ships already used by other countries. Modern coal-handling technology requires the same personnel for a coal-fired as an oil-fired ship. (DCK)

  20. Production of low sulfur binder pitich from high-sulfur Illinois coals. Quarterly report, 1 March 1995--31 May 1995

    SciTech Connect

    Knight, R.A.

    1995-12-31

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. Previously, flash thermocracking (FTC) was used to successfully upgrade the properties of mild gasification pitch, yielding a suitable blending stock for use as a binder in the production of carbon electrodes for the aluminum industry. However, in pitches from high-sulfur (4%) Illinois coal, the pitch sulfur content (2%) was still higher than preferred. In this project two approaches to sulfur reduction are being explored in conjunction with FTC: (1) the use of a moderate-sulfur (1.2%) Illinois coal as mild gasification feedstock, and (2) direct biodesulfurization of the liquids from high-sulfur coal prior to FTC. In Case 1, the liquids are being produced by mild gasification of IBC-109 coal in a bench-scale fluidized-bed reactor, followed by distillation to isolate the crude pitch. In Case 2, biodesulfurization with Rhodococcus Rhodochrous IGTS8 biocatalyst is being performed on crude pitch obtained from Illinois No. 6 coal tests conducted in the IGT MILDGAS PRU in 1990. Following preparation of the crude pitches, pitch upgrading experiments are being conducted in a continuous FTC reactor constructed in previous ICCI-sponsored studies. This quarter, mild gasification of IBC-109 coal was completed, producing 450 g of coal liquids, which were then distilled to recover 329 g of Case 1 crude pitch. Next month, the pitch will be subjected to FTC treatment and evaluated. Biodesulfurization experiments were performed on Case 2 pitch dispersed in l-undecanol, resulting in sulfur reductions of 15.1 to 21.4%. This was marginally lower than the 24.8% desulfurization obtained in l-dodecanol, but separation of pitch from the dispersant was facilitated by the greater volatility of l-undecanol.

  1. Production of low-sulfur binder pitch from high-sulfur Illinois coals. Technical report, December 1, 1994--February 28, 1995

    SciTech Connect

    Knight, R.A.

    1996-03-01

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. In previous ICCI projects at IGT, flash thermocracking (FTC) was used to successfully upgrade the properties of mild gasification pitch, yielding a suitable blending stock for use as a binder in the production of carbon electrodes for the aluminum industry. However, in pitches from high-sulfur (4%) Illinois coal, the pitch sulfur content is still unacceptably high at 2%. In this project, two approaches to sulfur reduction are being explored in conjunction with FTC: (1) the use of conventionally cleaned coal with low ({approximately}1%) sulfur as a mild gasification feedstock, and (2) direct biodesulfurization of the liquids prior to FTC. In Case 1, the crude pitch is being produced by mild gasification of IBC-109 coal in an existing IGT bench-scale reactor, followed by distillation to isolate the crude pitch. In Case 2, the crude pitch for biodesulfurization was obtained from Illinois No. 6 coal tests conducted in the IGT mild gasification PRU in 1990. Biodesulfurization is to be performed by contacting the pitch with Rhodococcus Rhodochrous IGTS8 biocatalyst. Following preparation of the crude pitches, pitch upgrading experiments are to be conducted in a continuous FTC reactor constructed in previous ICCI-sponsored studies. The finished pitch is then characterized for physical and chemical properties (density, softening point, QI, TI, coking value, and elemental composition), and compared to typical specifications for binder pitches.

  2. A study of coal particle burning by microscopy

    SciTech Connect

    Belilovsky, Y.; Goldman, Y.; Greenberg, J.B. [Technion-Israel Inst. of Tech., Haifa (Israel). Faculty of Aerospace Engineering

    1995-12-31

    The first stage of a study on the behavior of single particles of coal and anthracite during combustion in a flow of hot gases is presented. The processes of ignition and burning of the particles were investigated experimentally with the aid of a facility including a thermal chamber and a variable speed cine camera connected to a microscope. The particle size was typically about 200--250 microns, and the hot gas temperature and velocity were about 1,200--1,400 C and 1--2 m/sec, respectively. The evolution of particle temperature during the process was monitored by means of photometry. It was discovered that the evolution of the particle surface follows a fractal pattern, thus intimating a more complex combustion mechanism than has hitherto been assumed. This experimental evidence has provided the motivation for developing an improved mathematical model of coal particle burning based on fractal geometry analysis. A comparison between the new, more realistic model of coal particle burning and the experimental data reveals good agreement. Also, the new model provides marginally more accurate results than a conventional model, in which the nonspherical shape of the particle and its fragmentation are not accounted for.

  3. Leachability of trace elements in coal and coal combustion wastes

    SciTech Connect

    Rice, C.A.; Breit, G.N.; Fishman, N.S.; Bullock, J.H. Jr.

    1999-07-01

    Leaching of trace elements from coal and coal combustion waste (CCW) products from a coal-fired power plant, burning coal from the Appalachian and Illinois basins, was studied using deionized (DI) water as a lixiviant to resemble natural conditions in waste disposal sites exposed to dilute meteoric water infiltration. Samples of bottom ash, fly ash, and feed coal were collected from two combustion units at monthly intervals, along with a bulk sample of wastes deposited in an on-site disposal pond. The units burn different coals, one a high-sulfur coal (2.65 to 3.5 weight percent S) and the other, a low-sulfur coal (0.6--0.9 eight percent S). Short-term batch leaches with DI water were performed for times varying from a few minutes to 18 hours. Select fly ash samples were also placed in long-term (> 1 year) flow-through columns.

  4. Encoal mild coal gasification project: Final design modifications report

    SciTech Connect

    NONE

    1997-07-01

    The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

  5. Application of sorbents for mercury control for utilities burning lignite coal

    Microsoft Academic Search

    John H Pavlish; Michael J Holmes; Steven A Benson; Charlene R Crocker; Kevin C Galbreath

    2004-01-01

    The Energy and Environmental Research Center (EERC) is conducting the first phase of a 3-year, two-phase U.S.–Canadian consortium project to develop and demonstrate mercury control technologies for utilities burning lignite coal. Control of mercury from lignite-fired plants is much more difficult in comparison to plants burning other ranks of coal. The overall project goal is to provide utilities that burn

  6. Carbon dioxide from coal combustion: Variation with rank of US coal

    USGS Publications Warehouse

    Quick, J.C.; Glick, D.C.

    2000-01-01

    Carbon dioxide from combustion of US coal systematically varies with ASTM rank indices, allowing the amount of CO2 produced per net unit of energy to be predicted for individual coals. No single predictive equation is applicable to all coals. Accordingly, we provide one equation for coals above high volatile bituminous rank and another for lower rank coals. When applied to public data for commercial coals from western US mines these equations show a 15% variation of kg CO2 (net GJ)-1. This range of variation suggests reduction of US CO2 emissions is possible by prudent selection of coal for combustion. Maceral and mineral content are shown to slightly affect CO2 emissions from US coal. We also suggest that CO2 emissions increased between 6 and 8% in instances where Midwestern US power plants stopped burning local, high-sulfur bituminous coal and started burning low-sulfur, subbituminous C rank coal from the western US.

  7. Coal burning leaves toxic heavy metal legacy in the Arctic

    SciTech Connect

    McConnell, J.R.; Edwards, R. [Desert Research Institute, Reno, NV (United States)

    2008-08-26

    Toxic heavy metals emitted by industrial activities in the midlatitudes are transported through the atmosphere and deposited in the polar regions; bioconcentration and biomagnification in the food chain mean that even low levels of atmospheric deposition may threaten human health and Arctic ecosystems. Little is known about sources and long-term trends of most heavy metals before approximate to 1980, when modern measurements began, although heavy-metal pollution in the Arctic was widespread during recent decades. Lacking detailed, long-term measurements until now, ecologists, health researchers, and policy makers generally have assumed that contamination was highest during the 1960s and 1970s peak of industrial activity in North America and Europe. We present continuous 1772-2003 monthly and annually averaged deposition records for highly toxic thallium, cadmium, and lead from a Greenland ice core showing that atmospheric deposition was much higher than expected in the early 20th century, with tenfold increases from preindustrial levels by the early 1900s that were two to five times higher than during recent decades. Tracer measurements indicate that coal burning in North America and Europe was the likely source of these metals in the Arctic after 1860. Although these results show that heavy-metal pollution in the North Atlantic sector of the Arctic is substantially lower today than a century ago, contamination of other sectors may be increasing because of the rapid coal-driven growth of Asian economies.

  8. The mining and burning of coal: effects on health and the environment.

    PubMed

    Castleden, William M; Shearman, David; Crisp, George; Finch, Philip

    2011-09-19

    Australia's coal conundrum is that all political parties say they are concerned about climate change while sanctioning an unprecedented expansion of coalmining and coal seam gas extraction in Australia. Australia's coal contributes to climate change and its global health impacts. Each phase of coal's lifecycle (mining, disposal of contaminated water and tailings, transportation, washing, combustion, and disposing of postcombustion wastes) produces pollutants that affect human health. Communities in which coalmining or burning occurs have been shown to suffer significant health impacts. The health and climate costs of coal are unseen, and when costs to health systems are included, coal is an expensive fuel. PMID:21929497

  9. ENERGY AND ENVIRONMENT DIVISION. INTERACTION OF ORGANIC SOLVENT WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE

    E-print Network

    Lindsey, D.

    2011-01-01

    western, low sulfur subbituminous coal. The binary mixturesThe coal is a low sulfur, subbituminous coal fran the RolandSulfur % Ash % Oxygen (difference) HIC Molcular Ratio Table II. Analysis of Roland Seam Coal

  10. Burn coal cleanly in a fluidized bed - The key is in the controls

    Microsoft Academic Search

    Kobak

    1979-01-01

    The fluidized-bed combustion (FBC) process produces few sulfur emissions, and can burn wood, municipal solid waste as well as every kind of coal available in the U.S. The presurized, coal-burning fluidized-bed reactor at NASA's Lewis Research Center is described, together with a discussion of the operating results. The FBC system at Lewis, having a completely instrumented reactor, is used to

  11. Flexibility of a 300 MW Arch Firing Boiler Burning Low Quality Coals

    Microsoft Academic Search

    Qing-yan FANG; Huai-chun ZHOU; Hua-jian WANG; Bin YAO; Han-cai ZENG

    2007-01-01

    Experimental investigations on the flexibility of a 300 MW Arch Firing (AF) coal-fired boiler when burning low quality coals is reported. Measurements of gas temperature and species concentration and char sampling using a water-cooled suction pyrometer were carried out along the furnace elevation. The carbon content and the size distributions of the char samples were obtained. The char morphology was

  12. Production of Low-Sulfur Converter Steel

    Microsoft Academic Search

    É. N. Shebanits; A. A. Larionov; B. V. Neboga; A. V. Pobegailo; M. N. Yakin; S. A. Ovsyannikov

    2000-01-01

    The production of low-sulfur (sulfur content of 0.005% or less) tube steel for pipelines, which has been successfully introduced at the Mariupol’ Metallurgical Combine, requires desulfurization of the pig iron and steel at the corresponding stages of the production process. The decision on an efficient method of desulfurization must be made on the basis of economic as well as technical

  13. The health effects of coal-burning power plants in minnesota

    SciTech Connect

    Ross, D.

    1981-01-01

    The carcinogenic properties of coal combustion products are described and documented with emphasis on beryllium, mercury, and other particulates. Increased coal use in Minnesota and implications of such increases for 1976-1995 are discussed. Details of how a coal-fired power plant works and how pollutants are formed are described. Efforts to minimize health impacts of sulfur oxides and particulates are detailed. An analysis is provided of how health impacts are measured, showing how a lack of precision and data makes it difficult for policymakers to decide which pollutants need regulation and how much regulation is required. It was found that the greatest problem resulting from coal burning in Minnesota is fine particulate pollution. Fine particulates have been implicated in the exacerbation of emphysema, bronchitis, and lung cancer. Increased regulation and limitations on the construction of coal burning electricity generators are supported.

  14. Rehabilitation of an anthracite-burning power plant in Ukraine with introduction of coal preparation

    SciTech Connect

    Ruether, J.; Killmeyer, R. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Schimmoller, B.; Gollakota, S.

    1996-12-31

    A study is being carried out jointly by the United States Department of Energy and the Ukrainian Ministry of Power and Electrification for rehabilitation of an anthracite-burning power station in the Donbass region of eastern Ukraine. The power station, named Luganskaya GRES, is laboring under deteriorating coal quality (the ash level is ranging towards 40% compared to the design value of 18%) and the physical plant is in need of repair. Approaches under consideration for the rehabilitation include upgrading the existing 200-MW{sub e} (gross) wall-fired boilers, repowering with circulating fluidized bed combustors, and the use of coal preparation. Coal washability tests conducted as part of the study indicate the coal is amenable to washing. The paper describes approaches to coal preparation being considered that provide design value coal for wall-fired boilers while minimizing rejection of Btus and generation of solid waste.

  15. Economics of electrical energy from crop-residue combustion with high-sulfur coal

    Microsoft Academic Search

    F. J. Hitzhusen; M. Abdallah

    1980-01-01

    The economic feasibility of using corn stover as a coal supplement in small to medium-sized, coal-burning steam-electric plants appears promising, particularly when the low-sulfur emission value of corn stover is considered. Two case steam-electric power plants located in Ames, Iowa, and Peru, Indiana, are analyzed using three harvest-and-collection systems and alternative values for several key technical and economic parameters. These

  16. Geothermal, Geochemical and Geomagnetic Mapping Of the Burning Coal Seam in Fire Zone 18 of the Coal Mining Area Wuda, Inner Mongolia, PR China

    Microsoft Academic Search

    W. Kessels; J. Han; M. Halisch; H. Lindner; H. Rueter; M. W. Wuttke

    2008-01-01

    Spontaneous combustion of coal has become a world wide problem caused by and affecting technical operations in coal mining areas. The localization of the burning centre is a prerequisite for any planning of fire fighting operations. In the German - Chinese coal fire project sponsored by the German Ministry of Science and Technologies (Grant No. 0330490K) the so called fire

  17. Method of burning lightly loaded coal-water slurries

    DOEpatents

    Krishna, C.R.

    1984-07-27

    In a preferred arrangement of the method of the invention, a lightly loaded coal-water slurry, containing in the range of approximately 40% to 52% + 2% by weight coal, is atomized to strip water from coal particles in the mixture. Primary combustor air is forced around the atomized spray in a combustion chamber of a combustor to swirl the air in a helical path through the combustion chamber. A flame is established within the combustion chamber to ignite the stripped coal particles, and flame temperature regulating means are provided for maintaining the flame temperature within a desired predetermined range of temperatures that is effective to produce dry, essentially slag-free ash from the combustion process.

  18. Automated control for coal handling operations at Bethlehem Steel, Burns Harbor Division

    SciTech Connect

    Zendzian, T.N. [Bethlehem Steel Corp., Chesterton, IN (United States). Burns Harbor Div.

    1997-12-31

    The Burns Harbor coal handling operation processes 7,200 tons of coal per day to supply two 82 oven, six meter batteries. The operations in coal handling are subdivided into three separate sections: the coal field and stacker reclaimer operation, the crushing and storage of coal, and the coal blending operation. In 1996 a supervisory system was developed and installed to fully automate all the operations and equipment in the coal handling unit, add additional instrumentation and logic controls to prevent coal contamination, and improve data collection and logging. The supervisory system is operated from a computer based workstation and is based on a distributed control philosophy utilizing programmable logic controllers, set point controllers, and man-machine interface displays. The previous control system for the coal handling operation consisted of a switchboard from which an operator controller the set up and running of the conveyor systems and equipment to stack, reclaim, and blend coal. The new supervisory system was installed in parallel with the original control system to safeguard continued operation during the system installation and commissioning. The original system still exists and can be operated in even of failure of the supervisory system.

  19. Process for clean-burning fuel from low-rank coal

    DOEpatents

    Merriam, N.W.; Sethi, V.; Brecher, L.E.

    1994-06-21

    A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

  20. Effects of surface voids on burning rate measurements of pulverized coal at diffusion-limited conditions

    SciTech Connect

    Bayless, D.J.; Schroeder, A.R.; Peters, J.E.; Buckius, R.O. [Univ. of Illinois, Urbana, IL (United States). Dept. of Mechanical and Industrial Engineering] [Univ. of Illinois, Urbana, IL (United States). Dept. of Mechanical and Industrial Engineering

    1997-01-01

    This research explores the effects of voids (pores on the particle surface that are deeper than their surface radius) on burning area at diffusion-limited combustion conditions. Scanning electron microscopy and digital processing of images of quenched particles were used to quantify surface void area, perimeter, and reacting void wall area for voids with diameters larger than 1 {micro}m. After careful analysis, the most accurate determination of particle burning area at diffusion-limited conditions was achieved by measuring particle surface area using the technique of discrete revolution, subtracting surface void area, and adding reacting void wall area. In situ measurements of reacting coal particle temperatures and images were taken for three coals and spherocarb particles at conditions that limit the formation of CO{sub 2} from reacting carbon under various oxygen concentrations and heating rates. The results of these experiments indicate that correcting the measured surface area for void area and reacting void wall area produces calculated burning rates closely matching diffusion-limited burning rates for all conditions and all coals investigated. These results suggest that void area effects should be included for accurate determination of burning area at diffusion-limited conditions.

  1. Significant emissions of 210Po by coal burning into the urban atmosphere of Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Yan, Ge; Cho, Hyung-Mi; Lee, Insung; Kim, Guebuem

    2012-07-01

    We conducted a year-round survey of precipitation samples to investigate the sources of excess 210Po in the urban atmosphere of Seoul, Korea. The dominant fraction of 210Po in our samples, independent of the in-situ decay of tropospheric 210Pb, was linked with anthropogenic processes. Using vanadium and potassium as tracers, the excess 210Po was mainly attributed to combustion of coal, with minor contributions from biomass burning. The annual integrated amount of 210Po deposited over the Seoul area via precipitation was estimated to be 1.75 × 1010 Bq yr-1, which might represent a potential public health risk in the vicinity of major point sources, due to its highly adverse biological effects. Since the world coal consumption is growing, the magnitude of coal burning derived 210Po is expected to increase in the following decades, which should be carefully monitored.

  2. An experimental study of temperature of burning coal particle in fluidized bed

    SciTech Connect

    Mirko Komatina; Vasilije Manovic; Dragoljub Dakic [University of Belgrade, Belgrade (Serbia and Montenegro). Faculty of Mechanical Engineering

    2006-02-01

    The purpose of this study was to investigate the temperature of coal particle during combustion in fluidized bed (FB). It is necessary to know the coal particle temperature in order to predict kinetics of chemical reactions within and at the surface of coal particle, accurate NOx and SO{sub 2} emission, fragmentation, attrition, the possibility of ash melting, etc. The experimental investigations were conducted in order to obtain the reliable data on the temperature of particle burning in the FB. A method using thermocouple was developed and applied for measurements. Thermocouple was inserted in the center of the particle shaped into spherical form with various diameters: 5, 7, 8, and 10 mm. Two characteristic types of low-rank Serbian coals were investigated. Experiments were done at the FB temperature in the range of 590-710{sup o}C. Two types of experiments were performed: (I) combustion using air as fluidization gas and (ii) devolatilization with N{sub 2} followed by combustion of obtained char in air. The temperature histories of particles during all stages after introducing in the FB were analyzed. Temperature difference between the burning particle and the FB was defined as a criterion, for comparison. It was shown that the temperature profile depends on the type of the coal and the particle size. The higher temperature difference between the burning particle and the FB was obtained for smaller particles and for lignite (130-180{sup o}C) in comparison to the brown coal (70-130{sup o}C). The obtained results indicated that a primary role in the temperature history of coal particle have the mass and heat transfer through combusting particle. 24 refs., 6 figs., 3 tabs.

  3. Particle and gas emissions from a simulated coal-burning household fire pit

    SciTech Connect

    Linwei Tian; Donald Lucas; Susan L. Fischer; S. C. Lee; S. Katharine Hammond; Catherine P. Koshland [University of California, Berkeley, CA (United States). School of Public Health

    2008-04-01

    An open fire was assembled with firebricks to simulate the household fire pit used in rural China, and 15 different coals from this area were burned to measure the gaseous and particulate emissions. Particle size distribution was studied with a microorifice uniform-deposit impactor (MOUDI). Over 90% of the particulate mass was attributed to sub-micrometer particles. The carbon balance method was used to calculate the emission factors. Emission factors for four pollutants (particulate matter, CO{sub 2}, total hydrocarbons, and NOx) were 2-4 times higher for bituminous coals than for anthracites. In past inventories of carbonaceous emissions used for climate modeling, these two types of coal were not treated separately. The dramatic emission factor difference between the two types of coal warrants attention in the future development of emission inventories. 25 refs., 8 figs., 1 tab.

  4. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    USGS Publications Warehouse

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  5. The effects of technological change, experience and environmental regulation on the construction of coal-burning generating units

    E-print Network

    Joskow, Paul L.

    1984-01-01

    This paper provides an empirical analysis of the technological, regulatory and organizational factors that have influenced the costs of building coal-burning steam-electric generating units over the past twenty year. We ...

  6. Coal log pipeline: A new process to transport and burn coal

    Microsoft Academic Search

    H. Liu; T. R. Marrero

    1988-01-01

    Based on this one-and-half year study sponsored by DOE, it can be concluded that: (1) Coal can be extruded into logs which in turn can be hydraulically transported through pipelines to distant places with little damage to the logs in the pipeline during transportation. (2) The headloss or energy used for moving coal logs through pipelines is not much more

  7. Assessment of hydrocarbon and particulate emissions control and wastewater treatment technology for the Solvent Refined Coal-II process. Volume II. Technical report

    Microsoft Academic Search

    K. Benedek; R. Courant; D. DeLucia; R. Horne; C. M. Mohr; J. H. Porter; A. Ray

    1984-01-01

    The Solvent Refined Coal-II (SRC-II) process provides a significant alternative to importing oil by producing oil derived from our abundant coal reserves. The primary product of this process is a low-sulfur distillate fuel suitable for burning in utility boilers. On the basis of preliminary design and pilot plant data, controlling particulates and hydrocarbons from the SRC-II plant is of primary

  8. Assessment of hydrocarbon and particulate emissions control and wastewater treatment technology for the solvent refined coal-II process. Volume I. Executive summary

    Microsoft Academic Search

    K. Benedek; R. Courant; D. DeLucia; R. Horne; C. M. Mohr; J. H. Porter; A. Ray

    1984-01-01

    The Solvent Refined Coal-II (SRC-II) process provides a significant alternative to importing oil by producing oil derived from our abundant coal reserves. The primary product of this process is a low-sulfur distillate fuel suitable for burning in utility boilers. On the basis of preliminary design and pilot plant data, controlling particulates and hydrocarbons from the SRC-II plant is of primary

  9. Air extraction in gas turbines burning coal-derived gas

    SciTech Connect

    Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

    1993-11-01

    In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

  10. Fire-Tube Boiler Test Burn on Coal-Water Fuel

    Microsoft Academic Search

    BRADLEY MITCHEL HALE; DAVID W. ARNOLD

    1998-01-01

    The Energy and Environmental Research Corporation (EER), in cooperation with the University of Alabama (UA) and the Mining Division of Jim Walter Resources, Inc. (JWRI), was awarded a U.S. Department of Energy (DOE) contract to retrofit an existing fire-tube boiler to burn coal-water fuel (CWF) A fire-tube boiler on the UA campus was retrofitted, and the CWF was made from

  11. Burns.

    PubMed

    Ellison, Deborah L

    2013-06-01

    Burns are a leading cause of accidental injury and death. The American Burn Association statistics from 2001 to 2010 show that 68% of burns happen at home, 44% are from fires/flames, and 60% to 70% happen to white men. Smoke inhalation is the leading cause of adult death caused by fires. A patient with a 78% total body surface area burn has a 50% chance of survival. Burn injuries are described in terms of causative agents, depth, and severity. Crucial treatments for people with burns include assessment, stabilization, transfer to a burn unit, and fluid resuscitation. PMID:23692944

  12. Analysis of mass loss of a coal particle during the course of burning in a flow of inert material

    SciTech Connect

    Pelka, Piotr [Czestochowa University of Technology, Department of Boilers and Thermodynamics, Armii Krajowej 19c, Czestochowa, Silesia 42-200 (Poland)

    2009-08-15

    This paper is an attempt to explain the role of erosion during the process of coal combustion in a circulating fluidized bed. Different kinds of carbon deposits found in Poland, both bituminous as well as lignite with the particle of 10 mm in diameter were the subject of the research. According to many publications it is well known that erosion plays a significant role in coal combustion, by changing its mechanism as well as generating an additional mass loss of the mother particle. The purpose of this research was to determine the influence of an inert material on an erosive mass loss of a single coal particle burning in a two-phase flow. The determination of the influence of a coal type, the rate of flow of inert material and the temperature inside the furnace on the erosive mass loss of burning coal particle was also taken into consideration. The results obtained indicate that the velocity of the erosive mass loss depends on the chemical composition and petrographic structure of burning coal. The mechanical interaction of inert and burning coal particles leads to the shortening of the period of overall mass loss of the coal particle by even two times. The increase in the rate of flow of the inert material intensifies the generation of mass loss by up to 100%. The drop in temperature which slows down the combustion process, decreases the mass loss of the coal particle as the result of mechanical interaction of the inert material. As was observed, the process of percolation plays a significant role by weakening the surface of the burning coal. (author)

  13. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China.

    PubMed Central

    Liu, Jie; Zheng, Baoshan; Aposhian, H Vasken; Zhou, Yunshu; Chen, Ming-Liang; Zhang, Aihua; Waalkes, Michael P

    2002-01-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here we report the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China. Coal in this region has undergone mineralization and thus produces high concentrations of arsenic. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct contact in coal-mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such overexposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area. PMID:11836136

  14. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 261 with Illinois No. 6 Burning Star Mine coal

    SciTech Connect

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R & D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  15. Formation and use of coal combustion residues from three types of power plants burning Illinois coals

    USGS Publications Warehouse

    Demir, I.; Hughes, R.E.; DeMaris, P.J.

    2001-01-01

    Coal, ash, and limestone samples from a fluidized bed combustion (FBC) plant, a pulverized coal combustion (PC) plant, and a cyclone (CYC) plant in Illinois were analyzed to determine the combustion behavior of mineral matter, and to propose beneficial uses for the power plant ashes. Pyrite and marcasite in coal were converted during combustion to glass, hematite and magnetite. Calcite was converted to lime and anhydrite. The clay minerals were altered to mullite and glass. Quartz was partially altered to glass. Trace elements in coal were partially mobilized during combustion and, as a result, emitted into the atmosphere or adsorbed on fly ash or on hardware on the cool side of the power plants. Overall, the mobilities of 15 trace elements investigated were lower at the FBC plant than at the other plants. Only F and Mn at the FBC plant, F, Hg, and Se at the PC plant and Be, F, Hg, and Se at the CYC plant had over 50% of their concentrations mobilized. Se and Ge could be commercially recovered from some of the combustion ashes. The FBC ashes could be used as acid neutralizing agents in agriculture and waste treatment, and to produce sulfate fertilizers, gypsum wall boards, concrete, and cement. The PC and CYC fly ashes can potentially be used in the production of cement, concrete, ceramics, and zeolites. The PC and CYC bottom ashes could be used in stabilized road bases, as frits in roof shingles, and perhaps in manufacturing amber glass. ?? 2001 Elsevier Science Ltd. All rights reserved.

  16. Urinary arsenic speciation and its correlation with 8-OHdG in Chinese residents exposed to arsenic through coal burning

    SciTech Connect

    Li, X.; Pi, J.B.; Li, B.; Xu, Y.Y.; Jin, Y.P.; Sun, G.F. [China Medical University, Shenyang (China). Dept. for Occupational & Environmental Health

    2008-10-15

    In contrast to arsenicosis caused by consumption of water contaminated by naturally occurring inorganic arsenic, human exposure to this metalloid through coal burning has been rarely reported. In this study, arsenic speciation and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in urine were determined in the Chinese residents exposed to arsenic through coal burning in Guizhou, China, an epidemic area of chronic arsenic poisoning caused by coal burning. The urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and total arsenic (tAs) of high-arsenic exposed subjects were significantly higher than those of low-arsenic exposed residents. A biomarker of oxidative DNA damage, urinary 8-OHdG level was significantly higher in high-arsenic exposed subjects than that of low exposed. Significant positive correlations were found between 8-OHdG levels and concentrations of iAs, MMA, DMA and tAs, respectively. In addition, a significant negative correlation was observed between 8-OHdG levels and the secondary methylation ratio (DMA/(MMA + DMA)). The results suggest that chronic arsenic exposure through burning coal rich in arsenic is associated with oxidative DNA damages, and that secondary methylation capacity is potentially related to the susceptibility of individuals to oxidative DNA damage induced by arsenic exposure through coal burning in domestic living.

  17. Benefits of reducing prenatal exposure to coal-burning pollutants to children's neurodevelopment in China

    SciTech Connect

    Perera, F.; Li, T.Y.; Zhou, Z.J.; Yuan, T.; Chen, Y.H.; Qu, L.R.; Rauh, V.A.; Zhang, Y.G.; Tang, D.L. [Columbia University, New York, NY (United States). Dept. of Environmental Health Science

    2008-10-15

    Coal burning provides 70% of the energy for China's industry and power, but releases large quantities of polycyclic aromatic hydrocarbons (PAHs) and other pollutants. PAHs are reproductive and developmental toxicants, mutagens, and carcinogens. We evaluated the benefit to neurobehavioral development from the closure of a coal-fired power plant that was the major local source of ambient PAHs. The research was conducted in Tongliang, Chongqing, China, where a coal-fired power plant operated seasonally before it was shut down in May 2004. Two identical prospective cohort studies enrolled nonsmoking women and their newborns in 2002 (before shutdown) and 2005 (after shutdown). Prenatal PAH exposure was measured by PAH-DNA adducts (benzo(a)pyrene-DNA) in umbilical cord blood. Child development was assessed by the Gesell Developmental Schedules at 2 years of age. Prenatal exposure to other neurotoxicants and potential confounders (including lead, mercury, and environmental tobacco smoke) was measured. We compared the cohorts regarding the association between PAH-DNA adduct levels and neurodevelopmental outcomes. Significant associations previously seen in 2002 between elevated adducts and decreased motor area developmental quotient (DQ) (p = 0.043) and average DQ (p = 0.047) were not observed in the 2005 cohort (p = 0.546 and p = 0.146). However, the direction of the relationship did not change. The findings indicate that neurobehavioral development in Tongliang children benefitedby elimination of PAH exposure from the coal-burning plant, consistent with the significant reduction in PAH-DNA adducts in cord blood of children in the 2005 cohort. The results have implications for children's environmental health in China and elsewhere.

  18. Influence of flue-gas desulfurization systems on coal combustion by-product quality at kentucky power stations burning high-sulfur coal

    Microsoft Academic Search

    James C. Hower; Uschi M. Graham; Amy S. Wong; J. David Robertson; Bethel O. Haeberlin; Gerald A. Thomas; William H. Schram

    1997-01-01

    Two Kentucky power plants burning similar blends of high-sulfur western Kentucky and southern Indiana coal provide a unique opportunity to examine the variations in coal combustion by-products due to differences in the method of wet flue-gas desulfurization (FGD). One plant employed carbide lime-based scrubbing for two units and a dual-alkali process for the third unit. The second plant employed a

  19. Epoxy-borax-coal tar composition for a radiation protective, burn resistant drum liner and centrifugal casting method

    SciTech Connect

    Boyer, N.W.; Taylor, R.S.

    1980-10-28

    A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  20. Chemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hefeng; Wang, Shuxiao; Hao, Jiming; Wan, Lin; Jiang, Jingkun; Zhang, Min; Mestl, Heidi E. S.; Alnes, Line W. H.; Aunan, Kristin; Mellouki, Abdel Wahid

    2012-05-01

    Field measurements were conducted to determine indoor air particulate pollutant emissions from the burning of coal and wood, two major household fuels, in rural households in Guizhou, China. Chemical composition, particle mass and particle size distribution as well as number concentration were measured in this study. Chemical composition analysis indicates that the carbonaceous particle is dominant in the PM2.5 mass, accounting for about 41% for wood and 55% for coal. The OC/EC ratio was 10.8 for wood and 7.6 for coal. Most of the water-soluble ions were found in the 0.4-2.1 ?m size fractions and dominated by ammonium and sulfate. Particle mass concentrations inversely correlate with particle total number concentrations during the sampling period. Obvious differences were observed in the evolution of particle number concentrations and size distributions between coal combustion and wood burning. Particles emitted from coal combustion were characterized by unimodal size distribution, with average peak values ranging from 70.3 to 75.7 nm during the flaming stage of the burning cycle. Particles from wood burning were characterized by a transition from a bimodal size distribution to a unimodal distribution during the same period. Average peak values in the bimodal mode were 10-20 nm (nucleation mode) and 40-50 nm (Aitken mode), whereas the average peak value in the unimodal mode was about 63 nm.

  1. Reduction of NO sub x and SO sub 2 emissions from coal burning pulse combustors

    SciTech Connect

    Powell, E. A.; Zinn, B. T.

    1990-05-01

    Work accomplished during this quarter is presented and discussed. This project is concerned with the reduction of sulfur dioxide and nitrogen oxides emissions from Rijke type coal burning pulse combustors by sorbent addition and combustion staging. This quarter the assembly and installation of the sorbent feed system was completed. A series of baseline experiments was then completed to determine the NO{sub x} and SO{sub 2} emissions in the absence of sorbent addition or combustion staging. For the baseline tests, sound pressure levels, frequencies, exhaust gas compositions (CO{sub 2}, CO, O{sub 2}, NO{sub x} and SO{sub 2}) and temperatures were measured as a function of air/fuel ratio for a fixed coal feed rate of 75 g/min. Next a series of air staging tests was conducted to determine the effectiveness of substoichiometric primary coal combustion followed by secondary air injection above the bed in reducing the NO{sub x} emissions. Finally a series of non-pulsating tests was performed to determine the effect of pulsations on the NO{sub x} emissions. Comparison of the results of the pulsating and non-pulsating tests indicate that pulsations greatly increase the combustion efficiency for a given air/fuel radio. Unfortunately pulsations also greatly increase the efficiency with which the fuel-bound nitrogen is converted into nitrogen oxides.

  2. Burns

    MedlinePLUS

    ... the following symptoms related to a burn: Fever Puss-like or foul-smelling drainage Excessive swelling Redness ... avoid hot substances and chemicals. If you have young children, use safety latches in your home When ...

  3. Burns

    MedlinePLUS

    ... that could improve your hand function. Therapy and Rehabilitation Superficial burns generally will not need any formal ... with other injuries may require extensive therapy and rehabilitation. Your hand surgeon will coordinate with a therapist ...

  4. Study of Kinetics of Iron Minerals in Coal by 57Fe Mössbauer and FT-IR Spectroscopy During Natural Burning

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Debashis

    2005-06-01

    The process of burning of sulphur rich coal from Jaipur mine in North-Eastern India was carried out at a temperature of (675 ± 5) °C for different time intervals. 57Fe Mössbauer spectroscopy was applied to study the reaction products of iron compounds in each step of thermal treatment. The transformation of Szomolnokite (FeSO4·H2O) and Pyrite (FeS2) in the as received coal sample finally transformed to ?-Fe2O3 and ?-Fe2O3. Other clay minerals produce some low spin silicate ash. Fourier Transmission Infrared (FT-IR) spectroscopy gives the ratio of several structural parameters such as H ar/H al and H ar/C ar. DTA analysis of the coal sample gives the exothermic reaction at different temperatures. TGA and TG analysis of the coal sample in an inert atmosphere shows the weight loss of the coal sample in different temperature ranges.

  5. Instrumental sensing of stationary source emissions. [sulphur dioxide remote sensing for coal-burning power plants

    NASA Technical Reports Server (NTRS)

    Herget, W. F.; Conner, W. D.

    1977-01-01

    A variety of programs have been conducted within EPA to evaluate the capability of various ground-based remote-sensing techniques for measuring the SO2 concentration, velocity, and opacity of effluents from coal-burning power plants. The results of the remote measurements were compared with the results of instack measurements made using EPA reference methods. Attention is given to infrared gas-filter correlation radiometry for SO2 concentration, Fourier-transform infrared spectroscopy for SO2 concentration, ultraviolet matched-filter correlation spectroscopy for SO2 concentration, infrared and ultraviolet television for velocity and SO2 concentration, infrared laser-Doppler velocimetry for plume velocity, and visible laser radar for plume opacity.

  6. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect

    Constance Senior

    2004-04-30

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the available data from laboratory, pilot and full-scale SCR units was reviewed, leading to hypotheses about the mechanism for mercury oxidation by SCR catalysts.

  7. The deposition and burning characteristics during slagging co-firing coal and wood: modeling and numerical simulation

    SciTech Connect

    Wang, X.H.; Zhao, D.Q.; Jiang, L.Q.; Yang, W.B. [Chinese Academy of Sciences, Ghangzhou (China)

    2009-07-01

    Numerical analysis was used to study the deposition and burning characteristics of combining co-combustion with slagging combustion technologies in this paper. The pyrolysis and burning kinetic models of different fuels were implanted into the WBSF-PCC2 (wall burning and slag flow in pulverized co-combustion) computation code, and then the slagging and co-combustion characteristics (especially the wall burning mechanism of different solid fuels and their effects on the whole burning behavior in the cylindrical combustor at different mixing ratios under the condition of keeping the heat input same) were simulated numerically. The results showed that adding wood powder at 25% mass fraction can increase the temperature at the initial stage of combustion, which is helpful to utilize the front space of the combustor. Adding wood powder at a 25% mass fraction can increase the reaction rate at the initial combustion stage; also, the coal ignitability is improved, and the burnout efficiency is enhanced by about 5% of suspension and deposition particles, which is helpful for coal particles to burn entirely and for combustion devices to minimize their dimensions or sizes. The results also showed that adding wood powder at a proper ratio is helpful to keep the combustion stability, not only because of the enhancement for the burning characteristics, but also because the running slag layer structure can be changed more continuously, which is very important for avoiding the abnormal slag accumulation in the slagging combustor. The theoretic analysis in this paper proves that unification of co-combustion and slagging combustion technologies is feasible, though more comprehensive and rigorous research is needed.

  8. Can you make low-sulfur fuel and remain competitive?

    SciTech Connect

    Gonzalez, R.G. [ed.

    1996-11-01

    The auto industry wants sulfur in gasoline reduced down to levels that will not deactivate catalyst-based engine exhaust emission control systems. However, there is substantial concern that ambitious emissions reduction goals may not be taking into account the questionable cost effectiveness of requirements for new vehicle emission-control technologies. Meeting future low-sulfur mandates could make a tough business even tougher. Some strategies are presented that might give one an edge.

  9. An atmospheric pressure, fluidized bed combustion system burning high-chlorine coals in the convection section

    SciTech Connect

    Liu, K.; Xie, W.; Pan, W.P.; Riley, J.T.

    2000-03-01

    The possibility of fireside corrosion in power plant boiler components is always a major concern when the fuels include high-sulfur and high-chlorine coals (or refuse waste). Sulfur and chloride products may play important roles especially in fireside corrosion in atmospheric pressure, fluidized bed combustion (AFBC) systems, caused by the capture of sulfur and chlorine by limestone used as bed material in the combustor, and the resulting deposition of sulfur- or chlorine-rich compounds onto metallic surfaces. Results were reported from tests in a 0.1-MW{sub th} AFBC system where 1,000-h test burns were conducted using two coals with widely differing chlorine levels, and limestone was used as the sulfur sorbent. Coupons of three stainless steels (Types 304 [UNS S30400], 309 [UNS S30900], 347 [UNS S34700]) were exposed to the hot flue gases in the freeboard ({approximately} 10- cm below the location of the convection pass tubes). Deposits formed on the alloys contained high sulfur concentrations in their outer parts, as well as sodium, potassium, magnesium, and calcium. Sulfur appeared to be associated with calcium and magnesium, suggesting that the fly ash may have reacted further after being deposited on the surface of the coupon. Areas of high sulfur concentration also correlated well with areas of high chromium content of the inner layers of the scales. cross sections of samples indicated that sulfur had penetrated into the alloy and reacted to form sulfide corrosion products. There was no direct evidence to show that alkali chlorides were involved in the corrosion process. No chloride was identified in the alloy samples. There was slight oxide spallation observed on all three alloys, with the degree of spallation in the following order: Type 304 > Type 347 > Type 309.

  10. HEAT TRANSFER MEASUREMENTS OF A 1·0 TON-STEAM\\/HR CIRCULATING FLUIDIZED-BED COMBUSTOR BURNING TAIWAN COALS

    Microsoft Academic Search

    YU-MIN CHANG; YU-FU LO; MAY-YENN CHEN

    1990-01-01

    The circulating fluidized-bed combustor (CFBC) recently has its commercial breakthrough as a viable technology to burn solid fuels with high efficiencies and low emissions. A 1·0 ton-steam\\/hr CFBC test facility has been designed, built, and systematically tested with Taiwan coals. The CFBC test chamber of 0·4 m square cross-section and 10 m high has built-in flexibility in thermal and combustion measurements.

  11. Utilities increase coal car orders, shortages possible

    SciTech Connect

    Stein, H.

    1993-06-01

    Aluminum railroad cars for carrying coal have been around for about 20 years, but it is only within the past five years that they have begun to make any substantial inroads into the transportation system. Edward J. Whalen, vice president of Johnstown America Corp., Chicago, warns that lead times for ordering the cars are stretching out, and if a utility wants to buy or use new ones, it had better place its order soon. A major reason for this rests with the Clean Air Act Amendments of 1990 (CAAA), which mandated reduced sulfur dioxide emissions from electric generating plants. To begin meeting the mandate, a number of utilities have started burning more Western low-sulfur coal. To get this coal to their plants economically, those companies not located in the West looked for less costly ways to ship the coal over the long distances to their plants. A spokesman for Peabody Coal Co. estimates Western coal use will grow from today's 178-million tons per year by another 15- to 22-million tons by the year 2000. Aluminum coal cars, being some ten tons lighter than the old steel ones, allow utilities to ship more coal in the cars without overstressing rails or roadbeds. This translates into reduced transportation costs.

  12. Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC

    DOEpatents

    Roberts, George W. (Emmaus, PA); Tao, John C. (Perkiomenville, PA)

    1985-01-01

    In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.

  13. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region.

    PubMed

    Smolka-Danielowska, Danuta

    2010-11-01

    The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations ofTh-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: 226Ra - 85.4 Bq kg(-1), 40 K-689 Bq kg(-1), 232Th - 100.8 Bq kg(-1), 235U-13.5 Bq kg(-1), 238U-50 Bq kg(-1) and 228Ac - 82.4 Bq kg(-1). PMID:20713303

  14. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review.

    PubMed

    Papastefanou, Constantin

    2010-03-01

    Coal, like most materials found in nature, contains trace quantities of the naturally occurring primordial radionuclides, i.e. of (40)K and of (238)U, (232)Th and their decay products. Therefore, the combustion of coal results in the released into the environment of some natural radioactivity (1.48 TBq y(-1)), the major part of which (99%) escapes as very fine particles, while the rest in fly ash. The activity concentrations of natural radionuclides measured in coals originated from coal mines in Greece varied from 117 to 435 Bq kg(-1) for (238)U, from 44 to 255 Bq kg(-1) for (226)Ra, from 59 to 205 Bq kg(-1) for (210)Pb, from 9 to 41 Bq kg(-1) for (228)Ra ((232)Th) and from 59 to 227 Bq kg(-1) for (40)K. Fly ash escapes from the stacks of coal-fired power plants in a percentage of 3-1% of the total fly ash, in the better case. The natural radionuclide concentrations measured in fly ash produced and retained or escaped from coal-fired power plants in Greece varied from 263 to 950 Bq kg(-1) for (238)U, from 142 to 605 Bq kg(-1) for (226)Ra, from 133 to 428 Bq kg(-1) for (210)Pb, from 27 to 68 Bq kg(-1) for (228)Ra ((232)Th) and from 204 to 382 Bq kg(-1) for (40)K. About 5% of the total ash produced in the coal-fired power plants is used as substitute of cement in concrete for the construction of dwellings, and may affect indoor radiation doses from external irradiation and the inhalation of radon decay products (internal irradiation) is the most significant. The resulting normalized collective effective doses were 6 and 0.5man-Sv(GWa)(-1) for typical old and modern coal-fired power plants, respectively. PMID:20005612

  15. Mathematical modeling of the heat treatment and combustion of a coal particle. V. Burn-up stage

    NASA Astrophysics Data System (ADS)

    Enkhjargal, Kh.; Salomatov, V. V.

    2011-07-01

    The present material is a sequel of the previous publications of the authors in this journal under a common title in which by means of mathematical modeling the sequential stages of the process of combustion of coal fuels have been obtained: heating, drying, escape of volatiles, and ignition. Mathematical models of the final stage of combustion of an individual particle — the burn-up stage — have been formulated. On the basis of the solution methods for nonlinear boundary-value problems developed by us, approximate-analytic formulas for two characteristic regimes, burn-up simultaneously with the evaporation of the remaining moisture and burn-up of the completely dried coke residue, have been obtained. The previous history of the physical and chemical phenomena in the general burning pattern is taken into account. The influence of the ash shell on the duration of combustion has been extimated. Comparison of calculations by the obtained dependences with the results of other authors has been made. It showed an accuracy sufficient for engineering applications.

  16. Coal and tire burning mixtures containing ultrafine and nanoparticulate materials induce oxidative stress and inflammatory activation in macrophages.

    PubMed

    Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P

    2013-10-01

    Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-?, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. PMID:23856402

  17. Impact of petrographic properties on the burning behavior of pulverized coal using a drop tube furnace

    SciTech Connect

    S. Biswas; N. Choudhury; S. Ghosal; T. Mitra; A. Mukherjee; S.G. Sahu; M. Kumar [Jadavpur University, Dhanbad (India). Central Fuel Research Institute]. sb_cfri@yahoo.co.in

    2007-12-15

    The combustion behavior of three Indian coals of different rank with wide variation in ash content and maceral compositions were studied using a drop tube furnace (DTF). Each coal was pulverized into a specific size (80% below 200 mesh) and fed into the DTF separately. The DTF runs were carried out under identical conditions for all of the coals. The carbon burnout was found out from the chemical analyses of the feed coals and the char samples collected from different ports of the DTF. Char morphology analyses was carried on the burnout residues of the top port. The top port results show better burnout of the lower rank coals which however was not observed in the last port. An attempt has been made to account for this variation in terms of rank and petrographic parameters of the respective coals. 20 refs., 1 fig., 6 tabs.

  18. The pollution control of fluorine and arsenic in roasted corn in "coal-burning" fluorosis area Yunnan, China.

    PubMed

    Li, Ling; Luo, Kun-li; Liu, Yong-lin; Xu, Yong-xin

    2012-08-30

    Pilot experiments were carried out to reduce the fluorine (F) and arsenic (As) pollution of roasted corn dried by open ovens in "coal-burning" fluorosis area Yunnan, China. The results indicated that the average emission amount of F and As in briquettes in experimental group were 29.20mg/kg and 0.76 mg/kg in Xiaolongdong, and 46.8 mg/kg and 0.54 mg/kg in Mangbu respectively. The results also indicated that the fixing rate of F and As in briquettes in experimental group was more than 4 times and 1.2 times of that in control group respectively. The average concentration of F and As in roasted corn in experimental group were 3.86 mg/kg and 13.23 ?g/kg in Xiaolongdong, and 4.77 mg/kg and 122.96 ?g/kg in Mangbu respectively, which reduced by more than 65% and 75% respectively compared with that in control group. Adding local natural calcium-based materials in briquettes can reduce the emission of F and As and their pollution on roasted corn largely, and thus will reduce the risk of fluorosis for residents greatly in "coal-burning" fluorosis area of southwestern China. PMID:22717066

  19. Source profiles of particulate matter emissions from a pilot-scale boiler burning North American coal blends.

    PubMed

    Lee, S W

    2001-11-01

    Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 microm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships. A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 pm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented. Preliminary results indicate that volatile trace elements such as Pb, Zn, Ti, and Se are preferentially enriched in PM2.5. PM2.5 is also more concentrated in soluble sulfates relative to total PM. Coal fly ash collected at the outlet of the electrostatic precipitator (ESP) contains about 85-90% PM10 and 30-50% PM2.5. Particles contain the highest elemental concentrations of Si and Al while Ca, Fe, Na, Ba, and K also exist as major elements. Approximately 4-12% of the materials exists as soluble sulfates in fly ash generated by coal blends containing 0.2-0.8% sulfur by mass. Source profile data for an eastern U.S. coal show good agreement with those reported from a similar study done in the United States. Based on the inadequacies identified in the initial sampling equipment, a new, plume-simulating fine PM measurement system with modular components for field use is being developed for determining coal combustion PM source profiles from utility boiler stacks. PMID:11720104

  20. Assessment of potential debris-flow peak discharges from basins burned by the 2002 Coal Seam fire, Colorado

    USGS Publications Warehouse

    Cannon, Susan H.; Michael, John A.; Gartner, Joseph E.

    2003-01-01

    These maps present the results of assessments of peak discharges that can potentially be generated by debris flows issuing from the basins burned by the Coal Seam fire of June and July 2002, near Glenwood Springs, Colorado. The maps are based on a regression model for debris-flow peak discharge normalized by average storm intensity as a function of basin gradient and burned extent, and limited field checking. A range of potential peak discharges that could potentially be produced from each of the burned basins between 1 ft3/s (0.03 m3/s) and greater than 5,000 ft3/s (>141 m3/s) is calculated for the 5-year, 1-hour storm of 0.80 inches (20 mm). The 25-year, 1-hour storm of 1.3 inches (33 mm). The 100- year, 1-hour storm of 1.8 inches (46 mm) produced peak discharges between 1 and greater than 8,000 ft3/s (>227 m3/s). These maps are intended for use by emergency personnel to aid in the preliminary design of mitigation measures, and the planning of evacuation timing and routes.

  1. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is almost the same as predicted by past laboratory studies. Fouling deposition rates are reduced by a factor of two to three by using lower sulfur oil. This translates to a potential for substantial service cost savings by extending the interval between labor-intensive cleanings of the internal surfaces of the heating systems in these homes. In addition, the time required for annual service calls can be lowered, reducing service costs and customer inconvenience. The analyses conducted as part of this field demonstration project indicates that service costs can be reduced by up to $200 million a year nationwide by using lower sulfur oil and extending vacuum cleaning intervals depending on the labor costs and existing cleaning intervals. The ratio of cost savings to added fuel costs is economically attractive based on past fuel price differentials for the lower sulfur product. The ratio of cost savings to added costs vary widely as a function of hourly service rates and the additional cost for lower sulfur oil. For typical values, the expected benefit is a factor of two to four higher than the added fuel cost. This means that for every dollar spent on higher fuel cost, two to four dollars can be saved by lowered vacuum cleaning costs when the cleaning intervals are extended. Information contained in this report can be used by individual oil marketers to estimate the benefit to cost ratio for their specific applications. Sulfur oxide and nitrogen oxide air emissions are reduced substantially by using lower sulfur fuel oil in homes. Sulfur oxides emissions are lowered by 75 percent by switching from fuel 0.20 percent to 0.05 percent sulfur oil. This is a reduction of 63,000 tons a year nationwide. In New York State, sulfur oxide emissions are reduced by 13,000 tons a year. This translates to a total value of $12 million a year in Sulfur Oxide Emission Reduction Credits for an emission credit cost of $195 a ton. While this ''environmental cost'' dollar savings is smaller than the potential service costs reduction, it is very significant. It represents an important red

  2. Development of the technology of scandium extraction from the ash-slag waste of Kansk-Achinsk brown coal burning

    SciTech Connect

    Pashkov, G.L.; Mikhnev, A.D. [Russian Academy of Sciences, Krasnoyarsk (Russian Federation). Inst. of Chemistry and Chemico-Metallurgical Processes; Kontzevoi, A.A. [Ministry of Fuel and Energetics, Krasnoyarsk (Russian Federation)

    1996-12-31

    Kansk-Achinsk Brown Coal Basin is one of the largest of the world. The coals of separate fields of this Basin consists of an enhanced amount of rare-earth metals, scandium in particular. The results of the developments of efficient technologies for the extraction of this metal from the ash-slag waste of Kansk-Achinsk brown coal burning were discussed in the paper. A variety of the procedures was tested such as the sintering with the alkali followed by the treatment with water, the sintering with the sodium carbonate followed by the treatment with the HCl water solution, the extraction with HCl or sulphuric acids, etc. The extraction of other than scandium metals, such as Y, La, Nd, Yb, Gd, etc., were monitored as well. The scandium extraction with HCl solution was found to be the most appropriate procedure for the ash-slag studied. The kinetic parameters of the extraction with HCl were measured and the mechanism of the extraction process is discussed.

  3. In Developping a Bench-Scale Circulating Fluidized Bed Combustor to Burn High Ash Brazilian Coal-Dolomites Mixtures

    NASA Astrophysics Data System (ADS)

    Ramírez Behainne, Jhon Jairo; Hory, Rogério Ishikawa; Goldstein, Leonardo; Bernárdez Pécora, Araí Augusta

    This work considers some of the questions in burning high ash Brazilian coal-dolomite mixtures in a bench-scale circulating fluidized bed combustor (CFBC). Experimental tests were performed with the CE4500 coal from Santa Catarina State, in southern Brazil, with a Sauter mean diameter d p =43 ?m. The coal particles were mixed with dolomite particles of d p = 111 ?m and this fuel mixture was fed into the circulating fluidized reactor, previously loaded with quartz sand particles of d p =353 ?m. This inert material was previously heated by the combustion of liquefied petroleum gas up to the ignition temperature of the fuel mixture. The CFBC unit has a 100mm internal diameter riser, 4.0m high, as well as a 62.8mm internal diameter downcomer. The loop has a cyclone, a sampling valve to collect particles and a 62.8mm internal diameter L-valve to recirculate the particles in the loop. A screw feeder with a rotation control system was used to feed the fuel mixture to the reactor. The operational conditions were monitored by pressure taps and thermocouples installed along the loop. A data acquisition system showed the main operational conditions to control. Experimental tests performed put in evidence the problems found during bed operation, with special attention to the solids feed device, to the L-valve operation, to particle size, solids inventory, fluidized gas velocity, fuel mixture and recirculated solids feeding positions.

  4. Coal Car

    USGS Multimedia Gallery

    Coal was essential to the operation of the larger steam engines. Coal burns at extremely hot temperatures and burns for a long time, making it an ideal fuel for converting water into steam. The coal mined in the Scranton area, where Steamtown National Historic Site is located, is known as anthracite...

  5. Optimization of regimes for the feed of highly concentrated culm-anthracite coal dust for burning in a TPP-210A boiler

    SciTech Connect

    L.V. Golyshev; G.A. Dovgoteles [JSC 'L'vovORGRES', L'vov (Ukraine)

    2007-05-15

    Results are presented for regime adjustment of feed systems for a TPP-210A boiler for the burning of highly concentrated culm-anthracite coal dust. As compared with nonoptimal regimes, optimal regimes of high-concentration-feed systems improve the economy of the boiler by 1.7% on average.

  6. Respiratory symptoms in relation to residential coal burning and environmental tobacco smoke among early adolescents in Wuhan, China: a cross-sectional study

    PubMed Central

    Salo, Päivi M; Xia, Jiang; Johnson, C Anderson; Li, Yan; Kissling, Grace E; Avol, Edward L; Liu, Chunhong; London, Stephanie J

    2004-01-01

    Background Cigarette smoking and coal burning are the primary sources of indoor air pollution in Chinese households. However, effects of these exposures on Chinese children's respiratory health are not well characterized. Methods Seventh grade students (N = 5051) from 22 randomly selected schools in the greater metropolitan area of Wuhan, China, completed an in-class self-administered questionnaire on their respiratory health and home environment. Results Coal burning for cooking and/or heating increased odds of wheezing with colds [odds ratio (OR) = 1.57, 95% confidence interval (CI): 1.07–2.29] and without colds (OR = 1.44, 95% CI: 1.05–1.97). For smoking in the home, the strongest associations were seen for cough (OR = 1.74, 95% CI: 1.17–2.60) and phlegm production (OR = 2.25, 95% CI: 1.36–3.72) without colds among children who lived with two or more smokers. Conclusions Chinese children living with smokers or in coal-burning homes are at increased risk for respiratory impairment. While economic development in China may decrease coal burning by providing cleaner fuels for household energy use, the increasing prevalence of cigarette smoking is a growing public health concern due to its effects on children. Adverse effects of tobacco smoke exposure were seen despite the low rates of maternal smoking (3.6%) in this population. PMID:15585063

  7. Observations concerning the residue of a thirty-year-old underground-coal-gasification burn at a site in Gorgas, Alabama

    SciTech Connect

    Capp, J.P.

    1983-04-01

    In early February 1983, the Russel Coal Company partially uncovered a large burn area that appears to be the electro-linking site. This was the second site to be uncovered here and evaluated in this way. As in the first case, Mr. A.J. Liberatore of the METC and the author were contacted to access and photograph this latest exposure of an old underground-coal-gasification (UCG) burn. Conclusions from this site evaluation are: (1) confirmation of the Bu mines report which speculated that the electro-linkage at this site deviated from the planned design; (2) confirmation of the material balance calculations which indicated that minimum quantities of coke were left behind when oxygen was used for gasification. Although exposing a UCG site by surface mining is the most positive way to access the burn, there are some important impediments that must be considered. Foremost, the coal mining operations are conducted in the most economical way, to the possible detriment of any sensitive areas. Although the operator may be very cooperative, he is not likely to deviate much from his mining plan without compensation. The constant movement of equipment (trucks, dozers, etc.) in the pit is a threat to the integrity of the burned section. Valid conclusions may be impossible because of the age of this site. In spite of these difficulties, surface mined burn areas provide UCG engineers an opportunity to positively access and confirm previous speculations about events that took place below the surface while the site was in production.

  8. [A study on polycyclic aromatic hydrocarbon-DNA adduct in lung cancer patients exposed to indoor coal-burning smoke].

    PubMed

    Xu, K; Li, X; Hu, F

    1997-03-01

    The objective of this study is to explore the etiology and early risk evaluation of lung cancer in Xuanwei County, Yunnan Province of China. Polycyclic aromatic hydrocarbon (PAH)-DNA adduct in brushing cells from fibrobronchoscopy was determined in 30 cases with lung cancer in Xuanwei County and 10 controls in Kunming, Yunnan Province by 32P-postlabelling assay. Results showed that PAH-DNA levels in lung cancer patients of Xuanwei County were much more higher than those in controls. It suggested that air pollution caused by indoor coal-burning associated directly with the occurrence of lung cancer, and detection of DNA adduct could be used as an indicator for its risk assessment in population. PMID:9812621

  9. Modeling of ash deposition in large-scale combustion facilities burning pulverized coal

    Microsoft Academic Search

    Huafeng Wang; John N. Harb

    1997-01-01

    Traditional approaches to the prediction of the deposition behavior of a coal usually involve the use of empirical indices and ASTM ash fusion temperatures. These approaches, however, can give misleading results and are often unreliable. In recent years, considerable effort has been made in the development of models which overcome some of the deficiencies of the traditional approaches, as reviewed

  10. REVIEW OF CONCURRENT MASS EMISSION AND OPACITY MEASUREMENTS FOR COAL-BURNING UTILITY AND INDUSTRIAL BOILERS

    EPA Science Inventory

    The report gives results of concurrent particulate emissions and opacity measurements based on visual observations and/or in-stack transmissometry for more than 400 compliance, acceptance, or experimental tests on coal-fired utility and industrial boilers. The sampling, which inc...

  11. An Atmospheric Pressure, Fluidized Bed Combustion System Burning High-Chlorine Coals in the Convection Section

    Microsoft Academic Search

    K. Liu; W. Xie; W.-P. Pan; J. T. Riley

    2000-01-01

    The possibility of fireside corrosion in power plant boiler components is always a major concern when the fuels include high-sulfur and high-chlorine coals (or refuse waste). Sulfur and chloride products may play important roles especially in fireside corrosion in atmospheric pressure, fluidized bed combustion (AFBC) systems, caused by the capture of sulfur and chlorine by limestone used as bed material

  12. Effects of Prenatal Exposure to Coal-Burning Pollutants on Children's Development in China

    Microsoft Academic Search

    Deliang Tang; Tin-yu Li; Jason J. Liu; Zhi-jun Zhou; Tao Yuan; Yu-hui Chen; Virginia A. Rauh; Jiang Xie; Frederica Perera

    2008-01-01

    Background: Environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs), lead, and mercury are released by combustion of coal and other fossil fuels. Objectives: In the present study we evaluated the association between prenatal exposure to these pollutants and child development measured by the Gesell Developmental Schedules at 2 years of age. Methods: The study was conducted in Tongliang, Chongqing, Chongqing,

  13. Burning and physico-chemical characteristics of carbon in ash from a coal fired power plant

    Microsoft Academic Search

    Osvalda Senneca

    2008-01-01

    The paper addresses the relationship between the chemico-physical properties and the residual combustion reactivity of fly ashes from a full-scale front fired PF coal boiler. Ashes collected at different rows of electrostatic precipitators (EP) have been characterized for their particle size distribution, morphology, chemical composition and combustion reactivity. The combustion time of carbon in ash has been estimated for a

  14. Physical coal cleaning for utility boiler SOâ emission control. Final report Jul-Dec 77

    Microsoft Academic Search

    E. H. Hall; L. Hoffman; J. Hoffman; R. A. Schilling

    1978-01-01

    The report examines physical coal cleaning as a control technique for sulfur oxides emissions. It includes an analysis of the availability of low-sulfur coal and of coal cleanable to compliance levels for alternate New Source Performance Standards (NSPS). Various alternatives to physical coal cleaning (such as chemical coal cleaning, coal conversion, and fluidized-bed combustion) are also examined with respect to

  15. Fluoride and sulfur dioxide indoor pollution situation and control in coal-burning endemic area in Zhaotong, Yunnan, China

    NASA Astrophysics Data System (ADS)

    Liu, Yonglin; Luo, Kunli; Li, Ling; Shahid, Muhammad Zeeshaan

    2013-10-01

    The presented study aims to investigate the gaseous fluoride and sulfur dioxide (SO2) pollution level in the kitchen, traditional flue-curing barn and outdoor environment and to find economically feasible method to reduce fluorine and sulfur release. The gaseous fluoride and SO2 concentrations in air of outdoor environment, kitchen and traditional flue-curing barn were determined in 56 households in coal-burning endemic fluorosis areas of Zhaotong. Among these, 21 households in Yujiawan Village, Zhenxiong County, Zhaotong City were chosen for this experiment to reduce gaseous fluoride and SO2 concentration in traditional flue-curing barn air by using calcined dolomitic siliceous limestone (CDSL) instead of clay mixed with coal. The result showed that: (1) gaseous fluoride and SO2 concentration in the outdoor air in Mangbu Township area was 0.51 ?g dm-2?day and <0.05 mg m-3, respectively and in Xiaolongdong Township was 2.7 ?g dm-2 day and <0.05 mg m-3, respectively while in Zhaotong City these concentration were lower than the ambient air standard (3 ?g dm-2?day and 0.5 mg m-3, respectively). (2) The indoor gaseous fluoride concentration (3.7 ?g m-3) in air of kitchen with the improved coal stove was within the reference value (10 ?g m-3); SO2 concentration (0.94 mg m-3) in kitchen air had decline, but its concentration was still higher than indoor air quality standard (0.5 mg m-3). (3) Average concentration of gaseous fluoride and SO2 in air of traditional flue-curing barn of Xiaolongdong Township was 7.2 ?g m-3 and 6.8 mg m-3 respectively, and in Yujiawan village were 10.1 ?g m-3 and 14.4 mg m-3, respectively. (4) After using the calcined dolomitic siliceous limestone instead of clay mixed with coal, gaseous fluoride and SO2 concentration in the traditional flue-curing barn air decreased of 45% and 91%, respectively. The gaseous fluoride and SO2 pollution in the traditional flue-curing barn is very serious. The corn and chili baked by open stoves in traditional flue-curing barn (baking room) was also seriously polluted by fluoride and sulfur. After using the calcined dolomitic siliceous limestone instead of clay mixed with coal, gaseous fluoride and SO2 concentration in the traditional flue-curing barn air have declined markedly. The way of adding calcined dolomitic siliceous limestone instead of clay as a binder for briquette-making is an economically feasible way to control the indoor pollution of fluorine and sulfur in coal-burning endemic in Zhaotong, Yunnan.

  16. Indonesia`s economic development objectives and the implications toward application of clean coal technology

    SciTech Connect

    Prijono, A. [Indonesian Mining Association, Jakarta (Indonesia)

    1994-12-31

    Coal consumption in developing Southeast Asian countries like Indonesia is currently at such a low level that the effect of emissions from the burning of coal is quite minimal and insignificant and will remain so until the turn of the century. Direct application of the latest CCTs would only strain such an economy`s financial resources and increase the cost of electricity, which the general public could not afford. Higher electricity prices would also hamper industrial development and lessen the developing countries` competitiveness in the export market. A more relevant and meaningful change to the global environment would be for developed and developing economies, which, combined, consume massive amounts of coal, to adopt CCTs more strictly. When emissions from the burning of coal become a real problem-probably sometime after the turn of the century-it will be advisable for Indonesia to operate large mine-mouth power plants at the outer islands and supply electricity (instead of coal) to the main load center of Java. In the meantime, low sulfur coal should be used, and less costly devices of emission abatement should be applied at existing coal-fired plants.

  17. Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Karanasiou, A.; Amato, F.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.; Coz, E.; Artíñano, B.; Lumbreras, J.; Borge, R.; Boldo, E.; Linares, C.; Alastuey, A.; Querol, X.; Gibbons, W.

    2013-04-01

    A multi-analytical approach to chemical analysis of inhalable urban atmospheric particulate matter (PM), integrating particle induced X-ray emission, inductively coupled plasma mass spectrometry/atomic emission spectroscopy, chromatography and thermal-optical transmission methods, allows comparison between hourly (Streaker) and 24-h (High volume sampler) data and consequently improved PM chemical characterization and source identification. In a traffic hot spot monitoring site in Madrid (Spain) the hourly data reveal metallic emissions (Zn, Cu, Cr, Fe) and resuspended mineral dust (Ca, Al, Si) to be closely associated with traffic flow. These pollutants build up during the day, emphasizing evening rush hour peaks, but decrease (especially their coarser fraction PM2.5-10) after nocturnal road washing. Positive matrix factorization (PMF) analysis of a large Streaker database additionally reveals two other mineral dust components (siliceous and sodic), marine aerosol, and minor, transient events which we attribute to biomass burning (K-rich) and industrial (incinerator?) Zn, Pb plumes. Chemical data on 24-h filters allows the measurement of secondary inorganic compounds and carbon concentrations and offers PMF analysis based on a limited number of samples but using fuller range of trace elements which, in the case of Madrid, identifies the continuing minor presence of a coal combustion source traced by As, Se, Ge and Organic Carbon. This coal component is more evident in the city air after the change to the winter heating season in November. Trace element data also allow use of discrimination diagrams such as V/Rb vs. La/Ce and ternary plots to illustrate variations in atmospheric chemistry (such as the effect of Ce-emissions from catalytic converters), with Madrid being an example of a city with little industrial pollution, recently reduced coal emissions, but serious atmospheric contamination by traffic emissions.

  18. Cost-benefit analysis of ultra-low sulfur jet fuel

    E-print Network

    Kuhn, Stephen (Stephen Richard)

    2010-01-01

    The growth of aviation has spurred increased study of its environmental impacts and the possible mitigation thereof. One emissions reduction option is the introduction of an Ultra Low Sulfur (ULS) jet fuel standard for ...

  19. Coal resources, production, and quality in the Eastern kentucky coal field: Perspectives on the future of steam coal production

    USGS Publications Warehouse

    Hower, J.C.; Hiett, J.K.; Wild, G.D.; Eble, C.F.

    1994-01-01

    The Eastern Kentucky coal field, along with adjacent portions of Virginia and southern West Virginia, is part of the greatest production concentration of high-heating-value, low-sulfur coal in the United States, accounting for over 27% of the 1993 U.S. production of coal of all ranks. Eastern Kentucky's production is spread among many coal beds but is particularly concentrated in a limited number of highquality coals, notably the Pond Creek coal bed and its correlatives, and the Fire Clay coal bed and its correlatives. Both coals are relatively low ash and low sulfur through the areas of the heaviest concentration of mining activity. We discuss production trends, resources, and the quality of in-place and clean coal for those and other major coals in the region. ?? 1994 Oxford University Press.

  20. Potential liquid-fuel savings from crop residue and high-sulfur coal combustion in Ohio, Indiana and Illinois

    SciTech Connect

    Abdallah, M.H.; Hitzhusen, F.J.

    1980-09-01

    This paper attempts to compare the liquid fuels consumption of mining and hauling of western coal to Ohio, Indiana, and Illinois where both high sulfur coal and crop residues are abundant, with that of harvesting and hauling of crop residues to coal burning electric utilities. The main objective of this paper is to determine whether or not a blend of coal and crop residues consumes less liquid fuels than a blend of high and low sulfur coal in six high crop residue producing states. The specific objectives are: (1) to estimate the liquid fuel consumption (per ton of coal) of mining and hauling western coal for the states of Ohio, Indiana, and Illinois; (2) to estimate the expected liquid fuel consumption per ton of crop residues (if used as coal supplement) in Ohio, Indiana, and Illinois; (3) to compare the total liquid fuel consumption of western and high sulfur coal blend with an equivalent amount of crop residue and high sulfur coal blend (having the same Btu and sulfur content); and (4) to extrapolate some of the results of the analysis of Ohio, Indiana, and Illinois to Minnesota, Wisconsin, and Iowa.

  1. Waterwall corrosion in pulverized coal burning boilers: root causes and wastage predictions

    SciTech Connect

    Bakker, W.; Stanko, G.; Blough, J.; Seitz, W.; Niksa, S. [Electric Power Research Institute, Palo Alto, CA (United States)

    2007-07-01

    Waterwall corrosion has become a serious problem in the USA since the introduction of combustion systems, designed to lower NOx emissions. Previous papers have shown that the main cause of the increased corrosion is the deposition of corrodants, iron sulfides and alkali chlorides, which occurs under reducing conditions. In this paper, the contribution of various variables such as the amount of corrodant in the deposit, the flue gas composition and the metal temperature, is further quantified in laboratory tests, using a test furnace allowing thermal gradients across the deposit and the metal tube samples. Approximate deposit compositions were calculated from the coal composition, its associated ash constituents and corrosive impurities. A commercially available thermochemical equilibrium package was used, after modifications to reflect empirical alkali availability data. Predictions from these calculations agreed reasonably well with the alkali chloride and FeS content found in actual boiler deposits. Thus approximate corrosion rates can be predicted from the chemical composition of the coal using corrosion rates from laboratory tests, adjusted to account for the short duration (100 hours) of the laboratory tests. Reasonable agreement was again obtained between actual and predicted results.

  2. Assessment of in-furnace dry sorbent injection experimental results burning low sulphur content coals

    SciTech Connect

    Collado, F.J. [Univ. de Zaragoza (Spain)

    1995-12-31

    In an effort to adjust the SO{sub 2} emissions of coal power stations to the current air pollutant standards, established by the EC, flue gas desulfurization tests with in-furnace dry sorbent injection technology in the Spanish coal power station ``Litoral`` (tangentially-fired) were performed. The measured retentions were lower than predicted through a one-dimensional model. Then, it was thought that a CFD 3D simulation of the injection would help to understand the complex relationships of the process. The simulation was divided in two stages: in the first one, the turbulent velocity and the temperature field were solved. In the second one, representative sorbent particles were injected in the turbulent field previously solved, the focus of this work being the global sulphur capture modeling and its validation through the experimental measurements obtained. After a revision of the models proposed in the specialized literature, a global sulfation model is chosen, being compared with the experimental data obtained in the power station. Because of the main results of this work, the authors can highlight the testing of the laboratory-scale correlations against full-scale results, and can mitigate the difficulty of estimating the actual temperature profile by experimenting with the particle and its residence time without the aid of a CFD code.

  3. Production of a pellet fuel from Illinois coal mines. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Rapp, D.; Lytle, J. [Illinois State Geological Survey, Urbana, IL (United States); Berger, R. [Illinois Univ., Urbana, IL (United States); Ho, Ken [Illinois Clean Coal Inst., Carterville, IL (United States)

    1995-12-31

    The goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. Stokers are an attractive market for pellets because pellets are well-suited for this application and because western coal is not a competitor in the stoker market. Compliance stoker fuels come from locations such as Kentucky and West Virginia and the price for fuels from these locations is high relative to the current price of Illinois coal. This market offers the most attractive near-term economic environment for commercialization of pelletization technology. For this effort, we will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach.

  4. Overburden characterization and post-burn study of the Hanna IV, underground coal gasification site, Wyoming, and comparison to other Wyoming UCG sites

    Microsoft Academic Search

    B. A. Marcouiller; L. K. Burns; F. G. Ethridge

    1984-01-01

    Analysis of 21 post-burn cores taken from the Hanna IV UCG site allows 96 m (315 ft) of overburden to be subdivided into four local stratigraphic units. The 7.6 m (25 ft) thick Hanna No. 1 coal seam is overlain by a laterally discontinuous, 3.3 m (11 ft) thick shaley mudstone (Unit A') in part of the Hanna IV site.

  5. Conversion of an existing gas turbine to an intercooled exhaust-heated coal-burning engine. Master's thesis

    SciTech Connect

    Kowalick, D.J.

    1990-12-01

    An existing gas-turbine engine has been selected and modified on paper to accommodate an innovative, high-efficiency thermodynamic cycle. The modified Solar 5650 industrial gas turbine burns coal in an intercooled exhaust-heated cycle for power generation. This thesis focuses on the alterations that must be made to this off-the-shelf engine and their impact on the overall performance of the engine. The conversion process involves optimizing the exhaust-heated cycle to obtain peak thermal efficiency and near-maximum specific power. Three design changes are explored to optimize the intercooled exhaust-heated 5650 cycle. The alternatives include running the intercooled exhaust-heated 5650 at a slower speed with no turbomachinery modifications, running the engine at its design pressure ratio, or redesigning all of the turbomachinery. Each of these options and a cycle modification, increased turbine-inlet temperature, are measured on performance and life-cycle-cost bases. Sizing analysis for a rotary regenerator heat exchanger and combustor recommendations for the cycle are also included.

  6. Overburden characterization and post-burn study at the Hanna, Wyoming underground coal gasification site: stratigraphy, depositional environments and mineralogy, Hanna Formation

    SciTech Connect

    Craig, G.N. II; Burns, L.K.; Ethridge, F.G.; Laughter, T.; Youngberg, A.D.

    1982-03-01

    Several underground coal gasification (UCG) experiments have been conducted in the Hanna No. 1 coal seam. During the fall of 1980 the Laramie Energy Technology Center performed a post-burn field study of the Hanna II, Phases 2 and 3 experiment at the Hanna UCG site. The field work consisted of high resolution seismic, drilling, coring, and geophysical logging. The Department of Earth Resources, Colorado State University, contributed to the post-burn study by doing laboratory work on the cores and geophysical logs. The purpose of the laboratory work was to provide an estimate of the temperatures and chemical conditions reached during the conversion experiment by studying the mineralogical and textural characteristics of thermally altered and ulaltered overburden. In the vicinity of the burn cavity, overburden rocks have been subjected to high temperature pyrometamorphism during the Hanna II Phases 2 and 3 UCG experiments. Paralava rocks, buchites and paralava breccias containing glass and various high temperature minerals such as oligoclase, clinopyroxene, ferrocordierite, mullite, cristobalite, magnetite, and tridymite formed. Textures of some of these minerals suggest crystallization directly from a melt. Mineralogy and melting relations of the paralavas, ash fusion temperatures, and thermocouple measurements made during the experiment suggest that tempratures in excess of 1200/sup 0/C were attained. Rock color and the presence of reduced iron bearing minerals and blebs of native iron indicate that the experimental burn and the product gases in the area of paralava formation were reducing.

  7. Energy Policy Act transportation rate study: Interim report on coal transportation

    SciTech Connect

    NONE

    1995-10-01

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  8. Assessment of Coal Geology, Resources, and Reserves in the Gillette Coalfield, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.

    2008-01-01

    The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Gillette coalfield is10.1 billion short tons of coal (6 percent of the original resource total) for the 6 coal beds evaluated.

  9. Clean coal

    NSDL National Science Digital Library

    Iowa Public Television. Explore More Project

    2004-01-01

    Fossil fuels such as coal can be powerful polluters of the environment. This article, part of site on the future of energy, introduces students to methods being implemented to make burning coal a cleaner process. Students read about the 1986 creation of the Clean Coal Technology Program and the coal-burning improvements it generated. Definitions of key terms are available, and a link is provided to an ABC News article about bacteria that have been bioengineered to clean coal. Copyright 2005 Eisenhower National Clearinghouse

  10. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental conditions

    Microsoft Academic Search

    Sri Widodo; Wolfgang Oschmann; Achim Bechtel; Reinhard F. Sachsenhofer; Komang Anggayana; Wilhelm Puettmann

    2010-01-01

    Thirteen Miocene coal samples from three active open pit and underground coal mines in the Kutai Basin (East Kalimantan, Indonesia) were collected. According to our microscopical and geochemical investigations, coal samples from Sebulu and Centra Busang coal mines yield high sulfur and pyrite contents as compared to the Embalut coal mine. The latter being characterized by very low sulfur (<1%)

  11. ALGAL BIOASSAYS WITH LEACHATES AND DISTILLATES FROM WESTERN COAL

    EPA Science Inventory

    The objective of this research was to assess the effects on freshwater algae of materials derived from coal storage piles. Coal leachates and distillates were prepared in the laboratory from low-sulfur Montana coal. Three types of algal bioassays were conducted: (1) A laboratory ...

  12. Process for converting coal into liquid fuel and metallurgical coke

    DOEpatents

    Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

    1994-01-01

    A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

  13. Treatment system is innovative for coal storage facility

    Microsoft Academic Search

    M. Kaneletz; J. J. Hess

    1977-01-01

    An unusual dual function water treatment plant is performing yeoman's duty for a 194 acre coal storage facility. The Superior (Wisc.) Coal Terminal is a large facility which has been designed for the unloading, storage, and transhipment of western low sulfur subbituminous coal for use at the Detroit Edison power plants at St. Clair and Belle River, Mich. The terminal

  14. Tribological behavior of near-frictionless carbon coatings in high- and low-sulfur diesel fuels.

    SciTech Connect

    Alzoubi, M. F.; Ajayi, O. O.; Eryilmaz, O. L.; Ozturk, O.; Erdemir, A.; Fenske, G.

    2000-01-19

    The sulfur content in diesel fuel has a significant effect on diesel engine emissions, which are currently subject to environmental regulations. It has been observed that engine particulate and gaseous emissions are directly proportional to fuel sulfur content. With the introduction of low-sulfur fuels, significant reductions in emissions are expected. The process of sulfur reduction in petroleum-based diesel fuels also reduces the lubricity of the fuel, resulting in premature failure of fuel injectors. Thus, another means of preventing injector failures is needed for engines operating with low-sulfur diesel fuels. In this study, the authors evaluated a near-frictionless carbon (NFC) coating (developed at Argonne National Laboratory) as a possible solution to the problems associated with fuel injector failures in low-lubricity fuels. Tribological tests were conducted with NFC-coated and uncoated H13 and 52100 steels lubricated with high- and low- sulfur diesel fuels in a high-frequency reciprocating test machine. The test results showed that the NFC coatings reduced wear rates by a factor of 10 over those of uncoated steel surfaces. In low-sulfur diesel fuel, the reduction in wear rate was even greater (i.e., by a factor of 12 compared to that of uncoated test pairs), indicating that the NFC coating holds promise as a potential solution to wear problems associated with the use of low-lubricity diesel fuels.

  15. Specific gravity and API gravity of biodiesel and ultra-low sulfur diesel (ULSD) blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative fuel made from vegetable oils and animal fats. In 2006, the U. S. Environmental Protection Agency mandated a maximum sulfur content of 15 ppm in on-road diesel fuels. Processing to produce the new ultra-low sulfur petrodiesel (ULSD) alters specific gravity (SG) and othe...

  16. Production of low-sulfur gasoline. Final report, Nov 1972-Jun 1974

    Microsoft Academic Search

    Hoot

    1974-01-01

    The use of catalytic converters is intended to control carbon monoxide and hydrocarbon emissions. However, the catalysts convert some of the sulfur in gasoline into sulfuric acid mist in the exhaust. The purpose of this study was to determine the impact on oil refineries to produce unleaded, low-sulfur gasolines and also to desulfurize all gasolines produced for United States sales.

  17. Biocatalytic sulfur removal from fuels: applicability for producing low sulfur gasoline.

    PubMed

    McFarland, B L; Boron, D J; Deever, W; Meyer, J A; Johnson, A R; Atlas, R M

    1998-01-01

    Environmental regulations are driving R&D efforts to produce low sulfur fuels, including diesel fuel and gasoline for motor vehicles. Biocatalytic sulfur removal from fuels has potential applicability for producing low sulfur gasoline. Microbial biocatalysts have been identified that can biotransform sulfur compounds found in fuels, including ones that selectively remove sulfur from dibenzothiophene heterocyclic compounds. Most attention is give to the 4S pathway of Rhodococcus, which can remove sulfur from substituted and unsubstituted dibenzothiophenes, including sulfur compounds that hinder chemical catalysis and that resist removal by mild hydrotreatment. Various bioreactor and bioprocess designs are being tested for use with biocatalysts, including recombinant biocatalysts, for use in removing sulfur from fuels and feedstocks within the petroleum refinery stream. With bioprocess improvements that enhance biocatalyst stability, achieve faster kinetics, improve mass transfer limitations, temperature and solvent tolerance, as well as broaden substrate specificity to attack a greater range of heterocyclic compounds, biocatalysis may be a cost-effective approach to achieve the production of low sulfur gasoline. The challenge will be to accomplish these improvements by the time the regulations for low sulfur gasoline and other vehicle fuels go into effect in order to be competitive with emerging nonbiological desulfurization technologies. PMID:9675512

  18. Comparison of heterogeneous photolytic reduction of Hg(II) in the coal fly ashes and synthetic aerosols

    NASA Astrophysics Data System (ADS)

    Tong, Yindong; Eichhorst, Terry; Olson, Michael R.; Rutter, Andrew P.; Shafer, Martin M.; Wang, Xuejun; Schauer, James J.

    2014-03-01

    In this study, we examined the heterogeneous reduction of Hg(II) on the coal fly ash samples and synthetic aerosols under different light conditions in a controlled laboratory reactor. Three types of coal fly ashes were studied: a high carbon fly ash from a stoker boiler, a low carbon/low sulfate fly ash from a pulverized coal combustor burning low sulfur coal, and a high sulfate fly ash from a pulverized coal combustor burning high sulfur coal. The rate of Hg(II) reduction on the three diverse fly ash samples was found to be relatively fast with an average half-life of 1.6 h under clear sky atmospheric conditions (under the irradiance of 1000 W/m2). The reduction rate in the low sulfate/low carbon fly ash was approximately 1.5 times faster than with the other coal fly ash samples. Synthetic aerosols made of carbon black and levoglucosan produced Hg(II) reduction rates similar to coal fly ashes. However, aerosols composed of adipic acid resulted in reduction rates that were 3-5 times faster. The sensitivity of adipic acid reduction to light source wavelength was found to be greater than for the coal fly ash and other synthetic aerosols. Aerosols made from the water extracts of coal fly ash samples produced reduction rates equal to or slightly higher than with the native fly ash suggesting that the soluble components of fly ash play a significant role in the reduction mechanism. The measured reduction rates are likely important in the chemical processing of mercury in power plant plumes and potentially in the atmosphere and should be considered for incorporation in atmospheric transport models that are used to understand the fate of atmospheric mercury.

  19. Speciation of Arsenic in Canadian Subbituminous and Bituminous Feed Coals and their Ash Byproducts

    SciTech Connect

    Goodarzi,F.; Huggins, F.

    2005-01-01

    The arsenic species in the feed coals and ash byproducts from seven Canadian power plants (including one with a fluidized-bed combustor) that were burning local sub-bituminous and bituminous coals with sulfur contents in the range of 0.30-3.5 wt % have been examined using As X-ray absorption fine structure (XAFS) spectroscopy. The feed coals can be grouped based on their contents of arsenic associated with pyrite (As/pyr) and as As{sup 3+} and As{sup 5+} (arsenate) species. The arsenic species in sub-bituminous feed coals with low sulfur (0.22-0.38 wt %) and arsenic (1.6-2.2 mg/kg) contents consist of {approx}50% As{sup 3+} and {approx}50% As{sup 5+}, whereas those with moderate sulfur (0.50 wt %) and arsenic (3.63 mg/kg) contents consist of 84% As/pyr, 7% As3+, and 9% As{sup 5+}. In bituminous feed coal with low sulfur (0.40 wt %) and arsenic (4.39 mg/kg) contents, the arsenic speciation consists of 34% As/pyr, 12% As{sup 3+}, and 54% As{sup 5+}, and for those with high sulfur (2.60-3.56 wt %) and arsenic (54-84 mg/kg) contents, it consists of 77%-82% As/pyr and 18%-23% As{sup 5+}. The bottom ash produced from sub-bituminous feed coals with low sulfur and arsenic contents consists of 10%-20% As3+ and 80%-90% As5+, and for moderate sulfur (0.50 wt %) and arsenic (3.63 mg/kg), the arsenic speciation consists of 5% As/pyr, 10% As{sup 3+} and 85% As{sup 5+} as arsenate. For bituminous feed coals with low sulfur and arsenic contents, the bottom ash is entirely As{sup 5+}, whereas for coals with high sulfur and arsenic contents, the bottom ash consists of 10%-15% As{sup 3+} and 85%-90% As{sup 5+}; and for the fluidized-bed combustor, the bottom ash is entirely As{sup 5+} arsenate. The species of arsenic in fly ash from sub-bituminous and bituminous coals are mostly arsenate (As5+), possibly in part incorporated in the glass matrix, and remains the same for coarse- and fine-grained electrostatic precipitator (ESP), baghouse, and stack-emitted ashes. The only difference between the ESP and baghouse fly ash is the higher amount of crystalline arsenates in the hopper fly ash. Neither the sulfur content nor the pyrite content of the feed coal seems to influence the speciation of arsenic, because virtually all of the arsenic in fly ash samples from high-sulfur coal is in the form of arsenate (As{sup 5+}). However, arsenic (mostly as As{sup 5+}) in these fly ashes is found to be very surface-enriched, because the amount measured by XPS decreases from >3 wt % to <0.8 wt % in the first few atomic layers. The presence of stable calcium or transition-metal iron hydroxyl arsenate hydrate [(M{sup 2+}){sub 2}Fe{sub 3}(AsO{sub 4}){sub 3}(OH){sub 4}{center_dot}10H{sub 2}O] complexes, as determined by X-ray diffractometry, in the fly ash produced from high-sulfur/pyrite feed coals indicates that some of the arsenic might be captured by calcium and iron compounds.

  20. Driver mutations among never smoking female lung cancer tissues in China identify unique EGFR and KRAS mutation pattern associated with household coal burning

    PubMed Central

    Hosgood, H. Dean; Pao, William; Rothman, Nathaniel; Hu, Wei; Pan, Yumei Helen; Kuchinsky, Kyle; Jones, Kirk D.; Xu, Jun; Vermeulen, Roel; Simko, Jeff; Lan, Qing

    2013-01-01

    Lung cancer in never smokers, which has been partially attributed to household solid fuel use (i.e coal), is etiologically and clinically different from lung cancer attributed to tobacco smoking. To explore the spectrum of driver mutations among lung cancer tissues from never smokers, specifically in a population where high lung cancer rates have been attributed to indoor air pollution from domestic coal use, multiplexed assays were used to detect >40 point mutations, insertions, and deletions (EGFR, KRAS, BRAF, HER2, NRAS, PIK3CA, MEK1, AKT1, and PTEN) among the lung tumors of confirmed never smoking females from Xuanwei, China [32 adenocarcinomas (ADCs), 7 squamous cell carcinomas (SCCs), 1 adenosquamous carcinoma (ADSC)]. EGFR mutations were detected in 35% of tumors. 46% of these involved EGFR exon 18 G719X, while 14% were exon 21 L858R mutations. KRAS mutations, all of which were G12C_34G>T, were observed in 15% of tumors. EGFR and KRAS mutations were mutually exclusive, and no mutations were observed in the other tested genes. Most point mutations were transversions and were also found in tumors from patients who used coal in their homes. Our high mutation frequencies in EGFR exon 18 and KRAS and low mutation frequency in EGFR exon 21 are strikingly divergent from those in other smoking and never smoking populations from Asia. Given that our subjects live in a region where coal is typically burned indoors, our findings provide new insights into the pathogenesis of lung cancer among never smoking females exposed to indoor air pollution from coal. PMID:24055406

  1. Fuel Properties of Biodiesel\\/Ultra-Low Sulfur Diesel (ULSD) Blends

    Microsoft Academic Search

    Robert O. Dunn

    Biodiesel is an alternative fuel and fuel extender easily derived from vegetable oil or animal fat. In 2006, the US Environmental\\u000a Protection Agency mandated that maximum sulfur content of diesel fuels be reduced to 15 ppm to protect catalysts employed\\u000a in exhaust after-treatment devices. Processing to produce this ultra-low sulfur petrodiesel (ULSD) alters fuel lubricity,\\u000a density, cold flow, viscosity, and other

  2. Characterization of burning and CO 2 gasification of chars from mixtures of Zonguldak (Turkey) and Australian bituminous coals

    Microsoft Academic Search

    Didem Erincin; Muammer Canel

    2005-01-01

    In this study, different mixtures (30wt.%+70wt.% and 50wt.%+50wt.%, respectively) of Zonguldak bituminous coal (Turkey) and an Australian bituminous coal are carbonized to obtain char samples. The ignition temperatures of the samples are determined by sending O2 onto the samples in a system designed for determining the ignition temperature. The gasification reactivity of the chars in a CO2 atmosphere is also

  3. The ENCOAL Mild Coal Gasification Project, A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2002-03-15

    This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall objective, the following goals were established for the ENCOAL{reg_sign} Project: Provide sufficient quantity of products for full-scale test burns; Develop data for the design of future commercial plants; Demonstrate plant and process performance; Provide capital and O&M cost data; and Support future LFC{trademark} technology licensing efforts. Each of these goals has been met and exceeded. The plant has been in operation for nearly 5 years, during which the LFC{trademark} process has been demonstrated and refined. Fuels were made, successfully burned, and a commercial-scale plant is now under contract for design and construction.

  4. ENCOAL mild coal gasification project public design and construction report

    SciTech Connect

    NONE

    1994-12-01

    This Public Design Report describes the 1000 ton per day ENCOAL mild coal gasification demonstration plant now in operation at the Buckskin Mine near Gillette, Wyoming. The objective of the project is to demonstrate that the proprietary Liquids From Coal (LFC) technology can reliably and economically convert low Btu PRB coal into a superior, high-Btu solid fuel (PDF), and an environmentally attractive low-sulfur liquid fuel (CDL). The Project`s plans also call for the production of sufficient quantities of PDF and CDL to permit utility companies to carry out full scale burn tests. While some process as well as mechanical design was done in 1988, the continuous design effort was started in July 1990. Civil construction was started in October 1990; mechanical erection began in May 1991. Virtually all of the planned design work was completed by July 1991. Most major construction was complete by April 1992 followed by plant testing and commissioning. Plant operation began in late May 1992. This report covers both the detailed design and initial construction aspects of the Project.

  5. Subbituminous coal handling problems solved with bunker liner retrofit

    Microsoft Academic Search

    K. P. Steppling; K. L. McAtee; J. Huggins

    1995-01-01

    After switching to low-sulfur sub-bituminous coal, Northern States Power Co. (NSP) experience several fires and an explosion in the coal storage bunkers of its two-unit, 384-MW Riverside plant located in Minneapolis, Minn. The most recent incident occurred in November 1993 when a blast rocked Unit 7`s coal storage bunker. The spontaneous combustion explosion was touched off when coal dust from

  6. The daily fluorine and arsenic intake for residents with different dietaries and fluorosis risk in coal-burning fluorosis area, Yunnan, Southwest China.

    PubMed

    Li, Ling; Luo, Kun-Li; Tang, Yue-Gang; Liu, Yong-Lin

    2015-02-01

    The daily fluorine (F)/arsenic (As) intake (DFI/DAsI) for residents at different ages with different dietaries and dietary changes was investigated to analyze the fluorosis risk in coal-burning fluorosis area in Yunnan, Southwest China. The DFI for residents with a dietary of roasted corn and roasted chili was 5.06, 9.60, and 14.38 mg for age groups 3-7, 8-15, and over 15 years, respectively. Over 90 % of DFI was from roasted foodstuffs. The DFI for residents of the same age group living on rice and roasted chili was 1.94, 3.50, and 4.95 mg, respectively, which were less than that for the former dietary type, and 65 % of DFI was from roasted chili. The main sources for their DFI are roasted foodstuffs. Both were higher than the dietaries with non-roasted foodstuffs and the recommended daily allowances (RDAs) for USA and China at different levels. The DAsI for all residents ranged from 25 to 135 ?g, and at this level of DAsI, it would not influence human health. However, As pollution of roasted foodstuffs might have an important influence for the fluorosis. Residents are changing their staple food from roasted corn to rice, and especially, younger people are more focused on quality life. However, even if residents change their staple food, the habit of eating chili will not change, which also may cause them getting fluorosis. Developing economy, changing dietary types, and changing the habit of drying and keeping chili will help to reduce the fluorosis risk in coal-burning fluorosis area of Southwest China. PMID:25167821

  7. Update on Transition to Ultra-Low-Sulfur Diesel Fuel (released in AEO2006)

    EIA Publications

    2006-01-01

    On November 8, 2005, the Environmental Protection Agency (EPA) Administrator signed a direct final rule that will shift the retail compliance date for offering ultra-low sulfur diesel (ULSD) for highway use from September 1, 2006, to October 15, 2006. The change will allow more time for retail outlets and terminals to comply with the new 15 parts per million (ppm) sulfur standard, providing time for entities in the diesel fuel distribution system to flush higher sulfur fuel out of the system during the transition. Terminals will have until September 1, 2006, to complete their transitions to ULSD. The previous deadline was July 15, 2006.

  8. Fossil Fuels: Coal

    NSDL National Science Digital Library

    John Pratte

    This lesson provides an introduction to the use of coal as an energy source. Topics include the history of coal usage, applications of coal as an energy source, and major suppliers of coal (the United States). There is also discussion of how coal is created, located, and produced, and technologies for burning it more cleanly. The lesson includes a hands-on activity in which students measure the ash content of various types of coal.

  9. Compositional characteristics of the Fire Clay coal bed in a portion of eastern Kentucky

    SciTech Connect

    Hower, J.C.; Andrews, W.M. Jr.; Rimmer, S.M. (Univ. of Kentucky, Lexington (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington (United States))

    1991-08-01

    The Fire Clay (Hazard No. 4) coal bed (Middle Pennsylvanian Breathitt Formation) is one of the most extensively mined coal in eastern Kentucky. The coal is used for metallurgical and steam end uses and, with its low sulfur content, should continue to be a prime steam coal. This study focuses on the petrology, mineralogy, ash geochemistry, and palynology of the coal in an eight 7.5-min quadrangle area of Leslie, Perry, Knott, and Letcher counties.

  10. Coal combustion products

    USGS Publications Warehouse

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  11. Particle-induced oxidative damage of indoor PM10 from coal burning homes in the lung cancer area of Xuan Wei, China

    NASA Astrophysics Data System (ADS)

    Shao, Longyi; Hu, Ying; Wang, Jing; Hou, Cong; Yang, Yuanyuan; Wu, Mingyuan

    2013-10-01

    The lung cancer mortality rate in the rural area of the Xuan Wei, Yunnan, is among the highest in China, especially in women. In this paper, the coal-burning indoor and corresponding outdoor PM10 samples were collected at the Hutou village, representing the case of high lung cancer rate, and the Xize village, representing the case of low lung cancer rate. Plasmid scission assay was used to investigate the bioreactivity of the PM10. The inductively coupled plasma-mass spectrometry (ICP-MS) was employed to investigate the trace element compositions of the PM10. The results showed that the oxidative damage caused by both indoor and outdoor PM10 at the Hutou village was obviously higher than that at the Xize village, with the indoor PM10 having higher oxidative damage than corresponding outdoors. Among all analyzed samples, the indoor night PM10 samples from the Hutou village have the highest oxidative capacity. The levels of total water-soluble elements had a higher level in the PM10 of the Hutou village than that of the Xize village. It is interesting that the levels of water-soluble As, Cd, Cs, Pb, Sb, Tl and Zn in PM10 had better positive correlation with DNA damage rates, implying that these elements in their water-soluble state should be one of the main factors responsible for the high oxidative capacity of PM10, thus possibly the higher lung cancer rates, at the Hutou village.

  12. SRC burn test in 700-hp oil-designed boiler. Volume 2. Engineering evaluation report. Final technical report. [Oil-fired boiler to solvent-refined coal

    SciTech Connect

    Not Available

    1983-12-01

    Volume 2 of this report gives the results of an engineering evaluation study and economic analysis of converting an existing 560-MW residual (No. 6) oil-fired unit to burn solvent refined coal (SRC) fuel forms. Volume 1 represents an integrated overview of the test program conducted at the Pittsburgh Energy Technology Center. Three SRC forms (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) were examined. The scope of modifications necessary to convert the unit to each of the three SRC fuel forms was identified and a capital cost of the necessary modifications estimated. A fuel conversion feasibility study of the boiler was performed wherein boiler modifications and performance effects of each fuel on the boiler were identified. An economic analysis of the capital and operating fuel expenses of conversion of the unit was performed. It was determined that conversion of the unit to any one of the three SRC fuel forms was feasible where appropriate modifications were made. It also was determined that the conversion of the unit can be economically attractive if SRC fuel forms can be manufactured and sold at prices discounted somewhat from the price of No. 16 Fuel Oil. As expected, greater discounts are required for the pulverized SRC and the slurry than for the solution of SRC dissolved in process-derived distillates.

  13. Market effects of environmental regulation: coal, railroads, and the 1990 Clean Air Act

    SciTech Connect

    Busse, M.R.; Keohane, N.O. [University of California Berkeley, Berkeley, CA (United States)

    2007-01-01

    Many environmental regulations encourage the use of 'clean' inputs. When the suppliers of such an input have market power, environmental regulation will affect not only the quantity of the input used but also its price. We investigate the effect of the Title IV emissions trading program for sulfur dioxide on the market for low-sulfur coal. We find that the two railroads transporting coal were able to price discriminate on the basis of environmental regulation and geographic location. Delivered prices rose for plants in the trading program relative to other plants, and by more at plants near a low-sulfur coal source.

  14. Production of a pellet fuel from Illinois coal fines. Technical report, March 1--May 31, 1995

    SciTech Connect

    Rapp, D.; Lytle, J.

    1995-12-31

    The primary goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. For this effort, we will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach. Previously it has been decided that corn starch would be used as binder and a roller-and-die mill would be used for pellet manufacture. A quality starch binder has been identified and tested. To potentially lower binder costs, a starch that costs about 50% of the high quality starch was tested. Results indicate that the lower cost starch will not lower binder cost because more is required to produce a comparable quality pellet. Also, a petroleum in water emulsion was evaluated as a potential binder. The compound seemed to have adhesive properties but was found to be a poor binder. Arrangements have been made to collect a waste slurry from the mine previously described.

  15. The supply of a clean coal to an Indonesian power station

    SciTech Connect

    Grant, A.

    1994-12-31

    P.T. Adaro is developing a large subbituminous coal deposit in Indonesia, notable for its very low sulfur and low ash content. This coal has been chosen as the sole feed for a power station to be built in East Java, mainly on the basis of its environmental characteristics. It is suggested that such coals will become more important in future power station coal supply.

  16. Assessment of coal geology, resources, and reserves in the Montana Powder River Basin

    USGS Publications Warehouse

    Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Gunderson, Jay A.

    2013-01-01

    The purpose of this report is to summarize geology, coal resources, and coal reserves in the Montana Powder River Basin assessment area in southeastern Montana. This report represents the fourth assessment area within the Powder River Basin to be evaluated in the continuing U.S. Geological Survey regional coal assessment program. There are four active coal mines in the Montana Powder River Basin assessment area: the Spring Creek and Decker Mines, both near Decker; the Rosebud Mine, near Colstrip; and the Absaloka Mine, west of Colstrip. During 2011, coal production from these four mines totaled approximately 36 million short tons. A fifth mine, the Big Sky, had significant production from 1969-2003; however, it is no longer in production and has since been reclaimed. Total coal production from all five mines in the Montana Powder River Basin assessment area from 1968 to 2011 was approximately 1.4 billion short tons. The Rosebud/Knobloch coal bed near Colstrip and the Anderson, Dietz 2, and Dietz 3 coal beds near Decker contain the largest deposits of surface minable, low-sulfur, subbituminous coal currently being mined in the assessment area. A total of 26 coal beds were identified during this assessment, 18 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Montana Powder River Basin assessment area for the 18 coal beds assessed was calculated to be 215 billion short tons. Available coal resources, which are part of the original coal resource remaining after subtracting restrictions and areas of burned coal, are about 162 billion short tons. Restrictions included railroads, Federal interstate highways, urban areas, alluvial valley floors, state parks, national forests, and mined-out areas. It was determined that 10 of the 18 coal beds had sufficient areal extent and thickness to be evaluated for recoverable surface resources ([Roland (Baker), Smith, Anderson, Dietz 2, Dietz 3, Canyon, Werner/Cook, Pawnee, Rosebud/Knobloch, and Flowers-Goodale]). These 10 coal beds total about 151 billion short tons of the 162 billion short tons of available resource; however, after applying a strip ratio of 10:1 or less, only 39 billion short tons remains of the 151 billion short tons. After mining and processing losses are subtracted from the 39 billion short tons, 35 billion short tons of coal were considered as a recoverable resource. Coal reserves (economically recoverable coal) are the portion of the recoverable coal resource that can be mined, processed, and marketed at a profit at the time of the economic evaluation. The surface coal reserve estimate for the 10 coal beds evaluated for the Montana Powder River assessment area is 13 billion short tons. It was also determined that about 42 billion short tons of underground coal resource exists in the Montana Powder River Basin assessment area; about 34 billion short tons (80 percent) are within 500-1,000 feet of the land surface and another 8 billion short tons are 1,000-2,000 feet beneath the land surface.

  17. Pilot-Scale Study of the Effect of Selective Catalytic Reduction Catalyst on Mercury Speciation in Illinois and Powder River Basin Coal Combustion Flue Gases

    Microsoft Academic Search

    Chun W. Lee; Ravi K. Srivastava; S. Behrooz Ghorishi; Jarek Karwowski; Thomas W. Hastings; Joseph C. Hirschi

    2006-01-01

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in

  18. Mössbauer study of the inorganic sulfur removal from coals

    NASA Astrophysics Data System (ADS)

    Reyes Caballero, F.; Martínez Ovalle, S. A.

    2014-01-01

    Mössbauer Spectroscopy (MS) was applied to study the occurrence and behavior of the iron-sulfur-containing minerals in coal and coal fractions obtained by different separation methods: hydrocyclonic, flotation and chemical removal process. Samples of one high sulfur coal from Guachinte mine (Valle, Colombia) and three low sulfur coals from the El Salitre zone (Paipa-Boyacá, Colombia) were analyzed. MS evidenced only the presence of pyrite in Esmeralda and Las Casitas coals, while it identified pyrite and siderite on Cerezo coal. MS and SEM- EDX confirm the inorganic sulfur removal on Guachinte coal submitted to hydrocyclonic removal process. MS of the precipitated coal fraction from Las Casitas mine obtained by flotation in water showed the presence of ferrous sulfate because of coal-weathering process. Treatment with hot diluted HNO3 equal to 27 acid on raw coal sample from Las Casitas mine showed that almost all of the pyrite in raw coal was removed.

  19. Progression in sulfur isotopic compositions from coal to fly ash: Examples from single-source combustion in Indiana

    USGS Publications Warehouse

    Yaofa, Jiang; Elswick, E.R.; Mastalerz, Maria

    2008-01-01

    Sulfur occurs in multiple mineral forms in coals, and its fate in coal combustion is still not well understood. The sulfur isotopic composition of coal from two coal mines in Indiana and fly ash from two power plants that use these coals were studied using geological and geochemical methods. The two coal beds are Middle Pennsylvanian in age; one seam is the low-sulfur ( 5%) Springfield Coal Member of the Petersburg Formation. Both seams have ash contents of approximately 11%. Fly-ash samples were collected at various points in the ash-collection system in the two plants. The results show notable difference in ??34S for sulfur species within and between the low-sulfur and high-sulfur coal. The ??34S values for all sulfur species are exclusively positive in the low-sulfur Danville coal, whereas the ??34S values for sulfate, pyritic, and organic sulfur are both positive and negative in the high-sulfur Springfield coal. Each coal exhibits a distinct pattern of stratigraphic variation in sulfur isotopic composition. Overall, the ??34S for sulfur species values increase up the section in the low-sulfur Danville coal, whereas they show a decrease up the vertical section in the high-sulfur Springfield coal. Based on the evolution of ??34S for sulfur species, it is suggested that there was influence of seawater on peat swamp, with two marine incursions occurring during peat accumulation of the high-sulfur Springfield coal. Therefore, bacterial sulfate reduction played a key role in converting sulfate into hydrogen sulfide, sulfide minerals, and elemental sulfur. The differences in ??34S between sulfate sulfur and pyritic sulfur is very small between individual benches of both coals, implying that some oxidation occurred during deposition or postdeposition. The ??34S values for fly ash from the high-sulfur Springfield coal (averaging 9.7???) are greatly enriched in 34S relative to those in the parent coal (averaging 2.2???). This indicates a fractionation of sulfur isotopes during high-sulfur coal combustion. By contrast, the ??34S values for fly-ash samples from the low-sulfur Danville coal average 10.2???, only slightly enriched in 34S relative to those from the parent coal (average 7.5???). The ??34S values for bulk S determined directly from the fly-ash samples show close correspondence with the ??34S values for SO4- 2 leached from the fly ash in the low-sulfur coal, suggesting that the transition from pyrite to sulfate occurred via high-temperature oxidation during coal combustion. ?? 2007 Elsevier B.V. All rights reserved.

  20. Kinetic Study and Mathematical Model of Hemimorphite Dissolution in Low Sulfuric Acid Solution at High Temperature

    NASA Astrophysics Data System (ADS)

    Xu, Hongsheng; Wei, Chang; Li, Cunxiong; Deng, Zhigan; Li, Minting; Li, Xingbin

    2014-10-01

    The dissolution kinetics of hemimorphite with low sulfuric acid solution was investigated at high temperature. The dissolution rate of zinc was obtained as a function of dissolution time under the experimental conditions where the effects of sulfuric acid concentration, temperature, and particle size were studied. The results showed that zinc extraction increased with an increase in temperature and sulfuric acid concentration and with a decrease in particle size. A mathematical model able to describe the process kinetics was developed from the shrinking core model, considering the change of the sulfuric acid concentration during dissolution. It was found that the dissolution process followed a shrinking core model with "ash" layer diffusion as the main rate-controlling step. This finding was supported with a linear relationship between the apparent rate constant and the reciprocal of squared particle radius. The reaction order with respect to sulfuric acid concentration was determined to be 0.7993. The apparent activation energy for the dissolution process was determined to be 44.9 kJ/mol in the temperature range of 373 K to 413 K (100 °C to 140 °C). Based on the shrinking core model, the following equation was established:

  1. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-print Network

    Wrathall, J.

    2013-01-01

    2 absorption by unaltered coal ash and by pure coal mineralsash itself. Because theproject involves the addition of alkali to coal,coal burning furnaces has shown that the alkali content of the coalis an important factor in the build-up of ash

  2. Plant betterment for an anthracite-burning utility in Ukraine: Coal preparation as part of a SO{sub 2}, NO{sub x}, and particulate emission control strategy

    SciTech Connect

    Ruether, J.A.; Freeman, M.C. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Gollakota, S.V. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

    1997-12-31

    Workers at the Energy Departments of the US and Ukraine have cooperatively devised a strategy for upgrading performance of a 200 MWe wet bottom pulverized coal boiler in eastern Ukraine at the Lugansk GRES power station. The plant currently burns poor quality anthracite (30% ash versus 18% ash design coal, as-received basis) and is in need of maintenance. Oil or gas support fuel in the amount of 30% (calorific basis) is required to stabilize the flame and supplement the calorific value of the coal feed. No NO{sub x} or SO{sub 2} controls are used at present, and unburned carbon content in the fly ash is high. An experimental program was carried out at the Federal Energy Technology Center (FETC) to estimate the improvement in plant performance that could be expected if the unit is supplied with design coal and is refurbished. High ash Ukrainian anthracite was cleaned to design specifications. Raw and cleaned coal were fed to a 490 MJ/h coal feed combustion unit at a number of conditions of support fuel use and ingress air leakage designed to simulate current and improved operations at the power plant. The results indicate the improvement in performance and reductions in SO{sub 2} and NO{sub x} emissions that can be expected as a result of the planned upgrade and conversion to use of cleaned coal. A detailed engineering and financial analysis indicates that plant rehabilitation combined with the use of cleaned schtib reduces not only pollutant emissions but also cost of electricity (COE). Additional benefits include increased plant life and capacity, and reduced supplementary fuel consumption.

  3. Wilsonville Advanced Coal-Liquefaction Research and Development Facility, Wilsonville, Alabama. Topical report No. 5. 6000 TPD SRC-I demonstration plant support

    SciTech Connect

    Not Available

    1983-08-01

    Initially, the Wilsonville facility consisted of a single stage (thermal) process, also known as the SRC-I process. The original plant has been expanded to become an advanced two-stage coal liquefaction facility. A Critical Solvent Deashing (CDS) unit was installed in 1978 and a second stage catalytic hydrogenation (HTR) unit was installed in 1981. The principal product of the first stage is a low sulfur solid fuel. The reaction product is deashed by the CSD unit using a proprietary process developed by the Kerr-McGee Corporation. The hydrotreater, or the second stage, was installed primarily for further enhancement of product properties, process flexibility, and overall hydrogen utilization efficiency. In the decoupled mode of operation, the HTR unit has no direct effect on the SRC unit. This operating mode is called the non-integrated two-stage liquefaction (NTSL) process. From 17 October 1981 to 14 October 1982, the Advanced Coal Liquefaction R and D Facility at Wilsonville, Alabama, was operated partly in support of the 6000 TPD-I demonstration plant design effort undertaken by ICRC. The ICRC support tests and operations performed were: Run 235 with Kentucky 9 (Fies) coal; Run 240 with Illinois 6 (Burning Star) coal; CSD unit second stage variability study; CSD unit continuous ash removal system study; SRC solidification test; wastewater sampling operation; and residual fuel oil blending operation.

  4. JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING

    SciTech Connect

    John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

    2003-10-01

    The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite-based activated (800 C, 1472 F) carbons required a shorter (15-minute) conditioning period in the simulated lignite flue gas and captured gaseous mercury more effectively than those activated at 750 C (1382 F). Subsequent tests with higher acid gas concentrations including 50 ppm HCl showed no early mercury breakthrough for either the activated (750 C, 1382 F) Bienfait carbon or the DARCO FGD. Although these high acid gas tests yielded better mercury capture initially, significant breakthrough of mercury ultimately occurred sooner than during the simulated lignite flue gas tests. The steam-activated char, provided by Luscar Ltd., and DARCO FGD, provided by NORIT Americas, were evaluated for mercury removal potential in a 580 MJ/hr (550,000-Btu/hr) pilot-scale coal combustion system equipped with four particulate control devices: (1) an electrostatic precipitator (ESP), (2) a fabric filter (FF), (3) the Advanced Hybrid{trademark} filter, and (4) an ESP and FF in series, an EPRI-patented TOXECON{trademark} technology. The Ontario Hydro method and continuous mercury monitors were used to measure mercury species concentrations at the inlet and outlet of the control technology devices with and without sorbent injection. Primarily Hg{sup o} was measured when lignite coals from the Poplar River Plant and Freedom Mine were combusted. The effects of activated Luscar char, DARCO FGD, injection rates, particle size, and gas temperature on mercury removal were evaluated for each of the four particulate control device options. Increasing injection rates and decreasing gas temperatures generally promoted mercury capture in all four control devices. Relative to data reported for bituminous and subbituminous coal combustion flue gases, higher sorbent injection rates were generally required for the lignite coal to effectively remove mercury. Documented results in this report provide the impacts of these and other parameters and provide the inputs needed to direct Phase II of the project.

  5. Reducing the moisture content of clean coals

    Microsoft Academic Search

    Kehoe

    1992-01-01

    Coal moisture content can profoundly effect the cost of burning coal in utility boilers. Because of the large effect of coal moisture, the Empire State Electric Energy Research Corporation (ESEERCO) contracted with the Electric Power Research Institute to investigate advanced coal dewatering methods at its Coal Quality Development Center. This report contains the test result on the high-G solid-bowl centrifuge,

  6. Near-frictionless carbon coatings for use in fuel injectors and pump systems operating with low-sulfur diesel fuels

    SciTech Connect

    Erdemir, A.; Ozturk, O.; Alzoubi, M.; Woodford, J.; Ajayi, L.; Fenske, G.

    2000-01-19

    While sulfur in diesel fuels helps reduce friction and prevents wear and galling in fuel pump and injector systems, it also creates environmental pollution in the form of hazardous particulates and SO{sub 2} emissions. The environmental concern is the driving force behind industry's efforts to come up with new alternative approaches to this problem. One such approach is to replace sulfur in diesel fuels with other chemicals that would maintain the antifriction and antiwear properties provided by sulfur in diesel fuels while at the same time reducing particulate emissions. A second alternative might be to surface-treat fuel injection parts (i.e., nitriding, carburizing, or coating the surfaces) to reduce or eliminate failures associated with the use of low-sulfur diesel fuels. This research explores the potential usefulness of a near-frictionless carbon (NFC) film developed at Argonne National Laboratory in alleviating the aforementioned problems. The lubricity of various diesel fuels (i.e., high-sulfur, 500 ppm; low sulfur, 140 ppm; ultra-clean, 3 ppm; and synthetic diesel or Fischer-Tropsch, zero sulfur) were tested by using both uncoated and NFC-coated 52100 steel specimens in a ball-on-three-disks and a high-frequency reciprocating wear-test rig. The test program was expanded to include some gasoline fuels as well (i.e., regular gasoline and indolene) to further substantiate the usefulness of the NFC coatings in low-sulfur gasoline environments. The results showed that the NFC coating was extremely effective in reducing wear and providing lubricity in low-sulfur or sulfur-free diesel and gasoline fuels. Specifically, depending on the wear test rig, test pair, and test media, the NFC films were able to reduce wear rates of balls and flats by factors of 8 to 83. These remarkable reductions in wear rates raise the prospect for using the ultra slick carbon coatings to alleviate problems that will be caused by the use of low sulfur diesel and gasoline fuels. Surfaces of the wear scars and tracks were characterized by optical and scanning electron microscopy, and by Raman spectroscopy.

  7. Coal quality controls of the Danville coal in Indiana (Illinois Basin, Central USA)

    USGS Publications Warehouse

    Mastalerz, Maria; Padgett, P.L.

    2002-01-01

    The Danville Coal Member (Dugger Formation, upper Desmoinesian, Pennsylvanian) is a significant economic coal resource in the Illinois Basin, central USA. Deposition of the Danville Coal (peat) was in coastal environments, varying distances from the coastline and, in turn, variable influences from saline waters. The purpose of this study is to examine the coal quality and petrography of the Danville Coal; and to discuss their relationship with depositional environment as it relates to the final coal product. A medium sulfur (1.0-1.5 wt.%) Danville Coal reserve area (northern Indiana coalfield) was compared to a low sulfur (3 m) of finer-grained clastic sediments atop the Danville, the sulfur and trace elements contents are significantly lower. ?? 2002 Elsevier Science B.V. All rights reserved.

  8. Fire-hazard control during coal handling

    SciTech Connect

    McGraw, M.G.

    1984-03-01

    The potential for serious power plant fires and explosions is growing along with the increased use of volatile, low-sulfur coal use and environmental regulations requiring closed conveyor systems for handling coal. The volume of coal handled and the range of physical characteristics in different coals intensifies the problem. Western coal produces more dust because it is more friable than eastern coal and is more prone to sponaneous combustion. Closed storage and handling systems increase the hazards of methane and carbon monoxide. The article described prevention, detection, and firefighting techniques, and notes that a variety of systems is needed to cover all the hazards. Human behavior and coordination are also essential ingredients. ll figures.

  9. High gradient magnetic beneficiation of dry pulverized coal via upwardly directed recirculating fluidization

    DOEpatents

    Eissenberg, David M. (Oak Ridge, TN); Liu, Yin-An (Opelika, AL)

    1980-01-01

    This invention relates to an improved device and method for the high gradient magnetic beneficiation of dry pulverized coal, for the purpose of removing sulfur and ash from the coal whereby the product is a dry environmentally acceptable, low-sulfur fuel. The process involves upwardly directed recirculating air fluidization of selectively sized powdered coal in a separator having sections of increasing diameters in the direction of air flow, with magnetic field and flow rates chosen for optimum separations depending upon particulate size.

  10. SULFUR CONTENT OF THE COAL RESOURCES OF THE UNITED STATES: CURRENT STATUS.

    USGS Publications Warehouse

    Cecil, C.B.; Dulong, F.T.

    1986-01-01

    The sulfur content of United States coal can be assessed using a variety of approaches. The sulfur content may be expressed in terms of total sulfur in the coal, pounds of sulfur per million Btu, or sulfur remaining after reduction by coal preparation. In addition, sulfur content may be applied to the demonstrated reserve base or to coal resource estimates. Unfortunately, current data bases do not allow for an integrated assessment at the national level. Although classification of coal resources and reserves according to sulfur content is arbitrary, preferential production of low-sulfur reserves will positively skew the total sulfur of the remaining coal resource.

  11. New Coal Standards.

    ERIC Educational Resources Information Center

    Heritage, John

    1979-01-01

    Tighter federal air pollution control standards for new coal-burning electric power plants have been issued. Through use of air pollution control devices all types of coal will be useable under the new standards. Even stricter standards may be imposed where visibility may be affected in areas now enjoying very clean air. (RE)

  12. [Emission of polycyclic aromatic hydrocarbons, benzene and other pollutants during the burning of anthracite nut and brown coal briquettes in a room heater].

    PubMed

    Herlan, A; Mayer, J

    1983-06-01

    After the measurements of emissions from an oil oven and a gas oven (2) the investigation on room heaters was continued with a coal oven. This oven had a nominal power of 7 kW. The following pollutants were measured: polycyclic aromatics, benzene, the total gaseous hydrocarbons, soot/fly ash and NOx. Studies were made with anthrazit-nut brown-coal briquettes. Investigations and results are described in a research report (3). This paper presents a summary of the research report. The emissions of almost all measured pollutants were essential larger at the coal oven than those from the oil and the gas oven. PMID:6670405

  13. Field evaluation of coal fired utility boiler NO sub x and SO sub x emissions control by gas reburning - sorbent injection

    Microsoft Academic Search

    L. P. Nelson; W. Bartok; B. A. Folsom; R. Payne; D. Moyeda; G. Farthing

    1988-01-01

    The authors maintain that proposed legislation to reduce the emission of acid rain precursors would: increase the cost of power due to the addition of air pollution control devices; and increase the use of low sulfur coals, thereby reducing the demand for high and medium sulfur content coals. Consequently, there is a need for a low cost, retrofit acid rain

  14. PILOT-SCALE STUDY OF THE EFFECT OF SELECTIVE CATALYTIC REDUCTION CATALYST ON MERCURY SPECIATION IN ILLINOIS AND POWDER RIVER BASIN COAL COMBUSTION FLUE GASES

    EPA Science Inventory

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...

  15. Tests to produce and recover carbon dioxide by burning coal in oxygen and recycled flue gas: Black Hills Power and Light Company Customer Service Center Boiler No. 2, Rapid City, South Dakota

    SciTech Connect

    Kumar, R.; Fuller, T.; Kocourek, R.; Teats, G.; Young, J.; Myles, K.; Wolsky, A.

    1987-12-01

    Experiments were conducted using a modified stoker-fired boiler (2.2 x 10/sup 6/ Btu/h) instrumented to examine the feasibility of producing and recovering carbon dioxide by burning coal in oxygen and recycled flue gas in a utility environment. The tests demonstrated that the boiler can be operated in the oxygen-blown/flue-gas-recirculation mode without any noticeable effects on coal combustion, heat delivery to the water, or the coal-feed or ash-handling systems. Pretest calculations showed that a feasible set of operating parameters for a carbon-dioxide-producing combustor system tightly sealed against air infiltration and containing no more than about 5% O/sub 2/ (dry basis) at the furnace exit would be a flue-gas recycling ratio between 0.6 and 0.7 and an oxygen feed rate of 1.17 g-moles per g-atom of carbon, yielding an exhaust gas composition (wet basis) of approximately 46.9% CO/sub 2/, 50.6% H/sub 2/O, and 2.5% O/sub 2/. This composition corresponds to a product gas containing 95% CO/sub 2/ and 5% O/sub 2/ (dry basis). However, because air leaked into the test combustor and the flue-gas handling system, the highest carbon dioxide concentration achieved in the exhaust gas was 48.5% (dry basis). Major sources of inleakage were the furnace brickwork, the gas-handling system, and the coal-feed and ash-extraction systems. 40 figs.

  16. Controlled Burn

    USGS Multimedia Gallery

    GULF OF MEXICO — Dark clouds of smoke and fire emerge as oil burns during a controlled burn in the Gulf of Mexico. The U.S. Coast Guard working in partnership with BP PLC, local residents, and other Federal agencies conducted the controlled burn to aid in preventing the spread of oil following...

  17. Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase

    E-print Network

    Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil-caused CO2 emissions and to remove CO2 from the atmosphere. 2.0 What is carbon sequestration? The term "carbon sequestration" is used to describe both natural and deliberate CARBON,INGIGATONSPERYEAR 1.5 Fossil

  18. Chemical burns

    PubMed Central

    Cartotto, Robert C.; Peters, Walter J.; Neligan, Peter C.; Douglas, Leith G.; Beeston, Jeff

    1996-01-01

    Objectives To report a burn unit’s experience with chemical burns and to discuss the fundamental principles in managing chemical burns. Design A chart review. Setting A burn centre at a major university-affiliated hospital. Patients Twenty-four patients with chemical burns, representing 2.6% of all burn admissions over an 8-year period at the Ross Tilley Regional Adult Burn Centre. Seventy-five percent of the burn injuries were work-related accidents. Chemicals involved included hydrofluoric acid, sulfuric acid, black liquor, various lyes, potassium permanganate and phenol. Results Fourteen patients required excision and skin grafting. Complications were frequent and included ocular chemical contacts, wound infections, tendon exposures, toe amputation and systemic reactions from absorption of chemical. One patient died from a chemical scald burn to 98% of the body surface area. Conclusions The key principles in the management of chemical burns include removal of the chemical, copious irrigation, limited use of antidotes, correct estimation of the extent of injury, identification of systemic toxicity, treatment of ocular contacts and management of chemical inhalation injury. Individualized treatment is emphasized. PMID:8640619

  19. INCIDENCE AND IMPACT OF AXIAL MALFORMATIONS IN LARVAL BULLFROGS (RANA CATESBEIANA) DEVELOPING IN SITES POLLUTED BY A COAL-BURNING POWER PLANT

    Microsoft Academic Search

    William A. Hopkins; Justin Congdon; John K. Ray

    2000-01-01

    Amphibian malformations have recently received much attention from the scientific community, but few studies have provided evidence linking environmental pollution to larval amphibian malformations in the field. We document an increased incidence of axial malformations in bullfrog larvae (Rana catesbeiana) inhabiting two sites contaminated with coal combustion wastes. In the polluted sites, 18 and 37% of larvae exhibited lateral curvatures

  20. University of Minnesota Energy Production Frequently Asked Questions

    E-print Network

    Gulliver, Robert

    . It is low sulfur sub bituminous coal. We do not use "hill top" mined coal. Why not just quit using coal permit forbids us from burning more than 30% coal and/or fuel oil. In addition we are also permitted to burn oat hulls and wood. The U has dramatically lowered our use of coal. In the late 1990's coal

  1. Biodiesel production using alkaline ionic liquid and adopted as lubricity additive for low-sulfur diesel fuel.

    PubMed

    Luo, Hui; Fan, Weiyu; Li, Yang; Nan, Guozhi

    2013-07-01

    Preparation of biodiesel from vegetable oils, such as rapeseed oil, soybean oil and sunflower oil, catalyzed by an alkaline ionic liquid 1-butyl-3-methylimidazolium imidazolide ([Bmim]Im) was investigated in this work. The results demonstrated that [Bmim]Im exhibited high activity and the yield of biodiesel was up to 95% or more when molar ratio of methanol to vegetable oil was 6:1, ionic liquid dosage was 6 wt.%, reaction temperature was 60°C, and reaction time was 60 min. After [Bmim]Im was used for the sixth time, the yield of biodiesel still remained at about 95%. The effects of the biodiesels on the lubricity of low-sulfur diesel fuel were also investigated using the High Frequency Reciprocating Rig method, and the results showed that sunflower biodiesel and soybean biodiesel had higher lubrication performance than that of rapeseed biodiesel. PMID:23708846

  2. Coal-fired power generaion, new air quality regulations, and future U.S. coal production

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1999-01-01

    Tighter new regulation of stack gas emissions and competition in power generation are driving electrical utilities to demand cleaner, lower sulfur coal. Historical data on sulfur content of produced coals shows little variability in coal quality for individual mines and individual coal-producing counties over relatively long periods of time. If coal-using power generators follow the compliance patterns established in Phase I of the 1990 Clean Air Act Amendments, then the industry's response to the tighter Phase II emissions standards will result in large amounts of coal production shifting from higher sulfur areas to areas with lower cost low sulfur coal. One reason this shift will likely occur is that currently only 30% of U.S. coal-fired electrical generating capacity is equipped with flue-gas scrubbers. In 1995, coal mines in the higher sulfur areas of the Illinois Basin and Northern and Central Appalachia employed 78% of all coal miners (>70,000 miners). A substantial geographical redistribution of the nation's coal supplies will likely lead to economic dislocations that will reach beyond local coal-producing areas.

  3. A laboratory assessment of the slagging propensity of blended coals

    Microsoft Academic Search

    N. J. Manton; J. Williamson; G. S. Riley

    1996-01-01

    This paper presents the results of an experimental study to assess the stagging propensity of blends of UK coals with world traded coals when burned under low NOx conditions. Coals ground to pulverised coal grade were blended in a laboratory mixer. Ash deposits were formed by passing the coals through an entrained flow reactor designed to simulate the time-temperature conditions

  4. Coal cleaning test facility campaign report No. 2: Robinson seam subbituminous coal

    Microsoft Academic Search

    J. W. Parkinson; E. R. Torak

    1985-01-01

    Campaign Report No. 2, issued by EPRI's Coal Cleaning Test Facility (CCTF), presents the cleanability characteristics of Robinson Seam coal. In May, 1983, Central Illinois Light Company (CILCO) donated 300 tons of this Montana subbituminous coal to EPRI. CILCO was burning uncleaned Robinson Seam coal at their E.D. Edwards Station to comply with an Illinois state SOâ emission limit of

  5. Kinetic studies of pyrolysis and combustion of Thar coal by thermogravimetry and chemometric data analysis

    Microsoft Academic Search

    Anila Sarwar; M. Nasiruddin Khan; Kaniz Fizza Azhar

    The concept of weighted mean activation energy has been used to assess the reactivity of Thar coal in terms of pyrolytic and\\u000a combustion behavior using non-isothermal thermogravimetry. The samples were characterized as low sulfur and high volatile\\u000a lignite to subbituminous coal. Modified Coats–Redfern method was applied to analyze the kinetic data of both processes. Thermal\\u000a degradation of the samples studied

  6. Environmental Impacts of Acid Leachate Derived from Coal-Storage Piles upon Groundwater

    Microsoft Academic Search

    Angie M. Cook; Steven J. Fritz

    2002-01-01

    Leachate emanating from a coal-storage area at an electricutility plant in Northwest Indiana (U.S.A.) is impacting groundwater quality. This assessment is based on results of along-term groundwater monitoring program conducted at Purdue University's Wade Utility Plant where a monthly average of 32,000metric tons of both high- and low-sulfur coal are stored. Groundwater from both a perched and major aquifer (the

  7. Incidence and impact of axial malformations in larval bullfrogs (Rana catesbeiana) developing in sites polluted by a coal-burning power plant

    SciTech Connect

    Hopkins, W.A.; Congdon, J.; Ray, J.K.

    2000-04-01

    Amphibian malformations have recently received much attention from the scientific community, but few studies have provided evidence linking environmental pollution to larval amphibian malformations in the field. The authors document an increased incidence of axial malformations in bullfrog larvae (Rana catesbeiana) inhabiting two sites contaminated with coal combustion wastes. In the polluted sites, 18 and 37% of larvae exhibited lateral curvatures of the spine, whereas zero and 4% of larvae from two reference sites had similar malformations. Larvae from the most heavily polluted site had significantly higher tissue concentrations of potentially toxic trace elements, including As, Cd, Se, Cu, Cr, and V, compared with conspecifics from the reference sites. In addition, malformed larvae from the cost contaminated site had decreased swimming speeds compared with those of normal larvae from the same site. The authors hypothesize that the complex mixture of contaminants produced by coal combustion is responsible for the high incidence of malformations and associated effects on swimming performance.

  8. Overburden characterization and post-burn study of the North Knobs steeply dipping bed underground coal gasification (SDB-UCG) site, Rawlins, Wyoming

    Microsoft Academic Search

    F. G. Ethridge; A. M. Saracino; L. K. Burns; T. R. Marks; A. D. Youngberg

    1983-01-01

    The encompassing sandstones, siltstones, shales and thin conglomerates of the gasified G Coal seam at the North Knobs SDB-UCG site were deposited mainly in fluvial and poorly-drained swamp environments. These beds dip at 65° at the North Knobs site. Thin section and SEM analyses of the sandstones and coarse siltstones show that they are sublithic to subarkosic arenites cemented with

  9. MERCURY OXIDATION PROMOTED BY A SELECTIVE CATALYTIC REDUCTION CATALYST UNDER SIMULATED POWDER RIVER BASIN COAL COMBUSTION CONDITIONS

    EPA Science Inventory

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...

  10. IDENTIFICATION AND EMISSION RATES OF MOLECULAR TRACERS IN COAL SMOKE PARTICULATE MATTER. (R823990)

    EPA Science Inventory

    The abundances and distributions of organic constituents in coal smoke particulate matter are dependent on thermal combustion temperature, ventilation, burn time, and coal rank (geologic maturity). Important coal rank indicators from smoke include (1) the decreases in CPIs of ...

  11. Emissions of particulate-bound elements from biodiesel and ultra low sulfur diesel: size distribution and risk assessment.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2013-01-01

    Use of waste cooking oil derived biodiesel (WCOB) as an alternative fuel in diesel engines has increased significantly in recent years. The impact of WCOB on particulate emissions from diesel engines needs to be investigated thoroughly. This study was conducted to make a comparative evaluation and size-differentiated speciation of the particulate bound elements from ultra low sulfur diesel (ULSD) and WCOB and a blend of both of the fuels (B50). Particle mass and their elemental size distributions ranging from 0.01-5.6 ?m were measured. It was observed that more ultrafine particles (UFPs, <100 nm) were emitted when the engine was fueled with WCOB. Fifteen particulate-bound elements such as K, Al, Mg, Co, Cr, Cu, Fe, Mn, Cd, Ni, As, Ba, Pb, Zn and Sr were investigated and reported in this study. Potential health risk associated with these particulate bound elements upon inhalation was also evaluated based on dose-response assessments for both adults and children. The findings indicate that the exposure to PM of the B100 exhaust is relatively more hazardous and may pose adverse health effects compared to that of ULSD. Also, investigations on human health risk due to exposure to UFPs indicate that UFPs contribute a major fraction (>70%) of the total estimated health risk. PMID:22925425

  12. UCG (underground coal gasification) contaminant control program: simulation of post-burn UCG contaminant production. Final report, October 1986-September 1987

    SciTech Connect

    Boysen, J.E.; Mones, C.G.; Covell, J.M.; Sullivan, S.; Glaser, R.R.

    1988-03-01

    This report presents the results of laboratory and modeling research directed towards minimizing the adverse impact of UCG on local ground-water quality. The Clean Cavern Concept was investigated using laboratory reactor simulations. Operating recommendations for UCG field testing were made based upon the results of the laboratory and numerical analyses of the simulations. The results of the research indicate that the adverse impact of UCG on local ground-water quality can be substantially reduced by following simple low-cost operating procedures when gasification of the coal has ended and by minimizing gas lost during gasification. Steam flushing of the hot UCG cavity immediately after gasification and sustained venting of the UCG cavity as it cools are the operating procedures recommended.

  13. Burning issues

    SciTech Connect

    Raloff, J.

    1993-10-02

    The idea of burning oil slicks at sea has intrigued oil-cleanup managers for more than a decade, but it wasn't until the advent of fireproof booms in the mid-1980's and a major spill opportunity (the March 1989 Exxon Valdez) that in-situ burning got a real sea trial. The results of this and other burning experiments indicate that, when conditions allow it, nothing can compete with fire's ability to remove oil from water. Burns have the potential to remove as much oil in one day as mechanical devices can in one month, along with minimal equipment, labor and cost. Reluctance to burn in appropriate situations comes primarily from the formation of oily, black smoke. Analysis of the potentially toxic gases have been done, indicating that burning will not increase the levels of polluting aldehydes, ketones, dioxins, furans, and PAHs above those that normally evaporate from spilled oil. This article contains descriptions of planned oil fires and the discussion on the advantages and concerns of such a policy.

  14. Decadal emission estimates of carbon dioxide, sulfur dioxide, and nitric oxide emissions from coal burning in electric power generation plants in India.

    PubMed

    Mittal, Moti L; Sharma, Chhemendra; Singh, Richa

    2014-10-01

    This study aims to estimate the emissions of carbon dioxide (CO?), sulfur dioxide (SO?), and nitric oxide (NO) for coal combustion in thermal power plants in India using plant-specific emission factors during the period of 2001/02 to 2009/10. The mass emission factors have been theoretically calculated using the basic principles of combustion under representative prevailing operating conditions in the plants and fuel composition. The results show that from 2001/02 to 2009/10 period, total CO? emissions have increased from 324 to 499 Mt/year; SO? emissions have increased from 2,519 to 3,840 kt/year; and NO emissions have increased from 948 to 1,539 kt/year from the Indian coal-fired power plants. National average emissions per unit of electricity from the power plants do not show a noticeable improvement during this period. Emission efficiencies for new plants that use improved technology are found to be better than those of old plants. As per these estimates, the national average of CO? emissions per unit of electricity varies between 0.91 and 0.95 kg/kWh while SO? and NO emissions vary in the range of 6.9 to 7.3 and 2.8 to 2.9 g/kWh, respectively. Yamunagar plant in Haryana state showed the highest emission efficiencies with CO? emissions as 0.58 kg/kWh, SO? emissions as 3.87 g/kWh, and NO emissions as 1.78 g/kWh, while the Faridabad plant has the lowest emission efficiencies with CO? emissions as 1.5 kg/kWh, SO? emissions as 10.56 g/kWh, and NO emissions as 4.85 g/kWh. Emission values at other plants vary between the values of these two plants. PMID:25004854

  15. SOURCE ASSESSMENT: RESIDENTIAL COMBUSTION OF COAL

    EPA Science Inventory

    The report summarizes the assessment of air emissions from the residential combustion of anthracite, bituminous, and lignite coals, with emphasis on bituminous coals. Approximately 2.6 million metric tons of coal were burned as a primary source of heat in an estimated 493,018 hou...

  16. Dry superconducting magnetic cleaning of pulverized coal

    Microsoft Academic Search

    S. Zhou; E. S. Garbett; R. F. Boucher

    1996-01-01

    There are wet and dry methods of cleaning pulverized coal for thermal power stations. However, it may be desirable to use a dry process because dewatering finely pulverized coal is difficult and expensive, and burning wet coal reduces the thermal efficiency of the combustion process. It has been shown that high gradient magnetic filters can be constructed which will extract

  17. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1992-09-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  18. A pulverized coal fuel injector

    SciTech Connect

    Rini, M.J.; Towle, D.P.

    1991-12-31

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO{sub 2} formation.

  19. Myeloperoxidase activity and its corresponding mRNA expression as well as gene polymorphism in the population living in the coal-burning endemic fluorosis area in Guizhou of China.

    PubMed

    Zhang, Ting; Shan, Ke-Ren; Tu, Xi; He, Yan; Pei, Jin-Jing; Guan, Zhi-Zhong

    2013-06-01

    The myeloperoxidase (MPO) activity and its corresponding mRNA expression as well as gene polymorphism were investigated in the population who live in the endemic fluorosis area. In the study, 150 people were selected from the coal-burning endemic fluorosis area and 150 normal persons from the non-fluorosis area in Guizhou province of China. The blood samples were collected from these people. The activity of MPO in the plasma was determined by spectrophotometer; the expression of MPO mRNA was measured by employing real-time polymerase chain reaction; DNAs were extracted from the leucocytes in blood and five SNP genotypes of MPO promoter gene detected by a multiplex genotyping method, adapter-ligation-mediated allele-specific amplification. The results showed that the MPO activity and its corresponding mRNA in blood were significantly increased in the population living in the area of fluorosis. The different genotype frequencies of MPO, including -1228G/A, -585T/C, -463G/A, and -163C/T, and the three haplotypes with higher frequencies, including -163C-463G-585T-1228G-1276T, -163C-463G-585T-1228G-1276C, and -163C-463G-585T-1228A-1276T, were significantly associated with fluorosis. The results indicated that the elevated activity of MPO induced by endemic fluorosis may be connected in mechanism to the stimulated expression of MPO mRNA and the changed gene polymorphism. PMID:23436245

  20. Process for coal liquefaction in staged dissolvers

    DOEpatents

    Roberts, George W. (Emmaus, PA); Givens, Edwin N. (Bethlehem, PA); Skinner, Ronald W. (Allentown, PA)

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

  1. Flow Calorimetric Comparison of the AcidBase Bonding in the Outer Surface and Subsurface Regions of Coal

    Microsoft Academic Search

    KENNETH L. JONES

    1992-01-01

    A flow calorimetric method was developed for comparing the strength and\\/or extent of acid-base bonding in the outer surface and subsurface regions of fine coal particles. This method was applied to an ultrafine sample of a low-sulfur, low-ash bituminous coal. Information about the acid-base bonding in the outer surface region of the fine particles was deduced from heats of interaction

  2. Coal deposits of the United States

    USGS Publications Warehouse

    John, Nelson W.

    1987-01-01

    The coal fields of the Unites States can be divided into six major provinces. The Appalachian and Interior Provinces contain dominantly bituminous coal in strata of Pennsylvanian age. The coal seams are relatively thin and are mined both by surface and underground methods. Sulfyur content is low to moderate in the Appalachian Province, generally high in the Interior province. The Gulf Coastal Plain Province, in Texas and neighboring states, contains lignite of Eocene age. The seams are 3-25 ft (0.9-7.5 m) thick and are minded in large open pits. The Northern Great Plains Province has lignite and subbituminous coal of Cretaceous, Paleocene and Eocene age. The coal, largely very low in sulfur, occurs in beds up to 100 ft (30 m) thick and is strip-mined. The Rocky Mountain Province contains a great variety of coal deposits in numerous separate intermontane basins. Most of it is low-sulfur subbituminous to bituminous coal iof Creatceous and early Tertiary age. The seams range from a few feet to over 100 ft (30 m) thick. Strip-mining dominates but underground mines are important in Utah and Colorado. The Pacific Coast Province, which includes Alaska, contains enormous cola resources but has seen little mining. The coal is highly diverse in physical character and geologic setting. ?? 1987.

  3. Ash characterization in laboratory-scale oxy-coal combustor

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing technology. During oxy-coal combustion, combustion air is separated and the coal is burned in a mixture of oxygen and recycled flue gas. The resulting effluent must be further processed before the C02 can be compressed, t...

  4. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    B.K. PAREKH; D. TAO; J.G. GROPPO

    1998-02-03

    The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean-coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high-sulfur and low-sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals.

  5. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  6. Coal Mining on Pitching Seams

    E-print Network

    Brown, George MacMillan

    1915-01-01

    Alester coal is a good coking coal and coke ovens were operated extensively at Krebs and Alderson. The coke wan snipped to old Mexico chiefly, but exportation wan stopped by a heavy duty imposed. Since then no coke nus been made in this l ield , except... at the plant of the McAlester Gas and Coke Company. In general I believe the Hartshorne coal is considered best for steam purposes, because it does not burn so freely as the KcAlesrter coal. The United States 9 geological survey (a ) give* the following...

  7. Burn Resuscitation

    PubMed Central

    2011-01-01

    Fluid resuscitation following burn injury must support organ perfusion with the least amount of fluid necessary and the least physiological cost. Under resuscitation may lead to organ failure and death. With adoption of weight and injury size-based formulas for resuscitation, multiple organ dysfunction and inadequate resuscitation have become uncommon. Instead, administration of fluid volumes well in excess of historic guidelines has been reported. A number of strategies including greater use of colloids and vasoactive drugs are now under investigation to optimize preservation of end organ function while avoiding complications which can include respiratory failure and compartment syndromes. Adjuncts to resuscitation, such as antioxidants, are also being investigated along with parameters beyond urine output and vital signs to identify endpoints of therapy. Here we briefly review the state-of-the-art and provide a sample of protocols now under investigation in North American burn centers. PMID:22078326

  8. Burn Trauma

    Microsoft Academic Search

    J. Brian Boyd

    \\u000a Burn trauma is still a significant cause of morbidity and mortality in the United States. It causes a spectrum of disability\\u000a and deformity primarily by damaging the integumentary system of its victims. However, it is the systemic effects caused by\\u000a sepsis, fluid and electrolyte imbalance, shock, inhalation injury and myone-crosis that are the usual agents of death. Patients\\u000a must be

  9. Sandal burns and their treatment in children.

    PubMed

    Shakirov, Babur M

    2004-01-01

    Sandal is an ancient, primitive heating device that is still in use by both poor and rich people in mountain areas of Middle Asia. Sandal burn injuries are a serious health problem. Characteristics of sandal burns include not only skin injuries of various depths but also injuries to underlying tissues: subcutaneous fat, fasciae, muscles, and even bones. Sandal burns are characterized by such severe deep injuries because of a close contact of the body with live coals or woods. The main goal of this work was to present the most complete information about sandal burns and discuss the most effective methods of treatment for sandal burns. This treatment is used to accelerate the rejection of necrotic tissue, to prepare the wound for early autodermoplastic surgery, to decrease the postburn contractures/deformities, and also to shorten hospital stay for the patients. PMID:15534459

  10. Teen Maps Contaminants from a Coal Plant

    NSDL National Science Digital Library

    WGBH Educational Foundation

    2011-03-21

    In this video adapted from Earth Island Institute, meet a high school student who educated her community about how a coal-burning power plant was contributing to asthma and other health problems there.

  11. COAL COMBUSTION RESIDUES AND MERCURY CONTROL9

    Microsoft Academic Search

    Susan Thorneloe

    The burning of coal in electric utility boilers generates residual materials including fly ash, bottom ash, boiler slag, and wet flue gas desulfurization (FGD) scrubber sludge\\/solids. These residual materials are collectively referred to as \\

  12. Postburn roof stability analysis for the TONO CRIP UCG burn

    Microsoft Academic Search

    L. M. Taylor; H. J. Sutherland; J. S. Kuszmaul

    1985-01-01

    During the Ninth Annual Underground Coal Gasification Symposium, Sutherland, Hommert, Taylor, and Benzley presented a preburn prediction for the burn, roof fall and surface subsidence for the TONO CRIP UCG site in Washington state. That burn has now been completed and postburn measurements of cavity sizes have become available. In this manuscript we show that the preburn predictions are, in

  13. Postburn roof stability analysis for the TONO CRIP UCG burn

    Microsoft Academic Search

    L. M. Taylor; H. J. Sutherland; J. S. Kuszmaul

    1986-01-01

    During the Ninth Annual Underground Coal Gasification Symposium, Sutherland, Hommert, Taylor, and Benzley presented a preburn prediction for the burn, roof fall and surface subsidence for the TONO CRIP UCG site in Washington state. That burn has now been completed and postburn measurements of cavity sizes have become available. In this manuscript the authors show that the preburn predictions are,

  14. University of Iowa : burn oat hulls for economic, environmental benefit

    NSDL National Science Digital Library

    Iowa Public Television. Explore More Project

    2004-01-01

    What is an alternative energy source that is available today? This article, part of a series about the future of energy, introduces students to a pilot project of burning oat hulls at the University of Iowa power plant. Students read that the burning of oak hulls instead of coal provides for cleaner air and additional space in landfills. Copyright 2005 Eisenhower National Clearinghouse

  15. ENCOAL mild coal gasification project. Annual report

    SciTech Connect

    Not Available

    1993-10-01

    This document is the combination of the fourth quarter report (July--September 1993) and the 1993 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, has completed the construction of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). ENCOAL submitted an application to the US Department of Energy (DOE) in August 1989, soliciting joint funding of the project in the third round of the Clean Coal Technology Program. The project was selected by DOE in December, 1989 and the Cooperative Agreement approved in September, 1990. Construction, commissioning, and start-up of the ENCOAL mild coal gasification facility was completed in June of 1992, and the project is currently in the operations phase. Some plant modifications have been required and are discussed in this report.

  16. US coal industry: the economics of policy choice. [USA; 1946 to 1974; major uses

    Microsoft Academic Search

    1981-01-01

    The main supply and demand influences shaping the US coal industry can be viewed as in a tug-of-war. A set of forces is causing movement toward the west. These forces dominate the current scene. Pulling in that direction are sulfur regulations (excluding BACT), labor cost trends, and shifting demand centers. Sulfur regulations cause an expansion in low-sulfur western output. Rising

  17. Factors affecting the export of high-sulfur coal from the Eastern Interior Basin. Prepared by the Congressional Research Service Library of Congress

    SciTech Connect

    Thompson, D.A.

    1981-01-01

    Domestic market losses for Eastern Interior Basin coal may not preclude a future for high-sulfur coal because of growing international demand. New markets will develop as coal-cleaning and synthetic-fuel processes improve. Cement industries throughout the world accept large amounts of higher-sulfur coals for their baking processes. Low-sulfur emissions are possible, with little or no loss in energy content, by blending Illinois Basin coal with Western or Eastern coal before export. The committee suggests that careful planning by labor, the coal industry, and - where needed - state, local, and federal government will make this coal a viable export. The report also emphasizes the importance of recognizing the restraints as well as the advantages. The Mississippi River, the Great Lakes, and 11,000 miles of mostly new railroad track are available to transport this coal. 21 references, 4 figures, 7 tables.

  18. Role of RIS/APC for manufacturing RFG/LSD. [Refinery Information Systems/Advanced Process Control, ReFormulated Gasoline/Low Sulfur Diesels

    SciTech Connect

    Latour, P.R. (SETPOINT, Inc., Houston, TX (United States))

    1994-01-01

    Revolutionary changes in quality specifications (number, complexity, uncertainty, economic sensitivity) for reformulated gasolines (RFG) and low-sulfur diesels (LSD) are being addressed by powerful, new, computer-integrated manufacturing technology for Refinery Information Systems and Advanced Process Control (RIS/APC). This paper shows how the five active RIS/APC functions: performance measurement, optimization, scheduling, control and integration are used to manufacture new, clean fuels competitively. With current industry spending for this field averaging 2 to 3 cents/bbl crude, many refineries can capture 50 to 100 cents/bbl if the technology is properly employed and sustained throughout refining operations, organizations, and businesses.

  19. Combustion characteristics of Occidental coal-oil mixtures

    Microsoft Academic Search

    E. W. Knell; M. N. Mansour

    1983-01-01

    Occidental Petroleum Corporation developed coal-oil mixture (COM) as a means for partial conversion of oil-burning equipment to coal. Subscale combustion tests were performed by KVB to determine the effect of COM compositional variables and firing parameters on combustion performance. COM compositional variables examined included coal and oil type, coal\\/oil ratio, coal grind size, and COM water and stabilizing additive content.

  20. Ken Burns

    NSDL National Science Digital Library

    2014-02-10

    Ken Burns is a popular documentarian and, as it turns out, he is now a popular app, in a manner of speaking. This particular app gives interested parties the ability to view scenes from his documentaries (such as "Baseball" and "Jazz") in a variety of settings. The latest version allows visitors to access the Innovation playlist absolutely free while other playlists containing clips from his other programs are available for a small fee. This version is compatible with iPads running iOS 7.0 and newer.

  1. Arapahoe low-sulfur-coal fabric filter pilot plant: Volume 3, Characterization of sonic-assisted reverse-gas cleaning, May 1982--May 1984: Final report

    SciTech Connect

    Cushing, K.M.; Bustard, C.J.; Pontius, D.H.; Pyle, B.E.; Smith, W.B.

    1989-02-01

    During 1981 intense interest developed in the utility industry regarding the use of horns as a supplement to reverse-gas bag cleaning. To characterize and assess sonic-enhanced, reverse-gas cleaning, horns were installed at EPRI's 10-MW Fabric Filter Pilot Plant (FFPP) at its Arapahoe Test Facility located at Public Service Company of Colorado's Arapahoe Steam Plant in Denver, Colorado. In addition to the FFPP tests, laboratory studies of sonic cleaning were conducted to supplement the pilot plant data. To verify the applicability of the pilot plant and laboratory work to full-scale baghouses, field data from utility baghouses in which horns had been installed were collected. The purpose of the testing was to determine the range of horn frequencies and total output power most effective in removing residual dustcakes from bags in reverse-gas-cleaned baghouses and, hence, most effective in reducing baghouse pressure drop. No attempt was made to identify a specific horn or horns most appropriate for baghouse application. The report presents the results of this testing from May 1982 through May 1984. Results showed that horns can dislodge a significant fraction of residual dustcake, thereby reducing pressure drop by as much as 60% without any noticeable reduction in bag life. Although outlet particulate emissions are higher with sonic assistance, they are generally <0.01 lb/10/sup 6/ Btu---below the 1979 New Source Performance Standards of 0.03 lb/MBtu. The overall results of this sonic horn investigation indicate that reverse-gas cleaning with sonic assistance definitely promotes more effective bag filter cleaning and lower pressure drop, and it should be considered as a supplement for most reverse-gas cleaned baghouse applications. 10 refs., 37 figs., 7 tabs.

  2. Coal combustion system

    DOEpatents

    Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  3. Micronized coal burner facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W. (inventors)

    1984-01-01

    A combustor or burner system in which the ash resulting from burning a coal in oil mixture is of submicron particle size is described. The burner system comprises a burner section, a flame exit nozzle, a fuel nozzle section, and an air tube by which preheated air is directed into the burner section. Regulated air pressure is delivered to a fuel nozzle. Means are provided for directing a mixture of coal particles and oil from a drum to a nozzle at a desired rate and pressure while means returns excess fuel to the fuel drum. Means provide for stable fuel pressure supply from the fuel pump to the fuel nozzle.

  4. National Coal Quality Inventory (NACQI)

    SciTech Connect

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  5. Environmentally conscious coal combustion

    SciTech Connect

    Hickmott, D.D.; Brown, L.F.; Currier, R.P. [and others

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  6. Coal gasification power generation, and product market study. Topical report, March 1, 1995--March 31, 1996

    SciTech Connect

    Sheesley, D.; King, S.B.

    1998-12-31

    This Western Research Institute (WRI) project was part of a WRI Energy Resource Utilization Program to stimulate pilot-scale improved technologies projects to add value to coal resources in the Rocky Mountain region. The intent of this program is to assess the application potential of emerging technologies to western resources. The focus of this project is on a coal resource near the Wyoming/Colorado border, in Colorado. Energy Fuels Corporation/Kerr Coal Company operates a coal mine in Jackson County, Colorado. The coal produces 10,500 Btu/lb and has very low sulfur and ash contents. Kerr Coal Company is seeking advanced technology for alternate uses for this coal. This project was to have included a significant cost-share from the Kerr Coal Company ownership for a market survey of potential products and technical alternatives to be studied in the Rocky Mountain Region. The Energy Fuels Corporation/Kerr Coal Company and WRI originally proposed this work on a cost reimbursable basis. The total cost of the project was priced at $117,035. The Kerr Coal Company had scheduled at least $60,000.00 to be spent on market research for the project that never developed because of product market changes for the company. WRI and Kerr explored potential markets and new technologies for this resource. The first phase of this project as a preliminary study had studied fuel and nonfuel technical alternatives. Through related projects conducted at WRI, resource utilization was studied to find high-value materials that can be targeted for fuel and nonfuel use and eventually include other low-sulfur coals in the Rocky Mountain region. The six-month project work was spread over about a three-year period to observe, measure, and confirm over time-any trends in technology development that would lead to economic benefits in northern Colorado and southern Wyoming from coal gasification and power generation.

  7. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2005-01-24

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  8. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2004-10-25

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  9. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2004-08-06

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  10. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Cindy Larson

    2005-10-24

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  11. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Cindy Larson

    2006-01-27

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  12. FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS

    SciTech Connect

    Jean Bustard

    2003-06-13

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001 ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a COHPAC baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC baghouse. Activated carbon was injected between the ESP and COHPAC units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC unit. The test also showed that activated carbon was effective on removing both forms of mercury, elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC system. The overall objective is to evaluate the long term effects of sorbent injection on mercury capture and COHPAC performance. The work is being done on 1/2 of the gas stream at Alabama Power's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) Is sorbent injection into a high air-to-cloth ratio baghouse a viable, long term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON) approach.

  13. FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2004-01-29

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  14. FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2003-10-31

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC baghouse. Activated carbon was injected between the ESP and COHPAC units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  15. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Cindy Larson

    2006-04-24

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  16. FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Tom Millar

    2003-07-30

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001 ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC baghouse. Activated carbon was injected between the ESP and COHPAC units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC unit. The test also showed that activated carbon was effective in removing both forms of mercury: elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON) approach.

  17. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2004-06-04

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  18. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Cindy Larson

    2005-07-14

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  19. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect

    Jean Bustard; Charles Lindsey; Paul Brignac: Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2005-04-28

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  20. FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS

    SciTech Connect

    Jean Bustard; Charles Lindsey

    2003-01-24

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001 ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a COHPAC baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC baghouse. Activated carbon was injected between the ESP and COHPAC units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC unit. The test also showed that activated carbon was effective on removing both forms of mercury, elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC system. The overall objective is to evaluate the long term effects of sorbent injection on mercury capture and COHPAC performance. The work is being done on 1/2 of the gas stream at Alabama Power's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) Is sorbent injection into a high air-to-cloth ratio baghouse a viable, long term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON) approach.

  1. Alaska coal geology, resources, and coalbed methane potential

    USGS Publications Warehouse

    Flores, Romeo M.; Stricker, Gary D.; Kinney, Scott A.

    2004-01-01

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines in these two provinces. Alaskan coal resources have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. The identified resources are near existing and planned infrastructure to promote development, transportation, and marketing of this low-sulfur coal. The relatively short distances to countries in the west Pacific Rim make them more exportable to these countries than to the lower 48 States of the United States. Another untapped but potential resource of large magnitude is coalbed methane, which has been estimated to total 1,000 trillion cubic feet (28 trillion cubic meters) by T.N. Smith 1995, Coalbed methane potential for Alaska and drilling results for the upper Cook Inlet Basin: Intergas, May 15 - 19, 1995, Tuscaloosa, University of Alabama, p. 1 - 21.

  2. FATE OF COAL NITROGEN DURING COMBUSTION

    EPA Science Inventory

    The paper describes the burning of 21 coals, covering all ranks and under a wide variety of conditions, to ascertain the impact of coal properties on the fate of fuel nitrogen. Fuel NC was identified by using a nitrogen-free oxidant consisting of Ar/O2/CO2. It was found that fuel...

  3. Steam Plant Conversion Eliminating Campus Coal Use

    E-print Network

    Dai, Pengcheng

    Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for: Building heating Domestic hot water Lab sterilization UT's Steam Plant #12;· Powered by 5 boilers: 2

  4. First Aid: Burns

    MedlinePLUS

    ... Medical Care Think Prevention! Scald burns from hot water and other liquids are the most common burns in early childhood. Because burns range from mild to life threatening, some can be treated at home, while ...

  5. Coal in the UK: the past becomes the future

    Microsoft Academic Search

    Whitworth

    1981-01-01

    The British National Coal Board (NCB) and British Gas, together with the British government, are developing technology to supplement diminishing supplies of oil and natural gas with substitutes manufactured from coal. Direct burning of coal is expected to utilize fluidized-bed combustion, and there are plans to raise power generation efficiency by installing a gas turbine in the combustor exhaust. Rapid

  6. Plant coal inventory and storage procedures: economic and environmental considerations

    Microsoft Academic Search

    Darling

    1980-01-01

    Coal presently plays a primary role in TVA's generation of electricity, and we anticipate that it will continue to do so into the Twenty-First Century. We recognize that coal can create environmental problems if not properly handled; however, we believe these potential problems can be dealt with whether they be in the mining, transporting, handling, or burning of coal. Uncontrolled

  7. The physical and chemical characteristics of pulverized coal combustion ashes

    SciTech Connect

    Ozasa, Kazuo; Kamijo, Tsunao; Owada, Tetsuo; Hosoda, Nobumichi

    1999-07-01

    Japan is the world's largest consumer of coal. Most of it is imported from various countries around the world. While coal generates more CO{sub 2}, which contributes to the greenhouse effect more than other types of fuel, plans are being drawn up to depend more on coal energy in order to maintain diversity in energy sources. Production of coal ash will increase as a result. In Japan, therefore, the public and private sectors are active in both developing and implementing clean, efficient and effective coal utilization technologies. More than 100 types of coal are being burned in Japan at present. For example, a power generating plant burns 20 to 40 different types of coal annually. Since a single type or coal blended with several different types are burned in Japan, the properties of coal ash differ by consuming plant and season. Therefore, understanding coal ash characteristics based on various properties is essential to the effective utilization of coal. The center of Coal Utilization, Japan has researched and developed effective utilization of coal ash as a supplementary project of the Ministry of International Trade and Industry. Chemical, physical, soil, and leaching characteristics, which are fundamental to using pulverized coal ash as a civil engineering material in large quantities, were selected and are described in this report.

  8. CLEANED COAL

    EPA Science Inventory

    The chapter summarizes information on U.S. coal resources, describes physical coal cleaning technology, and discusses the potential for desulfurizing U.S. coals by physical techniques. It presents the costs of physical coal cleaning, summarizes the amounts of cleaned coals which ...

  9. EFFECTS OF CHANGING COALS ON THE EMISSIONS OF METAL HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF PULVERIZED COAL

    EPA Science Inventory

    The report discusses tests conducted at EPA's Air Pollution Prevention and Control Division to evaluate the effects of changing coals on emissions of metal hazardous air pollutants from coal-fired boilers. Six coals were burned in a 29 kW (100,000 Btu/hr) down-fired combustor und...

  10. Coal pyrolysis and coal briquetting for production of smokeless fuel

    Microsoft Academic Search

    Semiha Arayici

    1996-01-01

    To investigate the possibility of direct production of smokeless fuel, a moderate temperature coking was applied. Coals used for this purposes are named as No:800 in International Classification and cause considerable amounts of smoke emissions due to their high tar contents, when burned. Following a preheating treatment at 120° C, the smokeless fuels (semicokes) were produced by coking of the

  11. Muffle furnace evaluation of FGD sludge-coal-clay mixtures as potential synthetic aggregates

    E-print Network

    Pettit, Jesse William

    1978-01-01

    alkalinity of the fly ash from these coals and the low sulfur content of the coal itself, slurries consisting of fly ash. and water have been utilized as a reagent in flue gas desulfurization (FGD) systems (26). At the Northern States Power Company... fly ash consists of spherical particles of fused glass and is composed of many compounds. The predominant constituent is silica, but other materials are also present. Some fly ashes contain up to 35 percent alumina and 20 percent iron oxide (5...

  12. Burns in diabetic patients

    PubMed Central

    Maghsoudi, Hemmat; Aghamohammadzadeh, Naser; Khalili, Nasim

    2008-01-01

    CONTEXT AND AIMS: Diabetic burn patients comprise a significant population in burn centers. The purpose of this study was to determine the demographic characteristics of diabetic burn patients. MATERIALS AND METHODS: Prospective data were collected on 94 diabetic burn patients between March 20, 2000 and March 20, 2006. Of 3062 burns patients, 94 (3.1%) had diabetes; these patients were compared with 2968 nondiabetic patients with burns. Statistical analysis was performed using the statistical analysis software SPSS 10.05. Differences between the two groups were evaluated using Student's t-test and the chi square test. P < 0.05 was considered as significant. RESULTS: The major mechanism of injury for the diabetic patients was scalding and flame burns, as was also the case in the nondiabetic burn patients. The diabetic burn patients were significantly older, with a lower percentage of total burn surface area (TBSA) than the nondiabetic burn population. There was significant difference between the diabetic and nondiabetic patients in terms of frequency of infection. No difference in mortality rate between diabetic and nondiabetic burn patients was observed. The most common organism in diabetic and nondiabetic burn patients was methicillin-resistant staphylococcus. Increasing %TBSA burn and the presence of inhalation injury are significantly associated with increased mortality following burn injury. CONCLUSIONS: Diabetics have a higher propensity for infection. Education for diabetic patients must include caution about potential burn mishaps and the complications that may ensue from burns. PMID:19902035

  13. 40 CFR 75.11 - Specific provisions for monitoring SO2 emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...gaseous fuel that is very low sulfur fuel (as defined in § 72.2...and at other times burn higher sulfur fuel(s) such as coal or oil, a second low-scale...not required when the very low sulfur gaseous fuel is combusted....

  14. 40 CFR 75.11 - Specific provisions for monitoring SO2 emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...gaseous fuel that is very low sulfur fuel (as defined in § 72.2...and at other times burn higher sulfur fuel(s) such as coal or oil, a second low-scale...not required when the very low sulfur gaseous fuel is combusted....

  15. 40 CFR 75.11 - Specific provisions for monitoring SO2 emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...gaseous fuel that is very low sulfur fuel (as defined in § 72.2...and at other times burn higher sulfur fuel(s) such as coal or oil, a second low-scale...not required when the very low sulfur gaseous fuel is combusted....

  16. 40 CFR 75.11 - Specific provisions for monitoring SO2 emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...gaseous fuel that is very low sulfur fuel (as defined in § 72.2...and at other times burn higher sulfur fuel(s) such as coal or oil, a second low-scale...not required when the very low sulfur gaseous fuel is combusted....

  17. Mercury Oxidation Promoted by a Selective Catalytic Reduction Catalyst under Simulated Powder River Basin Coal Combustion Conditions

    Microsoft Academic Search

    Chun W. Lee; Shannon D. Serre; Yongxin Zhao; Sung Jun Lee; Thomas W. Hastings; Paul Chin; David Ollis; Jing Qian; Andrea Ferro; Kathleen Fowler; Hyukjin Oh; Kalyan Annamalai; John Sweeten; Jennifer Stokke; David Mazyck; James Corbett; James Winebrake; Lokman Tecer; Pinar ren; Omar Alagha; Ferhat Karaca; Sue Sheya; Clifford Glowacki; Ming-Chih Chang; Judith Chow; John Watson; Ching-Ho Lin; Edith Ge´go; Alice Gilliland; James Godowitch; S. Rao; P. Porter; Christian Hogrefe

    2008-01-01

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury (Hg0) oxidation under SCR conditions. A low sulfur Powder River Basin (PRB) subbituminous coal combustion fly ash was injected into the entrained-flow reactor along with sulfur dioxide (SO2), nitrogen oxides (NOx), hydrogen chloride

  18. Environmental protecting effect of industrial coal briquette

    SciTech Connect

    Zhao, Y.; Chen, L.

    1999-07-01

    This paper has analyzed the necessity of developing industrial coal briquette in China and introduced the present development of coal briquette and its environmental protecting effect in the country. The laboratory research shows that the rate of captured sulfur of coal briquette produced with calcium oxide as a capturing agent is up to 82%. Comparing with the combustion of raw coal, coal briquette produced in briquette cohesive agent made of magnesium oxide etc, can reduce the amount of sulfur dioxide by 78% and the amount of dust smoke by 29.3% when the coal briquette is burned in industrial boiler. When it is used as raw material of coal gasification, the amount of hydrogen sulfide in the gas generated by the gasification of mixed coal composed of 25% coal briquette and 75% lumps is lowered by 6.8% (volume ration) compared with that generated by the gasification of full lumps. Moreover, the sodium sulfocyanide is discovered in the boiler ashes and the amount of sodium sulfocyanide is up to 10% of the total (weight ration) when the boiler ashes are tested with x-ray diffractometer. The discovery shows that the coal briquette has the function of nitrogen fixation. The rate of captured sulfur of coal briquette which is briquetting at the front of industrial boiler and in which limestone is used as a capturing agent is up to 48% when it is burned in industrial boiler.

  19. Sulfur in coal and its environmental impact from Yanzhou mining district, China

    Microsoft Academic Search

    Guijian Liu; Zicheng Peng; Pingyue Yang; Guiliang Wang

    2001-01-01

    Sulfur is one of the hazardous elements in coal. The concentrations of sulfur are relatively high in coal. The major forms\\u000a of sulfur in coal are pyritic, organic and sulfate. Pyritic and organic sulfur generally account for the bulk of sulfur in\\u000a coal. Elemental sulfur also occurs in coal, but only in trace to minor amounts. When coals are burned,

  20. Development of a coal quality expert

    SciTech Connect

    Not Available

    1991-01-09

    Four companies and seven host utilities have teamed with CQ Inc. and C-E to perform the work on this project. The 42-month project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning, blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: enhance the existing Coal Quality Information System (CQIS) database and Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance; and develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inexpensive bench-scale tests. During the past quarter, coal cleanability characterization and utility boiler field tests were conducted. Coal characterization studies were performed with the Croweburg Seam coal, obtained from Peabody Coal Company's Rogers County No. 2 Mine located in northeastern Oklahoma. This coal is burned as part of a blend at Public Service Oklahoma's Northeastern Unit 4 (PSO-NE4), a 450-MW unit located at Oologah, Oklahoma. Full-scale combustion tests were initiated at PSO-NE4. Three coal feed scenarios will be evaluated at this site: (1) 100 percent Wyoming Coal (baseline), (2) 90/10 blend of Wyoming and Oklahoma coals, and (3) 70/30 blend of Wyoming and Oklahoma coals. Results to date are given. 3 figs., 5 tabs.

  1. Control Strategies of Atmospheric Mercury Emissions from Coal-fired Power Plants in China

    Microsoft Academic Search

    Hezhong Tian; Yan Wang; Ke Cheng; Yiping Qu; Jiming Hao; Zhigang Xue; Fahe Chai

    2012-01-01

    Atmospheric Hg emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of

  2. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel.

    PubMed

    Moser, Bryan R; Vaughn, Steven F

    2010-01-01

    Methyl and ethyl esters were prepared from camelina [Camelina sativa (L.) Crantz] oil by homogenous base-catalyzed transesterification for evaluation as biodiesel fuels. Camelina oil contained high percentages of linolenic (32.6 wt.%), linoleic (19.6 wt.%), and oleic (18.6 wt.%) acids. Consequently, camelina oil methyl and ethyl esters (CSME and CSEE) exhibited poor oxidative stabilities and high iodine values versus methyl esters prepared from canola, palm, and soybean oils (CME, PME, and SME). Other fuel properties of CSME and CSEE were similar to CME, PME, and SME, such as low temperature operability, acid value, cetane number, kinematic viscosity, lubricity, sulfur and phosphorous contents, as well as surface tension. As blend components in ultra low-sulfur diesel fuel, CSME and CSEE were essentially indistinguishable from SME and soybean oil ethyl ester blends with regard to low temperature operability, kinematic viscosity, lubricity, and surface tension. PMID:19740653

  3. Coal and coal mine drainage

    Microsoft Academic Search

    Olem

    1982-01-01

    This review of recent literature covers the formation of coal mine drainage and its environmental effects, treatment and control of mine drainage, coal cleaning wastes, and coal transport and storage.

  4. Coal and coal mine drainage

    SciTech Connect

    Olem, H.

    1982-06-01

    This review of recent literature covers the formation of coal mine drainage and its environmental effects, treatment and control of mine drainage, coal cleaning wastes, and coal transport and storage.

  5. Enhancing the use of coals by gas reburning-sorbent injection. Volume 3, Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company

    SciTech Connect

    NONE

    1994-10-01

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  6. Chemical analyses of coal, coal-associated rocks and coal combustion products collected for the National Coal Quality Inventory

    USGS Publications Warehouse

    Hatch, Joseph R.; Bullock, John H., Jr.; Finkelman, Robert B.

    2006-01-01

    In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).

  7. Mercury emission control for coal fired power plants using coal and biomass 

    E-print Network

    Arcot Vijayasarathy, Udayasarathy

    2009-05-15

    oxidation, which is evident from the fact that plants burning coal having high chlorine content have less elemental mercury emissions. A novel method of co-firing blends of low chlorine content coal with high chlorine content cattle manure/biomass was used...

  8. "Coal Poisons Everything It Touches." Teaching about Coal, Climate, and the Future of the Earth

    ERIC Educational Resources Information Center

    Bigelow, Bill

    2013-01-01

    This article describes an activity in which ninth graders explore a plan to strip-mine coal in Wyoming and Montana, send it by train to the Northwest, then ship it to Asia to be burned. Students' questions ranged from "Why are we mining for more coal if it's the biggest contributor to global warming" and "How can adults…

  9. Assessment of the radiological impact of coal utilization. 2: Radionuclides in Western coal ash

    NASA Astrophysics Data System (ADS)

    Styron, C. E.; Bishop, C. T.; Casella, V. R.; Jenkins, P. H.; Yanko, W. H.

    1981-04-01

    The potential radiological impact of coal utilization is investigated. A survey of western US coal mines and an assessment of emissions from a power plant burning Western coal were performed. Environmental deposition of radionuclides from stack emissions over a 20 year accumulation at a power plant burning. Western coal was estimated to be 0.1 to 1.0% of measured background. An interlaboratory comparison of results of radioanalytical procedures, determining partitioning coefficients for radionuclides in bottom ash and fly ash, and an assessment of the potential for migration of radionuclides from ash disposal sites are made. Essentially all the nonvolatile radionuclides (uranium, radium, and thorium) from feed coal are accounted for in fly ash and bottom ash. However, 20 to 50% of the volatile radionuclides (lead and polonium) from subbituminous and lignitic coals are not accounted for in ahs, and it is assumed that this fraction exists via the stack.

  10. ENCOAL Mild Coal Gasification Demonstration Project. Annual report, October 1993--September 1994

    SciTech Connect

    NONE

    1995-03-01

    ENCOAL Corporation, a wholly-owned subsidiary of SMC Mining Company (formerly Shell Mining Company, now owned by Zeigler Coal Holding Company), has completed the construction and start-up of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The LFC technology uses a mild pyrolysis or mild gasification process which involves heating the coal under carefully controlled conditions. The process causes chemical changes in the feed coal in contrast to conventional drying, which leads only to physical changes. Wet subbituminous coal contains considerable water, and conventional drying processes physically remove some of this moisture, causing the heating value to increase. The deeper the coal is physically dried, the higher the heating value and the more the pore structure permanently collapses, preventing resorption of moisture. However, deeply dried Powder River Basin coals exhibit significant stability problems when dried by conventional thermal processes. The LFC process overcomes these stability problems by thermally altering the solid to create PDF and CDL. Several of the major objectives of the ENCOAL Project have now been achieved. The LFC Technology has been essentially demonstrated. Significant quantities of specification CDL have been produced from Buckskin coal. Plant operation in a production mode with respectable availability (approaching 90%) has been demonstrated.

  11. Postburn roof stability analysis for the TONO CRIP UCG burn

    SciTech Connect

    Taylor, L.M.; Sutherland, H.J.; Kuszmaul, J.S.

    1986-01-01

    During the Ninth Annual Underground Coal Gasification Symposium, Sutherland, Hommert, Taylor, and Benzley presented a preburn prediction for the burn, roof fall and surface subsidence for the TONO CRIP UCG site in Washington state. That burn has now been completed and postburn measurements of cavity sizes have become available. In this manuscript the authors show that the preburn predictions are, in general, in good agreement with the postburn examination of the burn site. Discrepancies between the predictions and the measurements are shown to arise for two reasons. The first is that the burn sequence analyzed in the prediction was not allowed during the course of the experiment due to experimental difficulties. The second reason is that the stratigraphic section analyzed in the preburn predictions is slightly different form that observed above the burn. To clarify the discrepancies, the roof stability of the measured burn cavity is analyzed using the two analysis schemes that were used in the preburn analysis.

  12. Application of computer graphics to generate coal resources of the Cache coal bed, Recluse geologic model area, Campbell County, Wyoming

    USGS Publications Warehouse

    Schneider, G.B.; Crowley, S.S.; Carey, M.A.

    1982-01-01

    Low-sulfur subbituminous coal resources have been calculated, using both manual and computer methods, for the Cache coal bed in the Recluse Model Area, which covers the White Tail Butte, Pitch Draw, Recluse, and Homestead Draw SW 7 1/2 minute quadrangles, Campbell County, Wyoming. Approximately 275 coal thickness measurements obtained from drill hole data are evenly distributed throughout the area. The Cache coal and associated beds are in the Paleocene Tongue River Member of the Fort Union Formation. The depth from the surface to the Cache bed ranges from 269 to 1,257 feet. The thickness of the coal is as much as 31 feet, but in places the Cache coal bed is absent. Comparisons between hand-drawn and computer-generated isopach maps show minimal differences. Total coal resources calculated by computer show the bed to contain 2,316 million short tons or about 6.7 percent more than the hand-calculated figure of 2,160 million short tons.

  13. Rocky Mountain Tertiary coal-basin models and their applicability to some world basins

    USGS Publications Warehouse

    Flores, R.M.

    1989-01-01

    Tertiary intermontane basins in the Rocky Mountain region of the United States contain large amounts of coal resources. The first major type of Tertiary coal basin is closed and lake-dominated, either mud-rich (e.g., North Park Basin, Colorado) or mud plus carbonate (e.g., Medicine Lodge Basin, Montana), which are both infilled by deltas. The second major type of Tertiary coal basin is open and characterized by a preponderance of sediments that were deposited by flow-through fluvial systems (e.g., Raton Basin, Colorado and New Mexico, and Powder River Basin, Wyoming and Montana). The setting for the formation of these coals varies with the type of basin sedimentation, paleotectonism, and paleoclimate. The mud-rich lake-dominated closed basin (transpressional paleotectonism and warm, humid paleoclimate), where infilled by sandy "Gilbert-type" deltas, contains thick coals (low ash and low sulfur) formed in swamps of the prograding fluvial systems. The mud- and carbonate-rich lake-dominated closed basin is infilled by carbonate precipitates plus coarse-grained fan deltas and fine-grained deltas. Here, thin coals (high ash and high sulfur) formed in swamps of the fine-grained deltas. The coarse-clastic, open basins (compressional paleotectonism and warm, paratropical paleoclimate) associated with flow-through fluvial systems contain moderately to anomalously thick coals (high to low ash and low sulfur) formed in swamps developed in intermittently abandoned portions of the fluvial systems. These coal development patterns from the Tertiary Rocky Mountain basins, although occurring in completely different paleotectonic settings, are similar to that found in the Tertiary, Cretaceous, and Permian intermontane coal basins in China, New Zealand, and India. ?? 1989.

  14. Effects of catalytic mineral matter on CO\\/COâ temperature and burning time for char combustion. Quarterly progress report No. 15 (Final report), October 1993December 1993

    Microsoft Academic Search

    J. P. Longwell; A. F. Sarofim; C. H. Lee

    1993-01-01

    The high temperature oxidation of char is of interest in a number of applications in which coal must be burned in confined spaces including the conversion of oil-fired boilers to coal using coal-water slurries, the development of a new generation of pulverized-coal-fired cyclone burners, the injection of coal into the tuyeres of blast furnaces, the use of coal as a

  15. Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trial 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal

    SciTech Connect

    None

    1997-11-01

    This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993. Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test orI C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

  16. Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trail 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal

    SciTech Connect

    None

    1997-11-01

    This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993, Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test on C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

  17. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...open burning, agricultural burning, and forestry and silvicultural burning. 49.10411...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under § 49.134 Rule for forestry and silvicultural burning...

  18. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...open burning, agricultural burning, and forestry and silvicultural burning. 49.11021...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under § 49.134 Rule for forestry and silvicultural burning...

  19. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...open burning, agricultural burning, and forestry and silvicultural burning. 49.10411...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under § 49.134 Rule for forestry and silvicultural burning...

  20. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...open burning, agricultural burning, and forestry and silvicultural burning. 49.10411...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under § 49.134 Rule for forestry and silvicultural burning...

  1. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...open burning, agricultural burning, and forestry and silvicultural burning. 49.11021...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under § 49.134 Rule for forestry and silvicultural burning...

  2. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...open burning, agricultural burning, and forestry and silvicultural burning. 49.11021...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under § 49.134 Rule for forestry and silvicultural burning...

  3. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...open burning, agricultural burning, and forestry and silvicultural burning. 49.11021...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under § 49.134 Rule for forestry and silvicultural burning...

  4. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...open burning, agricultural burning, and forestry and silvicultural burning. 49.10411...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under § 49.134 Rule for forestry and silvicultural burning...

  5. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...open burning, agricultural burning, and forestry and silvicultural burning. 49.10411...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under § 49.134 Rule for forestry and silvicultural burning...

  6. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...open burning, agricultural burning, and forestry and silvicultural burning. 49.11021...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under § 49.134 Rule for forestry and silvicultural burning...

  7. Evaluating potential benefits of burning lower quality fuel oils using the oil burn optimization model

    SciTech Connect

    Babilonia, P.

    1995-09-01

    As a result of a 1987 New York State Public Service Commission Audit of Niagara Mohawk`s Fuel Supply operations, Niagara Mohawk (NMPC) became interested in analyzing the plant performance impacts of burning fuels of differing qualities at its various generating stations. Black & Veatch (B&V) had previously developed a computer model for EPRI that analyzed coal quality impacts (i.e., Coal Quality Impact Model). As a result of B&V`s work, NMPC contracted with B&V to first develop custom-designed software for its coal stations (Coal Burn Optimization Model (CBOM)). Subsequently, B&V was retained to develop a similar designed software for its oil stations, Oswego and Albany Steam Stations. The Oil Burn Optimization Model (OBOM) was, therefore, developed. OBOM was designed to be used to evaluate residual fuel oil supply options by predicting their fuel-related plant operating and maintenance costs. Fuel oil-related costs can also be compared to natural gas-related costs. Costs are estimated by predicting performance of various plant equipment. Predictions focus on combustion calculations, material flows, auxiliary power, boiler efficiency, precipitator and fan performance, fuel pumping and preheating requirements, and corrosion considerations. Total costs at the busbar attributed to fuel are calculated from these predictions. OBOM is a PC-based system operating under MS-DOS. The model produces hard copy results for quick comparison of fuels and their potential effects on plant operating and maintenance costs.

  8. Burns and Fire Safety

    MedlinePLUS

    1 Burns and Fire Safety Fact Sheet (2015) Fatalities • 334 children ages 19 and under died from fires or ... from 2012 to 2013. 1 1999-2013 Fire/Burn Fatalities and Death Rate Among Children Ages 19 ...

  9. Indoor Emissions from the Household Combustion of Coal

    Cancer.gov

    Burning coal inside the home for the purposes of heating or cooking produces particulate and gas emissions that may contain a number of harmful chemicals, such as benzene, carbon monoxide, formaldehyde, and polycyclic aromatic hydrocarbons.

  10. Coal combustion product (CCP) production, use and variability

    SciTech Connect

    Stewart, B.R.

    1999-07-01

    The four types of CCPs produced by electric utility boilers are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) material. In 1997, 55% of electricity generated in the United States was produced by burning coal. Almost 90% of the coal used in the US is burned to generate electricity; during 1997, electric utilities burned 898.5 million metric tons of coal and generated more than 95 million tons of CCPs, a figure that promises to increase owing mostly to the anticipated rise in FGD material generation. The quantities and types of CCPs produced at a given electric utility plant depend, for example, on the type of coal burned, the type of boiler, and the type of emission controls installed. Different types of CCPs possess distinct chemical and physical properties, making each suitable for particular applications.

  11. Economics of pediatric burns.

    PubMed

    Bass, Michael J; Phillips, Linda G

    2008-07-01

    Sustaining a burn injury sets in motion a cycle of pain, disfigurement, and a search for survival. In pediatric burns, the injury extends to the parents where fear, ignorance, and helplessness forever change their lives. Pediatric burn injuries are caused by fire, hot liquids, clothing irons, hair curlers, caustic substances like drain cleaner, the grounding of an electrical source, and exposure to radiation. Efficiency in the delivery of pediatric burn care is critical. Maximizing resource utilization means continual self-evaluation and economic analysis of therapeutic modalities. Griffiths et al found that most childhood burns are due to scalds, which can be treated for $1061 per percent burn. Paddock et al reduced the cost of treating superficial pediatric burns and reduced the length of stay in hospital using silver-impregnated gauze over traditional methods. Barrett et al found improved cosmesis of skin grafts using cultured epithelial autografts but at a substantially increased cost. Corpron et al showed that pediatric burn units that treat burns >10% total body surface area and operative treatment of pediatric burns regardless of size generate positive revenue. There is a paucity of evidentiary pediatric burn economic data. More research is needed to address areas of pediatric burn care inefficiency. Improving knowledge of cost in all health care endeavors will create competition and drive down expenditures. PMID:18650705

  12. Learn Not To Burn.

    ERIC Educational Resources Information Center

    English, Nancy; Hendricks, Charlotte M.

    1997-01-01

    Describes the "Learn Not to Burn Preschool Program," a low-cost fire safety awareness and burn prevention curriculum for young children. The program promotes eight burn prevention methods--including practicing an escape plan--using developmentally appropriate learning objectives to increase children's fire safety knowledge, skill, and…

  13. Cellular burning in lean premixed turbulent hydrogen-air flames: coupling experimental and

    E-print Network

    for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification of coal and biomass. Fuel-flexible combustion systems based on lean premixed combustion have the potential

  14. Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck

    SciTech Connect

    Peterson, C.; Reece, D. [Univ. of Idaho, Moscow, ID (United States)

    1996-05-01

    Comprehensive tests were performed on an on-road vehicle in cooperation with the Los Angeles County Metropolitan Transit Authority emissions test facility. All tests were with a transient chassis dynamometer. Tests included both a double arterial cycle of 768 s duration and an EPA heavy duty vehicle cycle of 1,060 s duration. The test vehicle was a 1994 pickup truck with a 5.9-L turbocharged and intercooled, direct injection diesel engine. Rapeseed methyl (RME) and ethyl esters (REE) and blends were compared with low sulfur diesel control fuel. Emissions data include all regulated emissions: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter (PM). In these tests the average of 100% RME and 100% REE reduced HC (52.4%), CO (47.6%), NO{sub x} (10.0%), and increases in CO{sub 2} (0.9%) and PM (9.9%) compared to the diesel control fuel. Also, 100% REE reduced HC (8.7%), CO (4.3%), and NO{sub x} (3.4%) compared to 100% RME. 33 refs., 1 figs., 8 tabs.

  15. Coal pump

    DOEpatents

    Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  16. Advanced Coal Conversion Process Demonstration Project

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  17. Cheap oil cools interest in coal-water fuel

    SciTech Connect

    Smock, R.

    1986-02-01

    Plummeting oil prices have put coal-water fuels on the utility industry's shelf. East coast utilities that have evaluated coal-water fuel (CWF) as a replacement for oil say it looks great on all counts except cost. SWF technology has been under development for the last decade as a method for switching to coal in older power plants unable to convert to direct coal burning because they have small boilers designed to burn oil. It finally appears to be ready for commercial application, but the market has lost interest. The few utilities still burning any appreciable amounts of oil see no economic incentive over the near term to incur the costs of switching to a coal-water mixture.

  18. Facial burns - our experience.

    PubMed

    Zatriqi, Violeta; Arifi, Hysni; Zatriqi, Skender; Duci, Shkelzen; Rrecaj, Sh; Martinaj, M

    2013-01-01

    Facial burns are generally considered severe. This is due to the possibility of respiratory complications. First responders check the nostrils for singed hairs. In severe cases there may be soot around the nose and mouth and coughing may produce phlegm that includes ash. Facial and inhalational burns compromise airways. They pose difficulties in pre-hospital resuscitation and are challenge to clinicians managing surviving burn victims in the intensive care setting. Management problems - resuscitation, airway maintenance and clinical treatment of facial injuries are compounded if the victim is child. Inhalational burns reduce survivability, certainly in adult victim. In our retrospective study we found that facial burns dominated in male gender, liquids and scalds are the most common causes of facial burns in children whereas the flame and electricity were the most common causes of facial burns in adults. We came to the conclusion in our study that surgical treatment minimizes complications and duration of recovery. PMID:23687458

  19. TRW advanced slagging coal combustor utility demonstration

    SciTech Connect

    Not Available

    1990-01-01

    The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. The TRW-Utility Demonstration Unit (UDU) is responsible for the implementation of program policies and overall direction of the project. The following projects will be carried out: process and design development of clean coal technology CCT-1 the development and operation of the entrained coal combustor will enable the boiler to burn low and medium sulfur coal while meeting all the Federal/State emission requirements; demonstrate sulfur dioxide emissions control by pulverized limestone injection into the entrained coal combustor system.

  20. Development and evaluation of highly-loaded coal slurries. [Coal-fuel oils, coal-fuel oils-water and coal-water

    SciTech Connect

    McHale, E.T.

    1980-05-01

    For the past two and one-half years Atlantic Research has been conducting a research program which involved development and combustion of slurries of coal in oil and in water. In Phase II good candidate slurries chosen from Phase I were burned in an experimental furnace and their combustion performance evaluated. Two slurry fuels were chosen for the combustion study. One consisted of a 50/40/10 (weight) coal/oil/water mixture, and the other was a 65/35 coal/water slurry stabilized with modified corn starch. The emphasis was placed on the coal/water slurry. Firings were conducted in a one MMBTUH experimental furnace constructed and instrumented for the purpose. A specially designed swirl burner/atomizer was developed for use with the coal/water slurry. Both slurries were burned successfully. Numerous firings were performed of up to one-half duration each. In the case of the coal/water slurry a small amount of gas assist was usually used, although this was eliminated in several shorter duration tests. Thermochemical calculations for coal/water slurries are presented. The presence of water in the slurry represents a relatively small energy penalty. A slurry made from a good coal will have a calorific value in the range of 10,000 Btu/lb. The heat required to vaporize the water of a 70/30 mixture is only about 300 Btu/lb slurry, or about 3 percent. Analysis of the results led to the conclusion that significant improvement in the burning maybe achievable, possibly to the point where combustion rates would be comparable to those of heavy oil. Because of the availability of coal, its cost advantage relative to oil, and especially because of the ease of handling of a liquid fuel, coal/water slurry appears to have considerable potential as a future fuel.

  1. Coal and coal mine drainage

    SciTech Connect

    Olem, H.

    1980-06-01

    The subjects of formation of mine drainage, mine drainage treatment, abatement and control of mine drainage, coal cleaning, and coal transportation and storage are discussed in this literature review. (DAD)

  2. Coal and coal mine drainage

    Microsoft Academic Search

    Olem

    1980-01-01

    The subjects of formation of mine drainage, mine drainage treatment, abatement and control of mine drainage, coal cleaning, and coal transportation and storage are discussed in this literature review. (DAD)

  3. Coal and coal mine drainage

    Microsoft Academic Search

    J. F. Boyer; V. E. Gleason

    1977-01-01

    The review cited some bibliogrphies such as the abstract series on coal mine drainage prepared annually since 1964 by Bituminous Coal Research, Inc. The treatment of acid mine drainage was discussed, the most common method being lime neutralization. If limestone could be used however, significant savings might occur. In treating coal mine drainage, iron removal was as much a concern

  4. Boiler efficiency calculation for multiple fuel burning boilers

    SciTech Connect

    Khodabakhsh, F.; Munukutla, S. [Tennessee Technological Univ., Cookeville, TN (United States). Center for Electric Power; Clary, A.T. [Eastman Chemical Co., Kingsport, TN (United States). Power and Services Div.

    1996-12-31

    A rigorous method based on the output/loss approach is developed for calculating the coal flow rate for multiple fuel burning boilers. It is assumed that the ultimate analyses of all the fuels are known. In addition, it is assumed that the flow rates of all the fuels with the exception of coal are known. The calculations are performed iteratively, with the first iteration taking into consideration coal as the only fuel. The results converge to the correct answer after a few number of iterations, typically four or five.

  5. Clean coal fluidized-bed technology in Poland

    Microsoft Academic Search

    W. Nowak

    2003-01-01

    The use of a circulating fluidized-bed (CFB) for power generation is a rapidly growing technology in Poland. The ability of CFBs to burn a wide variety of fuels, while meeting strict emission-control regulations, makes them an ideal choice for burning such fuels as high-sulfur coal, lignite, peat, oil, sludge, petroleum coke, gas and wastes. All these fuels are burned cleanly

  6. The distribution, occurrence and environmental effect of mercury in Chinese coals

    USGS Publications Warehouse

    Zheng, L.; Liu, Gaisheng; Chou, C.-L.

    2007-01-01

    Mercury (Hg) is a toxic, persistent, and globally distributed pollutant due to its characteristic properties such as low melting and boiling points, conversion between chemical forms and participation in biological cycles. During combustion mercury in coal is almost totally emitted to the atmosphere. With a huge amount of coal consumed, coal combustion is one of the main anthropogenic sources of this element in the environment. In this study, Hg data of 1699 coal samples of China has been compiled, and the concentration, distribution, modes of occurrence, and the impact of Hg emissions on the environment are investigated. Most Chinese coals have Hg content in the range of 0.1 to 0.3??ppm, with an average of 0.19??ppm, which is slightly higher than the average Hg content of world coals and is close to that of the U.S. coals. The Hg content in coals varies in different coal basins, geological ages and coal ranks. The most likely mode of occurrences of Hg in high-sulfur and high Hg content coals is as solid solution in pyrite. But in low-sulfur coals, modes of occurrence of Hg are variable, and the organic-bound and sulfide-bound Hg may dominate. Silicate-bound Hg may be the main form in some coals because of magmatic intrusion. Mercury emissions during coal combustion have resulted in serious environmental contamination in China, particularly in the northeastern and southwestern China, where a high Hg content in the atmosphere occurs. ?? 2007 Elsevier B.V. All rights reserved.

  7. Coal combustion aerothermochemistry research. Final report

    SciTech Connect

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  8. Hydrogen manufacture by Lurgi gasification of Oklahoma coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Advantages and disadvantages of using the Lurgi gasification process to produce hydrogen from Oklahoma coal are listed. Special attention was given to the production of heat for the process; heat is generated by burning part of pretreated coal in the steam generator. Overall performance of the Lurgi process is summarized in tabular form.

  9. Proceedings: Reducing Electricity Generation Costs by Improving Coal Quality

    SciTech Connect

    None

    1988-05-01

    Determining the most economic coal to burn in a power plant requires balancing coal costs against the costs associated with plant performance and emissions control. These proceedings present utility case histories, research results, and industry experience in achieving the lowest busbar cost.

  10. Coal in our future energy mix: Examples of emerging technologies

    Microsoft Academic Search

    R. C. Attig; T. E. Dowdy; C. L. Wagoner

    1992-01-01

    Coal has played an important role in the energy picture in the United States for many years, although significant changes have occurred in the end use. For example, coal production was more than 600 million tons in 1920. Direct burning was the largest use, but conversion to other fuels and products was substantial. In that year, steam locomotives used more

  11. CAVITY GROWTH MECHANISMS IN UCG WITH SIDE WALL BURN GASIFICATION

    Microsoft Academic Search

    Sidney Schwartz; Thomas Eddy; Kirti Mehta; Steven Lutz; Mahmoud Binaie-Kondolojy

    1978-01-01

    A preliminary 2-dimensional model for in situ underground coal gasification is presented for discussion. The model describes cavity formation from the injection well end and link zone burn up, where the initial link zone geometry is assumed at this time. Cavity growth is predicted via an integral boundary layer analysis with boundary conditions determined by oxygen mass transfer to the

  12. Enhanced desulfurizing flotation of coal using sonoelectrochemical method.

    PubMed

    Zhang, Hong-Xi; Hou, Xiao-Yang; Xu, Shi-Xun; Li, Zhi-Long; Yu, Hai-Feng; Shen, Xue-Hua

    2013-09-01

    Enhanced desulfurizing flotation of low sulfur coal was investigated using sonoelectrochemical method. The supporting electrolyte used in this process was sodium chloride and the additive was anhydrous ethanol. The effects of treatment conditions on desulfurization were studied by a single-factor method. The conditions include anhydrous ethanol concentration, sodium chloride concentration, sonoelectrolytic voltage, sonoelectrolytic temperature, sonoelectrolytic time and coal sample granulometry. The optimal experimental conditions achieved for anhydrous ethanol concentration, sodium chloride concentration, sonoelectrolytic voltage, sonoelectrolytic temperature and sonoelectrolytic time are 1.7 mol L(-1), 5.1×10(-3) mol L(-1), 10 V, 70 °C, 50 min achieved for a -0.18 mm coal sample. Optimal conditions cause a sulfur reduction of up to 69.4%. The raw and treated coals were analyzed by infrared spectroscopy and a chemical method. Pyritic sulfur, organic sulfur, ash as well as moisture are partially removed. The combination of high sulfur reduction, high yield, as well as high ash reduction was obtained in the newly developed method of enhanced flotation by sonoelectrochemistry. Ultrasound irradiation promotes electron transfer efficiency and increases clean coal yield. PMID:23558374

  13. Reducing electricity generation costs by improving coal quality: Proceedings

    SciTech Connect

    Not Available

    1988-05-01

    The costs of generating electricity at a coal-fired power plant are significantly influenced by the characteristics of the coal that feeds the plant. Upgrading coal quality or assuring a consistent-quality coal can improve plant performance, increase boiler capacity, and raise plant availability. Sixteen papers presented at an EPRI seminar, ''Reducing Electricity Generation Costs by Improving Coal Quality,'' address how to determine which coal to burn to produce the lowest busbar costs. These papers include case histories of utilities that have switched to higher-quality coal. They also describe computer models to assess coal quality effects and estimate coal cleaning costs. In addition, they examine various methods to predict how a given coal will perform in a particular boiler, and how coal quality can reduce emission control costs. This unique gathering of coal quality information was presented by speakers from US utilities, the Electric Power Research Institute, and the electric power industry. The seminar, sponsored by EPRI's Coal Quality Development Center, formerly the Coal Cleaning Test Facility, was held in November 1986. It drew approximately 80 representatives from US utilities, coal companies, and engineering firms.

  14. Coal combustion by-product quality at two stoker boilers: Coal source vs. fly ash collection system design

    Microsoft Academic Search

    Sarah M. Mardon; James C. Hower; Jennifer M. K. O'Keefe; Maria N. Marks; Daniel H. Hedges

    2008-01-01

    Fly ashes from two stoker boilers burning Pennsylvanian Eastern Kentucky high volatile A bituminous coal blends were examined for their petrology and chemistry. The source coals have similar trace element contents. One of the ash collection systems was retrofitted with a baghouse (fabric filter) system, collecting a finer fly ash at a cooler flue gas temperature than the plant that

  15. Computational Modeling of CO/CO2 Ratio Inside Single Char Particles during Pulverized Coal Combustion

    E-print Network

    Utah, University of

    of submicrometer-sized ash in coal combustion systems affects the emissions of toxic metals and the formationComputational Modeling of CO/CO2 Ratio Inside Single Char Particles during Pulverized Coal inside a burning pulverized coal particle, to better understand the effect of bulk gas composition

  16. Adsorption of UCG organics by coal, char, activated char and ash

    Microsoft Academic Search

    M. J. Humenick; J. R. Morgan; B. T. Nolan

    1987-01-01

    The aqueous adsorption of Underground Coal Gasification (UCG) organics generated during gas production was tested in the laboratory to determine the organic's affinity for surroundings in the region of the burn cavity. Coal from the Rosebud coal mine in Hanna, Wyoming along with char, activated char, and ash were studied during this work. Contaminated ground water was simulated by preparing

  17. Ash deposition at coal-fired gas turbine conditions; Surface and combustion temperature effects

    Microsoft Academic Search

    G. A. Richards; R. G. Logan; C. T. Meyer; R. J. Anderson

    1992-01-01

    In this paper a study of ash deposition from a cleaned bituminous and conventional bituminous coal is presented. An electrically heated drop tube furnace is used to burn the coal and provide deposition conditions representative of proposed coal-fired gas turbines. Variations in the combustion temperature and deposit surface temperature demonstrate that surface cooling may significantly reduce ash deposition, or may

  18. Combustion of coal\\/water mixtures with thermal preconditioning. Final report

    Microsoft Academic Search

    M. Novack; G. Roffe; G. Miller

    1985-01-01

    Thermal preconditioning is a process in which coal\\/water mixtures are vaporized to produce coal\\/steam suspensions, and then superheated to allow the coal to devolatilize producing suspensions of char particles in hydrocarbon gases and steam. This final product of the process can be injected without atomization, and burned directly in a gas turbine combustor. This paper reports on the results of

  19. Burn Wound Infections

    PubMed Central

    Church, Deirdre; Elsayed, Sameer; Reid, Owen; Winston, Brent; Lindsay, Robert

    2006-01-01

    Burns are one of the most common and devastating forms of trauma. Patients with serious thermal injury require immediate specialized care in order to minimize morbidity and mortality. Significant thermal injuries induce a state of immunosuppression that predisposes burn patients to infectious complications. A current summary of the classifications of burn wound infections, including their diagnosis, treatment, and prevention, is given. Early excision of the eschar has substantially decreased the incidence of invasive burn wound infection and secondary sepsis, but most deaths in severely burn-injured patients are still due to burn wound sepsis or complications due to inhalation injury. Burn patients are also at risk for developing sepsis secondary to pneumonia, catheter-related infections, and suppurative thrombophlebitis. The introduction of silver-impregnated devices (e.g., central lines and Foley urinary catheters) may reduce the incidence of nosocomial infections due to prolonged placement of these devices. Improved outcomes for severely burned patients have been attributed to medical advances in fluid resuscitation, nutritional support, pulmonary and burn wound care, and infection control practices. PMID:16614255

  20. Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992

    SciTech Connect

    Not Available

    1992-09-01

    Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  1. Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers

    DOEpatents

    Givens, Edwin N. (Bethlehem, PA); Ying, David H. S. (Macungie, PA)

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

  2. Designing and upgrading plants to blend coal

    SciTech Connect

    McCartney, R.H. [Roberts and Schaefer Co. (United States)

    2006-10-15

    Fuel flexibility isn't free. Whether you are equipping a new power plant to burn more than one type of coal or retrofitting an existing plant to handle coal blends, you will have to spend time and money to ensure that all three functions performed by its coal-handling system, unloading, stockout, and reclaim, are up to the task. The first half of this article lays out the available options for configuring each subsystem to support blending. The second half describes, in words and pictures, how 12 power plants in the USA, both new and old, address the issue. 9 figs., 1 tab.

  3. Burns and military clothing.

    PubMed

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under high heat loads in the laboratory, combat clothing can ignite, but there is little evidence that clothing ignition is a common occurrence in military burn casualties. Thermoplastic materials have many benefits in civil and military clothing. There is little objective evidence that they exacerbate burns, or complicate burn management. Their use in military clothing must be based on objective evidence, not hearsay. PMID:11307683

  4. Zinc burns: a rare burn injury.

    PubMed

    de Juan, A; Ramon, P; Santoyo, F; Alonso, S

    2000-08-01

    A patient was presented with significant burns resulting from a workplace accident in a zinc production unit. This occurred as a result of the spontaneous combustion of zinc bleed under high pressure. The patient sustained burns to the face, body, and hands and suffered significant injury to the left cornea. Computed imaging revealed solid particles in the ethmoid sinus and also in the right nasal fossa, dissecting the right lacrimal duct. Photographic documentation is presented. This injury was potentially preventable and resulted from poor observance of safety procedures. PMID:10812277

  5. Volcanic ash in feed coal and its influence on coal combustion products

    SciTech Connect

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O'Connor, J.T.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the peat-forming mire. Dissolution and alteration of these minerals occurred either in the peat-forming sate or during coalification/diagenesis contributing to the authigenic mineral suite. Additionally, detrital mineral input and epigenetic ground-water flow may have affected the geochemistry of the feed coal.

  6. Physical structure changes of Canadian coals during combustion

    SciTech Connect

    Gentzis, T.; Chambers, A. [Alberta Research Council, Devon, Alberta (Canada). Coal and Hydrocarbon Processing Dept.

    1995-01-01

    A subbituminous (Coal A), and both high-volatile (Coal B) and low-volatile bituminous (Coal C) coals were chosen to examine coals of different rank and reactivity. Coal A and Coal B were very reactive, with burnouts of 95% and 88% achieved under stable operating conditions. Coal C was relatively unreactive. It was not possible to achieve a stable flame with the burnout decreasing below 50% in less than 1 h. Direct comparison of the partially burnt samples from the three coals was difficult because of the different reactivities. Coals A and B burned so rapidly that it was not possible to collect samples below 70% burnout. Conversely, it was not possible to generate samples of Coal C char at burnouts above 72%. Coal A showed a continuous decrease in particle size with burnout. Coal B showed a significant size decrease only before 70% burnout, whereas coal C actually increased in size up to 60% burnout, followed by a slight decrease. Surface area analysis of Coal A indicated a large surface area contained in micropores. At high levels of burnout (above 90%), the surface area decreased. The same behavior was observed for coal B. While coal C also showed this large increase in surface area, the decrease occurred at about 50% burnout, much earlier than for the other coals. Results of mercury porosimetry tests on the partially burnt samples revealed a significant change in the pore volume for both Coals A and B, while no large changes were observed for Coal C. It was difficult to draw any conclusions from the porosimetry results due to the different particle size of the chars and wide variance in the measurements.

  7. Controller for pulverized coal burner

    NASA Astrophysics Data System (ADS)

    Wojcik, Waldemar; Golec, Tomasz; Kotyra, Andrzej; Smolarz, Andrzej; Komada, Pawel; Kalita, Mariusz

    2004-09-01

    Burning pulverized coal in power boilers causes considerable emission of atmospheric pollution. In order to decrease it the combustion process itself has been modified, however at cost of side effects like: increased level of unburned coal particles in the ashes. There are tens of burners in a single power boiler and emission level measurements are made in flue gas duct, so the control based on such averaged and heavily delayed values often results ineffective. The neural controller of the pulverized coal burner attempts to resolve these problems. The clue is utilization of fiber-optic system for monitoring of chosen zone of flame developed in Department of Electronics of Technical University of Lublin. The article contains description of controlled system and optical fiber measurement system, an idea of the controller as well as some results obtained for experimental burner.

  8. “Chemical Changes: Burning

    NSDL National Science Digital Library

    Kris Ryan

    2012-07-25

    This lesson demonstrates how students can apply the process of identifying main idea and supporting details to show the different ways burning can chemically change matter. The students can identify these changes and discuss the details that support these changes, which will help them further understand how burning matter is considered a chemical change.

  9. Survey of the effects of coal chlorine levels on fireside corrosion in pulverized coal-fired boilers

    SciTech Connect

    Wright, I.G.; Mehta, A.K. [Electric Power Research Inst., Palo Alto, CA (United States); Ho, K.K. [Illinois Clean Coal Inst., Carterville, IL (United States). Coal Development Office

    1994-12-31

    There is concern in the electric utility industry about the possible impact on boiler performance of burning coals from the Illinois Basin, which may contain chlorine levels up to 0.6 percent. This concern is reflected in the suggested coal chlorine limits used by boiler manufacturers, and in the application of coal chlorine content limitations in coal supply contracts. The basis for such limitations apparently is rooted in an awareness of problems reported by the Central Electricity Generating Board in the U.K., which routinely utilized coals with chlorine contents ranging up to 0.6--0.7 percent, rather than in well-documented experience from burning Illinois Basin coals. The objective of this survey was to gather data to clarify the effects, if any, of the chlorine content of coal on the type and occurrence of maintenance problems on the fireside circuit of US boilers. The results showed that a significant tonnage of Illinois Basin coal is burned each year, some 60 {times} 10{sup 6} tons in 1991, and at least 15 US utilities have experience in its use. The extent that problems were experienced is discussed in terms of the chlorine content of the fuel actually fed to the boiler, boiler type, and operating conditions. Plans for research to better define the interactions among chlorine, sulfur, and alkali metals in coal on its corrosivity in boilers are outlined.

  10. Hand chemical burns.

    PubMed

    Robinson, Elliot P; Chhabra, A Bobby

    2015-03-01

    There is a vast and ever-expanding variety of potentially harmful chemicals in the military, industrial, and domestic landscape. Chemical burns make up a small proportion of all skin burns, yet they can cause substantial morbidity and mortality. Additionally, the hand and upper extremity are the most frequently involved parts of the body in chemical burns, and therefore these injuries may lead to severe temporary or permanent loss of function. Despite this fact, discussion of the care of these injuries is sparse in the hand surgery literature. Although most chemical burns require only first response and wound care, some require the attention of a specialist for surgical debridement and, occasionally, skin coverage and reconstruction. Exposure to certain chemicals carries the risk of substantial systemic toxicity and even mortality. Understanding the difference between thermal and chemical burns, as well as special considerations for specific compounds, will improve patient treatment outcomes. PMID:25653184

  11. Coal handling. Final report

    Microsoft Academic Search

    1981-01-01

    This report contains information on coal handling discussed under the following headings: coal selection; transportation; unloading coal; feeders; coal storage; crushing; sampling; conveying; and coal handling support operations and equipment.

  12. Skin Burns (Beyond the Basics)

    MedlinePLUS

    ... than 3 inches or 7.5 cm) or deep (deep partial-thickness or full thickness) (see 'Burn type' ... are good examples of superficial partial-thickness burns. Deep partial-thickness skin burns — Deep partial-thickness skin ...

  13. Environmentally clean multifuel burning industrial steam generation

    SciTech Connect

    Mesko, J.E. (Parsons Brinckerhoff Quade and Douglas, Inc., New York, NY (US))

    1990-01-01

    Steam generation and distribution at a major industrial facility of the Federal Government faced several problems. Existing local boiler plants and steam distribution systems were inefficient, unreliable, and difficult to maintain. The facility also faced the problem of disposing of large quantities of scrap wood, paper and cardboard wastes. The design solution presented successfully solved the problems and met the project objectives of burning variable solid fuels with changing size consist, heat and moisture content, in a modern environmentally controlled automatic highly efficient new central steam plant. In this new plant steam is generated by three high pressure field-erected boilers burning 100% coal, 100% refuse and/or combinations of the two, while maintaining particulate emissions, SO{sub 2} concentration, NO{sub x} and Chlorine levels at, or below clean air standards.

  14. Speed up the development and popularization of coal in Shanxi and Taiyuan areas

    SciTech Connect

    Hu, Y.; Ma, Q.; Fan, R. [Taiyuan General Corp. of Coal Gasification (China)

    1997-12-31

    Clean coal utilization is a key step of sustainable development in China. In the period of ninth Five-Year-Plan, China will greatly enhance the development and adoption of clean coal technology, in which the industrial coal briquetting plays an important role. Compared with burning pulverized coal, burning coal briquettes in stoker boilers raises heat efficiency 10--14%, saves 15--21% of the coal, reduces particulate emission by 80--91% and SO{sub 2} by 20--36%. Consequently, development and popularization of coal briquette for boilers have been listed as one of the key projects in the ninth Five-Year-Plan. Owing to mechanized coal mining, the lump coal proportion is being reduced. On the other hand, thousands of gas producers in the small and medium scale ammonia plants increasingly demand lump anthracite. This discrepancy between supply and demand on lump coal can be resolved by coal briquetting. This paper describes the features and superiority of coal briquettes for gasification; it has uniform size, larger porosity, and higher reactivity. Some of its properties can be upgraded. Many Chinese organizations are being devoted to coal briquetting research, development and production. How to coordinate them in their efforts to form a coal briquetting industry with suitable production capacity and active market is a topic worth studying. This paper describes the current situation on briquette research, production and marketing. Some proposals to speed up the development and popularization of the coal briquettes are given.

  15. Chryseobacterium in burn wounds.

    PubMed

    Kienzle, N; Muller, M; Pegg, S

    2001-03-01

    Chryseobacteria are gram negative organisms, formerly known as Flavobacteria, which rarely cause infections of burn wounds. This article documents three cases of Chryseobacterium infection in burn wounds and adds to the other two cases that have been reported in English literature. Two patients died, with one of the deaths linked to a Chryseobacteria bacteraemia. In two patients, there was an associated history of first aid treatment with untreated water. Patients whose burn wounds are suspected to be infected with Chryseobacterium require wound excision and coverage in combination with antibiotic therapy such as ciprofloxacin, vancomycin and rifampicin. PMID:11226658

  16. Upgrading low-rank coal with K-Fuel technology

    SciTech Connect

    Gentile, R.H. [KFx, Inc., Arlington, VA (United States); Merriam, N. [Western Research Inst., Laramie, WY (United States); Kohn, J. [KFx, Inc., Denver, CO (United States)

    1996-12-31

    The K-Fuel process is a demonstrated technology that physically and chemically transforms low rank coals and other carbonaceous feedstocks to high-energy solid fuel. K-Fuel technology can enhance low-rank coals, wood and any biomass into high-energy K-Fuel, a product comparable to bituminous coal. The transformation occurs through the use of heat and pressure in specially configured pressure vessels. Through process control, the K-Fuel technology mirrors and speeds up the natural mechanism of coalification, the transformation of biomass into coal. In nature the coalification process takes centuries to convert biomass to peat, lignite, bituminous coal and finally to anthracite. This change takes place when biomass is exposed to pressure and increased temperatures. In this natural progression, the primary chemical changes are the loss of oxygen and the loss of water. K-Fuel applies more extreme pressures and temperatures to the feedstock reducing the coalification period to minutes and bringing on the same primary chemical changes as occur in nature. KFx is currently building the first commercial K-Fuel plant, based on the Series C process, in Gillette, Wyoming to upgrade Powder River Basin subbituminous coal. The plant will produce 500,000 tons per year of high-energy, low-sulfur coal for sale to electric utilities on the Eastern coast of the US. KFx has a contract in place with the Ohio Valley Electric Corporation, a subsidiary of American Electric Power Corporation, for part of the production of the Gillette plant. This paper describes the K-Fuel Series C process and the opportunities for K-Fuel in the US and in the Czech Republic, India, Indonesia, and Turkey.

  17. New ESP additive controls particulates

    SciTech Connect

    Durham, M.D.; Baldrey, K.E.; Bustard, C.J.; Martin, C.E.; Dharmarajan, N.N.

    1997-06-01

    This article reports that a conditioning agent enhanced precipitator performance after plant switched to low-sulfur coal. Firing low-sulfur coal at a power plant designed for medium- or high-sulfur coal will impact the downstream particulate control device. Since the performance of an electro-static precipitator (ESP) is a strong function of the sulfur content in the coal, switching to a low-sulfur coal will severely impact collection efficiency. Particle resistivity is the dominant parameter affecting the performance of an ESP. When the resistivity is too high, the ESP must be increased in size by a factor of two to three, resulting in proportionally increased capital and operating costs. Fly ash from low-sulfur coal is known to have a typical resistivity one or two orders of magnitude above that for ideal collection efficiency in a well-designed ESP. Therefore, when a utility burning a medium- or high-sulfur coal switches to a low-sulfur coal, the increase in particle resistivity resulting from the reduced SO{sub 3} concentration will lead to severe problems in the ESP. There have been many instances where utilities have switched from a high- to a low-sulfur coal, and the problems caused by the increased resistivity have had such a devastating effect on the performance of the ESP that emissions have increased by a factor of 10.

  18. Plane flame furnace combustion tests on JPL desulfurized coal

    SciTech Connect

    Reuther, J.J.; Kim, H.T.; Lima, J.G.H.

    1982-05-01

    The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels.

  19. Plane flame furnace combustion tests on JPL desulfurized coal

    NASA Technical Reports Server (NTRS)

    Reuther, J. J.; Kim, H. T.; Lima, J. G. H.

    1982-01-01

    The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels.

  20. Chemical burn or reaction

    MedlinePLUS

    ... the skin has come in contact with the toxic substance Rash , blisters , burns on the skin Unconsciousness ... locked cabinet. Avoid mixing different products that contain toxic chemicals such as ammonia and bleach. The mixture ...

  1. Coal Tar and Coal-Tar Pitch

    Cancer.gov

    Coal tar is derived from coal. It is a byproduct of the production of coke, a solid fuel that contains mostly carbon, and coal gas. Coal tar is used primarily for the production of refined chemicals and coal-tar products, such as creosote and coal-tar pitch. Certain preparations of coal tar have long been used to treat various skin conditions, such as eczema, psoriasis, and dandruff.

  2. Oxy-combustion of pulverized coal : modeling of char combustion kinetics.

    SciTech Connect

    Shaddix, Christopher R.; Haynes, Brian S. (University of Sydney, Sydney, Australia); Geier, Manfred

    2010-09-01

    In this study, char combustion of pulverized coal under oxy-fuel combustion conditions was investigated on the basis of experimentally observed temperature-size characteristics and corresponding predictions of numerical simulations. Using a combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometer, combustion characteristics (particle temperatures and apparent size) of pulverized coal char particles was determined for combustion in both reduced oxygen and oxygen-enriched atmospheres with either a N{sub 2} or CO{sub 2} bath gas. The two coals investigated were a low-sulfur, high-volatile bituminous coal (Utah Skyline) and a low-sulfur subbituminous coal (North Antelope), both size-classified to 75-106 {micro}m. A particular focus of this study lies in the analysis of the predictive modeling capabilities of simplified models that capture char combustion characteristics but exhibit the lowest possible complexity and thus facilitate incorporation in existing computational fluid dynamics (CFD) simulation codes. For this purpose, char consumption characteristics were calculated for char particles in the size range 10-200 {micro}m using (1) single-film, apparent kinetic models with a chemically 'frozen' boundary layer, and (2) a reacting porous particle model with detailed gas-phase kinetics and three separate heterogeneous reaction mechanisms of char-oxidation and gasification. A comparison of model results with experimental data suggests that single-film models with reaction orders between 0.5 and 1 with respect to the surface oxygen partial pressure may be capable of adequately predicting the temperature-size characteristics of char consumption, provided heterogeneous (steam and CO{sub 2}) gasification reactions are accounted for.

  3. Oxy-combustion of pulverized coal : modeling of char-combustion kinetics.

    SciTech Connect

    Shaddix, Christopher R.; Haynes, Brian S. (University of Sydney, Sydney, Australia); Geier, Manfred

    2010-09-01

    In this study, char combustion of pulverized coal under oxy-fuel combustion conditions was investigated on the basis of experimentally observed temperature-size characteristics and corresponding predictions of numerical simulations. Using a combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometer, combustion characteristics (particle temperatures and apparent size) of pulverized coal char particles was determined for combustion in both reduced oxygen and oxygen-enriched atmospheres with either a N{sub 2} or CO{sub 2} bath gas. The two coals investigated were a low-sulfur, high-volatile bituminous coal (Utah Skyline) and a low-sulfur subbituminous coal (North Antelope), both size-classified to 75-106 {micro}m. A particular focus of this study lies in the analysis of the predictive modeling capabilities of simplified models that capture char combustion characteristics but exhibit the lowest possible complexity and thus facilitate incorporation in existing computational fluid dynamics (CFD) simulation codes. For this purpose, char consumption characteristics were calculated for char particles in the size range 10-200 {micro}m using (1) single-film, apparent kinetic models with a chemically 'frozen' boundary layer, and (2) a reacting porous particle model with detailed gas-phase kinetics and three separate heterogeneous reaction mechanisms of char-oxidation and gasification. A comparison of model results with experimental data suggests that single-film models with reaction orders between 0.5 and 1 with respect to the surface oxygen partial pressure may be capable of adequately predicting the temperature-size characteristics of char consumption, provided heterogeneous (steam and CO{sub 2}) gasification reactions are accounted for.

  4. Burning Mouth Syndrome

    PubMed Central

    Mock, David; Chugh, Deepika

    2010-01-01

    Most clinicians dread seeing the patient presenting with a primary complaint of a burning pain on one or more oral mucosal surfaces. Unlike most other clinical conditions presenting in a dental office, burning mouth syndrome is poorly understood with few evidence based remedies. More recently, advances have been made towards clarifying the possible etiology of the disorder and testing the possible therapeutic modalities available. This article attempts to summarize the “state of the art” today. PMID:20690412

  5. Burns in the disabled.

    PubMed

    Backstein, R; Peters, W; Neligan, P

    1993-06-01

    A retrospective analysis of 812 patients admitted to the Ross Tilley Burn Centre between 1984 and 1992 resulted in 37 cases of burn injuries which were directly related to premorbid disabilities. The majority of these burns (83.8 per cent) occurred in the patient's home, most commonly as scald injuries in the bath tub, the shower, or following hot water spills. Nineteen patients were male, 17 were female. The median age was 58 years. Six patients had spinal cord disorders: four had traumatic cord damage, two had spina bifida. Six patients had seizure disorders. Five of these patients had been taking anti-seizure medications, but all had subtherapeutic blood levels on admission to hospital. Two patients had diabetes mellitus with peripheral neuropathies. Thirteen patients had four miscellaneous neurological disorders, including: tardive dyskinesia (two), CVA (four), Parkinson's disease (two), Alzheimer's disease (two), cerebral palsy (one), multiple sclerosis (one) and blindness (one). Three patients had a diagnosis of syncope. Two patients had emphysema, and four were morbidly obese. The average length of stay (LOS) for the disabled patients was 27.6 days for a median burn size of 10 per cent body surface area (BSA), compared to an average LOS for the general population of 25.7 days for a larger median burn size of 21 per cent BSA. The mortality rate was also much higher in the disabled population (22.2 per cent vs. 6.0 per cent). Most of these burn injuries were preventable. A series of burn prevention guidelines is presented, in an attempt to reduce the incidence of these burn injuries in disabled patients. PMID:8507362

  6. Preventing tap water burns.

    PubMed Central

    Baptiste, M S; Feck, G

    1980-01-01

    Based on a 1974-1975 survey of hospital records in upstate New York, we estimate that 347 tap water burns will require inpatient treatment annually, with children and the elderly at increased risk. The number and severity of burns from tap water makes them an important prevention priority. Reducing the temperature of household hot water supplies could be a practical and effective prevention measure. PMID:7386711

  7. Books2burn

    NSDL National Science Digital Library

    Weinstein, Matthew

    Developed by Professor Matthew Weinstein of Kent State University, Books2burn translates text files into a series of audio files, which may then subsequently be converted to mp3's or other formats. This program will be a great boon to scholars and the general public alike, as the application allows for the easy transfer and replication of potentially large and problematic files into a number of audio formats. Books2burn is compatible with all systems running Mac OS X.

  8. PBXN-110 Burn Rate Estimate

    SciTech Connect

    Glascoe, E

    2008-08-11

    It is estimated that PBXN-110 will burn laminarly with a burn function of B = (0.6-1.3)*P{sup 1.0} (B is the burn rate in mm/s and P is pressure in MPa). This paper provides a brief discussion of how this burn behavior was estimated.

  9. 26. Wood coal quencher, coal conveyor for powerhouse coal pulverizer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Wood coal quencher, coal conveyor for powerhouse coal pulverizer house, DX coke battery, stack, coke batteries to right. Looking east - Rouge Steel Company, 3001 Miller Road, Dearborn, Wayne County, MI

  10. The media glorifying burns: a hindrance to burn prevention.

    PubMed

    Greenhalgh, David G; Palmieri, Tina L

    2003-01-01

    The media have a profound influence on the actions of children and adults. Burns and burn prevention tend to be ignored or even mocked. The purpose of this presentation is to reveal the callousness of the media in its dealings with burns and burn prevention. Printed materials with a relationship to burns, risk of burning, or disrespect for the consequences of burns were collected. The materials were tabulated into four categories: comics, advertisements (ads), articles that made light of burns, and television shows that portrayed behavior that would risk burn injury. Most burn-related materials were found in comics or advertisements. Several comics made light of high-risk behavior with flames, scald injury, contact injury, or burns. In addition, several advertisements showed people on fire or actions that could easily lead to burns. Several articles and televisions shows portrayed high-risk behavior that, in some instances, led to copycat injuries. Flames are frequently used to sell items that target adolescent boys or young men. The high incidence injuries that frequent this population parallel the high-risk behaviors portrayed by the media. The media portrays flames and high-risk behavior for burn injury as being cool, funny, and without consequence. The use of flames on clothing and recreational equipment (skateboards, hot rods) particularly targets the high-risk adolescent male. The burn community should make the media aware of the harm it causes with its callous depiction and glorification of burns. PMID:12792237

  11. Rheology of coal-water slurries prepared by the high-pressure roll mill grinding of coal. Final report

    SciTech Connect

    Fuerstenau, D.W.; De, A.

    1996-08-01

    The preparation of coal water slurries to replace fuel oil for direct combustion has become an important field in modem coal technology. The U.S. Department of Energy has planned or has underway several demonstration projects to burn coal-water slurries to replace fuel oil is attractive not only because there is an assured domestic supply of coal, but also on various technoeconomic grounds. Coal-water slurries combine the handling flexibility of fuel oil in power plants and various other industrial applications. This report discusses the rheology of coal-water slurries and the correlation to the coal preparation by grinding with a choke-fed high pressure roll mill. Performance of the roll mills and energy consumption are described.

  12. Extraction, separation, and analysis of high sulfur coal

    SciTech Connect

    Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr. (comps.)

    1992-05-31

    The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

  13. Extraction, separation, and analysis of high sulfur coal. Final report

    SciTech Connect

    Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr. [comps.

    1992-05-31

    The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

  14. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  15. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  16. Coal-liquid mixture combustion tests in oil-designed boilers

    Microsoft Academic Search

    J. L. Joubert; G. T. Bellas

    1982-01-01

    Several coal-liquid mixture fuels have been evaluated in oil-designed boilers at the Pittsburgh Energy Technology Center (PETC). A comprehensive coal-oil mixture combustion program was successfully completed in a 700-hp (6.87-MW) watertube boiler. Coal-water mixtures have been burned recently in a 100-hp (0.98-MW) firetube boiler and the 700-hp (6.87-MW) watertube boiler. Coal-methanol mixtures have also been burned in the 100-hp (0.98-MW)

  17. An investigation of radon exhalation rate and estimation of radiation doses in coal and fly ash samples

    Microsoft Academic Search

    A. K. Mahur; Rajesh Kumar; Meena Mishra; D. Sengupta; Rajendra Prasad

    2008-01-01

    Coal is a technologically important material used for power generation. Its cinder (fly ash) is used in the manufacturing of bricks, sheets, cement, land filling etc. Coal and its by-products often contain significant amounts of radionuclides, including uranium which is the ultimate source of the radioactive gas radon. Burning of coal and the subsequent atmospheric emission cause the redistribution of

  18. Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends 

    E-print Network

    Martin, Brandon Ray

    2009-05-15

    derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis...

  19. Coal Field Fire Fighting - Practiced methods, strategies and tactics

    NASA Astrophysics Data System (ADS)

    Wündrich, T.; Korten, A. A.; Barth, U. H.

    2009-04-01

    Subsurface coal fires destroy millions of tons of coal each year, have an immense impact to the ecological surrounding and threaten further coal reservoirs. Due to enormous dimensions a coal seam fire can develop, high operational expenses are needed. As part of the Sino-German coal fire research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" the research team of University of Wuppertal (BUW) focuses on fire extinction strategies and tactics as well as aspects of environmental and health safety. Besides the choice and the correct application of different extinction techniques further factors are essential for the successful extinction. Appropriate tactics, well trained and protected personnel and the choice of the best fitting extinguishing agents are necessary for the successful extinction of a coal seam fire. The chosen strategy for an extinction campaign is generally determined by urgency and importance. It may depend on national objectives and concepts of coal conservation, on environmental protection (e.g. commitment to green house gases (GHG) reductions), national funding and resources for fire fighting (e.g. personnel, infrastructure, vehicles, water pipelines); and computer-aided models and simulations of coal fire development from self ignition to extinction. In order to devise an optimal fire fighting strategy, "aims of protection" have to be defined in a first step. These may be: - directly affected coal seams; - neighboring seams and coalfields; - GHG emissions into the atmosphere; - Returns on investments (costs of fire fighting compared to value of saved coal). In a further step, it is imperative to decide whether the budget shall define the results, or the results define the budget; i.e. whether there are fixed objectives for the mission that will dictate the overall budget, or whether the limited resources available shall set the scope within which the best possible results shall be achieved. For an effective and efficient fire fighting optimal tactics are requiered and can be divided into four fundamental tactics to control fire hazards: - Defense (digging away the coal, so that the coal can not begin to burn; or forming a barrier, so that the fire can not reach the not burning coal), - Rescue the coal (coal mining of a not burning seam), - Attack (active and direct cooling of burning seam), - Retreat (only monitoring till self-extinction of a burning seam). The last one is used when a fire exceeds the organizational and/or technical scope of a mission. In other words, "to control a coal fire" does not automatically and in all situations mean "to extinguish a coal fire". Best-practice tactics or a combination of them can be selected for control of a particular coal fire. For the extinguishing works different extinguishing agents are available. They can be applied by different application techniques and varying distinctive operating expenses. One application method may be the drilling of boreholes from the surface or covering the surface with low permeability soils. The mainly used extinction agents for coal field fire are as followed: Water (with or without additives), Slurry, Foaming mud/slurry, Inert gases, Dry chemicals and materials and Cryogenic agents. Because of its tremendous dimension and its complexity the worldwide challenge of coal fires is absolutely unique - it can only be solved with functional application methods, best fitting strategies and tactics, organisation and research as well as the dedication of the involved fire fighters, who work under extreme individual risks on the burning coal fields.

  20. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 3, April--June 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1995-08-05

    Economical dewatering of an ultra-fine clean coal product to a 20% or lower level moisture will be an important step in successful implementation of the advanced fine coal cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept (POC) scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals. During this quarter, addition of reagents such as ferric ions and a novel concept of in-situ polymerization (ISP) was studied in the laboratory. Using the ISP approach with vacuum filtration provided 25% moisture filter cake compared to 65.5% moisture obtained conventionally without using the ISP. A series of dewatering tests were conducted using the Andritz hyperbaric pilot filter unit with high sulfur clean coal slurry.

  1. Clean Coal Draft for public comment

    NASA Astrophysics Data System (ADS)

    The Department of Energy is asking the public to comment on the draft environmental impact statement for 22 clean coal technologies, from precombustion cleaning techniques to coal gasification and fuel cell systems. Incentives to promote use of these new methods for burning coal are included in President George Bush's proposed revisions to the Clean Air Act.The draft is based on a computer model developed at Argonne National Laboratory, Illinois, and run at Oak Ridge National Laboratory, Tennessee. The model estimates the amounts of reduction by 2010 in national emissions of sulfur dioxide, nitrogen oxides and carbon dioxide that use of the new technologies could achieve. It also compares the amounts and kinds of solid waste produced by clean coal technologies to the solid waste of power-production technologies in use today.

  2. Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers 

    E-print Network

    Miller, B.; Keon, E.

    1980-01-01

    Chemical technology has been used successfully to solve many of the operational and emissions problems that result from burning coal. This paper describes the use of blended chemical flue gas conditioners to significantly reduce particulate...

  3. Emissions of fine particle fluoride from biomass burning.

    PubMed

    Jayarathne, Thilina; Stockwell, Chelsea E; Yokelson, Robert J; Nakao, Shunsuke; Stone, Elizabeth A

    2014-11-01

    The burning of biomasses releases fluorine to the atmosphere, representing a major and previously uncharacterized flux of this atmospheric pollutant. Emissions of fine particle (PM2.5) water-soluble fluoride (F-) from biomass burning were evaluated during the fourth Fire Laboratory at Missoula Experiment (FLAME-IV) using scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDX) and ion chromatography with conductivity detection. F- was detected in 100% of the PM2.5 emissions from conifers (n=11), 94% of emissions from agricultural residues (n=16), and 36% of the grasses and other perennial plants (n=14). When F- was quantified, it accounted for an average (±standard error) of 0.13±0.02% of PM2.5. F- was not detected in remaining samples (n=15) collected from peat burning, shredded tire combustion, and cook-stove emissions. Emission factors (EF) of F- emitted per kilogram of biomass burned correlated with emissions of PM2.5 and combustion efficiency, and also varied with the type of biomass burned and the geographic location where it was harvested. Based on recent evaluations of global biomass burning, we estimate that biomass burning releases 76 Gg F- yr(-1) to the atmosphere, with upper and lower bounds of 40-150 Gg F- yr(-1). The estimated F- flux from biomass burning is comparable to total fluorine emissions from coal combustion plus other anthropogenic sources. These data demonstrate that biomass burning represents a major source of fluorine to the atmosphere in the form of fine particles, which have potential to undergo long-range transport. PMID:25275955

  4. Burning and detonation

    SciTech Connect

    Forest, C.A.

    1981-01-01

    The effect of confined burning explosive abutting nonburning explosive in a variety of one-dimensional geometries has been studied by numerical simulation, demonstrating the effects of confinement, burning rate, and shock sensitivity. The model includes porous bed burning, compressible solids and gases, shock-induced decomposition with possible transition to detonation, and constant velocity ignition waves. Two-phase flow, gas relative to solid, is not allowed. Because the shock sensitivity of an explosive changes with explosive density and because such experimental data is rarely available over a range of densities, a method for the calculation of the density effect on the initial-shock-pressure, distance-to-detonation (wedge test) measure of shock sensitivity is given. The calculation uses the invariance with density of the shock particle velocity as a function of time to detonation, and the experimental data at some high density.

  5. 'Special effects' burn injuries.

    PubMed

    Peters, W

    1991-02-01

    Three patients are presented with significant flame burns, resulting from accidents occurring during 'special effects' situations in the entertainment industry. These occurred as a result of the spontaneous combustion of various materials, during events in live theatre (gun powder), a television commercial (artificial 'rocket fuel'), and a video presentation (magnesium oxide). All three patients sustained flash burns to the face and hands. One patient sustained a significant bilateral corneal injury, a gamekeeper's thumb, and a permanent continuous right-sided high frequency tinnitus, in addition to his burn injury. Photographic documentation of all three patients is presented. The total loss of time from work for all patients was 6 months. All these injuries were potentially preventable. PMID:2031675

  6. Burning trees and bridges

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1990-01-01

    Most burning of biomass is the result of human activity, and on a global scale it is increasing. Tropospheric concentrations of CO2, CO, CH4, non-methane hydrocarbons, and ozone are all increasing with time; global biomass burning may make an important contribution to this increase and thus to potential global climate change. The nitrogen cycle also can have important climatic effects. Nitrous oxide put into the atmosphere by biomass burning is a greenhouse gas 250 times more powerful (molecule for molecule) than carbon dioxide. Nitric oxide, as well as being a photochemical precursor of ozone, a major pollutant in the troposphere, produces nitric acid, the fastest-growing component of acid rain. Hence, the new bridge in the nitrogen cycle is of more than mere technical interest.

  7. Solvent dewatering coal

    Microsoft Academic Search

    D. E. Hardesty; H. F. Buchholz

    1984-01-01

    Drying of wet coal is facilitated by the addition of a nonaqueous solvent, such as acetone, to the coal followed by application of heat to remove both solvent and water from the coal. The coal may be further upgraded by briquetting or pelletizing fine coal particles with waxes and resins extracted from the coal, or the waxes and resins may

  8. Science at Burning Man

    NSDL National Science Digital Library

    Recently, the Exploratorium Museum in San Francisco sent a dedicated crew to check out the activities at the Burning Man festival in Nevada. The results of their journey and explorations can be seen here, and interested parties can learn about pyrotechnics, flight, dust devils, and rainbows. The site contains several dozen short films that feature Exploratorium scientists like Paul Doherty investigating the properties of alkali and a rare double rainbow sighting. One of the most impressive videos is a bird's eye view from an 88-NV plane over the Burning Man site. Finally, visitors are also encouraged to share these resources with others via social media sites, including Twitter and Facebook.

  9. Burning Down the House

    NSDL National Science Digital Library

    Glenn Dolphin

    In this demonstration, the teacher will use a potato and hydrogen peroxide to generate oxygen in a closed environment. Students can then observe its effects on a burning wooden splint and on burning steel wool. They will understand that a large amount of energy can be released by the process of oxidation. As an extension, the teacher can discuss how the appearance of oxygen (produced by cyanobacteria) in Earth's early atmosphere initially resulted in the formation of large deposits of iron oxide (Banded Iron Formations) and then aided in the evolution of more complex life forms.

  10. Advanced Coal Conversion Process Demonstration Project. Environmental Monitoring Plan

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  11. Steam decomposition in underground coal gasification

    SciTech Connect

    Mastalerz, J.; Matyjaszczyk, M.S.; Rauk, J.

    1987-02-01

    An idea for probing the combustion zone temperature (CZT) in underground coal gasification (UCG) by using the hydrogen amount in product gas coming from the steam decomposition (HS) is proposed. It seems, from both experimental and theoretical analyses of three generators, that the increase in CZT results in the increase of HS and vice versa. Experimental results of UCG in single well and multiwell generators, blind and open, constructed in bituminous coal seam by the shaft method with ambient and heated air and oxygen as oxidizing agents are presented, and good agreement with theoretical predictions is reached after taking into account the carbon dioxide trapping and hydrogen burning processes.

  12. Key tests set for underground coal gasification

    SciTech Connect

    Haggin, J.

    1983-07-18

    Underground coal gasification (UCG) is about to undergo some tests. The tests will be conducted by Lawrence Livermore National Laboratory (LLNL) in a coal seam owned by Washington Irrigation and Development Co. A much-improved UCG system has been developed by Stephens and his associates at LLNL - the controlled retracting injection point (CRIP) method. Pritchard Corp., Kansas City, has done some conceptual process design and has further studied the feasibility of using the raw gas from a UCG burn as a feedstock for methanol synthesis and/or MTG gasoline. Each method was described. (DP)

  13. Venturi burner nozzle for pulverized coal

    SciTech Connect

    Itse, D.C.; Penterson, C.A.

    1984-10-30

    A new and improved burner for pulverized coal comprises a tubular nozzle for containing a primary, flowing stream of coal/air mixture having an outlet for discharging the stream into a combustion zone of a furnace. A venturi is mounted in the nozzle having a convergent section, a throat, and divergent flow section adjacent the outlet. The convergent section concentrates the pulverized coal toward a central portion of the flowing stream in the throat of the venturi. A conical flow spreader is mounted in the divergent section and includes a hollow, open outer end. The spreader cone and the divergent flow section of the venturi form an annular, expanding, flow pattern of coal/air mixture for discharge into the combustion zone and a plurality of swirl vanes between the spreader cone and wall of the divergent section impart swirl to stabilize an annular discharge of the primary coal/air stream from the nozzle to form a high temperature reducing zone wherein a portion of the hot combustion products are recirculated back toward the open end of the flow spreader so that volatiles in the coal are driven off rapidly and burned in a fuel-rich, reducing atmosphere, minimizing the formation of NO /SUB x/ . A stream of secondary air is introduced by vanes to swirl around the primary coal/air stream discharged from the outlet forming a long stable flame pattern providing a relatively slow combustion rate.

  14. TIRES, OPEN BURNING

    EPA Science Inventory

    The chapter describes available information on the health effects from open burning of rubber tires. It concentrates on the three known sources of detailed measurements: (1) a small-scale emissions characterization study performed by the U.S. EPA in a facility designed to simulat...

  15. Burning Your Own CDs.

    ERIC Educational Resources Information Center

    Ekhaml, Leticia

    2001-01-01

    Discusses the use of CDs (Compact Disks) for backing up data as an alternative to using floppy disks and explains how to burn, or record, a CD. Topics include differences between CD-R (CD-Recordable) and CD-RW (CD-Rewritable); advantages of CD-R and CD-RW; selecting a CD burner; technology trends; and care of CDs. (LRW)

  16. Correlating Aluminum Burning Times

    Microsoft Academic Search

    M. W. Beckstead

    2005-01-01

    Characteristics of aluminum combustion are summarized in an overview of the subject, focusing on the burning time of individual particles. Combustion data from over ten different sources with almost 400 datum points have been cataloged and correlated. Available models have also been used to evaluate combustion trends with key environmental parameters. The fundamental concepts that control aluminum combustion are discussed,

  17. Gas Hydrates Burning

    USGS Multimedia Gallery

    An image of gas hydrates burning. Gas hydrates are naturally-occurring “ice-like” combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the world’s oceans and polar regions....

  18. Burn a Peanut

    NSDL National Science Digital Library

    2012-06-26

    In this activity, learners burn a peanut, which produces a flame that can be used to boil away water and count the calories contained in the peanut. Learners use a formula to calculate the calories in a peanut and then differentiate between food calories and physicist calories as well as calories and joules.

  19. Solvent dewatering coal

    SciTech Connect

    Hardesty, D.E.; Buchholz, H.F.

    1984-07-17

    Drying of wet coal is facilitated by the addition of a nonaqueous solvent, such as acetone, to the coal followed by application of heat to remove both solvent and water from the coal. The coal may be further upgraded by briquetting or pelletizing fine coal particles with waxes and resins extracted from the coal, or the waxes and resins may be left on the coal to reduce the tendency of the coal to reabsorb water. In addition, minerals such as sodium and potassium salts may be removed from the coal to reduce slagging and fouling behavior of the coal.

  20. Fire in the hole - Paging in mines from Pennsylvania to China, coal fires threaten towns, poison air and water, and add to global warming

    SciTech Connect

    Krajick, K.

    2005-05-01

    China has the most coal fires, but India has the largest concentration of them. The effect of coal fires on the once thriving town of Centralia, Pennsylvania is described. There have been eight attempts to put the fire out using different methods (it has been burning for 43 years), but has now been left to burn. It could burn for another 205 years. The population of the town have mostly been relocated.

  1. The knowledge of underground coal gasification (UCG) applied to coalbed methane extraction (CBM) and natural coal fires (NCF)

    SciTech Connect

    Wolf, K.H.A.A.; Hettema, M.H.H.; Bruining, J.; Schreurs, H.C.E.

    1997-12-31

    This paper will give a general view on the application of underground coal gasification (UCG) for the improvement of coalbed methane (CBM) production enhancement and the utilization of natural coal fires (NCF). In general UCG techniques will improve the opportunities for the enhancement and utilization of potential energy sources. When all options, UCG, CBM and NCF are placed in a Clean Coal Exploitation Program, it can be divided into a ``cold program`` and a ``hot program.`` In a cold program the authors propose the development and exploitation of second generation cold coal-energy, i.e., coal gas extraction (CBM). The hot program considers the activities in which in-situ burning coals make the core issue for exploitation (UCG, NCF). In both programs UCG-technologies could be important tools for energy acquisition and production improvement.

  2. ENVIRONMENTAL ASSESSMENT OF A FIRETUBE BOILER FIRING COAL/OIL/WATER MIXTURES. VOLUME 2. DATA SUPPLEMENT

    EPA Science Inventory

    This volume is a compendium of detailed emission and test data from field tests of a firetube industrial boiler burning a coal/oil/water (COW) mixture. The boiler was tested while burning COW fuel, and COW with soda ash added (COW+SA) to serve as an SO2 sorbent. The test data inc...

  3. Oil's new rival - coal-water slurry for utility boilers

    Microsoft Academic Search

    T. Moore; R. Manfred

    2009-01-01

    Coal-water slurries (CWS), composed of about 70-75% coal, 24-29% water, and 1% chemical additives, offer utilities an alternative to burning oil for power generation. The CWS process has advanced through the pilot plant stage in a little over five years, and now needs a utility demonstration to show that stable combustion flame can be maintained at full and partial loads,

  4. Influence of combustor operation on fine particles from coal combustion

    Microsoft Academic Search

    D. D. Taylor; R. C. Flagan

    1982-01-01

    This paper discusses the influences observed in laboratory pulverized coal combustion experiments. A Utah subbituminous coal was burned at a rate of 0.5-1.5 kg\\/hr and at fuel-lean conditions in a laboratory furnace. Experiments were conducted using a number of burners and at a range of combustor wall temperatures. Gaseous and particulate combustion products were sampled downstream of a series of

  5. Coal combustion products 2007 production and use report

    SciTech Connect

    NONE

    2009-07-01

    The American Coal Ash Association's 2007 Annual Coal Combustion Products (CCP) are derived from data from more than 170 power plants. The amount of CCPs used was 40.55%, a decrease of 2.88% from 2006, attributed to reduced fuel burn and a decrease in demand in the building industry. Figures are given for the production of fly ash, flue gas desulfurization gypsum, bottom ash, FBC ash and boiler slag. The article summarises results of the survey. 1 ref., 1 tab.

  6. Current trends in coal combustion product (CCPs) production and use

    SciTech Connect

    Stewart, B. [American Coal Ash Association, Alexandria, VA (United States)

    1998-12-31

    CCPs (Coal Combustion Products) are engineering materials that are similar in use to virgin, processed and manufactured materials. CCPs are produced when coal is burned in a boiler to generate electricity. The four types of CCPs produced by electric utility boilers are fly ash, bottom ash, boiler slag and FGD (Flue Gas Desulfurization) material. CCPs rank behind only sand and gravel, and crushed stone as a produced mineral commodity, and rank ahead of Portland cement and iron ore. In 1997, 55% of the electricity was produced by coal fired electric utilities. This number is projected to remain fairly constant to the year 2015. Almost 90% of the coal used in the United States, is burned to generate electricity. During 1997, 898.5 million metric tons (870 million short tons) of coal were burned by electric utilities to generate electricity. As a result, over 95 million tons (105 million short tons) of CCPs were generated by the electric utilities. This figure promises to increase in the future, owing mostly to the anticipated rise in FGD material generation. The American Coal Ash Association, Inc. (ACAA) is a trade association representing the CCP Industry. ACAA promotes the use in CCPs in numerous applications that are technically sound, commercially competitive and environmentally safe. The data presented in this paper has been taken from the Annual Survey of CCP production and use by ACAA. ACAA conducts an annual voluntary, confidential, survey of US coal fired electric utilities to gather data about the production and use of CCPs. In 1997, the survey data collected accounts for approximately 80% of the coal burned by electric utilities. Information from previous ACAA surveys or US Department of Energy (DOE) Energy Information Administration (EIA) data were used to estimate CCP production and use for utilities that did not respond to the survey. None of the data used was older than 1995.

  7. Cleaning of Croweburg Seam coal to improve boiler performance

    SciTech Connect

    Dospoy, R.L.

    1991-01-01

    Recently an Oklahoma law was enacted that mandates that Oklahoma coal-fired utilities must burn a minimum of ten percent Oklahoma-mined coal. Public Service Company of Oklahoma (PSO), burning raw Croweburg Seam coal from Oklahoma as part of a blend, was interested in determining if cleaning the Croweburg Seam coal could reduce boiler slagging and fouling problems experienced at its Northeastern Station's Units 3 and 4. Studies of the Croweburg Seam coal performed at CQ Inc. in Homer City, Pennsylvania were used to determine the potential of physical cleaning for upgrading this coal. The test program involved commercial-scale cleaning tests with heavy-medium cyclones, two-stage water only cyclones, and froth flotation cells, well as extensive laboratory and pilot-scale tests. The coal evaluated during the test program responded well to cleaning. Results indicate the ash slagging and fouling can be significantly improved by cleaning. Significant reductions in ash, specific ash constituents, and trace element concentrations were also demonstrated along with increased heating value. Finally, although the raw coal tested can be classified as compliance'' prior to cleaning, the cleaning tests show that further reductions in SO{sub 2} emissions potential were possible, along with high energy recoveries and increased heating values and can be beneficial for improved plant performance.

  8. Properties of premium coal water fuel prepared by advanced physical fine coal cleaning

    SciTech Connect

    Jha, M.C.; Moro, N.; Smit, F.J. [Entech Global, Inc., Golden, CO (United States); Feeley, T.J. III [Dept. of Energy, Pittsburgh, PA (United States)

    1997-07-01

    Coal water slurry fuels (CWF) were prepared from six finely ground bituminous coals cleaned by two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, which reduced their ash contents to less than 2 lb/MBtu. A-23M was used as a dispersant. The CWF slurries prepared from -62 mesh to -150 mesh hvA Taggart, Elkhorn No. 3, Sunnyside and Hiawatha coals contained 59.5 to 67 percent coal, or 8,500 to 10,200 Btu/lb. CWF prepared from minus 325 mesh hvG Indiana VII coal contained 50.9 to 52.5 percent coal, or 7,100 to 7,400 Btu/lb. The cleaning method had no discernible impact on the slurry properties. Adjustment of the natural particle size distributions by regrinding a portion of the clean coal improved the loadings by a small amount while Flocon stabilizer additions had an adverse effect. Because of the cost of the stabilizer, it is recommended that CWFs be burned soon after preparation.

  9. Coal and coal mine drainage. [Industrial wastes

    Microsoft Academic Search

    Olem

    1982-01-01

    A literature review of the effects of coal mining on hydrology and stream water quality is presented. The technology for abatement and control is considered. Regulatory activities are also discussed. Environmental assessments of acid mine drainage, coal cleaning processes, coal slurry pipelines and effluents from coal storage piles are given. Included are 67 references.

  10. The overall patterns of burns

    PubMed Central

    Almoghrabi, A.; Abu Shaban, N.

    2011-01-01

    Summary Burn patterns differ across the whole world and not only in relation to lack of education, overcrowding, and poverty. Cultures, habits, traditions, psychiatric illness, and epilepsy are strongly correlated to burn patterns. However, burns may also occur because of specific religious beliefs and activities, social events and festivals, traditional medical practices, occupational activities, and war. PMID:22639565

  11. 7, 1733917366, 2007 Biomass burning

    E-print Network

    Paris-Sud XI, Université de

    ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

  12. 5, 27912831, 2005 Biomass burning

    E-print Network

    Paris-Sud XI, Université de

    measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia P. Guyon1 , G. Frank1ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract Introduction. 2791 #12;ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract

  13. BURN DATA COORDINATING CENTER (BDCC)

    EPA Science Inventory

    The Burn Data Coordinating Center (BDCC) began collecting data in 1994 and is currently the largest burn database in the country. Pediatric burn data was added in 1998. The BMS database contains over 2,800 cases supporting clinical research and research on outcomes including empl...

  14. Is proportion burned severely related to daily area burned?

    NASA Astrophysics Data System (ADS)

    Birch, Donovan S.; Morgan, Penelope; Kolden, Crystal A.; Hudak, Andrew T.; Smith, Alistair M. S.

    2014-05-01

    The ecological effects of forest fires burning with high severity are long-lived and have the greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that wind-driven, large fire-growth days play a significant role, particularly on large fires in forested ecosystems. Here, we examined the relative proportion of classified burn severity for individual daily areas burned that occurred during 42 large forest fires in central Idaho and western Montana from 2005 to 2007 and 2011. Using infrared perimeter data for wildfires with five or more consecutive days of mapped perimeters, we delineated 2697 individual daily areas burned from which we calculated the proportions of each of three burn severity classes (high, moderate, and low) using the differenced normalized burn ratio as mapped for large fires by the Monitoring Trends in Burn Severity project. We found that the proportion of high burn severity was weakly correlated (Kendall ? = 0.299) with size of daily area burned (DAB). Burn severity was highly variable, even for the largest (95th percentile) in DAB, suggesting that other variables than fire extent influence the ecological effects of fires. We suggest that these results do not support the prioritization of large runs during fire rehabilitation efforts, since the underlying assumption in this prioritization is a positive relationship between severity and area burned in a day.

  15. Geologic history of natural coal-bed fires, Powder River basin, USA

    Microsoft Academic Search

    E. L Heffern; D. A Coates

    2004-01-01

    Coal-bed fires ignited by natural processes have baked and fused overlying sediments to form clinker, a hard red or varicolored rock, through much of the northern Great Plains of the United States (USA). The gently dipping coal beds in the region burn when regional downwasting brings them above the local water table. The resulting clinker forms a rim along the

  16. Burnout control at the Albright coal-waste-bank fire. Rept. of investigations\\/1991

    Microsoft Academic Search

    R. F. Chaiken; L. G. Bayles

    1991-01-01

    Burnout Control is a process developed by the U.S. Bureau of Mines for accelerating the burning of wasted coal fires in situ, while at the same time controlling the heat and fumes produced. The Albright fire project is a first field trial of Burnout Control as applied to a coal waste bank. An exhaust ventilation system was designed and constructed

  17. Char attrition during the batch fluidized bed combustion of a coal

    SciTech Connect

    Chirone, R.

    1985-05-01

    Batchwise fluidised-bed combustion of a coal was carried out to investigate the generation of elutriable carbon fines by attrition of the burning char. Differences between the purely mechanical attrition and the combustion-assisted attrition of the char are distinguished. Attrition rate constants determined from these curves are compared with those found previously by continuous fluidised combustion of the same coal.

  18. Development of a Software System to Facilitate Implementation of Coal and Wood Co-Fired Bilers 

    E-print Network

    Gopalakrishnan, B.; Gump, C. D.; Gupta, D. P.; Chaudhari, S.

    2013-01-01

    Coal and wood co-fired boiler technology has improved significantly over the years. The term "co-firing", when used by members of the biomass or utility communities, has come to mean mixing a modest amount of clean, dry sawdust with coal and burning...

  19. Isotopic Variations of Mercury Emitted by Coal Fired Power Plant Gases

    Microsoft Academic Search

    S. N. Khawaja; L. Odom; W. Landing

    2010-01-01

    Emission of mercury from the burning of coal is considered one of the important anthropogenic sources of atmospheric mercury. Along with current measurements of the isotopic composition of atmospheric mercury being conducted in our laboratory, we have analyzed mercury emitted from a coal fired power plant. Previously Biswas and others (2008) had reported variations in the isotopic composition of mercury

  20. INFLUENCE OF COAL COMPOSITION ON THE FATE OF VOLATILE AND CHAR NITROGEN DURING COMBUSTION

    EPA Science Inventory

    The paper gives results of burning 50 coals from North America, Europe, Asia, South Africa, and Australia in a 21 kWt refactory-lined tunnel furnace to determine the influence of coal properties on the fate of volatile and char nitrogen. Excess-air fuel NO emissions (determined b...

  1. Temperature, velocity and species profile measurements for reburning in a pulverized, entrained flow, coal combustor

    Microsoft Academic Search

    Tree

    1999-01-01

    Nitrogen oxide emissions from pulverized coal combustion have been and will continue to be a regulated pollutant for electric utility boilers burning pulverized coal. Full scale combustion models can help in the design of new boilers and boiler retrofits which meet emissions standards, but these models require validation before they can be used with confidence. The objective of this work

  2. PARTICULATE COLLECTION EFFICIENCY MEASUREMENTS ON AN ESP INSTALLED ON A COAL-FIRED UTILITY BOILER

    EPA Science Inventory

    The report gives results of fractional and overall collection efficiency measurements of an electrostatic precipitator collecting fly ash from a coal-fired boiler burning high-sulfur coal. The mass median diameter of the particulate entering the collector was approximately 40 mic...

  3. Technical Guide for estimating fugitive dust impacts from coal handling operations. Volume II

    Microsoft Academic Search

    Howroyd

    1984-01-01

    The use of coal at power plants and other fuel-burning installations can result in fugitive dust emissions generated by the handling and storage of coal. At some installations, the storage and handling of fly ash and limestone can also result in fugitive dust emissions. To aid analysts, planners, and managers in evaluating the significance of fugitive dust emissions, a Technical

  4. Technical Guide for estimating fugitive dust impacts from coal handling operations. Volume I. Project summary

    Microsoft Academic Search

    Howroyd

    1984-01-01

    The use of coal at power plants and other fuel-burning installations can result in fugitive dust emissions generated by the handling and storage of coal. At some installations, the storage and handling of fly ash and limestone can also result in fugitive dust emissions. To aid analysts, planners, and managers in evaluating the significance of fugitive dust emissions, a Technical

  5. Development of a Software System to Facilitate Implementation of Coal and Wood Co-Fired Bilers

    E-print Network

    Gopalakrishnan, B.; Gump, C. D.; Gupta, D. P.; Chaudhari, S.

    2013-01-01

    Coal and wood co-fired boiler technology has improved significantly over the years. The term "co-firing", when used by members of the biomass or utility communities, has come to mean mixing a modest amount of clean, dry sawdust with coal and burning...

  6. Supply curves for using powder river basin coal to reduce sulfur emissions.

    PubMed

    Malvadkar, Shreekant B; Smith, Dennis; McGurl, Gilbert V

    2004-06-01

    Supply curves were prepared for coal-fired power plants in the contiguous United States switching to Wyoming's Powder River Basin (PRB) low-sulfur coal. Up to 625 plants, representing approximately 44% of the nameplate capacity of all coal-fired plants, could switch. If all switched, more than dollars 8.8 billion additional capital would be required and the cost of electricity would increase by up to dollars 5.9 billion per year, depending on levels of plant derating. Coal switching would result in sulfur dioxide (SO2) emissions reduction of 4.5 million t/yr. Increase in cost of electricity would be in the range of 0.31-0.73 cents per kilowatt-hour. Average cost of S emissions reduction could be as high as dollars 1298 per t of SO2. Up to 367 plants, or 59% of selected plants with 32% of 44% nameplate capacity, could have marginal cost in excess of dollars 1000 per t of SO2. Up to 73 plants would appear to benefit from both a lowering of the annual cost and a lowering of SO2 emissions by switching to the PRB coal. PMID:15242153

  7. Blast furnace granular coal injection project. Annual report, January--December 1993

    SciTech Connect

    Not Available

    1994-06-01

    This initial annual report describes the Blast Furnace Granular Coal Injection project being implemented at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. This installation will be the first in the United States to employ British Steel technology that uses granular coal to provide part of the fuel requirement of blast furnaces. The project will demonstrate/assess a broad range of technical/economic issues associated with the use of coal for this purpose. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. Preliminary Design (Phase 1) began in 1991 with detailed design commencing in 1993. Construction at Burns Harbor (Phase 2) began in August 1993. Construction is expected to complete in the first quarter of 1995 which will be followed by the demonstration test program (Phase 3). Progress is described.

  8. Coal industry annual 1997

    SciTech Connect

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  9. An understanding of lump coal physical property behaviour (density and particle size effects) impacting on a commercial-scale Sasol-Lurgi FBDB gasifier

    Microsoft Academic Search

    J. R. Bunt; F. B. Waanders

    2008-01-01

    Thermal processes which utilize coarse coal, such as fixed-bed gasification and chain grate stoker boilers, are dependant on a stable particle size for stable operation. During coarse coal utilization, thermal fragmentation of lump coal (upon heating) produces hydrodynamic effects (pressure drop fluctuations) manifesting itself in a variety of ways, and include: channel-burning and solids elutriation. Primary thermal fragmentation occurring in

  10. Coal Industry Annual 1995

    SciTech Connect

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  11. Burning Magnesium (GCMP)

    NSDL National Science Digital Library

    Burning Magnesium: this is a resource in the collection "General Chemistry Multimedia Problems". In this problem we will look at the reactions of two elements with oxygen in air. We will begin by observing the reaction of magnesium metal with oxygen when the metal is heated in air. General Chemistry Multimedia Problems ask students questions about experiments they see presented using videos and images. The questions asked apply concepts from different parts of an introductory course, encouraging students to decompartmentalize the material.

  12. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  13. Quarterly Coal Distribution

    EIA Publications

    2014-01-01

    The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of transportation, and consuming sector. Quarterly data for all years are preliminary and will be superseded by the release of the corresponding Annual Coal Distribution Report.

  14. Coal and Energy.

    ERIC Educational Resources Information Center

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  15. Microbial solubilization of coal

    DOEpatents

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  16. Characterization of molecular markers in smoke from residential coal combustion in China

    Microsoft Academic Search

    Xinhui Bi; Bernd R. T. Simoneit; Guoying Sheng; Jiamo Fu

    2008-01-01

    The organic constituents and distributions of molecular markers emitted from a residential coal-stove burning honeycomb coal briquettes were determined in this study. The major organic components emitted directly in smoke particles were polycyclic aromatic hydrocarbons (PAHs), with abundant hydroxy-polycyclic aromatic hydrocarbons (OH-PAHs), i.e., thermally altered derivative compounds from coal combustion, UCM (unresolved complex mixture of branched and cyclic compounds), n-alkanes

  17. Quasi-constant temperature combustion for improving the overall performance of a coal-fired boiler

    Microsoft Academic Search

    Chen Donglin; Liu Liang; Zheng Chuguang; Zhou Huaichun; Yao Bin

    2003-01-01

    After reviewing the current combustion technologies for burning pulverized coal with frequent and large fluctuations in coal quality and load demand, a new concept of quasi-constant temperature combustion for pulverized coal is proposed. In this method, combustion temperatures near the burners are maintained almost constant using a moveable multilayer heat-insulation device, which is installed on the fire-side of the furnace

  18. Reaction of CO 2 with clean coal technology ash to reduce trace element mobility

    Microsoft Academic Search

    T. A. Tawfic; K. J. Reddy; S. P. Gloss; J. I. Drever

    1995-01-01

    The combustion of coal in power plants generates solids (e.g., fly ash, bottom ash) and flue gas (e.g., SOx, CO2). New Clean Air Act mandated reduction of SOx emissions from coal burning power plants. As a result, a variety of Clean Coal Technologies (CCT) are implemented to comply with these amendments. However, most of the CCT processes transfer environmentally sensitive

  19. Effects of rank and calcium catalysis on oxygen chemisorption and gasification reactivity of coal chars

    NASA Astrophysics Data System (ADS)

    Piotrowski, Andrzej

    The effects of coal rank and calcium catalysis on oxygen gasification of coal chars have been investigated. Five different coals, from lignite to anthracite were used. Coals were demineralized and a calcium catalyst was deposited on the carbon in different amounts, by ion exchange for lignite and subbituminous coals and by impregnation for the others. Chars from all coals were obtained by both slow and rapid pyrolysis. Oxygen chemisorption studies conducted under conditions far away from gasification and measured oxygen uptakes during gasification revealed that large amounts of oxygen are chemisorbed. The lower the coal rank, the greater the amount of chemisorbed oxygen in both cases. The presence of a calcium catalyst additionally increased the oxygen uptake by solid carbons. The chemisorption tests also showed the influence of diffusion inside the smallest micropores on the kinetics of the process. Reactivity profiles were investigated in detail. Demineralized coal chars showed monotonic, linear increases with burn-off for a broad range of conversion (20-80%). The higher the coal rank, the greater the reactivity increase per unit burn-off. A comparison of reactivities of the demineralized form of coal chars confirmed that the reactivity is affected by diffusion inside the smallest micropores for experiments in the intermediate temperature range, usually 700-800 K. A comparison of reactivities of the calcium-loaded and demineralized coal chars prepared and subsequently reacted at the same conditions has confirmed that the catalytic effect of calcium is the greatest for lower-rank coals, and that it decreases with increasing coal rank. Comparable reactivities for as-received and calcium-loaded lignite and subbituminous char were about two orders of magnitude greater than for a corresponding demineralized char. For higher ranks of coal the effect of calcium loading is smaller than one order of magnitude. For the lower ranks of coal, where calcium is very well dispersed, reactivity profiles are confirmed to be dominated by the catalytic effect. Based on the reactivity and oxygen chemisorption studies, it was concluded that the effect of oxygen diffusion on char reactivity is much greater for higher-rank coals than for lower-rank coals. For the lignite char the diffusion effect is only important at the beginning of gasification and it decreases with increasing burn-off. For the anthracite char it is about 3 times greater at the very low burn-offs than at 85% burn-off. In addition, for demineralized anthracite char this diffusion effect lasts longer in terms of time and conversion.

  20. Results of the PDF{trademark} test burn at Clifty Creek Station

    SciTech Connect

    Johnson, S.A.; Knottnerus, B.

    1996-10-01

    Process Derived Fuel (PDF{sup TM}) from the ENCOAL process is different from other coals used to generate steam for the power industry. Although PDF{sup TM} is currently produced from Powder River Basin (PRB) subbituminous coal, the coal structure changes during processing. Compared to the parent coal, PDF{sup TM} contains much less moisture and slightly lower volatile matter resulting in a higher heating value and higher ash per million Btu. These coal properties can potentially benefit utility boiler performance. Combining the high combustion reactivity typical of PRB coals with significantly reduced moisture should produce higher flame zone temperatures and shorter flames. As a result, some boilers may experience increased steam production, better burnout, or lower excess air. The objective of the work contracted to Quinapoxet Engineering was to quantify the impacts of burning PDF{sup TM} on boiler performance at Clifty Creek Unit 3. A unique optical temperature monitor called SpectraTemp was used to measure changes in furnace exit gas temperature (FEGT) with time and boiler operating parameters for both PDF{sup TM} blends as well as a baseline coal blend consisting of 60% PRB coal, 20% Ohio coal, and 20% low-volatile eastern bituminous coal from Virginia. FEGT was then related to net plant heat rate, NO{sub x} emissions, and electrostatic precipitator performance.

  1. Inland out: Midwestern river coal transloaders deal with increased pressures

    SciTech Connect

    Buchsbaum, L.

    2007-06-15

    As greater amounts of US western coal is burned by many eastern and south-eastern power plants located along the Ohio River and its tributaries, Midwestern coal transload facilities are playing an ever growing role in the nation's coal transportation system by moving traffic off clogged rail lines onto barges on inland rivers. The article describes operations by three mid-western ports - American Electric Power's (AEP) Cook Terminal in Metropolis, IL; Kinder-Morgan's Cora Terminal in Cora, IL; and Kinder-Morgan's Grand Rivers Terminal near Paducah, KY. Together these terminals transferred more than 30 m tons onto barges in 2006. 5 figs.

  2. Pulverized coal combustion characterization at the KEPRI

    SciTech Connect

    Cha, D.J.; Kim, S.C.; Bae, B.H.; Kim, T.H.; Shin, Y.J.; Lee, H.D.; Park, O.Y.; Choi, B.S.

    1997-12-31

    A pilot-scale combustion test facility that can be utilized to burn pulverized coals such as anthracite coals, bituminous coals, and their blends at the rate of 200 kg/hr has been constructed to study coal-related impacts on utility boiler operations. The impacts include pulverizer performance, combustion stability, slagging, fouling, heat transfer, erosion, corrosion, pollutant emission, etc. The facility, a scale-down model of an existing boiler in Korea, consists of all the necessary components for the boiler with a distributed control system except steam generation components which have been replaced with slag panels, fouling probes, and heat exchangers. The facility, in addition, incorporates the advanced boiler technologies including tangentially-fired burners, flue gas recirculation, direct sorbent injection for desulfurization, electrostatic precipitator, wet scrubber, etc., and employs an opacity meter and gas analyzers. Low NOx burners and gas reburning system will be facilitated in the future to study low emission boiler systems being demonstrated in the developed countries. This paper represents preliminary test results including flame shapes, fouling based on the fouling factor, and pollutant emission with different coals and combustion aerodynamics. Flow fields in the furnace have been changed by varying the swirl number and the burner configurations in terms of single-wall, opposed-wall, and corner firing mode. An extensive investigation will continue to find optimum conditions for various coals of interest.

  3. Small boiler uses waste coal

    SciTech Connect

    Virr, M.J. [Spinheat Ltd. (United States)

    2009-07-15

    Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

  4. Burning anthracite at B and W downshot unit and burner upgrading

    SciTech Connect

    Zhou, J. [Babcock and Wilcox, Barberton, OH (United States)

    1998-12-31

    Low volatile matter (VM) coals have difficulty on ignition, flame stability and burnout. A conventional utility boiler can`t successfully utilize such coals. The applications of enhancing ignition steps, proper burner type and its arrangement plus staging combustion as well as a suitable furnace configuration, along or in combination, may burn such low VM coals with high efficiency. B&W downshot units in Shang An Power Plant (S-Plant) in China applies a downshot firing with a W-shape flame plus primary air exchange burner (PAX) and staging combustion in a combination which achieved a great success in burning the design coal. The design coal is a blended coal (25% Yangquan (YQ) anthracite and 75% Shuyang lean) resulting a 13.95% VMdmf ranking as a semi-anthracite per ASTM-D338. In 1995, all 20 burner registers of Unit 1 had been upgraded. S-Plant and B and W decided to conduct a high anthracite blending coal (75% anthracite) combustion tests. The unit had demonstrated a great fuel flexibility. Based on the achievements, the all burner and staging ports of Unit 2 has been upgraded in 1997. In order to further demonstrate the great enhancing ignition feature, B and W had entrusted Chinese TPRI to conduct 100% YQ anthracite burn tests in May 1998. These tests reveal that with 100% anthracite firing, the ignition was fast and on time; the flame and combustion were very stable. Three days (58 continuous hours) 100% anthracite firing was carried out with the load range from the full (350 MW) to half (170--175 MW). The minimum load of 170--175 MW (48--50% MCR) without oil support was easy to maintain. Due to the plant policy, they don`t allow further reduction of the minimum load lower than 50% MCR. These tests have greatly demonstrated the capability of these units burning 100% anthracite.

  5. Coal combustion science

    SciTech Connect

    Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  6. Assessment of burn depth and burn wound healing potential.

    PubMed

    Monstrey, Stan; Hoeksema, Henk; Verbelen, Jos; Pirayesh, Ali; Blondeel, Phillip

    2008-09-01

    The depth of a burn wound and/or its healing potential are the most important determinants of the therapeutic management and of the residual morbidity or scarring. Traditionally, burn surgeons divide burns into superficial which heal by rapid re-epithelialization with minimal scarring and deep burns requiring surgical therapy. Clinical assessment remains the most frequent technique to measure the depth of a burn wound although this has been shown to be accurate in only 60-75% of the cases, even when carried out by an experienced burn surgeon. In this article we review all current modalities useful to provide an objective assessment of the burn wound depth, from simple clinical evaluation to biopsy and histology and to various perfusion measurement techniques such as thermography, vital dyes, video angiography, video microscopy, and laser Doppler techniques. The different needs according to the different diagnostic situations are considered. It is concluded that for the initial emergency assessment, the use of telemetry and simple burn photographs are the best option, that for research purposes a wide range of different techniques can be used but that, most importantly, for the actual treatment decisions, laser Doppler imaging is the only technique that has been shown to accurately predict wound outcome with a large weight of evidence. Moreover this technique has been approved for burn depth assessment by regulatory bodies including the FDA. PMID:18511202

  7. High NO\\/sub x\\/ from coal-derived fuels

    Microsoft Academic Search

    R. J. Stettler; M. C. Hardin

    1976-01-01

    Three coal-derived liquid fuels experimentally burned in automotive and aircraft gas turbine combustors produced higher nitrogen oxides emissions and smoke readings than petroleum fuels according to a report to the Combustion Institute by R. J. Stettler (Gen. Mot. Corp.) and M. C. Hardin (Detroit Diesel Allison Div., Gen. Mot. Corp.). Since the fuel-bound nitrogen concentrations measured in the fuels were

  8. Coal ash utilization: fly ash, bottom ash and slag

    Microsoft Academic Search

    Torrey

    1978-01-01

    Ash is a waste product left after the burning of many combustible substances, and fly ash is the accepted term for the finely divided residue that results from the combustion of ground coal. It is easily disseminated by flue gases, unless checked and collected by suitable devices. Energy and environmental considerations over the coming years point to greater use of

  9. Physicochemical characteristics of European pulverized coal combustion fly ashes

    Microsoft Academic Search

    N. Moreno; X. Querol; J. M. Andrés; K. Stanton; M. Towler; H. Nugteren; M. Janssen-Jurkovicová; R. Jones

    2005-01-01

    Fly ashes sourced from European pulverised coal burning power plants (from Spain, The Netherlands, Italy and Greece) were characterised in terms of their chemical composition, mineralogy and physical properties. The amount and composition of the glass present in the ashes were also determined. The materials analysed have very different compositions and were selected with a view to determining their suitability

  10. Cooperative Research Program in Coal-Waste Liquefaction

    Microsoft Academic Search

    Gerald Huffman

    2000-01-01

    The results of a feasibility study for a demonstration plant for the liquefaction of waste plastic and tires and the coprocessing of these waste polymers with coal are presented. The study was conducted by a committee that included nine representatives from the CFFS, six from the U.S. Department of Energy - Federal Energy Technology Center (FETC), and four from Burns

  11. Coal-oxygen process provides COâ for enhanced recovery

    Microsoft Academic Search

    B. M. Abraham; J. G. Asbury; E. P. Lynch; A. P. S. Teotia

    1982-01-01

    A description is given of a process which is based on the production of COâ in electric power plants that burn coal in an Oâ-COâ mixture (not air). The process eliminates the need for flue gas desulfurization and carbon dioxide purification required in more conventional approaches to recovery from flue gases. It is environmentally attractive because COâ is not vented

  12. INFLUENCE OF FUEL COMPOSITION ON NITRIC OXIDE FORMATION IN MASS-BURNING STOKERS

    EPA Science Inventory

    The article gives results of testing seven coals of varying rank in an experimental mass-burning simulation to assess general nitric oxide (NO) emission characteristics. The fuels were compared to ascertain a relationship between NO emissions, fuel nitrogen content, nitrogen vola...

  13. Physical rehabilitation of pediatric burns

    PubMed Central

    Atiyeh, B.; Janom, H.H.

    2014-01-01

    Summary Significant improvements have been made in the acute treatment of pediatric burn injuries over the past 3 decades which have significantly decreased mortality. Each year, more burned children are necessitating serious medical attention during their convalescence. For children with serious consequences resulting from burns that can persist from childhood through adolescence into adulthood, the value of long-term rehabilitation cannot be over stated. Burn injury management should not focus only on the immediate treatment. Long-term functional outcome and the required rehabilitation that burn victims must go through should be given equal if not more attention. The present is a review of the available modalities utilized for the physical rehabilitation of convalescent pediatric burns in order to overcome the catabolic state, improve muscle power and fitness, reduce disfiguring scars and prevent contractures. PMID:25249846

  14. Clothing burns in Canadian children

    PubMed Central

    Stanwick, Richard S.

    1985-01-01

    A Canadian survey of 11 tertiary care pediatric centres with specialized burn facilities revealed that an estimated 37 children up to 9 years of age are admitted annually to such hospitals because of clothing burns. Sleepwear accounts for an estimated 21 such burns per year. Girls were found to suffer the most severe burns and represented eight of the nine children in the series who died. Loose and flowing garments dominated the girls' styles. The results of multiple-regression analysis confirmed that style of clothing (loose and flowing as opposed to snug) was the most significant predictor of burn severity, length of hospital stay, the need for skin grafting and survival. The ignition situation (avoidance of parental supervision at the time of injury) was the only other important predictor. The success of regulatory actions in other countries in reducing the incidence of severe clothing burns is reviewed, and preventive strategies for Canada are explored. ImagesFig. 2 PMID:3995433

  15. Marginally Stable Nuclear Burning

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Altamirano, D.

    2012-01-01

    Thermonuclear X-ray bursts result from unstable nuclear burning of the material accreted on neutron stars in some low mass X-ray binaries (LMXBs). Theory predicts that close to the boundary of stability oscillatory burning can occur. This marginally stable regime has so far been identified in only a small number of sources. We present Rossi X-ray Timing Explorer (RXTE) observations of the bursting, high- inclination LMXB 4U 1323-619 that reveal for the first time in this source the signature of marginally stable burning. The source was observed during two successive RXTE orbits for approximately 5 ksec beginning at 10:14:01 UTC on March 28, 2011. Significant mHz quasi- periodic oscillations (QPO) at a frequency of 8.1 mHz are detected for approximately 1600 s from the beginning of the observation until the occurrence of a thermonuclear X-ray burst at 10:42:22 UTC. The mHz oscillations are not detected following the X-ray burst. The average fractional rms amplitude of the mHz QPOs is 6.4% (3 - 20 keV), and the amplitude increases to about 8% below 10 keV.This phenomenology is strikingly similar to that seen in the LMXB 4U 1636-53. Indeed, the frequency of the mHz QPOs in 4U 1323-619 prior to the X-ray burst is very similar to the transition frequency between mHz QPO and bursts found in 4U 1636-53 by Altamirano et al. (2008). These results strongly suggest that the observed QPOs in 4U 1323-619 are, like those in 4U 1636-53, due to marginally stable nuclear burning. We also explore the dependence of the energy spectrum on the oscillation phase, and we place the present observations within the context of the spectral evolution of the accretion-powered flux from the source.

  16. Coal liquefaction

    DOEpatents

    Schindler, Harvey D. (Fairlawn, NJ)

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  17. Curbing Inflammation in Burn Patients

    PubMed Central

    Farina, Jayme A.; Rosique, Marina Junqueira; Rosique, Rodrigo G.

    2013-01-01

    Patients who suffer from severe burns develop metabolic imbalances and systemic inflammatory response syndrome (SIRS) which can result in multiple organ failure and death. Research aimed at reducing the inflammatory process has yielded new insight into burn injury therapies. In this review, we discuss strategies used to curb inflammation in burn injuries and note that further studies with high quality evidence are necessary. PMID:23762773

  18. A primer on burn resuscitation

    PubMed Central

    Bacomo, Ferdinand K; Chung, Kevin K

    2011-01-01

    Since the early 1900s, the scope of burn resuscitation has evolved dramatically. Due to various advances in pre-hospital care and training, under-resuscitation of patients with severe burns is now relatively uncommon. Over-resuscitation, otherwise known as “fluid creep”, has emerged as one of the most important problems during the initial phases of burn care over the past decade. To avoid the complications of over-resuscitation, careful hourly titration of fluid rates based on compilation of various clinical end points by a bedside provider is vital. The aim of this review is to provide a practical approach to the resuscitation of severely burned patients. PMID:21633578

  19. Burning mouth syndrome

    PubMed Central

    Gurvits, Grigoriy E; Tan, Amy

    2013-01-01

    Burning mouth syndrome is a debilitating medical condition affecting nearly 1.3 million of Americans. Its common features include a burning painful sensation in the mouth, often associated with dysgeusia and xerostomia, despite normal salivation. Classically, symptoms are better in the morning, worsen during the day and typically subside at night. Its etiology is largely multifactorial, and associated medical conditions may include gastrointestinal, urogenital, psychiatric, neurologic and metabolic disorders, as well as drug reactions. BMS has clear predisposition to peri-/post menopausal females. Its pathophysiology has not been fully elucidated and involves peripheral and central neuropathic pathways. Clinical diagnosis relies on careful history taking, physical examination and laboratory analysis. Treatment is often tedious and is aimed at correction of underlying medical conditions, supportive therapy, and behavioral feedback. Drug therapy with alpha lipoic acid, clonazepam, capsaicin, and antidepressants may provide symptom relief. Psychotherapy may be helpful. Short term follow up data is promising, however, long term prognosis with treatment is lacking. BMS remains an important medical condition which often places a recognizable burden on the patient and health care system and requires appropriate recognition and treatment. PMID:23429751

  20. Burning mouth syndrome

    PubMed Central

    2008-01-01

    Introduction Burning mouth syndrome mainly affects women, particularly after the menopause, when its prevalence may be 18-33%. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatments for burning mouth syndrome? We searched: Medline, Embase, The Cochrane Library, and other important databases up to February 2007 (BMJ Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 12 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: anaesthetics (local), antidepressants, benzodiazepines (topical clonazepam), benzydamine hydrochloride, cognitive behavioural therapy (CBT), dietary supplements, and hormone replacement therapy (HRT) in postmenopausal women. PMID:19450321

  1. Burning mouth syndrome

    PubMed Central

    2010-01-01

    Introduction Burning mouth syndrome mainly affects women, particularly after the menopause, when its prevalence may be 18% to 33%. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatments for burning mouth syndrome? We searched: Medline, Embase, The Cochrane Library, and other important databases up to November 2009 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 15 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: anaesthetics (local), antidepressants, benzodiazepines (topical clonazepam), benzydamine hydrochloride, cognitive behavioural therapy (CBT), dietary supplements, and hormone replacement therapy (HRT) in postmenopausal women. PMID:21418666

  2. Global Burned Area and Biomass Burning Emissions from Small Fires

    NASA Technical Reports Server (NTRS)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity analyses of key model parameters caused estimates of global burned area increases from small fires to vary between 24% and 54%. Biomass burning carbon emissions increased by 35% at a global scale when small fires were included in GFED3, from 1.9 Pg C/yr to 2.5 Pg C/yr. The contribution of tropical forest fires to year-to-year variability in carbon fluxes increased because small fires amplified emissions from Central America, South America and Southeast Asia-regions where drought stress and burned area varied considerably from year to year in response to El Nino-Southern Oscillation and other climate modes.

  3. Acid burns from personal assault in Uganda

    Microsoft Academic Search

    J. Asaria; O. C. Kobusingye; B. A. Khingi; R. Balikuddembe; M. Gomezc; M. Beveridge

    2004-01-01

    Acid burns from assault represent a substantial and neglected proportion of burn injuries in the developing world. A retrospective chart review was conducted to assess the frequency of acid burns in relation to total burns requiring admission in Kampala, Uganda. Seventeen percent of the adult burns admitted at New Mulago hospital over an 18-month period resulted from acid assault. Patients

  4. Zinc isotopic composition of particulate matter generated during the combustion of coal and coal + tire-derived fuels

    USGS Publications Warehouse

    Borrok, D.M.; Gieré, R.; Ren, M.; Landa, E.R.

    2010-01-01

    Atmospheric Zn emissions from the burning of coal and tire-derived fuel (TDF) for power generation can be considerable. In an effort to lay the foundation for tracking these contributions, we evaluated the Zn isotopes of coal, a mixture of 95 wt % coal + 5 wt % TDF, and the particulate matter (PM) derived from their combustion in a power-generating plant. The average Zn concentrations and ?(66)Zn were 36 mg/kg and 183 mg/kg and +0.24‰ and +0.13‰ for the coal and coal + TDF, respectively. The ?(66)Zn of the PM sequestered in the cyclone-type mechanical separator was the lightest measured, -0.48‰ for coal and -0.81‰ for coal+TDF. The ?(66)Zn of the PM from the electrostatic precipitator showed a slight enrichment in the heavier Zn isotopes relative to the starting material. PM collected from the stack had the heaviest ?(66)Zn in the system, +0.63‰ and +0.50‰ for the coal and coal + TDF, respectively. Initial fractionation during the generation of a Zn-rich vapor is followed by temperature-dependent fractionation as Zn condenses onto the PM. The isotopic changes of the two fuel types are similar, suggesting that their inherent chemical differences have only a secondary impact on the isotopic fractionation process.

  5. Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin

    USGS Publications Warehouse

    Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.

    2010-01-01

    The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined for seven coal beds with a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 50 billion short tons of recoverable coal was calculated. Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Northern Wyoming Powder River Basin assessment area is 1.5 billion short tons of coal (1 percent of the original resource total) for the seven coal beds evaluated.

  6. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report No. 5, October--December, 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1996-02-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74{mu}m) clean coal. Economical dewatering of an ultrafine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the the University of Kentucky Center for Applied Energy Research will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. Accomplishments for the past quarter are described.

  7. Modeling char oxidation behavior under Zone II burning conditions at elevated pressures

    SciTech Connect

    Ma, L.Q.; Mitchell, R. [Stanford University, Stanford, CA (USA). High Temperature Gasdynamics Laboratory

    2009-01-15

    For accurate modeling of the coal combustion process at elevated pressures, account must be made for variations in char-particle structure. As pressure is increased, particle swelling increases during the devolatilization of certain bituminous coals, yielding a variety of char-particle structures, from uniform high-density particles to thin-walled non-uniform low-density particles having large internal void volumes. Since under Zone II burning conditions the char conversion rate depends upon the accessibility of the internal surfaces, the char structure plays a key role in determining particle burnout times. In our approach to characterize the impact of char structure on particle burning rates, effectiveness factors appropriate for thin-walled cenospherical particles and thick-walled particles having a few large cavities are defined and related to the effectiveness factor for uniform high-density particles that have no large voids, only a random distribution of pores having a mean pore size in the sub-micron range. For the uniform case, the Thiele modulus approach is used to account for Zone 11 type burning in which internal burning is limited by the combined effects of pore diffusion and the intrinsic chemical reactivity of the carbonaceous material. In the paper, the impact of having a variety of char structures in a mix of particles burning under Zone II burning conditions is demonstrated.

  8. Clean Coal Technologies

    NSDL National Science Digital Library

    This site from the University of Kentucky's Center for Applied Energy Research explains clean coal technologies, including coal-to-liquids, synthetic natural gas, and carbon dioxide emissions. The presentation explores the benefits and processes of clean coal technologies (gasification, coal-to-liquids, synthetic natural gas, carbon capture & sequestration and integrated gasification combined cycle).

  9. Kinetics of coal gasification

    Microsoft Academic Search

    Martin Schmal; Jose Luiz Fontes Monteiro; Jorge Luiz Castellan

    1982-01-01

    This work reports on a kinetic study on the gasification of Brazilian mineral coal with steam using a thermobalance. The coal is a high ash content (>50 wt %) subbituminous, run of mine coal (Charqueadas). Isothermal runs were made at temperatures between 800 and 1000\\/degree\\/C and at atmospheric pressure, using -14 +20 mesh Tyler size particles. The coal was devolatilized

  10. Annual Coal Distribution

    EIA Publications

    2015-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  11. Coal use, stove improvement, and adult pneumonia mortality in Xuanwei, China: a retrospective cohort study

    SciTech Connect

    Shen, M.; Chapman, R.S.; Vermeulen, R.; Tian, L.W.; Zheng, T.Z.; Chen, B.E.; Engels, E.A.; He, X.Z.; Blair, A.; Lan, Q. [NCI, Bethesda, MD (USA)

    2009-02-15

    In Xuanwei County, China, unvented indoor coal burning is strongly associated with increased risk of lung cancer and chronic obstructive pulmonary disease. However, the impact of coal burning and stove improvement on risk of pneumonia is not clear. We conducted a retrospective cohort study among all farmers born 1917 through 1951 and living in Xuanwei as of 1 January 1976. The analysis included a total of 42,422 cohort members. Follow-up identified all deaths in the cohort from 1976 through 1996. Ages at entry into and at exit from follow-up ranged from 24 to 59 years and from 25 to 80 years, respectively. The record search detected 225 deaths from pneumonia, and 32,332 (76%) were alive as of 31 December 1996. We constructed multivariable Cox models (time variable = age) to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Use of coal, especially smokeless coal, was positively associated with pneumonia mortality. Annual tonnage and lifetime duration of smoky and smokeless coal use were positively associated with pneumonia mortality. Stove improvement was associated with a 50% reduction in pneumonia deaths (smoky coal users: HR, 0.521; 95% CI, 0.340-0.798; smokeless coal users: HR, 0.449; 95% CI, 0.215-0.937). Our analysis is the first to suggest that indoor air pollution from unvented coal burning is an important risk factor for pneumonia death in adults and that improving ventilation by installing a chimney is an effective measure to decrease it.

  12. Desulfurization of coal with hydroperoxides of vegetable oils. [Quarterly] report, September 1--November 30, 1994

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, Ruozhi; Cheng, Jianjun [Southern Illinois Univ., Carbondale, IL (United States)

    1994-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. Preliminary experiments showed that EBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During this first quarter the requirement of an added photosensitizer has been eliminated, the catalytic effect of coal has been confirmed, and the existence of a complex set of reactions revealed. These reactions between the oxygen, oil, hydroperoxides, and coal are hydroperoxide formation, which is catalyzed by the coal surface and by heat, an unknown coal-hydroperoxide reaction, and oil polymerization. Additionally, diffusion phenomena must be playing a role because oil polymerization occurs, but the importance of diffusion is difficult to assess because less polymerization occurs when coal is present. The first task has been completed and we are now ready to determine the ability of linseed oil hydroperoxides to oxidize organic sulfur in EBC 108 coal.

  13. Community views about the health and exposure of children living near a coal ash storage site.

    PubMed

    Zierold, Kristina M; Sears, Clara G

    2015-04-01

    Coal ash, a waste product generated from burning coal, is composed of small particles comprised of highly toxic elements. Coal ash particles contain heavy metals such as arsenic, lead, and mercury, as well as polyaromatic hydrocarbons and radioactive elements. Most coal ash is stored in landfills and ponds, often located in close proximity to low income communities. Currently, there are no federal regulations governing the storage and transport of coal ash; however the Environmental Protection Agency proposed a coal ash rule in 2010, which could designate coal ash as a hazardous waste. This is the first article to assess community impact from coal ash storage, by exploring parents' perceptions of their children's health and its relationship to chronic exposure to coal ash. This was a community-based study involving four neighborhoods adjacent to a large coal ash storage facility. Focus groups were conducted with community members and the transcripts were analyzed to identify themes regarding children's health, children's exposure to coal ash, and behaviors done to protect children from exposure. The majority of parents (85 %) reported that their children suffered from health conditions; specifically respiratory and emotional and behavioral disorders. Parents highlighted ways in which their children were exposed to coal ash, although many felt they were constantly exposed just by living in the area. Parents felt strongly that exposure to coal ash from the landfill is affecting the health and well-being of their children. Some parents attempted protective behaviors, but most parents felt helpless in reducing children's exposure. PMID:25204532

  14. Burning crude oil without pollution

    NASA Technical Reports Server (NTRS)

    Houseman, J.

    1979-01-01

    Crude oil can be burned at drilling sites by two-stage combustion process without producing pollution. Process allows easier conformance to strict federal or state clean air standards without installation of costly pollution removal equipment. Secondary oil recovery can be accomplished with injection of steam heating by burning oil.

  15. Burned Wetland Near Tebicuary River

    USGS Multimedia Gallery

    In the rangelands of southern Paraguay, wetlands are burned to encourage new growth for cattle grazing. The burned wetland grasses are in the Family Poaceae (Gramineae), and may be in one of these genera: Panicum, Paspalum, Pennisetum, Tripogon. The Ñeembucú Region is typified by exten...

  16. [Intraoperative burns. An unforeseen danger?].

    PubMed

    Bonde, Christian T; Alsbjørn, Bjarne F

    2002-01-28

    Two patients were admitted to the department of burns in Copenhagen. Both had suffered burns following uncontrolled ignition of chlorhexidine-alcohol during surgery. The aim of this article is to highlight this potentially detrimental risk, which exists in almost all operating rooms, unless simple precautions are taken. PMID:11871219

  17. Wood burning stove

    SciTech Connect

    Zimmerman, V.J.

    1982-08-10

    An air tight wood burning stove (10) for heating a designated space comprises a housing (12) having an access opening (50) in the front wall (14) thereof and at least one glass panel (64) containing door (54, 56) hingedly mounted on the front wall for closing the opening (50). A latching mechanism (60) on the door (54, 56) engages with undercut flange means (52, 53) surrounding opening (50) for positively maintaining the door (54, 56) in the closed position. A firebrick lined combustion chamber (34) within the housing receives logs through opening (50) for burning and the production of hot combustion gases. An air chamber (48) is formed within the housing (12) in air flow communication with the combustion chamber (34) for feeding air thereto through openings (94, 96) in the air chamber walls (46, 90). A damper 92, which may be manually or thermostatically controlled, controls cool air flow from room floor level into the air chamber (48) and then through openings (94, 96) into combustion chamber (34) wherein the air is heated. The hot combustion gases and heated air rise within housing (12) and are discharged through flue means (28, 30) to the outside. In passing upwardly the gases and air fl over the outside surface of and heat the air within a plurality of air carrying tubular heat exchange conduits (98) which are disposed adjacent the top of assembly (12) and extend therethrough upwardly and forwardly from conduit air inlets at the rear wall (24) to conduit air discharge outlets at the front wall (14).

  18. Coal pyrolysis and coal briquetting for production of smokeless fuel

    SciTech Connect

    Arayici, S. [Istanbul Univ. (Turkey)

    1996-09-01

    To investigate the possibility of direct production of smokeless fuel, a moderate temperature coking was applied. Coals used for this purpose are named as No. 800 in International Classification and cause considerable amounts of smoke emissions due to their high tar contents, when burned. Following a preheating treatment at 120{degree}C, the smokeless fuels (semicokes) were produced by coking of the samples 16-32 mm at 450{degree}C, with a heating rate of 150{degree}C/h. These semicokes have been found to be strong, their tar contents are far below 2%, and volatile matters are mainly composed of CH{sub 4} and H{sub 2}. The formation of semicoke particles smaller than 10 mm at the level of 25 to 30%, could not be avoided. Briquetts prepared by using these particles and tar or molasses as binder, were also found suitable for heating purposes. 8 refs., 1 fig., 4 tabs.

  19. Process for stabilization of coal liquid fractions

    DOEpatents

    Davies, Geoffrey (Boston, MA); El-Toukhy, Ahmed (Alexandria, EG)

    1987-01-01

    Coal liquid fractions to be used as fuels are stabilized against gum formation and viscosity increases during storage, permitting the fuel to be burned as is, without further expensive treatments to remove gums or gum-forming materials. Stabilization is accomplished by addition of cyclohexanol or other simple inexpensive secondary and tertiary alcohols, secondary and tertiary amines, and ketones to such coal liquids at levels of 5-25% by weight with respect to the coal liquid being treated. Cyclohexanol is a particularly effective and cost-efficient stabilizer. Other stabilizers are isopropanol, diphenylmethanol, tertiary butanol, dipropylamine, triethylamine, diphenylamine, ethylmethylketone, cyclohexanone, methylphenylketone, and benzophenone. Experimental data indicate that stabilization is achieved by breaking hydrogen bonds between phenols in the coal liquid, thereby preventing or retarding oxidative coupling. In addition, it has been found that coal liquid fractions stabilized according to the invention can be mixed with petroleum-derived liquid fuels to produce mixtures in which gum deposition is prevented or reduced relative to similar mixtures not containing stabilizer.

  20. Kinetics of coal pyrolysis and devolatilization

    SciTech Connect

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M.

    1991-01-01

    Research continued on coal pyrolysis and devolatilization. The effects of reaction process on the transient temperature history of a particle have been examined. The reaction process is found to significantly reduce the temperature gradient across a burning particle relative to a nonreactive particle. The pyrolysis process, on the other hand, does not severely affect the temperature history of a heating particle for the kinetic parameters employed. Devolatilization experiments have been performed on various size cuts on an HVA Bituminous coal in entrained flow and heated grid reactors. Weight loss measurements were made in the entrained flow reactor (EFR) and tar yields and molecular weight distributions were measured for the heated grid reactor (HGR) experiments. The results imply the initial phase of the devolatilization of the HVA Bituminous coal is heat transfer controlled because the rate of tar information and evolution is heat transfer controlled. The invariance in EFR ultimate weight loss and low pressure tar yields and characteristics with change in particle size can be explained by morphological considerations of the parent coal particles. The non-symmetric, irregular shapes of the coal particles result in an intraparticle mass distribution much nearer an interphase surface area than that of an equivalent sphere or cube. 5 refs., 37 figs., 9 tabs.

  1. Successful so far, coal lobby's campaign may run out of steam

    SciTech Connect

    NONE

    2009-05-15

    The anti-coal lobby has mounted a highly successful campaign that has brought the permitting, financing, and construction of new conventional coal-fired plants to a virtual halt. But the coal lobby is not yet ready to concede defeat. With powerful constituents in coal-mining and coal-burning states and influential utilities, mining companies, and railroads, it continues to fight for its survival using any and all gimmicks and scare tactics in the book. The battle is being waged in courtrooms, public forums, media campaigns, and especially in Congress. The problem with the coal lobby is that it refuses to admit that coal combustion to generate electricity is among the chief sources of U.S. greenhouse gas emissions; unless they address this issue honestly, effectively, and immediately, their efforts are going to win few converts in the courts of law or public opinion.

  2. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal.

    PubMed

    Li, X G; Lv, Y; Ma, B G; Jian, S W; Tan, H B

    2011-10-01

    The thermal behavior of high-ash anthracite coal, tobacco residue and their blends during combustion processes was investigated by means of thermogravimetric analysis (20 K min(-1), ranging from ambient temperature to 1273 K). Effects of the mixed proportion between coal and tobacco residue on the combustion process, ignition and burnout characteristics were also studied. The results indicated that the combustion of tobacco residue was controlled by the emission of volatile matter; the regions were more complex for tobacco residue (four peaks) than for coal (two peaks). Also, the blends had integrative thermal profiles that reflected both tobacco residue and coal. The incorporation of tobacco residue could improve the combustion characteristics of high-ash anthracite coal, especially the ignition and burnout characteristics comparing with the separate burning of tobacco residue and coal. It was feasible to use the co-combustion of tobacco residue and high-ash anthracite coal as fuel. PMID:21865028

  3. Reconstitution of Fine Coal

    Microsoft Academic Search

    H. NICHOLAS CONKLE; J. K. RAGAVAN

    1992-01-01

    The production of fine coal in America's mines and coal preparation plants is increasing. A fraction of this coal can be blended with the larger-size clean coal and shipped to the user. However, a convenient means to handle, store, transport, and use the balance must be devised. Coal reconstitution, encompassing briquetting, disk pelleting, extrusion pelletization and roller-and-die pelletization, is a

  4. Interactive simulation of fire, burn and decomposition 

    E-print Network

    Melek, Zeki

    2009-05-15

    level set method, driven by the pyrolysis process, where the burning object releases combustible gases. Secondary deformation effects, such as bending burning matches and crumpling burning paper, are modeled as a proxy based deformation. Physically based...

  5. Interactive simulation of fire, burn and decomposition 

    E-print Network

    Melek, Zeki

    2008-10-10

    level set method, driven by the pyrolysis process, where the burning object releases combustible gases. Secondary deformation effects, such as bending burning matches and crumpling burning paper, are modeled as a proxy based deformation. Physically based...

  6. Chemical and physical properties of highly-loaded coal-water fuels and their effect on boiler performance

    Microsoft Academic Search

    G. A. Jr. Farthing; R. D. Daley; S. J. Vecci; E. R. Michaud

    1983-01-01

    Coal-water fuels (CWF) are being developed as substitute fuels for industrial and utility boilers presently burning oil. The chemical and physical properties of CWF vary widely depending on the coal and preparation process used. Also, the traditional methods for characterizing fuels and existing correlations between boiler performance and fuel properties may not be applicable to CWF. Babcock and Wilcox is

  7. Pulverized coal firing of aluminum melting furnaces. Final report. [Sulfide capacity of various slags in given temperature range

    Microsoft Academic Search

    D. L. Jr. Stewart; L. E. Jr. Dastolfo; D. H. DeYoung

    1984-01-01

    Significant progress has been achieved in the development of a desulfurizing coal combustion process by the Aluminum Company of America (Alcoa) in a research program funded by the United States Department of Energy. Conceptually, high sulfur coal is burned with additives in a staged cyclone combustor, such that sufficient sulfur to obviate products of combustion (POC) scrubbing is retained in

  8. IMPACT OF PRIMARY SULFATE AND NITRATE EMISSIONS FROM SELECTED MAJOR SOURCES. PHASE 1. COAL-FIRED POWER PLANT

    EPA Science Inventory

    The report covers Phase one of a two phase study of the near source impacts of primary sulfate and nitrate emission sources. The phase one portion of the study was an investigation of the impact of a coal fired power plant burning high sulfur coal. The study was designed to measu...

  9. Smartphones and burn size estimation: “Rapid Burn Assessor”

    PubMed Central

    Kamolz, L.P.; Lumenta, D.B.; Parvizi, D.; Dirnberger, J.; Owen, R.; Höller, J.; Giretzlehner, M.

    2014-01-01

    Summary Estimation of the total body surface area burned (%TBSA) following a burn injury is used in determining whether to transfer the patient to a burn center and the required fluid resuscitation volumes. Unfortunately, the commonly applied methods of estimation have revealed inaccuracies, which are mostly related to human error. To calculate the %TBSA (quotient), it is necessary to divide the burned surface area (Burned BSA) (numerator in cm2) by the total body surface area (Total BSA) (denominator in cm2). By using everyday objects (eg. credit cards, smartphones) with well-defined surface areas as reference for estimations of Burned BSA on the one hand and established formulas for Total BSA calculation on the other (eg. Mosteller), we propose an approximation method to assess %TBSA more accurately than the established methods. To facilitate distribution, and respective user feedback, we have developed a smartphone app integrating all of the above parameters, available on popular mobile device platforms. This method represents a simple and ready-to-use clinical decision support system which addresses common errors associated with estimations of Burned BSA (=numerator). Following validation and respective user feedback, it could be deployed for testing in future clinical trials. This study has a level of evidence of IV and is a brief report based on clinical observation, which points to further study.

  10. Coal data: A reference

    SciTech Connect

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  11. Investigations into coal coprocessing and coal liquefaction

    SciTech Connect

    Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

    1994-06-01

    The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

  12. Coal-water slurry as utility boiler fuel. Final report

    SciTech Connect

    Scheffee, R.S.; Boyd, T.J.; Rossmeissl, N.P.; McHale, E.T.; Henderson, C.B.; Glenn, R.D.

    1982-03-01

    Coal-water slurries are a potential replacement for heavy fuel oil in utility boilers. Slurries have the major advantages of low cost, ease of handling, and early availability. A program was conducted to characterize the formulation, processing, handling, combustion, and storage of coal-water slurries made from cleaned coals. Acceptable slurries containing between 67 and 70% coal (by weight) were made from two different coals. A selected slurry was burned with good results in the Atlantic Research Corporation's one-million Btu/h experimental furnace. Approximately five tons (4,500 kg) of slurry were prepared on a pilot line for testing in the four-million Btu/h Babcock and Wilcox Basic Combustion Test Unit. A plant flowsheet was developed for a slurry plant designed to process five-million tons (4.5 x 10/sup 9/ kg) of coal a year. Total plant investment is estimated at $104-million (1980). Assuming a delivered coal cost of $50/ton (800 kg), the production costs are estimated to be $58/ton of coal or $2.14/million Btu. This cost compares favorably to a cost of $4.76/million Btu for heavy fuel oil at $30/barrel. These costs exclude certain ancillary costs such as marketing, fees and permits, insurance, interest on capital, profit, local taxes, and corporate income tax.

  13. Coal burnout in the IFRF No. 1 Furnace

    SciTech Connect

    Wall, T.F.; Phelan, W.J.; Bortz, S.

    1986-11-01

    A coal combustion model is used to match burnout measurements for four coals of different rank in a one-dimensional furnace and is then combined with a flow and heat transfer model to predict burnout in the IFRF No. 1 furnace. The coals show a continuous decrease in high temperature volatility and char reactivity with rank. Predicted and measured flame temperatures are shown to depend on the high temperature volatility and the char reactivity, varying by 300/sup 0/C for the coals. For the residence time available in the flame, a proportion of fine coal is burned; the low reactivity of the high rank coals is partially compensated by a grinding characteristic giving more fine coals. Final burnout levels are shown to depend principally on the char reactivity as well as the furnace cooling, as this determines furnace temperatures. The sensitivity to volatility, grind, the flow model, and uncertainties in the combustion model are quantified. It is shown that the furnace cooling must be reduced to obtain acceptable levels of burnout for the two coals of lowest volatility.

  14. Assault by burning in Jordan

    PubMed Central

    Haddadin, W.

    2012-01-01

    Summary Criminal attacks by burns on women in Jordan are highlighted in this retrospective study carried out of all proved cases of criminal burns in female patients treated at the burn unit of the Royal Rehabilitation Center in Jordan between January 2005 and June 2012. Thirteen patients were included in our study, out of a total of 550 patients admitted, all in the age range of 16-45 yr. Of these 13 women, six were burned by acid throwing, five by hot water, and two by direct flames from fuel thrown over them. Burn percentage ranged from 15 to 75% of the total body surface area, with involvement in most cases of the face and upper trunk. The mean hospital stay was 33 days and the mortality rate was 3/13, i.e. 23%. Violence against women exists in Jordanian society, yet burning assaults are rare. Of these, burning by throwing acid is the most common and most disfiguring act, with a higher mortality rate in domestic environments. PMID:23766757

  15. A comparative evaluation of minerals and trace elements in the ashes from lignite, coal refuse, and biomass fired power plants

    Microsoft Academic Search

    Smriti Singh; Lal C. Ram; Reginald E. Masto; Santosh K. Verma

    2011-01-01

    Coal being a limited source of energy, extraction of energy from other sources like lignite, coal-refuse, and biomass is being attempted worldwide. The minerals and inorganic elements present in fuel feeds pose different technological and environmental concerns. Lignite ash, refuse ash, and biomass ash collected from Indian power plants burning lignite, coal-refuse, and mustard stalk, respectively, were analyzed for physico-chemical

  16. Burns treatment in ancient times.

    PubMed

    Pe?anac, Marija; Janji?, Zlata; Komarcevi?, Aleksandar; Paji?, Milos; Dobanovacki, Dusanka; Miskovi?, Sanja Skeledzija

    2013-01-01

    Discovery of fire at the dawn of prehistoric time brought not only the benefits to human beings offering the light and heat, but also misfortune due to burns; and that was the beginning of burns treatment. Egyptian doctors made medicines from plants, animal products and minerals, which they combined with magic and religious procedures. The earliest records described burns dressings with milk from mothers of male babies. Goddess Isis was called upon to help. Some remedies and procedures proved so successful that their application continued for centuries. The Edwin Smith papyrus (1500 BC) mentioned the treatment of burns with honey and grease. Ebers Papyrus (1500 BC) contains descriptions of application of mud, excrement, oil and plant extracts. They also used honey, Aloe and tannic acid to heal burns. Ancient Egyptians did not know about microorganisms but they knew that honey, moldy bread and copper salts could prevent infections from dirt in burns healing. Thyme, opium and belladona were used for pain relief. In the 4th century BC, Hippocrates recorded that Greek and Roman doctors used rendered pig fat, resin and bitumen to treat burns. Mixture of honey and bran, or lotion of wine and myrrh were used by Celsus. Honey was also known in Ayurveda (Indian medicine) time. Ayurvedic records Characa and Sushruta included honey in their dressing aids to purify sores and promote the healing. Burn treatment in Chinese medicine was traditional. It was a compilation of philosophy, knowledge and herbal medicine. The successful treatment of burns started in recent time and it has been made possible by better knowledge of the pathophysiology of thermal injuries and their consequences, medical technology advances and improved surgical techniques. PMID:23888738

  17. ACC forum looks at 'burning' questions

    SciTech Connect

    Carter, R.

    2005-06-01

    The American Coal Council's (ACC) Spring Coal Forum had as its theme: Coal's renaissance: prospects for regenerating coal generation'. It explored US coal demand, supply, end-user technology and market trends. The article gives an overview of the conference, highlighting several presentations. 2 figs., 1 tab.

  18. Hair bleaching and skin burning.

    PubMed

    Forster, K; Lingitz, R; Prattes, G; Schneider, G; Sutter, S; Schintler, M; Trop, M

    2012-12-31

    Hairdressing-related burns are preventable and therefore each case is one too many. We report a unique case of a 16-yr-old girl who suffered full-thickness chemical and thermal burns to the nape of her neck and superficial burns to the occiput after her hair had been dyed blond and placed under a dryer to accelerate the highlighting procedure. The wound on the nape of the neck required surgical debridement and skin grafting. The grafted area resulted in subsequent scar formation. PMID:23766754

  19. [Reconstructions after periorbital burn injuries].

    PubMed

    Klett, A; Rebane, R

    2013-01-01

    Nowadays burn patients who also have periocular symptoms are usually treated by reconstructive surgeons and the role of the ophthalmic surgeon has decreased.Although periocular complications occur in a minority of burned patients, they pose a greater challenge in surgical and non-surgical treatment. Chemical, electrical and thermal burns can lead to disfiguring scar formations and delayed treatment can lead to devastating ocular complications. Achieving a successful reconstruction requires a comprehensive approach, entailing many advanced techniques with an emphasis on preserving function and balancing intricate aesthetic requirements. The theory is illustrated in this article with clinical examples. PMID:23345146

  20. Getting beyond burning dirt

    SciTech Connect

    Mahoney, R.J. (Monsanto Co., St. Louis, MO (United States))

    1994-05-01

    To fix and make the nation's Superfund law work, two related questions must be answered. First, where will the innovative technology come from the clean up Superfund and other waste sites Burning dirt--the best technology currently available--is an expensive nonsolution. Second, can man muster the political will to make Superfund a waste cleanup law instead of an expanding welfare program for lawyers Under the sponsorship of EPA, a number of companies and other groups are participating in the Remediation Technology Development Forum, focusing on the areas where the real breakthroughs might occur and the most promising collaborations. Currently, this effort is focused on bioremediation, the lasagna process, soil flushing, and characterization. Another area of investigation is stabilization technology--stabilizing a site to keep contaminants from flowing away. Some scientists, for example, are looking at vitrification technology, which fuses contaminated soil into a glass-like brick. And still other technology efforts include air flushing of contaminated sites and vapor extraction and heating processes. A number of groups and consortia have been working on waste remediation technologies. For the first time since 1980, when Superfund became law, one can give positive answers to the two critical questions. Groups are finding innovative technologies to clean up Superfund and other waste sites. And, as a nation, Americans are exercising the political will to create a Superfund law that will work effectively and fairly.

  1. Refuse burning process

    SciTech Connect

    Lientz, laC.

    1983-08-23

    A process is provided for burning refuse containing polyvinyl chloride without the consequent production of phosgene. The refuse is carbonized in a rotary furnace at temperatures below 1200 degrees F., especially 700 degrees F., in an oxygen deficient atmosphere. A burnable gas containing the carbonized refuse is drawn from the furnace by an air jet wherein same is mixed with oxygen and selectively combusted. Uncarbonized refuse is collected and withdrawn after exiting the furnace. An apparatus is provided for combustion of the refuse in the nonphosgene generating process and includes the rotary furnace. Special seals are provided for the furnace to prevent excess oxygen from entering thereinto. In particular, the seals are utilized between the rotary ends of the furnace and stationary head associated with each end respectively. Each seal includes an upper and lower flap of fire resistant material secured to an end of the furnace and a companion flap of like material is secured to an associated end of the stationary head such that the intermediate flap sealably slides between the upper and lower flaps during rotation of the furnace thereby substantially sealing between the furnace and the stationary head.

  2. Coal extraction - environmental prediction

    SciTech Connect

    C. Blaine Cecil; Susan J. Tewalt

    2002-08-01

    To predict and help minimize the impact of coal extraction in the Appalachian region, the U.S. Geological Survey (USGS) is addressing selected mine-drainage issues through the following four interrelated studies: spatial variability of deleterious materials in coal and coal-bearing strata; kinetics of pyrite oxidation; improved spatial geologic models of the potential for drainage from abandoned coal mines; and methodologies for the remediation of waters discharged from coal mines. As these goals are achieved, the recovery of coal resources will be enhanced. 2 figs.

  3. Upgraded Coal Interest Group

    SciTech Connect

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  4. Coal desulfurization process

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

    1978-01-01

    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

  5. Trace elements in coal by glow discharge mass spectrometry

    SciTech Connect

    Jacobs, M.L.; Wilson, C.R.; Pestovich, J. Jr. [WAL Inc., Wheat Ridge, CO (United States)] [and others

    1995-08-01

    A need and a demand exist for determining trace elements in coal and coal related by-products, especially those elements which may potentially be a health hazard. The provisions of the 1990 clean air act require that the EPA evaluate the emissions of electric utilities for trace elements and other potentially hazardous organic compounds. The coal fired electric utility industry supplies roughly 60% of the total generating capacity of 2,882,525 million kilowatt hours (nearly 3 trillion kilowatt hours) generated in the U.S. This is accomplished by 414 power plants scattered across the country that burned 813,508,000 short tons of coal in 1993. The relative volatility of some inorganic constituents in coal makes them more prone to be emitted to the atmosphere following combustion. The production of analytical data for trace elements is known to be a difficult task in coal and by-products of coal combustion (fly ash, bottom ash, gas streams, etc.), in terms of both sample collection and analytical determinations. There are several common analytical methods available to the analyst to determine trace elements in coal and coal by-products. In general analytical germs, the material to be analyzed can be totally solubilized (or extracted), or the elements analytes can be determined in the material as a solid. A relatively new elemental technique, Glow Discharge Mass Spectrometry (GDMS) can be used with solids as well. This new analytical technique had never before been applied directly to coal. The radio frequency-glow discharge quadropole mass spectrometer was used to analyze coal directly for the first time ever by rf-GDMS. The rf-GDMS technique is described.

  6. PROCEEDINGS: ADVANCES IN PARTICLE SAMPLING AND MEASUREMENT (DAYTONA BEACH, FL, OCTOBER 1981)

    EPA Science Inventory

    The proceedings consist of reports of research on equipment and techniques for sampling and characterizing particulate emissions from industrial sources (e.g., nickel smelters and a power plant burning low-sulfur coal) and other aerosols (e.g., uranium oxide in high-energy enviro...

  7. 40 CFR 75.21 - Quality assurance and quality control requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...gaseous fuel that is very low sulfur fuel (as defined in § 72...backup fuel and in which higher-sulfur fuel(s) such as oil or coal are, at other times, burned...part) only when the higher-sulfur fuel is combusted in the...

  8. The South Canon Number 1 Coal Mine fire: Glenwood Springs, Colorado

    SciTech Connect

    Glenn B. Stracher; Steven Renner; Gary Colaizzi; Tammy P. Taylor [East Georgia College, Swainsboro, GA (United States). Division of Science and Mathematics

    2004-07-01

    The South Canon Number 1 Coal Mine fire, in South Canyon west of Glenwood Springs, Colorado, is a subsurface fire of unknown origin, burning since 1910. Subsidence features, gas vents, ash, condensates, and red oxidized shales are surface manifestations of the fire. The likely success of conventional fire-containment methodologies in South Canyon is questionable, although drilling data may eventually suggest a useful control procedure. Drill casings in voids in the D coal seam on the western slope trail are useful for collecting gas samples, monitoring the temperature of subsurface burning, and measuring the concentration of gases such as carbon monoxide and carbon dioxide in the field. Coal fire gas and mineral condensates may contribute to the destruction of floral and faunal habitats and be responsible for a variety of human diseases; hence, the study of coal gas and its condensation products may prove useful in understanding environmental pollution created by coal mine fires. The 2002 Coal Seam Fire, which burned over 12,000 acres and destroyed numerous buildings in and around Glenwood Springs, exemplifies the potential danger an underground coal fire poses for igniting a surface fire.

  9. Phenols and hydroxy-PAHs (arylphenols) as tracers for coal smoke particulate matter: source tests and ambient aerosol assessments

    SciTech Connect

    Bernd R.T. Simoneit; Xinhui Bi; Daniel R. Oros; Patricia M. Medeiros; Guoying Sheng; Jiamo Fu [Oregon State University, Corvallis, OR (United States). Environmental Sciences Program

    2007-11-01

    Source tests were conducted to analyze and characterize diagnostic key tracers for emissions from burning of coals with various ranks. Coal samples included lignite from Germany, semibituminous coal from Arizona, USA, bituminous coal from Wales, UK and sample from briquettes of semibituminous coal, bituminous coal and anthracite from China. Ambient aerosol particulate matter was also collected in three areas of China and a background area in Corvallis, OR (U.S.) to confirm the presence of tracers specific for coal smoke. The results showed a series of aliphatic and aromatic hydrocarbons and phenolic compounds, including PAHs and hydroxy-PAHs as the major tracers, as well as a significant unresolved complex mixture (UCM) of compounds. The tracers that were found characteristic of coal combustion processes included hydroxy-PAHs and PAHs. Atmospheric ambient samples from Beijing and Taiyuan, cities where coal is burned in northern China, revealed that the hydroxy-PAH tracers were present during the wintertime, but not in cities where coal is not commonly used (e.g., Guangzhou, South China). Thus, the mass of hydroxy-PAHs can be apportioned to coal smoke and the source strength modeled by summing the proportional contents of EC (elemental carbon), PAHs, UCM and alkanes with the hydroxy-PAHs. 36 refs., 2 figs., 3 tabs.

  10. Prescribed Range Burning in Texas 

    E-print Network

    White, Larry D.; Hanselka, C. Wayne

    2000-04-25

    Prescribed burning is an effective brush management technique for improving pasture accessibility and increasing the production of forage and browse. Fire also suppresses most brush and cactus species. This bulletin discusses how to plan...

  11. Phoenix Society for Burn Survivors

    MedlinePLUS

    ... Create a Legacy Join Team Phoenix Phoenix Store Who We Are Our History Our Leadership Team Financial Accountability Phoenix ... World Burn Congress Get Involved Ways to Give Who We Are Quick Links Media Blog Contact Legal Privacy Policy ...

  12. Pelletization of fine coals

    SciTech Connect

    Sastry, K.V.S.

    1991-09-01

    The present research project attempts to provide a basis to determine the pelletizability of fine coals, to ascertain the role of additives and binders and to establish a basis for binder selection. Currently, there are no established techniques for determining the quality of coal pellets. Our research is intended to develop a series of tests on coal pellets to measure their storage characteristics, transportability, ease of gasification and rate of combustion. Information developed from this research should be valuable for making knowledgeable decisions for on-time plant design, occasional binder selection and frequent process control during the pelletization of coal fines. During the last quarter, we continued the batch pelletization studies on Upper Freeport coal. The results as presented in that last quarterly report (April 1991) indicated that the surface conditions on the coal particle influenced the pelletizing growth rates. For example, a fresh (run of mine) sample of coal will display different pelletizing growth kinetics than a weathered sample of the same coal. Since coal is a heterogeneous material, the oxidized product of coal is equally variable. We found it to be logistically difficult to consistently produce large quantities of artificially oxidized coal for experimental purposes and as such we have used a naturally weathered coal. We have plans to oxidize coals under controlled oxidizing conditions and be able to establish their pelletizing behavior. The next phase of experiments were directed to study the effect of surface modification, introduced during the coal cleaning steps, on pelletizing kinetics. Accordingly, we initiated studies with two additives commonly used during the flotation of coal: dextrin (coal depressant) and dodecane (coal collector).

  13. Mcm Burn-In Experience

    Microsoft Academic Search

    Thomas Bardsley; Joseph Lisowski; Steven Wilson; Steve Vanaernam

    1994-01-01

    Multi-chip module burn-in has been utilized at IBM for several years. The current module bum-in tool stresses 121 chip multi-chip modules used in the IBM ES\\/9000 mainframes. MCM level burn-in has been performed on alumina and glass-ceramic substrates with bipolar and CMOS chip technologies resulting in various challenges to tool design and process development. This paper will focus on the

  14. Chemical burns: pathophysiology and treatment.

    PubMed

    Palao, R; Monge, I; Ruiz, M; Barret, J P

    2010-05-01

    Chemical burns continue to pose a variety of dilemmas to the clinician managing such cases. Assessment of burn depth is often difficult and the decision whether to excise the wound early is not always clear-cut. In this updated review, common agents are classified and the basic principles of management and specific recommendations are examined. The complications arising from exposure to these chemicals and the supportive measures needed during treatment are also described. PMID:19864073

  15. Burning Questions About a Candle

    NSDL National Science Digital Library

    2012-07-17

    In this activity, learners will observe a deceptively simple process: a burning candle. In fact, what takes place during the initiation and dynamically stable combustion process is enormously complex. This activity gives learners important insights into basic physics and chemistry, and shows learners the importance of critical observations. The link to this activity is on the left hand side, under "Activities," and is called "How a Candle Burns." Adult supervision required.

  16. Geosphere in underground coal gasification

    SciTech Connect

    Daly, D.J.; Groenewold, G.H.; Schmit, C.R.; Evans, J.M.

    1988-07-01

    The feasibility of underground coal gasification (UCG), the in-situ conversion of coal to natural gas, has been demonstrated through 28 tests in the US alone, mainly in low-rank coals, since the early 1970s. Further, UCG is currently entering the commercial phase in the US with a planned facility in Wyoming for the production of ammonia-urea from UCG-generated natural gas. Although the UCG process both affects and is affected by the natural setting, the majority of the test efforts have historically been focused on characterizing those aspects of the natural setting with the potential to affect the burn. With the advent of environmental legislation, this focus broadened to include the potential impacts of the process on the environment (e.g., subsidence, degradation of ground water quality). Experience to date has resulted in the growing recognition that consideration of the geosphere is fundamental to the design of efficient, economical, and environmentally acceptable UCG facilities. The ongoing RM-1 test program near Hanna, Wyoming, sponsored by the US Department of Energy and an industry consortium led by the Gas Research Institute, reflects this growing awareness through a multidisciplinary research effort, involving geoscientists and engineers, which includes (1) detailed geological site characterization, (2) geotechnical, hydrogeological, and geochemical characterization and predictive modeling, and (3) a strategy for ground water protection. Continued progress toward commercialization of the UCG process requires the integration of geological and process-test information in order to identify and address the potentially adverse environmental ramifications of the process, while identifying and using site characteristics that have the potential to benefit the process and minimize adverse impacts.

  17. Smokeless burning system and method

    SciTech Connect

    Burton, R.E.

    1988-10-04

    This patent describes a system for burning wood and other fuel materials: an elongated, pivotally mounted burning chamber having inlet and outlet ends and being capable of being tilted to different angles of inclination to facilitate movement of material through the chamber, an accumulation chamber at the inlet end of the burning chamber, a hopper for receiving fuel material to be burned, an air lock chamber positioned between the hopper and the accumulation chamber, a first gate between the hopper and the air lock chamber for passing the fuel material from the hopper to the air lock chamber when opened and preventing the passage of smoke from the air lock chamber to the hopper when closed, a second gate between the air lock chamber and the accumulation chamber for passing the fuel material from the air lock chamber to the accumulation chamber when opened and preventing the passage of smoke from the burning chamber to the air lock chamber when closed, and means for pushing the fuel material from the accumulation chamber into the inlet end of the burning chamber and thereby causing material already in the chamber to move down the inclined chamber toward the outlet end.

  18. Mineral impurities in coal combustion

    Microsoft Academic Search

    Raask

    1985-01-01

    This article discusses the many and varied problems associated with coal combustion and suggests remedial measures to assist in producing electrical energy from coal more efficiently. Contents include: influence of coal mineral matter on boiler design; mineral impurities in coal; quality of coal utilized in power stations; coal grinding, abrasive fuel minerals and plant wear; particulates silicate minerals in boiler

  19. Coal pump development phase 3

    NASA Technical Reports Server (NTRS)

    Kushida, R. O.; Sankur, V. D.; Gerbracht, F. G.; Mahajan, V.

    1980-01-01

    Techniques for achieving continuous coal sprays were studied. Coazial injection with gas and pressure atomization were studied. Coal particles, upon cooling, were found to be porous and fragile. Reactivity tests on the extruded coal showed overall conversion to gases and liquids unchanged from that of the raw coal. The potentials for applications of the coal pump to eight coal conversion processes were examined.

  20. Coal utilization research in India

    Microsoft Academic Search

    S. Ranga Raja Rao; G. G. Sarkar

    1979-01-01

    One of the major factors of concern to the Indian coal industry is the increasing ash content of coal mined as well as the fluctuation in its quality. Coal beneficiation and preparation and expansion of washery capacity will therefore be a major effort of the coal industry. This is essential for the export of coal. Conservation of coking coal, development

  1. Coal -- Energy and the environment

    Microsoft Academic Search

    Chiang; Shiao Hung

    1993-01-01

    The proceedings are grouped into the following 31 sessions: Coal processing and utilization; Ash use interactions in soils and plants; Coal preparation I; Coal preparation II - reconstitution processes; Ash use in mine reclamation; Pre\\/post utilization; Direct liquefaction catalysts; Coal conversion retrospective; Coal characterization and its significance to utilization; Integrated gasification combined cycle; Non-fuel use of coal; Conversion technologies; Expert

  2. Nitramine propellants. [gun propellant burning rate

    NASA Technical Reports Server (NTRS)

    Cohen, N. S.; Strand, L. D. (inventors)

    1978-01-01

    Nitramine propellants without a pressure exponent shift in the burning rate curves are prepared by matching the burning rate of a selected nitramine or combination of nitramines within 10% of burning rate of a plasticized active binder so as to smooth out the break point appearance in the burning rate curve.

  3. Chemicals from coal

    SciTech Connect

    Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

    2004-12-01

    This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

  4. Nitrogen in Chinese coals

    USGS Publications Warehouse

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  5. Measuring coal thickness

    NASA Technical Reports Server (NTRS)

    Barker, C.; Blaine, J.; Geller, G.; Robinson, R.; Summers, D.; Tyler, J.

    1980-01-01

    Laboratory tested concept, for measuring thickness of overhead coal using noncontacting sensor system coupled to controller and high pressure water jet, allows mining machines to remove virtually all coal from mine roofs without danger of cutting into overlying rock.

  6. Coal News & Markets

    EIA Publications

    2015-01-01

    Summarizes spot coal prices by coal commodity regions (i.e., Central Appalachia (CAP), Northern Appalachia (NAP), Illinois Basin (ILB), Power River Basin (PRB), and Uinta Basin (UIB)) in the United States.

  7. Advanced clean coal technologies

    Microsoft Academic Search

    S. Azuhata

    2001-01-01

    In this paper, the author argues that, although coal may be an interim solution, the development of technologies providing effective use of coal is important to bridge the gap between present and future energy supply situations

  8. Enhanced control of fine particles following Title IV coal switching and NOx control

    SciTech Connect

    Durham, M.D.; Baldrey, K.E.; Bustard, C.J.; Martin, C. [ADA Environmental Solutions, Englewood, CO (United States)

    1997-12-31

    Electrostatic precipitators (ESPs) serve as the primary particle control devices for a majority of coal-fired power generating units in the United States. ESPs are used to collect particulate matter that range in size from less than one micrometer in diameter to several hundred micrometers. Many of the options that utilities will use to respond to Title IV of the 1990 Clean Air Act Amendments will result in changes to the ash that will be detrimental to the performance of the ESP causing increased emissions of fine particles and higher opacity. For example, a switch to low-sulfur coal significantly increases particle resistivity while low-NO{sub x} burners increase the carbon content of ashes. Both of these changes could result in derating of the boiler to comply with emissions standards. ADA has developed a chemical additive that is designed to improve the operation of ESI`s to bring these systems into compliance operation without the need for expensive capital modifications. The additives provide advantages over competing technologies in terms of low capital cost, easy to handle chemicals, and relatively non-toxic chemicals. In addition, the new additive is insensitive to ash chemistry which will allow the utility complete flexibility to select the most economical coal. Results from full-scale and pilot plant demonstrations are reported.

  9. Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China - article no. L20815

    SciTech Connect

    Chen, Y.J.; Zhi, G.R.; Feng, Y.L.; Fu, J.M.; Feng, J.L.; Sheng, G.Y.; Simoneit, B.R.T. [Chinese Academy of Science, Ghangzhou (China)

    2006-10-28

    The emission factors (EFs) of particles and their carbonaceous fractions, including black carbon (BC) and organic carbon (OC), are measured for residential burning of coal-chunks. Nine types of coals with wide-ranged thermal maturities were used. Particulate emissions from coal-stove are collected on quartz fiber filters through a dilution sampling system and analyzed for BC and OC by thermal-optical method. The EFs of particulate matter, OC, and BC from bituminous coal burning are 16.77, 8.29, and 3.32 g/kg, respectively, on the basis of burned dry and ash-free (daf) coal mass. They were much higher than those of anthracites, which are 0.78, 0.04, and 0.004 g/kg, respectively. Annual emission inventories of particles, OC, and BC from household coal burning are also estimated based on the EFs and coal consumption. The results of the calculations are 917.8, 477.7, and 128.4 gigagrams (Gg) for total particles, OC, and BC emitted in China during the year 2000.

  10. Slag-Refractory Interaction in Coal Gasifiers

    SciTech Connect

    Sundaram, S. K.; Johnson, Kenneth I.; Williford, Ralph E.; Pilli, Siva Prasad; Matyas, Josef; Fluegel, Alexander; Cooley, Scott K.; Crum, Jarrod V.; Edmondson, Autumn B.

    2007-10-13

    Pacific Northwest National Laboratory (PNNL) has taken an integrated approach to address major technical issues in conversion of coal into clean-burning liquid fuel. The approach includes: 1) modeling of gasifier and slag flow, 2) experimental characterization of slag viscoelastic behavior as a function of temperature for representative slags and refractory-slag interactions, and 3) interplay of the modeling and experimental measurements to identify critical conditions beyond which refractory corrosion tends to increase sharply. Basic heat and mass balances were considered in the gasifier and flow models. Two new refractory spalling models were developed. An experimental design that encompassed the broad range of slag chemistries that were of interest to coal gasification was developed and implemented. Selected gasifier refractories were tested in a simulated gasifier environment in our laboratory to identify refractory degradation mechanisms. Preliminary results of the effort are summarized.

  11. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    SciTech Connect

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  12. Low sulfur depletion in the Horsehead PDR

    NASA Astrophysics Data System (ADS)

    Goicoechea, J. R.; Pety, J.; Gerin, M.; Teyssier, D.; Roueff, E.; Hily-Blant, P.; Baek, S.

    2006-09-01

    Aims.We present 3.65'' × 3.34'' angular-resolution IRAM Plateau de Bure Interferometer (PdBI) observations of the CS J = 2-1 line toward the Horsehead Photodissociation Region (PDR), complemented with IRAM-30m single-dish observations of several rotational lines of CS, C34S and HCS^+. We analyse the CS and HCS+ photochemistry, excitation and radiative transfer to obtain their abundances and the physical conditions prevailing in the cloud edge. Since the CS abundance scales to that of sulfur, we determine the gas phase sulfur abundance in the PDR, an interesting intermediate medium between translucent clouds (where sulfur remains in the gas phase) and dark clouds (where large depletions have been invoked). Methods: .A nonlocal non-LTE radiative transfer code including dust and cosmic background illumination adapted to the Horsehead geometry has been developed to carefuly analyse the CS, C34S, HCS+ and C18O rotational line emission. We use this model to consistently link the line observations with photochemical models to determine the CS/HCS^+/S/S+ structure of the PDR. Results: .Densities of n(H_2)?(0.5{-}1.0) × 105 cm-3 are required to reproduce the CS and C34S J = 2-1 and 3-2 line emission. CS J = 5-4 lines show narrower line widths than the CS low-J lines and require higher density gas components not resolved by the 10'' IRAM-30m beam. These values are larger than previous estimates based in CO observations. We found ?(CS) = (7 ± 3) × 10-9 and ?(HCS+) = (4 ± 2) × 10-11 as the averaged abundances in the PDR. According to photochemical models, the gas phase sulfur abundance required to reproduce these values is S/H = (3.5 ± 1.5) × 10-6, only a factor ?4 less abundant than the solar sulfur elemental abundance. Since only lower limits to the gas temperature are constrained, even lower sulfur depletion values are possible if the gas is significantly warmer. Conclusions: .The combination of CS, C34S and HCS+ observations together with the inclusion of the most recent CS collisional and chemical rates in our models implies that sulfur depletion invoked to account for CS and HCS+ abundances is much smaller than in previous studies.

  13. Liquid chromatographic analysis of coal surface properties

    SciTech Connect

    Kwon, K.C.

    1992-04-07

    The main objectives of this proposed research work are to refine further the inverse liquid chromatography technique for the study of surface properties of raw coals, treated coals and coal minerals in water, to evaluate relatively surface properties of raw coals, treated coals and coal minerals by inverse liquid chromatography, and to evaluate flotability of various treated coals in conjunction with surface properties of coals. Coals such as Pittsburgh seam coal, Illinois No. 6 coal, Wyodak coal are chosen as representatives of high-rank bituminous coal, high volatile bituminous coal and subbituminous coal, respectively. Coal minerals such as pyrite and dolomite are chosen as representative coal minerals.

  14. Coal-water dispersion

    SciTech Connect

    Stigsson, L.L.; Lindman, B.

    1986-07-08

    A dispersion is described comprising water, pulverized coal and stabilizing additives, the coal content ranging from 60 to 80% by weight and the additives comprising a combination of (a) sufficient lecithin adsorbed on surfaces of coal particles to provide repulsion between the coal particles by hydration forces and (b) polymer cooperating with the lecithin and comprising at least one polymer having segments of hydrophobic as well as segments of hydrophilic character.

  15. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment

    SciTech Connect

    Not Available

    1993-05-01

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

  16. EPA COAL CLEANING PROGRAM

    EPA Science Inventory

    The report describes work during Fiscal Year 1979 by 12 organizations, both public and private, under EPA's Coal Cleaning Program, a program that explores the possibilities for wider use of coal as an environmentally acceptable energy source. Many aspects of coal were studied, in...

  17. Coal workers' pneumoconiosis

    Microsoft Academic Search

    I. J. Selikoff; M. M. Key; D. H. K. Lee

    1972-01-01

    The anatomy and physiology of the human respiratory tract are reviewed in relation to factors influencing coal dust retention and the etiology of pneumoconiosis in coal workers. The extent and distribution of the disease world-wide is discussed, and physiological and radiological diagnostic tests and methods of treatment are reviewed. Methods for the control of coal dust in mines, standards in

  18. Sulfur in Illinois coals

    Microsoft Academic Search

    H. J. Gluskoter; J. A. Simon

    1968-01-01

    The occurrence and distribution of S forms in selected Illinois coals were determined. All data were obtained from microscopic, chemical and x-ray diffraction analyses of face-channel coal samples. Sulfate S in Illinois coals was contained primarily in gypsum with the following sulfate minerals also being identified: rozenite, melanterite, coquimbite, roemerite, and jarosite. Pyrite was the dominant sulfide mineral occurring in

  19. Clean coal technology

    NASA Astrophysics Data System (ADS)

    Richards, P. C.; Wijffels, J.-B.; Zuideveld, P. L.

    The different commercially available clean coal technologies are introduced with particular emphasis on their efficiency and environmental performance. The technologies in question are: pulverized fuel combustion with flue gas desulphurization; circulating fluidized bed combustion; integrated coal gasification combined cycle; pressurized fluidized bed combustion. Consideration is also be given to emerging coal combustion technologies.

  20. The development and manufacture of coal briquettes

    SciTech Connect

    Li Xinshen; Wei Tingfu; Hao Aimin; Ning Weiyun; Liu Fuhua [Chinese Academy of Sciences (China)

    1997-12-31

    Three different kinds of coal briquettes, i.e., gasification briquette, boiler briquette and easy ignition roast briquette, have been developed and produced with the authors` patent binder. The gasification briquette is made from fines of anthracite or coke, hot stability agent and patent binder. It has been used as a substitute of anthracite lump in gasifiers to produce fuel gas and syngas. The three year`s performance of this briquettes in the TG-3MI gasifier has given good economic benefits. The boiler briquette is made from bituminous coal fines, sulphur-fixing agent, combustion-supporting agent, waterproofing agent and patent binder. It can keep its original shape in water for one month. The combustion results of the boiler briquette in a 4t/h coal-fired boiler have shown that heat efficiency increased by 20%, the total suspended particles decreased by 80%, and emission of both SO{sub 2} and Hap were reduced as compared with the raw coal. The easy ignition roast briquette is made from fines of charcoal, anthracite or coke, oxidant and binder. It is convenient and safe to use in that it can be lit with a match or a piece of paper easily and burn continuously for 90 minutes without smoke and odor. It can be used as a fuel for roasting food for a picnic.